1 /* Tail merging for gimple.
2 Copyright (C) 2011-2014 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
33 const charD.1 * restrict outputFileName.0D.3914;
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
61 # SUCC: 7 [100.0%] (fallthru,exec)
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
83 # SUCC: 7 [100.0%] (fallthru,exec)
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
101 # VUSE <.MEMD.3923_11>
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
159 1. The pass first determines all groups of blocks with the same successor
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
180 This 'pass' is not a stand-alone gimple pass, but runs as part of
181 pass_pre, in order to share the value numbering.
186 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
190 #include "coretypes.h"
193 #include "stor-layout.h"
194 #include "trans-mem.h"
196 #include "basic-block.h"
198 #include "function.h"
199 #include "hash-table.h"
200 #include "tree-ssa-alias.h"
201 #include "internal-fn.h"
203 #include "gimple-expr.h"
206 #include "gimple-iterator.h"
207 #include "gimple-ssa.h"
208 #include "tree-cfg.h"
209 #include "tree-phinodes.h"
210 #include "ssa-iterators.h"
211 #include "tree-into-ssa.h"
213 #include "gimple-pretty-print.h"
214 #include "tree-ssa-sccvn.h"
215 #include "tree-dump.h"
217 #include "tree-pass.h"
218 #include "trans-mem.h"
220 /* Describes a group of bbs with the same successors. The successor bbs are
221 cached in succs, and the successor edge flags are cached in succ_flags.
222 If a bb has the EDGE_TRUE/VALSE_VALUE flags swapped compared to succ_flags,
223 it's marked in inverse.
224 Additionally, the hash value for the struct is cached in hashval, and
225 in_worklist indicates whether it's currently part of worklist. */
229 /* The bbs that have the same successor bbs. */
231 /* The successor bbs. */
233 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
236 /* The edge flags for each of the successor bbs. */
238 /* Indicates whether the struct is currently in the worklist. */
240 /* The hash value of the struct. */
243 /* hash_table support. */
244 typedef same_succ_def value_type
;
245 typedef same_succ_def compare_type
;
246 static inline hashval_t
hash (const value_type
*);
247 static int equal (const value_type
*, const compare_type
*);
248 static void remove (value_type
*);
250 typedef struct same_succ_def
*same_succ
;
251 typedef const struct same_succ_def
*const_same_succ
;
253 /* hash routine for hash_table support, returns hashval of E. */
256 same_succ_def::hash (const value_type
*e
)
261 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
263 struct bb_cluster_def
265 /* The bbs in the cluster. */
267 /* The preds of the bbs in the cluster. */
269 /* Index in all_clusters vector. */
271 /* The bb to replace the cluster with. */
274 typedef struct bb_cluster_def
*bb_cluster
;
275 typedef const struct bb_cluster_def
*const_bb_cluster
;
281 /* The number of non-debug statements in the bb. */
283 /* The same_succ that this bb is a member of. */
284 same_succ bb_same_succ
;
285 /* The cluster that this bb is a member of. */
287 /* The vop state at the exit of a bb. This is shortlived data, used to
288 communicate data between update_block_by and update_vuses. */
290 /* The bb that either contains or is dominated by the dependencies of the
295 /* Macros to access the fields of struct aux_bb_info. */
297 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
298 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
299 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
300 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
301 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
303 /* Returns true if the only effect a statement STMT has, is to define locally
307 stmt_local_def (gimple stmt
)
309 basic_block bb
, def_bb
;
310 imm_use_iterator iter
;
315 if (gimple_has_side_effects (stmt
)
316 || stmt_could_throw_p (stmt
)
317 || gimple_vdef (stmt
) != NULL_TREE
)
320 def_p
= SINGLE_SSA_DEF_OPERAND (stmt
, SSA_OP_DEF
);
324 val
= DEF_FROM_PTR (def_p
);
325 if (val
== NULL_TREE
|| TREE_CODE (val
) != SSA_NAME
)
328 def_bb
= gimple_bb (stmt
);
330 FOR_EACH_IMM_USE_FAST (use_p
, iter
, val
)
332 if (is_gimple_debug (USE_STMT (use_p
)))
334 bb
= gimple_bb (USE_STMT (use_p
));
338 if (gimple_code (USE_STMT (use_p
)) == GIMPLE_PHI
339 && EDGE_PRED (bb
, PHI_ARG_INDEX_FROM_USE (use_p
))->src
== def_bb
)
348 /* Let GSI skip forwards over local defs. */
351 gsi_advance_fw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
)
357 if (gsi_end_p (*gsi
))
359 stmt
= gsi_stmt (*gsi
);
360 if (!stmt_local_def (stmt
))
362 gsi_next_nondebug (gsi
);
366 /* VAL1 and VAL2 are either:
367 - uses in BB1 and BB2, or
368 - phi alternatives for BB1 and BB2.
