2005-06-28 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / gcse.c
blobd8a1d251451f7d96c28a4393af28ff43a7e0294c
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
171 #include "timevar.h"
173 /* Propagate flow information through back edges and thus enable PRE's
174 moving loop invariant calculations out of loops.
176 Originally this tended to create worse overall code, but several
177 improvements during the development of PRE seem to have made following
178 back edges generally a win.
180 Note much of the loop invariant code motion done here would normally
181 be done by loop.c, which has more heuristics for when to move invariants
182 out of loops. At some point we might need to move some of those
183 heuristics into gcse.c. */
185 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
186 are a superset of those done by GCSE.
188 We perform the following steps:
190 1) Compute basic block information.
192 2) Compute table of places where registers are set.
194 3) Perform copy/constant propagation.
196 4) Perform global cse using lazy code motion if not optimizing
197 for size, or code hoisting if we are.
199 5) Perform another pass of copy/constant propagation.
201 Two passes of copy/constant propagation are done because the first one
202 enables more GCSE and the second one helps to clean up the copies that
203 GCSE creates. This is needed more for PRE than for Classic because Classic
204 GCSE will try to use an existing register containing the common
205 subexpression rather than create a new one. This is harder to do for PRE
206 because of the code motion (which Classic GCSE doesn't do).
208 Expressions we are interested in GCSE-ing are of the form
209 (set (pseudo-reg) (expression)).
210 Function want_to_gcse_p says what these are.
212 PRE handles moving invariant expressions out of loops (by treating them as
213 partially redundant).
215 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
216 assignment) based GVN (global value numbering). L. T. Simpson's paper
217 (Rice University) on value numbering is a useful reference for this.
219 **********************
221 We used to support multiple passes but there are diminishing returns in
222 doing so. The first pass usually makes 90% of the changes that are doable.
223 A second pass can make a few more changes made possible by the first pass.
224 Experiments show any further passes don't make enough changes to justify
225 the expense.
227 A study of spec92 using an unlimited number of passes:
228 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
229 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
230 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
232 It was found doing copy propagation between each pass enables further
233 substitutions.
235 PRE is quite expensive in complicated functions because the DFA can take
236 a while to converge. Hence we only perform one pass. The parameter
237 max-gcse-passes can be modified if one wants to experiment.
239 **********************
241 The steps for PRE are:
243 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245 2) Perform the data flow analysis for PRE.
247 3) Delete the redundant instructions
249 4) Insert the required copies [if any] that make the partially
250 redundant instructions fully redundant.
252 5) For other reaching expressions, insert an instruction to copy the value
253 to a newly created pseudo that will reach the redundant instruction.
255 The deletion is done first so that when we do insertions we
256 know which pseudo reg to use.
258 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
259 argue it is not. The number of iterations for the algorithm to converge
260 is typically 2-4 so I don't view it as that expensive (relatively speaking).
262 PRE GCSE depends heavily on the second CSE pass to clean up the copies
263 we create. To make an expression reach the place where it's redundant,
264 the result of the expression is copied to a new register, and the redundant
265 expression is deleted by replacing it with this new register. Classic GCSE
266 doesn't have this problem as much as it computes the reaching defs of
267 each register in each block and thus can try to use an existing
268 register. */
270 /* GCSE global vars. */
272 /* -dG dump file. */
273 static FILE *gcse_file;
275 /* Note whether or not we should run jump optimization after gcse. We
276 want to do this for two cases.
278 * If we changed any jumps via cprop.
280 * If we added any labels via edge splitting. */
281 static int run_jump_opt_after_gcse;
283 /* Bitmaps are normally not included in debugging dumps.
284 However it's useful to be able to print them from GDB.
285 We could create special functions for this, but it's simpler to
286 just allow passing stderr to the dump_foo fns. Since stderr can
287 be a macro, we store a copy here. */
288 static FILE *debug_stderr;
290 /* An obstack for our working variables. */
291 static struct obstack gcse_obstack;
293 struct reg_use {rtx reg_rtx; };
295 /* Hash table of expressions. */
297 struct expr
299 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
300 rtx expr;
301 /* Index in the available expression bitmaps. */
302 int bitmap_index;
303 /* Next entry with the same hash. */
304 struct expr *next_same_hash;
305 /* List of anticipatable occurrences in basic blocks in the function.
306 An "anticipatable occurrence" is one that is the first occurrence in the
307 basic block, the operands are not modified in the basic block prior
308 to the occurrence and the output is not used between the start of
309 the block and the occurrence. */
310 struct occr *antic_occr;
311 /* List of available occurrence in basic blocks in the function.
312 An "available occurrence" is one that is the last occurrence in the
313 basic block and the operands are not modified by following statements in
314 the basic block [including this insn]. */
315 struct occr *avail_occr;
316 /* Non-null if the computation is PRE redundant.
317 The value is the newly created pseudo-reg to record a copy of the
318 expression in all the places that reach the redundant copy. */
319 rtx reaching_reg;
322 /* Occurrence of an expression.
323 There is one per basic block. If a pattern appears more than once the
324 last appearance is used [or first for anticipatable expressions]. */
326 struct occr
328 /* Next occurrence of this expression. */
329 struct occr *next;
330 /* The insn that computes the expression. */
331 rtx insn;
332 /* Nonzero if this [anticipatable] occurrence has been deleted. */
333 char deleted_p;
334 /* Nonzero if this [available] occurrence has been copied to
335 reaching_reg. */
336 /* ??? This is mutually exclusive with deleted_p, so they could share
337 the same byte. */
338 char copied_p;
341 /* Expression and copy propagation hash tables.
342 Each hash table is an array of buckets.
343 ??? It is known that if it were an array of entries, structure elements
344 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
345 not clear whether in the final analysis a sufficient amount of memory would
346 be saved as the size of the available expression bitmaps would be larger
347 [one could build a mapping table without holes afterwards though].
348 Someday I'll perform the computation and figure it out. */
350 struct hash_table
352 /* The table itself.
353 This is an array of `expr_hash_table_size' elements. */
354 struct expr **table;
356 /* Size of the hash table, in elements. */
357 unsigned int size;
359 /* Number of hash table elements. */
360 unsigned int n_elems;
362 /* Whether the table is expression of copy propagation one. */
363 int set_p;
366 /* Expression hash table. */
367 static struct hash_table expr_hash_table;
369 /* Copy propagation hash table. */
370 static struct hash_table set_hash_table;
372 /* Mapping of uids to cuids.
373 Only real insns get cuids. */
374 static int *uid_cuid;
376 /* Highest UID in UID_CUID. */
377 static int max_uid;
379 /* Get the cuid of an insn. */
380 #ifdef ENABLE_CHECKING
381 #define INSN_CUID(INSN) \
382 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
383 #else
384 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
385 #endif
387 /* Number of cuids. */
388 static int max_cuid;
390 /* Mapping of cuids to insns. */
391 static rtx *cuid_insn;
393 /* Get insn from cuid. */
394 #define CUID_INSN(CUID) (cuid_insn[CUID])
396 /* Maximum register number in function prior to doing gcse + 1.
397 Registers created during this pass have regno >= max_gcse_regno.
398 This is named with "gcse" to not collide with global of same name. */
399 static unsigned int max_gcse_regno;
401 /* Table of registers that are modified.
403 For each register, each element is a list of places where the pseudo-reg
404 is set.
406 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
407 requires knowledge of which blocks kill which regs [and thus could use
408 a bitmap instead of the lists `reg_set_table' uses].
410 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
411 num-regs) [however perhaps it may be useful to keep the data as is]. One
412 advantage of recording things this way is that `reg_set_table' is fairly
413 sparse with respect to pseudo regs but for hard regs could be fairly dense
414 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
415 up functions like compute_transp since in the case of pseudo-regs we only
416 need to iterate over the number of times a pseudo-reg is set, not over the
417 number of basic blocks [clearly there is a bit of a slow down in the cases
418 where a pseudo is set more than once in a block, however it is believed
419 that the net effect is to speed things up]. This isn't done for hard-regs
420 because recording call-clobbered hard-regs in `reg_set_table' at each
421 function call can consume a fair bit of memory, and iterating over
422 hard-regs stored this way in compute_transp will be more expensive. */
424 typedef struct reg_set
426 /* The next setting of this register. */
427 struct reg_set *next;
428 /* The index of the block where it was set. */
429 int bb_index;
430 } reg_set;
432 static reg_set **reg_set_table;
434 /* Size of `reg_set_table'.
435 The table starts out at max_gcse_regno + slop, and is enlarged as
436 necessary. */
437 static int reg_set_table_size;
439 /* Amount to grow `reg_set_table' by when it's full. */
440 #define REG_SET_TABLE_SLOP 100
442 /* This is a list of expressions which are MEMs and will be used by load
443 or store motion.
444 Load motion tracks MEMs which aren't killed by
445 anything except itself. (i.e., loads and stores to a single location).
446 We can then allow movement of these MEM refs with a little special
447 allowance. (all stores copy the same value to the reaching reg used
448 for the loads). This means all values used to store into memory must have
449 no side effects so we can re-issue the setter value.
450 Store Motion uses this structure as an expression table to track stores
451 which look interesting, and might be moveable towards the exit block. */
453 struct ls_expr
455 struct expr * expr; /* Gcse expression reference for LM. */
456 rtx pattern; /* Pattern of this mem. */
457 rtx pattern_regs; /* List of registers mentioned by the mem. */
458 rtx loads; /* INSN list of loads seen. */
459 rtx stores; /* INSN list of stores seen. */
460 struct ls_expr * next; /* Next in the list. */
461 int invalid; /* Invalid for some reason. */
462 int index; /* If it maps to a bitmap index. */
463 unsigned int hash_index; /* Index when in a hash table. */
464 rtx reaching_reg; /* Register to use when re-writing. */
467 /* Array of implicit set patterns indexed by basic block index. */
468 static rtx *implicit_sets;
470 /* Head of the list of load/store memory refs. */
471 static struct ls_expr * pre_ldst_mems = NULL;
473 /* Bitmap containing one bit for each register in the program.
474 Used when performing GCSE to track which registers have been set since
475 the start of the basic block. */
476 static regset reg_set_bitmap;
478 /* For each block, a bitmap of registers set in the block.
479 This is used by compute_transp.
480 It is computed during hash table computation and not by compute_sets
481 as it includes registers added since the last pass (or between cprop and
482 gcse) and it's currently not easy to realloc sbitmap vectors. */
483 static sbitmap *reg_set_in_block;
485 /* Array, indexed by basic block number for a list of insns which modify
486 memory within that block. */
487 static rtx * modify_mem_list;
488 static bitmap modify_mem_list_set;
490 /* This array parallels modify_mem_list, but is kept canonicalized. */
491 static rtx * canon_modify_mem_list;
493 /* Bitmap indexed by block numbers to record which blocks contain
494 function calls. */
495 static bitmap blocks_with_calls;
497 /* Various variables for statistics gathering. */
499 /* Memory used in a pass.
500 This isn't intended to be absolutely precise. Its intent is only
501 to keep an eye on memory usage. */
502 static int bytes_used;
504 /* GCSE substitutions made. */
505 static int gcse_subst_count;
506 /* Number of copy instructions created. */
507 static int gcse_create_count;
508 /* Number of local constants propagated. */
509 static int local_const_prop_count;
510 /* Number of local copies propagated. */
511 static int local_copy_prop_count;
512 /* Number of global constants propagated. */
513 static int global_const_prop_count;
514 /* Number of global copies propagated. */
515 static int global_copy_prop_count;
517 /* For available exprs */
518 static sbitmap *ae_kill, *ae_gen;
520 static void compute_can_copy (void);
521 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
522 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
523 static void *grealloc (void *, size_t);
524 static void *gcse_alloc (unsigned long);
525 static void alloc_gcse_mem (void);
526 static void free_gcse_mem (void);
527 static void alloc_reg_set_mem (int);
528 static void free_reg_set_mem (void);
529 static void record_one_set (int, rtx);
530 static void record_set_info (rtx, rtx, void *);
531 static void compute_sets (void);
532 static void hash_scan_insn (rtx, struct hash_table *, int);
533 static void hash_scan_set (rtx, rtx, struct hash_table *);
534 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
535 static void hash_scan_call (rtx, rtx, struct hash_table *);
536 static int want_to_gcse_p (rtx);
537 static bool can_assign_to_reg_p (rtx);
538 static bool gcse_constant_p (rtx);
539 static int oprs_unchanged_p (rtx, rtx, int);
540 static int oprs_anticipatable_p (rtx, rtx);
541 static int oprs_available_p (rtx, rtx);
542 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
543 struct hash_table *);
544 static void insert_set_in_table (rtx, rtx, struct hash_table *);
545 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
546 static unsigned int hash_set (int, int);
547 static int expr_equiv_p (rtx, rtx);
548 static void record_last_reg_set_info (rtx, int);
549 static void record_last_mem_set_info (rtx);
550 static void record_last_set_info (rtx, rtx, void *);
551 static void compute_hash_table (struct hash_table *);
552 static void alloc_hash_table (int, struct hash_table *, int);
553 static void free_hash_table (struct hash_table *);
554 static void compute_hash_table_work (struct hash_table *);
555 static void dump_hash_table (FILE *, const char *, struct hash_table *);
556 static struct expr *lookup_set (unsigned int, struct hash_table *);
557 static struct expr *next_set (unsigned int, struct expr *);
558 static void reset_opr_set_tables (void);
559 static int oprs_not_set_p (rtx, rtx);
560 static void mark_call (rtx);
561 static void mark_set (rtx, rtx);
562 static void mark_clobber (rtx, rtx);
563 static void mark_oprs_set (rtx);
564 static void alloc_cprop_mem (int, int);
565 static void free_cprop_mem (void);
566 static void compute_transp (rtx, int, sbitmap *, int);
567 static void compute_transpout (void);
568 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
569 struct hash_table *);
570 static void compute_cprop_data (void);
571 static void find_used_regs (rtx *, void *);
572 static int try_replace_reg (rtx, rtx, rtx);
573 static struct expr *find_avail_set (int, rtx);
574 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
575 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
576 static int load_killed_in_block_p (basic_block, int, rtx, int);
577 static void canon_list_insert (rtx, rtx, void *);
578 static int cprop_insn (rtx, int);
579 static int cprop (int);
580 static void find_implicit_sets (void);
581 static int one_cprop_pass (int, bool, bool);
582 static bool constprop_register (rtx, rtx, rtx, bool);
583 static struct expr *find_bypass_set (int, int);
584 static bool reg_killed_on_edge (rtx, edge);
585 static int bypass_block (basic_block, rtx, rtx);
586 static int bypass_conditional_jumps (void);
587 static void alloc_pre_mem (int, int);
588 static void free_pre_mem (void);
589 static void compute_pre_data (void);
590 static int pre_expr_reaches_here_p (basic_block, struct expr *,
591 basic_block);
592 static void insert_insn_end_bb (struct expr *, basic_block, int);
593 static void pre_insert_copy_insn (struct expr *, rtx);
594 static void pre_insert_copies (void);
595 static int pre_delete (void);
596 static int pre_gcse (void);
597 static int one_pre_gcse_pass (int);
598 static void add_label_notes (rtx, rtx);
599 static void alloc_code_hoist_mem (int, int);
600 static void free_code_hoist_mem (void);
601 static void compute_code_hoist_vbeinout (void);
602 static void compute_code_hoist_data (void);
603 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
604 static void hoist_code (void);
605 static int one_code_hoisting_pass (void);
606 static rtx process_insert_insn (struct expr *);
607 static int pre_edge_insert (struct edge_list *, struct expr **);
608 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
609 basic_block, char *);
610 static struct ls_expr * ldst_entry (rtx);
611 static void free_ldst_entry (struct ls_expr *);
612 static void free_ldst_mems (void);
613 static void print_ldst_list (FILE *);
614 static struct ls_expr * find_rtx_in_ldst (rtx);
615 static int enumerate_ldsts (void);
616 static inline struct ls_expr * first_ls_expr (void);
617 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
618 static int simple_mem (rtx);
619 static void invalidate_any_buried_refs (rtx);
620 static void compute_ld_motion_mems (void);
621 static void trim_ld_motion_mems (void);
622 static void update_ld_motion_stores (struct expr *);
623 static void reg_set_info (rtx, rtx, void *);
624 static void reg_clear_last_set (rtx, rtx, void *);
625 static bool store_ops_ok (rtx, int *);
626 static rtx extract_mentioned_regs (rtx);
627 static rtx extract_mentioned_regs_helper (rtx, rtx);
628 static void find_moveable_store (rtx, int *, int *);
629 static int compute_store_table (void);
630 static bool load_kills_store (rtx, rtx, int);
631 static bool find_loads (rtx, rtx, int);
632 static bool store_killed_in_insn (rtx, rtx, rtx, int);
633 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
634 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
635 static void build_store_vectors (void);
636 static void insert_insn_start_bb (rtx, basic_block);
637 static int insert_store (struct ls_expr *, edge);
638 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
639 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
640 static void delete_store (struct ls_expr *, basic_block);
641 static void free_store_memory (void);
642 static void store_motion (void);
643 static void free_insn_expr_list_list (rtx *);
644 static void clear_modify_mem_tables (void);
645 static void free_modify_mem_tables (void);
646 static rtx gcse_emit_move_after (rtx, rtx, rtx);
647 static void local_cprop_find_used_regs (rtx *, void *);
648 static bool do_local_cprop (rtx, rtx, bool, rtx*);
649 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
650 static void local_cprop_pass (bool);
651 static bool is_too_expensive (const char *);
654 /* Entry point for global common subexpression elimination.
655 F is the first instruction in the function. Return nonzero if a
656 change is mode. */
659 gcse_main (rtx f ATTRIBUTE_UNUSED, FILE *file)
661 int changed, pass;
662 /* Bytes used at start of pass. */
663 int initial_bytes_used;
664 /* Maximum number of bytes used by a pass. */
665 int max_pass_bytes;
666 /* Point to release obstack data from for each pass. */
667 char *gcse_obstack_bottom;
669 /* We do not construct an accurate cfg in functions which call
670 setjmp, so just punt to be safe. */
671 if (current_function_calls_setjmp)
672 return 0;
674 /* Assume that we do not need to run jump optimizations after gcse. */
675 run_jump_opt_after_gcse = 0;
677 /* For calling dump_foo fns from gdb. */
678 debug_stderr = stderr;
679 gcse_file = file;
681 /* Identify the basic block information for this function, including
682 successors and predecessors. */
683 max_gcse_regno = max_reg_num ();
685 if (file)
686 dump_flow_info (file);
688 /* Return if there's nothing to do, or it is too expensive. */
689 if (n_basic_blocks <= 1 || is_too_expensive (_("GCSE disabled")))
690 return 0;
692 gcc_obstack_init (&gcse_obstack);
693 bytes_used = 0;
695 /* We need alias. */
696 init_alias_analysis ();
697 /* Record where pseudo-registers are set. This data is kept accurate
698 during each pass. ??? We could also record hard-reg information here
699 [since it's unchanging], however it is currently done during hash table
700 computation.
702 It may be tempting to compute MEM set information here too, but MEM sets
703 will be subject to code motion one day and thus we need to compute
704 information about memory sets when we build the hash tables. */
706 alloc_reg_set_mem (max_gcse_regno);
707 compute_sets ();
709 pass = 0;
710 initial_bytes_used = bytes_used;
711 max_pass_bytes = 0;
712 gcse_obstack_bottom = gcse_alloc (1);
713 changed = 1;
714 while (changed && pass < MAX_GCSE_PASSES)
716 changed = 0;
717 if (file)
718 fprintf (file, "GCSE pass %d\n\n", pass + 1);
720 /* Initialize bytes_used to the space for the pred/succ lists,
721 and the reg_set_table data. */
722 bytes_used = initial_bytes_used;
724 /* Each pass may create new registers, so recalculate each time. */
725 max_gcse_regno = max_reg_num ();
727 alloc_gcse_mem ();
729 /* Don't allow constant propagation to modify jumps
730 during this pass. */
731 timevar_push (TV_CPROP1);
732 changed = one_cprop_pass (pass + 1, false, false);
733 timevar_pop (TV_CPROP1);
735 if (optimize_size)
736 /* Do nothing. */ ;
737 else
739 timevar_push (TV_PRE);
740 changed |= one_pre_gcse_pass (pass + 1);
741 /* We may have just created new basic blocks. Release and
742 recompute various things which are sized on the number of
743 basic blocks. */
744 if (changed)
746 free_modify_mem_tables ();
747 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
748 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
750 free_reg_set_mem ();
751 alloc_reg_set_mem (max_reg_num ());
752 compute_sets ();
753 run_jump_opt_after_gcse = 1;
754 timevar_pop (TV_PRE);
757 if (max_pass_bytes < bytes_used)
758 max_pass_bytes = bytes_used;
760 /* Free up memory, then reallocate for code hoisting. We can
761 not re-use the existing allocated memory because the tables
762 will not have info for the insns or registers created by
763 partial redundancy elimination. */
764 free_gcse_mem ();
766 /* It does not make sense to run code hoisting unless we are optimizing
767 for code size -- it rarely makes programs faster, and can make
768 them bigger if we did partial redundancy elimination (when optimizing
769 for space, we don't run the partial redundancy algorithms). */
770 if (optimize_size)
772 timevar_push (TV_HOIST);
773 max_gcse_regno = max_reg_num ();
774 alloc_gcse_mem ();
775 changed |= one_code_hoisting_pass ();
776 free_gcse_mem ();
778 if (max_pass_bytes < bytes_used)
779 max_pass_bytes = bytes_used;
780 timevar_pop (TV_HOIST);
783 if (file)
785 fprintf (file, "\n");
786 fflush (file);
789 obstack_free (&gcse_obstack, gcse_obstack_bottom);
790 pass++;
793 /* Do one last pass of copy propagation, including cprop into
794 conditional jumps. */
796 max_gcse_regno = max_reg_num ();
797 alloc_gcse_mem ();
798 /* This time, go ahead and allow cprop to alter jumps. */
799 timevar_push (TV_CPROP2);
800 one_cprop_pass (pass + 1, true, false);
801 timevar_pop (TV_CPROP2);
802 free_gcse_mem ();
804 if (file)
806 fprintf (file, "GCSE of %s: %d basic blocks, ",
807 current_function_name (), n_basic_blocks);
808 fprintf (file, "%d pass%s, %d bytes\n\n",
809 pass, pass > 1 ? "es" : "", max_pass_bytes);
812 obstack_free (&gcse_obstack, NULL);
813 free_reg_set_mem ();
815 /* We are finished with alias. */
816 end_alias_analysis ();
817 allocate_reg_info (max_reg_num (), FALSE, FALSE);
819 if (!optimize_size && flag_gcse_sm)
821 timevar_push (TV_LSM);
822 store_motion ();
823 timevar_pop (TV_LSM);
826 /* Record where pseudo-registers are set. */
827 return run_jump_opt_after_gcse;
830 /* Misc. utilities. */
832 /* Nonzero for each mode that supports (set (reg) (reg)).
