* tree-ssa-operands.c (get_call_expr_operands): Add VUSE operands for
[official-gcc.git] / gcc / cfgloopanal.c
blob074574fc029044080692740c205d092d0eb21f76
1 /* Natural loop analysis code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "expr.h"
30 #include "output.h"
32 /* Checks whether BB is executed exactly once in each LOOP iteration. */
34 bool
35 just_once_each_iteration_p (struct loop *loop, basic_block bb)
37 /* It must be executed at least once each iteration. */
38 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
39 return false;
41 /* And just once. */
42 if (bb->loop_father != loop)
43 return false;
45 /* But this was not enough. We might have some irreducible loop here. */
46 if (bb->flags & BB_IRREDUCIBLE_LOOP)
47 return false;
49 return true;
52 /* Structure representing edge of a graph. */
54 struct edge
56 int src, dest; /* Source and destination. */
57 struct edge *pred_next, *succ_next;
58 /* Next edge in predecessor and successor lists. */
59 void *data; /* Data attached to the edge. */
62 /* Structure representing vertex of a graph. */
64 struct vertex
66 struct edge *pred, *succ;
67 /* Lists of predecessors and successors. */
68 int component; /* Number of dfs restarts before reaching the
69 vertex. */
70 int post; /* Postorder number. */
73 /* Structure representing a graph. */
75 struct graph
77 int n_vertices; /* Number of vertices. */
78 struct vertex *vertices;
79 /* The vertices. */
82 /* Dumps graph G into F. */
84 extern void dump_graph (FILE *, struct graph *);
85 void dump_graph (FILE *f, struct graph *g)
87 int i;
88 struct edge *e;
90 for (i = 0; i < g->n_vertices; i++)
92 if (!g->vertices[i].pred
93 && !g->vertices[i].succ)
94 continue;
96 fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
97 for (e = g->vertices[i].pred; e; e = e->pred_next)
98 fprintf (f, " %d", e->src);
99 fprintf (f, "\n");
101 fprintf (f, "\t->");
102 for (e = g->vertices[i].succ; e; e = e->succ_next)
103 fprintf (f, " %d", e->dest);
104 fprintf (f, "\n");
108 /* Creates a new graph with N_VERTICES vertices. */
110 static struct graph *
111 new_graph (int n_vertices)
113 struct graph *g = xmalloc (sizeof (struct graph));
115 g->n_vertices = n_vertices;
116 g->vertices = xcalloc (n_vertices, sizeof (struct vertex));
118 return g;
121 /* Adds an edge from F to T to graph G, with DATA attached. */
123 static void
124 add_edge (struct graph *g, int f, int t, void *data)
126 struct edge *e = xmalloc (sizeof (struct edge));
128 e->src = f;
129 e->dest = t;
130 e->data = data;
132 e->pred_next = g->vertices[t].pred;
133 g->vertices[t].pred = e;
135 e->succ_next = g->vertices[f].succ;
136 g->vertices[f].succ = e;
139 /* Runs dfs search over vertices of G, from NQ vertices in queue QS.
140 The vertices in postorder are stored into QT. If FORWARD is false,
141 backward dfs is run. */
143 static void
144 dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
146 int i, tick = 0, v, comp = 0, top;
147 struct edge *e;
148 struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
150 for (i = 0; i < g->n_vertices; i++)
152 g->vertices[i].component = -1;
153 g->vertices[i].post = -1;
156 #define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
157 #define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
158 #define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
159 #define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
161 for (i = 0; i < nq; i++)
163 v = qs[i];
164 if (g->vertices[v].post != -1)
165 continue;
167 g->vertices[v].component = comp++;
168 e = FST_EDGE (v);
169 top = 0;
171 while (1)
173 while (e && g->vertices[EDGE_DEST (e)].component != -1)
174 e = NEXT_EDGE (e);
176 if (!e)
178 if (qt)
179 qt[tick] = v;
180 g->vertices[v].post = tick++;
182 if (!top)
183 break;
185 e = stack[--top];
186 v = EDGE_SRC (e);
187 e = NEXT_EDGE (e);
188 continue;
191 stack[top++] = e;
192 v = EDGE_DEST (e);
193 e = FST_EDGE (v);
194 g->vertices[v].component = comp - 1;
198 free (stack);
201 /* Marks the edge E in graph G irreducible if it connects two vertices in the
202 same scc. */
204 static void
205 check_irred (struct graph *g, struct edge *e)
207 edge real = e->data;
209 /* All edges should lead from a component with higher number to the
210 one with lower one. */
211 if (g->vertices[e->src].component < g->vertices[e->dest].component)
212 abort ();
214 if (g->vertices[e->src].component != g->vertices[e->dest].component)
215 return;
217 real->flags |= EDGE_IRREDUCIBLE_LOOP;
218 if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
219 real->src->flags |= BB_IRREDUCIBLE_LOOP;
222 /* Runs CALLBACK for all edges in G. */
224 static void
225 for_each_edge (struct graph *g,
226 void (callback) (struct graph *, struct edge *))
228 struct edge *e;
229 int i;
231 for (i = 0; i < g->n_vertices; i++)
232 for (e = g->vertices[i].succ; e; e = e->succ_next)
233 callback (g, e);
236 /* Releases the memory occupied by G. */
238 static void
239 free_graph (struct graph *g)
241 struct edge *e, *n;
242 int i;
244 for (i = 0; i < g->n_vertices; i++)
245 for (e = g->vertices[i].succ; e; e = n)
247 n = e->succ_next;
248 free (e);
250 free (g->vertices);
251 free (g);
254 /* Marks blocks and edges that are part of non-recognized loops; i.e. we
255 throw away all latch edges and mark blocks inside any remaining cycle.
