* tree-ssa-operands.c (get_call_expr_operands): Add VUSE operands for
[official-gcc.git] / gcc / cfganal.c
blob58745d0ff09f48edbb71304943eb7a6bccdb0eba
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains various simple utilities to analyze the CFG. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "toplev.h"
33 #include "tm_p.h"
34 #include "timevar.h"
36 /* Store the data structures necessary for depth-first search. */
37 struct depth_first_search_dsS {
38 /* stack for backtracking during the algorithm */
39 basic_block *stack;
41 /* number of edges in the stack. That is, positions 0, ..., sp-1
42 have edges. */
43 unsigned int sp;
45 /* record of basic blocks already seen by depth-first search */
46 sbitmap visited_blocks;
48 typedef struct depth_first_search_dsS *depth_first_search_ds;
50 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
51 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
52 basic_block);
53 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds);
54 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
55 static bool flow_active_insn_p (rtx);
57 /* Like active_insn_p, except keep the return value clobber around
58 even after reload. */
60 static bool
61 flow_active_insn_p (rtx insn)
63 if (active_insn_p (insn))
64 return true;
66 /* A clobber of the function return value exists for buggy
67 programs that fail to return a value. Its effect is to
68 keep the return value from being live across the entire
69 function. If we allow it to be skipped, we introduce the
70 possibility for register livetime aborts. */
71 if (GET_CODE (PATTERN (insn)) == CLOBBER
72 && REG_P (XEXP (PATTERN (insn), 0))
73 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
74 return true;
76 return false;
79 /* Return true if the block has no effect and only forwards control flow to
80 its single destination. */
82 bool
83 forwarder_block_p (basic_block bb)
85 rtx insn;
87 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
88 || !bb->succ || bb->succ->succ_next)
89 return false;
91 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
92 if (INSN_P (insn) && flow_active_insn_p (insn))
93 return false;
95 return (!INSN_P (insn)
96 || (JUMP_P (insn) && simplejump_p (insn))
97 || !flow_active_insn_p (insn));
100 /* Return nonzero if we can reach target from src by falling through. */
102 bool
103 can_fallthru (basic_block src, basic_block target)
105 rtx insn = BB_END (src);
106 rtx insn2;
107 edge e;
109 if (target == EXIT_BLOCK_PTR)
110 return true;
111 if (src->next_bb != target)
112 return 0;
113 for (e = src->succ; e; e = e->succ_next)
114 if (e->dest == EXIT_BLOCK_PTR
115 && e->flags & EDGE_FALLTHRU)
116 return 0;
118 insn2 = BB_HEAD (target);
119 if (insn2 && !active_insn_p (insn2))
120 insn2 = next_active_insn (insn2);
122 /* ??? Later we may add code to move jump tables offline. */
123 return next_active_insn (insn) == insn2;
126 /* Return nonzero if we could reach target from src by falling through,
127 if the target was made adjacent. If we already have a fall-through
128 edge to the exit block, we can't do that. */
129 bool
130 could_fall_through (basic_block src, basic_block target)
132 edge e;
134 if (target == EXIT_BLOCK_PTR)
135 return true;
136 for (e = src->succ; e; e = e->succ_next)
137 if (e->dest == EXIT_BLOCK_PTR
138 && e->flags & EDGE_FALLTHRU)
139 return 0;
140 return true;
143 /* Mark the back edges in DFS traversal.