833 This is trivially true for integer and floating point values.
834 It may or may not be true for condition codes. */
835 static char can_copy[(int) NUM_MACHINE_MODES];
837 /* Compute which modes support reg/reg copy operations. */
839 static void
840 compute_can_copy (void)
842 int i;
843 #ifndef AVOID_CCMODE_COPIES
844 rtx reg, insn;
845 #endif
846 memset (can_copy, 0, NUM_MACHINE_MODES);
848 start_sequence ();
849 for (i = 0; i < NUM_MACHINE_MODES; i++)
850 if (GET_MODE_CLASS (i) == MODE_CC)
852 #ifdef AVOID_CCMODE_COPIES
853 can_copy[i] = 0;
854 #else
855 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
856 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
857 if (recog (PATTERN (insn), insn, NULL) >= 0)
858 can_copy[i] = 1;
859 #endif
861 else
862 can_copy[i] = 1;
864 end_sequence ();
867 /* Returns whether the mode supports reg/reg copy operations. */
869 bool
870 can_copy_p (enum machine_mode mode)
872 static bool can_copy_init_p = false;
874 if (! can_copy_init_p)
876 compute_can_copy ();
877 can_copy_init_p = true;
880 return can_copy[mode] != 0;
883 /* Cover function to xmalloc to record bytes allocated. */
885 static void *
886 gmalloc (size_t size)
888 bytes_used += size;
889 return xmalloc (size);
892 /* Cover function to xcalloc to record bytes allocated. */
894 static void *
895 gcalloc (size_t nelem, size_t elsize)
897 bytes_used += nelem * elsize;
898 return xcalloc (nelem, elsize);
901 /* Cover function to xrealloc.
902 We don't record the additional size since we don't know it.
903 It won't affect memory usage stats much anyway. */
905 static void *
906 grealloc (void *ptr, size_t size)
908 return xrealloc (ptr, size);
911 /* Cover function to obstack_alloc. */
913 static void *
914 gcse_alloc (unsigned long size)
916 bytes_used += size;
917 return obstack_alloc (&gcse_obstack, size);
920 /* Allocate memory for the cuid mapping array,
921 and reg/memory set tracking tables.
923 This is called at the start of each pass. */
925 static void
926 alloc_gcse_mem (void)
928 int i;
929 basic_block bb;
930 rtx insn;
932 /* Find the largest UID and create a mapping from UIDs to CUIDs.
933 CUIDs are like UIDs except they increase monotonically, have no gaps,
934 and only apply to real insns.
935 (Actually, there are gaps, for insn that are not inside a basic block.
936 but we should never see those anyway, so this is OK.) */
938 max_uid = get_max_uid ();
939 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
940 i = 0;
941 FOR_EACH_BB (bb)
942 FOR_BB_INSNS (bb, insn)
944 if (INSN_P (insn))
945 uid_cuid[INSN_UID (insn)] = i++;
946 else
947 uid_cuid[INSN_UID (insn)] = i;
950 /* Create a table mapping cuids to insns. */
952 max_cuid = i;
953 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
954 i = 0;
955 FOR_EACH_BB (bb)
956 FOR_BB_INSNS (bb, insn)
957 if (INSN_P (insn))
958 CUID_INSN (i++) = insn;
960 /* Allocate vars to track sets of regs. */
961 reg_set_bitmap = BITMAP_ALLOC (NULL);
963 /* Allocate vars to track sets of regs, memory per block. */
964 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
965 /* Allocate array to keep a list of insns which modify memory in each
966 basic block. */
967 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
968 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
969 modify_mem_list_set = BITMAP_ALLOC (NULL);
970 blocks_with_calls = BITMAP_ALLOC (NULL);
973 /* Free memory allocated by alloc_gcse_mem. */
975 static void
976 free_gcse_mem (void)
978 free (uid_cuid);
979 free (cuid_insn);
981 BITMAP_FREE (reg_set_bitmap);
983 sbitmap_vector_free (reg_set_in_block);
984 free_modify_mem_tables ();
985 BITMAP_FREE (modify_mem_list_set);
986 BITMAP_FREE (blocks_with_calls);
989 /* Compute the local properties of each recorded expression.
991 Local properties are those that are defined by the block, irrespective of
992 other blocks.
994 An expression is transparent in a block if its operands are not modified
995 in the block.
997 An expression is computed (locally available) in a block if it is computed
998 at least once and expression would contain the same value if the
999 computation was moved to the end of the block.
1001 An expression is locally anticipatable in a block if it is computed at
1002 least once and expression would contain the same value if the computation
1003 was moved to the beginning of the block.
1005 We call this routine for cprop, pre and code hoisting. They all compute
1006 basically the same information and thus can easily share this code.
1008 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1009 properties. If NULL, then it is not necessary to compute or record that
1010 particular property.
1012 TABLE controls which hash table to look at. If it is set hash table,
1013 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1014 ABSALTERED. */
1016 static void
1017 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1018 struct hash_table *table)
1020 unsigned int i;
1022 /* Initialize any bitmaps that were passed in. */
1023 if (transp)
1025 if (table->set_p)
1026 sbitmap_vector_zero (transp, last_basic_block);
1027 else
1028 sbitmap_vector_ones (transp, last_basic_block);
1031 if (comp)
1032 sbitmap_vector_zero (comp, last_basic_block);
1033 if (antloc)
1034 sbitmap_vector_zero (antloc, last_basic_block);
1036 for (i = 0; i < table->size; i++)
1038 struct expr *expr;
1040 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1042 int indx = expr->bitmap_index;
1043 struct occr *occr;
1045 /* The expression is transparent in this block if it is not killed.
1046 We start by assuming all are transparent [none are killed], and
1047 then reset the bits for those that are. */
1048 if (transp)
1049 compute_transp (expr->expr, indx, transp, table->set_p);
1051 /* The occurrences recorded in antic_occr are exactly those that
1052 we want to set to nonzero in ANTLOC. */
1053 if (antloc)
1054 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1056 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1058 /* While we're scanning the table, this is a good place to
1059 initialize this. */
1060 occr->deleted_p = 0;
1063 /* The occurrences recorded in avail_occr are exactly those that
1064 we want to set to nonzero in COMP. */
1065 if (comp)
1066 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1068 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1070 /* While we're scanning the table, this is a good place to
1071 initialize this. */
1072 occr->copied_p = 0;
1075 /* While we're scanning the table, this is a good place to
1076 initialize this. */
1077 expr->reaching_reg = 0;
1082 /* Register set information.
1084 `reg_set_table' records where each register is set or otherwise
1085 modified. */
1087 static struct obstack reg_set_obstack;
1089 static void
1090 alloc_reg_set_mem (int n_regs)
1092 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1093 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1095 gcc_obstack_init (&reg_set_obstack);
1098 static void
1099 free_reg_set_mem (void)
1101 free (reg_set_table);
1102 obstack_free (&reg_set_obstack, NULL);
1105 /* Record REGNO in the reg_set table. */
1107 static void
1108 record_one_set (int regno, rtx insn)
1110 /* Allocate a new reg_set element and link it onto the list. */
1111 struct reg_set *new_reg_info;
1113 /* If the table isn't big enough, enlarge it. */
1114 if (regno >= reg_set_table_size)
1116 int new_size = regno + REG_SET_TABLE_SLOP;
1118 reg_set_table = grealloc (reg_set_table,
1119 new_size * sizeof (struct reg_set *));
1120 memset (reg_set_table + reg_set_table_size, 0,
1121 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1122 reg_set_table_size = new_size;
1125 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1126 bytes_used += sizeof (struct reg_set);
1127 new_reg_info->bb_index = BLOCK_NUM (insn);
1128 new_reg_info->next = reg_set_table[regno];
1129 reg_set_table[regno] = new_reg_info;
1132 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1133 an insn. The DATA is really the instruction in which the SET is
1134 occurring. */
1136 static void
1137 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1139 rtx record_set_insn = (rtx) data;
1141 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1142 record_one_set (REGNO (dest), record_set_insn);
1145 /* Scan the function and record each set of each pseudo-register.
1147 This is called once, at the start of the gcse pass. See the comments for
1148 `reg_set_table' for further documentation. */
1150 static void
1151 compute_sets (void)
1153 basic_block bb;
1154 rtx insn;
1156 FOR_EACH_BB (bb)
1157 FOR_BB_INSNS (bb, insn)
1158 if (INSN_P (insn))
1159 note_stores (PATTERN (insn), record_set_info, insn);
1162 /* Hash table support. */
1164 struct reg_avail_info
1166 basic_block last_bb;
1167 int first_set;
1168 int last_set;
1171 static struct reg_avail_info *reg_avail_info;
1172 static basic_block current_bb;
1175 /* See whether X, the source of a set, is something we want to consider for
1176 GCSE. */
1178 static int
1179 want_to_gcse_p (rtx x)
1181 switch (GET_CODE (x))
1183 case REG:
1184 case SUBREG:
1185 case CONST_INT:
1186 case CONST_DOUBLE:
1187 case CONST_VECTOR:
1188 case CALL:
1189 return 0;
1191 default:
1192 return can_assign_to_reg_p (x);
1196 /* Used internally by can_assign_to_reg_p. */
1198 static GTY(()) rtx test_insn;
1200 /* Return true if we can assign X to a pseudo register. */
1202 static bool
1203 can_assign_to_reg_p (rtx x)
1205 int num_clobbers = 0;
1206 int icode;
1208 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1209 if (general_operand (x, GET_MODE (x)))
1210 return 1;
1211 else if (GET_MODE (x) == VOIDmode)
1212 return 0;
1214 /* Otherwise, check if we can make a valid insn from it. First initialize
1215 our test insn if we haven't already. */
1216 if (test_insn == 0)
1218 test_insn
1219 = make_insn_raw (gen_rtx_SET (VOIDmode,
1220 gen_rtx_REG (word_mode,
1221 FIRST_PSEUDO_REGISTER * 2),
1222 const0_rtx));
1223 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1226 /* Now make an insn like the one we would make when GCSE'ing and see if
1227 valid. */
1228 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1229 SET_SRC (PATTERN (test_insn)) = x;
1230 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1231 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1234 /* Return nonzero if the operands of expression X are unchanged from the
1235 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1236 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1238 static int
1239 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1241 int i, j;
1242 enum rtx_code code;
1243 const char *fmt;
1245 if (x == 0)
1246 return 1;
1248 code = GET_CODE (x);
1249 switch (code)
1251 case REG:
1253 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1255 if (info->last_bb != current_bb)
1256 return 1;
1257 if (avail_p)
1258 return info->last_set < INSN_CUID (insn);
1259 else
1260 return info->first_set >= INSN_CUID (insn);
1263 case MEM:
1264 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1265 x, avail_p))
1266 return 0;
1267 else
1268 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1270 case PRE_DEC:
1271 case PRE_INC:
1272 case POST_DEC:
1273 case POST_INC:
1274 case PRE_MODIFY:
1275 case POST_MODIFY:
1276 return 0;
1278 case PC:
1279 case CC0: /*FIXME*/
1280 case CONST:
1281 case CONST_INT:
1282 case CONST_DOUBLE:
1283 case CONST_VECTOR:
1284 case SYMBOL_REF:
1285 case LABEL_REF:
1286 case ADDR_VEC:
1287 case ADDR_DIFF_VEC:
1288 return 1;
1290 default:
1291 break;
1294 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1296 if (fmt[i] == 'e')
1298 /* If we are about to do the last recursive call needed at this
1299 level, change it into iteration. This function is called enough
1300 to be worth it. */
1301 if (i == 0)
1302 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1304 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1305 return 0;
1307 else if (fmt[i] == 'E')
1308 for (j = 0; j < XVECLEN (x, i); j++)
1309 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1310 return 0;
1313 return 1;
1316 /* Used for communication between mems_conflict_for_gcse_p and
1317 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1318 conflict between two memory references. */
1319 static int gcse_mems_conflict_p;
1321 /* Used for communication between mems_conflict_for_gcse_p and
1322 load_killed_in_block_p. A memory reference for a load instruction,
1323 mems_conflict_for_gcse_p will see if a memory store conflicts with
1324 this memory load. */
1325 static rtx gcse_mem_operand;
1327 /* DEST is the output of an instruction. If it is a memory reference, and
1328 possibly conflicts with the load found in gcse_mem_operand, then set
1329 gcse_mems_conflict_p to a nonzero value. */
1331 static void
1332 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1333 void *data ATTRIBUTE_UNUSED)
1335 while (GET_CODE (dest) == SUBREG
1336 || GET_CODE (dest) == ZERO_EXTRACT
1337 || GET_CODE (dest) == STRICT_LOW_PART)
1338 dest = XEXP (dest, 0);
1340 /* If DEST is not a MEM, then it will not conflict with the load. Note
1341 that function calls are assumed to clobber memory, but are handled
1342 elsewhere. */
1343 if (! MEM_P (dest))
1344 return;
1346 /* If we are setting a MEM in our list of specially recognized MEMs,
1347 don't mark as killed this time. */
1349 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1351 if (!find_rtx_in_ldst (dest))
1352 gcse_mems_conflict_p = 1;
1353 return;
1356 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1357 rtx_addr_varies_p))
1358 gcse_mems_conflict_p = 1;
1361 /* Return nonzero if the expression in X (a memory reference) is killed
1362 in block BB before or after the insn with the CUID in UID_LIMIT.
1363 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1364 before UID_LIMIT.
1366 To check the entire block, set UID_LIMIT to max_uid + 1 and
1367 AVAIL_P to 0. */
1369 static int
1370 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1372 rtx list_entry = modify_mem_list[bb->index];
1374 /* If this is a readonly then we aren't going to be changing it. */
1375 if (MEM_READONLY_P (x))
1376 return 0;
1378 while (list_entry)
1380 rtx setter;
1381 /* Ignore entries in the list that do not apply. */
1382 if ((avail_p
1383 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1384 || (! avail_p
1385 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1387 list_entry = XEXP (list_entry, 1);
1388 continue;
1391 setter = XEXP (list_entry, 0);
1393 /* If SETTER is a call everything is clobbered. Note that calls
1394 to pure functions are never put on the list, so we need not
1395 worry about them. */
1396 if (CALL_P (setter))
1397 return 1;
1399 /* SETTER must be an INSN of some kind that sets memory. Call
1400 note_stores to examine each hunk of memory that is modified.
1402 The note_stores interface is pretty limited, so we have to
1403 communicate via global variables. Yuk. */
1404 gcse_mem_operand = x;
1405 gcse_mems_conflict_p = 0;
1406 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1407 if (gcse_mems_conflict_p)
1408 return 1;
1409 list_entry = XEXP (list_entry, 1);
1411 return 0;
1414 /* Return nonzero if the operands of expression X are unchanged from
1415 the start of INSN's basic block up to but not including INSN. */
1417 static int
1418 oprs_anticipatable_p (rtx x, rtx insn)
1420 return oprs_unchanged_p (x, insn, 0);
1423 /* Return nonzero if the operands of expression X are unchanged from
1424 INSN to the end of INSN's basic block. */
1426 static int
1427 oprs_available_p (rtx x, rtx insn)
1429 return oprs_unchanged_p (x, insn, 1);
1432 /* Hash expression X.
1434 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1435 indicating if a volatile operand is found or if the expression contains
1436 something we don't want to insert in the table. HASH_TABLE_SIZE is
1437 the current size of the hash table to be probed. */
1439 static unsigned int
1440 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1441 int hash_table_size)
1443 unsigned int hash;
1445 *do_not_record_p = 0;
1447 hash = hash_rtx (x, mode, do_not_record_p,
1448 NULL, /*have_reg_qty=*/false);
1449 return hash % hash_table_size;
1452 /* Hash a set of register REGNO.
1454 Sets are hashed on the register that is set. This simplifies the PRE copy
1455 propagation code.
1457 ??? May need to make things more elaborate. Later, as necessary. */
1459 static unsigned int
1460 hash_set (int regno, int hash_table_size)
1462 unsigned int hash;
1464 hash = regno;
1465 return hash % hash_table_size;
1468 /* Return nonzero if exp1 is equivalent to exp2. */
1470 static int
1471 expr_equiv_p (rtx x, rtx y)
1473 return exp_equiv_p (x, y, 0, true);
1476 /* Insert expression X in INSN in the hash TABLE.
1477 If it is already present, record it as the last occurrence in INSN's
1478 basic block.
1480 MODE is the mode of the value X is being stored into.
1481 It is only used if X is a CONST_INT.
1483 ANTIC_P is nonzero if X is an anticipatable expression.
1484 AVAIL_P is nonzero if X is an available expression. */
1486 static void
1487 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1488 int avail_p, struct hash_table *table)
1490 int found, do_not_record_p;
1491 unsigned int hash;
1492 struct expr *cur_expr, *last_expr = NULL;
1493 struct occr *antic_occr, *avail_occr;
1495 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1497 /* Do not insert expression in table if it contains volatile operands,
1498 or if hash_expr determines the expression is something we don't want
1499 to or can't handle. */
1500 if (do_not_record_p)
1501 return;
1503 cur_expr = table->table[hash];
1504 found = 0;
1506 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1508 /* If the expression isn't found, save a pointer to the end of
1509 the list. */
1510 last_expr = cur_expr;
1511 cur_expr = cur_expr->next_same_hash;
1514 if (! found)
1516 cur_expr = gcse_alloc (sizeof (struct expr));
1517 bytes_used += sizeof (struct expr);
1518 if (table->table[hash] == NULL)
1519 /* This is the first pattern that hashed to this index. */
1520 table->table[hash] = cur_expr;
1521 else
1522 /* Add EXPR to end of this hash chain. */
1523 last_expr->next_same_hash = cur_expr;
1525 /* Set the fields of the expr element. */
1526 cur_expr->expr = x;
1527 cur_expr->bitmap_index = table->n_elems++;
1528 cur_expr->next_same_hash = NULL;
1529 cur_expr->antic_occr = NULL;
1530 cur_expr->avail_occr = NULL;
1533 /* Now record the occurrence(s). */
1534 if (antic_p)
1536 antic_occr = cur_expr->antic_occr;
1538 if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1539 antic_occr = NULL;
1541 if (antic_occr)
1542 /* Found another instance of the expression in the same basic block.
1543 Prefer the currently recorded one. We want the first one in the
1544 block and the block is scanned from start to end. */
1545 ; /* nothing to do */
1546 else
1548 /* First occurrence of this expression in this basic block. */
1549 antic_occr = gcse_alloc (sizeof (struct occr));
1550 bytes_used += sizeof (struct occr);
1551 antic_occr->insn = insn;
1552 antic_occr->next = cur_expr->antic_occr;
1553 antic_occr->deleted_p = 0;
1554 cur_expr->antic_occr = antic_occr;
1558 if (avail_p)
1560 avail_occr = cur_expr->avail_occr;
1562 if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
1564 /* Found another instance of the expression in the same basic block.
1565 Prefer this occurrence to the currently recorded one. We want
1566 the last one in the block and the block is scanned from start
1567 to end. */
1568 avail_occr->insn = insn;
1570 else
1572 /* First occurrence of this expression in this basic block. */
1573 avail_occr = gcse_alloc (sizeof (struct occr));
1574 bytes_used += sizeof (struct occr);
1575 avail_occr->insn = insn;
1576 avail_occr->next = cur_expr->avail_occr;
1577 avail_occr->deleted_p = 0;
1578 cur_expr->avail_occr = avail_occr;
1583 /* Insert pattern X in INSN in the hash table.
1584 X is a SET of a reg to either another reg or a constant.
1585 If it is already present, record it as the last occurrence in INSN's
1586 basic block. */
1588 static void
1589 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1591 int found;
1592 unsigned int hash;
1593 struct expr *cur_expr, *last_expr = NULL;
1594 struct occr *cur_occr;
1596 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1598 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1600 cur_expr = table->table[hash];
1601 found = 0;
1603 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1605 /* If the expression isn't found, save a pointer to the end of
1606 the list. */
1607 last_expr = cur_expr;
1608 cur_expr = cur_expr->next_same_hash;
1611 if (! found)
1613 cur_expr = gcse_alloc (sizeof (struct expr));
1614 bytes_used += sizeof (struct expr);
1615 if (table->table[hash] == NULL)
1616 /* This is the first pattern that hashed to this index. */
1617 table->table[hash] = cur_expr;
1618 else
1619 /* Add EXPR to end of this hash chain. */
1620 last_expr->next_same_hash = cur_expr;
1622 /* Set the fields of the expr element.
