Add missing break statement.
[official-gcc.git] / gcc / loop-unroll.c
blobad4d3c2da50047b18ad5182b10b685d43b5c864d
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "params.h"
31 #include "expr.h"
32 #include "hash-table.h"
33 #include "recog.h"
34 #include "target.h"
35 #include "dumpfile.h"
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
45 What we do:
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
72 /* Information about induction variables to split. */
74 struct iv_to_split
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx orig_var; /* The variable (register) for the IV before split. */
78 rtx base_var; /* The variable on that the values in the further
79 iterations are based. */
80 rtx step; /* Step of the induction variable. */
81 struct iv_to_split *next; /* Next entry in walking order. */
82 unsigned n_loc;
83 unsigned loc[3]; /* Location where the definition of the induction
84 variable occurs in the insn. For example if
85 N_LOC is 2, the expression is located at
86 XEXP (XEXP (single_set, loc[0]), loc[1]). */
89 /* Information about accumulators to expand. */
91 struct var_to_expand
93 rtx insn; /* The insn in that the variable expansion occurs. */
94 rtx reg; /* The accumulator which is expanded. */
95 vec<rtx> var_expansions; /* The copies of the accumulator which is expanded. */
96 struct var_to_expand *next; /* Next entry in walking order. */
97 enum rtx_code op; /* The type of the accumulation - addition, subtraction
98 or multiplication. */
99 int expansion_count; /* Count the number of expansions generated so far. */
100 int reuse_expansion; /* The expansion we intend to reuse to expand
101 the accumulator. If REUSE_EXPANSION is 0 reuse
102 the original accumulator. Else use
103 var_expansions[REUSE_EXPANSION - 1]. */
106 /* Hashtable helper for iv_to_split. */
108 struct iv_split_hasher : typed_free_remove <iv_to_split>
110 typedef iv_to_split value_type;
111 typedef iv_to_split compare_type;
112 static inline hashval_t hash (const value_type *);
113 static inline bool equal (const value_type *, const compare_type *);
117 /* A hash function for information about insns to split. */
119 inline hashval_t
120 iv_split_hasher::hash (const value_type *ivts)
122 return (hashval_t) INSN_UID (ivts->insn);
125 /* An equality functions for information about insns to split. */
127 inline bool
128 iv_split_hasher::equal (const value_type *i1, const compare_type *i2)
130 return i1->insn == i2->insn;
133 /* Hashtable helper for iv_to_split. */
135 struct var_expand_hasher : typed_free_remove <var_to_expand>
137 typedef var_to_expand value_type;
138 typedef var_to_expand compare_type;
139 static inline hashval_t hash (const value_type *);
140 static inline bool equal (const value_type *, const compare_type *);
143 /* Return a hash for VES. */
145 inline hashval_t
146 var_expand_hasher::hash (const value_type *ves)
148 return (hashval_t) INSN_UID (ves->insn);
151 /* Return true if I1 and I2 refer to the same instruction. */
153 inline bool
154 var_expand_hasher::equal (const value_type *i1, const compare_type *i2)
156 return i1->insn == i2->insn;
159 /* Information about optimization applied in
160 the unrolled loop. */
162 struct opt_info
164 hash_table<iv_split_hasher> *insns_to_split; /* A hashtable of insns to
165 split. */
166 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
167 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
168 hash_table<var_expand_hasher> *insns_with_var_to_expand; /* A hashtable of
169 insns with accumulators to expand. */
170 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
171 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
172 unsigned first_new_block; /* The first basic block that was
173 duplicated. */
174 basic_block loop_exit; /* The loop exit basic block. */
175 basic_block loop_preheader; /* The loop preheader basic block. */
178 static void decide_unrolling_and_peeling (int);
179 static void peel_loops_completely (int);
180 static void decide_peel_simple (struct loop *, int);
181 static void decide_peel_once_rolling (struct loop *, int);
182 static void decide_peel_completely (struct loop *, int);
183 static void decide_unroll_stupid (struct loop *, int);
184 static void decide_unroll_constant_iterations (struct loop *, int);
185 static void decide_unroll_runtime_iterations (struct loop *, int);
186 static void peel_loop_simple (struct loop *);
187 static void peel_loop_completely (struct loop *);
188 static void unroll_loop_stupid (struct loop *);
189 static void unroll_loop_constant_iterations (struct loop *);
190 static void unroll_loop_runtime_iterations (struct loop *);
191 static struct opt_info *analyze_insns_in_loop (struct loop *);
192 static void opt_info_start_duplication (struct opt_info *);
193 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
194 static void free_opt_info (struct opt_info *);
195 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
196 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
197 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
198 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
199 static void insert_var_expansion_initialization (struct var_to_expand *,
200 basic_block);
201 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
202 basic_block);
203 static rtx get_expansion (struct var_to_expand *);
205 /* Emit a message summarizing the unroll or peel that will be
206 performed for LOOP, along with the loop's location LOCUS, if
207 appropriate given the dump or -fopt-info settings. */
209 static void
210 report_unroll_peel (struct loop *loop, location_t locus)
212 struct niter_desc *desc;
213 int niters = 0;
214 int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;
216 if (loop->lpt_decision.decision == LPT_NONE)
217 return;
219 if (!dump_enabled_p ())
220 return;
222 /* In the special case where the loop never iterated, emit
223 a different message so that we don't report an unroll by 0.
224 This matches the equivalent message emitted during tree unrolling. */
225 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY
226 && !loop->lpt_decision.times)
228 dump_printf_loc (report_flags, locus,
229 "loop turned into non-loop; it never loops.\n");
230 return;
233 desc = get_simple_loop_desc (loop);
235 if (desc->const_iter)
236 niters = desc->niter;
237 else if (loop->header->count)
238 niters = expected_loop_iterations (loop);
240 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
241 dump_printf_loc (report_flags, locus,
242 "loop with %d iterations completely unrolled",
243 loop->lpt_decision.times + 1);
244 else
245 dump_printf_loc (report_flags, locus,
246 "loop %s %d times",
247 (loop->lpt_decision.decision == LPT_PEEL_SIMPLE
248 ? "peeled" : "unrolled"),
249 loop->lpt_decision.times);
250 if (profile_info)
251 dump_printf (report_flags,
252 " (header execution count %d",
253 (int)loop->header->count);
254 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
255 dump_printf (report_flags,
256 "%s%s iterations %d)",
257 profile_info ? ", " : " (",
258 desc->const_iter ? "const" : "average",
259 niters);
260 else if (profile_info)
261 dump_printf (report_flags, ")");
263 dump_printf (report_flags, "\n");
266 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
267 void
268 unroll_and_peel_loops (int flags)
270 struct loop *loop;
271 bool changed = false;
273 /* First perform complete loop peeling (it is almost surely a win,
274 and affects parameters for further decision a lot). */
275 peel_loops_completely (flags);
277 /* Now decide rest of unrolling and peeling. */
278 decide_unrolling_and_peeling (flags);
280 /* Scan the loops, inner ones first. */
281 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
283 /* And perform the appropriate transformations. */
284 switch (loop->lpt_decision.decision)
286 case LPT_PEEL_COMPLETELY:
287 /* Already done. */
288 gcc_unreachable ();
289 case LPT_PEEL_SIMPLE:
290 peel_loop_simple (loop);
291 changed = true;
292 break;
293 case LPT_UNROLL_CONSTANT:
294 unroll_loop_constant_iterations (loop);
295 changed = true;
296 break;
297 case LPT_UNROLL_RUNTIME:
298 unroll_loop_runtime_iterations (loop);
299 changed = true;
300 break;
301 case LPT_UNROLL_STUPID:
302 unroll_loop_stupid (loop);
303 changed = true;
304 break;
305 case LPT_NONE:
306 break;
307 default:
308 gcc_unreachable ();
312 if (changed)
314 calculate_dominance_info (CDI_DOMINATORS);
315 fix_loop_structure (NULL);
318 iv_analysis_done ();
321 /* Check whether exit of the LOOP is at the end of loop body. */
323 static bool
324 loop_exit_at_end_p (struct loop *loop)
326 struct niter_desc *desc = get_simple_loop_desc (loop);