369 Return true if the uses have the same gvn value. */
372 gvn_uses_equal (tree val1
, tree val2
)
374 gcc_checking_assert (val1
!= NULL_TREE
&& val2
!= NULL_TREE
);
379 if (vn_valueize (val1
) != vn_valueize (val2
))
382 return ((TREE_CODE (val1
) == SSA_NAME
|| CONSTANT_CLASS_P (val1
))
383 && (TREE_CODE (val2
) == SSA_NAME
|| CONSTANT_CLASS_P (val2
)));
386 /* Prints E to FILE. */
389 same_succ_print (FILE *file
, const same_succ e
)
392 bitmap_print (file
, e
->bbs
, "bbs:", "\n");
393 bitmap_print (file
, e
->succs
, "succs:", "\n");
394 bitmap_print (file
, e
->inverse
, "inverse:", "\n");
395 fprintf (file
, "flags:");
396 for (i
= 0; i
< e
->succ_flags
.length (); ++i
)
397 fprintf (file
, " %x", e
->succ_flags
[i
]);
398 fprintf (file
, "\n");
401 /* Prints same_succ VE to VFILE. */
404 ssa_same_succ_print_traverse (same_succ
*pe
, FILE *file
)
406 const same_succ e
= *pe
;
407 same_succ_print (file
, e
);
411 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
414 update_dep_bb (basic_block use_bb
, tree val
)
419 if (TREE_CODE (val
) != SSA_NAME
)
422 /* Skip use of global def. */
423 if (SSA_NAME_IS_DEFAULT_DEF (val
))
426 /* Skip use of local def. */
427 dep_bb
= gimple_bb (SSA_NAME_DEF_STMT (val
));
428 if (dep_bb
== use_bb
)
431 if (BB_DEP_BB (use_bb
) == NULL
432 || dominated_by_p (CDI_DOMINATORS
, dep_bb
, BB_DEP_BB (use_bb
)))
433 BB_DEP_BB (use_bb
) = dep_bb
;
436 /* Update BB_DEP_BB, given the dependencies in STMT. */
439 stmt_update_dep_bb (gimple stmt
)
444 FOR_EACH_SSA_USE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
445 update_dep_bb (gimple_bb (stmt
), USE_FROM_PTR (use
));
448 /* Calculates hash value for same_succ VE. */
451 same_succ_hash (const_same_succ e
)
453 hashval_t hashval
= bitmap_hash (e
->succs
);
456 unsigned int first
= bitmap_first_set_bit (e
->bbs
);
457 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, first
);
459 gimple_stmt_iterator gsi
;
465 for (gsi
= gsi_start_nondebug_bb (bb
);
466 !gsi_end_p (gsi
); gsi_next_nondebug (&gsi
))
468 stmt
= gsi_stmt (gsi
);
469 stmt_update_dep_bb (stmt
);
470 if (stmt_local_def (stmt
))
474 hashval
= iterative_hash_hashval_t (gimple_code (stmt
), hashval
);
475 if (is_gimple_assign (stmt
))
476 hashval
= iterative_hash_hashval_t (gimple_assign_rhs_code (stmt
),
478 if (!is_gimple_call (stmt
))
480 if (gimple_call_internal_p (stmt
))
481 hashval
= iterative_hash_hashval_t
482 ((hashval_t
) gimple_call_internal_fn (stmt
), hashval
);
485 hashval
= iterative_hash_expr (gimple_call_fn (stmt
), hashval
);
486 if (gimple_call_chain (stmt
))
487 hashval
= iterative_hash_expr (gimple_call_chain (stmt
), hashval
);
489 for (i
= 0; i
< gimple_call_num_args (stmt
); i
++)
491 arg
= gimple_call_arg (stmt
, i
);
492 arg
= vn_valueize (arg
);
493 hashval
= iterative_hash_expr (arg
, hashval
);
497 hashval
= iterative_hash_hashval_t (size
, hashval
);
500 for (i
= 0; i
< e
->succ_flags
.length (); ++i
)
502 flags
= e
->succ_flags
[i
];
503 flags
= flags
& ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
504 hashval
= iterative_hash_hashval_t (flags
, hashval
);
507 EXECUTE_IF_SET_IN_BITMAP (e
->succs
, 0, s
, bs
)
509 int n
= find_edge (bb
, BASIC_BLOCK_FOR_FN (cfun
, s
))->dest_idx
;
510 for (gsi
= gsi_start_phis (BASIC_BLOCK_FOR_FN (cfun
, s
)); !gsi_end_p (gsi
);
513 gimple phi
= gsi_stmt (gsi
);
514 tree lhs
= gimple_phi_result (phi
);
515 tree val
= gimple_phi_arg_def (phi
, n
);
517 if (virtual_operand_p (lhs
))
519 update_dep_bb (bb
, val
);
526 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
527 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
528 the other edge flags. */
531 inverse_flags (const_same_succ e1
, const_same_succ e2
)
533 int f1a
, f1b
, f2a
, f2b
;
534 int mask
= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
536 if (e1
->succ_flags
.length () != 2)
539 f1a
= e1
->succ_flags
[0];
540 f1b
= e1
->succ_flags
[1];
541 f2a
= e2
->succ_flags
[0];
542 f2b
= e2
->succ_flags
[1];
544 if (f1a
== f2a
&& f1b
== f2b
)
547 return (f1a
& mask
) == (f2a
& mask
) && (f1b
& mask
) == (f2b
& mask
);
550 /* Compares SAME_SUCCs E1 and E2. */
553 same_succ_def::equal (const value_type
*e1
, const compare_type
*e2
)
555 unsigned int i
, first1
, first2
;
556 gimple_stmt_iterator gsi1
, gsi2
;
558 basic_block bb1
, bb2
;
560 if (e1
->hashval
!= e2
->hashval
)
563 if (e1
->succ_flags
.length () != e2
->succ_flags
.length ())
566 if (!bitmap_equal_p (e1
->succs
, e2
->succs
))
569 if (!inverse_flags (e1
, e2
))
571 for (i
= 0; i
< e1
->succ_flags
.length (); ++i
)
572 if (e1
->succ_flags
[i
] != e1
->succ_flags
[i
])
576 first1
= bitmap_first_set_bit (e1
->bbs
);
577 first2
= bitmap_first_set_bit (e2
->bbs
);
579 bb1
= BASIC_BLOCK_FOR_FN (cfun
, first1
);
580 bb2
= BASIC_BLOCK_FOR_FN (cfun
, first2
);
582 if (BB_SIZE (bb1
) != BB_SIZE (bb2
))
585 gsi1
= gsi_start_nondebug_bb (bb1
);
586 gsi2
= gsi_start_nondebug_bb (bb2
);
587 gsi_advance_fw_nondebug_nonlocal (&gsi1
);
588 gsi_advance_fw_nondebug_nonlocal (&gsi2
);
589 while (!(gsi_end_p (gsi1
) || gsi_end_p (gsi2
)))
591 s1
= gsi_stmt (gsi1
);
592 s2
= gsi_stmt (gsi2
);
593 if (gimple_code (s1
) != gimple_code (s2
))
595 if (is_gimple_call (s1
) && !gimple_call_same_target_p (s1
, s2
))
597 gsi_next_nondebug (&gsi1
);
598 gsi_next_nondebug (&gsi2
);
599 gsi_advance_fw_nondebug_nonlocal (&gsi1
);
600 gsi_advance_fw_nondebug_nonlocal (&gsi2
);
606 /* Alloc and init a new SAME_SUCC. */
609 same_succ_alloc (void)
611 same_succ same
= XNEW (struct same_succ_def
);
613 same
->bbs
= BITMAP_ALLOC (NULL
);
614 same
->succs
= BITMAP_ALLOC (NULL
);
615 same
->inverse
= BITMAP_ALLOC (NULL
);
616 same
->succ_flags
.create (10);
617 same
->in_worklist
= false;
622 /* Delete same_succ E. */
625 same_succ_def::remove (same_succ e
)
627 BITMAP_FREE (e
->bbs
);
628 BITMAP_FREE (e
->succs
);
629 BITMAP_FREE (e
->inverse
);
630 e
->succ_flags
.release ();
635 /* Reset same_succ SAME. */
638 same_succ_reset (same_succ same
)
640 bitmap_clear (same
->bbs
);
641 bitmap_clear (same
->succs
);
642 bitmap_clear (same
->inverse
);
643 same
->succ_flags
.truncate (0);
646 static hash_table
<same_succ_def
> *same_succ_htab
;
648 /* Array that is used to store the edge flags for a successor. */
650 static int *same_succ_edge_flags
;
652 /* Bitmap that is used to mark bbs that are recently deleted. */
654 static bitmap deleted_bbs
;
656 /* Bitmap that is used to mark predecessors of bbs that are
659 static bitmap deleted_bb_preds
;
661 /* Prints same_succ_htab to stderr. */
663 extern void debug_same_succ (void);
665 debug_same_succ ( void)
667 same_succ_htab
->traverse
<FILE *, ssa_same_succ_print_traverse
> (stderr
);
671 /* Vector of bbs to process. */
673 static vec
<same_succ
> worklist
;
675 /* Prints worklist to FILE. */
678 print_worklist (FILE *file
)
681 for (i
= 0; i
< worklist
.length (); ++i
)
682 same_succ_print (file
, worklist
[i
]);
685 /* Adds SAME to worklist. */
688 add_to_worklist (same_succ same
)
690 if (same
->in_worklist
)
693 if (bitmap_count_bits (same
->bbs
) < 2)
696 same
->in_worklist
= true;
697 worklist
.safe_push (same
);
700 /* Add BB to same_succ_htab. */
703 find_same_succ_bb (basic_block bb
, same_succ
*same_p
)
707 same_succ same
= *same_p
;
713 /* Be conservative with loop structure. It's not evident that this test
714 is sufficient. Before tail-merge, we've just called
715 loop_optimizer_finalize, and LOOPS_MAY_HAVE_MULTIPLE_LATCHES is now
716 set, so there's no guarantee that the loop->latch value is still valid.
