1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
55 #include "coretypes.h"
59 #include "gensupport.h"
61 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
62 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64 /* Holds an array of names indexed by insn_code_number. */
65 static char **insn_name_ptr
= 0;
66 static int insn_name_ptr_size
= 0;
68 /* A listhead of decision trees. The alternatives to a node are kept
69 in a doubly-linked list so we can easily add nodes to the proper
70 place when merging. */
74 struct decision
*first
;
75 struct decision
*last
;
78 /* A single test. The two accept types aren't tests per-se, but
79 their equality (or lack thereof) does affect tree merging so
80 it is convenient to keep them here. */
84 /* A linked list through the tests attached to a node. */
85 struct decision_test
*next
;
87 /* These types are roughly in the order in which we'd like to test them. */
90 DT_mode
, DT_code
, DT_veclen
,
91 DT_elt_zero_int
, DT_elt_one_int
, DT_elt_zero_wide
, DT_elt_zero_wide_safe
,
93 DT_veclen_ge
, DT_dup
, DT_pred
, DT_c_test
,
94 DT_accept_op
, DT_accept_insn
99 enum machine_mode mode
; /* Machine mode of node. */
100 RTX_CODE code
; /* Code to test. */
104 const char *name
; /* Predicate to call. */
105 const struct pred_data
*data
;
106 /* Optimization hints for this predicate. */
107 enum machine_mode mode
; /* Machine mode for node. */
110 const char *c_test
; /* Additional test to perform. */
111 int veclen
; /* Length of vector. */
112 int dup
; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval
; /* Value for XINT for XWINT. */
114 int opno
; /* Operand number matched. */
117 int code_number
; /* Insn number matched. */
118 int lineno
; /* Line number of the insn. */
119 int num_clobbers_to_add
; /* Number of CLOBBERs to be added. */
124 /* Data structure for decision tree for recognizing legitimate insns. */
128 struct decision_head success
; /* Nodes to test on success. */
129 struct decision
*next
; /* Node to test on failure. */
130 struct decision
*prev
; /* Node whose failure tests us. */
131 struct decision
*afterward
; /* Node to test on success,
132 but failure of successor nodes. */
134 const char *position
; /* String denoting position in pattern. */
136 struct decision_test
*tests
; /* The tests for this node. */
138 int number
; /* Node number, used for labels */
139 int subroutine_number
; /* Number of subroutine this node starts */
140 int need_label
; /* Label needs to be output. */
143 #define SUBROUTINE_THRESHOLD 100
145 static int next_subroutine_number
;
147 /* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
152 RECOG
, SPLIT
, PEEPHOLE2
155 #define IS_SPLIT(X) ((X) != RECOG)
157 /* Next available node number for tree nodes. */
159 static int next_number
;
161 /* Next number to use as an insn_code. */
163 static int next_insn_code
;
165 /* Record the highest depth we ever have so we know how many variables to
166 allocate in each subroutine we make. */
168 static int max_depth
;
170 /* The line number of the start of the pattern currently being processed. */
171 static int pattern_lineno
;
173 /* Count of errors. */
174 static int error_count
;
176 /* Predicate handling.
178 We construct from the machine description a table mapping each
179 predicate to a list of the rtl codes it can possibly match. The
180 function 'maybe_both_true' uses it to deduce that there are no
181 expressions that can be matches by certain pairs of tree nodes.
182 Also, if a predicate can match only one code, we can hardwire that
183 code into the node testing the predicate.
185 Some predicates are flagged as special. validate_pattern will not
186 warn about modeless match_operand expressions if they have a
187 special predicate. Predicates that allow only constants are also
188 treated as special, for this purpose.
190 validate_pattern will warn about predicates that allow non-lvalues
191 when they appear in destination operands.
193 Calculating the set of rtx codes that can possibly be accepted by a
194 predicate expression EXP requires a three-state logic: any given
195 subexpression may definitively accept a code C (Y), definitively
196 reject a code C (N), or may have an indeterminate effect (I). N
197 and I is N; Y or I is Y; Y and I, N or I are both I. Here are full
208 We represent Y with 1, N with 0, I with 2. If any code is left in
209 an I state by the complete expression, we must assume that that
210 code can be accepted. */
216 #define TRISTATE_AND(a,b) \
217 ((a) == I ? ((b) == N ? N : I) : \
218 (b) == I ? ((a) == N ? N : I) : \
221 #define TRISTATE_OR(a,b) \
222 ((a) == I ? ((b) == Y ? Y : I) : \
223 (b) == I ? ((a) == Y ? Y : I) : \
226 #define TRISTATE_NOT(a) \
227 ((a) == I ? I : !(a))
229 /* Recursively calculate the set of rtx codes accepted by the
230 predicate expression EXP, writing the result to CODES. */
232 compute_predicate_codes (rtx exp
, char codes
[NUM_RTX_CODE
])
234 char op0_codes
[NUM_RTX_CODE
];
235 char op1_codes
[NUM_RTX_CODE
];
236 char op2_codes
[NUM_RTX_CODE
];
239 switch (GET_CODE (exp
))
242 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
243 compute_predicate_codes (XEXP (exp
, 1), op1_codes
);
244 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
245 codes
[i
] = TRISTATE_AND (op0_codes
[i
], op1_codes
[i
]);
249 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
250 compute_predicate_codes (XEXP (exp
, 1), op1_codes
);
251 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
252 codes
[i
] = TRISTATE_OR (op0_codes
[i
], op1_codes
[i
]);
255 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
256 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
257 codes
[i
] = TRISTATE_NOT (codes
[i
]);
261 /* a ? b : c accepts the same codes as (a & b) | (!a & c). */
262 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
263 compute_predicate_codes (XEXP (exp
, 1), op1_codes
);
264 compute_predicate_codes (XEXP (exp
, 2), op2_codes
);
265 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
266 codes
[i
] = TRISTATE_OR (TRISTATE_AND (op0_codes
[i
], op1_codes
[i
]),
267 TRISTATE_AND (TRISTATE_NOT (op0_codes
[i
]),
272 /* MATCH_CODE allows a specified list of codes. */
273 memset (codes
, N
, NUM_RTX_CODE
);
275 const char *next_code
= XSTR (exp
, 0);
278 if (*next_code
== '\0')
280 message_with_line (pattern_lineno
, "empty match_code expression");
285 while ((code
= scan_comma_elt (&next_code
)) != 0)
287 size_t n
= next_code
- code
;
289 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
290 if (!strncmp (code
, GET_RTX_NAME (i
), n
)
291 && GET_RTX_NAME (i
)[n
] == '\0')
301 /* MATCH_OPERAND disallows the set of codes that the named predicate
302 disallows, and is indeterminate for the codes that it does allow. */
304 struct pred_data
*p
= lookup_predicate (XSTR (exp
, 1));
307 message_with_line (pattern_lineno
,
308 "reference to unknown predicate '%s'",
313 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
314 codes
[i
] = p
->codes
[i
] ? I
: N
;
320 /* (match_test WHATEVER) is completely indeterminate. */
321 memset (codes
, I
, NUM_RTX_CODE
);
325 message_with_line (pattern_lineno
,
326 "'%s' cannot be used in a define_predicate expression",
327 GET_RTX_NAME (GET_CODE (exp
)));
329 memset (codes
, I
, NUM_RTX_CODE
);
338 /* Process a define_predicate expression: compute the set of predicates
339 that can be matched, and record this as a known predicate. */
341 process_define_predicate (rtx desc
)
343 struct pred_data
*pred
= xcalloc (sizeof (struct pred_data
), 1);
344 char codes
[NUM_RTX_CODE
];
345 bool seen_one
= false;
348 pred
->name
= XSTR (desc
, 0);
349 if (GET_CODE (desc
) == DEFINE_SPECIAL_PREDICATE
)
352 compute_predicate_codes (XEXP (desc
, 1), codes
);
354 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
357 pred
->codes
[i
] = true;
358 if (GET_RTX_CLASS (i
) != RTX_CONST_OBJ
)
359 pred
->allows_non_const
= true;
365 && i
!= STRICT_LOW_PART
)
366 pred
->allows_non_lvalue
= true;
369 pred
->singleton
= UNKNOWN
;
376 add_predicate (pred
);
383 static struct decision
*new_decision
384 (const char *, struct decision_head
*);
385 static struct decision_test
*new_decision_test
386 (enum decision_type
, struct decision_test
***);
387 static rtx find_operand
389 static rtx find_matching_operand
391 static void validate_pattern
392 (rtx
, rtx
, rtx
, int);
393 static struct decision
*add_to_sequence
394 (rtx
, struct decision_head
*, const char *, enum routine_type
, int);
396 static int maybe_both_true_2
397 (struct decision_test
*, struct decision_test
*);
398 static int maybe_both_true_1
399 (struct decision_test
*, struct decision_test
*);
400 static int maybe_both_true
401 (struct decision
*, struct decision
*, int);
403 static int nodes_identical_1
404 (struct decision_test
*, struct decision_test
*);
405 static int nodes_identical
406 (struct decision
*, struct decision
*);
407 static void merge_accept_insn
408 (struct decision
*, struct decision
*);
409 static void merge_trees
410 (struct decision_head
*, struct decision_head
*);
412 static void factor_tests
413 (struct decision_head
*);
414 static void simplify_tests
415 (struct decision_head
*);
416 static int break_out_subroutines
417 (struct decision_head
*, int);
418 static void find_afterward
419 (struct decision_head
*, struct decision
*);
421 static void change_state