327 rtx insn;
329 if (desc->in_edge->dest != loop->latch)
330 return false;
332 /* Check that the latch is empty. */
333 FOR_BB_INSNS (loop->latch, insn)
335 if (NONDEBUG_INSN_P (insn))
336 return false;
339 return true;
342 /* Depending on FLAGS, check whether to peel loops completely and do so. */
343 static void
344 peel_loops_completely (int flags)
346 struct loop *loop;
347 bool changed = false;
349 /* Scan the loops, the inner ones first. */
350 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
352 loop->lpt_decision.decision = LPT_NONE;
353 location_t locus = get_loop_location (loop);
355 if (dump_enabled_p ())
356 dump_printf_loc (TDF_RTL, locus,
357 ";; *** Considering loop %d at BB %d for "
358 "complete peeling ***\n",
359 loop->num, loop->header->index);
361 loop->ninsns = num_loop_insns (loop);
363 decide_peel_once_rolling (loop, flags);
364 if (loop->lpt_decision.decision == LPT_NONE)
365 decide_peel_completely (loop, flags);
367 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
369 report_unroll_peel (loop, locus);
370 peel_loop_completely (loop);
371 changed = true;
375 if (changed)
377 calculate_dominance_info (CDI_DOMINATORS);
378 fix_loop_structure (NULL);
382 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
383 static void
384 decide_unrolling_and_peeling (int flags)
386 struct loop *loop;
388 /* Scan the loops, inner ones first. */
389 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
391 loop->lpt_decision.decision = LPT_NONE;
392 location_t locus = get_loop_location (loop);
394 if (dump_enabled_p ())
395 dump_printf_loc (TDF_RTL, locus,
396 ";; *** Considering loop %d at BB %d for "
397 "unrolling and peeling ***\n",
398 loop->num, loop->header->index);
400 /* Do not peel cold areas. */
401 if (optimize_loop_for_size_p (loop))
403 if (dump_file)
404 fprintf (dump_file, ";; Not considering loop, cold area\n");
405 continue;
408 /* Can the loop be manipulated? */
409 if (!can_duplicate_loop_p (loop))
411 if (dump_file)
412 fprintf (dump_file,
413 ";; Not considering loop, cannot duplicate\n");
414 continue;
417 /* Skip non-innermost loops. */
418 if (loop->inner)
420 if (dump_file)
421 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
422 continue;
425 loop->ninsns = num_loop_insns (loop);
426 loop->av_ninsns = average_num_loop_insns (loop);
428 /* Try transformations one by one in decreasing order of
429 priority. */
431 decide_unroll_constant_iterations (loop, flags);
432 if (loop->lpt_decision.decision == LPT_NONE)
433 decide_unroll_runtime_iterations (loop, flags);
434 if (loop->lpt_decision.decision == LPT_NONE)
435 decide_unroll_stupid (loop, flags);
436 if (loop->lpt_decision.decision == LPT_NONE)
437 decide_peel_simple (loop, flags);
439 report_unroll_peel (loop, locus);
443 /* Decide whether the LOOP is once rolling and suitable for complete
444 peeling. */
445 static void
446 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
448 struct niter_desc *desc;
450 if (dump_file)
451 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
453 /* Is the loop small enough? */
454 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
456 if (dump_file)
457 fprintf (dump_file, ";; Not considering loop, is too big\n");
458 return;
461 /* Check for simple loops. */
462 desc = get_simple_loop_desc (loop);
464 /* Check number of iterations. */
465 if (!desc->simple_p
466 || desc->assumptions
467 || desc->infinite
468 || !desc->const_iter
469 || (desc->niter != 0
470 && get_max_loop_iterations_int (loop) != 0))
472 if (dump_file)
473 fprintf (dump_file,
474 ";; Unable to prove that the loop rolls exactly once\n");
475 return;
478 /* Success. */
479 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
482 /* Decide whether the LOOP is suitable for complete peeling. */
483 static void
484 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
486 unsigned npeel;
487 struct niter_desc *desc;
489 if (dump_file)
490 fprintf (dump_file, "\n;; Considering peeling completely\n");
492 /* Skip non-innermost loops. */
493 if (loop->inner)
495 if (dump_file)
496 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
497 return;
500 /* Do not peel cold areas. */
501 if (optimize_loop_for_size_p (loop))
503 if (dump_file)
504 fprintf (dump_file, ";; Not considering loop, cold area\n");
505 return;
508 /* Can the loop be manipulated? */
509 if (!can_duplicate_loop_p (loop))
511 if (dump_file)
512 fprintf (dump_file,
513 ";; Not considering loop, cannot duplicate\n");
514 return;
517 /* npeel = number of iterations to peel. */
518 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
519 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
520 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
522 /* Is the loop small enough? */
523 if (!npeel)
525 if (dump_file)
526 fprintf (dump_file, ";; Not considering loop, is too big\n");
527 return;
530 /* Check for simple loops. */
531 desc = get_simple_loop_desc (loop);
533 /* Check number of iterations. */
534 if (!desc->simple_p
535 || desc->assumptions
536 || !desc->const_iter
537 || desc->infinite)
539 if (dump_file)
540 fprintf (dump_file,
541 ";; Unable to prove that the loop iterates constant times\n");
542 return;
545 if (desc->niter > npeel - 1)
547 if (dump_file)
549 fprintf (dump_file,
550 ";; Not peeling loop completely, rolls too much (");
551 fprintf (dump_file, "%"PRId64, desc->niter);
552 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
554 return;
557 /* Success. */
558 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
561 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
562 completely. The transformation done:
564 for (i = 0; i < 4; i++)
565 body;
569 i = 0;
570 body; i++;
571 body; i++;
572 body; i++;
573 body; i++;
575 static void
576 peel_loop_completely (struct loop *loop)
578 sbitmap wont_exit;
579 unsigned HOST_WIDE_INT npeel;
580 unsigned i;
581 edge ein;
582 struct niter_desc *desc = get_simple_loop_desc (loop);
583 struct opt_info *opt_info = NULL;
585 npeel = desc->niter;
587 if (npeel)
589 bool ok;
591 wont_exit = sbitmap_alloc (npeel + 1);
592 bitmap_ones (wont_exit);
593 bitmap_clear_bit (wont_exit, 0);
594 if (desc->noloop_assumptions)
595 bitmap_clear_bit (wont_exit, 1);
597 auto_vec<edge> remove_edges;
598 if (flag_split_ivs_in_unroller)
599 opt_info = analyze_insns_in_loop (loop);
601 opt_info_start_duplication (opt_info);
602 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
603 npeel,
604 wont_exit, desc->out_edge,
605 &remove_edges,
606 DLTHE_FLAG_UPDATE_FREQ
607 | DLTHE_FLAG_COMPLETTE_PEEL
608 | (opt_info
609 ? DLTHE_RECORD_COPY_NUMBER : 0));
610 gcc_assert (ok);
612 free (wont_exit);
614 if (opt_info)
616 apply_opt_in_copies (opt_info, npeel, false, true);
617 free_opt_info (opt_info);
620 /* Remove the exit edges. */
621 FOR_EACH_VEC_ELT (remove_edges, i, ein)
622 remove_path (ein);
625 ein = desc->in_edge;
626 free_simple_loop_desc (loop);
628 /* Now remove the unreachable part of the last iteration and cancel
629 the loop. */
630 remove_path (ein);
632 if (dump_file)
633 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
636 /* Decide whether to unroll LOOP iterating constant number of times
637 and how much. */
639 static void
640 decide_unroll_constant_iterations (struct loop *loop, int flags)
642 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
643 struct niter_desc *desc;
644 widest_int iterations;
646 if (!(flags & UAP_UNROLL))
648 /* We were not asked to, just return back silently. */
649 return;
652 if (dump_file)
653 fprintf (dump_file,
654 "\n;; Considering unrolling loop with constant "
655 "number of iterations\n");
657 /* nunroll = total number of copies of the original loop body in
658 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
659 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
660 nunroll_by_av
661 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
662 if (nunroll > nunroll_by_av)
663 nunroll = nunroll_by_av;
664 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
665 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
667 if (targetm.loop_unroll_adjust)
668 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
670 /* Skip big loops. */
671 if (nunroll <= 1)
673 if (dump_file)
674 fprintf (dump_file, ";; Not considering loop, is too big\n");
675 return;
678 /* Check for simple loops. */
679 desc = get_simple_loop_desc (loop);
681 /* Check number of iterations. */
682 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
684 if (dump_file)
685 fprintf (dump_file,
686 ";; Unable to prove that the loop iterates constant times\n");
687 return;
690 /* Check whether the loop rolls enough to consider.