717 But we assume that, since we've forced LOOPS_HAVE_SIMPLE_LATCHES at the
718 start of pre, we've kept that property intact throughout pre, and are
719 keeping it throughout tail-merge using this test. */
720 || bb
->loop_father
->latch
== bb
)
722 bitmap_set_bit (same
->bbs
, bb
->index
);
723 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
725 int index
= e
->dest
->index
;
726 bitmap_set_bit (same
->succs
, index
);
727 same_succ_edge_flags
[index
] = e
->flags
;
729 EXECUTE_IF_SET_IN_BITMAP (same
->succs
, 0, j
, bj
)
730 same
->succ_flags
.safe_push (same_succ_edge_flags
[j
]);
732 same
->hashval
= same_succ_hash (same
);
734 slot
= same_succ_htab
->find_slot_with_hash (same
, same
->hashval
, INSERT
);
738 BB_SAME_SUCC (bb
) = same
;
739 add_to_worklist (same
);
744 bitmap_set_bit ((*slot
)->bbs
, bb
->index
);
745 BB_SAME_SUCC (bb
) = *slot
;
746 add_to_worklist (*slot
);
747 if (inverse_flags (same
, *slot
))
748 bitmap_set_bit ((*slot
)->inverse
, bb
->index
);
749 same_succ_reset (same
);
753 /* Find bbs with same successors. */
756 find_same_succ (void)
758 same_succ same
= same_succ_alloc ();
761 FOR_EACH_BB_FN (bb
, cfun
)
763 find_same_succ_bb (bb
, &same
);
765 same
= same_succ_alloc ();
768 same_succ_def::remove (same
);
771 /* Initializes worklist administration. */
776 alloc_aux_for_blocks (sizeof (struct aux_bb_info
));
777 same_succ_htab
= new hash_table
<same_succ_def
> (n_basic_blocks_for_fn (cfun
));
778 same_succ_edge_flags
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
779 deleted_bbs
= BITMAP_ALLOC (NULL
);
780 deleted_bb_preds
= BITMAP_ALLOC (NULL
);
781 worklist
.create (n_basic_blocks_for_fn (cfun
));
784 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
786 fprintf (dump_file
, "initial worklist:\n");
787 print_worklist (dump_file
);
791 /* Deletes worklist administration. */
794 delete_worklist (void)
796 free_aux_for_blocks ();
797 delete same_succ_htab
;
798 same_succ_htab
= NULL
;
799 XDELETEVEC (same_succ_edge_flags
);
800 same_succ_edge_flags
= NULL
;
801 BITMAP_FREE (deleted_bbs
);
802 BITMAP_FREE (deleted_bb_preds
);
806 /* Mark BB as deleted, and mark its predecessors. */
809 mark_basic_block_deleted (basic_block bb
)
814 bitmap_set_bit (deleted_bbs
, bb
->index
);
816 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
817 bitmap_set_bit (deleted_bb_preds
, e
->src
->index
);
820 /* Removes BB from its corresponding same_succ. */
823 same_succ_flush_bb (basic_block bb
)
825 same_succ same
= BB_SAME_SUCC (bb
);
826 BB_SAME_SUCC (bb
) = NULL
;
827 if (bitmap_single_bit_set_p (same
->bbs
))
828 same_succ_htab
->remove_elt_with_hash (same
, same
->hashval
);
830 bitmap_clear_bit (same
->bbs
, bb
->index
);
833 /* Removes all bbs in BBS from their corresponding same_succ. */
836 same_succ_flush_bbs (bitmap bbs
)
841 EXECUTE_IF_SET_IN_BITMAP (bbs
, 0, i
, bi
)
842 same_succ_flush_bb (BASIC_BLOCK_FOR_FN (cfun
, i
));
845 /* Release the last vdef in BB, either normal or phi result. */
848 release_last_vdef (basic_block bb
)
850 gimple_stmt_iterator i
;
852 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
); gsi_prev_nondebug (&i
))
854 gimple stmt
= gsi_stmt (i
);
855 if (gimple_vdef (stmt
) == NULL_TREE
)
858 mark_virtual_operand_for_renaming (gimple_vdef (stmt
));
862 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
864 gimple phi
= gsi_stmt (i
);
865 tree res
= gimple_phi_result (phi
);
867 if (!virtual_operand_p (res
))
870 mark_virtual_phi_result_for_renaming (phi
);
876 /* For deleted_bb_preds, find bbs with same successors. */
879 update_worklist (void)
886 bitmap_and_compl_into (deleted_bb_preds
, deleted_bbs
);
887 bitmap_clear (deleted_bbs
);
889 bitmap_clear_bit (deleted_bb_preds
, ENTRY_BLOCK
);
890 same_succ_flush_bbs (deleted_bb_preds
);
892 same
= same_succ_alloc ();
893 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds
, 0, i
, bi
)
895 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
896 gcc_assert (bb
!= NULL
);
897 find_same_succ_bb (bb
, &same
);
899 same
= same_succ_alloc ();
901 same_succ_def::remove (same
);
902 bitmap_clear (deleted_bb_preds
);
905 /* Prints cluster C to FILE. */
908 print_cluster (FILE *file
, bb_cluster c
)
912 bitmap_print (file
, c
->bbs
, "bbs:", "\n");
913 bitmap_print (file
, c
->preds
, "preds:", "\n");
916 /* Prints cluster C to stderr. */
918 extern void debug_cluster (bb_cluster
);
920 debug_cluster (bb_cluster c
)
922 print_cluster (stderr
, c
);
925 /* Update C->rep_bb, given that BB is added to the cluster. */
928 update_rep_bb (bb_cluster c
, basic_block bb
)
931 if (c
->rep_bb
== NULL
)
937 /* Current needs no deps, keep it. */
938 if (BB_DEP_BB (c
->rep_bb
) == NULL
)
941 /* Bb needs no deps, change rep_bb. */
942 if (BB_DEP_BB (bb
) == NULL
)
