1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
36 #include "coretypes.h"
38 #include "rtl-error.h"
40 #include "stor-layout.h"
42 #include "stringpool.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
56 #include "langhooks.h"
58 #include "common/common-target.h"
59 #include "gimple-expr.h"
61 #include "tree-pass.h"
65 #include "bb-reorder.h"
66 #include "shrink-wrap.h"
69 /* So we can assign to cfun in this file. */
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78 /* Round a value to the lowest integer less than it that is a multiple of
79 the required alignment. Avoid using division in case the value is
80 negative. Assume the alignment is a power of two. */
81 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
83 /* Similar, but round to the next highest integer that meets the
85 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
87 /* Nonzero once virtual register instantiation has been done.
88 assign_stack_local uses frame_pointer_rtx when this is nonzero.
89 calls.c:emit_library_call_value_1 uses it to set up
90 post-instantiation libcalls. */
91 int virtuals_instantiated
;
93 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
94 static GTY(()) int funcdef_no
;
96 /* These variables hold pointers to functions to create and destroy
97 target specific, per-function data structures. */
98 struct machine_function
* (*init_machine_status
) (void);
100 /* The currently compiled function. */
101 struct function
*cfun
= 0;
103 /* These hashes record the prologue and epilogue insns. */
104 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
105 htab_t prologue_insn_hash
;
106 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
107 htab_t epilogue_insn_hash
;
110 htab_t types_used_by_vars_hash
= NULL
;
111 vec
<tree
, va_gc
> *types_used_by_cur_var_decl
;
113 /* Forward declarations. */
115 static struct temp_slot
*find_temp_slot_from_address (rtx
);
116 static void pad_to_arg_alignment (struct args_size
*, int, struct args_size
*);
117 static void pad_below (struct args_size
*, enum machine_mode
, tree
);
118 static void reorder_blocks_1 (rtx
, tree
, vec
<tree
> *);
119 static int all_blocks (tree
, tree
*);
120 static tree
*get_block_vector (tree
, int *);
121 extern tree
debug_find_var_in_block_tree (tree
, tree
);
122 /* We always define `record_insns' even if it's not used so that we
123 can always export `prologue_epilogue_contains'. */
124 static void record_insns (rtx
, rtx
, htab_t
*) ATTRIBUTE_UNUSED
;
125 static bool contains (const_rtx
, htab_t
);
126 static void prepare_function_start (void);
127 static void do_clobber_return_reg (rtx
, void *);
128 static void do_use_return_reg (rtx
, void *);
130 /* Stack of nested functions. */
131 /* Keep track of the cfun stack. */
133 typedef struct function
*function_p
;
135 static vec
<function_p
> function_context_stack
;
137 /* Save the current context for compilation of a nested function.
138 This is called from language-specific code. */
141 push_function_context (void)
144 allocate_struct_function (NULL
, false);
146 function_context_stack
.safe_push (cfun
);
150 /* Restore the last saved context, at the end of a nested function.
151 This function is called from language-specific code. */
154 pop_function_context (void)
156 struct function
*p
= function_context_stack
.pop ();
158 current_function_decl
= p
->decl
;
160 /* Reset variables that have known state during rtx generation. */
161 virtuals_instantiated
= 0;
162 generating_concat_p
= 1;
165 /* Clear out all parts of the state in F that can safely be discarded
166 after the function has been parsed, but not compiled, to let
167 garbage collection reclaim the memory. */
170 free_after_parsing (struct function
*f
)
175 /* Clear out all parts of the state in F that can safely be discarded
176 after the function has been compiled, to let garbage collection
177 reclaim the memory. */
180 free_after_compilation (struct function
*f
)
182 prologue_insn_hash
= NULL
;
183 epilogue_insn_hash
= NULL
;
185 free (crtl
->emit
.regno_pointer_align
);
187 memset (crtl
, 0, sizeof (struct rtl_data
));
192 regno_reg_rtx
= NULL
;
195 /* Return size needed for stack frame based on slots so far allocated.
196 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
197 the caller may have to do that. */
200 get_frame_size (void)
202 if (FRAME_GROWS_DOWNWARD
)
203 return -frame_offset
;
208 /* Issue an error message and return TRUE if frame OFFSET overflows in
209 the signed target pointer arithmetics for function FUNC. Otherwise
213 frame_offset_overflow (HOST_WIDE_INT offset
, tree func
)
215 unsigned HOST_WIDE_INT size
= FRAME_GROWS_DOWNWARD
? -offset
: offset
;
217 if (size
> ((unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (Pmode
) - 1))
218 /* Leave room for the fixed part of the frame. */
219 - 64 * UNITS_PER_WORD
)
221 error_at (DECL_SOURCE_LOCATION (func
),
222 "total size of local objects too large");
229 /* Return stack slot alignment in bits for TYPE and MODE. */
232 get_stack_local_alignment (tree type
, enum machine_mode mode
)
234 unsigned int alignment
;
237 alignment
= BIGGEST_ALIGNMENT
;
239 alignment
= GET_MODE_ALIGNMENT (mode
);
241 /* Allow the frond-end to (possibly) increase the alignment of this
244 type
= lang_hooks
.types
.type_for_mode (mode
, 0);
246 return STACK_SLOT_ALIGNMENT (type
, mode
, alignment
);
249 /* Determine whether it is possible to fit a stack slot of size SIZE and
250 alignment ALIGNMENT into an area in the stack frame that starts at
251 frame offset START and has a length of LENGTH. If so, store the frame
252 offset to be used for the stack slot in *POFFSET and return true;
253 return false otherwise. This function will extend the frame size when
254 given a start/length pair that lies at the end of the frame. */
257 try_fit_stack_local (HOST_WIDE_INT start
, HOST_WIDE_INT length
,
258 HOST_WIDE_INT size
, unsigned int alignment
,
259 HOST_WIDE_INT
*poffset
)
261 HOST_WIDE_INT this_frame_offset
;
262 int frame_off
, frame_alignment
, frame_phase
;
264 /* Calculate how many bytes the start of local variables is off from
266 frame_alignment
= PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
;
267 frame_off
= STARTING_FRAME_OFFSET
% frame_alignment
;
268 frame_phase
= frame_off
? frame_alignment
- frame_off
: 0;
270 /* Round the frame offset to the specified alignment. */
272 /* We must be careful here, since FRAME_OFFSET might be negative and
273 division with a negative dividend isn't as well defined as we might
274 like. So we instead assume that ALIGNMENT is a power of two and
275 use logical operations which are unambiguous. */
276 if (FRAME_GROWS_DOWNWARD
)
278 = (FLOOR_ROUND (start
+ length
- size
- frame_phase
,
279 (unsigned HOST_WIDE_INT
) alignment
)
283 = (CEIL_ROUND (start
- frame_phase
,
284 (unsigned HOST_WIDE_INT
) alignment
)
287 /* See if it fits. If this space is at the edge of the frame,
288 consider extending the frame to make it fit. Our caller relies on
289 this when allocating a new slot. */
290 if (frame_offset
== start
&& this_frame_offset
< frame_offset
)
291 frame_offset
= this_frame_offset
;
292 else if (this_frame_offset
< start
)
294 else if (start
+ length
== frame_offset
295 && this_frame_offset
+ size
> start
+ length
)
296 frame_offset
= this_frame_offset
+ size
;
297 else if (this_frame_offset
+ size
> start
+ length
)
300 *poffset
= this_frame_offset
;
304 /* Create a new frame_space structure describing free space in the stack
305 frame beginning at START and ending at END, and chain it into the
306 function's frame_space_list. */
309 add_frame_space (HOST_WIDE_INT start
, HOST_WIDE_INT end
)
311 struct frame_space
*space
= ggc_alloc
<frame_space
> ();
312 space
->next
= crtl
->frame_space_list
;
313 crtl
->frame_space_list
= space
;
314 space
->start
= start
;
315 space
->length
= end
- start
;
318 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
319 with machine mode MODE.
321 ALIGN controls the amount of alignment for the address of the slot:
322 0 means according to MODE,
323 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
324 -2 means use BITS_PER_UNIT,
325 positive specifies alignment boundary in bits.
327 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
328 alignment and ASLK_RECORD_PAD bit set if we should remember
329 extra space we allocated for alignment purposes. When we are
330 called from assign_stack_temp_for_type, it is not set so we don't
331 track the same stack slot in two independent lists.
333 We do not round to stack_boundary here. */
336 assign_stack_local_1 (enum machine_mode mode
, HOST_WIDE_INT size
,
340 int bigend_correction
= 0;
341 HOST_WIDE_INT slot_offset
= 0, old_frame_offset
;
342 unsigned int alignment
, alignment_in_bits
;
346 alignment
= get_stack_local_alignment (NULL
, mode
);
347 alignment
/= BITS_PER_UNIT
;
349 else if (align
== -1)
351 alignment
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
352 size
= CEIL_ROUND (size
, alignment
);
354 else if (align
== -2)
355 alignment
= 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
357 alignment
= align
/ BITS_PER_UNIT
;
359 alignment_in_bits
= alignment
* BITS_PER_UNIT
;
361 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
362 if (alignment_in_bits
> MAX_SUPPORTED_STACK_ALIGNMENT
)
364 alignment_in_bits
= MAX_SUPPORTED_STACK_ALIGNMENT
;
365 alignment
= alignment_in_bits
/ BITS_PER_UNIT
;
368 if (SUPPORTS_STACK_ALIGNMENT
)
370 if (crtl
->stack_alignment_estimated
< alignment_in_bits
)
372 if (!crtl
->stack_realign_processed
)
373 crtl
->stack_alignment_estimated
= alignment_in_bits
;
376 /* If stack is realigned and stack alignment value
377 hasn't been finalized, it is OK not to increase
378 stack_alignment_estimated. The bigger alignment
379 requirement is recorded in stack_alignment_needed
381 gcc_assert (!crtl
->stack_realign_finalized
);
382 if (!crtl
->stack_realign_needed
)
384 /* It is OK to reduce the alignment as long as the
385 requested size is 0 or the estimated stack
386 alignment >= mode alignment. */
387 gcc_assert ((kind
& ASLK_REDUCE_ALIGN
)
389 || (crtl
->stack_alignment_estimated
390 >= GET_MODE_ALIGNMENT (mode
)));
391 alignment_in_bits
= crtl
->stack_alignment_estimated
;
392 alignment
= alignment_in_bits
/ BITS_PER_UNIT
;
398 if (crtl
->stack_alignment_needed
< alignment_in_bits
)
399 crtl
->stack_alignment_needed
= alignment_in_bits
;
400 if (crtl
->max_used_stack_slot_alignment
< alignment_in_bits
)
401 crtl
->max_used_stack_slot_alignment
= alignment_in_bits
;
403 if (mode
!= BLKmode
|| size
!= 0)
405 if (kind
& ASLK_RECORD_PAD
)
407 struct frame_space
**psp
;
409 for (psp
= &crtl
->frame_space_list
; *psp
; psp
= &(*psp
)->next
)
411 struct frame_space
*space
= *psp
;
412 if (!try_fit_stack_local (space
->start
, space
->length
, size
,
413 alignment
, &slot_offset
))
416 if (slot_offset
> space
->start
)
417 add_frame_space (space
->start
, slot_offset
);
418 if (slot_offset
+ size
< space
->start
+ space
->length
)
419 add_frame_space (slot_offset
+ size
,
420 space
->start
+ space
->length
);
425 else if (!STACK_ALIGNMENT_NEEDED
)
427 slot_offset
= frame_offset
;
431 old_frame_offset
= frame_offset
;
433 if (FRAME_GROWS_DOWNWARD
)
435 frame_offset
-= size
;
436 try_fit_stack_local (frame_offset
, size
, size
, alignment
, &slot_offset
);
438 if (kind
& ASLK_RECORD_PAD
)
440 if (slot_offset
> frame_offset
)
441 add_frame_space (frame_offset
, slot_offset
);
442 if (slot_offset
+ size
< old_frame_offset
)
443 add_frame_space (slot_offset
+ size
, old_frame_offset
);
448 frame_offset
+= size
;
449 try_fit_stack_local (old_frame_offset
, size
, size
, alignment
, &slot_offset
);
451 if (kind
& ASLK_RECORD_PAD
)
453 if (slot_offset
> old_frame_offset
)
454 add_frame_space (old_frame_offset
, slot_offset
);
455 if (slot_offset
+ size
< frame_offset
)
456 add_frame_space (slot_offset
+ size
, frame_offset
);
461 /* On a big-endian machine, if we are allocating more space than we will use,
462 use the least significant bytes of those that are allocated. */
463 if (BYTES_BIG_ENDIAN
&& mode
!= BLKmode
&& GET_MODE_SIZE (mode
) < size
)
464 bigend_correction
= size
- GET_MODE_SIZE (mode
);
466 /* If we have already instantiated virtual registers, return the actual
467 address relative to the frame pointer. */
468 if (virtuals_instantiated
)
469 addr
= plus_constant (Pmode
, frame_pointer_rtx
,
471 (slot_offset
+ bigend_correction
472 + STARTING_FRAME_OFFSET
, Pmode
));
474 addr
= plus_constant (Pmode
, virtual_stack_vars_rtx
,
476 (slot_offset
+ bigend_correction
,
479 x
= gen_rtx_MEM (mode
, addr
);
480 set_mem_align (x
, alignment_in_bits
);
481 MEM_NOTRAP_P (x
) = 1;
484 = gen_rtx_EXPR_LIST (VOIDmode
, x
, stack_slot_list
);
486 if (frame_offset_overflow (frame_offset
, current_function_decl
))
492 /* Wrap up assign_stack_local_1 with last parameter as false. */
495 assign_stack_local (enum machine_mode mode
, HOST_WIDE_INT size
, int align
)
497 return assign_stack_local_1 (mode
, size
, align
, ASLK_RECORD_PAD
);
500 /* In order to evaluate some expressions, such as function calls returning
501 structures in memory, we need to temporarily allocate stack locations.
502 We record each allocated temporary in the following structure.
504 Associated with each temporary slot is a nesting level. When we pop up
505 one level, all temporaries associated with the previous level are freed.
506 Normally, all temporaries are freed after the execution of the statement
507 in which they were created. However, if we are inside a ({...}) grouping,
508 the result may be in a temporary and hence must be preserved. If the
509 result could be in a temporary, we preserve it if we can determine which
510 one it is in. If we cannot determine which temporary may contain the
511 result, all temporaries are preserved. A temporary is preserved by
512 pretending it was allocated at the previous nesting level. */
514 struct GTY(()) temp_slot
{
515 /* Points to next temporary slot. */
516 struct temp_slot
*next
;
517 /* Points to previous temporary slot. */
518 struct temp_slot
*prev
;
519 /* The rtx to used to reference the slot. */
521 /* The size, in units, of the slot. */
523 /* The type of the object in the slot, or zero if it doesn't correspond
524 to a type. We use this to determine whether a slot can be reused.
525 It can be reused if objects of the type of the new slot will always
526 conflict with objects of the type of the old slot. */
528 /* The alignment (in bits) of the slot. */
530 /* Nonzero if this temporary is currently in use. */
532 /* Nesting level at which this slot is being used. */
534 /* The offset of the slot from the frame_pointer, including extra space
535 for alignment. This info is for combine_temp_slots. */
536 HOST_WIDE_INT base_offset
;
537 /* The size of the slot, including extra space for alignment. This
538 info is for combine_temp_slots. */
539 HOST_WIDE_INT full_size
;
542 /* A table of addresses that represent a stack slot. The table is a mapping
543 from address RTXen to a temp slot. */
544 static GTY((param_is(struct temp_slot_address_entry
))) htab_t temp_slot_address_table
;
545 static size_t n_temp_slots_in_use
;
547 /* Entry for the above hash table. */
548 struct GTY(()) temp_slot_address_entry
{
551 struct temp_slot
*temp_slot
;
554 /* Removes temporary slot TEMP from LIST. */
557 cut_slot_from_list (struct temp_slot
*temp
, struct temp_slot
**list
)
560 temp
->next
->prev
= temp
->prev
;
562 temp
->prev
->next
= temp
->next
;
566 temp
->prev
= temp
->next
= NULL
;
569 /* Inserts temporary slot TEMP to LIST. */
572 insert_slot_to_list (struct temp_slot
*temp
, struct temp_slot
**list
)
576 (*list
)->prev
= temp
;
581 /* Returns the list of used temp slots at LEVEL. */
583 static struct temp_slot
**
584 temp_slots_at_level (int level
)
586 if (level
>= (int) vec_safe_length (used_temp_slots
))
587 vec_safe_grow_cleared (used_temp_slots
, level
+ 1);
589 return &(*used_temp_slots
)[level
];
592 /* Returns the maximal temporary slot level. */
595 max_slot_level (void)
597 if (!used_temp_slots
)
600 return used_temp_slots
->length () - 1;
603 /* Moves temporary slot TEMP to LEVEL. */
606 move_slot_to_level (struct temp_slot
*temp
, int level
)
608 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
609 insert_slot_to_list (temp
, temp_slots_at_level (level
));
613 /* Make temporary slot TEMP available. */
616 make_slot_available (struct temp_slot
*temp
)
618 cut_slot_from_list (temp
, temp_slots_at_level (temp
->level
));
619 insert_slot_to_list (temp
, &avail_temp_slots
);
622 n_temp_slots_in_use
--;
625 /* Compute the hash value for an address -> temp slot mapping.
626 The value is cached on the mapping entry. */
628 temp_slot_address_compute_hash (struct temp_slot_address_entry
*t
)
630 int do_not_record
= 0;
631 return hash_rtx (t
->address
, GET_MODE (t
->address
),
632 &do_not_record
, NULL
, false);
635 /* Return the hash value for an address -> temp slot mapping. */
637 temp_slot_address_hash (const void *p
)
639 const struct temp_slot_address_entry
*t
;
640 t
= (const struct temp_slot_address_entry
*) p
;
644 /* Compare two address -> temp slot mapping entries. */
646 temp_slot_address_eq (const void *p1
, const void *p2
)
648 const struct temp_slot_address_entry
*t1
, *t2
;
649 t1
= (const struct temp_slot_address_entry
*) p1
;
650 t2
= (const struct temp_slot_address_entry
*) p2
;
651 return exp_equiv_p (t1
->address
, t2
->address
, 0, true);
654 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
656 insert_temp_slot_address (rtx address
, struct temp_slot
*temp_slot
)
659 struct temp_slot_address_entry
*t
= ggc_alloc
<temp_slot_address_entry
> ();
660 t
->address
= address
;
661 t
->temp_slot
= temp_slot
;
662 t
->hash
= temp_slot_address_compute_hash (t
);
663 slot
= htab_find_slot_with_hash (temp_slot_address_table
, t
, t
->hash
, INSERT
);
667 /* Remove an address -> temp slot mapping entry if the temp slot is
668 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
670 remove_unused_temp_slot_addresses_1 (void **slot
, void *data ATTRIBUTE_UNUSED
)
672 const struct temp_slot_address_entry
*t
;
673 t
= (const struct temp_slot_address_entry
*) *slot
;
674 if (! t
->temp_slot
->in_use
)
675 htab_clear_slot (temp_slot_address_table
, slot
);
679 /* Remove all mappings of addresses to unused temp slots. */
681 remove_unused_temp_slot_addresses (void)
683 /* Use quicker clearing if there aren't any active temp slots. */
684 if (n_temp_slots_in_use
)
685 htab_traverse (temp_slot_address_table
,
686 remove_unused_temp_slot_addresses_1
,
689 htab_empty (temp_slot_address_table
);
692 /* Find the temp slot corresponding to the object at address X. */
694 static struct temp_slot
*
695 find_temp_slot_from_address (rtx x
)
698 struct temp_slot_address_entry tmp
, *t
;
700 /* First try the easy way:
701 See if X exists in the address -> temp slot mapping. */
703 tmp
.temp_slot
= NULL
;
704 tmp
.hash
= temp_slot_address_compute_hash (&tmp
);
705 t
= (struct temp_slot_address_entry
*)
706 htab_find_with_hash (temp_slot_address_table
, &tmp
, tmp
.hash
);
710 /* If we have a sum involving a register, see if it points to a temp
712 if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 0))
713 && (p
= find_temp_slot_from_address (XEXP (x
, 0))) != 0)
715 else if (GET_CODE (x
) == PLUS
&& REG_P (XEXP (x
, 1))
716 && (p
= find_temp_slot_from_address (XEXP (x
, 1))) != 0)
719 /* Last resort: Address is a virtual stack var address. */
720 if (GET_CODE (x
) == PLUS
721 && XEXP (x
, 0) == virtual_stack_vars_rtx
722 && CONST_INT_P (XEXP (x
, 1)))
725 for (i
= max_slot_level (); i
>= 0; i
--)
726 for (p
= *temp_slots_at_level (i
); p
; p
= p
->next
)
728 if (INTVAL (XEXP (x
, 1)) >= p
->base_offset
729 && INTVAL (XEXP (x
, 1)) < p
->base_offset
+ p
->full_size
)
737 /* Allocate a temporary stack slot and record it for possible later
740 MODE is the machine mode to be given to the returned rtx.
742 SIZE is the size in units of the space required. We do no rounding here
743 since assign_stack_local will do any required rounding.