691 Consult also loop bounds and profile; in the case the loop has more
692 than one exit it may well loop less than determined maximal number
693 of iterations. */
694 if (desc->niter < 2 * nunroll
695 || ((get_estimated_loop_iterations (loop, &iterations)
696 || get_max_loop_iterations (loop, &iterations))
697 && wi::ltu_p (iterations, 2 * nunroll)))
699 if (dump_file)
700 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
701 return;
704 /* Success; now compute number of iterations to unroll. We alter
705 nunroll so that as few as possible copies of loop body are
706 necessary, while still not decreasing the number of unrollings
707 too much (at most by 1). */
708 best_copies = 2 * nunroll + 10;
710 i = 2 * nunroll + 2;
711 if (i - 1 >= desc->niter)
712 i = desc->niter - 2;
714 for (; i >= nunroll - 1; i--)
716 unsigned exit_mod = desc->niter % (i + 1);
718 if (!loop_exit_at_end_p (loop))
719 n_copies = exit_mod + i + 1;
720 else if (exit_mod != (unsigned) i
721 || desc->noloop_assumptions != NULL_RTX)
722 n_copies = exit_mod + i + 2;
723 else
724 n_copies = i + 1;
726 if (n_copies < best_copies)
728 best_copies = n_copies;
729 best_unroll = i;
733 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
734 loop->lpt_decision.times = best_unroll;
737 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
738 The transformation does this:
740 for (i = 0; i < 102; i++)
741 body;
743 ==> (LOOP->LPT_DECISION.TIMES == 3)
745 i = 0;
746 body; i++;
747 body; i++;
748 while (i < 102)
750 body; i++;
751 body; i++;
752 body; i++;
753 body; i++;
756 static void
757 unroll_loop_constant_iterations (struct loop *loop)
759 unsigned HOST_WIDE_INT niter;
760 unsigned exit_mod;
761 sbitmap wont_exit;
762 unsigned i;
763 edge e;
764 unsigned max_unroll = loop->lpt_decision.times;
765 struct niter_desc *desc = get_simple_loop_desc (loop);
766 bool exit_at_end = loop_exit_at_end_p (loop);
767 struct opt_info *opt_info = NULL;
768 bool ok;
770 niter = desc->niter;
772 /* Should not get here (such loop should be peeled instead). */
773 gcc_assert (niter > max_unroll + 1);
775 exit_mod = niter % (max_unroll + 1);
777 wont_exit = sbitmap_alloc (max_unroll + 1);
778 bitmap_ones (wont_exit);
780 auto_vec<edge> remove_edges;
781 if (flag_split_ivs_in_unroller
782 || flag_variable_expansion_in_unroller)
783 opt_info = analyze_insns_in_loop (loop);
785 if (!exit_at_end)
787 /* The exit is not at the end of the loop; leave exit test
788 in the first copy, so that the loops that start with test
789 of exit condition have continuous body after unrolling. */
791 if (dump_file)
792 fprintf (dump_file, ";; Condition at beginning of loop.\n");
794 /* Peel exit_mod iterations. */
795 bitmap_clear_bit (wont_exit, 0);
796 if (desc->noloop_assumptions)
797 bitmap_clear_bit (wont_exit, 1);
799 if (exit_mod)
801 opt_info_start_duplication (opt_info);
802 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
803 exit_mod,
804 wont_exit, desc->out_edge,
805 &remove_edges,
806 DLTHE_FLAG_UPDATE_FREQ
807 | (opt_info && exit_mod > 1
808 ? DLTHE_RECORD_COPY_NUMBER
809 : 0));
810 gcc_assert (ok);
812 if (opt_info && exit_mod > 1)
813 apply_opt_in_copies (opt_info, exit_mod, false, false);
815 desc->noloop_assumptions = NULL_RTX;
816 desc->niter -= exit_mod;
817 loop->nb_iterations_upper_bound -= exit_mod;
818 if (loop->any_estimate
819 && wi::leu_p (exit_mod, loop->nb_iterations_estimate))
820 loop->nb_iterations_estimate -= exit_mod;
821 else
822 loop->any_estimate = false;
825 bitmap_set_bit (wont_exit, 1);
827 else
829 /* Leave exit test in last copy, for the same reason as above if
830 the loop tests the condition at the end of loop body. */
832 if (dump_file)
833 fprintf (dump_file, ";; Condition at end of loop.\n");
835 /* We know that niter >= max_unroll + 2; so we do not need to care of
836 case when we would exit before reaching the loop. So just peel
837 exit_mod + 1 iterations. */
838 if (exit_mod != max_unroll
839 || desc->noloop_assumptions)
841 bitmap_clear_bit (wont_exit, 0);
842 if (desc->noloop_assumptions)
843 bitmap_clear_bit (wont_exit, 1);
845 opt_info_start_duplication (opt_info);
846 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
847 exit_mod + 1,
848 wont_exit, desc->out_edge,
849 &remove_edges,
850 DLTHE_FLAG_UPDATE_FREQ
851 | (opt_info && exit_mod > 0
852 ? DLTHE_RECORD_COPY_NUMBER
853 : 0));
854 gcc_assert (ok);
856 if (opt_info && exit_mod > 0)
857 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
859 desc->niter -= exit_mod + 1;
860 loop->nb_iterations_upper_bound -= exit_mod + 1;
861 if (loop->any_estimate
862 && wi::leu_p (exit_mod + 1, loop->nb_iterations_estimate))
863 loop->nb_iterations_estimate -= exit_mod + 1;
864 else
865 loop->any_estimate = false;
866 desc->noloop_assumptions = NULL_RTX;
868 bitmap_set_bit (wont_exit, 0);
869 bitmap_set_bit (wont_exit, 1);
872 bitmap_clear_bit (wont_exit, max_unroll);
875 /* Now unroll the loop. */
877 opt_info_start_duplication (opt_info);
878 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
879 max_unroll,
880 wont_exit, desc->out_edge,
881 &remove_edges,
882 DLTHE_FLAG_UPDATE_FREQ
883 | (opt_info
884 ? DLTHE_RECORD_COPY_NUMBER
885 : 0));
886 gcc_assert (ok);
888 if (opt_info)
890 apply_opt_in_copies (opt_info, max_unroll, true, true);
891 free_opt_info (opt_info);
894 free (wont_exit);
896 if (exit_at_end)
898 basic_block exit_block = get_bb_copy (desc->in_edge->src);
899 /* Find a new in and out edge; they are in the last copy we have made. */
901 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
903 desc->out_edge = EDGE_SUCC (exit_block, 0);
904 desc->in_edge = EDGE_SUCC (exit_block, 1);
906 else
908 desc->out_edge = EDGE_SUCC (exit_block, 1);
909 desc->in_edge = EDGE_SUCC (exit_block, 0);
913 desc->niter /= max_unroll + 1;
914 loop->nb_iterations_upper_bound
915 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
916 if (loop->any_estimate)
917 loop->nb_iterations_estimate
918 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
919 desc->niter_expr = GEN_INT (desc->niter);
921 /* Remove the edges. */
922 FOR_EACH_VEC_ELT (remove_edges, i, e)
923 remove_path (e);
925 if (dump_file)
926 fprintf (dump_file,
927 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
928 max_unroll, num_loop_insns (loop));
931 /* Decide whether to unroll LOOP iterating runtime computable number of times
932 and how much. */
933 static void
934 decide_unroll_runtime_iterations (struct loop *loop, int flags)
936 unsigned nunroll, nunroll_by_av, i;
937 struct niter_desc *desc;
938 widest_int iterations;
940 if (!(flags & UAP_UNROLL))
942 /* We were not asked to, just return back silently. */
943 return;
946 if (dump_file)
947 fprintf (dump_file,
948 "\n;; Considering unrolling loop with runtime "
949 "computable number of iterations\n");
951 /* nunroll = total number of copies of the original loop body in
952 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
953 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
954 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
955 if (nunroll > nunroll_by_av)
956 nunroll = nunroll_by_av;
957 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
958 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
960 if (targetm.loop_unroll_adjust)
961 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
963 /* Skip big loops. */
964 if (nunroll <= 1)
966 if (dump_file)
967 fprintf (dump_file, ";; Not considering loop, is too big\n");
968 return;
971 /* Check for simple loops. */
972 desc = get_simple_loop_desc (loop);
974 /* Check simpleness. */
975 if (!desc->simple_p || desc->assumptions)
977 if (dump_file)
978 fprintf (dump_file,
979 ";; Unable to prove that the number of iterations "
980 "can be counted in runtime\n");
981 return;
984 if (desc->const_iter)
986 if (dump_file)
987 fprintf (dump_file, ";; Loop iterates constant times\n");
988 return;
991 /* Check whether the loop rolls. */
992 if ((get_estimated_loop_iterations (loop, &iterations)
993 || get_max_loop_iterations (loop, &iterations))
994 && wi::ltu_p (iterations, 2 * nunroll))
996 if (dump_file)
997 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
998 return;
1001 /* Success; now force nunroll to be power of 2, as we are unable to
1002 cope with overflows in computation of number of iterations. */
1003 for (i = 1; 2 * i <= nunroll; i *= 2)
1004 continue;
1006 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
1007 loop->lpt_decision.times = i - 1;
1010 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
1011 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
1012 and NULL is returned instead. */
1014 basic_block
1015 split_edge_and_insert (edge e, rtx insns)
1017 basic_block bb;
1019 if (!insns)
1020 return NULL;
1021 bb = split_edge (e);
1022 emit_insn_after (insns, BB_END (bb));
1024 /* ??? We used to assume that INSNS can contain control flow insns, and
1025 that we had to try to find sub basic blocks in BB to maintain a valid
1026 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
1027 and call break_superblocks when going out of cfglayout mode. But it
1028 turns out that this never happens; and that if it does ever happen,
1029 the verify_flow_info at the end of the RTL loop passes would fail.