948 /* Bb needs last deps earlier than current, change rep_bb. A potential
949 problem with this, is that the first deps might also be earlier, which
950 would mean we prefer longer lifetimes for the deps. To be able to check
951 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
952 BB_DEP_BB, which is really BB_LAST_DEP_BB.
953 The benefit of choosing the bb with last deps earlier, is that it can
954 potentially be used as replacement for more bbs. */
955 if (dominated_by_p (CDI_DOMINATORS
, BB_DEP_BB (c
->rep_bb
), BB_DEP_BB (bb
)))
959 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
962 add_bb_to_cluster (bb_cluster c
, basic_block bb
)
967 bitmap_set_bit (c
->bbs
, bb
->index
);
969 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
970 bitmap_set_bit (c
->preds
, e
->src
->index
);
972 update_rep_bb (c
, bb
);
975 /* Allocate and init new cluster. */
981 c
= XCNEW (struct bb_cluster_def
);
982 c
->bbs
= BITMAP_ALLOC (NULL
);
983 c
->preds
= BITMAP_ALLOC (NULL
);
988 /* Delete clusters. */
991 delete_cluster (bb_cluster c
)
995 BITMAP_FREE (c
->bbs
);
996 BITMAP_FREE (c
->preds
);
1001 /* Array that contains all clusters. */
1003 static vec
<bb_cluster
> all_clusters
;
1005 /* Allocate all cluster vectors. */
1008 alloc_cluster_vectors (void)
1010 all_clusters
.create (n_basic_blocks_for_fn (cfun
));
1013 /* Reset all cluster vectors. */
1016 reset_cluster_vectors (void)
1020 for (i
= 0; i
< all_clusters
.length (); ++i
)
1021 delete_cluster (all_clusters
[i
]);
1022 all_clusters
.truncate (0);
1023 FOR_EACH_BB_FN (bb
, cfun
)
1024 BB_CLUSTER (bb
) = NULL
;
1027 /* Delete all cluster vectors. */
1030 delete_cluster_vectors (void)
1033 for (i
= 0; i
< all_clusters
.length (); ++i
)
1034 delete_cluster (all_clusters
[i
]);
1035 all_clusters
.release ();
1038 /* Merge cluster C2 into C1. */
1041 merge_clusters (bb_cluster c1
, bb_cluster c2
)
1043 bitmap_ior_into (c1
->bbs
, c2
->bbs
);
1044 bitmap_ior_into (c1
->preds
, c2
->preds
);
1047 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
1048 all_clusters, or merge c with existing cluster. */
1051 set_cluster (basic_block bb1
, basic_block bb2
)
1053 basic_block merge_bb
, other_bb
;
1054 bb_cluster merge
, old
, c
;
1056 if (BB_CLUSTER (bb1
) == NULL
&& BB_CLUSTER (bb2
) == NULL
)
1059 add_bb_to_cluster (c
, bb1
);
1060 add_bb_to_cluster (c
, bb2
);
1061 BB_CLUSTER (bb1
) = c
;
1062 BB_CLUSTER (bb2
) = c
;
1063 c
->index
= all_clusters
.length ();
1064 all_clusters
.safe_push (c
);
1066 else if (BB_CLUSTER (bb1
) == NULL
|| BB_CLUSTER (bb2
) == NULL
)
1068 merge_bb
= BB_CLUSTER (bb1
) == NULL
? bb2
: bb1
;
1069 other_bb
= BB_CLUSTER (bb1
) == NULL
? bb1
: bb2
;
1070 merge
= BB_CLUSTER (merge_bb
);
1071 add_bb_to_cluster (merge
, other_bb
);
1072 BB_CLUSTER (other_bb
) = merge
;
1074 else if (BB_CLUSTER (bb1
) != BB_CLUSTER (bb2
))
1079 old
= BB_CLUSTER (bb2
);
1080 merge
= BB_CLUSTER (bb1
);
1081 merge_clusters (merge
, old
);
1082 EXECUTE_IF_SET_IN_BITMAP (old
->bbs
, 0, i
, bi
)
1083 BB_CLUSTER (BASIC_BLOCK_FOR_FN (cfun
, i
)) = merge
;
1084 all_clusters
[old
->index
] = NULL
;
1085 update_rep_bb (merge
, old
->rep_bb
);
1086 delete_cluster (old
);
1092 /* Return true if gimple operands T1 and T2 have the same value. */
1095 gimple_operand_equal_value_p (tree t1
, tree t2
)
1104 if (operand_equal_p (t1
, t2
, 0))
1107 return gvn_uses_equal (t1
, t2
);
1110 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1111 gimple_bb (s2) are members of SAME_SUCC. */
1114 gimple_equal_p (same_succ same_succ
, gimple s1
, gimple s2
)
1118 basic_block bb1
= gimple_bb (s1
), bb2
= gimple_bb (s2
);
1121 enum tree_code code1
, code2
;
1123 if (gimple_code (s1
) != gimple_code (s2
))
1126 switch (gimple_code (s1
))
1129 if (!gimple_call_same_target_p (s1
, s2
))
1132 t1
= gimple_call_chain (s1