256 Everything is a bit complicated due to fact we do not want to do this
257 for parts of cycles that only "pass" through some loop -- i.e. for
258 each cycle, we want to mark blocks that belong directly to innermost
259 loop containing the whole cycle.
261 LOOPS is the loop tree. */
263 #define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
264 #define BB_REPR(BB) ((BB)->index + 1)
266 void
267 mark_irreducible_loops (struct loops *loops)
269 basic_block act;
270 edge e;
271 int i, src, dest;
272 struct graph *g;
273 int *queue1 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
274 int *queue2 = xmalloc ((last_basic_block + loops->num) * sizeof (int));
275 int nq, depth;
276 struct loop *cloop;
278 /* Reset the flags. */
279 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
281 act->flags &= ~BB_IRREDUCIBLE_LOOP;
282 for (e = act->succ; e; e = e->succ_next)
283 e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
286 /* Create the edge lists. */
287 g = new_graph (last_basic_block + loops->num);
289 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
290 for (e = act->succ; e; e = e->succ_next)
292 /* Ignore edges to exit. */
293 if (e->dest == EXIT_BLOCK_PTR)
294 continue;
296 /* And latch edges. */
297 if (e->dest->loop_father->header == e->dest
298 && e->dest->loop_father->latch == act)
299 continue;
301 /* Edges inside a single loop should be left where they are. Edges
302 to subloop headers should lead to representative of the subloop,
303 but from the same place.
305 Edges exiting loops should lead from representative
306 of the son of nearest common ancestor of the loops in that
307 act lays. */
309 src = BB_REPR (act);
310 dest = BB_REPR (e->dest);
312 if (e->dest->loop_father->header == e->dest)
313 dest = LOOP_REPR (e->dest->loop_father);
315 if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
317 depth = find_common_loop (act->loop_father,
318 e->dest->loop_father)->depth + 1;
319 if (depth == act->loop_father->depth)
320 cloop = act->loop_father;
321 else
322 cloop = act->loop_father->pred[depth];
324 src = LOOP_REPR (cloop);
327 add_edge (g, src, dest, e);
330 /* Find the strongly connected components. Use the algorithm of Tarjan --
331 first determine the postorder dfs numbering in reversed graph, then
332 run the dfs on the original graph in the order given by decreasing
333 numbers assigned by the previous pass. */
334 nq = 0;
335 FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
337 queue1[nq++] = BB_REPR (act);
339 for (i = 1; i < (int) loops->num; i++)
340 if (loops->parray[i])
341 queue1[nq++] = LOOP_REPR (loops->parray[i]);
342 dfs (g, queue1, nq, queue2, false);
343 for (i = 0; i < nq; i++)
344 queue1[i] = queue2[nq - i - 1];
345 dfs (g, queue1, nq, NULL, true);
347 /* Mark the irreducible loops. */
348 for_each_edge (g, check_irred);
350 free_graph (g);
351 free (queue1);
352 free (queue2);
354 loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
357 /* Counts number of insns inside LOOP. */
359 num_loop_insns (struct loop *loop)
361 basic_block *bbs, bb;
362 unsigned i, ninsns = 0;
363 rtx insn;
365 bbs = get_loop_body (loop);
366 for (i = 0; i < loop->num_nodes; i++)
368 bb = bbs[i];
369 ninsns++;
370 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
371 if (INSN_P (insn))
372 ninsns++;
374 free(bbs);
376 return ninsns;
379 /* Counts number of insns executed on average per iteration LOOP. */
381 average_num_loop_insns (struct loop *loop)
383 basic_block *bbs, bb;
384 unsigned i, binsns, ninsns, ratio;
385 rtx insn;
387 ninsns = 0;
388 bbs = get_loop_body (loop);
389 for (i = 0; i < loop->num_nodes; i++)
391 bb = bbs[i];
393 binsns = 1;
394 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
395 if (INSN_P (insn))
396 binsns++;
398 ratio = loop->header->frequency == 0
399 ? BB_FREQ_MAX
400 : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
401 ninsns += binsns * ratio;
403 free(bbs);
405 ninsns /= BB_FREQ_MAX;
406 if (!ninsns)
407 ninsns = 1; /* To avoid division by zero. */
409 return ninsns;
412 /* Returns expected number of LOOP iterations.