1031 There are two reasons why we expected we could have control flow insns
1032 in INSNS. The first is when a comparison has to be done in parts, and
1033 the second is when the number of iterations is computed for loops with
1034 the number of iterations known at runtime. In both cases, test cases
1035 to get control flow in INSNS appear to be impossible to construct:
1037 * If do_compare_rtx_and_jump needs several branches to do comparison
1038 in a mode that needs comparison by parts, we cannot analyze the
1039 number of iterations of the loop, and we never get to unrolling it.
1041 * The code in expand_divmod that was suspected to cause creation of
1042 branching code seems to be only accessed for signed division. The
1043 divisions used by # of iterations analysis are always unsigned.
1044 Problems might arise on architectures that emits branching code
1045 for some operations that may appear in the unroller (especially
1046 for division), but we have no such architectures.
1048 Considering all this, it was decided that we should for now assume
1049 that INSNS can in theory contain control flow insns, but in practice
1050 it never does. So we don't handle the theoretical case, and should
1051 a real failure ever show up, we have a pretty good clue for how to
1052 fix it. */
1054 return bb;
1057 /* Prepare a sequence comparing OP0 with OP1 using COMP and jumping to LABEL if
1058 true, with probability PROB. If CINSN is not NULL, it is the insn to copy
1059 in order to create a jump. */
1061 static rtx
1062 compare_and_jump_seq (rtx op0, rtx op1, enum rtx_code comp, rtx label, int prob,
1063 rtx cinsn)
1065 rtx seq, jump, cond;
1066 enum machine_mode mode;
1068 mode = GET_MODE (op0);
1069 if (mode == VOIDmode)
1070 mode = GET_MODE (op1);
1072 start_sequence ();
1073 if (GET_MODE_CLASS (mode) == MODE_CC)
1075 /* A hack -- there seems to be no easy generic way how to make a
1076 conditional jump from a ccmode comparison. */
1077 gcc_assert (cinsn);
1078 cond = XEXP (SET_SRC (pc_set (cinsn)), 0);
1079 gcc_assert (GET_CODE (cond) == comp);
1080 gcc_assert (rtx_equal_p (op0, XEXP (cond, 0)));
1081 gcc_assert (rtx_equal_p (op1, XEXP (cond, 1)));
1082 emit_jump_insn (copy_insn (PATTERN (cinsn)));
1083 jump = get_last_insn ();
1084 gcc_assert (JUMP_P (jump));
1085 JUMP_LABEL (jump) = JUMP_LABEL (cinsn);
1086 LABEL_NUSES (JUMP_LABEL (jump))++;
1087 redirect_jump (jump, label, 0);
1089 else
1091 gcc_assert (!cinsn);
1093 op0 = force_operand (op0, NULL_RTX);
1094 op1 = force_operand (op1, NULL_RTX);
1095 do_compare_rtx_and_jump (op0, op1, comp, 0,
1096 mode, NULL_RTX, NULL_RTX, label, -1);
1097 jump = get_last_insn ();
1098 gcc_assert (JUMP_P (jump));
1099 JUMP_LABEL (jump) = label;
1100 LABEL_NUSES (label)++;
1102 add_int_reg_note (jump, REG_BR_PROB, prob);
1104 seq = get_insns ();
1105 end_sequence ();
1107 return seq;
1110 /* Unroll LOOP for which we are able to count number of iterations in runtime
1111 LOOP->LPT_DECISION.TIMES times. The transformation does this (with some
1112 extra care for case n < 0):
1114 for (i = 0; i < n; i++)
1115 body;
1117 ==> (LOOP->LPT_DECISION.TIMES == 3)
1119 i = 0;
1120 mod = n % 4;
1122 switch (mod)
1124 case 3:
1125 body; i++;
1126 case 2:
1127 body; i++;
1128 case 1:
1129 body; i++;
1130 case 0: ;
1133 while (i < n)
1135 body; i++;
1136 body; i++;
1137 body; i++;
1138 body; i++;
1141 static void
1142 unroll_loop_runtime_iterations (struct loop *loop)
1144 rtx old_niter, niter, init_code, branch_code, tmp;
1145 unsigned i, j, p;
1146 basic_block preheader, *body, swtch, ezc_swtch;
1147 sbitmap wont_exit;
1148 int may_exit_copy;
1149 unsigned n_peel;
1150 edge e;
1151 bool extra_zero_check, last_may_exit;
1152 unsigned max_unroll = loop->lpt_decision.times;
1153 struct niter_desc *desc = get_simple_loop_desc (loop);
1154 bool exit_at_end = loop_exit_at_end_p (loop);
1155 struct opt_info *opt_info = NULL;
1156 bool ok;
1158 if (flag_split_ivs_in_unroller
1159 || flag_variable_expansion_in_unroller)
1160 opt_info = analyze_insns_in_loop (loop);
1162 /* Remember blocks whose dominators will have to be updated. */
1163 auto_vec<basic_block> dom_bbs;
1165 body = get_loop_body (loop);
1166 for (i = 0; i < loop->num_nodes; i++)
1168 vec<basic_block> ldom;
1169 basic_block bb;
1171 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
1172 FOR_EACH_VEC_ELT (ldom, j, bb)
1173 if (!flow_bb_inside_loop_p (loop, bb))
1174 dom_bbs.safe_push (bb);
1176 ldom.release ();
1178 free (body);
1180 if (!exit_at_end)
1182 /* Leave exit in first copy (for explanation why see comment in
1183 unroll_loop_constant_iterations). */
1184 may_exit_copy = 0;
1185 n_peel = max_unroll - 1;
1186 extra_zero_check = true;
1187 last_may_exit = false;
1189 else
1191 /* Leave exit in last copy (for explanation why see comment in
1192 unroll_loop_constant_iterations). */
1193 may_exit_copy = max_unroll;
1194 n_peel = max_unroll;
1195 extra_zero_check = false;
1196 last_may_exit = true;
1199 /* Get expression for number of iterations. */
1200 start_sequence ();
1201 old_niter = niter = gen_reg_rtx (desc->mode);
1202 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1203 if (tmp != niter)
1204 emit_move_insn (niter, tmp);
1206 /* Count modulo by ANDing it with max_unroll; we use the fact that
1207 the number of unrollings is a power of two, and thus this is correct
1208 even if there is overflow in the computation. */
1209 niter = expand_simple_binop (desc->mode, AND,
1210 niter, gen_int_mode (max_unroll, desc->mode),
1211 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1213 init_code = get_insns ();
1214 end_sequence ();
1215 unshare_all_rtl_in_chain (init_code);
1217 /* Precondition the loop. */
1218 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1220 auto_vec<edge> remove_edges;
1222 wont_exit = sbitmap_alloc (max_unroll + 2);
1224 /* Peel the first copy of loop body (almost always we must leave exit test
1225 here; the only exception is when we have extra zero check and the number
1226 of iterations is reliable. Also record the place of (possible) extra
1227 zero check. */
1228 bitmap_clear (wont_exit);
1229 if (extra_zero_check
1230 && !desc->noloop_assumptions)
1231 bitmap_set_bit (wont_exit, 1);
1232 ezc_swtch = loop_preheader_edge (loop)->src;
1233 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1234 1, wont_exit, desc->out_edge,
1235 &remove_edges,
1236 DLTHE_FLAG_UPDATE_FREQ);
1237 gcc_assert (ok);
1239 /* Record the place where switch will be built for preconditioning. */
1240 swtch = split_edge (loop_preheader_edge (loop));
1242 for (i = 0; i < n_peel; i++)
1244 /* Peel the copy. */
1245 bitmap_clear (wont_exit);
1246 if (i != n_peel - 1 || !last_may_exit)
1247 bitmap_set_bit (wont_exit, 1);
1248 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1249 1, wont_exit, desc->out_edge,
1250 &remove_edges,
1251 DLTHE_FLAG_UPDATE_FREQ);
1252 gcc_assert (ok);
1254 /* Create item for switch. */
1255 j = n_peel - i - (extra_zero_check ? 0 : 1);
1256 p = REG_BR_PROB_BASE / (i + 2);
1258 preheader = split_edge (loop_preheader_edge (loop));
1259 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1260 block_label (preheader), p,
1261 NULL_RTX);
1263 /* We rely on the fact that the compare and jump cannot be optimized out,
1264 and hence the cfg we create is correct. */
1265 gcc_assert (branch_code != NULL_RTX);
1267 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1268 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1269 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1270 e = make_edge (swtch, preheader,
1271 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1272 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1273 e->probability = p;
1276 if (extra_zero_check)
1278 /* Add branch for zero iterations. */
1279 p = REG_BR_PROB_BASE / (max_unroll + 1);
1280 swtch = ezc_swtch;
1281 preheader = split_edge (loop_preheader_edge (loop));
1282 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1283 block_label (preheader), p,
1284 NULL_RTX);
1285 gcc_assert (branch_code != NULL_RTX);