745 TYPE is the type that will be used for the stack slot. */
748 assign_stack_temp_for_type (enum machine_mode mode
, HOST_WIDE_INT size
,
752 struct temp_slot
*p
, *best_p
= 0, *selected
= NULL
, **pp
;
755 /* If SIZE is -1 it means that somebody tried to allocate a temporary
756 of a variable size. */
757 gcc_assert (size
!= -1);
759 align
= get_stack_local_alignment (type
, mode
);
761 /* Try to find an available, already-allocated temporary of the proper
762 mode which meets the size and alignment requirements. Choose the
763 smallest one with the closest alignment.
765 If assign_stack_temp is called outside of the tree->rtl expansion,
766 we cannot reuse the stack slots (that may still refer to
767 VIRTUAL_STACK_VARS_REGNUM). */
768 if (!virtuals_instantiated
)
770 for (p
= avail_temp_slots
; p
; p
= p
->next
)
772 if (p
->align
>= align
&& p
->size
>= size
773 && GET_MODE (p
->slot
) == mode
774 && objects_must_conflict_p (p
->type
, type
)
775 && (best_p
== 0 || best_p
->size
> p
->size
776 || (best_p
->size
== p
->size
&& best_p
->align
> p
->align
)))
778 if (p
->align
== align
&& p
->size
== size
)
781 cut_slot_from_list (selected
, &avail_temp_slots
);
790 /* Make our best, if any, the one to use. */
794 cut_slot_from_list (selected
, &avail_temp_slots
);
796 /* If there are enough aligned bytes left over, make them into a new
797 temp_slot so that the extra bytes don't get wasted. Do this only
798 for BLKmode slots, so that we can be sure of the alignment. */
799 if (GET_MODE (best_p
->slot
) == BLKmode
)
801 int alignment
= best_p
->align
/ BITS_PER_UNIT
;
802 HOST_WIDE_INT rounded_size
= CEIL_ROUND (size
, alignment
);
804 if (best_p
->size
- rounded_size
>= alignment
)
806 p
= ggc_alloc
<temp_slot
> ();
808 p
->size
= best_p
->size
- rounded_size
;
809 p
->base_offset
= best_p
->base_offset
+ rounded_size
;
810 p
->full_size
= best_p
->full_size
- rounded_size
;
811 p
->slot
= adjust_address_nv (best_p
->slot
, BLKmode
, rounded_size
);
812 p
->align
= best_p
->align
;
813 p
->type
= best_p
->type
;
814 insert_slot_to_list (p
, &avail_temp_slots
);
816 stack_slot_list
= gen_rtx_EXPR_LIST (VOIDmode
, p
->slot
,
819 best_p
->size
= rounded_size
;
820 best_p
->full_size
= rounded_size
;
825 /* If we still didn't find one, make a new temporary. */
828 HOST_WIDE_INT frame_offset_old
= frame_offset
;
830 p
= ggc_alloc
<temp_slot
> ();
832 /* We are passing an explicit alignment request to assign_stack_local.
833 One side effect of that is assign_stack_local will not round SIZE
834 to ensure the frame offset remains suitably aligned.
836 So for requests which depended on the rounding of SIZE, we go ahead
837 and round it now. We also make sure ALIGNMENT is at least
838 BIGGEST_ALIGNMENT. */
839 gcc_assert (mode
!= BLKmode
|| align
== BIGGEST_ALIGNMENT
);
840 p
->slot
= assign_stack_local_1 (mode
,
850 /* The following slot size computation is necessary because we don't
851 know the actual size of the temporary slot until assign_stack_local
852 has performed all the frame alignment and size rounding for the
853 requested temporary. Note that extra space added for alignment
854 can be either above or below this stack slot depending on which
855 way the frame grows. We include the extra space if and only if it
856 is above this slot. */
857 if (FRAME_GROWS_DOWNWARD
)
858 p
->size
= frame_offset_old
- frame_offset
;
862 /* Now define the fields used by combine_temp_slots. */
863 if (FRAME_GROWS_DOWNWARD
)
865 p
->base_offset
= frame_offset
;
866 p
->full_size
= frame_offset_old
- frame_offset
;
870 p
->base_offset
= frame_offset_old
;
871 p
->full_size
= frame_offset
- frame_offset_old
;
880 p
->level
= temp_slot_level
;
881 n_temp_slots_in_use
++;
883 pp
= temp_slots_at_level (p
->level
);
884 insert_slot_to_list (p
, pp
);
885 insert_temp_slot_address (XEXP (p
->slot
, 0), p
);
887 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
888 slot
= gen_rtx_MEM (mode
, XEXP (p
->slot
, 0));
889 stack_slot_list
= gen_rtx_EXPR_LIST (VOIDmode
, slot
, stack_slot_list
);
891 /* If we know the alias set for the memory that will be used, use
892 it. If there's no TYPE, then we don't know anything about the
893 alias set for the memory. */
894 set_mem_alias_set (slot
, type
? get_alias_set (type
) : 0);
895 set_mem_align (slot
, align
);
897 /* If a type is specified, set the relevant flags. */
899 MEM_VOLATILE_P (slot
) = TYPE_VOLATILE (type
);
900 MEM_NOTRAP_P (slot
) = 1;
905 /* Allocate a temporary stack slot and record it for possible later
906 reuse. First two arguments are same as in preceding function. */
909 assign_stack_temp (enum machine_mode mode
, HOST_WIDE_INT size
)
911 return assign_stack_temp_for_type (mode
, size
, NULL_TREE
);
914 /* Assign a temporary.
915 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
916 and so that should be used in error messages. In either case, we
917 allocate of the given type.
918 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
919 it is 0 if a register is OK.
920 DONT_PROMOTE is 1 if we should not promote values in register
924 assign_temp (tree type_or_decl
, int memory_required
,
925 int dont_promote ATTRIBUTE_UNUSED
)
928 enum machine_mode mode
;
933 if (DECL_P (type_or_decl
))
934 decl
= type_or_decl
, type
= TREE_TYPE (decl
);
936 decl
= NULL
, type
= type_or_decl
;
938 mode
= TYPE_MODE (type
);
940 unsignedp
= TYPE_UNSIGNED (type
);
943 if (mode
== BLKmode
|| memory_required
)
945 HOST_WIDE_INT size
= int_size_in_bytes (type
);
948 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
949 problems with allocating the stack space. */
953 /* Unfortunately, we don't yet know how to allocate variable-sized
954 temporaries. However, sometimes we can find a fixed upper limit on
955 the size, so try that instead. */
957 size
= max_int_size_in_bytes (type
);
959 /* The size of the temporary may be too large to fit into an integer. */
960 /* ??? Not sure this should happen except for user silliness, so limit
961 this to things that aren't compiler-generated temporaries. The
962 rest of the time we'll die in assign_stack_temp_for_type. */
963 if (decl
&& size
== -1
964 && TREE_CODE (TYPE_SIZE_UNIT (type
)) == INTEGER_CST
)
966 error ("size of variable %q+D is too large", decl
);
970 tmp
= assign_stack_temp_for_type (mode
, size
, type
);
976 mode
= promote_mode (type
, mode
, &unsignedp
);
979 return gen_reg_rtx (mode
);
982 /* Combine temporary stack slots which are adjacent on the stack.
984 This allows for better use of already allocated stack space. This is only
985 done for BLKmode slots because we can be sure that we won't have alignment
986 problems in this case. */
989 combine_temp_slots (void)
991 struct temp_slot
*p
, *q
, *next
, *next_q
;
994 /* We can't combine slots, because the information about which slot
995 is in which alias set will be lost. */
996 if (flag_strict_aliasing
)
999 /* If there are a lot of temp slots, don't do anything unless
1000 high levels of optimization. */
1001 if (! flag_expensive_optimizations
)
1002 for (p
= avail_temp_slots
, num_slots
= 0; p
; p
= p
->next
, num_slots
++)
1003 if (num_slots
> 100 || (num_slots
> 10 && optimize
== 0))
1006 for (p
= avail_temp_slots
; p
; p
= next
)
1012 if (GET_MODE (p
->slot
) != BLKmode
)
1015 for (q
= p
->next
; q
; q
= next_q
)
1021 if (GET_MODE (q
->slot
) != BLKmode
)
1024 if (p
->base_offset
+ p
->full_size
== q
->base_offset
)
1026 /* Q comes after P; combine Q into P. */
1028 p
->full_size
+= q
->full_size
;
1031 else if (q
->base_offset
+ q
->full_size
== p
->base_offset
)
1033 /* P comes after Q; combine P into Q. */
1035 q
->full_size
+= p
->full_size
;
1040 cut_slot_from_list (q
, &avail_temp_slots
);
1043 /* Either delete P or advance past it. */
1045 cut_slot_from_list (p
, &avail_temp_slots
);
1049 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1050 slot that previously was known by OLD_RTX. */
1053 update_temp_slot_address (rtx old_rtx
, rtx new_rtx
)
1055 struct temp_slot
*p
;
1057 if (rtx_equal_p (old_rtx
, new_rtx
))
1060 p
= find_temp_slot_from_address (old_rtx
);
1062 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1063 NEW_RTX is a register, see if one operand of the PLUS is a
1064 temporary location. If so, NEW_RTX points into it. Otherwise,
1065 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1066 in common between them. If so, try a recursive call on those
1070 if (GET_CODE (old_rtx
) != PLUS
)
1073 if (REG_P (new_rtx
))
1075 update_temp_slot_address (XEXP (old_rtx
, 0), new_rtx
);
1076 update_temp_slot_address (XEXP (old_rtx
, 1), new_rtx
);
1079 else if (GET_CODE (new_rtx
) != PLUS
)
1082 if (rtx_equal_p (XEXP (old_rtx
, 0), XEXP (new_rtx
, 0)))
1083 update_temp_slot_address (XEXP (old_rtx
, 1), XEXP (new_rtx
, 1));
1084 else if (rtx_equal_p (XEXP (old_rtx
, 1), XEXP (new_rtx
, 0)))
1085 update_temp_slot_address (XEXP (old_rtx
, 0), XEXP (new_rtx
, 1));
1086 else if (rtx_equal_p (XEXP (old_rtx
, 0), XEXP (new_rtx
, 1)))
1087 update_temp_slot_address (XEXP (old_rtx
, 1), XEXP (new_rtx
, 0));
1088 else if (rtx_equal_p (XEXP (old_rtx
, 1), XEXP (new_rtx
, 1)))
1089 update_temp_slot_address (XEXP (old_rtx
, 0), XEXP (new_rtx
, 0));
1094 /* Otherwise add an alias for the temp's address. */
1095 insert_temp_slot_address (new_rtx
, p
);
1098 /* If X could be a reference to a temporary slot, mark that slot as
1099 belonging to the to one level higher than the current level. If X
1100 matched one of our slots, just mark that one. Otherwise, we can't
1101 easily predict which it is, so upgrade all of them.
1103 This is called when an ({...}) construct occurs and a statement
1104 returns a value in memory. */
1107 preserve_temp_slots (rtx x
)
1109 struct temp_slot
*p
= 0, *next
;
1114 /* If X is a register that is being used as a pointer, see if we have
1115 a temporary slot we know it points to. */
1116 if (REG_P (x
) && REG_POINTER (x
))
1117 p
= find_temp_slot_from_address (x
);
1119 /* If X is not in memory or is at a constant address, it cannot be in
1120 a temporary slot. */
1121 if (p
== 0 && (!MEM_P (x
) || CONSTANT_P (XEXP (x
, 0))))
1124 /* First see if we can find a match. */
1126 p
= find_temp_slot_from_address (XEXP (x
, 0));
1130 if (p
->level
== temp_slot_level
)
1131 move_slot_to_level (p
, temp_slot_level
- 1);
1135 /* Otherwise, preserve all non-kept slots at this level. */
1136 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1139 move_slot_to_level (p
, temp_slot_level
- 1);
1143 /* Free all temporaries used so far. This is normally called at the
1144 end of generating code for a statement. */
1147 free_temp_slots (void)
1149 struct temp_slot
*p
, *next
;
1150 bool some_available
= false;
1152 for (p
= *temp_slots_at_level (temp_slot_level
); p
; p
= next
)
1155 make_slot_available (p
);
1156 some_available
= true;
1161 remove_unused_temp_slot_addresses ();
1162 combine_temp_slots ();
1166 /* Push deeper into the nesting level for stack temporaries. */
1169 push_temp_slots (void)
1174 /* Pop a temporary nesting level. All slots in use in the current level
1178 pop_temp_slots (void)
1184 /* Initialize temporary slots. */
1187 init_temp_slots (void)
1189 /* We have not allocated any temporaries yet. */
1190 avail_temp_slots
= 0;
1191 vec_alloc (used_temp_slots
, 0);
1192 temp_slot_level
= 0;
1193 n_temp_slots_in_use
= 0;
1195 /* Set up the table to map addresses to temp slots. */
1196 if (! temp_slot_address_table
)
1197 temp_slot_address_table
= htab_create_ggc (32,
1198 temp_slot_address_hash
,
1199 temp_slot_address_eq
,
1202 htab_empty (temp_slot_address_table
);
1205 /* Functions and data structures to keep track of the values hard regs
1206 had at the start of the function. */
1208 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1209 and has_hard_reg_initial_val.. */
1210 typedef struct GTY(()) initial_value_pair
{
1213 } initial_value_pair
;
1214 /* ??? This could be a VEC but there is currently no way to define an
1215 opaque VEC type. This could be worked around by defining struct
1216 initial_value_pair in function.h. */
1217 typedef struct GTY(()) initial_value_struct
{
1220 initial_value_pair
* GTY ((length ("%h.num_entries"))) entries
;
1221 } initial_value_struct
;
1223 /* If a pseudo represents an initial hard reg (or expression), return
1224 it, else return NULL_RTX. */
1227 get_hard_reg_initial_reg (rtx reg
)
1229 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1235 for (i
= 0; i
< ivs
->num_entries
; i
++)
1236 if (rtx_equal_p (ivs
->entries
[i
].pseudo
, reg
))
1237 return ivs
->entries
[i
].hard_reg
;
1242 /* Make sure that there's a pseudo register of mode MODE that stores the
1243 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1246 get_hard_reg_initial_val (enum machine_mode mode
, unsigned int regno
)
1248 struct initial_value_struct
*ivs
;
1251 rv
= has_hard_reg_initial_val (mode
, regno
);
1255 ivs
= crtl
->hard_reg_initial_vals
;
1258 ivs
= ggc_alloc
<initial_value_struct
> ();
1259 ivs
->num_entries
= 0;
1260 ivs
->max_entries
= 5;
1261 ivs
->entries
= ggc_vec_alloc
<initial_value_pair
> (5);
1262 crtl
->hard_reg_initial_vals
= ivs
;
1265 if (ivs
->num_entries
>= ivs
->max_entries
)
1267 ivs
->max_entries
+= 5;
1268 ivs
->entries
= GGC_RESIZEVEC (initial_value_pair
, ivs
->entries
,
1272 ivs
->entries
[ivs
->num_entries
].hard_reg
= gen_rtx_REG (mode
, regno
);
1273 ivs
->entries
[ivs
->num_entries
].pseudo
= gen_reg_rtx (mode
);
1275 return ivs
->entries
[ivs
->num_entries
++].pseudo
;
1278 /* See if get_hard_reg_initial_val has been used to create a pseudo
1279 for the initial value of hard register REGNO in mode MODE. Return
1280 the associated pseudo if so, otherwise return NULL. */
1283 has_hard_reg_initial_val (enum machine_mode mode
, unsigned int regno
)
1285 struct initial_value_struct
*ivs
;
1288 ivs
= crtl
->hard_reg_initial_vals
;
1290 for (i
= 0; i
< ivs
->num_entries
; i
++)
1291 if (GET_MODE (ivs
->entries
[i
].hard_reg
) == mode
1292 && REGNO (ivs
->entries
[i
].hard_reg
) == regno
)
1293 return ivs
->entries
[i
].pseudo
;
1299 emit_initial_value_sets (void)
1301 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1309 for (i
= 0; i
< ivs
->num_entries
; i
++)
1310 emit_move_insn (ivs
->entries
[i
].pseudo
, ivs
->entries
[i
].hard_reg
);
1314 emit_insn_at_entry (seq
);
1318 /* Return the hardreg-pseudoreg initial values pair entry I and
1319 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1321 initial_value_entry (int i
, rtx
*hreg
, rtx
*preg
)
1323 struct initial_value_struct
*ivs
= crtl
->hard_reg_initial_vals
;
1324 if (!ivs
|| i
>= ivs
->num_entries
)
1327 *hreg
= ivs
->entries
[i
].hard_reg
;
1328 *preg
= ivs
->entries
[i
].pseudo
;
1332 /* These routines are responsible for converting virtual register references
1333 to the actual hard register references once RTL generation is complete.