422 (const char *, const char *, struct decision
*, const char *);
423 static void print_code
425 static void write_afterward
426 (struct decision
*, struct decision
*, const char *);
427 static struct decision
*write_switch
428 (struct decision
*, int);
429 static void write_cond
430 (struct decision_test
*, int, enum routine_type
);
431 static void write_action
432 (struct decision
*, struct decision_test
*, int, int,
433 struct decision
*, enum routine_type
);
434 static int is_unconditional
435 (struct decision_test
*, enum routine_type
);
436 static int write_node
437 (struct decision
*, int, enum routine_type
);
438 static void write_tree_1
439 (struct decision_head
*, int, enum routine_type
);
440 static void write_tree
441 (struct decision_head
*, const char *, enum routine_type
, int);
442 static void write_subroutine
443 (struct decision_head
*, enum routine_type
);
444 static void write_subroutines
445 (struct decision_head
*, enum routine_type
);
446 static void write_header
449 static struct decision_head make_insn_sequence
450 (rtx
, enum routine_type
);
451 static void process_tree
452 (struct decision_head
*, enum routine_type
);
454 static void record_insn_name
457 static void debug_decision_0
458 (struct decision
*, int, int);
459 static void debug_decision_1
460 (struct decision
*, int);
461 static void debug_decision_2
462 (struct decision_test
*);
463 extern void debug_decision
465 extern void debug_decision_list
468 /* Create a new node in sequence after LAST. */
470 static struct decision
*
471 new_decision (const char *position
, struct decision_head
*last
)
473 struct decision
*new = xcalloc (1, sizeof (struct decision
));
475 new->success
= *last
;
476 new->position
= xstrdup (position
);
477 new->number
= next_number
++;
479 last
->first
= last
->last
= new;
483 /* Create a new test and link it in at PLACE. */
485 static struct decision_test
*
486 new_decision_test (enum decision_type type
, struct decision_test
***pplace
)
488 struct decision_test
**place
= *pplace
;
489 struct decision_test
*test
;
491 test
= xmalloc (sizeof (*test
));
502 /* Search for and return operand N, stop when reaching node STOP. */
505 find_operand (rtx pattern
, int n
, rtx stop
)
515 code
= GET_CODE (pattern
);
516 if ((code
== MATCH_SCRATCH
517 || code
== MATCH_OPERAND
518 || code
== MATCH_OPERATOR
519 || code
== MATCH_PARALLEL
)
520 && XINT (pattern
, 0) == n
)
523 fmt
= GET_RTX_FORMAT (code
);
524 len
= GET_RTX_LENGTH (code
);
525 for (i
= 0; i
< len
; i
++)
530 if ((r
= find_operand (XEXP (pattern
, i
), n
, stop
)) != NULL_RTX
)
535 if (! XVEC (pattern
, i
))
540 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
541 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
, stop
))
546 case 'i': case 'w': case '0': case 's':
557 /* Search for and return operand M, such that it has a matching
558 constraint for operand N. */
561 find_matching_operand (rtx pattern
, int n
)
568 code
= GET_CODE (pattern
);
569 if (code
== MATCH_OPERAND
570 && (XSTR (pattern
, 2)[0] == '0' + n
571 || (XSTR (pattern
, 2)[0] == '%'
572 && XSTR (pattern
, 2)[1] == '0' + n
)))
575 fmt
= GET_RTX_FORMAT (code
);
576 len
= GET_RTX_LENGTH (code
);
577 for (i
= 0; i
< len
; i
++)
582 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
587 if (! XVEC (pattern
, i
))
592 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
593 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
597 case 'i': case 'w': case '0': case 's':
609 /* Check for various errors in patterns. SET is nonnull for a destination,
610 and is the complete set pattern. SET_CODE is '=' for normal sets, and
611 '+' within a context that requires in-out constraints. */
614 validate_pattern (rtx pattern
, rtx insn
, rtx set
, int set_code
)
621 code
= GET_CODE (pattern
);
629 if (find_operand (insn
, XINT (pattern
, 0), pattern
) == pattern
)
631 message_with_line (pattern_lineno
,
632 "operand %i duplicated before defined",
640 const char *pred_name
= XSTR (pattern
, 1);
641 const struct pred_data
*pred
;
644 if (GET_CODE (insn
) == DEFINE_INSN
)
645 c_test
= XSTR (insn
, 2);
647 c_test
= XSTR (insn
, 1);
649 if (pred_name
[0] != 0)
651 pred
= lookup_predicate (pred_name
);
653 message_with_line (pattern_lineno
,
654 "warning: unknown predicate '%s'",
660 if (code
== MATCH_OPERAND
)
662 const char constraints0
= XSTR (pattern
, 2)[0];
664 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
665 don't use the MATCH_OPERAND constraint, only the predicate.
666 This is confusing to folks doing new ports, so help them
667 not make the mistake. */
668 if (GET_CODE (insn
) == DEFINE_EXPAND
669 || GET_CODE (insn
) == DEFINE_SPLIT
670 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
)
673 message_with_line (pattern_lineno
,
674 "warning: constraints not supported in %s",
675 rtx_name
[GET_CODE (insn
)]);
678 /* A MATCH_OPERAND that is a SET should have an output reload. */
679 else if (set
&& constraints0
)
683 if (constraints0
== '+')
685 /* If we've only got an output reload for this operand,
686 we'd better have a matching input operand. */
687 else if (constraints0
== '='
688 && find_matching_operand (insn
, XINT (pattern
, 0)))
692 message_with_line (pattern_lineno
,
693 "operand %d missing in-out reload",
698 else if (constraints0
!= '=' && constraints0
!= '+')
700 message_with_line (pattern_lineno
,
701 "operand %d missing output reload",
708 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
709 while not likely to occur at runtime, results in less efficient
710 code from insn-recog.c. */
711 if (set
&& pred
&& pred
->allows_non_lvalue
)
712 message_with_line (pattern_lineno
,
713 "warning: destination operand %d "
717 /* A modeless MATCH_OPERAND can be handy when we can check for
718 multiple modes in the c_test. In most other cases, it is a
719 mistake. Only DEFINE_INSN is eligible, since SPLIT and
720 PEEP2 can FAIL within the output pattern. Exclude special
721 predicates, which check the mode themselves. Also exclude
722 predicates that allow only constants. Exclude the SET_DEST
723 of a call instruction, as that is a common idiom. */
725 if (GET_MODE (pattern
) == VOIDmode
726 && code
== MATCH_OPERAND
727 && GET_CODE (insn
) == DEFINE_INSN
730 && pred
->allows_non_const
731 && strstr (c_test
, "operands") == NULL
733 && GET_CODE (set
) == SET
734 && GET_CODE (SET_SRC (set
)) == CALL
))
735 message_with_line (pattern_lineno
,
736 "warning: operand %d missing mode?",
743 enum machine_mode dmode
, smode
;
746 dest
= SET_DEST (pattern
);
747 src
= SET_SRC (pattern
);
749 /* STRICT_LOW_PART is a wrapper. Its argument is the real
750 destination, and it's mode should match the source. */
751 if (GET_CODE (dest
) == STRICT_LOW_PART
)
752 dest
= XEXP (dest
, 0);
754 /* Find the referent for a DUP. */
756 if (GET_CODE (dest
) == MATCH_DUP
757 || GET_CODE (dest
) == MATCH_OP_DUP
758 || GET_CODE (dest
) == MATCH_PAR_DUP
)
759 dest
= find_operand (insn
, XINT (dest
, 0), NULL
);
761 if (GET_CODE (src
) == MATCH_DUP
762 || GET_CODE (src
) == MATCH_OP_DUP
763 || GET_CODE (src
) == MATCH_PAR_DUP
)
764 src
= find_operand (insn
, XINT (src
, 0), NULL
);
766 dmode
= GET_MODE (dest
);
767 smode
= GET_MODE (src
);
769 /* The mode of an ADDRESS_OPERAND is the mode of the memory
770 reference, not the mode of the address. */
771 if (GET_CODE (src
) == MATCH_OPERAND
772 && ! strcmp (XSTR (src
, 1), "address_operand"))
775 /* The operands of a SET must have the same mode unless one
777 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
779 message_with_line (pattern_lineno
,
780 "mode mismatch in set: %smode vs %smode",
781 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
785 /* If only one of the operands is VOIDmode, and PC or CC0 is
786 not involved, it's probably a mistake. */
787 else if (dmode
!= smode
788 && GET_CODE (dest
) != PC
789 && GET_CODE (dest
) != CC0
790 && GET_CODE (src
) != PC
791 && GET_CODE (src
) != CC0
792 && GET_CODE (src
) != CONST_INT
)
795 which
= (dmode
== VOIDmode
? "destination" : "source");
796 message_with_line (pattern_lineno
,
797 "warning: %s missing a mode?", which
);
800 if (dest
!= SET_DEST (pattern
))
801 validate_pattern (dest
, insn
, pattern
, '=');
802 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
803 validate_pattern (SET_SRC (pattern
), insn
, NULL_RTX
, 0);
808 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
812 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
813 validate_pattern (XEXP (pattern
, 1), insn
, NULL_RTX
, 0);
814 validate_pattern (XEXP (pattern
, 2), insn
, NULL_RTX
, 0);
817 case STRICT_LOW_PART
:
818 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
822 if (GET_MODE (XEXP (pattern
, 0)) != VOIDmode
)
824 message_with_line (pattern_lineno
,
825 "operand to label_ref %smode not VOIDmode",
826 GET_MODE_NAME (GET_MODE (XEXP (pattern
, 0))));
835 fmt
= GET_RTX_FORMAT (code
);
836 len
= GET_RTX_LENGTH (code
);
837 for (i
= 0; i
< len
; i
++)
842 validate_pattern (XEXP (pattern
, i
), insn
, NULL_RTX
, 0);
846 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
847 validate_pattern (XVECEXP (pattern
, i
, j
), insn
, NULL_RTX
, 0);
850 case 'i': case 'w': case '0': case 's':
859 /* Create a chain of nodes to verify that an rtl expression matches
862 LAST is a pointer to the listhead in the previous node in the chain (or
863 in the calling function, for the first node).