1287 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1288 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1289 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1290 e = make_edge (swtch, preheader,
1291 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1292 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1293 e->probability = p;
1296 /* Recount dominators for outer blocks. */
1297 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1299 /* And unroll loop. */
1301 bitmap_ones (wont_exit);
1302 bitmap_clear_bit (wont_exit, may_exit_copy);
1303 opt_info_start_duplication (opt_info);
1305 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1306 max_unroll,
1307 wont_exit, desc->out_edge,
1308 &remove_edges,
1309 DLTHE_FLAG_UPDATE_FREQ
1310 | (opt_info
1311 ? DLTHE_RECORD_COPY_NUMBER
1312 : 0));
1313 gcc_assert (ok);
1315 if (opt_info)
1317 apply_opt_in_copies (opt_info, max_unroll, true, true);
1318 free_opt_info (opt_info);
1321 free (wont_exit);
1323 if (exit_at_end)
1325 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1326 /* Find a new in and out edge; they are in the last copy we have
1327 made. */
1329 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1331 desc->out_edge = EDGE_SUCC (exit_block, 0);
1332 desc->in_edge = EDGE_SUCC (exit_block, 1);
1334 else
1336 desc->out_edge = EDGE_SUCC (exit_block, 1);
1337 desc->in_edge = EDGE_SUCC (exit_block, 0);
1341 /* Remove the edges. */
1342 FOR_EACH_VEC_ELT (remove_edges, i, e)
1343 remove_path (e);
1345 /* We must be careful when updating the number of iterations due to
1346 preconditioning and the fact that the value must be valid at entry
1347 of the loop. After passing through the above code, we see that
1348 the correct new number of iterations is this: */
1349 gcc_assert (!desc->const_iter);
1350 desc->niter_expr =
1351 simplify_gen_binary (UDIV, desc->mode, old_niter,
1352 gen_int_mode (max_unroll + 1, desc->mode));
1353 loop->nb_iterations_upper_bound
1354 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
1355 if (loop->any_estimate)
1356 loop->nb_iterations_estimate
1357 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
1358 if (exit_at_end)
1360 desc->niter_expr =
1361 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1362 desc->noloop_assumptions = NULL_RTX;
1363 --loop->nb_iterations_upper_bound;
1364 if (loop->any_estimate
1365 && loop->nb_iterations_estimate != 0)
1366 --loop->nb_iterations_estimate;
1367 else
1368 loop->any_estimate = false;
1371 if (dump_file)
1372 fprintf (dump_file,
1373 ";; Unrolled loop %d times, counting # of iterations "
1374 "in runtime, %i insns\n",
1375 max_unroll, num_loop_insns (loop));
1378 /* Decide whether to simply peel LOOP and how much. */
1379 static void
1380 decide_peel_simple (struct loop *loop, int flags)
1382 unsigned npeel;
1383 widest_int iterations;
1385 if (!(flags & UAP_PEEL))
1387 /* We were not asked to, just return back silently. */
1388 return;
1391 if (dump_file)
1392 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1394 /* npeel = number of iterations to peel. */
1395 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1396 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1397 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1399 /* Skip big loops. */
1400 if (!npeel)
1402 if (dump_file)
1403 fprintf (dump_file, ";; Not considering loop, is too big\n");
1404 return;
1407 /* Do not simply peel loops with branches inside -- it increases number
1408 of mispredicts.
1409 Exception is when we do have profile and we however have good chance
1410 to peel proper number of iterations loop will iterate in practice.
1411 TODO: this heuristic needs tunning; while for complette unrolling
1412 the branch inside loop mostly eliminates any improvements, for
1413 peeling it is not the case. Also a function call inside loop is
1414 also branch from branch prediction POV (and probably better reason
1415 to not unroll/peel). */
1416 if (num_loop_branches (loop) > 1
1417 && profile_status_for_fn (cfun) != PROFILE_READ)
1419 if (dump_file)
1420 fprintf (dump_file, ";; Not peeling, contains branches\n");
1421 return;
1424 /* If we have realistic estimate on number of iterations, use it. */
1425 if (get_estimated_loop_iterations (loop, &iterations))
1427 if (wi::leu_p (npeel, iterations))
1429 if (dump_file)
1431 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1432 fprintf (dump_file, "%"PRId64,
1433 (int64_t) (iterations.to_shwi () + 1));
1434 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1435 npeel);
1437 return;
1439 npeel = iterations.to_shwi () + 1;
1441 /* If we have small enough bound on iterations, we can still peel (completely
1442 unroll). */
1443 else if (get_max_loop_iterations (loop, &iterations)
1444 && wi::ltu_p (iterations, npeel))
1445 npeel = iterations.to_shwi () + 1;
1446 else
1448 /* For now we have no good heuristics to decide whether loop peeling
1449 will be effective, so disable it. */
1450 if (dump_file)
1451 fprintf (dump_file,
1452 ";; Not peeling loop, no evidence it will be profitable\n");
1453 return;
1456 /* Success. */
1457 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1458 loop->lpt_decision.times = npeel;
1461 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1463 while (cond)
1464 body;
1466 ==> (LOOP->LPT_DECISION.TIMES == 3)
1468 if (!cond) goto end;
1469 body;
1470 if (!cond) goto end;
1471 body;
1472 if (!cond) goto end;
1473 body;
1474 while (cond)
1475 body;
1476 end: ;
1478 static void
1479 peel_loop_simple (struct loop *loop)
1481 sbitmap wont_exit;
1482 unsigned npeel = loop->lpt_decision.times;
1483 struct niter_desc *desc = get_simple_loop_desc (loop);
1484 struct opt_info *opt_info = NULL;
1485 bool ok;
1487 if (flag_split_ivs_in_unroller && npeel > 1)
1488 opt_info = analyze_insns_in_loop (loop);
1490 wont_exit = sbitmap_alloc (npeel + 1);
1491 bitmap_clear (wont_exit);
1493 opt_info_start_duplication (opt_info);
1495 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1496 npeel, wont_exit, NULL,
1497 NULL, DLTHE_FLAG_UPDATE_FREQ
1498 | (opt_info
1499 ? DLTHE_RECORD_COPY_NUMBER
1500 : 0));
1501 gcc_assert (ok);
1503 free (wont_exit);
1505 if (opt_info)
1507 apply_opt_in_copies (opt_info, npeel, false, false);
1508 free_opt_info (opt_info);
1511 if (desc->simple_p)
1513 if (desc->const_iter)
1515 desc->niter -= npeel;
1516 desc->niter_expr = GEN_INT (desc->niter);
1517 desc->noloop_assumptions = NULL_RTX;
1519 else
1521 /* We cannot just update niter_expr, as its value might be clobbered
1522 inside loop. We could handle this by counting the number into
1523 temporary just like we do in runtime unrolling, but it does not
1524 seem worthwhile. */
1525 free_simple_loop_desc (loop);
1528 if (dump_file)
1529 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1532 /* Decide whether to unroll LOOP stupidly and how much. */
1533 static void
1534 decide_unroll_stupid (struct loop *loop, int flags)
1536 unsigned nunroll, nunroll_by_av, i;
1537 struct niter_desc *desc;
1538 widest_int iterations;
1540 if (!(flags & UAP_UNROLL_ALL))
1542 /* We were not asked to, just return back silently. */
1543 return;
1546 if (dump_file)
1547 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1549 /* nunroll = total number of copies of the original loop body in
1550 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1551 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1552 nunroll_by_av
1553 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1554 if (nunroll > nunroll_by_av)
1555 nunroll = nunroll_by_av;
1556 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1557 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1559 if (targetm.loop_unroll_adjust)
1560 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1562 /* Skip big loops. */
1563 if (nunroll <= 1)
1565 if (dump_file)
1566 fprintf (dump_file, ";; Not considering loop, is too big\n");
1567 return;
1570 /* Check for simple loops. */
1571 desc = get_simple_loop_desc (loop);
1573 /* Check simpleness. */
1574 if (desc->simple_p && !desc->assumptions)
1576 if (dump_file)
1577 fprintf (dump_file, ";; The loop is simple\n");
1578 return;
1581 /* Do not unroll loops with branches inside -- it increases number
1582 of mispredicts.