1335 The following four variables are used for communication between the
1336 routines. They contain the offsets of the virtual registers from their
1337 respective hard registers. */
1339 static int in_arg_offset
;
1340 static int var_offset
;
1341 static int dynamic_offset
;
1342 static int out_arg_offset
;
1343 static int cfa_offset
;
1345 /* In most machines, the stack pointer register is equivalent to the bottom
1348 #ifndef STACK_POINTER_OFFSET
1349 #define STACK_POINTER_OFFSET 0
1352 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1353 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1356 /* If not defined, pick an appropriate default for the offset of dynamically
1357 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1358 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1360 #ifndef STACK_DYNAMIC_OFFSET
1362 /* The bottom of the stack points to the actual arguments. If
1363 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1364 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1365 stack space for register parameters is not pushed by the caller, but
1366 rather part of the fixed stack areas and hence not included in
1367 `crtl->outgoing_args_size'. Nevertheless, we must allow
1368 for it when allocating stack dynamic objects. */
1370 #ifdef INCOMING_REG_PARM_STACK_SPACE
1371 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1372 ((ACCUMULATE_OUTGOING_ARGS \
1373 ? (crtl->outgoing_args_size \
1374 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1375 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1376 : 0) + (STACK_POINTER_OFFSET))
1378 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1379 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1380 + (STACK_POINTER_OFFSET))
1385 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1386 is a virtual register, return the equivalent hard register and set the
1387 offset indirectly through the pointer. Otherwise, return 0. */
1390 instantiate_new_reg (rtx x
, HOST_WIDE_INT
*poffset
)
1393 HOST_WIDE_INT offset
;
1395 if (x
== virtual_incoming_args_rtx
)
1397 if (stack_realign_drap
)
1399 /* Replace virtual_incoming_args_rtx with internal arg
1400 pointer if DRAP is used to realign stack. */
1401 new_rtx
= crtl
->args
.internal_arg_pointer
;
1405 new_rtx
= arg_pointer_rtx
, offset
= in_arg_offset
;
1407 else if (x
== virtual_stack_vars_rtx
)
1408 new_rtx
= frame_pointer_rtx
, offset
= var_offset
;
1409 else if (x
== virtual_stack_dynamic_rtx
)
1410 new_rtx
= stack_pointer_rtx
, offset
= dynamic_offset
;
1411 else if (x
== virtual_outgoing_args_rtx
)
1412 new_rtx
= stack_pointer_rtx
, offset
= out_arg_offset
;
1413 else if (x
== virtual_cfa_rtx
)
1415 #ifdef FRAME_POINTER_CFA_OFFSET
1416 new_rtx
= frame_pointer_rtx
;
1418 new_rtx
= arg_pointer_rtx
;
1420 offset
= cfa_offset
;
1422 else if (x
== virtual_preferred_stack_boundary_rtx
)
1424 new_rtx
= GEN_INT (crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
);
1434 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1435 Instantiate any virtual registers present inside of *LOC. The expression
1436 is simplified, as much as possible, but is not to be considered "valid"
1437 in any sense implied by the target. If any change is made, set CHANGED
1441 instantiate_virtual_regs_in_rtx (rtx
*loc
, void *data
)
1443 HOST_WIDE_INT offset
;
1444 bool *changed
= (bool *) data
;
1451 switch (GET_CODE (x
))
1454 new_rtx
= instantiate_new_reg (x
, &offset
);
1457 *loc
= plus_constant (GET_MODE (x
), new_rtx
, offset
);
1464 new_rtx
= instantiate_new_reg (XEXP (x
, 0), &offset
);
1467 XEXP (x
, 0) = new_rtx
;
1468 *loc
= plus_constant (GET_MODE (x
), x
, offset
, true);
1474 /* FIXME -- from old code */
1475 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1476 we can commute the PLUS and SUBREG because pointers into the
1477 frame are well-behaved. */
1487 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1488 matches the predicate for insn CODE operand OPERAND. */
1491 safe_insn_predicate (int code
, int operand
, rtx x
)
1493 return code
< 0 || insn_operand_matches ((enum insn_code
) code
, operand
, x
);
1496 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1497 registers present inside of insn. The result will be a valid insn. */
1500 instantiate_virtual_regs_in_insn (rtx insn
)
1502 HOST_WIDE_INT offset
;
1504 bool any_change
= false;
1505 rtx set
, new_rtx
, x
, seq
;
1507 /* There are some special cases to be handled first. */
1508 set
= single_set (insn
);
1511 /* We're allowed to assign to a virtual register. This is interpreted
1512 to mean that the underlying register gets assigned the inverse
1513 transformation. This is used, for example, in the handling of
1515 new_rtx
= instantiate_new_reg (SET_DEST (set
), &offset
);
1520 for_each_rtx (&SET_SRC (set
), instantiate_virtual_regs_in_rtx
, NULL
);
1521 x
= simplify_gen_binary (PLUS
, GET_MODE (new_rtx
), SET_SRC (set
),
1522 gen_int_mode (-offset
, GET_MODE (new_rtx
)));
1523 x
= force_operand (x
, new_rtx
);
1525 emit_move_insn (new_rtx
, x
);
1530 emit_insn_before (seq
, insn
);
1535 /* Handle a straight copy from a virtual register by generating a
1536 new add insn. The difference between this and falling through
1537 to the generic case is avoiding a new pseudo and eliminating a
1538 move insn in the initial rtl stream. */
1539 new_rtx
= instantiate_new_reg (SET_SRC (set
), &offset
);
1540 if (new_rtx
&& offset
!= 0
1541 && REG_P (SET_DEST (set
))
1542 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1546 x
= expand_simple_binop (GET_MODE (SET_DEST (set
)), PLUS
, new_rtx
,
1547 gen_int_mode (offset
,
1548 GET_MODE (SET_DEST (set
))),
1549 SET_DEST (set
), 1, OPTAB_LIB_WIDEN
);
1550 if (x
!= SET_DEST (set
))
1551 emit_move_insn (SET_DEST (set
), x
);
1556 emit_insn_before (seq
, insn
);
1561 extract_insn (insn
);
1562 insn_code
= INSN_CODE (insn
);
1564 /* Handle a plus involving a virtual register by determining if the
1565 operands remain valid if they're modified in place. */
1566 if (GET_CODE (SET_SRC (set
)) == PLUS
1567 && recog_data
.n_operands
>= 3
1568 && recog_data
.operand_loc
[1] == &XEXP (SET_SRC (set
), 0)
1569 && recog_data
.operand_loc
[2] == &XEXP (SET_SRC (set
), 1)
1570 && CONST_INT_P (recog_data
.operand
[2])
1571 && (new_rtx
= instantiate_new_reg (recog_data
.operand
[1], &offset
)))
1573 offset
+= INTVAL (recog_data
.operand
[2]);
1575 /* If the sum is zero, then replace with a plain move. */
1577 && REG_P (SET_DEST (set
))
1578 && REGNO (SET_DEST (set
)) > LAST_VIRTUAL_REGISTER
)
1581 emit_move_insn (SET_DEST (set
), new_rtx
);
1585 emit_insn_before (seq
, insn
);
1590 x
= gen_int_mode (offset
, recog_data
.operand_mode
[2]);
1592 /* Using validate_change and apply_change_group here leaves
1593 recog_data in an invalid state. Since we know exactly what
1594 we want to check, do those two by hand. */
1595 if (safe_insn_predicate (insn_code
, 1, new_rtx
)
1596 && safe_insn_predicate (insn_code
, 2, x
))
1598 *recog_data
.operand_loc
[1] = recog_data
.operand
[1] = new_rtx
;
1599 *recog_data
.operand_loc
[2] = recog_data
.operand
[2] = x
;
1602 /* Fall through into the regular operand fixup loop in
1603 order to take care of operands other than 1 and 2. */
1609 extract_insn (insn
);
1610 insn_code
= INSN_CODE (insn
);
1613 /* In the general case, we expect virtual registers to appear only in
1614 operands, and then only as either bare registers or inside memories. */
1615 for (i
= 0; i
< recog_data
.n_operands
; ++i
)
1617 x
= recog_data
.operand
[i
];
1618 switch (GET_CODE (x
))
1622 rtx addr
= XEXP (x
, 0);
1623 bool changed
= false;
1625 for_each_rtx (&addr
, instantiate_virtual_regs_in_rtx
, &changed
);
1630 x
= replace_equiv_address (x
, addr
, true);
1631 /* It may happen that the address with the virtual reg
1632 was valid (e.g. based on the virtual stack reg, which might
1633 be acceptable to the predicates with all offsets), whereas
1634 the address now isn't anymore, for instance when the address
1635 is still offsetted, but the base reg isn't virtual-stack-reg
1636 anymore. Below we would do a force_reg on the whole operand,
1637 but this insn might actually only accept memory. Hence,
1638 before doing that last resort, try to reload the address into
1639 a register, so this operand stays a MEM. */
1640 if (!safe_insn_predicate (insn_code
, i
, x
))
1642 addr
= force_reg (GET_MODE (addr
), addr
);
1643 x
= replace_equiv_address (x
, addr
, true);
1648 emit_insn_before (seq
, insn
);
1653 new_rtx
= instantiate_new_reg (x
, &offset
);
1654 if (new_rtx
== NULL
)
1662 /* Careful, special mode predicates may have stuff in
1663 insn_data[insn_code].operand[i].mode that isn't useful
1664 to us for computing a new value. */
1665 /* ??? Recognize address_operand and/or "p" constraints
1666 to see if (plus new offset) is a valid before we put
1667 this through expand_simple_binop. */
1668 x
= expand_simple_binop (GET_MODE (x
), PLUS
, new_rtx
,
1669 gen_int_mode (offset
, GET_MODE (x
)),
1670 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1673 emit_insn_before (seq
, insn
);
1678 new_rtx
= instantiate_new_reg (SUBREG_REG (x
), &offset
);
1679 if (new_rtx
== NULL
)
1684 new_rtx
= expand_simple_binop
1685 (GET_MODE (new_rtx
), PLUS
, new_rtx
,
1686 gen_int_mode (offset
, GET_MODE (new_rtx
)),
1687 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1690 emit_insn_before (seq
, insn
);
1692 x
= simplify_gen_subreg (recog_data
.operand_mode
[i
], new_rtx
,
1693 GET_MODE (new_rtx
), SUBREG_BYTE (x
));
1701 /* At this point, X contains the new value for the operand.
1702 Validate the new value vs the insn predicate. Note that
1703 asm insns will have insn_code -1 here. */
1704 if (!safe_insn_predicate (insn_code
, i
, x
))
1709 gcc_assert (REGNO (x
) <= LAST_VIRTUAL_REGISTER
);
1710 x
= copy_to_reg (x
);
1713 x
= force_reg (insn_data
[insn_code
].operand
[i
].mode
, x
);
1717 emit_insn_before (seq
, insn
);
1720 *recog_data
.operand_loc
[i
] = recog_data
.operand
[i
] = x
;
1726 /* Propagate operand changes into the duplicates. */
1727 for (i
= 0; i
< recog_data
.n_dups
; ++i
)
1728 *recog_data
.dup_loc
[i
]
1729 = copy_rtx (recog_data
.operand
[(unsigned)recog_data
.dup_num
[i
]]);
1731 /* Force re-recognition of the instruction for validation. */
1732 INSN_CODE (insn
) = -1;
1735 if (asm_noperands (PATTERN (insn
)) >= 0)
1737 if (!check_asm_operands (PATTERN (insn
)))
1739 error_for_asm (insn
, "impossible constraint in %<asm%>");
1740 /* For asm goto, instead of fixing up all the edges
1741 just clear the template and clear input operands
1742 (asm goto doesn't have any output operands). */
1745 rtx asm_op
= extract_asm_operands (PATTERN (insn
));
1746 ASM_OPERANDS_TEMPLATE (asm_op
) = ggc_strdup ("");
1747 ASM_OPERANDS_INPUT_VEC (asm_op
) = rtvec_alloc (0);
1748 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op
) = rtvec_alloc (0);
1756 if (recog_memoized (insn
) < 0)
1757 fatal_insn_not_found (insn
);
1761 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1762 do any instantiation required. */
1765 instantiate_decl_rtl (rtx x
)
1772 /* If this is a CONCAT, recurse for the pieces. */
1773 if (GET_CODE (x
) == CONCAT
)
1775 instantiate_decl_rtl (XEXP (x
, 0));
1776 instantiate_decl_rtl (XEXP (x
, 1));
1780 /* If this is not a MEM, no need to do anything. Similarly if the
1781 address is a constant or a register that is not a virtual register. */
1786 if (CONSTANT_P (addr
)
1788 && (REGNO (addr
) < FIRST_VIRTUAL_REGISTER
1789 || REGNO (addr
) > LAST_VIRTUAL_REGISTER
)))
1792 for_each_rtx (&XEXP (x
, 0), instantiate_virtual_regs_in_rtx
, NULL
);
1795 /* Helper for instantiate_decls called via walk_tree: Process all decls
1796 in the given DECL_VALUE_EXPR. */
1799 instantiate_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
1807 if (DECL_RTL_SET_P (t
))
1808 instantiate_decl_rtl (DECL_RTL (t
));
1809 if (TREE_CODE (t
) == PARM_DECL
&& DECL_NAMELESS (t
)
1810 && DECL_INCOMING_RTL (t
))
1811 instantiate_decl_rtl (DECL_INCOMING_RTL (t
));
1812 if ((TREE_CODE (t
) == VAR_DECL
1813 || TREE_CODE (t
) == RESULT_DECL
)
1814 && DECL_HAS_VALUE_EXPR_P (t
))
1816 tree v
= DECL_VALUE_EXPR (t
);
1817 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1824 /* Subroutine of instantiate_decls: Process all decls in the given
1825 BLOCK node and all its subblocks. */
1828 instantiate_decls_1 (tree let
)
1832 for (t
= BLOCK_VARS (let
); t
; t
= DECL_CHAIN (t
))
1834 if (DECL_RTL_SET_P (t
))
1835 instantiate_decl_rtl (DECL_RTL (t
));
1836 if (TREE_CODE (t
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (t
))
1838 tree v
= DECL_VALUE_EXPR (t
);
1839 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1843 /* Process all subblocks. */
1844 for (t
= BLOCK_SUBBLOCKS (let
); t
; t
= BLOCK_CHAIN (t
))
1845 instantiate_decls_1 (t
);
1848 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1849 all virtual registers in their DECL_RTL's. */
1852 instantiate_decls (tree fndecl
)
1857 /* Process all parameters of the function. */
1858 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= DECL_CHAIN (decl
))
1860 instantiate_decl_rtl (DECL_RTL (decl
));
1861 instantiate_decl_rtl (DECL_INCOMING_RTL (decl
));
1862 if (DECL_HAS_VALUE_EXPR_P (decl
))
1864 tree v
= DECL_VALUE_EXPR (decl
);
1865 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1869 if ((decl
= DECL_RESULT (fndecl
))
1870 && TREE_CODE (decl
) == RESULT_DECL
)
1872 if (DECL_RTL_SET_P (decl
))
1873 instantiate_decl_rtl (DECL_RTL (decl
));
1874 if (DECL_HAS_VALUE_EXPR_P (decl
))
1876 tree v
= DECL_VALUE_EXPR (decl
);
1877 walk_tree (&v
, instantiate_expr
, NULL
, NULL
);
1881 /* Process the saved static chain if it exists. */
1882 decl
= DECL_STRUCT_FUNCTION (fndecl
)->static_chain_decl
;
1883 if (decl
&& DECL_HAS_VALUE_EXPR_P (decl
))
1884 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl
)));
1886 /* Now process all variables defined in the function or its subblocks. */
1887 instantiate_decls_1 (DECL_INITIAL (fndecl
));
1889 FOR_EACH_LOCAL_DECL (cfun
, ix
, decl
)
1890 if (DECL_RTL_SET_P (decl
))
1891 instantiate_decl_rtl (DECL_RTL (decl
));
1892 vec_free (cfun
->local_decls
);
1895 /* Pass through the INSNS of function FNDECL and convert virtual register
1896 references to hard register references. */
1899 instantiate_virtual_regs (void)
1903 /* Compute the offsets to use for this function. */
1904 in_arg_offset
= FIRST_PARM_OFFSET (current_function_decl
);
1905 var_offset
= STARTING_FRAME_OFFSET
;
1906 dynamic_offset
= STACK_DYNAMIC_OFFSET (current_function_decl
);
1907 out_arg_offset
= STACK_POINTER_OFFSET
;
1908 #ifdef FRAME_POINTER_CFA_OFFSET
1909 cfa_offset
= FRAME_POINTER_CFA_OFFSET (current_function_decl
);
1911 cfa_offset
= ARG_POINTER_CFA_OFFSET (current_function_decl
);
1914 /* Initialize recognition, indicating that volatile is OK. */
1917 /* Scan through all the insns, instantiating every virtual register still
1919 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1922 /* These patterns in the instruction stream can never be recognized.
1923 Fortunately, they shouldn't contain virtual registers either. */
1924 if (GET_CODE (PATTERN (insn
)) == USE
1925 || GET_CODE (PATTERN (insn
)) == CLOBBER
1926 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
)
1928 else if (DEBUG_INSN_P (insn
))
1929 for_each_rtx (&INSN_VAR_LOCATION (insn
),
1930 instantiate_virtual_regs_in_rtx
, NULL
);
1932 instantiate_virtual_regs_in_insn (insn
);
1934 if (INSN_DELETED_P (insn
))
1937 for_each_rtx (®_NOTES (insn
), instantiate_virtual_regs_in_rtx
, NULL
);
1939 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1941 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn
),
1942 instantiate_virtual_regs_in_rtx
, NULL
);
1945 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1946 instantiate_decls (current_function_decl
);
1948 targetm
.instantiate_decls ();
1950 /* Indicate that, from now on, assign_stack_local should use
1951 frame_pointer_rtx. */
1952 virtuals_instantiated
= 1;
1959 const pass_data pass_data_instantiate_virtual_regs
=
1961 RTL_PASS
, /* type */
1963 OPTGROUP_NONE
, /* optinfo_flags */
1964 TV_NONE
, /* tv_id */
1965 0, /* properties_required */
1966 0, /* properties_provided */
1967 0, /* properties_destroyed */
1968 0, /* todo_flags_start */
1969 0, /* todo_flags_finish */
1972 class pass_instantiate_virtual_regs
: public rtl_opt_pass
1975 pass_instantiate_virtual_regs (gcc::context
*ctxt
)
1976 : rtl_opt_pass (pass_data_instantiate_virtual_regs
, ctxt
)
1979 /* opt_pass methods: */
1980 virtual unsigned int execute (function
*)
1982 return instantiate_virtual_regs ();
1985 }; // class pass_instantiate_virtual_regs
1990 make_pass_instantiate_virtual_regs (gcc::context
*ctxt
)
1992 return new pass_instantiate_virtual_regs (ctxt
);
1996 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1997 This means a type for which function calls must pass an address to the
1998 function or get an address back from the function.
1999 EXP may be a type node or an expression (whose type is tested). */
2002 aggregate_value_p (const_tree exp
, const_tree fntype
)
2004 const_tree type
= (TYPE_P (exp
)) ? exp
: TREE_TYPE (exp
);
2005 int i
, regno
, nregs
;
2009 switch (TREE_CODE (fntype
))
2013 tree fndecl
= get_callee_fndecl (fntype
);
2015 ? TREE_TYPE (fndecl
)
2016 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype
))));
2020 fntype
= TREE_TYPE (fntype
);
2025 case IDENTIFIER_NODE
:
2029 /* We don't expect other tree types here. */
2033 if (VOID_TYPE_P (type
))
2036 /* If a record should be passed the same as its first (and only) member
2037 don't pass it as an aggregate. */
2038 if (TREE_CODE (type
) == RECORD_TYPE
&& TYPE_TRANSPARENT_AGGR (type
))
2039 return aggregate_value_p (first_field (type
), fntype
);
2041 /* If the front end has decided that this needs to be passed by
2042 reference, do so. */
2043 if ((TREE_CODE (exp
) == PARM_DECL
|| TREE_CODE (exp
) == RESULT_DECL
)
2044 && DECL_BY_REFERENCE (exp
))
2047 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2048 if (fntype
&& TREE_ADDRESSABLE (fntype
))
2051 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2052 and thus can't be returned in registers. */
2053 if (TREE_ADDRESSABLE (type
))
2056 if (flag_pcc_struct_return
&& AGGREGATE_TYPE_P (type
))
2059 if (targetm
.calls
.return_in_memory (type
, fntype
))
2062 /* Make sure we have suitable call-clobbered regs to return
2063 the value in; if not, we must return it in memory. */
2064 reg
= hard_function_value (type
, 0, fntype
, 0);
2066 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2071 regno
= REGNO (reg
);
2072 nregs
= hard_regno_nregs
[regno
][TYPE_MODE (type
)];
2073 for (i
= 0; i
< nregs
; i
++)
2074 if (! call_used_regs
[regno
+ i
])
2080 /* Return true if we should assign DECL a pseudo register; false if it
2081 should live on the local stack. */
2084 use_register_for_decl (const_tree decl
)
2086 if (!targetm
.calls
.allocate_stack_slots_for_args ())
2089 /* Honor volatile. */
2090 if (TREE_SIDE_EFFECTS (decl
))
2093 /* Honor addressability. */
2094 if (TREE_ADDRESSABLE (decl
))
2097 /* Only register-like things go in registers. */
2098 if (DECL_MODE (decl
) == BLKmode
)
2101 /* If -ffloat-store specified, don't put explicit float variables
2103 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2104 propagates values across these stores, and it probably shouldn't. */
2105 if (flag_float_store
&& FLOAT_TYPE_P (TREE_TYPE (decl
)))
2108 /* If we're not interested in tracking debugging information for
2109 this decl, then we can certainly put it in a register. */
2110 if (DECL_IGNORED_P (decl
))
2116 if (!DECL_REGISTER (decl
))
2119 switch (TREE_CODE (TREE_TYPE (decl
)))
2123 case QUAL_UNION_TYPE
:
2124 /* When not optimizing, disregard register keyword for variables with
2125 types containing methods, otherwise the methods won't be callable
2126 from the debugger. */
2127 if (TYPE_METHODS (TREE_TYPE (decl
)))
2137 /* Return true if TYPE should be passed by invisible reference. */
2140 pass_by_reference (CUMULATIVE_ARGS
*ca
, enum machine_mode mode
,
2141 tree type
, bool named_arg
)
2145 /* If this type contains non-trivial constructors, then it is
2146 forbidden for the middle-end to create any new copies. */
2147 if (TREE_ADDRESSABLE (type
))
2150 /* GCC post 3.4 passes *all* variable sized types by reference. */
2151 if (!TYPE_SIZE (type
) || TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
2154 /* If a record type should be passed the same as its first (and only)
2155 member, use the type and mode of that member. */
2156 if (TREE_CODE (type
) == RECORD_TYPE
&& TYPE_TRANSPARENT_AGGR (type
))
2158 type
= TREE_TYPE (first_field (type
));
2159 mode
= TYPE_MODE (type
);
2163 return targetm
.calls
.pass_by_reference (pack_cumulative_args (ca
), mode
,
2167 /* Return true if TYPE, which is passed by reference, should be callee
2168 copied instead of caller copied. */
2171 reference_callee_copied (CUMULATIVE_ARGS
*ca
, enum machine_mode mode
,
2172 tree type
, bool named_arg
)
2174 if (type
&& TREE_ADDRESSABLE (type
))
2176 return targetm
.calls
.callee_copies (pack_cumulative_args (ca
), mode
, type
,
2180 /* Structures to communicate between the subroutines of assign_parms.