1623 We must copy X because it can be modified when copy propagation is
1624 performed on its operands. */
1625 cur_expr->expr = copy_rtx (x);
1626 cur_expr->bitmap_index = table->n_elems++;
1627 cur_expr->next_same_hash = NULL;
1628 cur_expr->antic_occr = NULL;
1629 cur_expr->avail_occr = NULL;
1632 /* Now record the occurrence. */
1633 cur_occr = cur_expr->avail_occr;
1635 if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
1637 /* Found another instance of the expression in the same basic block.
1638 Prefer this occurrence to the currently recorded one. We want
1639 the last one in the block and the block is scanned from start
1640 to end. */
1641 cur_occr->insn = insn;
1643 else
1645 /* First occurrence of this expression in this basic block. */
1646 cur_occr = gcse_alloc (sizeof (struct occr));
1647 bytes_used += sizeof (struct occr);
1649 cur_occr->insn = insn;
1650 cur_occr->next = cur_expr->avail_occr;
1651 cur_occr->deleted_p = 0;
1652 cur_expr->avail_occr = cur_occr;
1656 /* Determine whether the rtx X should be treated as a constant for
1657 the purposes of GCSE's constant propagation. */
1659 static bool
1660 gcse_constant_p (rtx x)
1662 /* Consider a COMPARE of two integers constant. */
1663 if (GET_CODE (x) == COMPARE
1664 && GET_CODE (XEXP (x, 0)) == CONST_INT
1665 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1666 return true;
1668 /* Consider a COMPARE of the same registers is a constant
1669 if they are not floating point registers. */
1670 if (GET_CODE(x) == COMPARE
1671 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1672 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1673 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1674 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1675 return true;
1677 return CONSTANT_P (x);
1680 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1681 expression one). */
1683 static void
1684 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1686 rtx src = SET_SRC (pat);
1687 rtx dest = SET_DEST (pat);
1688 rtx note;
1690 if (GET_CODE (src) == CALL)
1691 hash_scan_call (src, insn, table);
1693 else if (REG_P (dest))
1695 unsigned int regno = REGNO (dest);
1696 rtx tmp;
1698 /* If this is a single set and we are doing constant propagation,
1699 see if a REG_NOTE shows this equivalent to a constant. */
1700 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
1701 && gcse_constant_p (XEXP (note, 0)))
1702 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1704 /* Only record sets of pseudo-regs in the hash table. */
1705 if (! table->set_p
1706 && regno >= FIRST_PSEUDO_REGISTER
1707 /* Don't GCSE something if we can't do a reg/reg copy. */
1708 && can_copy_p (GET_MODE (dest))
1709 /* GCSE commonly inserts instruction after the insn. We can't
1710 do that easily for EH_REGION notes so disable GCSE on these
1711 for now. */
1712 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1713 /* Is SET_SRC something we want to gcse? */
1714 && want_to_gcse_p (src)
1715 /* Don't CSE a nop. */
1716 && ! set_noop_p (pat)
1717 /* Don't GCSE if it has attached REG_EQUIV note.
1718 At this point this only function parameters should have
1719 REG_EQUIV notes and if the argument slot is used somewhere
1720 explicitly, it means address of parameter has been taken,
1721 so we should not extend the lifetime of the pseudo. */
1722 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1723 || ! MEM_P (XEXP (note, 0))))
1725 /* An expression is not anticipatable if its operands are
1726 modified before this insn or if this is not the only SET in
1727 this insn. */
1728 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1729 /* An expression is not available if its operands are
1730 subsequently modified, including this insn. It's also not
1731 available if this is a branch, because we can't insert
1732 a set after the branch. */
1733 int avail_p = (oprs_available_p (src, insn)
1734 && ! JUMP_P (insn));
1736 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1739 /* Record sets for constant/copy propagation. */
1740 else if (table->set_p
1741 && regno >= FIRST_PSEUDO_REGISTER
1742 && ((REG_P (src)
1743 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1744 && can_copy_p (GET_MODE (dest))
1745 && REGNO (src) != regno)
1746 || gcse_constant_p (src))
1747 /* A copy is not available if its src or dest is subsequently
1748 modified. Here we want to search from INSN+1 on, but
1749 oprs_available_p searches from INSN on. */
1750 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1751 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1752 && oprs_available_p (pat, tmp))))
1753 insert_set_in_table (pat, insn, table);
1755 /* In case of store we want to consider the memory value as available in
1756 the REG stored in that memory. This makes it possible to remove
1757 redundant loads from due to stores to the same location. */
1758 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1760 unsigned int regno = REGNO (src);
1762 /* Do not do this for constant/copy propagation. */
1763 if (! table->set_p
1764 /* Only record sets of pseudo-regs in the hash table. */
1765 && regno >= FIRST_PSEUDO_REGISTER
1766 /* Don't GCSE something if we can't do a reg/reg copy. */
1767 && can_copy_p (GET_MODE (src))
1768 /* GCSE commonly inserts instruction after the insn. We can't
1769 do that easily for EH_REGION notes so disable GCSE on these
1770 for now. */
1771 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1772 /* Is SET_DEST something we want to gcse? */
1773 && want_to_gcse_p (dest)
1774 /* Don't CSE a nop. */
1775 && ! set_noop_p (pat)
1776 /* Don't GCSE if it has attached REG_EQUIV note.
1777 At this point this only function parameters should have
1778 REG_EQUIV notes and if the argument slot is used somewhere
1779 explicitly, it means address of parameter has been taken,
1780 so we should not extend the lifetime of the pseudo. */
1781 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1782 || ! MEM_P (XEXP (note, 0))))
1784 /* Stores are never anticipatable. */
1785 int antic_p = 0;
1786 /* An expression is not available if its operands are
1787 subsequently modified, including this insn. It's also not
1788 available if this is a branch, because we can't insert
1789 a set after the branch. */
1790 int avail_p = oprs_available_p (dest, insn)
1791 && ! JUMP_P (insn);
1793 /* Record the memory expression (DEST) in the hash table. */
1794 insert_expr_in_table (dest, GET_MODE (dest), insn,
1795 antic_p, avail_p, table);
1800 static void
1801 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1802 struct hash_table *table ATTRIBUTE_UNUSED)
1804 /* Currently nothing to do. */
1807 static void
1808 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1809 struct hash_table *table ATTRIBUTE_UNUSED)
1811 /* Currently nothing to do. */
1814 /* Process INSN and add hash table entries as appropriate.
1816 Only available expressions that set a single pseudo-reg are recorded.
1818 Single sets in a PARALLEL could be handled, but it's an extra complication
1819 that isn't dealt with right now. The trick is handling the CLOBBERs that
1820 are also in the PARALLEL. Later.
1822 If SET_P is nonzero, this is for the assignment hash table,
1823 otherwise it is for the expression hash table.
1824 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1825 not record any expressions. */
1827 static void
1828 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1830 rtx pat = PATTERN (insn);
1831 int i;
1833 if (in_libcall_block)
1834 return;
1836 /* Pick out the sets of INSN and for other forms of instructions record
1837 what's been modified. */
1839 if (GET_CODE (pat) == SET)
1840 hash_scan_set (pat, insn, table);
1841 else if (GET_CODE (pat) == PARALLEL)
1842 for (i = 0; i < XVECLEN (pat, 0); i++)
1844 rtx x = XVECEXP (pat, 0, i);
1846 if (GET_CODE (x) == SET)
1847 hash_scan_set (x, insn, table);
1848 else if (GET_CODE (x) == CLOBBER)
1849 hash_scan_clobber (x, insn, table);
1850 else if (GET_CODE (x) == CALL)
1851 hash_scan_call (x, insn, table);
1854 else if (GET_CODE (pat) == CLOBBER)
1855 hash_scan_clobber (pat, insn, table);
1856 else if (GET_CODE (pat) == CALL)
1857 hash_scan_call (pat, insn, table);
1860 static void
1861 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1863 int i;
1864 /* Flattened out table, so it's printed in proper order. */
1865 struct expr **flat_table;
1866 unsigned int *hash_val;
1867 struct expr *expr;
1869 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1870 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1872 for (i = 0; i < (int) table->size; i++)
1873 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1875 flat_table[expr->bitmap_index] = expr;
1876 hash_val[expr->bitmap_index] = i;
1879 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1880 name, table->size, table->n_elems);
1882 for (i = 0; i < (int) table->n_elems; i++)
1883 if (flat_table[i] != 0)
1885 expr = flat_table[i];
1886 fprintf (file, "Index %d (hash value %d)\n ",
1887 expr->bitmap_index, hash_val[i]);
1888 print_rtl (file, expr->expr);
1889 fprintf (file, "\n");
1892 fprintf (file, "\n");
1894 free (flat_table);
1895 free (hash_val);
1898 /* Record register first/last/block set information for REGNO in INSN.
1900 first_set records the first place in the block where the register
1901 is set and is used to compute "anticipatability".
1903 last_set records the last place in the block where the register
1904 is set and is used to compute "availability".
1906 last_bb records the block for which first_set and last_set are
1907 valid, as a quick test to invalidate them.
1909 reg_set_in_block records whether the register is set in the block
1910 and is used to compute "transparency". */
1912 static void
1913 record_last_reg_set_info (rtx insn, int regno)
1915 struct reg_avail_info *info = &reg_avail_info[regno];
1916 int cuid = INSN_CUID (insn);
1918 info->last_set = cuid;
1919 if (info->last_bb != current_bb)
1921 info->last_bb = current_bb;
1922 info->first_set = cuid;
1923 SET_BIT (reg_set_in_block[current_bb->index], regno);
1928 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1929 Note we store a pair of elements in the list, so they have to be
1930 taken off pairwise. */
1932 static void
1933 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1934 void * v_insn)
1936 rtx dest_addr, insn;
1937 int bb;
1939 while (GET_CODE (dest) == SUBREG
1940 || GET_CODE (dest) == ZERO_EXTRACT
1941 || GET_CODE (dest) == STRICT_LOW_PART)
1942 dest = XEXP (dest, 0);
1944 /* If DEST is not a MEM, then it will not conflict with a load. Note
1945 that function calls are assumed to clobber memory, but are handled
1946 elsewhere. */
1948 if (! MEM_P (dest))
1949 return;
1951 dest_addr = get_addr (XEXP (dest, 0));
1952 dest_addr = canon_rtx (dest_addr);
1953 insn = (rtx) v_insn;
1954 bb = BLOCK_NUM (insn);
1956 canon_modify_mem_list[bb] =
1957 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1958 canon_modify_mem_list[bb] =
1959 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1962 /* Record memory modification information for INSN. We do not actually care
1963 about the memory location(s) that are set, or even how they are set (consider
1964 a CALL_INSN). We merely need to record which insns modify memory. */
1966 static void
1967 record_last_mem_set_info (rtx insn)
1969 int bb = BLOCK_NUM (insn);
1971 /* load_killed_in_block_p will handle the case of calls clobbering
1972 everything. */
1973 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1974 bitmap_set_bit (modify_mem_list_set, bb);
1976 if (CALL_P (insn))
1978 /* Note that traversals of this loop (other than for free-ing)
1979 will break after encountering a CALL_INSN. So, there's no
1980 need to insert a pair of items, as canon_list_insert does. */
1981 canon_modify_mem_list[bb] =
1982 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1983 bitmap_set_bit (blocks_with_calls, bb);
1985 else
1986 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1989 /* Called from compute_hash_table via note_stores to handle one
1990 SET or CLOBBER in an insn. DATA is really the instruction in which
1991 the SET is taking place. */
1993 static void
1994 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1996 rtx last_set_insn = (rtx) data;
1998 if (GET_CODE (dest) == SUBREG)
1999 dest = SUBREG_REG (dest);
2001 if (REG_P (dest))
2002 record_last_reg_set_info (last_set_insn, REGNO (dest));
2003 else if (MEM_P (dest)
2004 /* Ignore pushes, they clobber nothing. */
2005 && ! push_operand (dest, GET_MODE (dest)))
2006 record_last_mem_set_info (last_set_insn);
2009 /* Top level function to create an expression or assignment hash table.
2011 Expression entries are placed in the hash table if
2012 - they are of the form (set (pseudo-reg) src),
2013 - src is something we want to perform GCSE on,
2014 - none of the operands are subsequently modified in the block
2016 Assignment entries are placed in the hash table if
2017 - they are of the form (set (pseudo-reg) src),
2018 - src is something we want to perform const/copy propagation on,
2019 - none of the operands or target are subsequently modified in the block
2021 Currently src must be a pseudo-reg or a const_int.
2023 TABLE is the table computed. */
2025 static void
2026 compute_hash_table_work (struct hash_table *table)
2028 unsigned int i;
2030 /* While we compute the hash table we also compute a bit array of which
2031 registers are set in which blocks.
2032 ??? This isn't needed during const/copy propagation, but it's cheap to
2033 compute. Later. */
2034 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2036 /* re-Cache any INSN_LIST nodes we have allocated. */
2037 clear_modify_mem_tables ();
2038 /* Some working arrays used to track first and last set in each block. */
2039 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2041 for (i = 0; i < max_gcse_regno; ++i)
2042 reg_avail_info[i].last_bb = NULL;
2044 FOR_EACH_BB (current_bb)
2046 rtx insn;
2047 unsigned int regno;
2048 int in_libcall_block;
2050 /* First pass over the instructions records information used to
2051 determine when registers and memory are first and last set.
2052 ??? hard-reg reg_set_in_block computation
2053 could be moved to compute_sets since they currently don't change. */
2055 FOR_BB_INSNS (current_bb, insn)
2057 if (! INSN_P (insn))
2058 continue;
2060 if (CALL_P (insn))
2062 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2063 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2064 record_last_reg_set_info (insn, regno);
2066 mark_call (insn);
2069 note_stores (PATTERN (insn), record_last_set_info, insn);
2072 /* Insert implicit sets in the hash table. */
2073 if (table->set_p
2074 && implicit_sets[current_bb->index] != NULL_RTX)
2075 hash_scan_set (implicit_sets[current_bb->index],
2076 BB_HEAD (current_bb), table);
2078 /* The next pass builds the hash table. */
2079 in_libcall_block = 0;
2080 FOR_BB_INSNS (current_bb, insn)
2081 if (INSN_P (insn))
2083 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2084 in_libcall_block = 1;
2085 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2086 in_libcall_block = 0;
2087 hash_scan_insn (insn, table, in_libcall_block);
2088 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2089 in_libcall_block = 0;
2093 free (reg_avail_info);
2094 reg_avail_info = NULL;
2097 /* Allocate space for the set/expr hash TABLE.
2098 N_INSNS is the number of instructions in the function.
2099 It is used to determine the number of buckets to use.
2100 SET_P determines whether set or expression table will
2101 be created. */
2103 static void
2104 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2106 int n;
2108 table->size = n_insns / 4;
2109 if (table->size < 11)
2110 table->size = 11;
2112 /* Attempt to maintain efficient use of hash table.
2113 Making it an odd number is simplest for now.
2114 ??? Later take some measurements. */
2115 table->size |= 1;
2116 n = table->size * sizeof (struct expr *);
2117 table->table = gmalloc (n);
2118 table->set_p = set_p;
2121 /* Free things allocated by alloc_hash_table. */
2123 static void
2124 free_hash_table (struct hash_table *table)
2126 free (table->table);
2129 /* Compute the hash TABLE for doing copy/const propagation or
2130 expression hash table. */
2132 static void
2133 compute_hash_table (struct hash_table *table)
2135 /* Initialize count of number of entries in hash table. */
2136 table->n_elems = 0;
2137 memset (table->table, 0, table->size * sizeof (struct expr *));
2139 compute_hash_table_work (table);
2142 /* Expression tracking support. */
2144 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2145 table entry, or NULL if not found. */
2147 static struct expr *
2148 lookup_set (unsigned int regno, struct hash_table *table)
2150 unsigned int hash = hash_set (regno, table->size);
2151 struct expr *expr;
2153 expr = table->table[hash];
2155 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2156 expr = expr->next_same_hash;
2158 return expr;
2161 /* Return the next entry for REGNO in list EXPR. */
2163 static struct expr *
2164 next_set (unsigned int regno, struct expr *expr)
2167 expr = expr->next_same_hash;
2168 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2170 return expr;
2173 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2174 types may be mixed. */
2176 static void
2177 free_insn_expr_list_list (rtx *listp)
2179 rtx list, next;
2181 for (list = *listp; list ; list = next)
2183 next = XEXP (list, 1);
2184 if (GET_CODE (list) == EXPR_LIST)
2185 free_EXPR_LIST_node (list);
2186 else
2187 free_INSN_LIST_node (list);
2190 *listp = NULL;
2193 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2194 static void
2195 clear_modify_mem_tables (void)
2197 unsigned i;
2198 bitmap_iterator bi;
2200 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2202 free_INSN_LIST_list (modify_mem_list + i);
2203 free_insn_expr_list_list (canon_modify_mem_list + i);
2205 bitmap_clear (modify_mem_list_set);
2206 bitmap_clear (blocks_with_calls);
2209 /* Release memory used by modify_mem_list_set. */
2211 static void
2212 free_modify_mem_tables (void)
2214 clear_modify_mem_tables ();
2215 free (modify_mem_list);
2216 free (canon_modify_mem_list);
2217 modify_mem_list = 0;
2218 canon_modify_mem_list = 0;
2221 /* Reset tables used to keep track of what's still available [since the
2222 start of the block]. */
2224 static void
2225 reset_opr_set_tables (void)
2227 /* Maintain a bitmap of which regs have been set since beginning of
2228 the block. */
2229 CLEAR_REG_SET (reg_set_bitmap);
2231 /* Also keep a record of the last instruction to modify memory.
2232 For now this is very trivial, we only record whether any memory
2233 location has been modified. */
2234 clear_modify_mem_tables ();
2237 /* Return nonzero if the operands of X are not set before INSN in
2238 INSN's basic block. */
2240 static int
2241 oprs_not_set_p (rtx x, rtx insn)
2243 int i, j;
2244 enum rtx_code code;
2245 const char *fmt;
2247 if (x == 0)
2248 return 1;
2250 code = GET_CODE (x);
2251 switch (code)
2253 case PC:
2254 case CC0:
2255 case CONST:
2256 case CONST_INT:
2257 case CONST_DOUBLE:
2258 case CONST_VECTOR:
2259 case SYMBOL_REF:
2260 case LABEL_REF:
2261 case ADDR_VEC:
2262 case ADDR_DIFF_VEC:
2263 return 1;
2265 case MEM:
2266 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2267 INSN_CUID (insn), x, 0))
2268 return 0;
2269 else
2270 return oprs_not_set_p (XEXP (x, 0), insn);
2272 case REG:
2273 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2275 default:
2276 break;
2279 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2281 if (fmt[i] == 'e')
2283 /* If we are about to do the last recursive call
2284 needed at this level, change it into iteration.
2285 This function is called enough to be worth it. */
2286 if (i == 0)
2287 return oprs_not_set_p (XEXP (x, i), insn);
2289 if (! oprs_not_set_p (XEXP (x, i), insn))
2290 return 0;
2292 else if (fmt[i] == 'E')
2293 for (j = 0; j < XVECLEN (x, i); j++)
2294 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2295 return 0;
2298 return 1;
2301 /* Mark things set by a CALL. */
2303 static void
2304 mark_call (rtx insn)
2306 if (! CONST_OR_PURE_CALL_P (insn))
2307 record_last_mem_set_info (insn);
2310 /* Mark things set by a SET. */
2312 static void
2313 mark_set (rtx pat, rtx insn)
2315 rtx dest = SET_DEST (pat);
2317 while (GET_CODE (dest) == SUBREG
2318 || GET_CODE (dest) == ZERO_EXTRACT
2319 || GET_CODE (dest) == STRICT_LOW_PART)
2320 dest = XEXP (dest, 0);
2322 if (REG_P (dest))
2323 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2324 else if (MEM_P (dest))
2325 record_last_mem_set_info (insn);
2327 if (GET_CODE (SET_SRC (pat)) == CALL)
2328 mark_call (insn);
2331 /* Record things set by a CLOBBER. */
2333 static void
2334 mark_clobber (rtx pat, rtx insn)
2336 rtx clob = XEXP (pat, 0);
2338 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2339 clob = XEXP (clob, 0);
2341 if (REG_P (clob))
2342 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2343 else
2344 record_last_mem_set_info (insn);
2347 /* Record things set by INSN.