);
1133 t2
= gimple_call_chain (s2
);
1134 if (!gimple_operand_equal_value_p (t1
, t2
))
1137 if (gimple_call_num_args (s1
) != gimple_call_num_args (s2
))
1140 for (i
= 0; i
< gimple_call_num_args (s1
); ++i
)
1142 t1
= gimple_call_arg (s1
, i
);
1143 t2
= gimple_call_arg (s2
, i
);
1144 if (!gimple_operand_equal_value_p (t1
, t2
))
1148 lhs1
= gimple_get_lhs (s1
);
1149 lhs2
= gimple_get_lhs (s2
);
1150 if (lhs1
== NULL_TREE
&& lhs2
== NULL_TREE
)
1152 if (lhs1
== NULL_TREE
|| lhs2
== NULL_TREE
)
1154 if (TREE_CODE (lhs1
) == SSA_NAME
&& TREE_CODE (lhs2
) == SSA_NAME
)
1155 return vn_valueize (lhs1
) == vn_valueize (lhs2
);
1156 return operand_equal_p (lhs1
, lhs2
, 0);
1159 lhs1
= gimple_get_lhs (s1
);
1160 lhs2
= gimple_get_lhs (s2
);
1161 if (TREE_CODE (lhs1
) != SSA_NAME
1162 && TREE_CODE (lhs2
) != SSA_NAME
)
1164 /* If the vdef is the same, it's the same statement. */
1165 if (vn_valueize (gimple_vdef (s1
))
1166 == vn_valueize (gimple_vdef (s2
)))
1169 /* Test for structural equality. */
1170 return (operand_equal_p (lhs1
, lhs2
, 0)
1171 && gimple_operand_equal_value_p (gimple_assign_rhs1 (s1
),
1172 gimple_assign_rhs1 (s2
)));
1174 else if (TREE_CODE (lhs1
) == SSA_NAME
1175 && TREE_CODE (lhs2
) == SSA_NAME
)
1176 return vn_valueize (lhs1
) == vn_valueize (lhs2
);
1180 t1
= gimple_cond_lhs (s1
);
1181 t2
= gimple_cond_lhs (s2
);
1182 if (!gimple_operand_equal_value_p (t1
, t2
))
1185 t1
= gimple_cond_rhs (s1
);
1186 t2
= gimple_cond_rhs (s2
);
1187 if (!gimple_operand_equal_value_p (t1
, t2
))
1190 code1
= gimple_expr_code (s1
);
1191 code2
= gimple_expr_code (s2
);
1192 inv_cond
= (bitmap_bit_p (same_succ
->inverse
, bb1
->index
)
1193 != bitmap_bit_p (same_succ
->inverse
, bb2
->index
));
1197 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (s1
))));
1198 code2
= invert_tree_comparison (code2
, honor_nans
);
1200 return code1
== code2
;
1207 /* Let GSI skip backwards over local defs. Return the earliest vuse in VUSE.
1208 Return true in VUSE_ESCAPED if the vuse influenced a SSA_OP_DEF of one of the
1209 processed statements. */
1212 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator
*gsi
, tree
*vuse
,
1220 if (gsi_end_p (*gsi
))
1222 stmt
= gsi_stmt (*gsi
);
1224 lvuse
= gimple_vuse (stmt
);
1225 if (lvuse
!= NULL_TREE
)
1228 if (!ZERO_SSA_OPERANDS (stmt
, SSA_OP_DEF
))
1229 *vuse_escaped
= true;
1232 if (!stmt_local_def (stmt
))
1234 gsi_prev_nondebug (gsi
);
1238 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1242 find_duplicate (same_succ same_succ
, basic_block bb1
, basic_block bb2
)
1244 gimple_stmt_iterator gsi1
= gsi_last_nondebug_bb (bb1
);
1245 gimple_stmt_iterator gsi2
= gsi_last_nondebug_bb (bb2
);
1246 tree vuse1
= NULL_TREE
, vuse2
= NULL_TREE
;
1247 bool vuse_escaped
= false;
1249 gsi_advance_bw_nondebug_nonlocal (&gsi1
, &vuse1
, &vuse_escaped
);
1250 gsi_advance_bw_nondebug_nonlocal (&gsi2
, &vuse2
, &vuse_escaped
);
1252 while (!gsi_end_p (gsi1
) && !gsi_end_p (gsi2
))
1254 gimple stmt1
= gsi_stmt (gsi1
);
1255 gimple stmt2
= gsi_stmt (gsi2
);
1257 /* What could be better than to this this here is to blacklist the bb
1258 containing the stmt, when encountering the stmt f.i. in
1260 if (is_tm_ending (stmt1
)
1261 || is_tm_ending (stmt2
))
1264 if (!gimple_equal_p (same_succ
, stmt1
, stmt2
))
1267 gsi_prev_nondebug (&gsi1
);
1268 gsi_prev_nondebug (&gsi2
);
1269 gsi_advance_bw_nondebug_nonlocal (&gsi1
, &vuse1
, &vuse_escaped
);
1270 gsi_advance_bw_nondebug_nonlocal (&gsi2
, &vuse2
, &vuse_escaped
);
1273 if (!(gsi_end_p (gsi1
) && gsi_end_p (gsi2
)))
1276 /* If the incoming vuses are not the same, and the vuse escaped into an
1277 SSA_OP_DEF, then merging the 2 blocks will change the value of the def,
1278 which potentially means the semantics of one of the blocks will be changed.