144 Return nonzero if a loop (natural or otherwise) is present.
145 Inspired by Depth_First_Search_PP described in:
147 Advanced Compiler Design and Implementation
148 Steven Muchnick
149 Morgan Kaufmann, 1997
151 and heavily borrowed from flow_depth_first_order_compute. */
153 bool
154 mark_dfs_back_edges (void)
156 edge *stack;
157 int *pre;
158 int *post;
159 int sp;
160 int prenum = 1;
161 int postnum = 1;
162 sbitmap visited;
163 bool found = false;
165 /* Allocate the preorder and postorder number arrays. */
166 pre = xcalloc (last_basic_block, sizeof (int));
167 post = xcalloc (last_basic_block, sizeof (int));
169 /* Allocate stack for back-tracking up CFG. */
170 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
171 sp = 0;
173 /* Allocate bitmap to track nodes that have been visited. */
174 visited = sbitmap_alloc (last_basic_block);
176 /* None of the nodes in the CFG have been visited yet. */
177 sbitmap_zero (visited);
179 /* Push the first edge on to the stack. */
180 stack[sp++] = ENTRY_BLOCK_PTR->succ;
182 while (sp)
184 edge e;
185 basic_block src;
186 basic_block dest;
188 /* Look at the edge on the top of the stack. */
189 e = stack[sp - 1];
190 src = e->src;
191 dest = e->dest;
192 e->flags &= ~EDGE_DFS_BACK;
194 /* Check if the edge destination has been visited yet. */
195 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
197 /* Mark that we have visited the destination. */
198 SET_BIT (visited, dest->index);
200 pre[dest->index] = prenum++;
201 if (dest->succ)
203 /* Since the DEST node has been visited for the first
204 time, check its successors. */
205 stack[sp++] = dest->succ;
207 else
208 post[dest->index] = postnum++;
210 else
212 if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
213 && pre[src->index] >= pre[dest->index]
214 && post[dest->index] == 0)
215 e->flags |= EDGE_DFS_BACK, found = true;
217 if (! e->succ_next && src != ENTRY_BLOCK_PTR)
218 post[src->index] = postnum++;
220 if (e->succ_next)
221 stack[sp - 1] = e->succ_next;
222 else
223 sp--;
227 free (pre);
228 free (post);
229 free (stack);
230 sbitmap_free (visited);
232 return found;
235 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
237 void
238 set_edge_can_fallthru_flag (void)
240 basic_block bb;
242 FOR_EACH_BB (bb)
244 edge e;
246 for (e = bb->succ; e; e = e->succ_next)
248 e->flags &= ~EDGE_CAN_FALLTHRU;
250 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
251 if (e->flags & EDGE_FALLTHRU)
252 e->flags |= EDGE_CAN_FALLTHRU;
255 /* If the BB ends with an invertible condjump all (2) edges are
256 CAN_FALLTHRU edges. */
257 if (!bb->succ || !bb->succ->succ_next || bb->succ->succ_next->succ_next)
258 continue;
259 if (!any_condjump_p (BB_END (bb)))
260 continue;
261 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
262 continue;
263 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
264 bb->succ->flags |= EDGE_CAN_FALLTHRU;
265 bb->succ->succ_next->flags |= EDGE_CAN_FALLTHRU;
269 /* Find unreachable blocks. An unreachable block will have 0 in
270 the reachable bit in block->flags. A nonzero value indicates the
271 block is reachable. */
273 void
274 find_unreachable_blocks (void)
276 edge e;
277 basic_block *tos, *worklist, bb;
279 tos = worklist = xmalloc (sizeof (basic_block) * n_basic_blocks);
281 /* Clear all the reachability flags. */
283 FOR_EACH_BB (bb)
284 bb->flags &= ~BB_REACHABLE;
286 /* Add our starting points to the worklist. Almost always there will
287 be only one. It isn't inconceivable that we might one day directly
288 support Fortran alternate entry points. */
290 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
292 *tos++ = e->dest;
294 /* Mark the block reachable. */
295 e->dest->flags |= BB_REACHABLE;
298 /* Iterate: find everything reachable from what we've already seen. */
300 while (tos != worklist)
302 basic_block b = *--tos;
304 for (e = b->succ; e; e = e->succ_next)
305 if (!(e->dest->flags & BB_REACHABLE))
307 *tos++ = e->dest;
308 e->dest->flags |= BB_REACHABLE;
312 free (worklist);
315 /* Functions to access an edge list with a vector representation.
316 Enough data is kept such that given an index number, the
317 pred and succ that edge represents can be determined, or
318 given a pred and a succ, its index number can be returned.