2181 The first holds data persistent across all parameters, the second
2182 is cleared out for each parameter. */
2184 struct assign_parm_data_all
2186 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2187 should become a job of the target or otherwise encapsulated. */
2188 CUMULATIVE_ARGS args_so_far_v
;
2189 cumulative_args_t args_so_far
;
2190 struct args_size stack_args_size
;
2191 tree function_result_decl
;
2193 rtx first_conversion_insn
;
2194 rtx last_conversion_insn
;
2195 HOST_WIDE_INT pretend_args_size
;
2196 HOST_WIDE_INT extra_pretend_bytes
;
2197 int reg_parm_stack_space
;
2200 struct assign_parm_data_one
2206 enum machine_mode nominal_mode
;
2207 enum machine_mode passed_mode
;
2208 enum machine_mode promoted_mode
;
2209 struct locate_and_pad_arg_data locate
;
2211 BOOL_BITFIELD named_arg
: 1;
2212 BOOL_BITFIELD passed_pointer
: 1;
2213 BOOL_BITFIELD on_stack
: 1;
2214 BOOL_BITFIELD loaded_in_reg
: 1;
2217 /* A subroutine of assign_parms. Initialize ALL. */
2220 assign_parms_initialize_all (struct assign_parm_data_all
*all
)
2222 tree fntype ATTRIBUTE_UNUSED
;
2224 memset (all
, 0, sizeof (*all
));
2226 fntype
= TREE_TYPE (current_function_decl
);
2228 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2229 INIT_CUMULATIVE_INCOMING_ARGS (all
->args_so_far_v
, fntype
, NULL_RTX
);
2231 INIT_CUMULATIVE_ARGS (all
->args_so_far_v
, fntype
, NULL_RTX
,
2232 current_function_decl
, -1);
2234 all
->args_so_far
= pack_cumulative_args (&all
->args_so_far_v
);
2236 #ifdef INCOMING_REG_PARM_STACK_SPACE
2237 all
->reg_parm_stack_space
2238 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl
);
2242 /* If ARGS contains entries with complex types, split the entry into two
2243 entries of the component type. Return a new list of substitutions are
2244 needed, else the old list. */
2247 split_complex_args (vec
<tree
> *args
)
2252 FOR_EACH_VEC_ELT (*args
, i
, p
)
2254 tree type
= TREE_TYPE (p
);
2255 if (TREE_CODE (type
) == COMPLEX_TYPE
2256 && targetm
.calls
.split_complex_arg (type
))
2259 tree subtype
= TREE_TYPE (type
);
2260 bool addressable
= TREE_ADDRESSABLE (p
);
2262 /* Rewrite the PARM_DECL's type with its component. */
2264 TREE_TYPE (p
) = subtype
;
2265 DECL_ARG_TYPE (p
) = TREE_TYPE (DECL_ARG_TYPE (p
));
2266 DECL_MODE (p
) = VOIDmode
;
2267 DECL_SIZE (p
) = NULL
;
2268 DECL_SIZE_UNIT (p
) = NULL
;
2269 /* If this arg must go in memory, put it in a pseudo here.
2270 We can't allow it to go in memory as per normal parms,
2271 because the usual place might not have the imag part
2272 adjacent to the real part. */
2273 DECL_ARTIFICIAL (p
) = addressable
;
2274 DECL_IGNORED_P (p
) = addressable
;
2275 TREE_ADDRESSABLE (p
) = 0;
2279 /* Build a second synthetic decl. */
2280 decl
= build_decl (EXPR_LOCATION (p
),
2281 PARM_DECL
, NULL_TREE
, subtype
);
2282 DECL_ARG_TYPE (decl
) = DECL_ARG_TYPE (p
);
2283 DECL_ARTIFICIAL (decl
) = addressable
;
2284 DECL_IGNORED_P (decl
) = addressable
;
2285 layout_decl (decl
, 0);
2286 args
->safe_insert (++i
, decl
);
2291 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2292 the hidden struct return argument, and (abi willing) complex args.
2293 Return the new parameter list. */
2296 assign_parms_augmented_arg_list (struct assign_parm_data_all
*all
)
2298 tree fndecl
= current_function_decl
;
2299 tree fntype
= TREE_TYPE (fndecl
);
2300 vec
<tree
> fnargs
= vNULL
;
2303 for (arg
= DECL_ARGUMENTS (fndecl
); arg
; arg
= DECL_CHAIN (arg
))
2304 fnargs
.safe_push (arg
);
2306 all
->orig_fnargs
= DECL_ARGUMENTS (fndecl
);
2308 /* If struct value address is treated as the first argument, make it so. */
2309 if (aggregate_value_p (DECL_RESULT (fndecl
), fndecl
)
2310 && ! cfun
->returns_pcc_struct
2311 && targetm
.calls
.struct_value_rtx (TREE_TYPE (fndecl
), 1) == 0)
2313 tree type
= build_pointer_type (TREE_TYPE (fntype
));
2316 decl
= build_decl (DECL_SOURCE_LOCATION (fndecl
),
2317 PARM_DECL
, get_identifier (".result_ptr"), type
);
2318 DECL_ARG_TYPE (decl
) = type
;
2319 DECL_ARTIFICIAL (decl
) = 1;
2320 DECL_NAMELESS (decl
) = 1;
2321 TREE_CONSTANT (decl
) = 1;
2323 DECL_CHAIN (decl
) = all
->orig_fnargs
;
2324 all
->orig_fnargs
= decl
;
2325 fnargs
.safe_insert (0, decl
);
2327 all
->function_result_decl
= decl
;
2330 /* If the target wants to split complex arguments into scalars, do so. */
2331 if (targetm
.calls
.split_complex_arg
)
2332 split_complex_args (&fnargs
);
2337 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2338 data for the parameter. Incorporate ABI specifics such as pass-by-
2339 reference and type promotion. */
2342 assign_parm_find_data_types (struct assign_parm_data_all
*all
, tree parm
,
2343 struct assign_parm_data_one
*data
)
2345 tree nominal_type
, passed_type
;
2346 enum machine_mode nominal_mode
, passed_mode
, promoted_mode
;
2349 memset (data
, 0, sizeof (*data
));
2351 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2353 data
->named_arg
= 1; /* No variadic parms. */
2354 else if (DECL_CHAIN (parm
))
2355 data
->named_arg
= 1; /* Not the last non-variadic parm. */
2356 else if (targetm
.calls
.strict_argument_naming (all
->args_so_far
))
2357 data
->named_arg
= 1; /* Only variadic ones are unnamed. */
2359 data
->named_arg
= 0; /* Treat as variadic. */
2361 nominal_type
= TREE_TYPE (parm
);
2362 passed_type
= DECL_ARG_TYPE (parm
);
2364 /* Look out for errors propagating this far. Also, if the parameter's
2365 type is void then its value doesn't matter. */
2366 if (TREE_TYPE (parm
) == error_mark_node
2367 /* This can happen after weird syntax errors
2368 or if an enum type is defined among the parms. */
2369 || TREE_CODE (parm
) != PARM_DECL
2370 || passed_type
== NULL
2371 || VOID_TYPE_P (nominal_type
))
2373 nominal_type
= passed_type
= void_type_node
;
2374 nominal_mode
= passed_mode
= promoted_mode
= VOIDmode
;
2378 /* Find mode of arg as it is passed, and mode of arg as it should be
2379 during execution of this function. */
2380 passed_mode
= TYPE_MODE (passed_type
);
2381 nominal_mode
= TYPE_MODE (nominal_type
);
2383 /* If the parm is to be passed as a transparent union or record, use the
2384 type of the first field for the tests below. We have already verified
2385 that the modes are the same. */
2386 if ((TREE_CODE (passed_type
) == UNION_TYPE
2387 || TREE_CODE (passed_type
) == RECORD_TYPE
)
2388 && TYPE_TRANSPARENT_AGGR (passed_type
))
2389 passed_type
= TREE_TYPE (first_field (passed_type
));
2391 /* See if this arg was passed by invisible reference. */
2392 if (pass_by_reference (&all
->args_so_far_v
, passed_mode
,
2393 passed_type
, data
->named_arg
))
2395 passed_type
= nominal_type
= build_pointer_type (passed_type
);
2396 data
->passed_pointer
= true;
2397 passed_mode
= nominal_mode
= TYPE_MODE (nominal_type
);
2400 /* Find mode as it is passed by the ABI. */
2401 unsignedp
= TYPE_UNSIGNED (passed_type
);
2402 promoted_mode
= promote_function_mode (passed_type
, passed_mode
, &unsignedp
,
2403 TREE_TYPE (current_function_decl
), 0);
2406 data
->nominal_type
= nominal_type
;
2407 data
->passed_type
= passed_type
;
2408 data
->nominal_mode
= nominal_mode
;
2409 data
->passed_mode
= passed_mode
;
2410 data
->promoted_mode
= promoted_mode
;
2413 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2416 assign_parms_setup_varargs (struct assign_parm_data_all
*all
,
2417 struct assign_parm_data_one
*data
, bool no_rtl
)
2419 int varargs_pretend_bytes
= 0;
2421 targetm
.calls
.setup_incoming_varargs (all
->args_so_far
,
2422 data
->promoted_mode
,
2424 &varargs_pretend_bytes
, no_rtl
);
2426 /* If the back-end has requested extra stack space, record how much is
2427 needed. Do not change pretend_args_size otherwise since it may be
2428 nonzero from an earlier partial argument. */
2429 if (varargs_pretend_bytes
> 0)
2430 all
->pretend_args_size
= varargs_pretend_bytes
;
2433 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2434 the incoming location of the current parameter. */
2437 assign_parm_find_entry_rtl (struct assign_parm_data_all
*all
,
2438 struct assign_parm_data_one
*data
)
2440 HOST_WIDE_INT pretend_bytes
= 0;
2444 if (data
->promoted_mode
== VOIDmode
)
2446 data
->entry_parm
= data
->stack_parm
= const0_rtx
;
2450 entry_parm
= targetm
.calls
.function_incoming_arg (all
->args_so_far
,
2451 data
->promoted_mode
,
2455 if (entry_parm
== 0)
2456 data
->promoted_mode
= data
->passed_mode
;
2458 /* Determine parm's home in the stack, in case it arrives in the stack
2459 or we should pretend it did. Compute the stack position and rtx where
2460 the argument arrives and its size.
2462 There is one complexity here: If this was a parameter that would
2463 have been passed in registers, but wasn't only because it is
2464 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2465 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2466 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2467 as it was the previous time. */
2468 in_regs
= entry_parm
!= 0;
2469 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2472 if (!in_regs
&& !data
->named_arg
)
2474 if (targetm
.calls
.pretend_outgoing_varargs_named (all
->args_so_far
))
2477 tem
= targetm
.calls
.function_incoming_arg (all
->args_so_far
,
2478 data
->promoted_mode
,
2479 data
->passed_type
, true);
2480 in_regs
= tem
!= NULL
;
2484 /* If this parameter was passed both in registers and in the stack, use
2485 the copy on the stack. */
2486 if (targetm
.calls
.must_pass_in_stack (data
->promoted_mode
,
2494 partial
= targetm
.calls
.arg_partial_bytes (all
->args_so_far
,
2495 data
->promoted_mode
,
2498 data
->partial
= partial
;
2500 /* The caller might already have allocated stack space for the
2501 register parameters. */
2502 if (partial
!= 0 && all
->reg_parm_stack_space
== 0)
2504 /* Part of this argument is passed in registers and part
2505 is passed on the stack. Ask the prologue code to extend
2506 the stack part so that we can recreate the full value.
2508 PRETEND_BYTES is the size of the registers we need to store.
2509 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2510 stack space that the prologue should allocate.
2512 Internally, gcc assumes that the argument pointer is aligned
2513 to STACK_BOUNDARY bits. This is used both for alignment
2514 optimizations (see init_emit) and to locate arguments that are
2515 aligned to more than PARM_BOUNDARY bits. We must preserve this
2516 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2517 a stack boundary. */
2519 /* We assume at most one partial arg, and it must be the first
2520 argument on the stack. */
2521 gcc_assert (!all
->extra_pretend_bytes
&& !all
->pretend_args_size
);
2523 pretend_bytes
= partial
;
2524 all
->pretend_args_size
= CEIL_ROUND (pretend_bytes
, STACK_BYTES
);
2526 /* We want to align relative to the actual stack pointer, so
2527 don't include this in the stack size until later. */
2528 all
->extra_pretend_bytes
= all
->pretend_args_size
;
2532 locate_and_pad_parm (data
->promoted_mode
, data
->passed_type
, in_regs
,
2533 all
->reg_parm_stack_space
,
2534 entry_parm
? data
->partial
: 0, current_function_decl
,
2535 &all
->stack_args_size
, &data
->locate
);
2537 /* Update parm_stack_boundary if this parameter is passed in the
2539 if (!in_regs
&& crtl
->parm_stack_boundary
< data
->locate
.boundary
)
2540 crtl
->parm_stack_boundary
= data
->locate
.boundary
;
2542 /* Adjust offsets to include the pretend args. */
2543 pretend_bytes
= all
->extra_pretend_bytes
- pretend_bytes
;
2544 data
->locate
.slot_offset
.constant
+= pretend_bytes
;
2545 data
->locate
.offset
.constant
+= pretend_bytes
;
2547 data
->entry_parm
= entry_parm
;
2550 /* A subroutine of assign_parms. If there is actually space on the stack
2551 for this parm, count it in stack_args_size and return true. */
2554 assign_parm_is_stack_parm (struct assign_parm_data_all
*all
,
2555 struct assign_parm_data_one
*data
)
2557 /* Trivially true if we've no incoming register. */
2558 if (data
->entry_parm
== NULL
)
2560 /* Also true if we're partially in registers and partially not,
2561 since we've arranged to drop the entire argument on the stack. */
2562 else if (data
->partial
!= 0)
2564 /* Also true if the target says that it's passed in both registers
2565 and on the stack. */
2566 else if (GET_CODE (data
->entry_parm
) == PARALLEL
2567 && XEXP (XVECEXP (data
->entry_parm
, 0, 0), 0) == NULL_RTX
)
2569 /* Also true if the target says that there's stack allocated for
2570 all register parameters. */
2571 else if (all
->reg_parm_stack_space
> 0)
2573 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2577 all
->stack_args_size
.constant
+= data
->locate
.size
.constant
;
2578 if (data
->locate
.size
.var
)
2579 ADD_PARM_SIZE (all
->stack_args_size
, data
->locate
.size
.var
);
2584 /* A subroutine of assign_parms. Given that this parameter is allocated
2585 stack space by the ABI, find it. */
2588 assign_parm_find_stack_rtl (tree parm
, struct assign_parm_data_one
*data
)
2590 rtx offset_rtx
, stack_parm
;
2591 unsigned int align
, boundary
;
2593 /* If we're passing this arg using a reg, make its stack home the
2594 aligned stack slot. */
2595 if (data
->entry_parm
)
2596 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.slot_offset
);
2598 offset_rtx
= ARGS_SIZE_RTX (data
->locate
.offset
);
2600 stack_parm
= crtl
->args
.internal_arg_pointer
;
2601 if (offset_rtx
!= const0_rtx
)
2602 stack_parm
= gen_rtx_PLUS (Pmode
, stack_parm
, offset_rtx
);
2603 stack_parm
= gen_rtx_MEM (data
->promoted_mode
, stack_parm
);
2605 if (!data
->passed_pointer
)
2607 set_mem_attributes (stack_parm
, parm
, 1);
2608 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2609 while promoted mode's size is needed. */
2610 if (data
->promoted_mode
!= BLKmode
2611 && data
->promoted_mode
!= DECL_MODE (parm
))
2613 set_mem_size (stack_parm
, GET_MODE_SIZE (data
->promoted_mode
));
2614 if (MEM_EXPR (stack_parm
) && MEM_OFFSET_KNOWN_P (stack_parm
))
2616 int offset
= subreg_lowpart_offset (DECL_MODE (parm
),
2617 data
->promoted_mode
);
2619 set_mem_offset (stack_parm
, MEM_OFFSET (stack_parm
) - offset
);
2624 boundary
= data
->locate
.boundary
;
2625 align
= BITS_PER_UNIT
;
2627 /* If we're padding upward, we know that the alignment of the slot
2628 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2629 intentionally forcing upward padding. Otherwise we have to come
2630 up with a guess at the alignment based on OFFSET_RTX. */
2631 if (data
->locate
.where_pad
!= downward
|| data
->entry_parm
)
2633 else if (CONST_INT_P (offset_rtx
))
2635 align
= INTVAL (offset_rtx
) * BITS_PER_UNIT
| boundary
;
2636 align
= align
& -align
;
2638 set_mem_align (stack_parm
, align
);
2640 if (data
->entry_parm
)
2641 set_reg_attrs_for_parm (data
->entry_parm
, stack_parm
);
2643 data
->stack_parm
= stack_parm
;
2646 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2647 always valid and contiguous. */
2650 assign_parm_adjust_entry_rtl (struct assign_parm_data_one
*data
)
2652 rtx entry_parm
= data
->entry_parm
;
2653 rtx stack_parm
= data
->stack_parm
;
2655 /* If this parm was passed part in regs and part in memory, pretend it
2656 arrived entirely in memory by pushing the register-part onto the stack.
2657 In the special case of a DImode or DFmode that is split, we could put
2658 it together in a pseudoreg directly, but for now that's not worth
2660 if (data
->partial
!= 0)
2662 /* Handle calls that pass values in multiple non-contiguous
2663 locations. The Irix 6 ABI has examples of this. */
2664 if (GET_CODE (entry_parm
) == PARALLEL
)
2665 emit_group_store (validize_mem (stack_parm
), entry_parm
,
2667 int_size_in_bytes (data
->passed_type
));
2670 gcc_assert (data
->partial
% UNITS_PER_WORD
== 0);
2671 move_block_from_reg (REGNO (entry_parm
), validize_mem (stack_parm
),
2672 data
->partial
/ UNITS_PER_WORD
);
2675 entry_parm
= stack_parm
;
2678 /* If we didn't decide this parm came in a register, by default it came
2680 else if (entry_parm
== NULL
)
2681 entry_parm
= stack_parm
;
2683 /* When an argument is passed in multiple locations, we can't make use
2684 of this information, but we can save some copying if the whole argument
2685 is passed in a single register. */
2686 else if (GET_CODE (entry_parm
) == PARALLEL
2687 && data
->nominal_mode
!= BLKmode
2688 && data
->passed_mode
!= BLKmode
)
2690 size_t i
, len
= XVECLEN (entry_parm
, 0);
2692 for (i
= 0; i
< len
; i
++)
2693 if (XEXP (XVECEXP (entry_parm
, 0, i
), 0) != NULL_RTX
2694 && REG_P (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2695 && (GET_MODE (XEXP (XVECEXP (entry_parm
, 0, i
), 0))
2696 == data
->passed_mode
)
2697 && INTVAL (XEXP (XVECEXP (entry_parm
, 0, i
), 1)) == 0)
2699 entry_parm
= XEXP (XVECEXP (entry_parm
, 0, i
), 0);
2704 data
->entry_parm
= entry_parm
;
2707 /* A subroutine of assign_parms. Reconstitute any values which were
2708 passed in multiple registers and would fit in a single register. */
2711 assign_parm_remove_parallels (struct assign_parm_data_one
*data
)
2713 rtx entry_parm
= data
->entry_parm
;
2715 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2716 This can be done with register operations rather than on the
2717 stack, even if we will store the reconstituted parameter on the
2719 if (GET_CODE (entry_parm
) == PARALLEL
&& GET_MODE (entry_parm
) != BLKmode
)
2721 rtx parmreg
= gen_reg_rtx (GET_MODE (entry_parm
));
2722 emit_group_store (parmreg
, entry_parm
, data
->passed_type
,
2723 GET_MODE_SIZE (GET_MODE (entry_parm
)));
2724 entry_parm
= parmreg
;
2727 data
->entry_parm
= entry_parm
;
2730 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2731 always valid and properly aligned. */
2734 assign_parm_adjust_stack_rtl (struct assign_parm_data_one
*data
)
2736 rtx stack_parm
= data
->stack_parm
;
2738 /* If we can't trust the parm stack slot to be aligned enough for its
2739 ultimate type, don't use that slot after entry. We'll make another
2740 stack slot, if we need one. */
2742 && ((STRICT_ALIGNMENT
2743 && GET_MODE_ALIGNMENT (data
->nominal_mode
) > MEM_ALIGN (stack_parm
))
2744 || (data
->nominal_type
2745 && TYPE_ALIGN (data
->nominal_type
) > MEM_ALIGN (stack_parm
)
2746 && MEM_ALIGN (stack_parm
) < PREFERRED_STACK_BOUNDARY
)))
2749 /* If parm was passed in memory, and we need to convert it on entry,
2750 don't store it back in that same slot. */
2751 else if (data
->entry_parm
== stack_parm
2752 && data
->nominal_mode
!= BLKmode
2753 && data
->nominal_mode
!= data
->passed_mode
)
2756 /* If stack protection is in effect for this function, don't leave any
2757 pointers in their passed stack slots. */
2758 else if (crtl
->stack_protect_guard
2759 && (flag_stack_protect
== 2
2760 || data
->passed_pointer
2761 || POINTER_TYPE_P (data
->nominal_type
)))
2764 data
->stack_parm
= stack_parm
;
2767 /* A subroutine of assign_parms. Return true if the current parameter
2768 should be stored as a BLKmode in the current frame. */
2771 assign_parm_setup_block_p (struct assign_parm_data_one
*data
)
2773 if (data
->nominal_mode
== BLKmode
)
2775 if (GET_MODE (data
->entry_parm
) == BLKmode
)
2778 #ifdef BLOCK_REG_PADDING
2779 /* Only assign_parm_setup_block knows how to deal with register arguments
2780 that are padded at the least significant end. */
2781 if (REG_P (data
->entry_parm
)
2782 && GET_MODE_SIZE (data
->promoted_mode
) < UNITS_PER_WORD
2783 && (BLOCK_REG_PADDING (data
->passed_mode
, data
->passed_type
, 1)
2784 == (BYTES_BIG_ENDIAN
? upward
: downward
)))
2791 /* A subroutine of assign_parms. Arrange for the parameter to be
2792 present and valid in DATA->STACK_RTL. */
2795 assign_parm_setup_block (struct assign_parm_data_all
*all
,
2796 tree parm
, struct assign_parm_data_one
*data
)
2798 rtx entry_parm
= data
->entry_parm
;
2799 rtx stack_parm
= data
->stack_parm
;
2801 HOST_WIDE_INT size_stored
;
2803 if (GET_CODE (entry_parm
) == PARALLEL
)
2804 entry_parm
= emit_group_move_into_temps (entry_parm
);
2806 size
= int_size_in_bytes (data
->passed_type
);
2807 size_stored
= CEIL_ROUND (size
, UNITS_PER_WORD
);
2808 if (stack_parm
== 0)
2810 DECL_ALIGN (parm
) = MAX (DECL_ALIGN (parm
), BITS_PER_WORD
);
2811 stack_parm
= assign_stack_local (BLKmode
, size_stored
,
2813 if (GET_MODE_SIZE (GET_MODE (entry_parm
)) == size
)
2814 PUT_MODE (stack_parm
, GET_MODE (entry_parm
));
2815 set_mem_attributes (stack_parm
, parm
, 1);
2818 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2819 calls that pass values in multiple non-contiguous locations. */
2820 if (REG_P (entry_parm
) || GET_CODE (entry_parm
) == PARALLEL
)
2824 /* Note that we will be storing an integral number of words.