2348 This data is used by oprs_not_set_p. */
2350 static void
2351 mark_oprs_set (rtx insn)
2353 rtx pat = PATTERN (insn);
2354 int i;
2356 if (GET_CODE (pat) == SET)
2357 mark_set (pat, insn);
2358 else if (GET_CODE (pat) == PARALLEL)
2359 for (i = 0; i < XVECLEN (pat, 0); i++)
2361 rtx x = XVECEXP (pat, 0, i);
2363 if (GET_CODE (x) == SET)
2364 mark_set (x, insn);
2365 else if (GET_CODE (x) == CLOBBER)
2366 mark_clobber (x, insn);
2367 else if (GET_CODE (x) == CALL)
2368 mark_call (insn);
2371 else if (GET_CODE (pat) == CLOBBER)
2372 mark_clobber (pat, insn);
2373 else if (GET_CODE (pat) == CALL)
2374 mark_call (insn);
2378 /* Compute copy/constant propagation working variables. */
2380 /* Local properties of assignments. */
2381 static sbitmap *cprop_pavloc;
2382 static sbitmap *cprop_absaltered;
2384 /* Global properties of assignments (computed from the local properties). */
2385 static sbitmap *cprop_avin;
2386 static sbitmap *cprop_avout;
2388 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2389 basic blocks. N_SETS is the number of sets. */
2391 static void
2392 alloc_cprop_mem (int n_blocks, int n_sets)
2394 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2395 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2397 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2398 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2401 /* Free vars used by copy/const propagation. */
2403 static void
2404 free_cprop_mem (void)
2406 sbitmap_vector_free (cprop_pavloc);
2407 sbitmap_vector_free (cprop_absaltered);
2408 sbitmap_vector_free (cprop_avin);
2409 sbitmap_vector_free (cprop_avout);
2412 /* For each block, compute whether X is transparent. X is either an
2413 expression or an assignment [though we don't care which, for this context
2414 an assignment is treated as an expression]. For each block where an
2415 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2416 bit in BMAP. */
2418 static void
2419 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2421 int i, j;
2422 basic_block bb;
2423 enum rtx_code code;
2424 reg_set *r;
2425 const char *fmt;
2427 /* repeat is used to turn tail-recursion into iteration since GCC
2428 can't do it when there's no return value. */
2429 repeat:
2431 if (x == 0)
2432 return;
2434 code = GET_CODE (x);
2435 switch (code)
2437 case REG:
2438 if (set_p)
2440 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2442 FOR_EACH_BB (bb)
2443 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2444 SET_BIT (bmap[bb->index], indx);
2446 else
2448 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2449 SET_BIT (bmap[r->bb_index], indx);
2452 else
2454 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2456 FOR_EACH_BB (bb)
2457 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2458 RESET_BIT (bmap[bb->index], indx);
2460 else
2462 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2463 RESET_BIT (bmap[r->bb_index], indx);
2467 return;
2469 case MEM:
2470 if (! MEM_READONLY_P (x))
2472 bitmap_iterator bi;
2473 unsigned bb_index;
2475 /* First handle all the blocks with calls. We don't need to
2476 do any list walking for them. */
2477 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2479 if (set_p)
2480 SET_BIT (bmap[bb_index], indx);
2481 else
2482 RESET_BIT (bmap[bb_index], indx);
2485 /* Now iterate over the blocks which have memory modifications
2486 but which do not have any calls. */
2487 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2488 blocks_with_calls,
2489 0, bb_index, bi)
2491 rtx list_entry = canon_modify_mem_list[bb_index];
2493 while (list_entry)
2495 rtx dest, dest_addr;
2497 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2498 Examine each hunk of memory that is modified. */
2500 dest = XEXP (list_entry, 0);
2501 list_entry = XEXP (list_entry, 1);
2502 dest_addr = XEXP (list_entry, 0);
2504 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2505 x, rtx_addr_varies_p))
2507 if (set_p)
2508 SET_BIT (bmap[bb_index], indx);
2509 else
2510 RESET_BIT (bmap[bb_index], indx);
2511 break;
2513 list_entry = XEXP (list_entry, 1);
2518 x = XEXP (x, 0);
2519 goto repeat;
2521 case PC:
2522 case CC0: /*FIXME*/
2523 case CONST:
2524 case CONST_INT:
2525 case CONST_DOUBLE:
2526 case CONST_VECTOR:
2527 case SYMBOL_REF:
2528 case LABEL_REF:
2529 case ADDR_VEC:
2530 case ADDR_DIFF_VEC:
2531 return;
2533 default:
2534 break;
2537 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2539 if (fmt[i] == 'e')
2541 /* If we are about to do the last recursive call
2542 needed at this level, change it into iteration.
2543 This function is called enough to be worth it. */
2544 if (i == 0)
2546 x = XEXP (x, i);
2547 goto repeat;
2550 compute_transp (XEXP (x, i), indx, bmap, set_p);
2552 else if (fmt[i] == 'E')
2553 for (j = 0; j < XVECLEN (x, i); j++)
2554 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2558 /* Top level routine to do the dataflow analysis needed by copy/const
2559 propagation. */
2561 static void
2562 compute_cprop_data (void)
2564 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2565 compute_available (cprop_pavloc, cprop_absaltered,
2566 cprop_avout, cprop_avin);
2569 /* Copy/constant propagation. */
2571 /* Maximum number of register uses in an insn that we handle. */
2572 #define MAX_USES 8
2574 /* Table of uses found in an insn.
2575 Allocated statically to avoid alloc/free complexity and overhead. */
2576 static struct reg_use reg_use_table[MAX_USES];
2578 /* Index into `reg_use_table' while building it. */
2579 static int reg_use_count;
2581 /* Set up a list of register numbers used in INSN. The found uses are stored
2582 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2583 and contains the number of uses in the table upon exit.
2585 ??? If a register appears multiple times we will record it multiple times.
2586 This doesn't hurt anything but it will slow things down. */
2588 static void
2589 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2591 int i, j;
2592 enum rtx_code code;
2593 const char *fmt;
2594 rtx x = *xptr;
2596 /* repeat is used to turn tail-recursion into iteration since GCC
2597 can't do it when there's no return value. */
2598 repeat:
2599 if (x == 0)
2600 return;
2602 code = GET_CODE (x);
2603 if (REG_P (x))
2605 if (reg_use_count == MAX_USES)
2606 return;
2608 reg_use_table[reg_use_count].reg_rtx = x;
2609 reg_use_count++;
2612 /* Recursively scan the operands of this expression. */
2614 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2616 if (fmt[i] == 'e')
2618 /* If we are about to do the last recursive call
2619 needed at this level, change it into iteration.
2620 This function is called enough to be worth it. */
2621 if (i == 0)
2623 x = XEXP (x, 0);
2624 goto repeat;
2627 find_used_regs (&XEXP (x, i), data);
2629 else if (fmt[i] == 'E')
2630 for (j = 0; j < XVECLEN (x, i); j++)
2631 find_used_regs (&XVECEXP (x, i, j), data);
2635 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2636 Returns nonzero is successful. */
2638 static int
2639 try_replace_reg (rtx from, rtx to, rtx insn)
2641 rtx note = find_reg_equal_equiv_note (insn);
2642 rtx src = 0;
2643 int success = 0;
2644 rtx set = single_set (insn);
2646 validate_replace_src_group (from, to, insn);
2647 if (num_changes_pending () && apply_change_group ())
2648 success = 1;
2650 /* Try to simplify SET_SRC if we have substituted a constant. */
2651 if (success && set && CONSTANT_P (to))
2653 src = simplify_rtx (SET_SRC (set));
2655 if (src)
2656 validate_change (insn, &SET_SRC (set), src, 0);
2659 /* If there is already a NOTE, update the expression in it with our
2660 replacement. */
2661 if (note != 0)
2662 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2664 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2666 /* If above failed and this is a single set, try to simplify the source of
2667 the set given our substitution. We could perhaps try this for multiple
2668 SETs, but it probably won't buy us anything. */
2669 src = simplify_replace_rtx (SET_SRC (set), from, to);
2671 if (!rtx_equal_p (src, SET_SRC (set))
2672 && validate_change (insn, &SET_SRC (set), src, 0))
2673 success = 1;
2675 /* If we've failed to do replacement, have a single SET, don't already
2676 have a note, and have no special SET, add a REG_EQUAL note to not
2677 lose information. */
2678 if (!success && note == 0 && set != 0
2679 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT)
2680 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2683 /* REG_EQUAL may get simplified into register.
2684 We don't allow that. Remove that note. This code ought
2685 not to happen, because previous code ought to synthesize
2686 reg-reg move, but be on the safe side. */
2687 if (note && REG_P (XEXP (note, 0)))
2688 remove_note (insn, note);
2690 return success;
2693 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2694 NULL no such set is found. */
2696 static struct expr *
2697 find_avail_set (int regno, rtx insn)
2699 /* SET1 contains the last set found that can be returned to the caller for
2700 use in a substitution. */
2701 struct expr *set1 = 0;
2703 /* Loops are not possible here. To get a loop we would need two sets
2704 available at the start of the block containing INSN. i.e. we would
2705 need two sets like this available at the start of the block:
2707 (set (reg X) (reg Y))
2708 (set (reg Y) (reg X))
2710 This can not happen since the set of (reg Y) would have killed the
2711 set of (reg X) making it unavailable at the start of this block. */
2712 while (1)
2714 rtx src;
2715 struct expr *set = lookup_set (regno, &set_hash_table);
2717 /* Find a set that is available at the start of the block
2718 which contains INSN. */
2719 while (set)
2721 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2722 break;
2723 set = next_set (regno, set);
2726 /* If no available set was found we've reached the end of the
2727 (possibly empty) copy chain. */
2728 if (set == 0)
2729 break;
2731 gcc_assert (GET_CODE (set->expr) == SET);
2733 src = SET_SRC (set->expr);
2735 /* We know the set is available.
2736 Now check that SRC is ANTLOC (i.e. none of the source operands
2737 have changed since the start of the block).
2739 If the source operand changed, we may still use it for the next
2740 iteration of this loop, but we may not use it for substitutions. */
2742 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2743 set1 = set;
2745 /* If the source of the set is anything except a register, then
2746 we have reached the end of the copy chain. */
2747 if (! REG_P (src))
2748 break;
2750 /* Follow the copy chain, i.e. start another iteration of the loop
2751 and see if we have an available copy into SRC. */
2752 regno = REGNO (src);
2755 /* SET1 holds the last set that was available and anticipatable at
2756 INSN. */
2757 return set1;
2760 /* Subroutine of cprop_insn that tries to propagate constants into
2761 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2762 it is the instruction that immediately precedes JUMP, and must be a
2763 single SET of a register. FROM is what we will try to replace,
2764 SRC is the constant we will try to substitute for it. Returns nonzero
2765 if a change was made. */
2767 static int
2768 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2770 rtx new, set_src, note_src;
2771 rtx set = pc_set (jump);
2772 rtx note = find_reg_equal_equiv_note (jump);
2774 if (note)
2776 note_src = XEXP (note, 0);
2777 if (GET_CODE (note_src) == EXPR_LIST)
2778 note_src = NULL_RTX;
2780 else note_src = NULL_RTX;
2782 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2783 set_src = note_src ? note_src : SET_SRC (set);
2785 /* First substitute the SETCC condition into the JUMP instruction,
2786 then substitute that given values into this expanded JUMP. */
2787 if (setcc != NULL_RTX
2788 && !modified_between_p (from, setcc, jump)
2789 && !modified_between_p (src, setcc, jump))
2791 rtx setcc_src;
2792 rtx setcc_set = single_set (setcc);
2793 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2794 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2795 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2796 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2797 setcc_src);
2799 else
2800 setcc = NULL_RTX;
2802 new = simplify_replace_rtx (set_src, from, src);
2804 /* If no simplification can be made, then try the next register. */
2805 if (rtx_equal_p (new, SET_SRC (set)))
2806 return 0;
2808 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2809 if (new == pc_rtx)
2810 delete_insn (jump);
2811 else
2813 /* Ensure the value computed inside the jump insn to be equivalent
2814 to one computed by setcc. */
2815 if (setcc && modified_in_p (new, setcc))
2816 return 0;
2817 if (! validate_change (jump, &SET_SRC (set), new, 0))
2819 /* When (some) constants are not valid in a comparison, and there
2820 are two registers to be replaced by constants before the entire
2821 comparison can be folded into a constant, we need to keep
2822 intermediate information in REG_EQUAL notes. For targets with
2823 separate compare insns, such notes are added by try_replace_reg.
2824 When we have a combined compare-and-branch instruction, however,
2825 we need to attach a note to the branch itself to make this
2826 optimization work. */
2828 if (!rtx_equal_p (new, note_src))
2829 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2830 return 0;
2833 /* Remove REG_EQUAL note after simplification. */
2834 if (note_src)
2835 remove_note (jump, note);
2837 /* If this has turned into an unconditional jump,
2838 then put a barrier after it so that the unreachable
2839 code will be deleted. */
2840 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2841 emit_barrier_after (jump);
2844 #ifdef HAVE_cc0
2845 /* Delete the cc0 setter. */
2846 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2847 delete_insn (setcc);
2848 #endif
2850 run_jump_opt_after_gcse = 1;
2852 global_const_prop_count++;
2853 if (gcse_file != NULL)
2855 fprintf (gcse_file,
2856 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2857 REGNO (from), INSN_UID (jump));
2858 print_rtl (gcse_file, src);
2859 fprintf (gcse_file, "\n");
2861 purge_dead_edges (bb);
2863 return 1;
2866 static bool
2867 constprop_register (rtx insn, rtx from, rtx to, bool alter_jumps)
2869 rtx sset;
2871 /* Check for reg or cc0 setting instructions followed by
2872 conditional branch instructions first. */
2873 if (alter_jumps
2874 && (sset = single_set (insn)) != NULL
2875 && NEXT_INSN (insn)
2876 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2878 rtx dest = SET_DEST (sset);
2879 if ((REG_P (dest) || CC0_P (dest))
2880 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2881 return 1;
2884 /* Handle normal insns next. */
2885 if (NONJUMP_INSN_P (insn)
2886 && try_replace_reg (from, to, insn))
2887 return 1;
2889 /* Try to propagate a CONST_INT into a conditional jump.
2890 We're pretty specific about what we will handle in this
2891 code, we can extend this as necessary over time.
2893 Right now the insn in question must look like
2894 (set (pc) (if_then_else ...)) */
2895 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2896 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2897 return 0;
2900 /* Perform constant and copy propagation on INSN.
2901 The result is nonzero if a change was made. */
2903 static int
2904 cprop_insn (rtx insn, int alter_jumps)
2906 struct reg_use *reg_used;
2907 int changed = 0;
2908 rtx note;
2910 if (!INSN_P (insn))
2911 return 0;
2913 reg_use_count = 0;
2914 note_uses (&PATTERN (insn), find_used_regs, NULL);
2916 note = find_reg_equal_equiv_note (insn);
2918 /* We may win even when propagating constants into notes. */
2919 if (note)
2920 find_used_regs (&XEXP (note, 0), NULL);
2922 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2923 reg_used++, reg_use_count--)
2925 unsigned int regno = REGNO (reg_used->reg_rtx);
2926 rtx pat, src;
2927 struct expr *set;
2929 /* Ignore registers created by GCSE.
2930 We do this because ... */
2931 if (regno >= max_gcse_regno)
2932 continue;
2934 /* If the register has already been set in this block, there's
2935 nothing we can do. */
2936 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2937 continue;
2939 /* Find an assignment that sets reg_used and is available
2940 at the start of the block. */
2941 set = find_avail_set (regno, insn);
2942 if (! set)
2943 continue;
2945 pat = set->expr;
2946 /* ??? We might be able to handle PARALLELs. Later. */
2947 gcc_assert (GET_CODE (pat) == SET);
2949 src = SET_SRC (pat);
2951 /* Constant propagation. */
2952 if (gcse_constant_p (src))
2954 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
2956 changed = 1;
2957 global_const_prop_count++;
2958 if (gcse_file != NULL)
2960 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2961 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
2962 print_rtl (gcse_file, src);
2963 fprintf (gcse_file, "\n");
2965 if (INSN_DELETED_P (insn))
2966 return 1;
2969 else if (REG_P (src)
2970 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2971 && REGNO (src) != regno)
2973 if (try_replace_reg (reg_used->reg_rtx, src, insn))
2975 changed = 1;
2976 global_copy_prop_count++;
2977 if (gcse_file != NULL)
2979 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2980 regno, INSN_UID (insn));
2981 fprintf (gcse_file, " with reg %d\n", REGNO (src));
2984 /* The original insn setting reg_used may or may not now be
2985 deletable. We leave the deletion to flow. */
2986 /* FIXME: If it turns out that the insn isn't deletable,
2987 then we may have unnecessarily extended register lifetimes
2988 and made things worse. */
2993 return changed;
2996 /* Like find_used_regs, but avoid recording uses that appear in
2997 input-output contexts such as zero_extract or pre_dec. This
2998 restricts the cases we consider to those for which local cprop
2999 can legitimately make replacements. */
3001 static void
3002 local_cprop_find_used_regs (rtx *xptr, void *data)
3004 rtx x = *xptr;
3006 if (x == 0)
3007 return;
3009 switch (GET_CODE (x))
3011 case ZERO_EXTRACT:
3012 case SIGN_EXTRACT:
3013 case STRICT_LOW_PART:
3014 return;
3016 case PRE_DEC:
3017 case PRE_INC:
3018 case POST_DEC:
3019 case POST_INC:
3020 case PRE_MODIFY:
3021 case POST_MODIFY:
3022 /* Can only legitimately appear this early in the context of
3023 stack pushes for function arguments, but handle all of the
3024 codes nonetheless. */
3025 return;
3027 case SUBREG:
3028 /* Setting a subreg of a register larger than word_mode leaves
3029 the non-written words unchanged. */
3030 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3031 return;
3032 break;
3034 default:
3035 break;
3038 find_used_regs (xptr, data);
3041 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3042 their REG_EQUAL notes need updating. */
3044 static bool
3045 do_local_cprop (rtx x, rtx insn, bool alter_jumps, rtx *libcall_sp)
3047 rtx newreg = NULL, newcnst = NULL;
3049 /* Rule out USE instructions and ASM statements as we don't want to
3050 change the hard registers mentioned. */
3051 if (REG_P (x)
3052 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3053 || (GET_CODE (PATTERN (insn)) != USE
3054 && asm_noperands (PATTERN (insn)) < 0)))
3056 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3057 struct elt_loc_list *l;
3059 if (!val)
3060 return false;
3061 for (l = val->locs; l; l = l->next)
3063 rtx this_rtx = l->loc;
3064 rtx note;
3066 /* Don't CSE non-constant values out of libcall blocks. */
3067 if (l->in_libcall && ! CONSTANT_P (this_rtx))
3068 continue;
3070 if (gcse_constant_p (this_rtx))
3071 newcnst = this_rtx;
3072 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3073 /* Don't copy propagate if it has attached REG_EQUIV note.
3074 At this point this only function parameters should have
3075 REG_EQUIV notes and if the argument slot is used somewhere
3076 explicitly, it means address of parameter has been taken,
3077 so we should not extend the lifetime of the pseudo. */
3078 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3079 || ! MEM_P (XEXP (note, 0))))
3080 newreg = this_rtx;
3082 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3084 /* If we find a case where we can't fix the retval REG_EQUAL notes
3085 match the new register, we either have to abandon this replacement
3086 or fix delete_trivially_dead_insns to preserve the setting insn,
3087 or make it delete the REG_EUAQL note, and fix up all passes that
3088 require the REG_EQUAL note there. */
3089 bool adjusted;
3091 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3092 gcc_assert (adjusted);
3094 if (gcse_file != NULL)
3096 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3097 REGNO (x));
3098 fprintf (gcse_file, "insn %d with constant ",
3099 INSN_UID (insn));
3100 print_rtl (gcse_file, newcnst);
3101 fprintf (gcse_file, "\n");
3103 local_const_prop_count++;
3104 return true;
3106 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3108 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3109 if (gcse_file != NULL)
3111 fprintf (gcse_file,
3112 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3113 REGNO (x), INSN_UID (insn));
3114 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
3116 local_copy_prop_count++;
3117 return true;
3120 return false;
3123 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3124 their REG_EQUAL notes need updating to reflect that OLDREG has been
3125 replaced with NEWVAL in INSN. Return true if all substitutions could
3126 be made. */
3127 static bool
3128 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3130 rtx end;
3132 while ((end = *libcall_sp++))
3134 rtx note = find_reg_equal_equiv_note (end);
3136 if (! note)
3137 continue;
3139 if (REG_P (newval))
3141 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3145 note = find_reg_equal_equiv_note (end);
3146 if (! note)
3147 continue;
3148 if (reg_mentioned_p (newval, XEXP (note, 0)))
3149 return false;
3151 while ((end = *libcall_sp++));
3152 return true;
3155 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3156 insn = end;
3158 return true;
3161 #define MAX_NESTED_LIBCALLS 9
3163 /* Do local const/copy propagation (i.e. within each basic block).
3164 If ALTER_JUMPS is true, allow propagating into jump insns, which
3165 could modify the CFG. */
3167 static void
3168 local_cprop_pass (bool alter_jumps)
3170 basic_block bb;
3171 rtx insn;
3172 struct reg_use *reg_used;
3173 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3174 bool changed = false;
3176 cselib_init (false);
3177 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3178 *libcall_sp = 0;
3179 FOR_EACH_BB (bb)
3181 FOR_BB_INSNS (bb, insn)
3183 if (INSN_P (insn))
3185 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3187 if (note)
3189 gcc_assert (libcall_sp != libcall_stack);
3190 *--libcall_sp = XEXP (note, 0);
3192 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3193 if (note)
3194 libcall_sp++;
3195 note = find_reg_equal_equiv_note (insn);
3198 reg_use_count = 0;
3199 note_uses (&PATTERN (insn), local_cprop_find_used_regs,
3200 NULL);
3201 if (note)
3202 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3204 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3205 reg_used++, reg_use_count--)
3206 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3207 libcall_sp))
3209 changed = true;
3210 break;
3212 if (INSN_DELETED_P (insn))
3213 break;
3215 while (reg_use_count);
3217 cselib_process_insn (insn);
3220 /* Forget everything at the end of a basic block. Make sure we are
3221 not inside a libcall, they should never cross basic blocks. */
3222 cselib_clear_table ();
3223 gcc_assert (libcall_sp == &libcall_stack[MAX_NESTED_LIBCALLS]);
3226 cselib_finish ();
3228 /* Global analysis may get into infinite loops for unreachable blocks. */
3229 if (changed && alter_jumps)
3231 delete_unreachable_blocks ();
3232 free_reg_set_mem ();
3233 alloc_reg_set_mem (max_reg_num ());
3234 compute_sets ();
3238 /* Forward propagate copies. This includes copies and constants. Return
3239 nonzero if a change was made. */
3241 static int
3242 cprop (int alter_jumps)
3244 int changed;
3245 basic_block bb;
3246 rtx insn;
3248 /* Note we start at block 1. */
3249 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3251 if (gcse_file != NULL)
3252 fprintf (gcse_file, "\n");
3253 return 0;
3256 changed = 0;
3257 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3259 /* Reset tables used to keep track of what's still valid [since the
3260 start of the block]. */
3261 reset_opr_set_tables ();
3263 FOR_BB_INSNS (bb, insn)
3264 if (INSN_P (insn))
3266 changed |= cprop_insn (insn, alter_jumps);
3268 /* Keep track of everything modified by this insn. */
3269 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3270 call mark_oprs_set if we turned the insn into a NOTE. */
3271 if (! NOTE_P (insn))
3272 mark_oprs_set (insn);
3276 if (gcse_file != NULL)
3277 fprintf (gcse_file, "\n");
3279 return changed;
3282 /* Similar to get_condition, only the resulting condition must be
3283 valid at JUMP, instead of at EARLIEST.