865 POSITION is the string representing the current position in the insn.
867 INSN_TYPE is the type of insn for which we are emitting code.
869 A pointer to the final node in the chain is returned. */
871 static struct decision
*
872 add_to_sequence (rtx pattern
, struct decision_head
*last
, const char *position
,
873 enum routine_type insn_type
, int top
)
876 struct decision
*this, *sub
;
877 struct decision_test
*test
;
878 struct decision_test
**place
;
882 int depth
= strlen (position
);
884 enum machine_mode mode
;
886 if (depth
> max_depth
)
889 subpos
= xmalloc (depth
+ 2);
890 strcpy (subpos
, position
);
891 subpos
[depth
+ 1] = 0;
893 sub
= this = new_decision (position
, last
);
894 place
= &this->tests
;
897 mode
= GET_MODE (pattern
);
898 code
= GET_CODE (pattern
);
903 /* Toplevel peephole pattern. */
904 if (insn_type
== PEEPHOLE2
&& top
)
906 /* We don't need the node we just created -- unlink it. */
907 last
->first
= last
->last
= NULL
;
909 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 0); i
++)
911 /* Which insn we're looking at is represented by A-Z. We don't
912 ever use 'A', however; it is always implied. */
914 subpos
[depth
] = (i
> 0 ? 'A' + i
: 0);
915 sub
= add_to_sequence (XVECEXP (pattern
, 0, i
),
916 last
, subpos
, insn_type
, 0);
917 last
= &sub
->success
;
922 /* Else nothing special. */
926 /* The explicit patterns within a match_parallel enforce a minimum
927 length on the vector. The match_parallel predicate may allow
928 for more elements. We do need to check for this minimum here
929 or the code generated to match the internals may reference data
930 beyond the end of the vector. */
931 test
= new_decision_test (DT_veclen_ge
, &place
);
932 test
->u
.veclen
= XVECLEN (pattern
, 2);
939 RTX_CODE was_code
= code
;
940 const char *pred_name
;
941 bool allows_const_int
= true;
943 if (code
== MATCH_SCRATCH
)
945 pred_name
= "scratch_operand";
950 pred_name
= XSTR (pattern
, 1);
951 if (code
== MATCH_PARALLEL
)
957 if (pred_name
[0] != 0)
959 const struct pred_data
*pred
;
961 test
= new_decision_test (DT_pred
, &place
);
962 test
->u
.pred
.name
= pred_name
;
963 test
->u
.pred
.mode
= mode
;
965 /* See if we know about this predicate.
966 If we do, remember it for use below.
968 We can optimize the generated code a little if either
969 (a) the predicate only accepts one code, or (b) the
970 predicate does not allow CONST_INT, in which case it
971 can match only if the modes match. */
972 pred
= lookup_predicate (pred_name
);
975 test
->u
.pred
.data
= pred
;
976 allows_const_int
= pred
->codes
[CONST_INT
];
977 if (was_code
== MATCH_PARALLEL
978 && pred
->singleton
!= PARALLEL
)
979 message_with_line (pattern_lineno
,
980 "predicate '%s' used in match_parallel "
981 "does not allow only PARALLEL", pred
->name
);
983 code
= pred
->singleton
;
986 message_with_line (pattern_lineno
,
987 "warning: unknown predicate '%s' in '%s' expression",
988 pred_name
, GET_RTX_NAME (was_code
));
991 /* Can't enforce a mode if we allow const_int. */
992 if (allows_const_int
)
995 /* Accept the operand, ie. record it in `operands'. */
996 test
= new_decision_test (DT_accept_op
, &place
);
997 test
->u
.opno
= XINT (pattern
, 0);
999 if (was_code
== MATCH_OPERATOR
|| was_code
== MATCH_PARALLEL
)
1001 char base
= (was_code
== MATCH_OPERATOR
? '0' : 'a');
1002 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 2); i
++)
1004 subpos
[depth
] = i
+ base
;
1005 sub
= add_to_sequence (XVECEXP (pattern
, 2, i
),
1006 &sub
->success
, subpos
, insn_type
, 0);
1015 test
= new_decision_test (DT_dup
, &place
);
1016 test
->u
.dup
= XINT (pattern
, 0);
1018 test
= new_decision_test (DT_accept_op
, &place
);
1019 test
->u
.opno
= XINT (pattern
, 0);
1021 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 1); i
++)
1023 subpos
[depth
] = i
+ '0';
1024 sub
= add_to_sequence (XVECEXP (pattern
, 1, i
),
1025 &sub
->success
, subpos
, insn_type
, 0);
1033 test
= new_decision_test (DT_dup
, &place
);
1034 test
->u
.dup
= XINT (pattern
, 0);
1038 pattern
= XEXP (pattern
, 0);
1045 fmt
= GET_RTX_FORMAT (code
);
1046 len
= GET_RTX_LENGTH (code
);
1048 /* Do tests against the current node first. */
1049 for (i
= 0; i
< (size_t) len
; i
++)
1055 test
= new_decision_test (DT_elt_zero_int
, &place
);
1056 test
->u
.intval
= XINT (pattern
, i
);
1060 test
= new_decision_test (DT_elt_one_int
, &place
);
1061 test
->u
.intval
= XINT (pattern
, i
);
1066 else if (fmt
[i
] == 'w')
1068 /* If this value actually fits in an int, we can use a switch
1069 statement here, so indicate that. */
1070 enum decision_type type
1071 = ((int) XWINT (pattern
, i
) == XWINT (pattern
, i
))
1072 ? DT_elt_zero_wide_safe
: DT_elt_zero_wide
;
1077 test
= new_decision_test (type
, &place
);
1078 test
->u
.intval
= XWINT (pattern
, i
);
1080 else if (fmt
[i
] == 'E')
1085 test
= new_decision_test (DT_veclen
, &place
);
1086 test
->u
.veclen
= XVECLEN (pattern
, i
);
1090 /* Now test our sub-patterns. */
1091 for (i
= 0; i
< (size_t) len
; i
++)
1096 subpos
[depth
] = '0' + i
;
1097 sub
= add_to_sequence (XEXP (pattern
, i
), &sub
->success
,
1098 subpos
, insn_type
, 0);
1104 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
1106 subpos
[depth
] = 'a' + j
;
1107 sub
= add_to_sequence (XVECEXP (pattern
, i
, j
),
1108 &sub
->success
, subpos
, insn_type
, 0);
1114 /* Handled above. */
1125 /* Insert nodes testing mode and code, if they're still relevant,
1126 before any of the nodes we may have added above. */
1127 if (code
!= UNKNOWN
)
1129 place
= &this->tests
;
1130 test
= new_decision_test (DT_code
, &place
);
1131 test
->u
.code
= code
;
1134 if (mode
!= VOIDmode
)
1136 place
= &this->tests
;
1137 test
= new_decision_test (DT_mode
, &place
);
1138 test
->u
.mode
= mode
;
1141 /* If we didn't insert any tests or accept nodes, hork. */
1142 if (this->tests
== NULL
)
1150 /* A subroutine of maybe_both_true; examines only one test.