2825 So we have to be careful to ensure that we allocate an
2826 integral number of words. We do this above when we call
2827 assign_stack_local if space was not allocated in the argument
2828 list. If it was, this will not work if PARM_BOUNDARY is not
2829 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2830 if it becomes a problem. Exception is when BLKmode arrives
2831 with arguments not conforming to word_mode. */
2833 if (data
->stack_parm
== 0)
2835 else if (GET_CODE (entry_parm
) == PARALLEL
)
2838 gcc_assert (!size
|| !(PARM_BOUNDARY
% BITS_PER_WORD
));
2840 mem
= validize_mem (stack_parm
);
2842 /* Handle values in multiple non-contiguous locations. */
2843 if (GET_CODE (entry_parm
) == PARALLEL
)
2845 push_to_sequence2 (all
->first_conversion_insn
,
2846 all
->last_conversion_insn
);
2847 emit_group_store (mem
, entry_parm
, data
->passed_type
, size
);
2848 all
->first_conversion_insn
= get_insns ();
2849 all
->last_conversion_insn
= get_last_insn ();
2856 /* If SIZE is that of a mode no bigger than a word, just use
2857 that mode's store operation. */
2858 else if (size
<= UNITS_PER_WORD
)
2860 enum machine_mode mode
2861 = mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
, 0);
2864 #ifdef BLOCK_REG_PADDING
2865 && (size
== UNITS_PER_WORD
2866 || (BLOCK_REG_PADDING (mode
, data
->passed_type
, 1)
2867 != (BYTES_BIG_ENDIAN
? upward
: downward
)))
2873 /* We are really truncating a word_mode value containing
2874 SIZE bytes into a value of mode MODE. If such an
2875 operation requires no actual instructions, we can refer
2876 to the value directly in mode MODE, otherwise we must
2877 start with the register in word_mode and explicitly
2879 if (TRULY_NOOP_TRUNCATION (size
* BITS_PER_UNIT
, BITS_PER_WORD
))
2880 reg
= gen_rtx_REG (mode
, REGNO (entry_parm
));
2883 reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
2884 reg
= convert_to_mode (mode
, copy_to_reg (reg
), 1);
2886 emit_move_insn (change_address (mem
, mode
, 0), reg
);
2889 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2890 machine must be aligned to the left before storing
2891 to memory. Note that the previous test doesn't
2892 handle all cases (e.g. SIZE == 3). */
2893 else if (size
!= UNITS_PER_WORD
2894 #ifdef BLOCK_REG_PADDING
2895 && (BLOCK_REG_PADDING (mode
, data
->passed_type
, 1)
2903 int by
= (UNITS_PER_WORD
- size
) * BITS_PER_UNIT
;
2904 rtx reg
= gen_rtx_REG (word_mode
, REGNO (entry_parm
));
2906 x
= expand_shift (LSHIFT_EXPR
, word_mode
, reg
, by
, NULL_RTX
, 1);
2907 tem
= change_address (mem
, word_mode
, 0);
2908 emit_move_insn (tem
, x
);
2911 move_block_from_reg (REGNO (entry_parm
), mem
,
2912 size_stored
/ UNITS_PER_WORD
);
2915 move_block_from_reg (REGNO (entry_parm
), mem
,
2916 size_stored
/ UNITS_PER_WORD
);
2918 else if (data
->stack_parm
== 0)
2920 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
2921 emit_block_move (stack_parm
, data
->entry_parm
, GEN_INT (size
),
2923 all
->first_conversion_insn
= get_insns ();
2924 all
->last_conversion_insn
= get_last_insn ();
2928 data
->stack_parm
= stack_parm
;
2929 SET_DECL_RTL (parm
, stack_parm
);
2932 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2933 parameter. Get it there. Perform all ABI specified conversions. */
2936 assign_parm_setup_reg (struct assign_parm_data_all
*all
, tree parm
,
2937 struct assign_parm_data_one
*data
)
2939 rtx parmreg
, validated_mem
;
2940 rtx equiv_stack_parm
;
2941 enum machine_mode promoted_nominal_mode
;
2942 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (parm
));
2943 bool did_conversion
= false;
2944 bool need_conversion
, moved
;
2946 /* Store the parm in a pseudoregister during the function, but we may
2947 need to do it in a wider mode. Using 2 here makes the result
2948 consistent with promote_decl_mode and thus expand_expr_real_1. */
2949 promoted_nominal_mode
2950 = promote_function_mode (data
->nominal_type
, data
->nominal_mode
, &unsignedp
,
2951 TREE_TYPE (current_function_decl
), 2);
2953 parmreg
= gen_reg_rtx (promoted_nominal_mode
);
2955 if (!DECL_ARTIFICIAL (parm
))
2956 mark_user_reg (parmreg
);
2958 /* If this was an item that we received a pointer to,
2959 set DECL_RTL appropriately. */
2960 if (data
->passed_pointer
)
2962 rtx x
= gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data
->passed_type
)), parmreg
);
2963 set_mem_attributes (x
, parm
, 1);
2964 SET_DECL_RTL (parm
, x
);
2967 SET_DECL_RTL (parm
, parmreg
);
2969 assign_parm_remove_parallels (data
);
2971 /* Copy the value into the register, thus bridging between
2972 assign_parm_find_data_types and expand_expr_real_1. */
2974 equiv_stack_parm
= data
->stack_parm
;
2975 validated_mem
= validize_mem (data
->entry_parm
);
2977 need_conversion
= (data
->nominal_mode
!= data
->passed_mode
2978 || promoted_nominal_mode
!= data
->promoted_mode
);
2982 && GET_MODE_CLASS (data
->nominal_mode
) == MODE_INT
2983 && data
->nominal_mode
== data
->passed_mode
2984 && data
->nominal_mode
== GET_MODE (data
->entry_parm
))
2986 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2987 mode, by the caller. We now have to convert it to
2988 NOMINAL_MODE, if different. However, PARMREG may be in
2989 a different mode than NOMINAL_MODE if it is being stored
2992 If ENTRY_PARM is a hard register, it might be in a register
2993 not valid for operating in its mode (e.g., an odd-numbered
2994 register for a DFmode). In that case, moves are the only
2995 thing valid, so we can't do a convert from there. This
2996 occurs when the calling sequence allow such misaligned
2999 In addition, the conversion may involve a call, which could
3000 clobber parameters which haven't been copied to pseudo
3003 First, we try to emit an insn which performs the necessary
3004 conversion. We verify that this insn does not clobber any
3007 enum insn_code icode
;
3010 icode
= can_extend_p (promoted_nominal_mode
, data
->passed_mode
,
3014 op1
= validated_mem
;
3015 if (icode
!= CODE_FOR_nothing
3016 && insn_operand_matches (icode
, 0, op0
)
3017 && insn_operand_matches (icode
, 1, op1
))
3019 enum rtx_code code
= unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
;
3020 rtx insn
, insns
, t
= op1
;
3021 HARD_REG_SET hardregs
;
3024 /* If op1 is a hard register that is likely spilled, first
3025 force it into a pseudo, otherwise combiner might extend
3026 its lifetime too much. */
3027 if (GET_CODE (t
) == SUBREG
)
3030 && HARD_REGISTER_P (t
)
3031 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (t
))
3032 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t
))))
3034 t
= gen_reg_rtx (GET_MODE (op1
));
3035 emit_move_insn (t
, op1
);
3039 insn
= gen_extend_insn (op0
, t
, promoted_nominal_mode
,
3040 data
->passed_mode
, unsignedp
);
3042 insns
= get_insns ();
3045 CLEAR_HARD_REG_SET (hardregs
);
3046 for (insn
= insns
; insn
&& moved
; insn
= NEXT_INSN (insn
))
3049 note_stores (PATTERN (insn
), record_hard_reg_sets
,
3051 if (!hard_reg_set_empty_p (hardregs
))
3060 if (equiv_stack_parm
!= NULL_RTX
)
3061 equiv_stack_parm
= gen_rtx_fmt_e (code
, GET_MODE (parmreg
),
3068 /* Nothing to do. */
3070 else if (need_conversion
)
3072 /* We did not have an insn to convert directly, or the sequence
3073 generated appeared unsafe. We must first copy the parm to a
3074 pseudo reg, and save the conversion until after all
3075 parameters have been moved. */
3078 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
3080 emit_move_insn (tempreg
, validated_mem
);
3082 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3083 tempreg
= convert_to_mode (data
->nominal_mode
, tempreg
, unsignedp
);
3085 if (GET_CODE (tempreg
) == SUBREG
3086 && GET_MODE (tempreg
) == data
->nominal_mode
3087 && REG_P (SUBREG_REG (tempreg
))
3088 && data
->nominal_mode
== data
->passed_mode
3089 && GET_MODE (SUBREG_REG (tempreg
)) == GET_MODE (data
->entry_parm
)
3090 && GET_MODE_SIZE (GET_MODE (tempreg
))
3091 < GET_MODE_SIZE (GET_MODE (data
->entry_parm
)))
3093 /* The argument is already sign/zero extended, so note it
3095 SUBREG_PROMOTED_VAR_P (tempreg
) = 1;
3096 SUBREG_PROMOTED_UNSIGNED_SET (tempreg
, unsignedp
);
3099 /* TREE_USED gets set erroneously during expand_assignment. */
3100 save_tree_used
= TREE_USED (parm
);
3101 expand_assignment (parm
, make_tree (data
->nominal_type
, tempreg
), false);
3102 TREE_USED (parm
) = save_tree_used
;
3103 all
->first_conversion_insn
= get_insns ();
3104 all
->last_conversion_insn
= get_last_insn ();
3107 did_conversion
= true;
3110 emit_move_insn (parmreg
, validated_mem
);
3112 /* If we were passed a pointer but the actual value can safely live
3113 in a register, retrieve it and use it directly. */
3114 if (data
->passed_pointer
&& TYPE_MODE (TREE_TYPE (parm
)) != BLKmode
)
3116 /* We can't use nominal_mode, because it will have been set to
3117 Pmode above. We must use the actual mode of the parm. */
3118 if (use_register_for_decl (parm
))
3120 parmreg
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm
)));
3121 mark_user_reg (parmreg
);
3125 int align
= STACK_SLOT_ALIGNMENT (TREE_TYPE (parm
),
3126 TYPE_MODE (TREE_TYPE (parm
)),
3127 TYPE_ALIGN (TREE_TYPE (parm
)));
3129 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm
)),
3130 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm
))),
3132 set_mem_attributes (parmreg
, parm
, 1);
3135 if (GET_MODE (parmreg
) != GET_MODE (DECL_RTL (parm
)))
3137 rtx tempreg
= gen_reg_rtx (GET_MODE (DECL_RTL (parm
)));
3138 int unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (parm
));
3140 push_to_sequence2 (all
->first_conversion_insn
,
3141 all
->last_conversion_insn
);
3142 emit_move_insn (tempreg
, DECL_RTL (parm
));
3143 tempreg
= convert_to_mode (GET_MODE (parmreg
), tempreg
, unsigned_p
);
3144 emit_move_insn (parmreg
, tempreg
);
3145 all
->first_conversion_insn
= get_insns ();
3146 all
->last_conversion_insn
= get_last_insn ();
3149 did_conversion
= true;
3152 emit_move_insn (parmreg
, DECL_RTL (parm
));
3154 SET_DECL_RTL (parm
, parmreg
);
3156 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3158 data
->stack_parm
= NULL
;
3161 /* Mark the register as eliminable if we did no conversion and it was
3162 copied from memory at a fixed offset, and the arg pointer was not
3163 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3164 offset formed an invalid address, such memory-equivalences as we
3165 make here would screw up life analysis for it. */
3166 if (data
->nominal_mode
== data
->passed_mode
3168 && data
->stack_parm
!= 0
3169 && MEM_P (data
->stack_parm
)
3170 && data
->locate
.offset
.var
== 0
3171 && reg_mentioned_p (virtual_incoming_args_rtx
,
3172 XEXP (data
->stack_parm
, 0)))
3174 rtx linsn
= get_last_insn ();
3177 /* Mark complex types separately. */
3178 if (GET_CODE (parmreg
) == CONCAT
)
3180 enum machine_mode submode
3181 = GET_MODE_INNER (GET_MODE (parmreg
));
3182 int regnor
= REGNO (XEXP (parmreg
, 0));
3183 int regnoi
= REGNO (XEXP (parmreg
, 1));
3184 rtx stackr
= adjust_address_nv (data
->stack_parm
, submode
, 0);
3185 rtx stacki
= adjust_address_nv (data
->stack_parm
, submode
,
3186 GET_MODE_SIZE (submode
));
3188 /* Scan backwards for the set of the real and
3190 for (sinsn
= linsn
; sinsn
!= 0;
3191 sinsn
= prev_nonnote_insn (sinsn
))
3193 set
= single_set (sinsn
);
3197 if (SET_DEST (set
) == regno_reg_rtx
[regnoi
])
3198 set_unique_reg_note (sinsn
, REG_EQUIV
, stacki
);
3199 else if (SET_DEST (set
) == regno_reg_rtx
[regnor
])
3200 set_unique_reg_note (sinsn
, REG_EQUIV
, stackr
);
3204 set_dst_reg_note (linsn
, REG_EQUIV
, equiv_stack_parm
, parmreg
);
3207 /* For pointer data type, suggest pointer register. */
3208 if (POINTER_TYPE_P (TREE_TYPE (parm
)))
3209 mark_reg_pointer (parmreg
,
3210 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
3213 /* A subroutine of assign_parms. Allocate stack space to hold the current
3214 parameter. Get it there. Perform all ABI specified conversions. */
3217 assign_parm_setup_stack (struct assign_parm_data_all
*all
, tree parm
,
3218 struct assign_parm_data_one
*data
)
3220 /* Value must be stored in the stack slot STACK_PARM during function
3222 bool to_conversion
= false;
3224 assign_parm_remove_parallels (data
);
3226 if (data
->promoted_mode
!= data
->nominal_mode
)
3228 /* Conversion is required. */
3229 rtx tempreg
= gen_reg_rtx (GET_MODE (data
->entry_parm
));
3231 emit_move_insn (tempreg
, validize_mem (data
->entry_parm
));
3233 push_to_sequence2 (all
->first_conversion_insn
, all
->last_conversion_insn
);
3234 to_conversion
= true;
3236 data
->entry_parm
= convert_to_mode (data
->nominal_mode
, tempreg
,
3237 TYPE_UNSIGNED (TREE_TYPE (parm
)));
3239 if (data
->stack_parm
)
3241 int offset
= subreg_lowpart_offset (data
->nominal_mode
,
3242 GET_MODE (data
->stack_parm
));
3243 /* ??? This may need a big-endian conversion on sparc64. */
3245 = adjust_address (data
->stack_parm
, data
->nominal_mode
, 0);
3246 if (offset
&& MEM_OFFSET_KNOWN_P (data
->stack_parm
))
3247 set_mem_offset (data
->stack_parm
,
3248 MEM_OFFSET (data
->stack_parm
) + offset
);
3252 if (data
->entry_parm
!= data
->stack_parm
)
3256 if (data
->stack_parm
== 0)
3258 int align
= STACK_SLOT_ALIGNMENT (data
->passed_type
,
3259 GET_MODE (data
->entry_parm
),
3260 TYPE_ALIGN (data
->passed_type
));
3262 = assign_stack_local (GET_MODE (data
->entry_parm
),
3263 GET_MODE_SIZE (GET_MODE (data
->entry_parm
)),
3265 set_mem_attributes (data
->stack_parm
, parm
, 1);
3268 dest
= validize_mem (data
->stack_parm
);
3269 src
= validize_mem (data
->entry_parm
);
3273 /* Use a block move to handle potentially misaligned entry_parm. */
3275 push_to_sequence2 (all
->first_conversion_insn
,
3276 all
->last_conversion_insn
);
3277 to_conversion
= true;
3279 emit_block_move (dest
, src
,
3280 GEN_INT (int_size_in_bytes (data
->passed_type
)),
3284 emit_move_insn (dest
, src
);
3289 all
->first_conversion_insn
= get_insns ();
3290 all
->last_conversion_insn
= get_last_insn ();
3294 SET_DECL_RTL (parm
, data
->stack_parm
);
3297 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3298 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3301 assign_parms_unsplit_complex (struct assign_parm_data_all
*all
,
3305 tree orig_fnargs
= all
->orig_fnargs
;
3308 for (parm
= orig_fnargs
; parm
; parm
= TREE_CHAIN (parm
), ++i
)
3310 if (TREE_CODE (TREE_TYPE (parm
)) == COMPLEX_TYPE
3311 && targetm
.calls
.split_complex_arg (TREE_TYPE (parm
)))
3313 rtx tmp
, real
, imag
;
3314 enum machine_mode inner
= GET_MODE_INNER (DECL_MODE (parm
));
3316 real
= DECL_RTL (fnargs
[i
]);
3317 imag
= DECL_RTL (fnargs
[i
+ 1]);
3318 if (inner
!= GET_MODE (real
))
3320 real
= gen_lowpart_SUBREG (inner
, real
);
3321 imag
= gen_lowpart_SUBREG (inner
, imag
);
3324 if (TREE_ADDRESSABLE (parm
))
3327 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (parm
));
3328 int align
= STACK_SLOT_ALIGNMENT (TREE_TYPE (parm
),
3330 TYPE_ALIGN (TREE_TYPE (parm
)));
3332 /* split_complex_arg put the real and imag parts in
3333 pseudos. Move them to memory. */
3334 tmp
= assign_stack_local (DECL_MODE (parm
), size
, align
);
3335 set_mem_attributes (tmp
, parm
, 1);
3336 rmem
= adjust_address_nv (tmp
, inner
, 0);
3337 imem
= adjust_address_nv (tmp
, inner
, GET_MODE_SIZE (inner
));
3338 push_to_sequence2 (all
->first_conversion_insn
,
3339 all
->last_conversion_insn
);
3340 emit_move_insn (rmem
, real
);
3341 emit_move_insn (imem
, imag
);
3342 all
->first_conversion_insn
= get_insns ();
3343 all
->last_conversion_insn
= get_last_insn ();
3347 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
3348 SET_DECL_RTL (parm
, tmp
);
3350 real
= DECL_INCOMING_RTL (fnargs
[i
]);
3351 imag
= DECL_INCOMING_RTL (fnargs
[i
+ 1]);
3352 if (inner
!= GET_MODE (real
))
3354 real
= gen_lowpart_SUBREG (inner
, real
);
3355 imag
= gen_lowpart_SUBREG (inner
, imag
);
3357 tmp
= gen_rtx_CONCAT (DECL_MODE (parm
), real
, imag
);
3358 set_decl_incoming_rtl (parm
, tmp
, false);
3364 /* Assign RTL expressions to the function's parameters. This may involve
3365 copying them into registers and using those registers as the DECL_RTL. */
3368 assign_parms (tree fndecl
)
3370 struct assign_parm_data_all all
;
3375 crtl
->args
.internal_arg_pointer
3376 = targetm
.calls
.internal_arg_pointer ();
3378 assign_parms_initialize_all (&all
);
3379 fnargs
= assign_parms_augmented_arg_list (&all
);
3381 FOR_EACH_VEC_ELT (fnargs
, i
, parm
)
3383 struct assign_parm_data_one data
;
3385 /* Extract the type of PARM; adjust it according to ABI. */
3386 assign_parm_find_data_types (&all
, parm
, &data
);
3388 /* Early out for errors and void parameters. */
3389 if (data
.passed_mode
== VOIDmode
)
3391 SET_DECL_RTL (parm
, const0_rtx
);
3392 DECL_INCOMING_RTL (parm
) = DECL_RTL (parm
);
3396 /* Estimate stack alignment from parameter alignment. */
3397 if (SUPPORTS_STACK_ALIGNMENT
)
3400 = targetm
.calls
.function_arg_boundary (data
.promoted_mode
,
3402 align
= MINIMUM_ALIGNMENT (data
.passed_type
, data
.promoted_mode
,
3404 if (TYPE_ALIGN (data
.nominal_type
) > align
)
3405 align
= MINIMUM_ALIGNMENT (data
.nominal_type
,
3406 TYPE_MODE (data
.nominal_type
),
3407 TYPE_ALIGN (data
.nominal_type
));
3408 if (crtl
->stack_alignment_estimated
< align
)
3410 gcc_assert (!crtl
->stack_realign_processed
);
3411 crtl
->stack_alignment_estimated
= align
;
3415 if (cfun
->stdarg
&& !DECL_CHAIN (parm
))
3416 assign_parms_setup_varargs (&all
, &data
, false);
3418 /* Find out where the parameter arrives in this function. */
3419 assign_parm_find_entry_rtl (&all
, &data
);
3421 /* Find out where stack space for this parameter might be. */
3422 if (assign_parm_is_stack_parm (&all
, &data
))
3424 assign_parm_find_stack_rtl (parm
, &data
);
3425 assign_parm_adjust_entry_rtl (&data
);
3428 /* Record permanently how this parm was passed. */
3429 if (data
.passed_pointer
)
3432 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data
.passed_type
)),
3434 set_decl_incoming_rtl (parm
, incoming_rtl
, true);
3437 set_decl_incoming_rtl (parm
, data
.entry_parm
, false);
3439 /* Update info on where next arg arrives in registers. */
3440 targetm
.calls
.function_arg_advance (all
.args_so_far
, data
.promoted_mode
,
3441 data
.passed_type
, data
.named_arg
);
3443 assign_parm_adjust_stack_rtl (&data
);
3445 if (assign_parm_setup_block_p (&data
))
3446 assign_parm_setup_block (&all
, parm
, &data
);
3447 else if (data
.passed_pointer
|| use_register_for_decl (parm
))
3448 assign_parm_setup_reg (&all
, parm
, &data
);
3450 assign_parm_setup_stack (&all
, parm
, &data
);
3453 if (targetm
.calls
.split_complex_arg
)
3454 assign_parms_unsplit_complex (&all