319 This allows algorithms which consume a lot of memory to
320 represent the normally full matrix of edge (pred,succ) with a
321 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
322 wasted space in the client code due to sparse flow graphs. */
324 /* This functions initializes the edge list. Basically the entire
325 flowgraph is processed, and all edges are assigned a number,
326 and the data structure is filled in. */
328 struct edge_list *
329 create_edge_list (void)
331 struct edge_list *elist;
332 edge e;
333 int num_edges;
334 int block_count;
335 basic_block bb;
337 block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
339 num_edges = 0;
341 /* Determine the number of edges in the flow graph by counting successor
342 edges on each basic block. */
343 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
345 for (e = bb->succ; e; e = e->succ_next)
346 num_edges++;
349 elist = xmalloc (sizeof (struct edge_list));
350 elist->num_blocks = block_count;
351 elist->num_edges = num_edges;
352 elist->index_to_edge = xmalloc (sizeof (edge) * num_edges);
354 num_edges = 0;
356 /* Follow successors of blocks, and register these edges. */
357 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
358 for (e = bb->succ; e; e = e->succ_next)
359 elist->index_to_edge[num_edges++] = e;
361 return elist;
364 /* This function free's memory associated with an edge list. */
366 void
367 free_edge_list (struct edge_list *elist)
369 if (elist)
371 free (elist->index_to_edge);
372 free (elist);
376 /* This function provides debug output showing an edge list. */
378 void
379 print_edge_list (FILE *f, struct edge_list *elist)
381 int x;
383 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
384 elist->num_blocks - 2, elist->num_edges);
386 for (x = 0; x < elist->num_edges; x++)
388 fprintf (f, " %-4d - edge(", x);
389 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
390 fprintf (f, "entry,");
391 else
392 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
394 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
395 fprintf (f, "exit)\n");
396 else
397 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
401 /* This function provides an internal consistency check of an edge list,
402 verifying that all edges are present, and that there are no
403 extra edges. */
405 void
406 verify_edge_list (FILE *f, struct edge_list *elist)
408 int pred, succ, index;
409 edge e;
410 basic_block bb, p, s;
412 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
414 for (e = bb->succ; e; e = e->succ_next)
416 pred = e->src->index;
417 succ = e->dest->index;
418 index = EDGE_INDEX (elist, e->src, e->dest);
419 if (index == EDGE_INDEX_NO_EDGE)
421 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
422 continue;
425 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
426 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
427 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
428 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
429 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
430 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
434 /* We've verified that all the edges are in the list, now lets make sure
435 there are no spurious edges in the list. */
437 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
438 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
440 int found_edge = 0;
442 for (e = p->succ; e; e = e->succ_next)
443 if (e->dest == s)
445 found_edge = 1;
446 break;
449 for (e = s->pred; e; e = e->pred_next)
450 if (e->src == p)
452 found_edge = 1;
453 break;
456 if (EDGE_INDEX (elist, p, s)
457 == EDGE_INDEX_NO_EDGE && found_edge != 0)
458 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
459 p->index, s->index);
460 if (EDGE_INDEX (elist, p, s)
461 != EDGE_INDEX_NO_EDGE && found_edge == 0)
462 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
463 p->index, s->index, EDGE_INDEX (elist, p, s));
467 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
468 If no such edge exists, return NULL. */
470 edge
471 find_edge (basic_block pred, basic_block succ)
473 edge e;
475 for (e = pred->succ; e; e = e->succ_next)
476 if (e->dest == succ)
477 return e;
479 return NULL;
482 /* This routine will determine what, if any, edge there is between
483 a specified predecessor and successor. */
486 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
488 int x;
490 for (x = 0; x < NUM_EDGES (edge_list); x++)
491 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
492 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
493 return x;
495 return (EDGE_INDEX_NO_EDGE);
498 /* Dump the list of basic blocks in the bitmap NODES. */
500 void
501 flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
503 int node;
505 if (! nodes)
506 return;
508 fprintf (file, "%s { ", str);
509 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
510 fputs ("}\n", file);
513 /* Dump the list of edges in the array EDGE_LIST. */
515 void
516 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
518 int i;
520 if (! edge_list)
521 return;
523 fprintf (file, "%s { ", str);
524 for (i = 0; i < num_edges; i++)
525 fprintf (file, "%d->%d ", edge_list[i]->src->index,
526 edge_list[i]->dest->index);
528 fputs ("}\n", file);
532 /* This routine will remove any fake predecessor edges for a basic block.