1151 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1154 maybe_both_true_2 (struct decision_test
*d1
, struct decision_test
*d2
)
1156 if (d1
->type
== d2
->type
)
1161 return d1
->u
.mode
== d2
->u
.mode
;
1164 return d1
->u
.code
== d2
->u
.code
;
1167 return d1
->u
.veclen
== d2
->u
.veclen
;
1169 case DT_elt_zero_int
:
1170 case DT_elt_one_int
:
1171 case DT_elt_zero_wide
:
1172 case DT_elt_zero_wide_safe
:
1173 return d1
->u
.intval
== d2
->u
.intval
;
1180 /* If either has a predicate that we know something about, set
1181 things up so that D1 is the one that always has a known
1182 predicate. Then see if they have any codes in common. */
1184 if (d1
->type
== DT_pred
|| d2
->type
== DT_pred
)
1186 if (d2
->type
== DT_pred
)
1188 struct decision_test
*tmp
;
1189 tmp
= d1
, d1
= d2
, d2
= tmp
;
1192 /* If D2 tests a mode, see if it matches D1. */
1193 if (d1
->u
.pred
.mode
!= VOIDmode
)
1195 if (d2
->type
== DT_mode
)
1197 if (d1
->u
.pred
.mode
!= d2
->u
.mode
1198 /* The mode of an address_operand predicate is the
1199 mode of the memory, not the operand. It can only
1200 be used for testing the predicate, so we must
1202 && strcmp (d1
->u
.pred
.name
, "address_operand") != 0)
1205 /* Don't check two predicate modes here, because if both predicates
1206 accept CONST_INT, then both can still be true even if the modes
1207 are different. If they don't accept CONST_INT, there will be a
1208 separate DT_mode that will make maybe_both_true_1 return 0. */
1211 if (d1
->u
.pred
.data
)
1213 /* If D2 tests a code, see if it is in the list of valid
1214 codes for D1's predicate. */
1215 if (d2
->type
== DT_code
)
1217 if (!d1
->u
.pred
.data
->codes
[d2
->u
.code
])
1221 /* Otherwise see if the predicates have any codes in common. */
1222 else if (d2
->type
== DT_pred
&& d2
->u
.pred
.data
)
1224 bool common
= false;
1227 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1228 if (d1
->u
.pred
.data
->codes
[c
] && d2
->u
.pred
.data
->codes
[c
])
1240 /* Tests vs veclen may be known when strict equality is involved. */
1241 if (d1
->type
== DT_veclen
&& d2
->type
== DT_veclen_ge
)
1242 return d1
->u
.veclen
>= d2
->u
.veclen
;
1243 if (d1
->type
== DT_veclen_ge
&& d2
->type
== DT_veclen
)
1244 return d2
->u
.veclen
>= d1
->u
.veclen
;
1249 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1250 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1253 maybe_both_true_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1255 struct decision_test
*t1
, *t2
;
1257 /* A match_operand with no predicate can match anything. Recognize
1258 this by the existence of a lone DT_accept_op test. */
1259 if (d1
->type
== DT_accept_op
|| d2
->type
== DT_accept_op
)
1262 /* Eliminate pairs of tests while they can exactly match. */
1263 while (d1
&& d2
&& d1
->type
== d2
->type
)
1265 if (maybe_both_true_2 (d1
, d2
) == 0)
1267 d1
= d1
->next
, d2
= d2
->next
;
1270 /* After that, consider all pairs. */
1271 for (t1
= d1
; t1
; t1
= t1
->next
)
1272 for (t2
= d2
; t2
; t2
= t2
->next
)
1273 if (maybe_both_true_2 (t1
, t2
) == 0)
1279 /* Return 0 if we can prove that there is no RTL that can match both
1280 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1281 can match both or just that we couldn't prove there wasn't such an RTL).
1283 TOPLEVEL is nonzero if we are to only look at the top level and not
1284 recursively descend. */
1287 maybe_both_true (struct decision
*d1
, struct decision
*d2
,
1290 struct decision
*p1
, *p2
;
1293 /* Don't compare strings on the different positions in insn. Doing so
1294 is incorrect and results in false matches from constructs like
1296 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1297 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1299 [(set (match_operand:HI "register_operand" "r")
1300 (match_operand:HI "register_operand" "r"))]
1302 If we are presented with such, we are recursing through the remainder
1303 of a node's success nodes (from the loop at the end of this function).
1304 Skip forward until we come to a position that matches.
1306 Due to the way position strings are constructed, we know that iterating
1307 forward from the lexically lower position (e.g. "00") will run into
1308 the lexically higher position (e.g. "1") and not the other way around.
1309 This saves a bit of effort. */
1311 cmp
= strcmp (d1
->position
, d2
->position
);
1317 /* If the d2->position was lexically lower, swap. */
1319 p1
= d1
, d1
= d2
, d2
= p1
;
1321 if (d1
->success
.first
== 0)
1323 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1324 if (maybe_both_true (p1
, d2
, 0))
1330 /* Test the current level. */
1331 cmp
= maybe_both_true_1 (d1
->tests
, d2
->tests
);
1335 /* We can't prove that D1 and D2 cannot both be true. If we are only
1336 to check the top level, return 1. Otherwise, see if we can prove
1337 that all choices in both successors are mutually exclusive. If
1338 either does not have any successors, we can't prove they can't both
1341 if (toplevel
|| d1
->success
.first
== 0 || d2
->success
.first
== 0)
1344 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1345 for (p2
= d2
->success
.first
; p2
; p2
= p2
->next
)
1346 if (maybe_both_true (p1
, p2
, 0))
1352 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1355 nodes_identical_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1360 return d1
->u
.mode
== d2
->u
.mode
;
1363 return d1
->u
.code
== d2
->u
.code
;
1366 return (d1
->u
.pred
.mode
== d2
->u
.pred
.mode
1367 && strcmp (d1
->u
.pred
.name
, d2
->u
.pred
.name
) == 0);
1370 return strcmp (d1
->u
.c_test
, d2
->u
.c_test
) == 0;
1374 return d1
->u
.veclen
== d2
->u
.veclen
;
1377 return d1
->u
.dup
== d2
->u
.dup
;
1379 case DT_elt_zero_int
:
1380 case DT_elt_one_int
:
1381 case DT_elt_zero_wide
:
1382 case DT_elt_zero_wide_safe
:
1383 return d1
->u
.intval
== d2
->u
.intval
;
1386 return d1
->u
.opno
== d2
->u
.opno
;
1388 case DT_accept_insn
:
1389 /* Differences will be handled in merge_accept_insn. */
1397 /* True iff the two nodes are identical (on one level only). Due
1398 to the way these lists are constructed, we shouldn't have to
1399 consider different orderings on the tests. */
1402 nodes_identical (struct decision
*d1
, struct decision
*d2
)
1404 struct decision_test
*t1
, *t2
;
1406 for (t1
= d1
->tests
, t2
= d2
->tests
; t1
&& t2
; t1
= t1
->next
, t2
= t2
->next
)
1408 if (t1
->type
!= t2
->type
)
1410 if (! nodes_identical_1 (t1
, t2
))
1414 /* For success, they should now both be null. */
1418 /* Check that their subnodes are at the same position, as any one set
1419 of sibling decisions must be at the same position. Allowing this
1420 requires complications to find_afterward and when change_state is
1422 if (d1
->success
.first
1423 && d2
->success
.first
1424 && strcmp (d1
->success
.first
->position
, d2
->success
.first
->position
))
1430 /* A subroutine of merge_trees; given two nodes that have been declared
1431 identical, cope with two insn accept states. If they differ in the
1432 number of clobbers, then the conflict was created by make_insn_sequence
1433 and we can drop the with-clobbers version on the floor. If both
1434 nodes have no additional clobbers, we have found an ambiguity in the
1435 source machine description. */
1438 merge_accept_insn (struct decision
*oldd
, struct decision
*addd
)
1440 struct decision_test
*old
, *add
;
1442 for (old
= oldd
->tests
; old
; old
= old
->next
)
1443 if (old
->type
== DT_accept_insn
)
1448 for (add
= addd
->tests
; add
; add
= add
->next
)
1449 if (add
->type
== DT_accept_insn
)
1454 /* If one node is for a normal insn and the second is for the base
1455 insn with clobbers stripped off, the second node should be ignored. */
1457 if (old
->u
.insn
.num_clobbers_to_add
== 0
1458 && add
->u
.insn
.num_clobbers_to_add
> 0)
1460 /* Nothing to do here. */
1462 else if (old
->u
.insn
.num_clobbers_to_add
> 0
1463 && add
->u
.insn
.num_clobbers_to_add
== 0)
1465 /* In this case, replace OLD with ADD. */
1466 old
->u
.insn
= add
->u
.insn
;
1470 message_with_line (add
->u
.insn
.lineno
, "`%s' matches `%s'",
1471 get_insn_name (add
->u
.insn
.code_number
),
1472 get_insn_name (old
->u
.insn
.code_number
));
1473 message_with_line (old
->u
.insn
.lineno
, "previous definition of `%s'",
1474 get_insn_name (old
->u
.insn
.code_number
));
1479 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1482 merge_trees (struct decision_head
*oldh
, struct decision_head
*addh
)
1484 struct decision
*next
, *add
;
1486 if (addh
->first
== 0)
1488 if (oldh
->first
== 0)
1494 /* Trying to merge bits at different positions isn't possible. */
1495 if (strcmp (oldh
->first
->position
, addh
->first
->position
))
1498 for (add
= addh
->first
; add
; add
= next
)
1500 struct decision
*old
, *insert_before
= NULL
;
1504 /* The semantics of pattern matching state that the tests are
1505 done in the order given in the MD file so that if an insn
1506 matches two patterns, the first one will be used. However,
1507 in practice, most, if not all, patterns are unambiguous so
1508 that their order is independent. In that case, we can merge
1509 identical tests and group all similar modes and codes together.