3285 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3286 settle for the condition variable in the jump instruction being integral.
3287 We prefer to be able to record the value of a user variable, rather than
3288 the value of a temporary used in a condition. This could be solved by
3289 recording the value of *every* register scanned by canonicalize_condition,
3290 but this would require some code reorganization. */
3293 fis_get_condition (rtx jump)
3295 return get_condition (jump, NULL, false, true);
3298 /* Check the comparison COND to see if we can safely form an implicit set from
3299 it. COND is either an EQ or NE comparison. */
3301 static bool
3302 implicit_set_cond_p (rtx cond)
3304 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3305 rtx cst = XEXP (cond, 1);
3307 /* We can't perform this optimization if either operand might be or might
3308 contain a signed zero. */
3309 if (HONOR_SIGNED_ZEROS (mode))
3311 /* It is sufficient to check if CST is or contains a zero. We must
3312 handle float, complex, and vector. If any subpart is a zero, then
3313 the optimization can't be performed. */
3314 /* ??? The complex and vector checks are not implemented yet. We just
3315 always return zero for them. */
3316 if (GET_CODE (cst) == CONST_DOUBLE)
3318 REAL_VALUE_TYPE d;
3319 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3320 if (REAL_VALUES_EQUAL (d, dconst0))
3321 return 0;
3323 else
3324 return 0;
3327 return gcse_constant_p (cst);
3330 /* Find the implicit sets of a function. An "implicit set" is a constraint
3331 on the value of a variable, implied by a conditional jump. For example,
3332 following "if (x == 2)", the then branch may be optimized as though the
3333 conditional performed an "explicit set", in this example, "x = 2". This
3334 function records the set patterns that are implicit at the start of each
3335 basic block. */
3337 static void
3338 find_implicit_sets (void)
3340 basic_block bb, dest;
3341 unsigned int count;
3342 rtx cond, new;
3344 count = 0;
3345 FOR_EACH_BB (bb)
3346 /* Check for more than one successor. */
3347 if (EDGE_COUNT (bb->succs) > 1)
3349 cond = fis_get_condition (BB_END (bb));
3351 if (cond
3352 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3353 && REG_P (XEXP (cond, 0))
3354 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3355 && implicit_set_cond_p (cond))
3357 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3358 : FALLTHRU_EDGE (bb)->dest;
3360 if (dest && single_pred_p (dest)
3361 && dest != EXIT_BLOCK_PTR)
3363 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3364 XEXP (cond, 1));
3365 implicit_sets[dest->index] = new;
3366 if (gcse_file)
3368 fprintf(gcse_file, "Implicit set of reg %d in ",
3369 REGNO (XEXP (cond, 0)));
3370 fprintf(gcse_file, "basic block %d\n", dest->index);
3372 count++;
3377 if (gcse_file)
3378 fprintf (gcse_file, "Found %d implicit sets\n", count);
3381 /* Perform one copy/constant propagation pass.
3382 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3383 propagation into conditional jumps. If BYPASS_JUMPS is true,
3384 perform conditional jump bypassing optimizations. */
3386 static int
3387 one_cprop_pass (int pass, bool cprop_jumps, bool bypass_jumps)
3389 int changed = 0;
3391 global_const_prop_count = local_const_prop_count = 0;
3392 global_copy_prop_count = local_copy_prop_count = 0;
3394 local_cprop_pass (cprop_jumps);
3396 /* Determine implicit sets. */
3397 implicit_sets = xcalloc (last_basic_block, sizeof (rtx));
3398 find_implicit_sets ();
3400 alloc_hash_table (max_cuid, &set_hash_table, 1);
3401 compute_hash_table (&set_hash_table);
3403 /* Free implicit_sets before peak usage. */
3404 free (implicit_sets);
3405 implicit_sets = NULL;
3407 if (gcse_file)
3408 dump_hash_table (gcse_file, "SET", &set_hash_table);
3409 if (set_hash_table.n_elems > 0)
3411 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3412 compute_cprop_data ();
3413 changed = cprop (cprop_jumps);
3414 if (bypass_jumps)
3415 changed |= bypass_conditional_jumps ();
3416 free_cprop_mem ();
3419 free_hash_table (&set_hash_table);
3421 if (gcse_file)
3423 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
3424 current_function_name (), pass, bytes_used);
3425 fprintf (gcse_file, "%d local const props, %d local copy props, ",
3426 local_const_prop_count, local_copy_prop_count);
3427 fprintf (gcse_file, "%d global const props, %d global copy props\n\n",
3428 global_const_prop_count, global_copy_prop_count);
3430 /* Global analysis may get into infinite loops for unreachable blocks. */
3431 if (changed && cprop_jumps)
3432 delete_unreachable_blocks ();
3434 return changed;
3437 /* Bypass conditional jumps. */
3439 /* The value of last_basic_block at the beginning of the jump_bypass
3440 pass. The use of redirect_edge_and_branch_force may introduce new
3441 basic blocks, but the data flow analysis is only valid for basic
3442 block indices less than bypass_last_basic_block. */
3444 static int bypass_last_basic_block;
3446 /* Find a set of REGNO to a constant that is available at the end of basic
3447 block BB. Returns NULL if no such set is found. Based heavily upon
3448 find_avail_set. */
3450 static struct expr *
3451 find_bypass_set (int regno, int bb)
3453 struct expr *result = 0;
3455 for (;;)
3457 rtx src;
3458 struct expr *set = lookup_set (regno, &set_hash_table);
3460 while (set)
3462 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3463 break;
3464 set = next_set (regno, set);
3467 if (set == 0)
3468 break;
3470 gcc_assert (GET_CODE (set->expr) == SET);
3472 src = SET_SRC (set->expr);
3473 if (gcse_constant_p (src))
3474 result = set;
3476 if (! REG_P (src))
3477 break;
3479 regno = REGNO (src);
3481 return result;
3485 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3486 any of the instructions inserted on an edge. Jump bypassing places
3487 condition code setters on CFG edges using insert_insn_on_edge. This
3488 function is required to check that our data flow analysis is still
3489 valid prior to commit_edge_insertions. */
3491 static bool
3492 reg_killed_on_edge (rtx reg, edge e)
3494 rtx insn;
3496 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3497 if (INSN_P (insn) && reg_set_p (reg, insn))
3498 return true;
3500 return false;
3503 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3504 basic block BB which has more than one predecessor. If not NULL, SETCC
3505 is the first instruction of BB, which is immediately followed by JUMP_INSN
3506 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3507 Returns nonzero if a change was made.
3509 During the jump bypassing pass, we may place copies of SETCC instructions
3510 on CFG edges. The following routine must be careful to pay attention to
3511 these inserted insns when performing its transformations. */
3513 static int
3514 bypass_block (basic_block bb, rtx setcc, rtx jump)
3516 rtx insn, note;
3517 edge e, edest;
3518 int i, change;
3519 int may_be_loop_header;
3520 unsigned removed_p;
3521 edge_iterator ei;
3523 insn = (setcc != NULL) ? setcc : jump;
3525 /* Determine set of register uses in INSN. */
3526 reg_use_count = 0;
3527 note_uses (&PATTERN (insn), find_used_regs, NULL);
3528 note = find_reg_equal_equiv_note (insn);
3529 if (note)
3530 find_used_regs (&XEXP (note, 0), NULL);
3532 may_be_loop_header = false;
3533 FOR_EACH_EDGE (e, ei, bb->preds)
3534 if (e->flags & EDGE_DFS_BACK)
3536 may_be_loop_header = true;
3537 break;
3540 change = 0;
3541 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3543 removed_p = 0;
3545 if (e->flags & EDGE_COMPLEX)
3547 ei_next (&ei);
3548 continue;
3551 /* We can't redirect edges from new basic blocks. */
3552 if (e->src->index >= bypass_last_basic_block)
3554 ei_next (&ei);
3555 continue;
3558 /* The irreducible loops created by redirecting of edges entering the
3559 loop from outside would decrease effectiveness of some of the following
3560 optimizations, so prevent this. */
3561 if (may_be_loop_header
3562 && !(e->flags & EDGE_DFS_BACK))
3564 ei_next (&ei);
3565 continue;
3568 for (i = 0; i < reg_use_count; i++)
3570 struct reg_use *reg_used = &reg_use_table[i];
3571 unsigned int regno = REGNO (reg_used->reg_rtx);
3572 basic_block dest, old_dest;
3573 struct expr *set;
3574 rtx src, new;
3576 if (regno >= max_gcse_regno)
3577 continue;
3579 set = find_bypass_set (regno, e->src->index);
3581 if (! set)
3582 continue;
3584 /* Check the data flow is valid after edge insertions. */
3585 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3586 continue;
3588 src = SET_SRC (pc_set (jump));
3590 if (setcc != NULL)
3591 src = simplify_replace_rtx (src,
3592 SET_DEST (PATTERN (setcc)),
3593 SET_SRC (PATTERN (setcc)));
3595 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3596 SET_SRC (set->expr));
3598 /* Jump bypassing may have already placed instructions on
3599 edges of the CFG. We can't bypass an outgoing edge that
3600 has instructions associated with it, as these insns won't
3601 get executed if the incoming edge is redirected. */
3603 if (new == pc_rtx)
3605 edest = FALLTHRU_EDGE (bb);
3606 dest = edest->insns.r ? NULL : edest->dest;
3608 else if (GET_CODE (new) == LABEL_REF)
3610 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3611 /* Don't bypass edges containing instructions. */
3612 edest = find_edge (bb, dest);
3613 if (edest && edest->insns.r)
3614 dest = NULL;
3616 else
3617 dest = NULL;
3619 /* Avoid unification of the edge with other edges from original
3620 branch. We would end up emitting the instruction on "both"
3621 edges. */
3623 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3624 && find_edge (e->src, dest))
3625 dest = NULL;
3627 old_dest = e->dest;
3628 if (dest != NULL
3629 && dest != old_dest
3630 && dest != EXIT_BLOCK_PTR)
3632 redirect_edge_and_branch_force (e, dest);
3634 /* Copy the register setter to the redirected edge.
3635 Don't copy CC0 setters, as CC0 is dead after jump. */
3636 if (setcc)
3638 rtx pat = PATTERN (setcc);
3639 if (!CC0_P (SET_DEST (pat)))
3640 insert_insn_on_edge (copy_insn (pat), e);
3643 if (gcse_file != NULL)
3645 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d "
3646 "in jump_insn %d equals constant ",
3647 regno, INSN_UID (jump));
3648 print_rtl (gcse_file, SET_SRC (set->expr));
3649 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
3650 e->src->index, old_dest->index, dest->index);
3652 change = 1;
3653 removed_p = 1;
3654 break;
3657 if (!removed_p)
3658 ei_next (&ei);
3660 return change;
3663 /* Find basic blocks with more than one predecessor that only contain a
3664 single conditional jump. If the result of the comparison is known at
3665 compile-time from any incoming edge, redirect that edge to the
3666 appropriate target. Returns nonzero if a change was made.
3668 This function is now mis-named, because we also handle indirect jumps. */
3670 static int
3671 bypass_conditional_jumps (void)
3673 basic_block bb;
3674 int changed;
3675 rtx setcc;
3676 rtx insn;
3677 rtx dest;
3679 /* Note we start at block 1. */
3680 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3681 return 0;
3683 bypass_last_basic_block = last_basic_block;
3684 mark_dfs_back_edges ();
3686 changed = 0;
3687 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3688 EXIT_BLOCK_PTR, next_bb)
3690 /* Check for more than one predecessor. */
3691 if (!single_pred_p (bb))
3693 setcc = NULL_RTX;
3694 FOR_BB_INSNS (bb, insn)
3695 if (NONJUMP_INSN_P (insn))
3697 if (setcc)
3698 break;
3699 if (GET_CODE (PATTERN (insn)) != SET)
3700 break;
3702 dest = SET_DEST (PATTERN (insn));
3703 if (REG_P (dest) || CC0_P (dest))
3704 setcc = insn;
3705 else
3706 break;
3708 else if (JUMP_P (insn))
3710 if ((any_condjump_p (insn) || computed_jump_p (insn))
3711 && onlyjump_p (insn))
3712 changed |= bypass_block (bb, setcc, insn);
3713 break;
3715 else if (INSN_P (insn))
3716 break;
3720 /* If we bypassed any register setting insns, we inserted a
3721 copy on the redirected edge. These need to be committed. */
3722 if (changed)
3723 commit_edge_insertions();
3725 return changed;
3728 /* Compute PRE+LCM working variables. */
3730 /* Local properties of expressions. */
3731 /* Nonzero for expressions that are transparent in the block. */
3732 static sbitmap *transp;
3734 /* Nonzero for expressions that are transparent at the end of the block.
3735 This is only zero for expressions killed by abnormal critical edge
3736 created by a calls. */
3737 static sbitmap *transpout;
3739 /* Nonzero for expressions that are computed (available) in the block. */
3740 static sbitmap *comp;
3742 /* Nonzero for expressions that are locally anticipatable in the block. */
3743 static sbitmap *antloc;
3745 /* Nonzero for expressions where this block is an optimal computation
3746 point. */
3747 static sbitmap *pre_optimal;
3749 /* Nonzero for expressions which are redundant in a particular block. */
3750 static sbitmap *pre_redundant;
3752 /* Nonzero for expressions which should be inserted on a specific edge. */
3753 static sbitmap *pre_insert_map;
3755 /* Nonzero for expressions which should be deleted in a specific block. */
3756 static sbitmap *pre_delete_map;
3758 /* Contains the edge_list returned by pre_edge_lcm. */
3759 static struct edge_list *edge_list;
3761 /* Redundant insns. */
3762 static sbitmap pre_redundant_insns;
3764 /* Allocate vars used for PRE analysis. */
3766 static void
3767 alloc_pre_mem (int n_blocks, int n_exprs)
3769 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3770 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3771 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3773 pre_optimal = NULL;
3774 pre_redundant = NULL;
3775 pre_insert_map = NULL;
3776 pre_delete_map = NULL;
3777 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3779 /* pre_insert and pre_delete are allocated later. */
3782 /* Free vars used for PRE analysis. */
3784 static void
3785 free_pre_mem (void)
3787 sbitmap_vector_free (transp);
3788 sbitmap_vector_free (comp);
3790 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3792 if (pre_optimal)
3793 sbitmap_vector_free (pre_optimal);
3794 if (pre_redundant)
3795 sbitmap_vector_free (pre_redundant);
3796 if (pre_insert_map)
3797 sbitmap_vector_free (pre_insert_map);
3798 if (pre_delete_map)
3799 sbitmap_vector_free (pre_delete_map);
3801 transp = comp = NULL;
3802 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3805 /* Top level routine to do the dataflow analysis needed by PRE. */
3807 static void
3808 compute_pre_data (void)
3810 sbitmap trapping_expr;
3811 basic_block bb;
3812 unsigned int ui;
3814 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3815 sbitmap_vector_zero (ae_kill, last_basic_block);
3817 /* Collect expressions which might trap. */
3818 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3819 sbitmap_zero (trapping_expr);
3820 for (ui = 0; ui < expr_hash_table.size; ui++)
3822 struct expr *e;
3823 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3824 if (may_trap_p (e->expr))
3825 SET_BIT (trapping_expr, e->bitmap_index);
3828 /* Compute ae_kill for each basic block using:
3830 ~(TRANSP | COMP)
3833 FOR_EACH_BB (bb)
3835 edge e;
3836 edge_iterator ei;
3838 /* If the current block is the destination of an abnormal edge, we
3839 kill all trapping expressions because we won't be able to properly
3840 place the instruction on the edge. So make them neither
3841 anticipatable nor transparent. This is fairly conservative. */
3842 FOR_EACH_EDGE (e, ei, bb->preds)
3843 if (e->flags & EDGE_ABNORMAL)
3845 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3846 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3847 break;
3850 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3851 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3854 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
3855 ae_kill, &pre_insert_map, &pre_delete_map);
3856 sbitmap_vector_free (antloc);
3857 antloc = NULL;
3858 sbitmap_vector_free (ae_kill);
3859 ae_kill = NULL;
3860 sbitmap_free (trapping_expr);
3863 /* PRE utilities */
3865 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3866 block BB.
3868 VISITED is a pointer to a working buffer for tracking which BB's have
3869 been visited. It is NULL for the top-level call.
3871 We treat reaching expressions that go through blocks containing the same
3872 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3873 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3874 2 as not reaching. The intent is to improve the probability of finding
3875 only one reaching expression and to reduce register lifetimes by picking
3876 the closest such expression. */
3878 static int
3879 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3881 edge pred;
3882 edge_iterator ei;
3884 FOR_EACH_EDGE (pred, ei, bb->preds)
3886 basic_block pred_bb = pred->src;
3888 if (pred->src == ENTRY_BLOCK_PTR
3889 /* Has predecessor has already been visited? */
3890 || visited[pred_bb->index])
3891 ;/* Nothing to do. */
3893 /* Does this predecessor generate this expression? */
3894 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3896 /* Is this the occurrence we're looking for?
3897 Note that there's only one generating occurrence per block
3898 so we just need to check the block number. */
3899 if (occr_bb == pred_bb)
3900 return 1;
3902 visited[pred_bb->index] = 1;
3904 /* Ignore this predecessor if it kills the expression. */
3905 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3906 visited[pred_bb->index] = 1;
3908 /* Neither gen nor kill. */
3909 else
3911 visited[pred_bb->index] = 1;
3912 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3913 return 1;
3917 /* All paths have been checked. */
3918 return 0;
3921 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3922 memory allocated for that function is returned. */
3924 static int
3925 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3927 int rval;
3928 char *visited = xcalloc (last_basic_block, 1);
3930 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3932 free (visited);
3933 return rval;
3937 /* Given an expr, generate RTL which we can insert at the end of a BB,
3938 or on an edge. Set the block number of any insns generated to
3939 the value of BB. */
3941 static rtx
3942 process_insert_insn (struct expr *expr)
3944 rtx reg = expr->reaching_reg;
3945 rtx exp = copy_rtx (expr->expr);
3946 rtx pat;
3948 start_sequence ();
3950 /* If the expression is something that's an operand, like a constant,
3951 just copy it to a register. */
3952 if (general_operand (exp, GET_MODE (reg)))
3953 emit_move_insn (reg, exp);
3955 /* Otherwise, make a new insn to compute this expression and make sure the
3956 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3957 expression to make sure we don't have any sharing issues. */
3958 else
3960 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3962 if (insn_invalid_p (insn))
3963 gcc_unreachable ();
3967 pat = get_insns ();
3968 end_sequence ();
3970 return pat;
3973 /* Add EXPR to the end of basic block BB.
3975 This is used by both the PRE and code hoisting.
3977 For PRE, we want to verify that the expr is either transparent
3978 or locally anticipatable in the target block. This check makes
3979 no sense for code hoisting. */
3981 static void
3982 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
3984 rtx insn = BB_END (bb);
3985 rtx new_insn;
3986 rtx reg = expr->reaching_reg;
3987 int regno = REGNO (reg);
3988 rtx pat, pat_end;
3990 pat = process_insert_insn (expr);
3991 gcc_assert (pat && INSN_P (pat));
3993 pat_end = pat;
3994 while (NEXT_INSN (pat_end) != NULL_RTX)
3995 pat_end = NEXT_INSN (pat_end);
3997 /* If the last insn is a jump, insert EXPR in front [taking care to
3998 handle cc0, etc. properly]. Similarly we need to care trapping
3999 instructions in presence of non-call exceptions. */
4001 if (JUMP_P (insn)
4002 || (NONJUMP_INSN_P (insn)
4003 && (!single_succ_p (bb)
4004 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
4006 #ifdef HAVE_cc0
4007 rtx note;
4008 #endif
4009 /* It should always be the case that we can put these instructions
4010 anywhere in the basic block with performing PRE optimizations.