413 Compute upper bound on number of iterations in case they do not fit integer
414 to help loop peeling heuristics. Use exact counts if at all possible. */
415 unsigned
416 expected_loop_iterations (const struct loop *loop)
418 edge e;
420 if (loop->header->count)
422 gcov_type count_in, count_latch, expected;
424 count_in = 0;
425 count_latch = 0;
427 for (e = loop->header->pred; e; e = e->pred_next)
428 if (e->src == loop->latch)
429 count_latch = e->count;
430 else
431 count_in += e->count;
433 if (count_in == 0)
434 expected = count_latch * 2;
435 else
436 expected = (count_latch + count_in - 1) / count_in;
438 /* Avoid overflows. */
439 return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
441 else
443 int freq_in, freq_latch;
445 freq_in = 0;
446 freq_latch = 0;
448 for (e = loop->header->pred; e; e = e->pred_next)
449 if (e->src == loop->latch)
450 freq_latch = EDGE_FREQUENCY (e);
451 else
452 freq_in += EDGE_FREQUENCY (e);
454 if (freq_in == 0)
455 return freq_latch * 2;
457 return (freq_latch + freq_in - 1) / freq_in;
461 /* Returns the maximum level of nesting of subloops of LOOP. */
463 unsigned
464 get_loop_level (const struct loop *loop)
466 const struct loop *ploop;
467 unsigned mx = 0, l;
469 for (ploop = loop->inner; ploop; ploop = ploop->next)
471 l = get_loop_level (ploop);
472 if (l >= mx)
473 mx = l + 1;
475 return mx;
478 /* Returns estimate on cost of computing SEQ. */
480 static unsigned
481 seq_cost (rtx seq)
483 unsigned cost = 0;
484 rtx set;
486 for (; seq; seq = NEXT_INSN (seq))
488 set = single_set (seq);
489 if (set)
490 cost += rtx_cost (set, SET);
491 else
492 cost++;
495 return cost;
498 /* The properties of the target. */
500 static unsigned avail_regs; /* Number of available registers. */
501 static unsigned res_regs; /* Number of reserved registers. */
502 static unsigned small_cost; /* The cost for register when there is a free one. */
503 static unsigned pres_cost; /* The cost for register when there are not too many
504 free ones. */
505 static unsigned spill_cost; /* The cost for register when we need to spill. */
507 /* Initialize the constants for computing set costs. */
509 void
510 init_set_costs (void)
512 rtx seq;
513 rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
514 rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
515 rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
516 rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
517 unsigned i;
519 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
520 if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
521 && !fixed_regs[i])
522 avail_regs++;
524 res_regs = 3;
526 /* These are really just heuristic values. */
528 start_sequence ();
529 emit_move_insn (reg1, reg2);
530 seq = get_insns ();
531 end_sequence ();
532 small_cost = seq_cost (seq);
533 pres_cost = 2 * small_cost;
535 start_sequence ();
536 emit_move_insn (mem, reg1);
537 emit_move_insn (reg2, mem);
538 seq = get_insns ();
539 end_sequence ();
540 spill_cost = seq_cost (seq);
543 /* Calculates cost for having SIZE new loop global variables. REGS_USED is the
544 number of global registers used in loop. N_USES is the number of relevant
545 variable uses. */
547 unsigned
548 global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
550 unsigned regs_needed = regs_used + size;
551 unsigned cost = 0;
553 if (regs_needed + res_regs <= avail_regs)
554 cost += small_cost * size;
555 else if (regs_needed <= avail_regs)
556 cost += pres_cost * size;
557 else
559 cost += pres_cost * size;
560 cost += spill_cost * n_uses * (regs_needed - avail_regs) / regs_needed;
563 return cost;