533 When the edge is removed, it is also removed from whatever successor
534 list it is in. */
536 static void
537 remove_fake_predecessors (basic_block bb)
539 edge e;
541 for (e = bb->pred; e;)
543 edge tmp = e;
545 e = e->pred_next;
546 if ((tmp->flags & EDGE_FAKE) == EDGE_FAKE)
547 remove_edge (tmp);
551 /* This routine will remove all fake edges from the flow graph. If
552 we remove all fake successors, it will automatically remove all
553 fake predecessors. */
555 void
556 remove_fake_edges (void)
558 basic_block bb;
560 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
561 remove_fake_predecessors (bb);
564 /* This routine will remove all fake edges to the EXIT_BLOCK. */
566 void
567 remove_fake_exit_edges (void)
569 remove_fake_predecessors (EXIT_BLOCK_PTR);
573 /* This function will add a fake edge between any block which has no
574 successors, and the exit block. Some data flow equations require these
575 edges to exist. */
577 void
578 add_noreturn_fake_exit_edges (void)
580 basic_block bb;
582 FOR_EACH_BB (bb)
583 if (bb->succ == NULL)
584 make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
587 /* This function adds a fake edge between any infinite loops to the
588 exit block. Some optimizations require a path from each node to
589 the exit node.
591 See also Morgan, Figure 3.10, pp. 82-83.
593 The current implementation is ugly, not attempting to minimize the
594 number of inserted fake edges. To reduce the number of fake edges
595 to insert, add fake edges from _innermost_ loops containing only
596 nodes not reachable from the exit block. */
598 void
599 connect_infinite_loops_to_exit (void)
601 basic_block unvisited_block;
602 struct depth_first_search_dsS dfs_ds;
604 /* Perform depth-first search in the reverse graph to find nodes
605 reachable from the exit block. */
606 flow_dfs_compute_reverse_init (&dfs_ds);
607 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
609 /* Repeatedly add fake edges, updating the unreachable nodes. */
610 while (1)
612 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds);
613 if (!unvisited_block)
614 break;
616 make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
617 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
620 flow_dfs_compute_reverse_finish (&dfs_ds);
621 return;
624 /* Compute reverse top sort order. */
626 void
627 flow_reverse_top_sort_order_compute (int *rts_order)
629 edge *stack;
630 int sp;
631 int postnum = 0;
632 sbitmap visited;
634 /* Allocate stack for back-tracking up CFG. */
635 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
636 sp = 0;
638 /* Allocate bitmap to track nodes that have been visited. */
639 visited = sbitmap_alloc (last_basic_block);
641 /* None of the nodes in the CFG have been visited yet. */
642 sbitmap_zero (visited);
644 /* Push the first edge on to the stack. */
645 stack[sp++] = ENTRY_BLOCK_PTR->succ;
647 while (sp)
649 edge e;
650 basic_block src;
651 basic_block dest;
653 /* Look at the edge on the top of the stack. */
654 e = stack[sp - 1];
655 src = e->src;
656 dest = e->dest;
658 /* Check if the edge destination has been visited yet. */
659 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
661 /* Mark that we have visited the destination. */
662 SET_BIT (visited, dest->index);
664 if (dest->succ)
665 /* Since the DEST node has been visited for the first
666 time, check its successors. */
667 stack[sp++] = dest->succ;
668 else
669 rts_order[postnum++] = dest->index;
671 else
673 if (! e->succ_next && src != ENTRY_BLOCK_PTR)
674 rts_order[postnum++] = src->index;
676 if (e->succ_next)
677 stack[sp - 1] = e->succ_next;
678 else
679 sp--;
683 free (stack);
684 sbitmap_free (visited);
687 /* Compute the depth first search order and store in the array
688 DFS_ORDER if nonzero, marking the nodes visited in VISITED. If