4011 Check this. */
4012 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4013 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4014 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4016 /* If this is a jump table, then we can't insert stuff here. Since
4017 we know the previous real insn must be the tablejump, we insert
4018 the new instruction just before the tablejump. */
4019 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4020 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4021 insn = prev_real_insn (insn);
4023 #ifdef HAVE_cc0
4024 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4025 if cc0 isn't set. */
4026 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4027 if (note)
4028 insn = XEXP (note, 0);
4029 else
4031 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4032 if (maybe_cc0_setter
4033 && INSN_P (maybe_cc0_setter)
4034 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4035 insn = maybe_cc0_setter;
4037 #endif
4038 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4039 new_insn = emit_insn_before_noloc (pat, insn);
4042 /* Likewise if the last insn is a call, as will happen in the presence
4043 of exception handling. */
4044 else if (CALL_P (insn)
4045 && (!single_succ_p (bb)
4046 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
4048 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4049 we search backward and place the instructions before the first
4050 parameter is loaded. Do this for everyone for consistency and a
4051 presumption that we'll get better code elsewhere as well.
4053 It should always be the case that we can put these instructions
4054 anywhere in the basic block with performing PRE optimizations.
4055 Check this. */
4057 gcc_assert (!pre
4058 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4059 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4061 /* Since different machines initialize their parameter registers
4062 in different orders, assume nothing. Collect the set of all
4063 parameter registers. */
4064 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4066 /* If we found all the parameter loads, then we want to insert
4067 before the first parameter load.
4069 If we did not find all the parameter loads, then we might have
4070 stopped on the head of the block, which could be a CODE_LABEL.
4071 If we inserted before the CODE_LABEL, then we would be putting
4072 the insn in the wrong basic block. In that case, put the insn
4073 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4074 while (LABEL_P (insn)
4075 || NOTE_INSN_BASIC_BLOCK_P (insn))
4076 insn = NEXT_INSN (insn);
4078 new_insn = emit_insn_before_noloc (pat, insn);
4080 else
4081 new_insn = emit_insn_after_noloc (pat, insn);
4083 while (1)
4085 if (INSN_P (pat))
4087 add_label_notes (PATTERN (pat), new_insn);
4088 note_stores (PATTERN (pat), record_set_info, pat);
4090 if (pat == pat_end)
4091 break;
4092 pat = NEXT_INSN (pat);
4095 gcse_create_count++;
4097 if (gcse_file)
4099 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4100 bb->index, INSN_UID (new_insn));
4101 fprintf (gcse_file, "copying expression %d to reg %d\n",
4102 expr->bitmap_index, regno);
4106 /* Insert partially redundant expressions on edges in the CFG to make
4107 the expressions fully redundant. */
4109 static int
4110 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4112 int e, i, j, num_edges, set_size, did_insert = 0;
4113 sbitmap *inserted;
4115 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4116 if it reaches any of the deleted expressions. */
4118 set_size = pre_insert_map[0]->size;
4119 num_edges = NUM_EDGES (edge_list);
4120 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4121 sbitmap_vector_zero (inserted, num_edges);
4123 for (e = 0; e < num_edges; e++)
4125 int indx;
4126 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4128 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4130 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4132 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4133 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4135 struct expr *expr = index_map[j];
4136 struct occr *occr;
4138 /* Now look at each deleted occurrence of this expression. */
4139 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4141 if (! occr->deleted_p)
4142 continue;
4144 /* Insert this expression on this edge if it would
4145 reach the deleted occurrence in BB. */
4146 if (!TEST_BIT (inserted[e], j))
4148 rtx insn;
4149 edge eg = INDEX_EDGE (edge_list, e);
4151 /* We can't insert anything on an abnormal and
4152 critical edge, so we insert the insn at the end of
4153 the previous block. There are several alternatives
4154 detailed in Morgans book P277 (sec 10.5) for
4155 handling this situation. This one is easiest for
4156 now. */
4158 if (eg->flags & EDGE_ABNORMAL)
4159 insert_insn_end_bb (index_map[j], bb, 0);
4160 else
4162 insn = process_insert_insn (index_map[j]);
4163 insert_insn_on_edge (insn, eg);
4166 if (gcse_file)
4168 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4169 bb->index,
4170 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4171 fprintf (gcse_file, "copy expression %d\n",
4172 expr->bitmap_index);
4175 update_ld_motion_stores (expr);
4176 SET_BIT (inserted[e], j);
4177 did_insert = 1;
4178 gcse_create_count++;
4185 sbitmap_vector_free (inserted);
4186 return did_insert;
4189 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4190 Given "old_reg <- expr" (INSN), instead of adding after it
4191 reaching_reg <- old_reg
4192 it's better to do the following:
4193 reaching_reg <- expr
4194 old_reg <- reaching_reg
4195 because this way copy propagation can discover additional PRE
4196 opportunities. But if this fails, we try the old way.
4197 When "expr" is a store, i.e.
4198 given "MEM <- old_reg", instead of adding after it
4199 reaching_reg <- old_reg
4200 it's better to add it before as follows:
4201 reaching_reg <- old_reg
4202 MEM <- reaching_reg. */
4204 static void
4205 pre_insert_copy_insn (struct expr *expr, rtx insn)
4207 rtx reg = expr->reaching_reg;
4208 int regno = REGNO (reg);
4209 int indx = expr->bitmap_index;
4210 rtx pat = PATTERN (insn);
4211 rtx set, new_insn;
4212 rtx old_reg;
4213 int i;
4215 /* This block matches the logic in hash_scan_insn. */
4216 switch (GET_CODE (pat))
4218 case SET:
4219 set = pat;
4220 break;
4222 case PARALLEL:
4223 /* Search through the parallel looking for the set whose
4224 source was the expression that we're interested in. */
4225 set = NULL_RTX;
4226 for (i = 0; i < XVECLEN (pat, 0); i++)
4228 rtx x = XVECEXP (pat, 0, i);
4229 if (GET_CODE (x) == SET
4230 && expr_equiv_p (SET_SRC (x), expr->expr))
4232 set = x;
4233 break;
4236 break;
4238 default:
4239 gcc_unreachable ();
4242 if (REG_P (SET_DEST (set)))
4244 old_reg = SET_DEST (set);
4245 /* Check if we can modify the set destination in the original insn. */
4246 if (validate_change (insn, &SET_DEST (set), reg, 0))
4248 new_insn = gen_move_insn (old_reg, reg);
4249 new_insn = emit_insn_after (new_insn, insn);
4251 /* Keep register set table up to date. */
4252 record_one_set (regno, insn);
4254 else
4256 new_insn = gen_move_insn (reg, old_reg);
4257 new_insn = emit_insn_after (new_insn, insn);
4259 /* Keep register set table up to date. */
4260 record_one_set (regno, new_insn);
4263 else /* This is possible only in case of a store to memory. */
4265 old_reg = SET_SRC (set);
4266 new_insn = gen_move_insn (reg, old_reg);
4268 /* Check if we can modify the set source in the original insn. */
4269 if (validate_change (insn, &SET_SRC (set), reg, 0))
4270 new_insn = emit_insn_before (new_insn, insn);
4271 else
4272 new_insn = emit_insn_after (new_insn, insn);
4274 /* Keep register set table up to date. */
4275 record_one_set (regno, new_insn);
4278 gcse_create_count++;
4280 if (gcse_file)
4281 fprintf (gcse_file,
4282 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4283 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4284 INSN_UID (insn), regno);
4287 /* Copy available expressions that reach the redundant expression
4288 to `reaching_reg'. */
4290 static void
4291 pre_insert_copies (void)
4293 unsigned int i, added_copy;
4294 struct expr *expr;
4295 struct occr *occr;
4296 struct occr *avail;
4298 /* For each available expression in the table, copy the result to
4299 `reaching_reg' if the expression reaches a deleted one.
4301 ??? The current algorithm is rather brute force.
4302 Need to do some profiling. */
4304 for (i = 0; i < expr_hash_table.size; i++)
4305 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4307 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4308 we don't want to insert a copy here because the expression may not
4309 really be redundant. So only insert an insn if the expression was
4310 deleted. This test also avoids further processing if the
4311 expression wasn't deleted anywhere. */
4312 if (expr->reaching_reg == NULL)
4313 continue;
4315 /* Set when we add a copy for that expression. */
4316 added_copy = 0;
4318 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4320 if (! occr->deleted_p)
4321 continue;
4323 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4325 rtx insn = avail->insn;
4327 /* No need to handle this one if handled already. */
4328 if (avail->copied_p)
4329 continue;
4331 /* Don't handle this one if it's a redundant one. */
4332 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4333 continue;
4335 /* Or if the expression doesn't reach the deleted one. */
4336 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4337 expr,
4338 BLOCK_FOR_INSN (occr->insn)))
4339 continue;
4341 added_copy = 1;
4343 /* Copy the result of avail to reaching_reg. */
4344 pre_insert_copy_insn (expr, insn);
4345 avail->copied_p = 1;
4349 if (added_copy)
4350 update_ld_motion_stores (expr);
4354 /* Emit move from SRC to DEST noting the equivalence with expression computed
4355 in INSN. */
4356 static rtx
4357 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4359 rtx new;
4360 rtx set = single_set (insn), set2;
4361 rtx note;
4362 rtx eqv;
4364 /* This should never fail since we're creating a reg->reg copy
4365 we've verified to be valid. */
4367 new = emit_insn_after (gen_move_insn (dest, src), insn);
4369 /* Note the equivalence for local CSE pass. */
4370 set2 = single_set (new);
4371 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4372 return new;
4373 if ((note = find_reg_equal_equiv_note (insn)))
4374 eqv = XEXP (note, 0);
4375 else
4376 eqv = SET_SRC (set);
4378 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4380 return new;
4383 /* Delete redundant computations.
4384 Deletion is done by changing the insn to copy the `reaching_reg' of
4385 the expression into the result of the SET. It is left to later passes
4386 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4388 Returns nonzero if a change is made. */
4390 static int
4391 pre_delete (void)
4393 unsigned int i;
4394 int changed;
4395 struct expr *expr;
4396 struct occr *occr;
4398 changed = 0;
4399 for (i = 0; i < expr_hash_table.size; i++)
4400 for (expr = expr_hash_table.table[i];
4401 expr != NULL;
4402 expr = expr->next_same_hash)
4404 int indx = expr->bitmap_index;
4406 /* We only need to search antic_occr since we require
4407 ANTLOC != 0. */
4409 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4411 rtx insn = occr->insn;
4412 rtx set;
4413 basic_block bb = BLOCK_FOR_INSN (insn);
4415 /* We only delete insns that have a single_set. */
4416 if (TEST_BIT (pre_delete_map[bb->index], indx)
4417 && (set = single_set (insn)) != 0)
4419 /* Create a pseudo-reg to store the result of reaching
4420 expressions into. Get the mode for the new pseudo from
4421 the mode of the original destination pseudo. */
4422 if (expr->reaching_reg == NULL)
4423 expr->reaching_reg
4424 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4426 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4427 delete_insn (insn);
4428 occr->deleted_p = 1;
4429 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4430 changed = 1;
4431 gcse_subst_count++;
4433 if (gcse_file)
4435 fprintf (gcse_file,
4436 "PRE: redundant insn %d (expression %d) in ",
4437 INSN_UID (insn), indx);
4438 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4439 bb->index, REGNO (expr->reaching_reg));
4445 return changed;
4448 /* Perform GCSE optimizations using PRE.
4449 This is called by one_pre_gcse_pass after all the dataflow analysis
4450 has been done.
4452 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4453 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4454 Compiler Design and Implementation.
4456 ??? A new pseudo reg is created to hold the reaching expression. The nice
4457 thing about the classical approach is that it would try to use an existing
4458 reg. If the register can't be adequately optimized [i.e. we introduce
4459 reload problems], one could add a pass here to propagate the new register
4460 through the block.
4462 ??? We don't handle single sets in PARALLELs because we're [currently] not
4463 able to copy the rest of the parallel when we insert copies to create full
4464 redundancies from partial redundancies. However, there's no reason why we
4465 can't handle PARALLELs in the cases where there are no partial
4466 redundancies. */
4468 static int
4469 pre_gcse (void)
4471 unsigned int i;
4472 int did_insert, changed;
4473 struct expr **index_map;
4474 struct expr *expr;
4476 /* Compute a mapping from expression number (`bitmap_index') to
4477 hash table entry. */
4479 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4480 for (i = 0; i < expr_hash_table.size; i++)
4481 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4482 index_map[expr->bitmap_index] = expr;
4484 /* Reset bitmap used to track which insns are redundant. */
4485 pre_redundant_insns = sbitmap_alloc (max_cuid);
4486 sbitmap_zero (pre_redundant_insns);
4488 /* Delete the redundant insns first so that
4489 - we know what register to use for the new insns and for the other
4490 ones with reaching expressions
4491 - we know which insns are redundant when we go to create copies */
4493 changed = pre_delete ();
4495 did_insert = pre_edge_insert (edge_list, index_map);
4497 /* In other places with reaching expressions, copy the expression to the
4498 specially allocated pseudo-reg that reaches the redundant expr. */
4499 pre_insert_copies ();
4500 if (did_insert)
4502 commit_edge_insertions ();
4503 changed = 1;
4506 free (index_map);
4507 sbitmap_free (pre_redundant_insns);
4508 return changed;
4511 /* Top level routine to perform one PRE GCSE pass.
4513 Return nonzero if a change was made. */
4515 static int
4516 one_pre_gcse_pass (int pass)
4518 int changed = 0;
4520 gcse_subst_count = 0;
4521 gcse_create_count = 0;
4523 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4524 add_noreturn_fake_exit_edges ();
4525 if (flag_gcse_lm)
4526 compute_ld_motion_mems ();
4528 compute_hash_table (&expr_hash_table);
4529 trim_ld_motion_mems ();
4530 if (gcse_file)
4531 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
4533 if (expr_hash_table.n_elems > 0)
4535 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4536 compute_pre_data ();
4537 changed |= pre_gcse ();
4538 free_edge_list (edge_list);
4539 free_pre_mem ();
4542 free_ldst_mems ();
4543 remove_fake_exit_edges ();
4544 free_hash_table (&expr_hash_table);
4546 if (gcse_file)
4548 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4549 current_function_name (), pass, bytes_used);
4550 fprintf (gcse_file, "%d substs, %d insns created\n",
4551 gcse_subst_count, gcse_create_count);
4554 return changed;
4557 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4558 If notes are added to an insn which references a CODE_LABEL, the
4559 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4560 because the following loop optimization pass requires them. */
4562 /* ??? This is very similar to the loop.c add_label_notes function. We
4563 could probably share code here. */
4565 /* ??? If there was a jump optimization pass after gcse and before loop,
4566 then we would not need to do this here, because jump would add the
4567 necessary REG_LABEL notes. */
4569 static void
4570 add_label_notes (rtx x, rtx insn)
4572 enum rtx_code code = GET_CODE (x);
4573 int i, j;
4574 const char *fmt;
4576 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4578 /* This code used to ignore labels that referred to dispatch tables to
4579 avoid flow generating (slightly) worse code.
4581 We no longer ignore such label references (see LABEL_REF handling in
4582 mark_jump_label for additional information). */
4584 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4585 REG_NOTES (insn));
4586 if (LABEL_P (XEXP (x, 0)))
4587 LABEL_NUSES (XEXP (x, 0))++;
4588 return;
4591 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4593 if (fmt[i] == 'e')
4594 add_label_notes (XEXP (x, i), insn);
4595 else if (fmt[i] == 'E')
4596 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4597 add_label_notes (XVECEXP (x, i, j), insn);
4601 /* Compute transparent outgoing information for each block.
4603 An expression is transparent to an edge unless it is killed by
4604 the edge itself. This can only happen with abnormal control flow,
4605 when the edge is traversed through a call. This happens with
4606 non-local labels and exceptions.
4608 This would not be necessary if we split the edge. While this is
4609 normally impossible for abnormal critical edges, with some effort
4610 it should be possible with exception handling, since we still have
4611 control over which handler should be invoked. But due to increased
4612 EH table sizes, this may not be worthwhile. */
4614 static void
4615 compute_transpout (void)
4617 basic_block bb;
4618 unsigned int i;
4619 struct expr *expr;
4621 sbitmap_vector_ones (transpout, last_basic_block);
4623 FOR_EACH_BB (bb)
4625 /* Note that flow inserted a nop a the end of basic blocks that
4626 end in call instructions for reasons other than abnormal
4627 control flow. */
4628 if (! CALL_P (BB_END (bb)))
4629 continue;
4631 for (i = 0; i < expr_hash_table.size; i++)
4632 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4633 if (MEM_P (expr->expr))
4635 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4636 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4637 continue;
4639 /* ??? Optimally, we would use interprocedural alias
4640 analysis to determine if this mem is actually killed
4641 by this call. */
4642 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4647 /* Code Hoisting variables and subroutines. */
4649 /* Very busy expressions. */
4650 static sbitmap *hoist_vbein;
4651 static sbitmap *hoist_vbeout;
4653 /* Hoistable expressions. */
4654 static sbitmap *hoist_exprs;
4656 /* ??? We could compute post dominators and run this algorithm in
4657 reverse to perform tail merging, doing so would probably be
4658 more effective than the tail merging code in jump.c.
4660 It's unclear if tail merging could be run in parallel with
4661 code hoisting. It would be nice. */
4663 /* Allocate vars used for code hoisting analysis. */
4665 static void
4666 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4668 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4669 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4670 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4672 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4673 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4674 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4675 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4678 /* Free vars used for code hoisting analysis. */
4680 static void
4681 free_code_hoist_mem (void)
4683 sbitmap_vector_free (antloc);
4684 sbitmap_vector_free (transp);
4685 sbitmap_vector_free (comp);
4687 sbitmap_vector_free (hoist_vbein);
4688 sbitmap_vector_free (hoist_vbeout);
4689 sbitmap_vector_free (hoist_exprs);
4690 sbitmap_vector_free (transpout);
4692 free_dominance_info (CDI_DOMINATORS);
4695 /* Compute the very busy expressions at entry/exit from each block.
4697 An expression is very busy if all paths from a given point
4698 compute the expression. */
4700 static void
4701 compute_code_hoist_vbeinout (void)
4703 int changed, passes;
4704 basic_block bb;
4706 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4707 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4709 passes = 0;
4710 changed = 1;
4712 while (changed)
4714 changed = 0;
4716 /* We scan the blocks in the reverse order to speed up
4717 the convergence. */
4718 FOR_EACH_BB_REVERSE (bb)
4720 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4721 hoist_vbeout[bb->index], transp[bb->index]);
4722 if (bb->next_bb != EXIT_BLOCK_PTR)
4723 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4726 passes++;
4729 if (gcse_file)
4730 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
4733 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4735 static void
4736 compute_code_hoist_data (void)
4738 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4739 compute_transpout ();
4740 compute_code_hoist_vbeinout ();
4741 calculate_dominance_info (CDI_DOMINATORS);
4742 if (gcse_file)
4743 fprintf (gcse_file, "\n");
4746 /* Determine if the expression identified by EXPR_INDEX would
4747 reach BB unimpared if it was placed at the end of EXPR_BB.
4749 It's unclear exactly what Muchnick meant by "unimpared". It seems
4750 to me that the expression must either be computed or transparent in
4751 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4752 would allow the expression to be hoisted out of loops, even if
4753 the expression wasn't a loop invariant.
4755 Contrast this to reachability for PRE where an expression is
4756 considered reachable if *any* path reaches instead of *all*
4757 paths. */
4759 static int
4760 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4762 edge pred;
4763 edge_iterator ei;
4764 int visited_allocated_locally = 0;
4767 if (visited == NULL)
4769 visited_allocated_locally = 1;
4770 visited = xcalloc (last_basic_block, 1);
4773 FOR_EACH_EDGE (pred, ei, bb->preds)
4775 basic_block pred_bb = pred->src;
4777 if (pred->src == ENTRY_BLOCK_PTR)
4778 break;
4779 else if (pred_bb == expr_bb)
4780 continue;
4781 else if (visited[pred_bb->index])
4782 continue;
4784 /* Does this predecessor generate this expression? */
4785 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4786 break;
4787 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4788 break;
4790 /* Not killed. */
4791 else
4793 visited[pred_bb->index] = 1;
4794 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4795 pred_bb, visited))
4796 break;
4799 if (visited_allocated_locally)
4800 free (visited);
4802 return (pred == NULL);
4805 /* Actually perform code hoisting. */
4807 static void
4808 hoist_code (void)
4810 basic_block bb, dominated;
4811 basic_block *domby;
4812 unsigned int domby_len;
4813 unsigned int i,j;
4814 struct expr **index_map;
4815 struct expr *expr;
4817 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4819 /* Compute a mapping from expression number (`bitmap_index') to
4820 hash table entry. */
4822 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4823 for (i = 0; i < expr_hash_table.size; i++)
4824 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4825 index_map[expr->bitmap_index] = expr;
4827 /* Walk over each basic block looking for potentially hoistable
4828 expressions, nothing gets hoisted from the entry block. */
4829 FOR_EACH_BB (bb)
4831 int found = 0;
4832 int insn_inserted_p;
4834 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4835 /* Examine each expression that is very busy at the exit of this
4836 block. These are the potentially hoistable expressions. */
4837 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4839 int hoistable = 0;
4841 if (TEST_BIT (hoist_vbeout[bb->index], i)
4842 && TEST_BIT (transpout[bb->index], i))
4844 /* We've found a potentially hoistable expression, now
4845 we look at every block BB dominates to see if it
4846 computes the expression. */
4847 for (j = 0; j < domby_len; j++)
4849 dominated = domby[j];
4850 /* Ignore self dominance. */
4851 if (bb == dominated)
4852 continue;
4853 /* We've found a dominated block, now see if it computes
4854 the busy expression and whether or not moving that
4855 expression to the "beginning" of that block is safe. */
4856 if (!TEST_BIT (antloc[dominated->index], i))
4857 continue;
4859 /* Note if the expression would reach the dominated block
4860 unimpared if it was placed at the end of BB.