1583 TODO: this heuristic needs tunning; call inside the loop body
1584 is also relatively good reason to not unroll. */
1585 if (num_loop_branches (loop) > 1)
1587 if (dump_file)
1588 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1589 return;
1592 /* Check whether the loop rolls. */
1593 if ((get_estimated_loop_iterations (loop, &iterations)
1594 || get_max_loop_iterations (loop, &iterations))
1595 && wi::ltu_p (iterations, 2 * nunroll))
1597 if (dump_file)
1598 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1599 return;
1602 /* Success. Now force nunroll to be power of 2, as it seems that this
1603 improves results (partially because of better alignments, partially
1604 because of some dark magic). */
1605 for (i = 1; 2 * i <= nunroll; i *= 2)
1606 continue;
1608 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1609 loop->lpt_decision.times = i - 1;
1612 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1614 while (cond)
1615 body;
1617 ==> (LOOP->LPT_DECISION.TIMES == 3)
1619 while (cond)
1621 body;
1622 if (!cond) break;
1623 body;
1624 if (!cond) break;
1625 body;
1626 if (!cond) break;
1627 body;
1630 static void
1631 unroll_loop_stupid (struct loop *loop)
1633 sbitmap wont_exit;
1634 unsigned nunroll = loop->lpt_decision.times;
1635 struct niter_desc *desc = get_simple_loop_desc (loop);
1636 struct opt_info *opt_info = NULL;
1637 bool ok;
1639 if (flag_split_ivs_in_unroller
1640 || flag_variable_expansion_in_unroller)
1641 opt_info = analyze_insns_in_loop (loop);
1644 wont_exit = sbitmap_alloc (nunroll + 1);
1645 bitmap_clear (wont_exit);
1646 opt_info_start_duplication (opt_info);
1648 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1649 nunroll, wont_exit,
1650 NULL, NULL,
1651 DLTHE_FLAG_UPDATE_FREQ
1652 | (opt_info
1653 ? DLTHE_RECORD_COPY_NUMBER
1654 : 0));
1655 gcc_assert (ok);
1657 if (opt_info)
1659 apply_opt_in_copies (opt_info, nunroll, true, true);
1660 free_opt_info (opt_info);
1663 free (wont_exit);
1665 if (desc->simple_p)
1667 /* We indeed may get here provided that there are nontrivial assumptions
1668 for a loop to be really simple. We could update the counts, but the
1669 problem is that we are unable to decide which exit will be taken
1670 (not really true in case the number of iterations is constant,
1671 but no one will do anything with this information, so we do not
1672 worry about it). */
1673 desc->simple_p = false;
1676 if (dump_file)
1677 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1678 nunroll, num_loop_insns (loop));
1681 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1682 Set *DEBUG_USES to the number of debug insns that reference the
1683 variable. */
1685 bool
1686 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1687 int *debug_uses)
1689 basic_block *body, bb;
1690 unsigned i;
1691 int count_ref = 0;
1692 rtx insn;
1694 body = get_loop_body (loop);
1695 for (i = 0; i < loop->num_nodes; i++)
1697 bb = body[i];
1699 FOR_BB_INSNS (bb, insn)
1700 if (!rtx_referenced_p (reg, insn))
1701 continue;
1702 else if (DEBUG_INSN_P (insn))
1703 ++*debug_uses;
1704 else if (++count_ref > 1)
1705 break;
1707 free (body);
1708 return (count_ref == 1);
1711 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1713 static void
1714 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1716 basic_block *body, bb;
1717 unsigned i;
1718 rtx insn;
1720 body = get_loop_body (loop);
1721 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1723 bb = body[i];
1725 FOR_BB_INSNS (bb, insn)
1726 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1727 continue;
1728 else
1730 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1731 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1732 if (!--debug_uses)
1733 break;
1736 free (body);
1739 /* Determine whether INSN contains an accumulator
1740 which can be expanded into separate copies,
1741 one for each copy of the LOOP body.
1743 for (i = 0 ; i < n; i++)
1744 sum += a[i];
1748 sum += a[i]
1749 ....
1750 i = i+1;
1751 sum1 += a[i]
1752 ....
1753 i = i+1
1754 sum2 += a[i];
1755 ....
1757 Return NULL if INSN contains no opportunity for expansion of accumulator.
1758 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1759 information and return a pointer to it.
1762 static struct var_to_expand *
1763 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1765 rtx set, dest, src;
1766 struct var_to_expand *ves;
1767 unsigned accum_pos;
1768 enum rtx_code code;
1769 int debug_uses = 0;
1771 set = single_set (insn);
1772 if (!set)
1773 return NULL;
1775 dest = SET_DEST (set);
1776 src = SET_SRC (set);
1777 code = GET_CODE (src);
1779 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1780 return NULL;
1782 if (FLOAT_MODE_P (GET_MODE (dest)))
1784 if (!flag_associative_math)
1785 return NULL;
1786 /* In the case of FMA, we're also changing the rounding. */
1787 if (code == FMA && !flag_unsafe_math_optimizations)
1788 return NULL;
1791 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1792 in MD. But if there is no optab to generate the insn, we can not
1793 perform the variable expansion. This can happen if an MD provides
1794 an insn but not a named pattern to generate it, for example to avoid
1795 producing code that needs additional mode switches like for x87/mmx.
1797 So we check have_insn_for which looks for an optab for the operation
1798 in SRC. If it doesn't exist, we can't perform the expansion even
1799 though INSN is valid. */
1800 if (!have_insn_for (code, GET_MODE (src)))
1801 return NULL;
1803 if (!REG_P (dest)
1804 && !(GET_CODE (dest) == SUBREG
1805 && REG_P (SUBREG_REG (dest))))
1806 return NULL;
1808 /* Find the accumulator use within the operation. */
1809 if (code == FMA)
1811 /* We only support accumulation via FMA in the ADD position. */
1812 if (!rtx_equal_p (dest, XEXP (src, 2)))
1813 return NULL;
1814 accum_pos = 2;
1816 else if (rtx_equal_p (dest, XEXP (src, 0)))
1817 accum_pos = 0;
1818 else if (rtx_equal_p (dest, XEXP (src, 1)))
1820 /* The method of expansion that we are using; which includes the
1821 initialization of the expansions with zero and the summation of
1822 the expansions at the end of the computation will yield wrong
1823 results for (x = something - x) thus avoid using it in that case. */
1824 if (code == MINUS)
1825 return NULL;
1826 accum_pos = 1;
1828 else
1829 return NULL;
1831 /* It must not otherwise be used. */
1832 if (code == FMA)
1834 if (rtx_referenced_p (dest, XEXP (src, 0))
1835 || rtx_referenced_p (dest, XEXP (src, 1)))
1836 return NULL;
1838 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1839 return NULL;
1841 /* It must be used in exactly one insn. */
1842 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1843 return NULL;
1845 if (dump_file)
1847 fprintf (dump_file, "\n;; Expanding Accumulator ");
1848 print_rtl (dump_file, dest);
1849 fprintf (dump_file, "\n");
1852 if (debug_uses)
1853 /* Instead of resetting the debug insns, we could replace each
1854 debug use in the loop with the sum or product of all expanded
1855 accummulators. Since we'll only know of all expansions at the
1856 end, we'd have to keep track of which vars_to_expand a debug
1857 insn in the loop references, take note of each copy of the
1858 debug insn during unrolling, and when it's all done, compute
1859 the sum or product of each variable and adjust the original
1860 debug insn and each copy thereof. What a pain! */
1861 reset_debug_uses_in_loop (loop, dest, debug_uses);
1863 /* Record the accumulator to expand. */
1864 ves = XNEW (struct var_to_expand);
1865 ves->insn = insn;
1866 ves->reg = copy_rtx (dest);
1867 ves->var_expansions.create (1);
1868 ves->next = NULL;
1869 ves->op = GET_CODE (src);
1870 ves->expansion_count = 0;
1871 ves->reuse_expansion = 0;
1872 return ves;
1875 /* Determine whether there is an induction variable in INSN that
1876 we would like to split during unrolling.
1878 I.e. replace
1880 i = i + 1;
1882 i = i + 1;
1884 i = i + 1;
1887 type chains by
1889 i0 = i + 1
1891 i = i0 + 1
1893 i = i0 + 2
1896 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1897 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1898 pointer to it. */
1900 static struct iv_to_split *
1901 analyze_iv_to_split_insn (rtx insn)
1903 rtx set, dest;
1904 struct rtx_iv iv;
1905 struct iv_to_split *ivts;
1906 bool ok;
1908 /* For now we just split the basic induction variables. Later this may be
1909 extended for example by selecting also addresses of memory references. */
1910 set = single_set (insn);
1911 if (!set)
1912 return NULL;
1914 dest = SET_DEST (set);
1915 if (!REG_P (dest))
1916 return NULL;
1918 if (!biv_p (insn, dest))
1919 return NULL;
1921 ok = iv_analyze_result (insn, dest, &iv);
1923 /* This used to be an assert under the assumption that if biv_p returns
1924 true that iv_analyze_result must also return true. However, that
1925 assumption is not strictly correct as evidenced by pr25569.