689 RC_ORDER is nonzero, return the reverse completion number for each
690 node. Returns the number of nodes visited. A depth first search
691 tries to get as far away from the starting point as quickly as
692 possible. */
695 flow_depth_first_order_compute (int *dfs_order, int *rc_order)
697 edge *stack;
698 int sp;
699 int dfsnum = 0;
700 int rcnum = n_basic_blocks - 1;
701 sbitmap visited;
703 /* Allocate stack for back-tracking up CFG. */
704 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
705 sp = 0;
707 /* Allocate bitmap to track nodes that have been visited. */
708 visited = sbitmap_alloc (last_basic_block);
710 /* None of the nodes in the CFG have been visited yet. */
711 sbitmap_zero (visited);
713 /* Push the first edge on to the stack. */
714 stack[sp++] = ENTRY_BLOCK_PTR->succ;
716 while (sp)
718 edge e;
719 basic_block src;
720 basic_block dest;
722 /* Look at the edge on the top of the stack. */
723 e = stack[sp - 1];
724 src = e->src;
725 dest = e->dest;
727 /* Check if the edge destination has been visited yet. */
728 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
730 /* Mark that we have visited the destination. */
731 SET_BIT (visited, dest->index);
733 if (dfs_order)
734 dfs_order[dfsnum] = dest->index;
736 dfsnum++;
738 if (dest->succ)
739 /* Since the DEST node has been visited for the first
740 time, check its successors. */
741 stack[sp++] = dest->succ;
742 else if (rc_order)
743 /* There are no successors for the DEST node so assign
744 its reverse completion number. */
745 rc_order[rcnum--] = dest->index;
747 else
749 if (! e->succ_next && src != ENTRY_BLOCK_PTR
750 && rc_order)
751 /* There are no more successors for the SRC node
752 so assign its reverse completion number. */
753 rc_order[rcnum--] = src->index;
755 if (e->succ_next)
756 stack[sp - 1] = e->succ_next;
757 else
758 sp--;
762 free (stack);
763 sbitmap_free (visited);
765 /* The number of nodes visited should not be greater than
766 n_basic_blocks. */
767 if (dfsnum > n_basic_blocks)
768 abort ();
770 /* There are some nodes left in the CFG that are unreachable. */
771 if (dfsnum < n_basic_blocks)
772 abort ();
774 return dfsnum;
777 struct dfst_node
779 unsigned nnodes;
780 struct dfst_node **node;
781 struct dfst_node *up;
784 /* Compute a preorder transversal ordering such that a sub-tree which
785 is the source of a cross edge appears before the sub-tree which is
786 the destination of the cross edge. This allows for easy detection
787 of all the entry blocks for a loop.
789 The ordering is compute by:
791 1) Generating a depth first spanning tree.
793 2) Walking the resulting tree from right to left. */
795 void
796 flow_preorder_transversal_compute (int *pot_order)
798 edge e;
799 edge *stack;
800 int i;
801 int max_successors;
802 int sp;
803 sbitmap visited;
804 struct dfst_node *node;
805 struct dfst_node *dfst;
806 basic_block bb;
808 /* Allocate stack for back-tracking up CFG. */
809 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
810 sp = 0;
812 /* Allocate the tree. */
813 dfst = xcalloc (last_basic_block, sizeof (struct dfst_node));
815 FOR_EACH_BB (bb)
817 max_successors = 0;
818 for (e = bb->succ; e; e = e->succ_next)
819 max_successors++;
821 dfst[bb->index].node
822 = (max_successors
823 ? xcalloc (max_successors, sizeof (struct dfst_node *)) : NULL);
826 /* Allocate bitmap to track nodes that have been visited. */
827 visited = sbitmap_alloc (last_basic_block);
829 /* None of the nodes in the CFG have been visited yet. */
830 sbitmap_zero (visited);
832 /* Push the first edge on to the stack. */
833 stack[sp++] = ENTRY_BLOCK_PTR->succ;
835 while (sp)
837 basic_block src;
838 basic_block dest;
840 /* Look at the edge on the top of the stack. */
841 e = stack[sp - 1];