1279 TODO: make this check more precise. */
1280 if (vuse_escaped
&& vuse1
!= vuse2
)
1284 fprintf (dump_file
, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1285 bb1
->index
, bb2
->index
);
1287 set_cluster (bb1
, bb2
);
1290 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1294 same_phi_alternatives_1 (basic_block dest
, edge e1
, edge e2
)
1296 int n1
= e1
->dest_idx
, n2
= e2
->dest_idx
;
1297 gimple_stmt_iterator gsi
;
1299 for (gsi
= gsi_start_phis (dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1301 gimple phi
= gsi_stmt (gsi
);
1302 tree lhs
= gimple_phi_result (phi
);
1303 tree val1
= gimple_phi_arg_def (phi
, n1
);
1304 tree val2
= gimple_phi_arg_def (phi
, n2
);
1306 if (virtual_operand_p (lhs
))
1309 if (operand_equal_for_phi_arg_p (val1
, val2
))
1311 if (gvn_uses_equal (val1
, val2
))
1320 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1321 phi alternatives for BB1 and BB2 are equal. */
1324 same_phi_alternatives (same_succ same_succ
, basic_block bb1
, basic_block bb2
)
1331 EXECUTE_IF_SET_IN_BITMAP (same_succ
->succs
, 0, s
, bs
)
1333 succ
= BASIC_BLOCK_FOR_FN (cfun
, s
);
1334 e1
= find_edge (bb1
, succ
);
1335 e2
= find_edge (bb2
, succ
);
1336 if (e1
->flags
& EDGE_COMPLEX
1337 || e2
->flags
& EDGE_COMPLEX
)
1340 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1342 if (!same_phi_alternatives_1 (succ
, e1
, e2
))
1349 /* Return true if BB has non-vop phis. */
1352 bb_has_non_vop_phi (basic_block bb
)
1354 gimple_seq phis
= phi_nodes (bb
);
1360 if (!gimple_seq_singleton_p (phis
))
1363 phi
= gimple_seq_first_stmt (phis
);
1364 return !virtual_operand_p (gimple_phi_result (phi
));
1367 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1368 invariant that uses in FROM are dominates by their defs. */
1371 deps_ok_for_redirect_from_bb_to_bb (basic_block from
, basic_block to
)
1373 basic_block cd
, dep_bb
= BB_DEP_BB (to
);
1376 bitmap from_preds
= BITMAP_ALLOC (NULL
);
1381 FOR_EACH_EDGE (e
, ei
, from
->preds
)
1382 bitmap_set_bit (from_preds
, e
->src
->index
);
1383 cd
= nearest_common_dominator_for_set (CDI_DOMINATORS
, from_preds
);
1384 BITMAP_FREE (from_preds
);
1386 return dominated_by_p (CDI_DOMINATORS
, dep_bb
, cd
);
1389 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1390 replacement bb) and vice versa maintains the invariant that uses in the
1391 replacement are dominates by their defs. */
1394 deps_ok_for_redirect (basic_block bb1
, basic_block bb2
)
1396 if (BB_CLUSTER (bb1
) != NULL
)
1397 bb1
= BB_CLUSTER (bb1
)->rep_bb
;
1399 if (BB_CLUSTER (bb2
) != NULL
)
1400 bb2
= BB_CLUSTER (bb2
)->rep_bb
;
1402 return (deps_ok_for_redirect_from_bb_to_bb (bb1
, bb2
)
1403 && deps_ok_for_redirect_from_bb_to_bb (bb2
, bb1
));
1406 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1409 find_clusters_1 (same_succ same_succ
)
1411 basic_block bb1
, bb2
;
1413 bitmap_iterator bi
, bj
;
1415 int max_comparisons
= PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS
);
1417 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, 0, i
, bi
)
1419 bb1
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1421 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1422 phi-nodes in bb1 and bb2, with the same alternatives for the same
1424 if (bb_has_non_vop_phi (bb1
))
1428 EXECUTE_IF_SET_IN_BITMAP (same_succ
->bbs
, i
+ 1, j
, bj
)
1430 bb2
= BASIC_BLOCK_FOR_FN (cfun
, j
);
1432 if (bb_has_non_vop_phi (bb2
))
1435 if (BB_CLUSTER (bb1
) != NULL
&& BB_CLUSTER (bb1
) == BB_CLUSTER (bb2
))
1438 /* Limit quadratic behaviour. */
1440 if (nr_comparisons
> max_comparisons
)
1443 /* This is a conservative dependency check. We could test more
1444 precise for allowed replacement direction. */
1445 if (!deps_ok_for_redirect (bb1
, bb2
))
1448 if (!(same_phi_alternatives (same_succ
, bb1
, bb2
)))
1451 find_duplicate (same_succ
, bb1
, bb2
);
1456 /* Find clusters of bbs which can be merged. */
1459 find_clusters (void)
1463 while (!worklist
.is_empty ())
1465 same
= worklist
.pop ();
1466 same
->in_worklist
= false;
1467 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1469 fprintf (dump_file
, "processing worklist entry\n");
1470 same_succ_print (dump_file
, same
);
1472 find_clusters_1 (same
);
1476 /* Returns the vop phi of BB, if any. */
1479 vop_phi (basic_block bb
)
1482 gimple_stmt_iterator gsi
;
1483 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1485 stmt
= gsi_stmt (gsi
);
1486 if (! virtual_operand_p (gimple_phi_result (stmt
)))
1493 /* Redirect all edges from BB1 to BB2, removes BB1 and marks it as removed. */
1496 replace_block_by (basic_block bb1
, basic_block bb2
)
1504 bb2_phi
= vop_phi (bb2
);
1506 /* Mark the basic block as deleted. */
1507 mark_basic_block_deleted (bb1
);
1509 /* Redirect the incoming edges of bb1 to bb2. */
1510 for (i
= EDGE_COUNT (bb1
->preds
); i
> 0 ; --i
)
1512 pred_edge
= EDGE_PRED (bb1
, i
- 1);
1513 pred_edge
= redirect_edge_and_branch (pred_edge
, bb2
);
1514 gcc_assert (pred_edge
!= NULL
);
1516 if (bb2_phi
== NULL
)
1519 /* The phi might have run out of capacity when the redirect added an
1520 argument, which means it could have been replaced. Refresh it. */
1521 bb2_phi
= vop_phi (bb2
);
1523 add_phi_arg (bb2_phi
, SSA_NAME_VAR (gimple_phi_result (bb2_phi
)),
1524 pred_edge
, UNKNOWN_LOCATION
);
1527 bb2
->frequency
+= bb1
->frequency
;
1528 if (bb2
->frequency
> BB_FREQ_MAX
)
1529 bb2
->frequency
= BB_FREQ_MAX
;
1531 bb2
->count
+= bb1
->count
;
1533 /* Merge the outgoing edge counts from bb1 onto bb2. */
1534 gcov_type out_sum
= 0;
1535 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1537 e2
= find_edge (bb2
, e1
->dest
);
1539 e2
->count
+= e1
->count
;
1540 out_sum
+= e2
->count
;
1542 /* Recompute the edge probabilities from the new merged edge count.