4862 Keep track of how many times this expression is hoistable
4863 from a dominated block into BB. */
4864 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4865 hoistable++;
4868 /* If we found more than one hoistable occurrence of this
4869 expression, then note it in the bitmap of expressions to
4870 hoist. It makes no sense to hoist things which are computed
4871 in only one BB, and doing so tends to pessimize register
4872 allocation. One could increase this value to try harder
4873 to avoid any possible code expansion due to register
4874 allocation issues; however experiments have shown that
4875 the vast majority of hoistable expressions are only movable
4876 from two successors, so raising this threshold is likely
4877 to nullify any benefit we get from code hoisting. */
4878 if (hoistable > 1)
4880 SET_BIT (hoist_exprs[bb->index], i);
4881 found = 1;
4885 /* If we found nothing to hoist, then quit now. */
4886 if (! found)
4888 free (domby);
4889 continue;
4892 /* Loop over all the hoistable expressions. */
4893 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4895 /* We want to insert the expression into BB only once, so
4896 note when we've inserted it. */
4897 insn_inserted_p = 0;
4899 /* These tests should be the same as the tests above. */
4900 if (TEST_BIT (hoist_vbeout[bb->index], i))
4902 /* We've found a potentially hoistable expression, now
4903 we look at every block BB dominates to see if it
4904 computes the expression. */
4905 for (j = 0; j < domby_len; j++)
4907 dominated = domby[j];
4908 /* Ignore self dominance. */
4909 if (bb == dominated)
4910 continue;
4912 /* We've found a dominated block, now see if it computes
4913 the busy expression and whether or not moving that
4914 expression to the "beginning" of that block is safe. */
4915 if (!TEST_BIT (antloc[dominated->index], i))
4916 continue;
4918 /* The expression is computed in the dominated block and
4919 it would be safe to compute it at the start of the
4920 dominated block. Now we have to determine if the
4921 expression would reach the dominated block if it was
4922 placed at the end of BB. */
4923 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4925 struct expr *expr = index_map[i];
4926 struct occr *occr = expr->antic_occr;
4927 rtx insn;
4928 rtx set;
4930 /* Find the right occurrence of this expression. */
4931 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4932 occr = occr->next;
4934 gcc_assert (occr);
4935 insn = occr->insn;
4936 set = single_set (insn);
4937 gcc_assert (set);
4939 /* Create a pseudo-reg to store the result of reaching
4940 expressions into. Get the mode for the new pseudo
4941 from the mode of the original destination pseudo. */
4942 if (expr->reaching_reg == NULL)
4943 expr->reaching_reg
4944 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4946 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4947 delete_insn (insn);
4948 occr->deleted_p = 1;
4949 if (!insn_inserted_p)
4951 insert_insn_end_bb (index_map[i], bb, 0);
4952 insn_inserted_p = 1;
4958 free (domby);
4961 free (index_map);
4964 /* Top level routine to perform one code hoisting (aka unification) pass
4966 Return nonzero if a change was made. */
4968 static int
4969 one_code_hoisting_pass (void)
4971 int changed = 0;
4973 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4974 compute_hash_table (&expr_hash_table);
4975 if (gcse_file)
4976 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
4978 if (expr_hash_table.n_elems > 0)
4980 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
4981 compute_code_hoist_data ();
4982 hoist_code ();
4983 free_code_hoist_mem ();
4986 free_hash_table (&expr_hash_table);
4988 return changed;
4991 /* Here we provide the things required to do store motion towards
4992 the exit. In order for this to be effective, gcse also needed to
4993 be taught how to move a load when it is kill only by a store to itself.
4995 int i;
4996 float a[10];
4998 void foo(float scale)
5000 for (i=0; i<10; i++)
5001 a[i] *= scale;
5004 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5005 the load out since its live around the loop, and stored at the bottom
5006 of the loop.
5008 The 'Load Motion' referred to and implemented in this file is
5009 an enhancement to gcse which when using edge based lcm, recognizes
5010 this situation and allows gcse to move the load out of the loop.
5012 Once gcse has hoisted the load, store motion can then push this
5013 load towards the exit, and we end up with no loads or stores of 'i'
5014 in the loop. */
5016 /* This will search the ldst list for a matching expression. If it
5017 doesn't find one, we create one and initialize it. */
5019 static struct ls_expr *
5020 ldst_entry (rtx x)
5022 int do_not_record_p = 0;
5023 struct ls_expr * ptr;
5024 unsigned int hash;
5026 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5027 NULL, /*have_reg_qty=*/false);
5029 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5030 if (ptr->hash_index == hash && expr_equiv_p (ptr->pattern, x))
5031 return ptr;
5033 ptr = xmalloc (sizeof (struct ls_expr));
5035 ptr->next = pre_ldst_mems;
5036 ptr->expr = NULL;
5037 ptr->pattern = x;
5038 ptr->pattern_regs = NULL_RTX;
5039 ptr->loads = NULL_RTX;
5040 ptr->stores = NULL_RTX;
5041 ptr->reaching_reg = NULL_RTX;
5042 ptr->invalid = 0;
5043 ptr->index = 0;
5044 ptr->hash_index = hash;
5045 pre_ldst_mems = ptr;
5047 return ptr;
5050 /* Free up an individual ldst entry. */
5052 static void
5053 free_ldst_entry (struct ls_expr * ptr)
5055 free_INSN_LIST_list (& ptr->loads);
5056 free_INSN_LIST_list (& ptr->stores);
5058 free (ptr);
5061 /* Free up all memory associated with the ldst list. */
5063 static void
5064 free_ldst_mems (void)
5066 while (pre_ldst_mems)
5068 struct ls_expr * tmp = pre_ldst_mems;
5070 pre_ldst_mems = pre_ldst_mems->next;
5072 free_ldst_entry (tmp);
5075 pre_ldst_mems = NULL;
5078 /* Dump debugging info about the ldst list. */
5080 static void
5081 print_ldst_list (FILE * file)
5083 struct ls_expr * ptr;
5085 fprintf (file, "LDST list: \n");
5087 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5089 fprintf (file, " Pattern (%3d): ", ptr->index);
5091 print_rtl (file, ptr->pattern);
5093 fprintf (file, "\n Loads : ");
5095 if (ptr->loads)
5096 print_rtl (file, ptr->loads);
5097 else
5098 fprintf (file, "(nil)");
5100 fprintf (file, "\n Stores : ");
5102 if (ptr->stores)
5103 print_rtl (file, ptr->stores);
5104 else
5105 fprintf (file, "(nil)");
5107 fprintf (file, "\n\n");
5110 fprintf (file, "\n");
5113 /* Returns 1 if X is in the list of ldst only expressions. */
5115 static struct ls_expr *
5116 find_rtx_in_ldst (rtx x)
5118 struct ls_expr * ptr;
5120 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5121 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
5122 return ptr;
5124 return NULL;
5127 /* Assign each element of the list of mems a monotonically increasing value. */
5129 static int
5130 enumerate_ldsts (void)
5132 struct ls_expr * ptr;
5133 int n = 0;
5135 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5136 ptr->index = n++;
5138 return n;
5141 /* Return first item in the list. */
5143 static inline struct ls_expr *
5144 first_ls_expr (void)
5146 return pre_ldst_mems;
5149 /* Return the next item in the list after the specified one. */
5151 static inline struct ls_expr *
5152 next_ls_expr (struct ls_expr * ptr)
5154 return ptr->next;
5157 /* Load Motion for loads which only kill themselves. */
5159 /* Return true if x is a simple MEM operation, with no registers or
5160 side effects. These are the types of loads we consider for the
5161 ld_motion list, otherwise we let the usual aliasing take care of it. */
5163 static int
5164 simple_mem (rtx x)
5166 if (! MEM_P (x))
5167 return 0;
5169 if (MEM_VOLATILE_P (x))
5170 return 0;
5172 if (GET_MODE (x) == BLKmode)
5173 return 0;
5175 /* If we are handling exceptions, we must be careful with memory references
5176 that may trap. If we are not, the behavior is undefined, so we may just
5177 continue. */
5178 if (flag_non_call_exceptions && may_trap_p (x))
5179 return 0;
5181 if (side_effects_p (x))
5182 return 0;
5184 /* Do not consider function arguments passed on stack. */
5185 if (reg_mentioned_p (stack_pointer_rtx, x))
5186 return 0;
5188 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5189 return 0;
5191 return 1;
5194 /* Make sure there isn't a buried reference in this pattern anywhere.
5195 If there is, invalidate the entry for it since we're not capable
5196 of fixing it up just yet.. We have to be sure we know about ALL
5197 loads since the aliasing code will allow all entries in the
5198 ld_motion list to not-alias itself. If we miss a load, we will get
5199 the wrong value since gcse might common it and we won't know to
5200 fix it up. */
5202 static void
5203 invalidate_any_buried_refs (rtx x)
5205 const char * fmt;
5206 int i, j;
5207 struct ls_expr * ptr;
5209 /* Invalidate it in the list. */
5210 if (MEM_P (x) && simple_mem (x))
5212 ptr = ldst_entry (x);
5213 ptr->invalid = 1;
5216 /* Recursively process the insn. */
5217 fmt = GET_RTX_FORMAT (GET_CODE (x));
5219 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5221 if (fmt[i] == 'e')
5222 invalidate_any_buried_refs (XEXP (x, i));
5223 else if (fmt[i] == 'E')
5224 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5225 invalidate_any_buried_refs (XVECEXP (x, i, j));
5229 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5230 being defined as MEM loads and stores to symbols, with no side effects
5231 and no registers in the expression. For a MEM destination, we also
5232 check that the insn is still valid if we replace the destination with a
5233 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5234 which don't match this criteria, they are invalidated and trimmed out
5235 later. */
5237 static void
5238 compute_ld_motion_mems (void)
5240 struct ls_expr * ptr;
5241 basic_block bb;
5242 rtx insn;
5244 pre_ldst_mems = NULL;
5246 FOR_EACH_BB (bb)
5248 FOR_BB_INSNS (bb, insn)
5250 if (INSN_P (insn))
5252 if (GET_CODE (PATTERN (insn)) == SET)
5254 rtx src = SET_SRC (PATTERN (insn));
5255 rtx dest = SET_DEST (PATTERN (insn));
5257 /* Check for a simple LOAD... */
5258 if (MEM_P (src) && simple_mem (src))
5260 ptr = ldst_entry (src);
5261 if (REG_P (dest))
5262 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5263 else
5264 ptr->invalid = 1;
5266 else
5268 /* Make sure there isn't a buried load somewhere. */
5269 invalidate_any_buried_refs (src);
5272 /* Check for stores. Don't worry about aliased ones, they
5273 will block any movement we might do later. We only care
5274 about this exact pattern since those are the only
5275 circumstance that we will ignore the aliasing info. */
5276 if (MEM_P (dest) && simple_mem (dest))
5278 ptr = ldst_entry (dest);
5280 if (! MEM_P (src)
5281 && GET_CODE (src) != ASM_OPERANDS
5282 /* Check for REG manually since want_to_gcse_p
5283 returns 0 for all REGs. */
5284 && can_assign_to_reg_p (src))
5285 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5286 else
5287 ptr->invalid = 1;
5290 else
5291 invalidate_any_buried_refs (PATTERN (insn));
5297 /* Remove any references that have been either invalidated or are not in the
5298 expression list for pre gcse. */
5300 static void
5301 trim_ld_motion_mems (void)
5303 struct ls_expr * * last = & pre_ldst_mems;
5304 struct ls_expr * ptr = pre_ldst_mems;
5306 while (ptr != NULL)
5308 struct expr * expr;
5310 /* Delete if entry has been made invalid. */
5311 if (! ptr->invalid)
5313 /* Delete if we cannot find this mem in the expression list. */
5314 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5316 for (expr = expr_hash_table.table[hash];
5317 expr != NULL;
5318 expr = expr->next_same_hash)
5319 if (expr_equiv_p (expr->expr, ptr->pattern))
5320 break;
5322 else
5323 expr = (struct expr *) 0;
5325 if (expr)
5327 /* Set the expression field if we are keeping it. */
5328 ptr->expr = expr;
5329 last = & ptr->next;
5330 ptr = ptr->next;
5332 else
5334 *last = ptr->next;
5335 free_ldst_entry (ptr);
5336 ptr = * last;
5340 /* Show the world what we've found. */
5341 if (gcse_file && pre_ldst_mems != NULL)
5342 print_ldst_list (gcse_file);
5345 /* This routine will take an expression which we are replacing with
5346 a reaching register, and update any stores that are needed if
5347 that expression is in the ld_motion list. Stores are updated by
5348 copying their SRC to the reaching register, and then storing
5349 the reaching register into the store location. These keeps the
5350 correct value in the reaching register for the loads. */
5352 static void
5353 update_ld_motion_stores (struct expr * expr)
5355 struct ls_expr * mem_ptr;
5357 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5359 /* We can try to find just the REACHED stores, but is shouldn't
5360 matter to set the reaching reg everywhere... some might be
5361 dead and should be eliminated later. */
5363 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5364 where reg is the reaching reg used in the load. We checked in
5365 compute_ld_motion_mems that we can replace (set mem expr) with
5366 (set reg expr) in that insn. */
5367 rtx list = mem_ptr->stores;
5369 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5371 rtx insn = XEXP (list, 0);
5372 rtx pat = PATTERN (insn);
5373 rtx src = SET_SRC (pat);
5374 rtx reg = expr->reaching_reg;
5375 rtx copy, new;
5377 /* If we've already copied it, continue. */
5378 if (expr->reaching_reg == src)
5379 continue;
5381 if (gcse_file)
5383 fprintf (gcse_file, "PRE: store updated with reaching reg ");
5384 print_rtl (gcse_file, expr->reaching_reg);
5385 fprintf (gcse_file, ":\n ");
5386 print_inline_rtx (gcse_file, insn, 8);
5387 fprintf (gcse_file, "\n");
5390 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5391 new = emit_insn_before (copy, insn);
5392 record_one_set (REGNO (reg), new);
5393 SET_SRC (pat) = reg;
5395 /* un-recognize this pattern since it's probably different now. */
5396 INSN_CODE (insn) = -1;
5397 gcse_create_count++;
5402 /* Store motion code. */
5404 #define ANTIC_STORE_LIST(x) ((x)->loads)
5405 #define AVAIL_STORE_LIST(x) ((x)->stores)
5406 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5408 /* This is used to communicate the target bitvector we want to use in the
5409 reg_set_info routine when called via the note_stores mechanism. */
5410 static int * regvec;
5412 /* And current insn, for the same routine. */
5413 static rtx compute_store_table_current_insn;
5415 /* Used in computing the reverse edge graph bit vectors. */
5416 static sbitmap * st_antloc;
5418 /* Global holding the number of store expressions we are dealing with. */
5419 static int num_stores;
5421 /* Checks to set if we need to mark a register set. Called from
5422 note_stores. */
5424 static void
5425 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5426 void *data)
5428 sbitmap bb_reg = data;
5430 if (GET_CODE (dest) == SUBREG)
5431 dest = SUBREG_REG (dest);
5433 if (REG_P (dest))
5435 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5436 if (bb_reg)
5437 SET_BIT (bb_reg, REGNO (dest));
5441 /* Clear any mark that says that this insn sets dest. Called from
5442 note_stores. */
5444 static void
5445 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5446 void *data)
5448 int *dead_vec = data;
5450 if (GET_CODE (dest) == SUBREG)
5451 dest = SUBREG_REG (dest);
5453 if (REG_P (dest) &&
5454 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5455 dead_vec[REGNO (dest)] = 0;
5458 /* Return zero if some of the registers in list X are killed
5459 due to set of registers in bitmap REGS_SET. */
5461 static bool
5462 store_ops_ok (rtx x, int *regs_set)
5464 rtx reg;
5466 for (; x; x = XEXP (x, 1))
5468 reg = XEXP (x, 0);
5469 if (regs_set[REGNO(reg)])
5470 return false;
5473 return true;
5476 /* Returns a list of registers mentioned in X. */
5477 static rtx
5478 extract_mentioned_regs (rtx x)
5480 return extract_mentioned_regs_helper (x, NULL_RTX);
5483 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5484 registers. */
5485 static rtx
5486 extract_mentioned_regs_helper (rtx x, rtx accum)
5488 int i;
5489 enum rtx_code code;
5490 const char * fmt;
5492 /* Repeat is used to turn tail-recursion into iteration. */
5493 repeat:
5495 if (x == 0)
5496 return accum;
5498 code = GET_CODE (x);
5499 switch (code)
5501 case REG:
5502 return alloc_EXPR_LIST (0, x, accum);
5504 case MEM:
5505 x = XEXP (x, 0);
5506 goto repeat;
5508 case PRE_DEC:
5509 case PRE_INC:
5510 case POST_DEC:
5511 case POST_INC:
5512 /* We do not run this function with arguments having side effects. */
5513 gcc_unreachable ();
5515 case PC:
5516 case CC0: /*FIXME*/
5517 case CONST:
5518 case CONST_INT:
5519 case CONST_DOUBLE:
5520 case CONST_VECTOR:
5521 case SYMBOL_REF:
5522 case LABEL_REF:
5523 case ADDR_VEC:
5524 case ADDR_DIFF_VEC:
5525 return accum;
5527 default:
5528 break;
5531 i = GET_RTX_LENGTH (code) - 1;
5532 fmt = GET_RTX_FORMAT (code);
5534 for (; i >= 0; i--)
5536 if (fmt[i] == 'e')
5538 rtx tem = XEXP (x, i);
5540 /* If we are about to do the last recursive call
5541 needed at this level, change it into iteration. */
5542 if (i == 0)
5544 x = tem;
5545 goto repeat;
5548 accum = extract_mentioned_regs_helper (tem, accum);
5550 else if (fmt[i] == 'E')
5552 int j;
5554 for (j = 0; j < XVECLEN (x, i); j++)
5555 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5559 return accum;
5562 /* Determine whether INSN is MEM store pattern that we will consider moving.
5563 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5564 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5565 including) the insn in this basic block. We must be passing through BB from
5566 head to end, as we are using this fact to speed things up.
5568 The results are stored this way:
5570 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5571 -- if the processed expression is not anticipatable, NULL_RTX is added
5572 there instead, so that we can use it as indicator that no further
5573 expression of this type may be anticipatable
5574 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5575 consequently, all of them but this head are dead and may be deleted.
5576 -- if the expression is not available, the insn due to that it fails to be
5577 available is stored in reaching_reg.
5579 The things are complicated a bit by fact that there already may be stores
5580 to the same MEM from other blocks; also caller must take care of the
5581 necessary cleanup of the temporary markers after end of the basic block.
5584 static void
5585 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5587 struct ls_expr * ptr;
5588 rtx dest, set, tmp;
5589 int check_anticipatable, check_available;
5590 basic_block bb = BLOCK_FOR_INSN (insn);
5592 set = single_set (insn);
5593 if (!set)
5594 return;
5596 dest = SET_DEST (set);
5598 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5599 || GET_MODE (dest) == BLKmode)
5600 return;
5602 if (side_effects_p (dest))
5603 return;
5605 /* If we are handling exceptions, we must be careful with memory references
5606 that may trap. If we are not, the behavior is undefined, so we may just
5607 continue. */
5608 if (flag_non_call_exceptions && may_trap_p (dest))
5609 return;
5611 /* Even if the destination cannot trap, the source may. In this case we'd
5612 need to handle updating the REG_EH_REGION note. */
5613 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5614 return;
5616 ptr = ldst_entry (dest);
5617 if (!ptr->pattern_regs)
5618 ptr->pattern_regs = extract_mentioned_regs (dest);
5620 /* Do not check for anticipatability if we either found one anticipatable
5621 store already, or tested for one and found out that it was killed. */
5622 check_anticipatable = 0;
5623 if (!ANTIC_STORE_LIST (ptr))
5624 check_anticipatable = 1;
5625 else
5627 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5628 if (tmp != NULL_RTX
5629 && BLOCK_FOR_INSN (tmp) != bb)
5630 check_anticipatable = 1;
5632 if (check_anticipatable)
5634 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5635 tmp = NULL_RTX;
5636 else
5637 tmp = insn;
5638 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5639 ANTIC_STORE_LIST (ptr));
5642 /* It is not necessary to check whether store is available if we did
5643 it successfully before; if we failed before, do not bother to check
5644 until we reach the insn that caused us to fail. */
5645 check_available = 0;
5646 if (!AVAIL_STORE_LIST (ptr))
5647 check_available = 1;
5648 else
5650 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5651 if (BLOCK_FOR_INSN (tmp) != bb)
5652 check_available = 1;
5654 if (check_available)
5656 /* Check that we have already reached the insn at that the check
5657 failed last time. */
5658 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5660 for (tmp = BB_END (bb);
5661 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5662 tmp = PREV_INSN (tmp))
5663 continue;
5664 if (tmp == insn)
5665 check_available = 0;
5667 else
5668 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5669 bb, regs_set_after,
5670 &LAST_AVAIL_CHECK_FAILURE (ptr));
5672 if (!check_available)
5673 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5676 /* Find available and anticipatable stores. */
5678 static int
5679 compute_store_table (void)
5681 int ret;
5682 basic_block bb;
5683 unsigned regno;
5684 rtx insn, pat, tmp;
5685 int *last_set_in, *already_set;
5686 struct ls_expr * ptr, **prev_next_ptr_ptr;
5688 max_gcse_regno = max_reg_num ();
5690 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5691 max_gcse_regno);
5692 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5693 pre_ldst_mems = 0;
5694 last_set_in = xcalloc (max_gcse_regno, sizeof (int));
5695 already_set = xmalloc (sizeof (int) * max_gcse_regno);
5697 /* Find all the stores we care about. */
5698 FOR_EACH_BB (bb)
5700 /* First compute the registers set in this block. */
5701 regvec = last_set_in;
5703 FOR_BB_INSNS (bb, insn)
5705 if (! INSN_P (insn))
5706 continue;
5708 if (CALL_P (insn))
5710 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5711 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5713 last_set_in[regno] = INSN_UID (insn);
5714 SET_BIT (reg_set_in_block[bb->index], regno);
5718 pat = PATTERN (insn);
5719 compute_store_table_current_insn = insn;
5720 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5723 /* Now find the stores. */
5724 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5725 regvec = already_set;
5726 FOR_BB_INSNS (bb, insn)
5728 if (! INSN_P (insn))
5729 continue;
5731 if (CALL_P (insn))
5733 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5734 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5735 already_set[regno] = 1;
5738 pat = PATTERN (insn);
5739 note_stores (pat, reg_set_info, NULL);
5741 /* Now that we've marked regs, look for stores. */
5742 find_moveable_store (insn, already_set, last_set_in);
5744 /* Unmark regs that are no longer set. */
5745 compute_store_table_current_insn = insn;
5746 note_stores (pat, reg_clear_last_set, last_set_in);
5747 if (CALL_P (insn))
5749 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5750 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
5751 && last_set_in[regno] == INSN_UID (insn))
5752 last_set_in[regno] = 0;
5756 #ifdef ENABLE_CHECKING
5757 /* last_set_in should now be all-zero. */
5758 for (regno = 0; regno < max_gcse_regno; regno++)
5759 gcc_assert (!last_set_in[regno]);
5760 #endif
5762 /* Clear temporary marks. */
5763 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5765 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5766 if (ANTIC_STORE_LIST (ptr)
5767 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5768 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5772 /* Remove the stores that are not available anywhere, as there will
5773 be no opportunity to optimize them. */
5774 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5775 ptr != NULL;
5776 ptr = *prev_next_ptr_ptr)
5778 if (!AVAIL_STORE_LIST (ptr))
5780 *prev_next_ptr_ptr = ptr->next;
5781 free_ldst_entry (ptr);
5783 else
5784 prev_next_ptr_ptr = &ptr->next;
5787 ret = enumerate_ldsts ();
5789 if (gcse_file)
5791 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
5792 print_ldst_list (gcse_file);
5795 free (last_set_in);
5796 free (already_set);
5797 return ret;
5800 /* Check to see if the load X is aliased with STORE_PATTERN.