842 src = e->src;
843 dest = e->dest;
845 /* Check if the edge destination has been visited yet. */
846 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
848 /* Mark that we have visited the destination. */
849 SET_BIT (visited, dest->index);
851 /* Add the destination to the preorder tree. */
852 if (src != ENTRY_BLOCK_PTR)
854 dfst[src->index].node[dfst[src->index].nnodes++]
855 = &dfst[dest->index];
856 dfst[dest->index].up = &dfst[src->index];
859 if (dest->succ)
860 /* Since the DEST node has been visited for the first
861 time, check its successors. */
862 stack[sp++] = dest->succ;
865 else if (e->succ_next)
866 stack[sp - 1] = e->succ_next;
867 else
868 sp--;
871 free (stack);
872 sbitmap_free (visited);
874 /* Record the preorder transversal order by
875 walking the tree from right to left. */
877 i = 0;
878 node = &dfst[ENTRY_BLOCK_PTR->next_bb->index];
879 pot_order[i++] = 0;
881 while (node)
883 if (node->nnodes)
885 node = node->node[--node->nnodes];
886 pot_order[i++] = node - dfst;
888 else
889 node = node->up;
892 /* Free the tree. */
894 for (i = 0; i < last_basic_block; i++)
895 if (dfst[i].node)
896 free (dfst[i].node);
898 free (dfst);
901 /* Compute the depth first search order on the _reverse_ graph and
902 store in the array DFS_ORDER, marking the nodes visited in VISITED.
903 Returns the number of nodes visited.
905 The computation is split into three pieces:
907 flow_dfs_compute_reverse_init () creates the necessary data
908 structures.
910 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
911 structures. The block will start the search.
913 flow_dfs_compute_reverse_execute () continues (or starts) the
914 search using the block on the top of the stack, stopping when the
915 stack is empty.
917 flow_dfs_compute_reverse_finish () destroys the necessary data
918 structures.
920 Thus, the user will probably call ..._init(), call ..._add_bb() to
921 add a beginning basic block to the stack, call ..._execute(),
922 possibly add another bb to the stack and again call ..._execute(),
923 ..., and finally call _finish(). */
925 /* Initialize the data structures used for depth-first search on the
926 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
927 added to the basic block stack. DATA is the current depth-first
928 search context. If INITIALIZE_STACK is nonzero, there is an
929 element on the stack. */
931 static void
932 flow_dfs_compute_reverse_init (depth_first_search_ds data)
934 /* Allocate stack for back-tracking up CFG. */
935 data->stack = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
936 * sizeof (basic_block));
937 data->sp = 0;
939 /* Allocate bitmap to track nodes that have been visited. */
940 data->visited_blocks = sbitmap_alloc (last_basic_block - (INVALID_BLOCK + 1));
942 /* None of the nodes in the CFG have been visited yet. */
943 sbitmap_zero (data->visited_blocks);
945 return;
948 /* Add the specified basic block to the top of the dfs data
949 structures. When the search continues, it will start at the
950 block. */
952 static void
953 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
955 data->stack[data->sp++] = bb;
956 SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
959 /* Continue the depth-first search through the reverse graph starting with the
960 block at the stack's top and ending when the stack is empty. Visited nodes
961 are marked. Returns an unvisited basic block, or NULL if there is none
962 available. */
964 static basic_block
965 flow_dfs_compute_reverse_execute (depth_first_search_ds data)
967 basic_block bb;
968 edge e;
970 while (data->sp > 0)
972 bb = data->stack[--data->sp];
974 /* Perform depth-first search on adjacent vertices. */
975 for (e = bb->pred; e; e = e->pred_next)
976 if (!TEST_BIT (data->visited_blocks,