, fnargs
);
3458 /* Output all parameter conversion instructions (possibly including calls)
3459 now that all parameters have been copied out of hard registers. */
3460 emit_insn (all
.first_conversion_insn
);
3462 /* Estimate reload stack alignment from scalar return mode. */
3463 if (SUPPORTS_STACK_ALIGNMENT
)
3465 if (DECL_RESULT (fndecl
))
3467 tree type
= TREE_TYPE (DECL_RESULT (fndecl
));
3468 enum machine_mode mode
= TYPE_MODE (type
);
3472 && !AGGREGATE_TYPE_P (type
))
3474 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
3475 if (crtl
->stack_alignment_estimated
< align
)
3477 gcc_assert (!crtl
->stack_realign_processed
);
3478 crtl
->stack_alignment_estimated
= align
;
3484 /* If we are receiving a struct value address as the first argument, set up
3485 the RTL for the function result. As this might require code to convert
3486 the transmitted address to Pmode, we do this here to ensure that possible
3487 preliminary conversions of the address have been emitted already. */
3488 if (all
.function_result_decl
)
3490 tree result
= DECL_RESULT (current_function_decl
);
3491 rtx addr
= DECL_RTL (all
.function_result_decl
);
3494 if (DECL_BY_REFERENCE (result
))
3496 SET_DECL_VALUE_EXPR (result
, all
.function_result_decl
);
3501 SET_DECL_VALUE_EXPR (result
,
3502 build1 (INDIRECT_REF
, TREE_TYPE (result
),
3503 all
.function_result_decl
));
3504 addr
= convert_memory_address (Pmode
, addr
);
3505 x
= gen_rtx_MEM (DECL_MODE (result
), addr
);
3506 set_mem_attributes (x
, result
, 1);
3509 DECL_HAS_VALUE_EXPR_P (result
) = 1;
3511 SET_DECL_RTL (result
, x
);
3514 /* We have aligned all the args, so add space for the pretend args. */
3515 crtl
->args
.pretend_args_size
= all
.pretend_args_size
;
3516 all
.stack_args_size
.constant
+= all
.extra_pretend_bytes
;
3517 crtl
->args
.size
= all
.stack_args_size
.constant
;
3519 /* Adjust function incoming argument size for alignment and
3522 crtl
->args
.size
= MAX (crtl
->args
.size
, all
.reg_parm_stack_space
);
3523 crtl
->args
.size
= CEIL_ROUND (crtl
->args
.size
,
3524 PARM_BOUNDARY
/ BITS_PER_UNIT
);
3526 #ifdef ARGS_GROW_DOWNWARD
3527 crtl
->args
.arg_offset_rtx
3528 = (all
.stack_args_size
.var
== 0 ? GEN_INT (-all
.stack_args_size
.constant
)
3529 : expand_expr (size_diffop (all
.stack_args_size
.var
,
3530 size_int (-all
.stack_args_size
.constant
)),
3531 NULL_RTX
, VOIDmode
, EXPAND_NORMAL
));
3533 crtl
->args
.arg_offset_rtx
= ARGS_SIZE_RTX (all
.stack_args_size
);
3536 /* See how many bytes, if any, of its args a function should try to pop
3539 crtl
->args
.pops_args
= targetm
.calls
.return_pops_args (fndecl
,
3543 /* For stdarg.h function, save info about
3544 regs and stack space used by the named args. */
3546 crtl
->args
.info
= all
.args_so_far_v
;
3548 /* Set the rtx used for the function return value. Put this in its
3549 own variable so any optimizers that need this information don't have
3550 to include tree.h. Do this here so it gets done when an inlined
3551 function gets output. */
3554 = (DECL_RTL_SET_P (DECL_RESULT (fndecl
))
3555 ? DECL_RTL (DECL_RESULT (fndecl
)) : NULL_RTX
);
3557 /* If scalar return value was computed in a pseudo-reg, or was a named
3558 return value that got dumped to the stack, copy that to the hard
3560 if (DECL_RTL_SET_P (DECL_RESULT (fndecl
)))
3562 tree decl_result
= DECL_RESULT (fndecl
);
3563 rtx decl_rtl
= DECL_RTL (decl_result
);
3565 if (REG_P (decl_rtl
)
3566 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
3567 : DECL_REGISTER (decl_result
))
3571 real_decl_rtl
= targetm
.calls
.function_value (TREE_TYPE (decl_result
),
3573 REG_FUNCTION_VALUE_P (real_decl_rtl
) = 1;
3574 /* The delay slot scheduler assumes that crtl->return_rtx
3575 holds the hard register containing the return value, not a
3576 temporary pseudo. */
3577 crtl
->return_rtx
= real_decl_rtl
;
3582 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3583 For all seen types, gimplify their sizes. */
3586 gimplify_parm_type (tree
*tp
, int *walk_subtrees
, void *data
)
3593 if (POINTER_TYPE_P (t
))
3595 else if (TYPE_SIZE (t
) && !TREE_CONSTANT (TYPE_SIZE (t
))
3596 && !TYPE_SIZES_GIMPLIFIED (t
))
3598 gimplify_type_sizes (t
, (gimple_seq
*) data
);
3606 /* Gimplify the parameter list for current_function_decl. This involves
3607 evaluating SAVE_EXPRs of variable sized parameters and generating code
3608 to implement callee-copies reference parameters. Returns a sequence of
3609 statements to add to the beginning of the function. */
3612 gimplify_parameters (void)
3614 struct assign_parm_data_all all
;
3616 gimple_seq stmts
= NULL
;
3620 assign_parms_initialize_all (&all
);
3621 fnargs
= assign_parms_augmented_arg_list (&all
);
3623 FOR_EACH_VEC_ELT (fnargs
, i
, parm
)
3625 struct assign_parm_data_one data
;
3627 /* Extract the type of PARM; adjust it according to ABI. */
3628 assign_parm_find_data_types (&all
, parm
, &data
);
3630 /* Early out for errors and void parameters. */
3631 if (data
.passed_mode
== VOIDmode
|| DECL_SIZE (parm
) == NULL
)
3634 /* Update info on where next arg arrives in registers. */
3635 targetm
.calls
.function_arg_advance (all
.args_so_far
, data
.promoted_mode
,
3636 data
.passed_type
, data
.named_arg
);
3638 /* ??? Once upon a time variable_size stuffed parameter list
3639 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3640 turned out to be less than manageable in the gimple world.
3641 Now we have to hunt them down ourselves. */
3642 walk_tree_without_duplicates (&data
.passed_type
,
3643 gimplify_parm_type
, &stmts
);
3645 if (TREE_CODE (DECL_SIZE_UNIT (parm
)) != INTEGER_CST
)
3647 gimplify_one_sizepos (&DECL_SIZE (parm
), &stmts
);
3648 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm
), &stmts
);
3651 if (data
.passed_pointer
)
3653 tree type
= TREE_TYPE (data
.passed_type
);
3654 if (reference_callee_copied (&all
.args_so_far_v
, TYPE_MODE (type
),
3655 type
, data
.named_arg
))
3659 /* For constant-sized objects, this is trivial; for
3660 variable-sized objects, we have to play games. */
3661 if (TREE_CODE (DECL_SIZE_UNIT (parm
)) == INTEGER_CST
3662 && !(flag_stack_check
== GENERIC_STACK_CHECK
3663 && compare_tree_int (DECL_SIZE_UNIT (parm
),
3664 STACK_CHECK_MAX_VAR_SIZE
) > 0))
3666 local
= create_tmp_var (type
, get_name (parm
));
3667 DECL_IGNORED_P (local
) = 0;
3668 /* If PARM was addressable, move that flag over
3669 to the local copy, as its address will be taken,
3670 not the PARMs. Keep the parms address taken
3671 as we'll query that flag during gimplification. */
3672 if (TREE_ADDRESSABLE (parm
))
3673 TREE_ADDRESSABLE (local
) = 1;
3674 else if (TREE_CODE (type
) == COMPLEX_TYPE
3675 || TREE_CODE (type
) == VECTOR_TYPE
)
3676 DECL_GIMPLE_REG_P (local
) = 1;
3680 tree ptr_type
, addr
;
3682 ptr_type
= build_pointer_type (type
);
3683 addr
= create_tmp_reg (ptr_type
, get_name (parm
));
3684 DECL_IGNORED_P (addr
) = 0;
3685 local
= build_fold_indirect_ref (addr
);
3687 t
= builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN
);
3688 t
= build_call_expr (t
, 2, DECL_SIZE_UNIT (parm
),
3689 size_int (DECL_ALIGN (parm
)));
3691 /* The call has been built for a variable-sized object. */
3692 CALL_ALLOCA_FOR_VAR_P (t
) = 1;
3693 t
= fold_convert (ptr_type
, t
);
3694 t
= build2 (MODIFY_EXPR
, TREE_TYPE (addr
), addr
, t
);
3695 gimplify_and_add (t
, &stmts
);
3698 gimplify_assign (local
, parm
, &stmts
);
3700 SET_DECL_VALUE_EXPR (parm
, local
);
3701 DECL_HAS_VALUE_EXPR_P (parm
) = 1;
3711 /* Compute the size and offset from the start of the stacked arguments for a
3712 parm passed in mode PASSED_MODE and with type TYPE.
3714 INITIAL_OFFSET_PTR points to the current offset into the stacked
3717 The starting offset and size for this parm are returned in
3718 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3719 nonzero, the offset is that of stack slot, which is returned in
3720 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3721 padding required from the initial offset ptr to the stack slot.
3723 IN_REGS is nonzero if the argument will be passed in registers. It will
3724 never be set if REG_PARM_STACK_SPACE is not defined.
3726 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3727 for arguments which are passed in registers.
3729 FNDECL is the function in which the argument was defined.
3731 There are two types of rounding that are done. The first, controlled by
3732 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3733 argument list to be aligned to the specific boundary (in bits). This
3734 rounding affects the initial and starting offsets, but not the argument
3737 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3738 optionally rounds the size of the parm to PARM_BOUNDARY. The
3739 initial offset is not affected by this rounding, while the size always
3740 is and the starting offset may be. */
3742 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3743 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3744 callers pass in the total size of args so far as
3745 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3748 locate_and_pad_parm (enum machine_mode passed_mode
, tree type
, int in_regs
,
3749 int reg_parm_stack_space
, int partial
,
3750 tree fndecl ATTRIBUTE_UNUSED
,
3751 struct args_size
*initial_offset_ptr
,
3752 struct locate_and_pad_arg_data
*locate
)
3755 enum direction where_pad
;
3756 unsigned int boundary
, round_boundary
;
3757 int part_size_in_regs
;
3759 /* If we have found a stack parm before we reach the end of the
3760 area reserved for registers, skip that area. */
3763 if (reg_parm_stack_space
> 0)
3765 if (initial_offset_ptr
->var
)
3767 initial_offset_ptr
->var
3768 = size_binop (MAX_EXPR
, ARGS_SIZE_TREE (*initial_offset_ptr
),
3769 ssize_int (reg_parm_stack_space
));
3770 initial_offset_ptr
->constant
= 0;
3772 else if (initial_offset_ptr
->constant
< reg_parm_stack_space
)
3773 initial_offset_ptr
->constant
= reg_parm_stack_space
;
3777 part_size_in_regs
= (reg_parm_stack_space
== 0 ? partial
: 0);
3780 = type
? size_in_bytes (type
) : size_int (GET_MODE_SIZE (passed_mode
));
3781 where_pad
= FUNCTION_ARG_PADDING (passed_mode
, type
);
3782 boundary
= targetm
.calls
.function_arg_boundary (passed_mode
, type
);
3783 round_boundary
= targetm
.calls
.function_arg_round_boundary (passed_mode
,
3785 locate
->where_pad
= where_pad
;
3787 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3788 if (boundary
> MAX_SUPPORTED_STACK_ALIGNMENT
)
3789 boundary
= MAX_SUPPORTED_STACK_ALIGNMENT
;
3791 locate
->boundary
= boundary
;
3793 if (SUPPORTS_STACK_ALIGNMENT
)
3795 /* stack_alignment_estimated can't change after stack has been
3797 if (crtl
->stack_alignment_estimated
< boundary
)
3799 if (!crtl
->stack_realign_processed
)
3800 crtl
->stack_alignment_estimated
= boundary
;
3803 /* If stack is realigned and stack alignment value
3804 hasn't been finalized, it is OK not to increase
3805 stack_alignment_estimated. The bigger alignment
3806 requirement is recorded in stack_alignment_needed
3808 gcc_assert (!crtl
->stack_realign_finalized
3809 && crtl
->stack_realign_needed
);
3814 /* Remember if the outgoing parameter requires extra alignment on the
3815 calling function side. */
3816 if (crtl
->stack_alignment_needed
< boundary
)
3817 crtl
->stack_alignment_needed
= boundary
;
3818 if (crtl
->preferred_stack_boundary
< boundary
)
3819 crtl
->preferred_stack_boundary
= boundary
;
3821 #ifdef ARGS_GROW_DOWNWARD
3822 locate
->slot_offset
.constant
= -initial_offset_ptr
->constant
;
3823 if (initial_offset_ptr
->var
)
3824 locate
->slot_offset
.var
= size_binop (MINUS_EXPR
, ssize_int (0),
3825 initial_offset_ptr
->var
);
3829 if (where_pad
!= none
3830 && (!tree_fits_uhwi_p (sizetree
)
3831 || (tree_to_uhwi (sizetree
) * BITS_PER_UNIT
) % round_boundary
))
3832 s2
= round_up (s2
, round_boundary
/ BITS_PER_UNIT
);
3833 SUB_PARM_SIZE (locate
->slot_offset
, s2
);
3836 locate
->slot_offset
.constant
+= part_size_in_regs
;
3838 if (!in_regs
|| reg_parm_stack_space
> 0)
3839 pad_to_arg_alignment (&locate
->slot_offset
, boundary
,
3840 &locate
->alignment_pad
);
3842 locate
->size
.constant
= (-initial_offset_ptr
->constant
3843 - locate
->slot_offset
.constant
);
3844 if (initial_offset_ptr
->var
)
3845 locate
->size
.var
= size_binop (MINUS_EXPR
,
3846 size_binop (MINUS_EXPR
,
3848 initial_offset_ptr
->var
),
3849 locate
->slot_offset
.var
);
3851 /* Pad_below needs the pre-rounded size to know how much to pad
3853 locate
->offset
= locate
->slot_offset
;
3854 if (where_pad
== downward
)
3855 pad_below (&locate
->offset
, passed_mode
, sizetree
);
3857 #else /* !ARGS_GROW_DOWNWARD */
3858 if (!in_regs
|| reg_parm_stack_space
> 0)
3859 pad_to_arg_alignment (initial_offset_ptr
, boundary
,
3860 &locate
->alignment_pad
);
3861 locate
->slot_offset
= *initial_offset_ptr
;
3863 #ifdef PUSH_ROUNDING
3864 if (passed_mode
!= BLKmode
)
3865 sizetree
= size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree
)));
3868 /* Pad_below needs the pre-rounded size to know how much to pad below
3869 so this must be done before rounding up. */
3870 locate
->offset
= locate
->slot_offset
;
3871 if (where_pad
== downward
)
3872 pad_below (&locate
->offset
, passed_mode
, sizetree
);
3874 if (where_pad
!= none
3875 && (!tree_fits_uhwi_p (sizetree
)
3876 || (tree_to_uhwi (sizetree
) * BITS_PER_UNIT
) % round_boundary
))
3877 sizetree
= round_up (sizetree
, round_boundary
/ BITS_PER_UNIT
);
3879 ADD_PARM_SIZE (locate
->size
, sizetree
);
3881 locate
->size
.constant
-= part_size_in_regs
;
3882 #endif /* ARGS_GROW_DOWNWARD */
3884 #ifdef FUNCTION_ARG_OFFSET
3885 locate
->offset
.constant
+= FUNCTION_ARG_OFFSET (passed_mode
, type
);
3889 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3890 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3893 pad_to_arg_alignment (struct args_size
*offset_ptr
, int boundary
,
3894 struct args_size
*alignment_pad
)
3896 tree save_var
= NULL_TREE
;
3897 HOST_WIDE_INT save_constant
= 0;
3898 int boundary_in_bytes
= boundary
/ BITS_PER_UNIT
;
3899 HOST_WIDE_INT sp_offset
= STACK_POINTER_OFFSET
;
3901 #ifdef SPARC_STACK_BOUNDARY_HACK
3902 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3903 the real alignment of %sp. However, when it does this, the
3904 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3905 if (SPARC_STACK_BOUNDARY_HACK
)
3909 if (boundary
> PARM_BOUNDARY
)
3911 save_var
= offset_ptr
->var
;
3912 save_constant
= offset_ptr
->constant
;
3915 alignment_pad
->var
= NULL_TREE
;
3916 alignment_pad
->constant
= 0;
3918 if (boundary
> BITS_PER_UNIT
)
3920 if (offset_ptr
->var
)
3922 tree sp_offset_tree
= ssize_int (sp_offset
);
3923 tree offset
= size_binop (PLUS_EXPR
,
3924 ARGS_SIZE_TREE (*offset_ptr
),
3926 #ifdef ARGS_GROW_DOWNWARD
3927 tree rounded
= round_down (offset
, boundary
/ BITS_PER_UNIT
);
3929 tree rounded
= round_up (offset
, boundary
/ BITS_PER_UNIT
);
3932 offset_ptr
->var
= size_binop (MINUS_EXPR
, rounded
, sp_offset_tree
);
3933 /* ARGS_SIZE_TREE includes constant term. */
3934 offset_ptr
->constant
= 0;
3935 if (boundary
> PARM_BOUNDARY
)
3936 alignment_pad
->var
= size_binop (MINUS_EXPR
, offset_ptr
->var
,
3941 offset_ptr
->constant
= -sp_offset
+
3942 #ifdef ARGS_GROW_DOWNWARD
3943 FLOOR_ROUND (offset_ptr
->constant
+ sp_offset
, boundary_in_bytes
);
3945 CEIL_ROUND (offset_ptr
->constant
+ sp_offset
, boundary_in_bytes
);
3947 if (boundary
> PARM_BOUNDARY
)
3948 alignment_pad
->constant
= offset_ptr
->constant
- save_constant
;
3954 pad_below (struct args_size
*offset_ptr
, enum machine_mode passed_mode
, tree sizetree
)
3956 if (passed_mode
!= BLKmode
)
3958 if (GET_MODE_BITSIZE (passed_mode
) % PARM_BOUNDARY
)
3959 offset_ptr
->constant
3960 += (((GET_MODE_BITSIZE (passed_mode
) + PARM_BOUNDARY
- 1)
3961 / PARM_BOUNDARY
* PARM_BOUNDARY
/ BITS_PER_UNIT
)
3962 - GET_MODE_SIZE (passed_mode
));
3966 if (TREE_CODE (sizetree
) != INTEGER_CST
3967 || (TREE_INT_CST_LOW (sizetree
) * BITS_PER_UNIT
) % PARM_BOUNDARY
)
3969 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3970 tree s2
= round_up (sizetree
, PARM_BOUNDARY
/ BITS_PER_UNIT
);
3972 ADD_PARM_SIZE (*offset_ptr
, s2
);
3973 SUB_PARM_SIZE (*offset_ptr
, sizetree
);
3979 /* True if register REGNO was alive at a place where `setjmp' was
3980 called and was set more than once or is an argument. Such regs may
3981 be clobbered by `longjmp'. */
3984 regno_clobbered_at_setjmp (bitmap setjmp_crosses
, int regno
)
3986 /* There appear to be cases where some local vars never reach the
3987 backend but have bogus regnos. */
3988 if (regno
>= max_reg_num ())
3991 return ((REG_N_SETS (regno
) > 1
3992 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun
)),
3994 && REGNO_REG_SET_P (setjmp_crosses
, regno
));
3997 /* Walk the tree of blocks describing the binding levels within a
3998 function and warn about variables the might be killed by setjmp or
3999 vfork. This is done after calling flow_analysis before register
4000 allocation since that will clobber the pseudo-regs to hard
4004 setjmp_vars_warning (bitmap setjmp_crosses
, tree block
)
4008 for (decl
= BLOCK_VARS (block
); decl
; decl
= DECL_CHAIN (decl
))
4010 if (TREE_CODE (decl
) == VAR_DECL
4011 && DECL_RTL_SET_P (decl
)
4012 && REG_P (DECL_RTL (decl
))
4013 && regno_clobbered_at_setjmp (setjmp_crosses
, REGNO (DECL_RTL (decl
))))
4014 warning (OPT_Wclobbered
, "variable %q+D might be clobbered by"
4015 " %<longjmp%> or %<vfork%>", decl
);
4018 for (sub
= BLOCK_SUBBLOCKS (block
); sub
; sub
= BLOCK_CHAIN (sub
))
4019 setjmp_vars_warning (setjmp_crosses
, sub
);
4022 /* Do the appropriate part of setjmp_vars_warning
4023 but for arguments instead of local variables. */
4026 setjmp_args_warning (bitmap setjmp_crosses
)
4029 for (decl
= DECL_ARGUMENTS (current_function_decl
);
4030 decl
; decl
= DECL_CHAIN (decl
))
4031 if (DECL_RTL (decl
) != 0
4032 && REG_P (DECL_RTL (decl
))
4033 && regno_clobbered_at_setjmp (setjmp_crosses
, REGNO (DECL_RTL (decl
))))
4034 warning (OPT_Wclobbered
,
4035 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4039 /* Generate warning messages for variables live across setjmp. */
4042 generate_setjmp_warnings (void)
4044 bitmap setjmp_crosses
= regstat_get_setjmp_crosses ();
4046 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
4047 || bitmap_empty_p (setjmp_crosses
))
4050 setjmp_vars_warning (setjmp_crosses
, DECL_INITIAL (current_function_decl
));
4051 setjmp_args_warning (setjmp_crosses
);
4055 /* Reverse the order of elements in the fragment chain T of blocks,
4056 and return the new head of the chain (old last element).