1927 Returning NULL when iv_analyze_result returns false is safe and
1928 avoids the problems in pr25569 until the iv_analyze_* routines
1929 can be fixed, which is apparently hard and time consuming
1930 according to their author. */
1931 if (! ok)
1932 return NULL;
1934 if (iv.step == const0_rtx
1935 || iv.mode != iv.extend_mode)
1936 return NULL;
1938 /* Record the insn to split. */
1939 ivts = XNEW (struct iv_to_split);
1940 ivts->insn = insn;
1941 ivts->orig_var = dest;
1942 ivts->base_var = NULL_RTX;
1943 ivts->step = iv.step;
1944 ivts->next = NULL;
1945 ivts->n_loc = 1;
1946 ivts->loc[0] = 1;
1948 return ivts;
1951 /* Determines which of insns in LOOP can be optimized.
1952 Return a OPT_INFO struct with the relevant hash tables filled
1953 with all insns to be optimized. The FIRST_NEW_BLOCK field
1954 is undefined for the return value. */
1956 static struct opt_info *
1957 analyze_insns_in_loop (struct loop *loop)
1959 basic_block *body, bb;
1960 unsigned i;
1961 struct opt_info *opt_info = XCNEW (struct opt_info);
1962 rtx insn;
1963 struct iv_to_split *ivts = NULL;
1964 struct var_to_expand *ves = NULL;
1965 iv_to_split **slot1;
1966 var_to_expand **slot2;
1967 vec<edge> edges = get_loop_exit_edges (loop);
1968 edge exit;
1969 bool can_apply = false;
1971 iv_analysis_loop_init (loop);
1973 body = get_loop_body (loop);
1975 if (flag_split_ivs_in_unroller)
1977 opt_info->insns_to_split
1978 = new hash_table<iv_split_hasher> (5 * loop->num_nodes);
1979 opt_info->iv_to_split_head = NULL;
1980 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1983 /* Record the loop exit bb and loop preheader before the unrolling. */
1984 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1986 if (edges.length () == 1)
1988 exit = edges[0];
1989 if (!(exit->flags & EDGE_COMPLEX))
1991 opt_info->loop_exit = split_edge (exit);
1992 can_apply = true;
1996 if (flag_variable_expansion_in_unroller
1997 && can_apply)
1999 opt_info->insns_with_var_to_expand
2000 = new hash_table<var_expand_hasher> (5 * loop->num_nodes);
2001 opt_info->var_to_expand_head = NULL;
2002 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
2005 for (i = 0; i < loop->num_nodes; i++)
2007 bb = body[i];
2008 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2009 continue;
2011 FOR_BB_INSNS (bb, insn)
2013 if (!INSN_P (insn))
2014 continue;
2016 if (opt_info->insns_to_split)
2017 ivts = analyze_iv_to_split_insn (insn);
2019 if (ivts)
2021 slot1 = opt_info->insns_to_split->find_slot (ivts, INSERT);
2022 gcc_assert (*slot1 == NULL);
2023 *slot1 = ivts;
2024 *opt_info->iv_to_split_tail = ivts;
2025 opt_info->iv_to_split_tail = &ivts->next;
2026 continue;
2029 if (opt_info->insns_with_var_to_expand)
2030 ves = analyze_insn_to_expand_var (loop, insn);
2032 if (ves)
2034 slot2 = opt_info->insns_with_var_to_expand->find_slot (ves, INSERT);
2035 gcc_assert (*slot2 == NULL);
2036 *slot2 = ves;
2037 *opt_info->var_to_expand_tail = ves;
2038 opt_info->var_to_expand_tail = &ves->next;
2043 edges.release ();
2044 free (body);
2045 return opt_info;
2048 /* Called just before loop duplication. Records start of duplicated area
2049 to OPT_INFO. */
2051 static void
2052 opt_info_start_duplication (struct opt_info *opt_info)
2054 if (opt_info)
2055 opt_info->first_new_block = last_basic_block_for_fn (cfun);
2058 /* Determine the number of iterations between initialization of the base
2059 variable and the current copy (N_COPY). N_COPIES is the total number
2060 of newly created copies. UNROLLING is true if we are unrolling
2061 (not peeling) the loop. */
2063 static unsigned
2064 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
2066 if (unrolling)
2068 /* If we are unrolling, initialization is done in the original loop
2069 body (number 0). */
2070 return n_copy;
2072 else
2074 /* If we are peeling, the copy in that the initialization occurs has
2075 number 1. The original loop (number 0) is the last. */
2076 if (n_copy)
2077 return n_copy - 1;
2078 else
2079 return n_copies;
2083 /* Locate in EXPR the expression corresponding to the location recorded
2084 in IVTS, and return a pointer to the RTX for this location. */
2086 static rtx *
2087 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
2089 unsigned i;
2090 rtx *ret = &expr;
2092 for (i = 0; i < ivts->n_loc; i++)
2093 ret = &XEXP (*ret, ivts->loc[i]);
2095 return ret;
2098 /* Allocate basic variable for the induction variable chain. */
2100 static void
2101 allocate_basic_variable (struct iv_to_split *ivts)
2103 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
2105 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
2108 /* Insert initialization of basic variable of IVTS before INSN, taking
2109 the initial value from INSN. */
2111 static void
2112 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
2114 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
2115 rtx seq;
2117 start_sequence ();
2118 expr = force_operand (expr, ivts->base_var);
2119 if (expr != ivts->base_var)
2120 emit_move_insn (ivts->base_var, expr);
2121 seq = get_insns ();
2122 end_sequence ();
2124 emit_insn_before (seq, insn);
2127 /* Replace the use of induction variable described in IVTS in INSN
2128 by base variable + DELTA * step. */
2130 static void
2131 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
2133 rtx expr, *loc, seq, incr, var;
2134 enum machine_mode mode = GET_MODE (ivts->base_var);
2135 rtx src, dest, set;
2137 /* Construct base + DELTA * step. */
2138 if (!delta)
2139 expr = ivts->base_var;
2140 else
2142 incr = simplify_gen_binary (MULT, mode,
2143 ivts->step, gen_int_mode (delta, mode));
2144 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
2145 ivts->base_var, incr);
2148 /* Figure out where to do the replacement. */
2149 loc = get_ivts_expr (single_set (insn), ivts);
2151 /* If we can make the replacement right away, we're done. */
2152 if (validate_change (insn, loc, expr, 0))
2153 return;
2155 /* Otherwise, force EXPR into a register and try again. */
2156 start_sequence ();
2157 var = gen_reg_rtx (mode);
2158 expr = force_operand (expr, var);
2159 if (expr != var)
2160 emit_move_insn (var, expr);
2161 seq = get_insns ();
2162 end_sequence ();
2163 emit_insn_before (seq, insn);
2165 if (validate_change (insn, loc, var, 0))
2166 return;
2168 /* The last chance. Try recreating the assignment in insn
2169 completely from scratch. */
2170 set = single_set (insn);
2171 gcc_assert (set);
2173 start_sequence ();
2174 *loc = var;
2175 src = copy_rtx (SET_SRC (set));
2176 dest = copy_rtx (SET_DEST (set));
2177 src = force_operand (src, dest);
2178 if (src != dest)
2179 emit_move_insn (dest, src);
2180 seq = get_insns ();
2181 end_sequence ();
2183 emit_insn_before (seq, insn);
2184 delete_insn (insn);
2188 /* Return one expansion of the accumulator recorded in struct VE. */
2190 static rtx
2191 get_expansion (struct var_to_expand *ve)
2193 rtx reg;
2195 if (ve->reuse_expansion == 0)
2196 reg = ve->reg;
2197 else
2198 reg = ve->var_expansions[ve->reuse_expansion - 1];
2200 if (ve->var_expansions.length () == (unsigned) ve->reuse_expansion)
2201 ve->reuse_expansion = 0;
2202 else
2203 ve->reuse_expansion++;
2205 return reg;
2209 /* Given INSN replace the uses of the accumulator recorded in VE
2210 with a new register. */
2212 static void
2213 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
2215 rtx new_reg, set;
2216 bool really_new_expansion = false;
2218 set = single_set (insn);
2219 gcc_assert (set);
2221 /* Generate a new register only if the expansion limit has not been
2222 reached. Else reuse an already existing expansion. */
2223 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
2225 really_new_expansion = true;
2226 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
2228 else
2229 new_reg = get_expansion (ve);
2231 validate_replace_rtx_group (SET_DEST (set), new_reg, insn);
2232 if (apply_change_group ())
2233 if (really_new_expansion)
2235 ve->var_expansions.safe_push (new_reg);
2236 ve->expansion_count++;
2240 /* Initialize the variable expansions in loop preheader. PLACE is the
2241 loop-preheader basic block where the initialization of the
2242 expansions should take place. The expansions are initialized with
2243 (-0) when the operation is plus or minus to honor sign zero. This
2244 way we can prevent cases where the sign of the final result is
2245 effected by the sign of the expansion. Here is an example to
2246 demonstrate this:
2248 for (i = 0 ; i < n; i++)
2249 sum += something;
2253 sum += something
2254 ....