1511 Scan starting from the end of OLDH until we reach a point
1512 where we reach the head of the list or where we pass a
1513 pattern that could also be true if NEW is true. If we find
1514 an identical pattern, we can merge them. Also, record the
1515 last node that tests the same code and mode and the last one
1516 that tests just the same mode.
1518 If we have no match, place NEW after the closest match we found. */
1520 for (old
= oldh
->last
; old
; old
= old
->prev
)
1522 if (nodes_identical (old
, add
))
1524 merge_accept_insn (old
, add
);
1525 merge_trees (&old
->success
, &add
->success
);
1529 if (maybe_both_true (old
, add
, 0))
1532 /* Insert the nodes in DT test type order, which is roughly
1533 how expensive/important the test is. Given that the tests
1534 are also ordered within the list, examining the first is
1536 if ((int) add
->tests
->type
< (int) old
->tests
->type
)
1537 insert_before
= old
;
1540 if (insert_before
== NULL
)
1543 add
->prev
= oldh
->last
;
1544 oldh
->last
->next
= add
;
1549 if ((add
->prev
= insert_before
->prev
) != NULL
)
1550 add
->prev
->next
= add
;
1553 add
->next
= insert_before
;
1554 insert_before
->prev
= add
;
1561 /* Walk the tree looking for sub-nodes that perform common tests.
1562 Factor out the common test into a new node. This enables us
1563 (depending on the test type) to emit switch statements later. */
1566 factor_tests (struct decision_head
*head
)
1568 struct decision
*first
, *next
;
1570 for (first
= head
->first
; first
&& first
->next
; first
= next
)
1572 enum decision_type type
;
1573 struct decision
*new, *old_last
;
1575 type
= first
->tests
->type
;
1578 /* Want at least two compatible sequential nodes. */
1579 if (next
->tests
->type
!= type
)
1582 /* Don't want all node types, just those we can turn into
1583 switch statements. */
1586 && type
!= DT_veclen
1587 && type
!= DT_elt_zero_int
1588 && type
!= DT_elt_one_int
1589 && type
!= DT_elt_zero_wide_safe
)
1592 /* If we'd been performing more than one test, create a new node
1593 below our first test. */
1594 if (first
->tests
->next
!= NULL
)
1596 new = new_decision (first
->position
, &first
->success
);
1597 new->tests
= first
->tests
->next
;
1598 first
->tests
->next
= NULL
;
1601 /* Crop the node tree off after our first test. */
1603 old_last
= head
->last
;
1606 /* For each compatible test, adjust to perform only one test in
1607 the top level node, then merge the node back into the tree. */
1610 struct decision_head h
;
1612 if (next
->tests
->next
!= NULL
)
1614 new = new_decision (next
->position
, &next
->success
);
1615 new->tests
= next
->tests
->next
;
1616 next
->tests
->next
= NULL
;
1621 h
.first
= h
.last
= new;
1623 merge_trees (head
, &h
);
1625 while (next
&& next
->tests
->type
== type
);
1627 /* After we run out of compatible tests, graft the remaining nodes
1628 back onto the tree. */
1631 next
->prev
= head
->last
;
1632 head
->last
->next
= next
;
1633 head
->last
= old_last
;
1638 for (first
= head
->first
; first
; first
= first
->next
)
1639 factor_tests (&first
->success
);
1642 /* After factoring, try to simplify the tests on any one node.
1643 Tests that are useful for switch statements are recognizable
1644 by having only a single test on a node -- we'll be manipulating
1645 nodes with multiple tests:
1647 If we have mode tests or code tests that are redundant with
1648 predicates, remove them. */
1651 simplify_tests (struct decision_head
*head
)
1653 struct decision
*tree
;
1655 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1657 struct decision_test
*a
, *b
;
1664 /* Find a predicate node. */
1665 while (b
&& b
->type
!= DT_pred
)
1669 /* Due to how these tests are constructed, we don't even need
1670 to check that the mode and code are compatible -- they were
1671 generated from the predicate in the first place. */
1672 while (a
->type
== DT_mode
|| a
->type
== DT_code
)
1679 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1680 simplify_tests (&tree
->success
);
1683 /* Count the number of subnodes of HEAD. If the number is high enough,
1684 make the first node in HEAD start a separate subroutine in the C code
1685 that is generated. */
1688 break_out_subroutines (struct decision_head
*head
, int initial
)
1691 struct decision
*sub
;
1693 for (sub
= head
->first
; sub
; sub
= sub
->next
)
1694 size
+= 1 + break_out_subroutines (&sub
->success
, 0);
1696 if (size
> SUBROUTINE_THRESHOLD
&& ! initial
)
1698 head
->first
->subroutine_number
= ++next_subroutine_number
;
1704 /* For each node p, find the next alternative that might be true
1708 find_afterward (struct decision_head
*head
, struct decision
*real_afterward
)
1710 struct decision
*p
, *q
, *afterward
;
1712 /* We can't propagate alternatives across subroutine boundaries.
1713 This is not incorrect, merely a minor optimization loss. */
1716 afterward
= (p
->subroutine_number
> 0 ? NULL
: real_afterward
);
1718 for ( ; p
; p
= p
->next
)
1720 /* Find the next node that might be true if this one fails. */
1721 for (q
= p
->next
; q
; q
= q
->next
)
1722 if (maybe_both_true (p
, q
, 1))
1725 /* If we reached the end of the list without finding one,
1726 use the incoming afterward position. */
1735 for (p
= head
->first
; p
; p
= p
->next
)
1736 if (p
->success
.first
)
1737 find_afterward (&p
->success
, p
->afterward
);
1739 /* When we are generating a subroutine, record the real afterward
1740 position in the first node where write_tree can find it, and we
1741 can do the right thing at the subroutine call site. */
1743 if (p
->subroutine_number
> 0)
1744 p
->afterward
= real_afterward
;
1747 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1748 actions are necessary to move to NEWPOS. If we fail to move to the
1749 new state, branch to node AFTERWARD if nonzero, otherwise return.
1751 Failure to move to the new state can only occur if we are trying to
1752 match multiple insns and we try to step past the end of the stream. */
1755 change_state (const char *oldpos
, const char *newpos
,
1756 struct decision
*afterward
, const char *indent
)
1758 int odepth
= strlen (oldpos
);
1759 int ndepth
= strlen (newpos
);
1761 int old_has_insn
, new_has_insn
;
1763 /* Pop up as many levels as necessary. */
1764 for (depth
= odepth
; strncmp (oldpos
, newpos
, depth
) != 0; --depth
)
1767 /* Hunt for the last [A-Z] in both strings. */
1768 for (old_has_insn
= odepth
- 1; old_has_insn
>= 0; --old_has_insn
)
1769 if (ISUPPER (oldpos
[old_has_insn
]))
1771 for (new_has_insn
= ndepth
- 1; new_has_insn
>= 0; --new_has_insn
)
1772 if (ISUPPER (newpos
[new_has_insn
]))
1775 /* Go down to desired level. */
1776 while (depth
< ndepth
)
1778 /* It's a different insn from the first one. */
1779 if (ISUPPER (newpos
[depth
]))
1781 /* We can only fail if we're moving down the tree. */
1782 if (old_has_insn
>= 0 && oldpos
[old_has_insn
] >= newpos
[depth
])
1784 printf ("%stem = peep2_next_insn (%d);\n",
1785 indent
, newpos
[depth
] - 'A');
1789 printf ("%stem = peep2_next_insn (%d);\n",
1790 indent
, newpos
[depth
] - 'A');
1791 printf ("%sif (tem == NULL_RTX)\n", indent
);
1793 printf ("%s goto L%d;\n", indent
, afterward
->number
);
1795 printf ("%s goto ret0;\n", indent
);
1797 printf ("%sx%d = PATTERN (tem);\n", indent
, depth
+ 1);
1799 else if (ISLOWER (newpos
[depth
]))
1800 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1801 indent
, depth
+ 1, depth
, newpos
[depth
] - 'a');
1803 printf ("%sx%d = XEXP (x%d, %c);\n",
1804 indent
, depth
+ 1, depth
, newpos
[depth
]);
1809 /* Print the enumerator constant for CODE -- the upcase version of
1813 print_code (enum rtx_code code
)
1816 for (p
= GET_RTX_NAME (code
); *p
; p
++)
1817 putchar (TOUPPER (*p
));
1820 /* Emit code to cross an afterward link -- change state and branch. */
1823 write_afterward (struct decision
*start
, struct decision
*afterward
,
1826 if (!afterward
|| start
->subroutine_number
> 0)
1827 printf("%sgoto ret0;\n", indent
);
1830 change_state (start
->position
, afterward
->position
, NULL
, indent
);
1831 printf ("%sgoto L%d;\n", indent
, afterward
->number
);
1835 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1836 special care to avoid "decimal constant is so large that it is unsigned"
1837 warnings in the resulting code. */
1840 print_host_wide_int (HOST_WIDE_INT val
)
1842 HOST_WIDE_INT min
= (unsigned HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1);
1844 printf ("(" HOST_WIDE_INT_PRINT_DEC_C
"-1)", val
+ 1);
1846 printf (HOST_WIDE_INT_PRINT_DEC_C
, val
);
1849 /* Emit a switch statement, if possible, for an initial sequence of
1850 nodes at START. Return the first node yet untested. */
1852 static struct decision
*
1853 write_switch (struct decision
*start
, int depth
)
1855 struct decision
*p
= start
;
1856 enum decision_type type
= p
->tests
->type
;
1857 struct decision
*needs_label
= NULL
;
1859 /* If we have two or more nodes in sequence that test the same one
1860 thing, we may be able to use a switch statement. */
1864 || p
->next
->tests
->type
!= type
1865 || p
->next
->tests
->next
1866 || nodes_identical_1 (p
->tests
, p
->next
->tests
))
1869 /* DT_code is special in that we can do interesting things with
1870 known predicates at the same time. */
1871 if (type
== DT_code
)
1873 char codemap
[NUM_RTX_CODE
];
1874 struct decision
*ret
;
1877 memset (codemap
, 0, sizeof(codemap
));
1879 printf (" switch (GET_CODE (x%d))\n {\n", depth
);
1880 code
= p
->tests
->u
.code
;
1883 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
1888 printf (":\n goto L%d;\n", p
->success
.first
->number
);
1889 p
->success
.first
->need_label
= 1;
1896 && p
->tests
->type
== DT_code
1897 && ! codemap
[code
= p
->tests
->u
.code
]);
1899 /* If P is testing a predicate that we know about and we haven't
1900 seen any of the codes that are valid for the predicate, we can
1901 write a series of "case" statement, one for each possible code.