4057 In addition to that clear BLOCK_SAME_RANGE flags when needed
4058 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4059 its super fragment origin. */
4062 block_fragments_nreverse (tree t
)
4064 tree prev
= 0, block
, next
, prev_super
= 0;
4065 tree super
= BLOCK_SUPERCONTEXT (t
);
4066 if (BLOCK_FRAGMENT_ORIGIN (super
))
4067 super
= BLOCK_FRAGMENT_ORIGIN (super
);
4068 for (block
= t
; block
; block
= next
)
4070 next
= BLOCK_FRAGMENT_CHAIN (block
);
4071 BLOCK_FRAGMENT_CHAIN (block
) = prev
;
4072 if ((prev
&& !BLOCK_SAME_RANGE (prev
))
4073 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block
))
4075 BLOCK_SAME_RANGE (block
) = 0;
4076 prev_super
= BLOCK_SUPERCONTEXT (block
);
4077 BLOCK_SUPERCONTEXT (block
) = super
;
4080 t
= BLOCK_FRAGMENT_ORIGIN (t
);
4081 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t
))
4083 BLOCK_SAME_RANGE (t
) = 0;
4084 BLOCK_SUPERCONTEXT (t
) = super
;
4088 /* Reverse the order of elements in the chain T of blocks,
4089 and return the new head of the chain (old last element).
4090 Also do the same on subblocks and reverse the order of elements
4091 in BLOCK_FRAGMENT_CHAIN as well. */
4094 blocks_nreverse_all (tree t
)
4096 tree prev
= 0, block
, next
;
4097 for (block
= t
; block
; block
= next
)
4099 next
= BLOCK_CHAIN (block
);
4100 BLOCK_CHAIN (block
) = prev
;
4101 if (BLOCK_FRAGMENT_CHAIN (block
)
4102 && BLOCK_FRAGMENT_ORIGIN (block
) == NULL_TREE
)
4104 BLOCK_FRAGMENT_CHAIN (block
)
4105 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block
));
4106 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block
)))
4107 BLOCK_SAME_RANGE (block
) = 0;
4109 BLOCK_SUBBLOCKS (block
) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block
));
4116 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4117 and create duplicate blocks. */
4118 /* ??? Need an option to either create block fragments or to create
4119 abstract origin duplicates of a source block. It really depends
4120 on what optimization has been performed. */
4123 reorder_blocks (void)
4125 tree block
= DECL_INITIAL (current_function_decl
);
4127 if (block
== NULL_TREE
)
4130 auto_vec
<tree
, 10> block_stack
;
4132 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4133 clear_block_marks (block
);
4135 /* Prune the old trees away, so that they don't get in the way. */
4136 BLOCK_SUBBLOCKS (block
) = NULL_TREE
;
4137 BLOCK_CHAIN (block
) = NULL_TREE
;
4139 /* Recreate the block tree from the note nesting. */
4140 reorder_blocks_1 (get_insns (), block
, &block_stack
);
4141 BLOCK_SUBBLOCKS (block
) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block
));
4144 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4147 clear_block_marks (tree block
)
4151 TREE_ASM_WRITTEN (block
) = 0;
4152 clear_block_marks (BLOCK_SUBBLOCKS (block
));
4153 block
= BLOCK_CHAIN (block
);
4158 reorder_blocks_1 (rtx insns
, tree current_block
, vec
<tree
> *p_block_stack
)
4161 tree prev_beg
= NULL_TREE
, prev_end
= NULL_TREE
;
4163 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
4167 if (NOTE_KIND (insn
) == NOTE_INSN_BLOCK_BEG
)
4169 tree block
= NOTE_BLOCK (insn
);
4172 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block
) == NULL_TREE
);
4176 BLOCK_SAME_RANGE (prev_end
) = 0;
4177 prev_end
= NULL_TREE
;
4179 /* If we have seen this block before, that means it now
4180 spans multiple address regions. Create a new fragment. */
4181 if (TREE_ASM_WRITTEN (block
))
4183 tree new_block
= copy_node (block
);
4185 BLOCK_SAME_RANGE (new_block
) = 0;
4186 BLOCK_FRAGMENT_ORIGIN (new_block
) = origin
;
4187 BLOCK_FRAGMENT_CHAIN (new_block
)
4188 = BLOCK_FRAGMENT_CHAIN (origin
);
4189 BLOCK_FRAGMENT_CHAIN (origin
) = new_block
;
4191 NOTE_BLOCK (insn
) = new_block
;
4195 if (prev_beg
== current_block
&& prev_beg
)
4196 BLOCK_SAME_RANGE (block
) = 1;
4200 BLOCK_SUBBLOCKS (block
) = 0;
4201 TREE_ASM_WRITTEN (block
) = 1;
4202 /* When there's only one block for the entire function,
4203 current_block == block and we mustn't do this, it
4204 will cause infinite recursion. */
4205 if (block
!= current_block
)
4208 if (block
!= origin
)
4209 gcc_assert (BLOCK_SUPERCONTEXT (origin
) == current_block
4210 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4213 if (p_block_stack
->is_empty ())
4214 super
= current_block
;
4217 super
= p_block_stack
->last ();
4218 gcc_assert (super
== current_block
4219 || BLOCK_FRAGMENT_ORIGIN (super
)
4222 BLOCK_SUPERCONTEXT (block
) = super
;
4223 BLOCK_CHAIN (block
) = BLOCK_SUBBLOCKS (current_block
);
4224 BLOCK_SUBBLOCKS (current_block
) = block
;
4225 current_block
= origin
;
4227 p_block_stack
->safe_push (block
);
4229 else if (NOTE_KIND (insn
) == NOTE_INSN_BLOCK_END
)
4231 NOTE_BLOCK (insn
) = p_block_stack
->pop ();
4232 current_block
= BLOCK_SUPERCONTEXT (current_block
);
4233 if (BLOCK_FRAGMENT_ORIGIN (current_block
))
4234 current_block
= BLOCK_FRAGMENT_ORIGIN (current_block
);
4235 prev_beg
= NULL_TREE
;
4236 prev_end
= BLOCK_SAME_RANGE (NOTE_BLOCK (insn
))
4237 ? NOTE_BLOCK (insn
) : NULL_TREE
;
4242 prev_beg
= NULL_TREE
;
4244 BLOCK_SAME_RANGE (prev_end
) = 0;
4245 prev_end
= NULL_TREE
;
4250 /* Reverse the order of elements in the chain T of blocks,
4251 and return the new head of the chain (old last element). */
4254 blocks_nreverse (tree t
)
4256 tree prev
= 0, block
, next
;
4257 for (block
= t
; block
; block
= next
)
4259 next
= BLOCK_CHAIN (block
);
4260 BLOCK_CHAIN (block
) = prev
;
4266 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4267 by modifying the last node in chain 1 to point to chain 2. */
4270 block_chainon (tree op1
, tree op2
)
4279 for (t1
= op1
; BLOCK_CHAIN (t1
); t1
= BLOCK_CHAIN (t1
))
4281 BLOCK_CHAIN (t1
) = op2
;
4283 #ifdef ENABLE_TREE_CHECKING
4286 for (t2
= op2
; t2
; t2
= BLOCK_CHAIN (t2
))
4287 gcc_assert (t2
!= t1
);
4294 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4295 non-NULL, list them all into VECTOR, in a depth-first preorder
4296 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4300 all_blocks (tree block
, tree
*vector
)
4306 TREE_ASM_WRITTEN (block
) = 0;
4308 /* Record this block. */
4310 vector
[n_blocks
] = block
;
4314 /* Record the subblocks, and their subblocks... */
4315 n_blocks
+= all_blocks (BLOCK_SUBBLOCKS (block
),
4316 vector
? vector
+ n_blocks
: 0);
4317 block
= BLOCK_CHAIN (block
);
4323 /* Return a vector containing all the blocks rooted at BLOCK. The
4324 number of elements in the vector is stored in N_BLOCKS_P. The
4325 vector is dynamically allocated; it is the caller's responsibility
4326 to call `free' on the pointer returned. */
4329 get_block_vector (tree block
, int *n_blocks_p
)
4333 *n_blocks_p
= all_blocks (block
, NULL
);
4334 block_vector
= XNEWVEC (tree
, *n_blocks_p
);
4335 all_blocks (block
, block_vector
);
4337 return block_vector
;
4340 static GTY(()) int next_block_index
= 2;
4342 /* Set BLOCK_NUMBER for all the blocks in FN. */
4345 number_blocks (tree fn
)
4351 /* For SDB and XCOFF debugging output, we start numbering the blocks
4352 from 1 within each function, rather than keeping a running
4354 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4355 if (write_symbols
== SDB_DEBUG
|| write_symbols
== XCOFF_DEBUG
)
4356 next_block_index
= 1;
4359 block_vector
= get_block_vector (DECL_INITIAL (fn
), &n_blocks
);
4361 /* The top-level BLOCK isn't numbered at all. */
4362 for (i
= 1; i
< n_blocks
; ++i
)
4363 /* We number the blocks from two. */
4364 BLOCK_NUMBER (block_vector
[i
]) = next_block_index
++;
4366 free (block_vector
);
4371 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4374 debug_find_var_in_block_tree (tree var
, tree block
)
4378 for (t
= BLOCK_VARS (block
); t
; t
= TREE_CHAIN (t
))
4382 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= TREE_CHAIN (t
))
4384 tree ret
= debug_find_var_in_block_tree (var
, t
);
4392 /* Keep track of whether we're in a dummy function context. If we are,
4393 we don't want to invoke the set_current_function hook, because we'll
4394 get into trouble if the hook calls target_reinit () recursively or
4395 when the initial initialization is not yet complete. */
4397 static bool in_dummy_function
;
4399 /* Invoke the target hook when setting cfun. Update the optimization options
4400 if the function uses different options than the default. */
4403 invoke_set_current_function_hook (tree fndecl
)
4405 if (!in_dummy_function
)
4407 tree opts
= ((fndecl
)
4408 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl
)
4409 : optimization_default_node
);
4412 opts
= optimization_default_node
;
4414 /* Change optimization options if needed. */
4415 if (optimization_current_node
!= opts
)
4417 optimization_current_node
= opts
;
4418 cl_optimization_restore (&global_options
, TREE_OPTIMIZATION (opts
));
4421 targetm
.set_current_function (fndecl
);
4422 this_fn_optabs
= this_target_optabs
;
4424 if (opts
!= optimization_default_node
)
4426 init_tree_optimization_optabs (opts
);
4427 if (TREE_OPTIMIZATION_OPTABS (opts
))
4428 this_fn_optabs
= (struct target_optabs
*)
4429 TREE_OPTIMIZATION_OPTABS (opts
);
4434 /* cfun should never be set directly; use this function. */
4437 set_cfun (struct function
*new_cfun
)
4439 if (cfun
!= new_cfun
)
4442 invoke_set_current_function_hook (new_cfun
? new_cfun
->decl
: NULL_TREE
);
4446 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4448 static vec
<function_p
> cfun_stack
;
4450 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4451 current_function_decl accordingly. */
4454 push_cfun (struct function
*new_cfun
)
4456 gcc_assert ((!cfun
&& !current_function_decl
)
4457 || (cfun
&& current_function_decl
== cfun
->decl
));
4458 cfun_stack
.safe_push (cfun
);
4459 current_function_decl
= new_cfun
? new_cfun
->decl
: NULL_TREE
;
4460 set_cfun (new_cfun
);
4463 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4468 struct function
*new_cfun
= cfun_stack
.pop ();
4469 /* When in_dummy_function, we do have a cfun but current_function_decl is
4470 NULL. We also allow pushing NULL cfun and subsequently changing
4471 current_function_decl to something else and have both restored by
4473 gcc_checking_assert (in_dummy_function
4475 || current_function_decl
== cfun
->decl
);
4476 set_cfun (new_cfun
);
4477 current_function_decl
= new_cfun
? new_cfun
->decl
: NULL_TREE
;
4480 /* Return value of funcdef and increase it. */
4482 get_next_funcdef_no (void)
4484 return funcdef_no
++;
4487 /* Return value of funcdef. */
4489 get_last_funcdef_no (void)
4494 /* Allocate a function structure for FNDECL and set its contents
4495 to the defaults. Set cfun to the newly-allocated object.
4496 Some of the helper functions invoked during initialization assume
4497 that cfun has already been set. Therefore, assign the new object
4498 directly into cfun and invoke the back end hook explicitly at the
4499 very end, rather than initializing a temporary and calling set_cfun
4502 ABSTRACT_P is true if this is a function that will never be seen by
4503 the middle-end. Such functions are front-end concepts (like C++
4504 function templates) that do not correspond directly to functions
4505 placed in object files. */
4508 allocate_struct_function (tree fndecl
, bool abstract_p
)
4510 tree fntype
= fndecl
? TREE_TYPE (fndecl
) : NULL_TREE
;
4512 cfun
= ggc_cleared_alloc
<function
> ();
4514 init_eh_for_function ();
4516 if (init_machine_status
)
4517 cfun
->machine
= (*init_machine_status
) ();
4519 #ifdef OVERRIDE_ABI_FORMAT
4520 OVERRIDE_ABI_FORMAT (fndecl
);
4523 if (fndecl
!= NULL_TREE
)
4525 DECL_STRUCT_FUNCTION (fndecl
) = cfun
;
4526 cfun
->decl
= fndecl
;
4527 current_function_funcdef_no
= get_next_funcdef_no ();
4530 invoke_set_current_function_hook (fndecl
);
4532 if (fndecl
!= NULL_TREE
)
4534 tree result
= DECL_RESULT (fndecl
);
4535 if (!abstract_p
&& aggregate_value_p (result
, fndecl
))
4537 #ifdef PCC_STATIC_STRUCT_RETURN
4538 cfun
->returns_pcc_struct
= 1;
4540 cfun
->returns_struct
= 1;
4543 cfun
->stdarg
= stdarg_p (fntype
);
4545 /* Assume all registers in stdarg functions need to be saved. */
4546 cfun
->va_list_gpr_size
= VA_LIST_MAX_GPR_SIZE
;
4547 cfun
->va_list_fpr_size
= VA_LIST_MAX_FPR_SIZE
;
4549 /* ??? This could be set on a per-function basis by the front-end
4550 but is this worth the hassle? */
4551 cfun
->can_throw_non_call_exceptions
= flag_non_call_exceptions
;
4552 cfun
->can_delete_dead_exceptions
= flag_delete_dead_exceptions
;
4556 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4557 instead of just setting it. */
4560 push_struct_function (tree fndecl
)
4562 /* When in_dummy_function we might be in the middle of a pop_cfun and
4563 current_function_decl and cfun may not match. */
4564 gcc_assert (in_dummy_function
4565 || (!cfun
&& !current_function_decl
)
4566 || (cfun
&& current_function_decl
== cfun
->decl
));
4567 cfun_stack
.safe_push (cfun
);
4568 current_function_decl
= fndecl
;
4569 allocate_struct_function (fndecl
, false);
4572 /* Reset crtl and other non-struct-function variables to defaults as
4573 appropriate for emitting rtl at the start of a function. */
4576 prepare_function_start (void)
4578 gcc_assert (!crtl
->emit
.x_last_insn
);
4581 init_varasm_status ();
4583 default_rtl_profile ();
4585 if (flag_stack_usage_info
)
4587 cfun
->su
= ggc_cleared_alloc
<stack_usage
> ();
4588 cfun
->su
->static_stack_size
= -1;
4591 cse_not_expected
= ! optimize
;
4593 /* Caller save not needed yet. */
4594 caller_save_needed
= 0;
4596 /* We haven't done register allocation yet. */
4599 /* Indicate that we have not instantiated virtual registers yet. */
4600 virtuals_instantiated
= 0;
4602 /* Indicate that we want CONCATs now. */
4603 generating_concat_p
= 1;
4605 /* Indicate we have no need of a frame pointer yet. */
4606 frame_pointer_needed
= 0;
4609 /* Initialize the rtl expansion mechanism so that we can do simple things
4610 like generate sequences. This is used to provide a context during global
4611 initialization of some passes. You must call expand_dummy_function_end
4612 to exit this context. */
4615 init_dummy_function_start (void)
4617 gcc_assert (!in_dummy_function
);
4618 in_dummy_function
= true;
4619 push_struct_function (NULL_TREE
);
4620 prepare_function_start ();
4623 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4624 and initialize static variables for generating RTL for the statements
4628 init_function_start (tree subr
)
4630 if (subr
&& DECL_STRUCT_FUNCTION (subr
))
4631 set_cfun (DECL_STRUCT_FUNCTION (subr
));
4633 allocate_struct_function (subr
, false);
4635 /* Initialize backend, if needed. */
4638 prepare_function_start ();
4639 decide_function_section (subr
);
4641 /* Warn if this value is an aggregate type,
4642 regardless of which calling convention we are using for it. */
4643 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr
))))
4644 warning (OPT_Waggregate_return
, "function returns an aggregate");
4647 /* Expand code to verify the stack_protect_guard. This is invoked at
4648 the end of a function to be protected. */
4650 #ifndef HAVE_stack_protect_test
4651 # define HAVE_stack_protect_test 0
4652 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4656 stack_protect_epilogue (void)
4658 tree guard_decl
= targetm
.stack_protect_guard ();
4659 rtx label
= gen_label_rtx ();
4662 x
= expand_normal (crtl
->stack_protect_guard
);
4663 y
= expand_normal (guard_decl
);
4665 /* Allow the target to compare Y with X without leaking either into
4667 switch ((int) (HAVE_stack_protect_test
!= 0))
4670 tmp
= gen_stack_protect_test (x
, y
, label
);
4679 emit_cmp_and_jump_insns (x
, y
, EQ
, NULL_RTX
, ptr_mode
, 1, label
);
4683 /* The noreturn predictor has been moved to the tree level. The rtl-level
4684 predictors estimate this branch about 20%, which isn't enough to get
4685 things moved out of line. Since this is the only extant case of adding
4686 a noreturn function at the rtl level, it doesn't seem worth doing ought
4687 except adding the prediction by hand. */
4688 tmp
= get_last_insn ();
4690 predict_insn_def (tmp
, PRED_NORETURN
, TAKEN
);
4692 expand_call (targetm
.stack_protect_fail (), NULL_RTX
, /*ignore=*/true);