1543 Use the sum of the new merged edge counts computed above instead
1544 of bb2's merged count, in case there are profile count insanities
1545 making the bb count inconsistent with the edge weights. */
1546 FOR_EACH_EDGE (e2
, ei
, bb2
->succs
)
1548 e2
->probability
= GCOV_COMPUTE_SCALE (e2
->count
, out_sum
);
1551 /* Do updates that use bb1, before deleting bb1. */
1552 release_last_vdef (bb1
);
1553 same_succ_flush_bb (bb1
);
1555 delete_basic_block (bb1
);
1558 /* Bbs for which update_debug_stmt need to be called. */
1560 static bitmap update_bbs
;
1562 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1563 number of bbs removed. */
1566 apply_clusters (void)
1568 basic_block bb1
, bb2
;
1572 int nr_bbs_removed
= 0;
1574 for (i
= 0; i
< all_clusters
.length (); ++i
)
1576 c
= all_clusters
[i
];
1581 bitmap_set_bit (update_bbs
, bb2
->index
);
1583 bitmap_clear_bit (c
->bbs
, bb2
->index
);
1584 EXECUTE_IF_SET_IN_BITMAP (c
->bbs
, 0, j
, bj
)
1586 bb1
= BASIC_BLOCK_FOR_FN (cfun
, j
);
1587 bitmap_clear_bit (update_bbs
, bb1
->index
);
1589 replace_block_by (bb1
, bb2
);
1594 return nr_bbs_removed
;
1597 /* Resets debug statement STMT if it has uses that are not dominated by their
1601 update_debug_stmt (gimple stmt
)
1603 use_operand_p use_p
;
1605 basic_block bbdef
, bbuse
;
1609 if (!gimple_debug_bind_p (stmt
))
1612 bbuse
= gimple_bb (stmt
);
1613 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, oi
, SSA_OP_USE
)
1615 name
= USE_FROM_PTR (use_p
);
1616 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
1618 def_stmt
= SSA_NAME_DEF_STMT (name
);
1619 gcc_assert (def_stmt
!= NULL
);
1621 bbdef
= gimple_bb (def_stmt
);
1622 if (bbdef
== NULL
|| bbuse
== bbdef
1623 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbdef
))
1626 gimple_debug_bind_reset_value (stmt
);
1631 /* Resets all debug statements that have uses that are not
1632 dominated by their defs. */
1635 update_debug_stmts (void)
1641 EXECUTE_IF_SET_IN_BITMAP (update_bbs
, 0, i
, bi
)
1644 gimple_stmt_iterator gsi
;
1646 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1647 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1649 stmt
= gsi_stmt (gsi
);
1650 if (!is_gimple_debug (stmt
))
1652 update_debug_stmt (stmt
);
1657 /* Runs tail merge optimization. */
1660 tail_merge_optimize (unsigned int todo
)
1662 int nr_bbs_removed_total
= 0;
1664 bool loop_entered
= false;
1665 int iteration_nr
= 0;
1666 int max_iterations
= PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS
);
1668 if (!flag_tree_tail_merge
1669 || max_iterations
== 0)
1672 timevar_push (TV_TREE_TAIL_MERGE
);
1674 if (!dom_info_available_p (CDI_DOMINATORS
))
1676 /* PRE can leave us with unreachable blocks, remove them now. */
1677 delete_unreachable_blocks ();
1678 calculate_dominance_info (CDI_DOMINATORS
);
1682 while (!worklist
.is_empty ())
1686 loop_entered
= true;
1687 alloc_cluster_vectors ();
1688 update_bbs
= BITMAP_ALLOC (NULL
);
1691 reset_cluster_vectors ();
1694 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1695 fprintf (dump_file
, "worklist iteration #%d\n", iteration_nr
);
1698 gcc_assert (worklist
.is_empty ());
1699 if (all_clusters
.is_empty ())
1702 nr_bbs_removed
= apply_clusters ();
1703 nr_bbs_removed_total
+= nr_bbs_removed
;
1704 if (nr_bbs_removed
== 0)
1707 free_dominance_info (CDI_DOMINATORS
);
1709 if (iteration_nr
== max_iterations
)
1712 calculate_dominance_info (CDI_DOMINATORS
);
1716 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1717 fprintf (dump_file
, "htab collision / search: %f\n",
1718 same_succ_htab
->collisions ());
1720 if (nr_bbs_removed_total
> 0)
1722 if (MAY_HAVE_DEBUG_STMTS
)
1724 calculate_dominance_info (CDI_DOMINATORS
);
1725 update_debug_stmts ();
1728 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1730 fprintf (dump_file
, "Before TODOs.\n");
1731 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
1734 mark_virtual_operands_for_renaming (cfun
);
1740 delete_cluster_vectors ();
1741 BITMAP_FREE (update_bbs
);
1744 timevar_pop (TV_TREE_TAIL_MERGE
);