1902 Since we are already in a switch, these redundant tests are very
1903 cheap and will reduce the number of predicates called. */
1905 /* Note that while we write out cases for these predicates here,
1906 we don't actually write the test here, as it gets kinda messy.
1907 It is trivial to leave this to later by telling our caller that
1908 we only processed the CODE tests. */
1909 if (needs_label
!= NULL
)
1914 while (p
&& p
->tests
->type
== DT_pred
&& p
->tests
->u
.pred
.data
)
1916 const struct pred_data
*data
= p
->tests
->u
.pred
.data
;
1918 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1919 if (codemap
[c
] && data
->codes
[c
])
1922 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1925 fputs (" case ", stdout
);
1927 fputs (":\n", stdout
);
1931 printf (" goto L%d;\n", p
->number
);
1937 /* Make the default case skip the predicates we managed to match. */
1939 printf (" default:\n");
1944 printf (" goto L%d;\n", p
->number
);
1948 write_afterward (start
, start
->afterward
, " ");
1951 printf (" break;\n");
1956 else if (type
== DT_mode
1957 || type
== DT_veclen
1958 || type
== DT_elt_zero_int
1959 || type
== DT_elt_one_int
1960 || type
== DT_elt_zero_wide_safe
)
1962 const char *indent
= "";
1964 /* We cast switch parameter to integer, so we must ensure that the value
1966 if (type
== DT_elt_zero_wide_safe
)
1969 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth
, depth
);
1971 printf ("%s switch (", indent
);
1975 printf ("GET_MODE (x%d)", depth
);
1978 printf ("XVECLEN (x%d, 0)", depth
);
1980 case DT_elt_zero_int
:
1981 printf ("XINT (x%d, 0)", depth
);
1983 case DT_elt_one_int
:
1984 printf ("XINT (x%d, 1)", depth
);
1986 case DT_elt_zero_wide_safe
:
1987 /* Convert result of XWINT to int for portability since some C
1988 compilers won't do it and some will. */
1989 printf ("(int) XWINT (x%d, 0)", depth
);
1994 printf (")\n%s {\n", indent
);
1998 /* Merge trees will not unify identical nodes if their
1999 sub-nodes are at different levels. Thus we must check
2000 for duplicate cases. */
2002 for (q
= start
; q
!= p
; q
= q
->next
)
2003 if (nodes_identical_1 (p
->tests
, q
->tests
))
2006 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
2009 printf ("%s case ", indent
);
2013 printf ("%smode", GET_MODE_NAME (p
->tests
->u
.mode
));
2016 printf ("%d", p
->tests
->u
.veclen
);
2018 case DT_elt_zero_int
:
2019 case DT_elt_one_int
:
2020 case DT_elt_zero_wide
:
2021 case DT_elt_zero_wide_safe
:
2022 print_host_wide_int (p
->tests
->u
.intval
);
2027 printf (":\n%s goto L%d;\n", indent
, p
->success
.first
->number
);
2028 p
->success
.first
->need_label
= 1;
2032 while (p
&& p
->tests
->type
== type
&& !p
->tests
->next
);
2035 printf ("%s default:\n%s break;\n%s }\n",
2036 indent
, indent
, indent
);
2038 return needs_label
!= NULL
? needs_label
: p
;
2042 /* None of the other tests are amenable. */
2047 /* Emit code for one test. */
2050 write_cond (struct decision_test
*p
, int depth
,
2051 enum routine_type subroutine_type
)
2056 printf ("GET_MODE (x%d) == %smode", depth
, GET_MODE_NAME (p
->u
.mode
));
2060 printf ("GET_CODE (x%d) == ", depth
);
2061 print_code (p
->u
.code
);
2065 printf ("XVECLEN (x%d, 0) == %d", depth
, p
->u
.veclen
);
2068 case DT_elt_zero_int
:
2069 printf ("XINT (x%d, 0) == %d", depth
, (int) p
->u
.intval
);
2072 case DT_elt_one_int
:
2073 printf ("XINT (x%d, 1) == %d", depth
, (int) p
->u
.intval
);
2076 case DT_elt_zero_wide
:
2077 case DT_elt_zero_wide_safe
:
2078 printf ("XWINT (x%d, 0) == ", depth
);
2079 print_host_wide_int (p
->u
.intval
);
2083 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
2084 depth
, (int) p
->u
.intval
);
2088 printf ("XVECLEN (x%d, 0) >= %d", depth
, p
->u
.veclen
);
2092 printf ("rtx_equal_p (x%d, operands[%d])", depth
, p
->u
.dup
);
2096 printf ("%s (x%d, %smode)", p
->u
.pred
.name
, depth
,
2097 GET_MODE_NAME (p
->u
.pred
.mode
));
2101 printf ("(%s)", p
->u
.c_test
);
2104 case DT_accept_insn
:
2105 switch (subroutine_type
)
2108 if (p
->u
.insn
.num_clobbers_to_add
== 0)
2110 printf ("pnum_clobbers != NULL");
2123 /* Emit code for one action. The previous tests have succeeded;
2124 TEST is the last of the chain. In the normal case we simply
2125 perform a state change. For the `accept' tests we must do more work. */
2128 write_action (struct decision
*p
, struct decision_test
*test
,
2129 int depth
, int uncond
, struct decision
*success
,
2130 enum routine_type subroutine_type
)
2137 else if (test
->type
== DT_accept_op
|| test
->type
== DT_accept_insn
)
2139 fputs (" {\n", stdout
);
2146 if (test
->type
== DT_accept_op
)
2148 printf("%soperands[%d] = x%d;\n", indent
, test
->u
.opno
, depth
);
2150 /* Only allow DT_accept_insn to follow. */
2154 if (test
->type
!= DT_accept_insn
)
2159 /* Sanity check that we're now at the end of the list of tests. */
2163 if (test
->type
== DT_accept_insn
)
2165 switch (subroutine_type
)
2168 if (test
->u
.insn
.num_clobbers_to_add
!= 0)
2169 printf ("%s*pnum_clobbers = %d;\n",
2170 indent
, test
->u
.insn
.num_clobbers_to_add
);
2171 printf ("%sreturn %d; /* %s */\n", indent
,
2172 test
->u
.insn
.code_number
,
2173 insn_name_ptr
[test
->u
.insn
.code_number
]);
2177 printf ("%sreturn gen_split_%d (insn, operands);\n",
2178 indent
, test
->u
.insn
.code_number
);
2183 int match_len
= 0, i
;
2185 for (i
= strlen (p
->position
) - 1; i
>= 0; --i
)
2186 if (ISUPPER (p
->position
[i
]))
2188 match_len
= p
->position
[i
] - 'A';
2191 printf ("%s*_pmatch_len = %d;\n", indent
, match_len
);
2192 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2193 indent
, test
->u
.insn
.code_number
);
2194 printf ("%sif (tem != 0)\n%s return tem;\n", indent
, indent
);
2204 printf("%sgoto L%d;\n", indent
, success
->number
);
2205 success
->need_label
= 1;
2209 fputs (" }\n", stdout
);
2212 /* Return 1 if the test is always true and has no fallthru path. Return -1
2213 if the test does have a fallthru path, but requires that the condition be
2214 terminated. Otherwise return 0 for a normal test. */
2215 /* ??? is_unconditional is a stupid name for a tri-state function. */
2218 is_unconditional (struct decision_test
*t
, enum routine_type subroutine_type
)
2220 if (t
->type
== DT_accept_op
)
2223 if (t
->type
== DT_accept_insn
)
2225 switch (subroutine_type
)
2228 return (t
->u
.insn
.num_clobbers_to_add
== 0);
2241 /* Emit code for one node -- the conditional and the accompanying action.