5801 AFTER is true if we are checking the case when STORE_PATTERN occurs
5802 after the X. */
5804 static bool
5805 load_kills_store (rtx x, rtx store_pattern, int after)
5807 if (after)
5808 return anti_dependence (x, store_pattern);
5809 else
5810 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5811 rtx_addr_varies_p);
5814 /* Go through the entire insn X, looking for any loads which might alias
5815 STORE_PATTERN. Return true if found.
5816 AFTER is true if we are checking the case when STORE_PATTERN occurs
5817 after the insn X. */
5819 static bool
5820 find_loads (rtx x, rtx store_pattern, int after)
5822 const char * fmt;
5823 int i, j;
5824 int ret = false;
5826 if (!x)
5827 return false;
5829 if (GET_CODE (x) == SET)
5830 x = SET_SRC (x);
5832 if (MEM_P (x))
5834 if (load_kills_store (x, store_pattern, after))
5835 return true;
5838 /* Recursively process the insn. */
5839 fmt = GET_RTX_FORMAT (GET_CODE (x));
5841 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5843 if (fmt[i] == 'e')
5844 ret |= find_loads (XEXP (x, i), store_pattern, after);
5845 else if (fmt[i] == 'E')
5846 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5847 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5849 return ret;
5852 /* Check if INSN kills the store pattern X (is aliased with it).
5853 AFTER is true if we are checking the case when store X occurs
5854 after the insn. Return true if it does. */
5856 static bool
5857 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5859 rtx reg, base, note;
5861 if (!INSN_P (insn))
5862 return false;
5864 if (CALL_P (insn))
5866 /* A normal or pure call might read from pattern,
5867 but a const call will not. */
5868 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5869 return true;
5871 /* But even a const call reads its parameters. Check whether the
5872 base of some of registers used in mem is stack pointer. */
5873 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5875 base = find_base_term (XEXP (reg, 0));
5876 if (!base
5877 || (GET_CODE (base) == ADDRESS
5878 && GET_MODE (base) == Pmode
5879 && XEXP (base, 0) == stack_pointer_rtx))
5880 return true;
5883 return false;
5886 if (GET_CODE (PATTERN (insn)) == SET)
5888 rtx pat = PATTERN (insn);
5889 rtx dest = SET_DEST (pat);
5891 if (GET_CODE (dest) == ZERO_EXTRACT)
5892 dest = XEXP (dest, 0);
5894 /* Check for memory stores to aliased objects. */
5895 if (MEM_P (dest)
5896 && !expr_equiv_p (dest, x))
5898 if (after)
5900 if (output_dependence (dest, x))
5901 return true;
5903 else
5905 if (output_dependence (x, dest))
5906 return true;
5909 if (find_loads (SET_SRC (pat), x, after))
5910 return true;
5912 else if (find_loads (PATTERN (insn), x, after))
5913 return true;
5915 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5916 location aliased with X, then this insn kills X. */
5917 note = find_reg_equal_equiv_note (insn);
5918 if (! note)
5919 return false;
5920 note = XEXP (note, 0);
5922 /* However, if the note represents a must alias rather than a may
5923 alias relationship, then it does not kill X. */
5924 if (expr_equiv_p (note, x))
5925 return false;
5927 /* See if there are any aliased loads in the note. */
5928 return find_loads (note, x, after);
5931 /* Returns true if the expression X is loaded or clobbered on or after INSN
5932 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
5933 or after the insn. X_REGS is list of registers mentioned in X. If the store
5934 is killed, return the last insn in that it occurs in FAIL_INSN. */
5936 static bool
5937 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
5938 int *regs_set_after, rtx *fail_insn)
5940 rtx last = BB_END (bb), act;
5942 if (!store_ops_ok (x_regs, regs_set_after))
5944 /* We do not know where it will happen. */
5945 if (fail_insn)
5946 *fail_insn = NULL_RTX;
5947 return true;
5950 /* Scan from the end, so that fail_insn is determined correctly. */
5951 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
5952 if (store_killed_in_insn (x, x_regs, act, false))
5954 if (fail_insn)
5955 *fail_insn = act;
5956 return true;
5959 return false;
5962 /* Returns true if the expression X is loaded or clobbered on or before INSN
5963 within basic block BB. X_REGS is list of registers mentioned in X.
5964 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
5965 static bool
5966 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
5967 int *regs_set_before)
5969 rtx first = BB_HEAD (bb);
5971 if (!store_ops_ok (x_regs, regs_set_before))
5972 return true;
5974 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
5975 if (store_killed_in_insn (x, x_regs, insn, true))
5976 return true;
5978 return false;
5981 /* Fill in available, anticipatable, transparent and kill vectors in
5982 STORE_DATA, based on lists of available and anticipatable stores. */
5983 static void
5984 build_store_vectors (void)
5986 basic_block bb;
5987 int *regs_set_in_block;
5988 rtx insn, st;
5989 struct ls_expr * ptr;
5990 unsigned regno;
5992 /* Build the gen_vector. This is any store in the table which is not killed
5993 by aliasing later in its block. */
5994 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
5995 sbitmap_vector_zero (ae_gen, last_basic_block);
5997 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
5998 sbitmap_vector_zero (st_antloc, last_basic_block);
6000 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6002 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6004 insn = XEXP (st, 0);
6005 bb = BLOCK_FOR_INSN (insn);
6007 /* If we've already seen an available expression in this block,
6008 we can delete this one (It occurs earlier in the block). We'll
6009 copy the SRC expression to an unused register in case there
6010 are any side effects. */
6011 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6013 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6014 if (gcse_file)
6015 fprintf (gcse_file, "Removing redundant store:\n");
6016 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6017 continue;
6019 SET_BIT (ae_gen[bb->index], ptr->index);
6022 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6024 insn = XEXP (st, 0);
6025 bb = BLOCK_FOR_INSN (insn);
6026 SET_BIT (st_antloc[bb->index], ptr->index);
6030 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6031 sbitmap_vector_zero (ae_kill, last_basic_block);
6033 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6034 sbitmap_vector_zero (transp, last_basic_block);
6035 regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);
6037 FOR_EACH_BB (bb)
6039 for (regno = 0; regno < max_gcse_regno; regno++)
6040 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6042 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6044 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6045 bb, regs_set_in_block, NULL))
6047 /* It should not be necessary to consider the expression
6048 killed if it is both anticipatable and available. */
6049 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6050 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6051 SET_BIT (ae_kill[bb->index], ptr->index);
6053 else
6054 SET_BIT (transp[bb->index], ptr->index);
6058 free (regs_set_in_block);
6060 if (gcse_file)
6062 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
6063 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
6064 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
6065 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
6069 /* Insert an instruction at the beginning of a basic block, and update
6070 the BB_HEAD if needed. */
6072 static void
6073 insert_insn_start_bb (rtx insn, basic_block bb)
6075 /* Insert at start of successor block. */
6076 rtx prev = PREV_INSN (BB_HEAD (bb));
6077 rtx before = BB_HEAD (bb);
6078 while (before != 0)
6080 if (! LABEL_P (before)
6081 && (! NOTE_P (before)
6082 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6083 break;
6084 prev = before;
6085 if (prev == BB_END (bb))
6086 break;
6087 before = NEXT_INSN (before);
6090 insn = emit_insn_after_noloc (insn, prev);
6092 if (gcse_file)
6094 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6095 bb->index);
6096 print_inline_rtx (gcse_file, insn, 6);
6097 fprintf (gcse_file, "\n");
6101 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6102 the memory reference, and E is the edge to insert it on. Returns nonzero
6103 if an edge insertion was performed. */
6105 static int
6106 insert_store (struct ls_expr * expr, edge e)
6108 rtx reg, insn;
6109 basic_block bb;
6110 edge tmp;
6111 edge_iterator ei;
6113 /* We did all the deleted before this insert, so if we didn't delete a
6114 store, then we haven't set the reaching reg yet either. */
6115 if (expr->reaching_reg == NULL_RTX)
6116 return 0;
6118 if (e->flags & EDGE_FAKE)
6119 return 0;
6121 reg = expr->reaching_reg;
6122 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6124 /* If we are inserting this expression on ALL predecessor edges of a BB,
6125 insert it at the start of the BB, and reset the insert bits on the other
6126 edges so we don't try to insert it on the other edges. */
6127 bb = e->dest;
6128 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6129 if (!(tmp->flags & EDGE_FAKE))
6131 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6133 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6134 if (! TEST_BIT (pre_insert_map[index], expr->index))
6135 break;
6138 /* If tmp is NULL, we found an insertion on every edge, blank the
6139 insertion vector for these edges, and insert at the start of the BB. */
6140 if (!tmp && bb != EXIT_BLOCK_PTR)
6142 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6144 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6145 RESET_BIT (pre_insert_map[index], expr->index);
6147 insert_insn_start_bb (insn, bb);
6148 return 0;
6151 /* We can't put stores in the front of blocks pointed to by abnormal
6152 edges since that may put a store where one didn't used to be. */
6153 gcc_assert (!(e->flags & EDGE_ABNORMAL));
6155 insert_insn_on_edge (insn, e);
6157 if (gcse_file)
6159 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6160 e->src->index, e->dest->index);
6161 print_inline_rtx (gcse_file, insn, 6);
6162 fprintf (gcse_file, "\n");
6165 return 1;
6168 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6169 memory location in SMEXPR set in basic block BB.
6171 This could be rather expensive. */
6173 static void
6174 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6176 edge_iterator *stack, ei;
6177 int sp;
6178 edge act;
6179 sbitmap visited = sbitmap_alloc (last_basic_block);
6180 rtx last, insn, note;
6181 rtx mem = smexpr->pattern;
6183 stack = xmalloc (sizeof (edge_iterator) * n_basic_blocks);
6184 sp = 0;
6185 ei = ei_start (bb->succs);
6187 sbitmap_zero (visited);
6189 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6190 while (1)
6192 if (!act)
6194 if (!sp)
6196 free (stack);
6197 sbitmap_free (visited);
6198 return;
6200 act = ei_edge (stack[--sp]);
6202 bb = act->dest;
6204 if (bb == EXIT_BLOCK_PTR
6205 || TEST_BIT (visited, bb->index))
6207 if (!ei_end_p (ei))
6208 ei_next (&ei);
6209 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6210 continue;
6212 SET_BIT (visited, bb->index);
6214 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6216 for (last = ANTIC_STORE_LIST (smexpr);
6217 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6218 last = XEXP (last, 1))
6219 continue;
6220 last = XEXP (last, 0);
6222 else
6223 last = NEXT_INSN (BB_END (bb));
6225 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6226 if (INSN_P (insn))
6228 note = find_reg_equal_equiv_note (insn);
6229 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6230 continue;
6232 if (gcse_file)
6233 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6234 INSN_UID (insn));
6235 remove_note (insn, note);
6238 if (!ei_end_p (ei))
6239 ei_next (&ei);
6240 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6242 if (EDGE_COUNT (bb->succs) > 0)
6244 if (act)
6245 stack[sp++] = ei;
6246 ei = ei_start (bb->succs);
6247 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6252 /* This routine will replace a store with a SET to a specified register. */
6254 static void
6255 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6257 rtx insn, mem, note, set, ptr, pair;
6259 mem = smexpr->pattern;
6260 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6261 insn = emit_insn_after (insn, del);
6263 if (gcse_file)
6265 fprintf (gcse_file,
6266 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6267 print_inline_rtx (gcse_file, del, 6);
6268 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6269 print_inline_rtx (gcse_file, insn, 6);
6270 fprintf (gcse_file, "\n");
6273 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6274 if (XEXP (ptr, 0) == del)
6276 XEXP (ptr, 0) = insn;
6277 break;
6280 /* Move the notes from the deleted insn to its replacement, and patch
6281 up the LIBCALL notes. */
6282 REG_NOTES (insn) = REG_NOTES (del);
6284 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6285 if (note)
6287 pair = XEXP (note, 0);
6288 note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6289 XEXP (note, 0) = insn;
6291 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6292 if (note)
6294 pair = XEXP (note, 0);
6295 note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6296 XEXP (note, 0) = insn;
6299 delete_insn (del);
6301 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6302 they are no longer accurate provided that they are reached by this
6303 definition, so drop them. */
6304 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6305 if (INSN_P (insn))
6307 set = single_set (insn);
6308 if (!set)
6309 continue;
6310 if (expr_equiv_p (SET_DEST (set), mem))
6311 return;
6312 note = find_reg_equal_equiv_note (insn);
6313 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6314 continue;
6316 if (gcse_file)
6317 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6318 INSN_UID (insn));
6319 remove_note (insn, note);
6321 remove_reachable_equiv_notes (bb, smexpr);
6325 /* Delete a store, but copy the value that would have been stored into
6326 the reaching_reg for later storing. */
6328 static void
6329 delete_store (struct ls_expr * expr, basic_block bb)
6331 rtx reg, i, del;
6333 if (expr->reaching_reg == NULL_RTX)
6334 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6336 reg = expr->reaching_reg;
6338 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6340 del = XEXP (i, 0);
6341 if (BLOCK_FOR_INSN (del) == bb)
6343 /* We know there is only one since we deleted redundant
6344 ones during the available computation. */
6345 replace_store_insn (reg, del, bb, expr);
6346 break;
6351 /* Free memory used by store motion. */
6353 static void
6354 free_store_memory (void)
6356 free_ldst_mems ();
6358 if (ae_gen)
6359 sbitmap_vector_free (ae_gen);
6360 if (ae_kill)
6361 sbitmap_vector_free (ae_kill);
6362 if (transp)
6363 sbitmap_vector_free (transp);
6364 if (st_antloc)
6365 sbitmap_vector_free (st_antloc);
6366 if (pre_insert_map)
6367 sbitmap_vector_free (pre_insert_map);
6368 if (pre_delete_map)
6369 sbitmap_vector_free (pre_delete_map);
6370 if (reg_set_in_block)
6371 sbitmap_vector_free (reg_set_in_block);
6373 ae_gen = ae_kill = transp = st_antloc = NULL;
6374 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6377 /* Perform store motion. Much like gcse, except we move expressions the
6378 other way by looking at the flowgraph in reverse. */
6380 static void
6381 store_motion (void)
6383 basic_block bb;
6384 int x;
6385 struct ls_expr * ptr;
6386 int update_flow = 0;
6388 if (gcse_file)
6390 fprintf (gcse_file, "before store motion\n");
6391 print_rtl (gcse_file, get_insns ());
6394 init_alias_analysis ();
6396 /* Find all the available and anticipatable stores. */
6397 num_stores = compute_store_table ();
6398 if (num_stores == 0)
6400 sbitmap_vector_free (reg_set_in_block);
6401 end_alias_analysis ();
6402 return;
6405 /* Now compute kill & transp vectors. */
6406 build_store_vectors ();
6407 add_noreturn_fake_exit_edges ();
6408 connect_infinite_loops_to_exit ();
6410 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6411 st_antloc, ae_kill, &pre_insert_map,
6412 &pre_delete_map);
6414 /* Now we want to insert the new stores which are going to be needed. */
6415 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6417 /* If any of the edges we have above are abnormal, we can't move this
6418 store. */
6419 for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
6420 if (TEST_BIT (pre_insert_map[x], ptr->index)
6421 && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
6422 break;
6424 if (x >= 0)
6426 if (gcse_file != NULL)
6427 fprintf (gcse_file,
6428 "Can't replace store %d: abnormal edge from %d to %d\n",
6429 ptr->index, INDEX_EDGE (edge_list, x)->src->index,
6430 INDEX_EDGE (edge_list, x)->dest->index);
6431 continue;
6434 /* Now we want to insert the new stores which are going to be needed. */
6436 FOR_EACH_BB (bb)
6437 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6438 delete_store (ptr, bb);
6440 for (x = 0; x < NUM_EDGES (edge_list); x++)
6441 if (TEST_BIT (pre_insert_map[x], ptr->index))
6442 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6445 if (update_flow)
6446 commit_edge_insertions ();
6448 free_store_memory ();
6449 free_edge_list (edge_list);
6450 remove_fake_exit_edges ();
6451 end_alias_analysis ();
6455 /* Entry point for jump bypassing optimization pass. */
6458 bypass_jumps (FILE *file)
6460 int changed;
6462 /* We do not construct an accurate cfg in functions which call
6463 setjmp, so just punt to be safe. */
6464 if (current_function_calls_setjmp)
6465 return 0;
6467 /* For calling dump_foo fns from gdb. */
6468 debug_stderr = stderr;
6469 gcse_file = file;
6471 /* Identify the basic block information for this function, including
6472 successors and predecessors. */
6473 max_gcse_regno = max_reg_num ();
6475 if (file)
6476 dump_flow_info (file);
6478 /* Return if there's nothing to do, or it is too expensive. */
6479 if (n_basic_blocks <= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6480 return 0;
6482 gcc_obstack_init (&gcse_obstack);
6483 bytes_used = 0;
6485 /* We need alias. */
6486 init_alias_analysis ();
6488 /* Record where pseudo-registers are set. This data is kept accurate
6489 during each pass. ??? We could also record hard-reg information here
6490 [since it's unchanging], however it is currently done during hash table
6491 computation.
6493 It may be tempting to compute MEM set information here too, but MEM sets
6494 will be subject to code motion one day and thus we need to compute
6495 information about memory sets when we build the hash tables. */
6497 alloc_reg_set_mem (max_gcse_regno);
6498 compute_sets ();
6500 max_gcse_regno = max_reg_num ();
6501 alloc_gcse_mem ();
6502 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, true, true);
6503 free_gcse_mem ();
6505 if (file)
6507 fprintf (file, "BYPASS of %s: %d basic blocks, ",
6508 current_function_name (), n_basic_blocks);
6509 fprintf (file, "%d bytes\n\n", bytes_used);
6512 obstack_free (&gcse_obstack, NULL);
6513 free_reg_set_mem ();
6515 /* We are finished with alias. */
6516 end_alias_analysis ();
6517 allocate_reg_info (max_reg_num (), FALSE, FALSE);
6519 return changed;
6522 /* Return true if the graph is too expensive to optimize. PASS is the
6523 optimization about to be performed. */
6525 static bool
6526 is_too_expensive (const char *pass)
6528 /* Trying to perform global optimizations on flow graphs which have
6529 a high connectivity will take a long time and is unlikely to be
6530 particularly useful.
6532 In normal circumstances a cfg should have about twice as many
6533 edges as blocks. But we do not want to punish small functions
6534 which have a couple switch statements. Rather than simply
6535 threshold the number of blocks, uses something with a more
6536 graceful degradation. */
6537 if (n_edges > 20000 + n_basic_blocks * 4)
6539 warning (OPT_Wdisabled_optimization,
6540 "%s: %d basic blocks and %d edges/basic block",
6541 pass, n_basic_blocks, n_edges / n_basic_blocks);
6543 return true;
6546 /* If allocating memory for the cprop bitmap would take up too much
6547 storage it's better just to disable the optimization. */
6548 if ((n_basic_blocks
6549 * SBITMAP_SET_SIZE (max_reg_num ())
6550 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6552 warning (OPT_Wdisabled_optimization,
6553 "%s: %d basic blocks and %d registers",
6554 pass, n_basic_blocks, max_reg_num ());
6556 return true;
6559 return false;
6562 #include "gt-gcse.h"