977 e->src->index - (INVALID_BLOCK + 1)))
978 flow_dfs_compute_reverse_add_bb (data, e->src);
981 /* Determine if there are unvisited basic blocks. */
982 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb)
983 if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
984 return bb;
986 return NULL;
989 /* Destroy the data structures needed for depth-first search on the
990 reverse graph. */
992 static void
993 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
995 free (data->stack);
996 sbitmap_free (data->visited_blocks);
999 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1000 if REVERSE, go against direction of edges. Returns number of blocks
1001 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1003 dfs_enumerate_from (basic_block bb, int reverse,
1004 bool (*predicate) (basic_block, void *),
1005 basic_block *rslt, int rslt_max, void *data)
1007 basic_block *st, lbb;
1008 int sp = 0, tv = 0;
1010 st = xcalloc (rslt_max, sizeof (basic_block));
1011 rslt[tv++] = st[sp++] = bb;
1012 bb->flags |= BB_VISITED;
1013 while (sp)
1015 edge e;
1016 lbb = st[--sp];
1017 if (reverse)
1019 for (e = lbb->pred; e; e = e->pred_next)
1020 if (!(e->src->flags & BB_VISITED) && predicate (e->src, data))
1022 if (tv == rslt_max)
1023 abort ();
1024 rslt[tv++] = st[sp++] = e->src;
1025 e->src->flags |= BB_VISITED;
1028 else
1030 for (e = lbb->succ; e; e = e->succ_next)
1031 if (!(e->dest->flags & BB_VISITED) && predicate (e->dest, data))
1033 if (tv == rslt_max)
1034 abort ();
1035 rslt[tv++] = st[sp++] = e->dest;
1036 e->dest->flags |= BB_VISITED;
1040 free (st);
1041 for (sp = 0; sp < tv; sp++)
1042 rslt[sp]->flags &= ~BB_VISITED;
1043 return tv;
1047 /* Computing the Dominance Frontier:
1049 As described in Morgan, section 3.5, this may be done simply by
1050 walking the dominator tree bottom-up, computing the frontier for
1051 the children before the parent. When considering a block B,
1052 there are two cases:
1054 (1) A flow graph edge leaving B that does not lead to a child
1055 of B in the dominator tree must be a block that is either equal
1056 to B or not dominated by B. Such blocks belong in the frontier
1057 of B.
1059 (2) Consider a block X in the frontier of one of the children C
1060 of B. If X is not equal to B and is not dominated by B, it
1061 is in the frontier of B. */
1063 static void
1064 compute_dominance_frontiers_1 (bitmap *frontiers, basic_block bb, sbitmap done)
1066 edge e;
1067 basic_block c;
1069 SET_BIT (done, bb->index);
1071 /* Do the frontier of the children first. Not all children in the
1072 dominator tree (blocks dominated by this one) are children in the
1073 CFG, so check all blocks. */
1074 for (c = first_dom_son (CDI_DOMINATORS, bb);
1076 c = next_dom_son (CDI_DOMINATORS, c))
1078 if (! TEST_BIT (done, c->index))
1079 compute_dominance_frontiers_1 (frontiers, c, done);
1082 /* Find blocks conforming to rule (1) above. */
1083 for (e = bb->succ; e; e = e->succ_next)
1085 if (e->dest == EXIT_BLOCK_PTR)
1086 continue;
1087 if (get_immediate_dominator (CDI_DOMINATORS, e->dest) != bb)
1088 bitmap_set_bit (frontiers[bb->index], e->dest->index);
1091 /* Find blocks conforming to rule (2). */
1092 for (c = first_dom_son (CDI_DOMINATORS, bb);
1094 c = next_dom_son (CDI_DOMINATORS, c))
1096 int x;
1098 EXECUTE_IF_SET_IN_BITMAP (frontiers[c->index], 0, x,
1100 if (get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (x)) != bb)
1101 bitmap_set_bit (frontiers[bb->index], x);
1107 void
1108 compute_dominance_frontiers (bitmap *frontiers)
1110 sbitmap done = sbitmap_alloc (last_basic_block);
1112 timevar_push (TV_DOM_FRONTIERS);
1114 sbitmap_zero (done);
1116 compute_dominance_frontiers_1 (frontiers, ENTRY_BLOCK_PTR->succ->dest, done);
1118 sbitmap_free (done);
1120 timevar_pop (TV_DOM_FRONTIERS);