2242 Return true if there is no fallthru path. */
2245 write_node (struct decision
*p
, int depth
,
2246 enum routine_type subroutine_type
)
2248 struct decision_test
*test
, *last_test
;
2251 /* Scan the tests and simplify comparisons against small
2253 for (test
= p
->tests
; test
; test
= test
->next
)
2255 if (test
->type
== DT_code
2256 && test
->u
.code
== CONST_INT
2258 && test
->next
->type
== DT_elt_zero_wide_safe
2259 && -MAX_SAVED_CONST_INT
<= test
->next
->u
.intval
2260 && test
->next
->u
.intval
<= MAX_SAVED_CONST_INT
)
2262 test
->type
= DT_const_int
;
2263 test
->u
.intval
= test
->next
->u
.intval
;
2264 test
->next
= test
->next
->next
;
2268 last_test
= test
= p
->tests
;
2269 uncond
= is_unconditional (test
, subroutine_type
);
2273 write_cond (test
, depth
, subroutine_type
);
2275 while ((test
= test
->next
) != NULL
)
2278 if (is_unconditional (test
, subroutine_type
))
2282 write_cond (test
, depth
, subroutine_type
);
2288 write_action (p
, last_test
, depth
, uncond
, p
->success
.first
, subroutine_type
);
2293 /* Emit code for all of the sibling nodes of HEAD. */
2296 write_tree_1 (struct decision_head
*head
, int depth
,
2297 enum routine_type subroutine_type
)
2299 struct decision
*p
, *next
;
2302 for (p
= head
->first
; p
; p
= next
)
2304 /* The label for the first element was printed in write_tree. */
2305 if (p
!= head
->first
&& p
->need_label
)
2306 OUTPUT_LABEL (" ", p
->number
);
2308 /* Attempt to write a switch statement for a whole sequence. */
2309 next
= write_switch (p
, depth
);
2314 /* Failed -- fall back and write one node. */
2315 uncond
= write_node (p
, depth
, subroutine_type
);
2320 /* Finished with this chain. Close a fallthru path by branching
2321 to the afterward node. */
2323 write_afterward (head
->last
, head
->last
->afterward
, " ");
2326 /* Write out the decision tree starting at HEAD. PREVPOS is the
2327 position at the node that branched to this node. */
2330 write_tree (struct decision_head
*head
, const char *prevpos
,
2331 enum routine_type type
, int initial
)
2333 struct decision
*p
= head
->first
;
2337 OUTPUT_LABEL (" ", p
->number
);
2339 if (! initial
&& p
->subroutine_number
> 0)
2341 static const char * const name_prefix
[] = {
2342 "recog", "split", "peephole2"
2345 static const char * const call_suffix
[] = {
2346 ", pnum_clobbers", "", ", _pmatch_len"
2349 /* This node has been broken out into a separate subroutine.
2350 Call it, test the result, and branch accordingly. */
2354 printf (" tem = %s_%d (x0, insn%s);\n",
2355 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2356 if (IS_SPLIT (type
))
2357 printf (" if (tem != 0)\n return tem;\n");
2359 printf (" if (tem >= 0)\n return tem;\n");
2361 change_state (p
->position
, p
->afterward
->position
, NULL
, " ");
2362 printf (" goto L%d;\n", p
->afterward
->number
);
2366 printf (" return %s_%d (x0, insn%s);\n",
2367 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2372 int depth
= strlen (p
->position
);
2374 change_state (prevpos
, p
->position
, head
->last
->afterward
, " ");
2375 write_tree_1 (head
, depth
, type
);
2377 for (p
= head
->first
; p
; p
= p
->next
)
2378 if (p
->success
.first
)
2379 write_tree (&p
->success
, p
->position
, type
, 0);
2383 /* Write out a subroutine of type TYPE to do comparisons starting at
2387 write_subroutine (struct decision_head
*head
, enum routine_type type
)
2389 int subfunction
= head
->first
? head
->first
->subroutine_number
: 0;
2394 s_or_e
= subfunction
? "static " : "";
2397 sprintf (extension
, "_%d", subfunction
);
2398 else if (type
== RECOG
)
2399 extension
[0] = '\0';
2401 strcpy (extension
, "_insns");
2407 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e
, extension
);
2411 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2416 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2421 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2422 for (i
= 1; i
<= max_depth
; i
++)
2423 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i
);
2425 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type
) ? "rtx" : "int");
2428 printf (" recog_data.insn = NULL_RTX;\n");
2431 write_tree (head
, "", type
, 1);
2433 printf (" goto ret0;\n");
2435 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type
) ? 0 : -1);
2438 /* In break_out_subroutines, we discovered the boundaries for the
2439 subroutines, but did not write them out. Do so now. */
2442 write_subroutines (struct decision_head
*head
, enum routine_type type
)
2446 for (p
= head
->first
; p
; p
= p
->next
)
2447 if (p
->success
.first
)
2448 write_subroutines (&p
->success
, type
);
2450 if (head
->first
->subroutine_number
> 0)
2451 write_subroutine (head
, type
);
2454 /* Begin the output file. */
2460 /* Generated automatically by the program `genrecog' from the target\n\
2461 machine description file. */\n\
2463 #include \"config.h\"\n\
2464 #include \"system.h\"\n\
2465 #include \"coretypes.h\"\n\
2466 #include \"tm.h\"\n\
2467 #include \"rtl.h\"\n\
2468 #include \"tm_p.h\"\n\
2469 #include \"function.h\"\n\
2470 #include \"insn-config.h\"\n\
2471 #include \"recog.h\"\n\
2472 #include \"real.h\"\n\
2473 #include \"output.h\"\n\
2474 #include \"flags.h\"\n\
2475 #include \"hard-reg-set.h\"\n\
2476 #include \"resource.h\"\n\
2477 #include \"toplev.h\"\n\
2478 #include \"reload.h\"\n\
2482 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2483 X0 is a valid instruction.\n\
2485 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2486 returns a nonnegative number which is the insn code number for the\n\
2487 pattern that matched. This is the same as the order in the machine\n\
2488 description of the entry that matched. This number can be used as an\n\
2489 index into `insn_data' and other tables.\n");
2491 The third argument to recog is an optional pointer to an int. If\n\
2492 present, recog will accept a pattern if it matches except for missing\n\
2493 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2494 the optional pointer will be set to the number of CLOBBERs that need\n\
2495 to be added (it should be initialized to zero by the caller). If it");
2497 is set nonzero, the caller should allocate a PARALLEL of the\n\
2498 appropriate size, copy the initial entries, and call add_clobbers\n\
2499 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2503 The function split_insns returns 0 if the rtl could not\n\
2504 be split or the split rtl as an INSN list if it can be.\n\
2506 The function peephole2_insns returns 0 if the rtl could not\n\
2507 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2508 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2513 /* Construct and return a sequence of decisions
2514 that will recognize INSN.