2255 i = i+1;
2256 sum1 += something
2257 ....
2258 i = i+1
2259 sum2 += something;
2260 ....
2262 When SUM is initialized with -zero and SOMETHING is also -zero; the
2263 final result of sum should be -zero thus the expansions sum1 and sum2
2264 should be initialized with -zero as well (otherwise we will get +zero
2265 as the final result). */
2267 static void
2268 insert_var_expansion_initialization (struct var_to_expand *ve,
2269 basic_block place)
2271 rtx seq, var, zero_init;
2272 unsigned i;
2273 enum machine_mode mode = GET_MODE (ve->reg);
2274 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
2276 if (ve->var_expansions.length () == 0)
2277 return;
2279 start_sequence ();
2280 switch (ve->op)
2282 case FMA:
2283 /* Note that we only accumulate FMA via the ADD operand. */
2284 case PLUS:
2285 case MINUS:
2286 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2288 if (honor_signed_zero_p)
2289 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
2290 else
2291 zero_init = CONST0_RTX (mode);
2292 emit_move_insn (var, zero_init);
2294 break;
2296 case MULT:
2297 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2299 zero_init = CONST1_RTX (GET_MODE (var));
2300 emit_move_insn (var, zero_init);
2302 break;
2304 default:
2305 gcc_unreachable ();
2308 seq = get_insns ();
2309 end_sequence ();
2311 emit_insn_after (seq, BB_END (place));
2314 /* Combine the variable expansions at the loop exit. PLACE is the
2315 loop exit basic block where the summation of the expansions should
2316 take place. */
2318 static void
2319 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
2321 rtx sum = ve->reg;
2322 rtx expr, seq, var, insn;
2323 unsigned i;
2325 if (ve->var_expansions.length () == 0)
2326 return;
2328 start_sequence ();
2329 switch (ve->op)
2331 case FMA:
2332 /* Note that we only accumulate FMA via the ADD operand. */
2333 case PLUS:
2334 case MINUS:
2335 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2336 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
2337 break;
2339 case MULT:
2340 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2341 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
2342 break;
2344 default:
2345 gcc_unreachable ();
2348 expr = force_operand (sum, ve->reg);
2349 if (expr != ve->reg)
2350 emit_move_insn (ve->reg, expr);
2351 seq = get_insns ();
2352 end_sequence ();
2354 insn = BB_HEAD (place);
2355 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2356 insn = NEXT_INSN (insn);
2358 emit_insn_after (seq, insn);
2361 /* Strip away REG_EQUAL notes for IVs we're splitting.
2363 Updating REG_EQUAL notes for IVs we split is tricky: We
2364 cannot tell until after unrolling, DF-rescanning, and liveness
2365 updating, whether an EQ_USE is reached by the split IV while
2366 the IV reg is still live. See PR55006.
2368 ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
2369 because RTL loop-iv requires us to defer rescanning insns and
2370 any notes attached to them. So resort to old techniques... */
2372 static void
2373 maybe_strip_eq_note_for_split_iv (struct opt_info *opt_info, rtx insn)
2375 struct iv_to_split *ivts;
2376 rtx note = find_reg_equal_equiv_note (insn);
2377 if (! note)
2378 return;
2379 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2380 if (reg_mentioned_p (ivts->orig_var, note))
2382 remove_note (insn, note);
2383 return;
2387 /* Apply loop optimizations in loop copies using the
2388 data which gathered during the unrolling. Structure
2389 OPT_INFO record that data.
2391 UNROLLING is true if we unrolled (not peeled) the loop.
2392 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2393 the loop (as it should happen in complete unrolling, but not in ordinary
2394 peeling of the loop). */
2396 static void
2397 apply_opt_in_copies (struct opt_info *opt_info,
2398 unsigned n_copies, bool unrolling,
2399 bool rewrite_original_loop)
2401 unsigned i, delta;
2402 basic_block bb, orig_bb;
2403 rtx insn, orig_insn, next;
2404 struct iv_to_split ivts_templ, *ivts;
2405 struct var_to_expand ve_templ, *ves;
2407 /* Sanity check -- we need to put initialization in the original loop
2408 body. */
2409 gcc_assert (!unrolling || rewrite_original_loop);
2411 /* Allocate the basic variables (i0). */
2412 if (opt_info->insns_to_split)
2413 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2414 allocate_basic_variable (ivts);
2416 for (i = opt_info->first_new_block;
2417 i < (unsigned) last_basic_block_for_fn (cfun);
2418 i++)
2420 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2421 orig_bb = get_bb_original (bb);
2423 /* bb->aux holds position in copy sequence initialized by
2424 duplicate_loop_to_header_edge. */
2425 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2426 unrolling);
2427 bb->aux = 0;
2428 orig_insn = BB_HEAD (orig_bb);
2429 FOR_BB_INSNS_SAFE (bb, insn, next)
2431 if (!INSN_P (insn)
2432 || (DEBUG_INSN_P (insn)
2433 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
2434 continue;
2436 while (!INSN_P (orig_insn)
2437 || (DEBUG_INSN_P (orig_insn)
2438 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
2439 == LABEL_DECL)))
2440 orig_insn = NEXT_INSN (orig_insn);
2442 ivts_templ.insn = orig_insn;
2443 ve_templ.insn = orig_insn;
2445 /* Apply splitting iv optimization. */
2446 if (opt_info->insns_to_split)
2448 maybe_strip_eq_note_for_split_iv (opt_info, insn);
2450 ivts = opt_info->insns_to_split->find (&ivts_templ);
2452 if (ivts)
2454 gcc_assert (GET_CODE (PATTERN (insn))
2455 == GET_CODE (PATTERN (orig_insn)));
2457 if (!delta)
2458 insert_base_initialization (ivts, insn);
2459 split_iv (ivts, insn, delta);
2462 /* Apply variable expansion optimization. */
2463 if (unrolling && opt_info->insns_with_var_to_expand)
2465 ves = (struct var_to_expand *)
2466 opt_info->insns_with_var_to_expand->find (&ve_templ);
2467 if (ves)
2469 gcc_assert (GET_CODE (PATTERN (insn))
2470 == GET_CODE (PATTERN (orig_insn)));
2471 expand_var_during_unrolling (ves, insn);
2474 orig_insn = NEXT_INSN (orig_insn);
2478 if (!rewrite_original_loop)
2479 return;
2481 /* Initialize the variable expansions in the loop preheader
2482 and take care of combining them at the loop exit. */
2483 if (opt_info->insns_with_var_to_expand)
2485 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2486 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2487 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2488 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2491 /* Rewrite also the original loop body. Find them as originals of the blocks
2492 in the last copied iteration, i.e. those that have
2493 get_bb_copy (get_bb_original (bb)) == bb. */
2494 for (i = opt_info->first_new_block;
2495 i < (unsigned) last_basic_block_for_fn (cfun);
2496 i++)
2498 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2499 orig_bb = get_bb_original (bb);
2500 if (get_bb_copy (orig_bb) != bb)
2501 continue;
2503 delta = determine_split_iv_delta (0, n_copies, unrolling);
2504 for (orig_insn = BB_HEAD (orig_bb);
2505 orig_insn != NEXT_INSN (BB_END (bb));
2506 orig_insn = next)
2508 next = NEXT_INSN (orig_insn);
2510 if (!INSN_P (orig_insn))
2511 continue;
2513 ivts_templ.insn = orig_insn;
2514 if (opt_info->insns_to_split)
2516 maybe_strip_eq_note_for_split_iv (opt_info, orig_insn);
2518 ivts = (struct iv_to_split *)
2519 opt_info->insns_to_split->find (&ivts_templ);
2520 if (ivts)
2522 if (!delta)
2523 insert_base_initialization (ivts, orig_insn);
2524 split_iv (ivts, orig_insn, delta);
2525 continue;
2533 /* Release OPT_INFO. */
2535 static void
2536 free_opt_info (struct opt_info *opt_info)
2538 delete opt_info->insns_to_split;
2539 opt_info->insns_to_split = NULL;
2540 if (opt_info->insns_with_var_to_expand)
2542 struct var_to_expand *ves;
2544 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2545 ves->var_expansions.release ();
2546 delete opt_info->insns_with_var_to_expand;
2547 opt_info->insns_with_var_to_expand = NULL;
2549 free (opt_info);