2516 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2518 static struct decision_head
2519 make_insn_sequence (rtx insn
, enum routine_type type
)
2522 const char *c_test
= XSTR (insn
, type
== RECOG
? 2 : 1);
2523 int truth
= maybe_eval_c_test (c_test
);
2524 struct decision
*last
;
2525 struct decision_test
*test
, **place
;
2526 struct decision_head head
;
2529 /* We should never see an insn whose C test is false at compile time. */
2533 record_insn_name (next_insn_code
, (type
== RECOG
? XSTR (insn
, 0) : NULL
));
2535 c_test_pos
[0] = '\0';
2536 if (type
== PEEPHOLE2
)
2540 /* peephole2 gets special treatment:
2541 - X always gets an outer parallel even if it's only one entry
2542 - we remove all traces of outer-level match_scratch and match_dup
2543 expressions here. */
2544 x
= rtx_alloc (PARALLEL
);
2545 PUT_MODE (x
, VOIDmode
);
2546 XVEC (x
, 0) = rtvec_alloc (XVECLEN (insn
, 0));
2547 for (i
= j
= 0; i
< XVECLEN (insn
, 0); i
++)
2549 rtx tmp
= XVECEXP (insn
, 0, i
);
2550 if (GET_CODE (tmp
) != MATCH_SCRATCH
&& GET_CODE (tmp
) != MATCH_DUP
)
2552 XVECEXP (x
, 0, j
) = tmp
;
2558 c_test_pos
[0] = 'A' + j
- 1;
2559 c_test_pos
[1] = '\0';
2561 else if (XVECLEN (insn
, type
== RECOG
) == 1)
2562 x
= XVECEXP (insn
, type
== RECOG
, 0);
2565 x
= rtx_alloc (PARALLEL
);
2566 XVEC (x
, 0) = XVEC (insn
, type
== RECOG
);
2567 PUT_MODE (x
, VOIDmode
);
2570 validate_pattern (x
, insn
, NULL_RTX
, 0);
2572 memset(&head
, 0, sizeof(head
));
2573 last
= add_to_sequence (x
, &head
, "", type
, 1);
2575 /* Find the end of the test chain on the last node. */
2576 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2578 place
= &test
->next
;
2580 /* Skip the C test if it's known to be true at compile time. */
2583 /* Need a new node if we have another test to add. */
2584 if (test
->type
== DT_accept_op
)
2586 last
= new_decision (c_test_pos
, &last
->success
);
2587 place
= &last
->tests
;
2589 test
= new_decision_test (DT_c_test
, &place
);
2590 test
->u
.c_test
= c_test
;
2593 test
= new_decision_test (DT_accept_insn
, &place
);
2594 test
->u
.insn
.code_number
= next_insn_code
;
2595 test
->u
.insn
.lineno
= pattern_lineno
;
2596 test
->u
.insn
.num_clobbers_to_add
= 0;
2601 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2602 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2603 If so, set up to recognize the pattern without these CLOBBERs. */
2605 if (GET_CODE (x
) == PARALLEL
)
2609 /* Find the last non-clobber in the parallel. */
2610 for (i
= XVECLEN (x
, 0); i
> 0; i
--)
2612 rtx y
= XVECEXP (x
, 0, i
- 1);
2613 if (GET_CODE (y
) != CLOBBER
2614 || (!REG_P (XEXP (y
, 0))
2615 && GET_CODE (XEXP (y
, 0)) != MATCH_SCRATCH
))
2619 if (i
!= XVECLEN (x
, 0))
2622 struct decision_head clobber_head
;
2624 /* Build a similar insn without the clobbers. */
2626 new = XVECEXP (x
, 0, 0);
2631 new = rtx_alloc (PARALLEL
);
2632 XVEC (new, 0) = rtvec_alloc (i
);
2633 for (j
= i
- 1; j
>= 0; j
--)
2634 XVECEXP (new, 0, j
) = XVECEXP (x
, 0, j
);
2638 memset (&clobber_head
, 0, sizeof(clobber_head
));
2639 last
= add_to_sequence (new, &clobber_head
, "", type
, 1);
2641 /* Find the end of the test chain on the last node. */
2642 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2645 /* We definitely have a new test to add -- create a new
2647 place
= &test
->next
;
2648 if (test
->type
== DT_accept_op
)
2650 last
= new_decision ("", &last
->success
);
2651 place
= &last
->tests
;
2654 /* Skip the C test if it's known to be true at compile
2658 test
= new_decision_test (DT_c_test
, &place
);
2659 test
->u
.c_test
= c_test
;
2662 test
= new_decision_test (DT_accept_insn
, &place
);
2663 test
->u
.insn
.code_number
= next_insn_code
;
2664 test
->u
.insn
.lineno
= pattern_lineno
;
2665 test
->u
.insn
.num_clobbers_to_add
= XVECLEN (x
, 0) - i
;
2667 merge_trees (&head
, &clobber_head
);
2673 /* Define the subroutine we will call below and emit in genemit. */
2674 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code
);
2678 /* Define the subroutine we will call below and emit in genemit. */
2679 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2688 process_tree (struct decision_head
*head
, enum routine_type subroutine_type
)
2690 if (head
->first
== NULL
)
2692 /* We can elide peephole2_insns, but not recog or split_insns. */
2693 if (subroutine_type
== PEEPHOLE2
)
2698 factor_tests (head
);
2700 next_subroutine_number
= 0;
2701 break_out_subroutines (head
, 1);
2702 find_afterward (head
, NULL
);
2704 /* We run this after find_afterward, because find_afterward needs
2705 the redundant DT_mode tests on predicates to determine whether
2706 two tests can both be true or not. */
2707 simplify_tests(head
);
2709 write_subroutines (head
, subroutine_type
);
2712 write_subroutine (head
, subroutine_type
);
2715 extern int main (int, char **);
2718 main (int argc
, char **argv
)
2721 struct decision_head recog_tree
, split_tree
, peephole2_tree
, h
;
2723 progname
= "genrecog";
2725 memset (&recog_tree
, 0, sizeof recog_tree
);
2726 memset (&split_tree
, 0, sizeof split_tree
);
2727 memset (&peephole2_tree
, 0, sizeof peephole2_tree
);
2729 if (init_md_reader_args (argc
, argv
) != SUCCESS_EXIT_CODE
)
2730 return (FATAL_EXIT_CODE
);
2736 /* Read the machine description. */
2740 desc
= read_md_rtx (&pattern_lineno
, &next_insn_code
);
2744 switch (GET_CODE (desc
))
2746 case DEFINE_PREDICATE
:
2747 case DEFINE_SPECIAL_PREDICATE
:
2748 process_define_predicate (desc
);
2752 h
= make_insn_sequence (desc
, RECOG
);
2753 merge_trees (&recog_tree
, &h
);
2757 h
= make_insn_sequence (desc
, SPLIT
);
2758 merge_trees (&split_tree
, &h
);
2761 case DEFINE_PEEPHOLE2
:
2762 h
= make_insn_sequence (desc
, PEEPHOLE2
);
2763 merge_trees (&peephole2_tree
, &h
);
2770 if (error_count
|| have_error
)
2771 return FATAL_EXIT_CODE
;
2775 process_tree (&recog_tree
, RECOG
);
2776 process_tree (&split_tree
, SPLIT
);
2777 process_tree (&peephole2_tree
, PEEPHOLE2
);
2780 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);
2783 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2785 get_insn_name (int code
)
2787 if (code
< insn_name_ptr_size
)
2788 return insn_name_ptr
[code
];
2794 record_insn_name (int code
, const char *name
)
2796 static const char *last_real_name
= "insn";
2797 static int last_real_code
= 0;
2800 if (insn_name_ptr_size
<= code
)
2803 new_size
= (insn_name_ptr_size
? insn_name_ptr_size
* 2 : 512);
2804 insn_name_ptr
= xrealloc (insn_name_ptr
, sizeof(char *) * new_size
);
2805 memset (insn_name_ptr
+ insn_name_ptr_size
, 0,
2806 sizeof(char *) * (new_size
- insn_name_ptr_size
));
2807 insn_name_ptr_size
= new_size
;
2810 if (!name
|| name
[0] == '\0')
2812 new = xmalloc (strlen (last_real_name
) + 10);
2813 sprintf (new, "%s+%d", last_real_name
, code
- last_real_code
);
2817 last_real_name
= new = xstrdup (name
);
2818 last_real_code
= code
;
2821 insn_name_ptr
[code
] = new;
2825 debug_decision_2 (struct decision_test
*test
)
2830 fprintf (stderr
, "mode=%s", GET_MODE_NAME (test
->u
.mode
));
2833 fprintf (stderr
, "code=%s", GET_RTX_NAME (test
->u
.code
));
2836 fprintf (stderr
, "veclen=%d", test
->u
.veclen
);
2838 case DT_elt_zero_int
:
2839 fprintf (stderr
, "elt0_i=%d", (int) test
->u
.intval
);
2841 case DT_elt_one_int
:
2842 fprintf (stderr
, "elt1_i=%d", (int) test
->u
.intval
);
2844 case DT_elt_zero_wide
:
2845 fprintf (stderr
, "elt0_w=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2847 case DT_elt_zero_wide_safe
:
2848 fprintf (stderr
, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2851 fprintf (stderr
, "veclen>=%d", test
->u
.veclen
);
2854 fprintf (stderr
, "dup=%d", test
->u
.dup
);
2857 fprintf (stderr
, "pred=(%s,%s)",
2858 test
->u
.pred
.name
, GET_MODE_NAME(test
->u
.pred
.mode
));
2863 strncpy (sub
, test
->u
.c_test
, sizeof(sub
));
2864 memcpy (sub
+16, "...", 4);
2865 fprintf (stderr
, "c_test=\"%s\"", sub
);
2869 fprintf (stderr
, "A_op=%d", test
->u
.opno
);
2871 case DT_accept_insn
:
2872 fprintf (stderr
, "A_insn=(%d,%d)",
2873 test
->u
.insn
.code_number
, test
->u
.insn
.num_clobbers_to_add
);
2882 debug_decision_1 (struct decision
*d
, int indent
)
2885 struct decision_test
*test
;
2889 for (i
= 0; i
< indent
; ++i
)
2891 fputs ("(nil)\n", stderr
);
2895 for (i
= 0; i
< indent
; ++i
)
2902 debug_decision_2 (test
);
2903 while ((test
= test
->next
) != NULL
)
2905 fputs (" + ", stderr
);
2906 debug_decision_2 (test
);
2909 fprintf (stderr
, "} %d n %d a %d\n", d
->number
,
2910 (d
->next
? d
->next
->number
: -1),
2911 (d
->afterward
? d
->afterward
->number
: -1));
2915 debug_decision_0 (struct decision
*d
, int indent
, int maxdepth
)
2924 for (i
= 0; i
< indent
; ++i
)
2926 fputs ("(nil)\n", stderr
);
2930 debug_decision_1 (d
, indent
);
2931 for (n
= d
->success
.first
; n
; n
= n
->next
)
2932 debug_decision_0 (n
, indent
+ 2, maxdepth
- 1);
2936 debug_decision (struct decision
*d
)
2938 debug_decision_0 (d
, 0, 1000000);
2942 debug_decision_list (struct decision
*d
)
2946 debug_decision_0 (d
, 0, 0);