4697 /* Start the RTL for a new function, and set variables used for
4699 SUBR is the FUNCTION_DECL node.
4700 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4701 the function's parameters, which must be run at any return statement. */
4704 expand_function_start (tree subr
)
4706 /* Make sure volatile mem refs aren't considered
4707 valid operands of arithmetic insns. */
4708 init_recog_no_volatile ();
4712 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr
));
4715 = (stack_limit_rtx
!= NULL_RTX
&& ! DECL_NO_LIMIT_STACK (subr
));
4717 /* Make the label for return statements to jump to. Do not special
4718 case machines with special return instructions -- they will be
4719 handled later during jump, ifcvt, or epilogue creation. */
4720 return_label
= gen_label_rtx ();
4722 /* Initialize rtx used to return the value. */
4723 /* Do this before assign_parms so that we copy the struct value address
4724 before any library calls that assign parms might generate. */
4726 /* Decide whether to return the value in memory or in a register. */
4727 if (aggregate_value_p (DECL_RESULT (subr
), subr
))
4729 /* Returning something that won't go in a register. */
4730 rtx value_address
= 0;
4732 #ifdef PCC_STATIC_STRUCT_RETURN
4733 if (cfun
->returns_pcc_struct
)
4735 int size
= int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr
)));
4736 value_address
= assemble_static_space (size
);
4741 rtx sv
= targetm
.calls
.struct_value_rtx (TREE_TYPE (subr
), 2);
4742 /* Expect to be passed the address of a place to store the value.
4743 If it is passed as an argument, assign_parms will take care of
4747 value_address
= gen_reg_rtx (Pmode
);
4748 emit_move_insn (value_address
, sv
);
4753 rtx x
= value_address
;
4754 if (!DECL_BY_REFERENCE (DECL_RESULT (subr
)))
4756 x
= gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr
)), x
);
4757 set_mem_attributes (x
, DECL_RESULT (subr
), 1);
4759 SET_DECL_RTL (DECL_RESULT (subr
), x
);
4762 else if (DECL_MODE (DECL_RESULT (subr
)) == VOIDmode
)
4763 /* If return mode is void, this decl rtl should not be used. */
4764 SET_DECL_RTL (DECL_RESULT (subr
), NULL_RTX
);
4767 /* Compute the return values into a pseudo reg, which we will copy
4768 into the true return register after the cleanups are done. */
4769 tree return_type
= TREE_TYPE (DECL_RESULT (subr
));
4770 if (TYPE_MODE (return_type
) != BLKmode
4771 && targetm
.calls
.return_in_msb (return_type
))
4772 /* expand_function_end will insert the appropriate padding in
4773 this case. Use the return value's natural (unpadded) mode
4774 within the function proper. */
4775 SET_DECL_RTL (DECL_RESULT (subr
),
4776 gen_reg_rtx (TYPE_MODE (return_type
)));
4779 /* In order to figure out what mode to use for the pseudo, we
4780 figure out what the mode of the eventual return register will
4781 actually be, and use that. */
4782 rtx hard_reg
= hard_function_value (return_type
, subr
, 0, 1);
4784 /* Structures that are returned in registers are not
4785 aggregate_value_p, so we may see a PARALLEL or a REG. */
4786 if (REG_P (hard_reg
))
4787 SET_DECL_RTL (DECL_RESULT (subr
),
4788 gen_reg_rtx (GET_MODE (hard_reg
)));
4791 gcc_assert (GET_CODE (hard_reg
) == PARALLEL
);
4792 SET_DECL_RTL (DECL_RESULT (subr
), gen_group_rtx (hard_reg
));
4796 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4797 result to the real return register(s). */
4798 DECL_REGISTER (DECL_RESULT (subr
)) = 1;
4801 /* Initialize rtx for parameters and local variables.
4802 In some cases this requires emitting insns. */
4803 assign_parms (subr
);
4805 /* If function gets a static chain arg, store it. */
4806 if (cfun
->static_chain_decl
)
4808 tree parm
= cfun
->static_chain_decl
;
4809 rtx local
, chain
, insn
;
4811 local
= gen_reg_rtx (Pmode
);
4812 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
4814 set_decl_incoming_rtl (parm
, chain
, false);
4815 SET_DECL_RTL (parm
, local
);
4816 mark_reg_pointer (local
, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm
))));
4818 insn
= emit_move_insn (local
, chain
);
4820 /* Mark the register as eliminable, similar to parameters. */
4822 && reg_mentioned_p (arg_pointer_rtx
, XEXP (chain
, 0)))
4823 set_dst_reg_note (insn
, REG_EQUIV
, chain
, local
);
4825 /* If we aren't optimizing, save the static chain onto the stack. */
4828 tree saved_static_chain_decl
4829 = build_decl (DECL_SOURCE_LOCATION (parm
), VAR_DECL
,
4830 DECL_NAME (parm
), TREE_TYPE (parm
));
4831 rtx saved_static_chain_rtx
4832 = assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
4833 SET_DECL_RTL (saved_static_chain_decl
, saved_static_chain_rtx
);
4834 emit_move_insn (saved_static_chain_rtx
, chain
);
4835 SET_DECL_VALUE_EXPR (parm
, saved_static_chain_decl
);
4836 DECL_HAS_VALUE_EXPR_P (parm
) = 1;
4840 /* If the function receives a non-local goto, then store the
4841 bits we need to restore the frame pointer. */
4842 if (cfun
->nonlocal_goto_save_area
)
4847 tree var
= TREE_OPERAND (cfun
->nonlocal_goto_save_area
, 0);
4848 gcc_assert (DECL_RTL_SET_P (var
));
4850 t_save
= build4 (ARRAY_REF
,
4851 TREE_TYPE (TREE_TYPE (cfun
->nonlocal_goto_save_area
)),
4852 cfun
->nonlocal_goto_save_area
,
4853 integer_zero_node
, NULL_TREE
, NULL_TREE
);
4854 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4855 gcc_assert (GET_MODE (r_save
) == Pmode
);
4857 emit_move_insn (r_save
, targetm
.builtin_setjmp_frame_value ());
4858 update_nonlocal_goto_save_area ();
4861 /* The following was moved from init_function_start.
4862 The move is supposed to make sdb output more accurate. */
4863 /* Indicate the beginning of the function body,
4864 as opposed to parm setup. */
4865 emit_note (NOTE_INSN_FUNCTION_BEG
);
4867 gcc_assert (NOTE_P (get_last_insn ()));
4869 parm_birth_insn
= get_last_insn ();
4874 PROFILE_HOOK (current_function_funcdef_no
);
4878 /* If we are doing generic stack checking, the probe should go here. */
4879 if (flag_stack_check
== GENERIC_STACK_CHECK
)
4880 stack_check_probe_note
= emit_note (NOTE_INSN_DELETED
);
4883 /* Undo the effects of init_dummy_function_start. */
4885 expand_dummy_function_end (void)
4887 gcc_assert (in_dummy_function
);
4889 /* End any sequences that failed to be closed due to syntax errors. */
4890 while (in_sequence_p ())
4893 /* Outside function body, can't compute type's actual size
4894 until next function's body starts. */
4896 free_after_parsing (cfun
);
4897 free_after_compilation (cfun
);
4899 in_dummy_function
= false;
4902 /* Call DOIT for each hard register used as a return value from
4903 the current function. */
4906 diddle_return_value (void (*doit
) (rtx
, void *), void *arg
)
4908 rtx outgoing
= crtl
->return_rtx
;
4913 if (REG_P (outgoing
))
4914 (*doit
) (outgoing
, arg
);
4915 else if (GET_CODE (outgoing
) == PARALLEL
)
4919 for (i
= 0; i
< XVECLEN (outgoing
, 0); i
++)
4921 rtx x
= XEXP (XVECEXP (outgoing
, 0, i
), 0);
4923 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
4930 do_clobber_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
4936 clobber_return_register (void)
4938 diddle_return_value (do_clobber_return_reg
, NULL
);
4940 /* In case we do use pseudo to return value, clobber it too. */
4941 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
4943 tree decl_result
= DECL_RESULT (current_function_decl
);
4944 rtx decl_rtl
= DECL_RTL (decl_result
);
4945 if (REG_P (decl_rtl
) && REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
)
4947 do_clobber_return_reg (decl_rtl
, NULL
);
4953 do_use_return_reg (rtx reg
, void *arg ATTRIBUTE_UNUSED
)
4959 use_return_register (void)
4961 diddle_return_value (do_use_return_reg
, NULL
);
4964 /* Possibly warn about unused parameters. */
4966 do_warn_unused_parameter (tree fn
)
4970 for (decl
= DECL_ARGUMENTS (fn
);
4971 decl
; decl
= DECL_CHAIN (decl
))
4972 if (!TREE_USED (decl
) && TREE_CODE (decl
) == PARM_DECL
4973 && DECL_NAME (decl
) && !DECL_ARTIFICIAL (decl
)
4974 && !TREE_NO_WARNING (decl
))
4975 warning (OPT_Wunused_parameter
, "unused parameter %q+D", decl
);
4978 /* Set the location of the insn chain starting at INSN to LOC. */
4981 set_insn_locations (rtx insn
, int loc
)
4983 while (insn
!= NULL_RTX
)
4986 INSN_LOCATION (insn
) = loc
;
4987 insn
= NEXT_INSN (insn
);
4991 /* Generate RTL for the end of the current function. */
4994 expand_function_end (void)
4998 /* If arg_pointer_save_area was referenced only from a nested
4999 function, we will not have initialized it yet. Do that now. */
5000 if (arg_pointer_save_area
&& ! crtl
->arg_pointer_save_area_init
)
5001 get_arg_pointer_save_area ();
5003 /* If we are doing generic stack checking and this function makes calls,
5004 do a stack probe at the start of the function to ensure we have enough
5005 space for another stack frame. */
5006 if (flag_stack_check
== GENERIC_STACK_CHECK
)
5010 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
5013 rtx max_frame_size
= GEN_INT (STACK_CHECK_MAX_FRAME_SIZE
);
5015 if (STACK_CHECK_MOVING_SP
)
5016 anti_adjust_stack_and_probe (max_frame_size
, true);
5018 probe_stack_range (STACK_OLD_CHECK_PROTECT
, max_frame_size
);
5021 set_insn_locations (seq
, prologue_location
);
5022 emit_insn_before (seq
, stack_check_probe_note
);
5027 /* End any sequences that failed to be closed due to syntax errors. */
5028 while (in_sequence_p ())
5031 clear_pending_stack_adjust ();
5032 do_pending_stack_adjust ();
5034 /* Output a linenumber for the end of the function.
5035 SDB depends on this. */
5036 set_curr_insn_location (input_location
);
5038 /* Before the return label (if any), clobber the return
5039 registers so that they are not propagated live to the rest of
5040 the function. This can only happen with functions that drop
5041 through; if there had been a return statement, there would
5042 have either been a return rtx, or a jump to the return label.
5044 We delay actual code generation after the current_function_value_rtx
5046 clobber_after
= get_last_insn ();
5048 /* Output the label for the actual return from the function. */
5049 emit_label (return_label
);
5051 if (targetm_common
.except_unwind_info (&global_options
) == UI_SJLJ
)
5053 /* Let except.c know where it should emit the call to unregister
5054 the function context for sjlj exceptions. */
5055 if (flag_exceptions
)
5056 sjlj_emit_function_exit_after (get_last_insn ());
5060 /* We want to ensure that instructions that may trap are not
5061 moved into the epilogue by scheduling, because we don't
5062 always emit unwind information for the epilogue. */
5063 if (cfun
->can_throw_non_call_exceptions
)
5064 emit_insn (gen_blockage ());
5067 /* If this is an implementation of throw, do what's necessary to
5068 communicate between __builtin_eh_return and the epilogue. */
5069 expand_eh_return ();
5071 /* If scalar return value was computed in a pseudo-reg, or was a named
5072 return value that got dumped to the stack, copy that to the hard
5074 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl
)))
5076 tree decl_result
= DECL_RESULT (current_function_decl
);
5077 rtx decl_rtl
= DECL_RTL (decl_result
);
5079 if (REG_P (decl_rtl
)
5080 ? REGNO (decl_rtl
) >= FIRST_PSEUDO_REGISTER
5081 : DECL_REGISTER (decl_result
))
5083 rtx real_decl_rtl
= crtl
->return_rtx
;
5085 /* This should be set in assign_parms. */
5086 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl
));
5088 /* If this is a BLKmode structure being returned in registers,
5089 then use the mode computed in expand_return. Note that if
5090 decl_rtl is memory, then its mode may have been changed,
5091 but that crtl->return_rtx has not. */
5092 if (GET_MODE (real_decl_rtl
) == BLKmode
)
5093 PUT_MODE (real_decl_rtl
, GET_MODE (decl_rtl
));
5095 /* If a non-BLKmode return value should be padded at the least
5096 significant end of the register, shift it left by the appropriate
5097 amount. BLKmode results are handled using the group load/store
5099 if (TYPE_MODE (TREE_TYPE (decl_result
)) != BLKmode
5100 && REG_P (real_decl_rtl
)
5101 && targetm
.calls
.return_in_msb (TREE_TYPE (decl_result
)))
5103 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl
),
5104 REGNO (real_decl_rtl
)),
5106 shift_return_value (GET_MODE (decl_rtl
), true, real_decl_rtl
);
5108 /* If a named return value dumped decl_return to memory, then
5109 we may need to re-do the PROMOTE_MODE signed/unsigned
5111 else if (GET_MODE (real_decl_rtl
) != GET_MODE (decl_rtl
))
5113 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (decl_result
));
5114 promote_function_mode (TREE_TYPE (decl_result
),
5115 GET_MODE (decl_rtl
), &unsignedp
,
5116 TREE_TYPE (current_function_decl
), 1);
5118 convert_move (real_decl_rtl
, decl_rtl
, unsignedp
);
5120 else if (GET_CODE (real_decl_rtl
) == PARALLEL
)
5122 /* If expand_function_start has created a PARALLEL for decl_rtl,
5123 move the result to the real return registers. Otherwise, do
5124 a group load from decl_rtl for a named return. */
5125 if (GET_CODE (decl_rtl
) == PARALLEL
)
5126 emit_group_move (real_decl_rtl
, decl_rtl
);
5128 emit_group_load (real_decl_rtl
, decl_rtl
,
5129 TREE_TYPE (decl_result
),
5130 int_size_in_bytes (TREE_TYPE (decl_result
)));
5132 /* In the case of complex integer modes smaller than a word, we'll
5133 need to generate some non-trivial bitfield insertions. Do that
5134 on a pseudo and not the hard register. */
5135 else if (GET_CODE (decl_rtl
) == CONCAT
5136 && GET_MODE_CLASS (GET_MODE (decl_rtl
)) == MODE_COMPLEX_INT
5137 && GET_MODE_BITSIZE (GET_MODE (decl_rtl
)) <= BITS_PER_WORD
)
5139 int old_generating_concat_p
;
5142 old_generating_concat_p
= generating_concat_p
;
5143 generating_concat_p
= 0;
5144 tmp
= gen_reg_rtx (GET_MODE (decl_rtl
));
5145 generating_concat_p
= old_generating_concat_p
;
5147 emit_move_insn (tmp
, decl_rtl
);
5148 emit_move_insn (real_decl_rtl
, tmp
);
5151 emit_move_insn (real_decl_rtl
, decl_rtl
);
5155 /* If returning a structure, arrange to return the address of the value
5156 in a place where debuggers expect to find it.
5158 If returning a structure PCC style,
5159 the caller also depends on this value.
5160 And cfun->returns_pcc_struct is not necessarily set. */
5161 if (cfun
->returns_struct
5162 || cfun
->returns_pcc_struct
)
5164 rtx value_address
= DECL_RTL (DECL_RESULT (current_function_decl
));
5165 tree type
= TREE_TYPE (DECL_RESULT (current_function_decl
));
5168 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl
)))
5169 type
= TREE_TYPE (type
);
5171 value_address
= XEXP (value_address
, 0);
5173 outgoing
= targetm
.calls
.function_value (build_pointer_type (type
),
5174 current_function_decl
, true);
5176 /* Mark this as a function return value so integrate will delete the
5177 assignment and USE below when inlining this function. */
5178 REG_FUNCTION_VALUE_P (outgoing
) = 1;
5180 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5181 value_address
= convert_memory_address (GET_MODE (outgoing
),
5184 emit_move_insn (outgoing
, value_address
);
5186 /* Show return register used to hold result (in this case the address
5188 crtl
->return_rtx
= outgoing
;
5191 /* Emit the actual code to clobber return register. Don't emit
5192 it if clobber_after is a barrier, then the previous basic block
5193 certainly doesn't fall thru into the exit block. */
5194 if (!BARRIER_P (clobber_after
))
5199 clobber_return_register ();
5203 emit_insn_after (seq
, clobber_after
);
5206 /* Output the label for the naked return from the function. */
5207 if (naked_return_label
)
5208 emit_label (naked_return_label
);
5210 /* @@@ This is a kludge. We want to ensure that instructions that
5211 may trap are not moved into the epilogue by scheduling, because
5212 we don't always emit unwind information for the epilogue. */
5213 if (cfun
->can_throw_non_call_exceptions
5214 && targetm_common
.except_unwind_info (&global_options
) != UI_SJLJ
)
5215 emit_insn (gen_blockage ());
5217 /* If stack protection is enabled for this function, check the guard. */
5218 if (crtl
->stack_protect_guard
)
5219 stack_protect_epilogue ();
5221 /* If we had calls to alloca, and this machine needs
5222 an accurate stack pointer to exit the function,
5223 insert some code to save and restore the stack pointer. */
5224 if (! EXIT_IGNORE_STACK
5225 && cfun
->calls_alloca
)
5230 emit_stack_save (SAVE_FUNCTION
, &tem
);
5233 emit_insn_before (seq
, parm_birth_insn
);
5235 emit_stack_restore (SAVE_FUNCTION
, tem
);
5238 /* ??? This should no longer be necessary since stupid is no longer with
5239 us, but there are some parts of the compiler (eg reload_combine, and
5240 sh mach_dep_reorg) that still try and compute their own lifetime info
5241 instead of using the general framework. */
5242 use_return_register ();
5246 get_arg_pointer_save_area (void)
5248 rtx ret
= arg_pointer_save_area
;
5252 ret
= assign_stack_local (Pmode
, GET_MODE_SIZE (Pmode
), 0);
5253 arg_pointer_save_area
= ret
;
5256 if (! crtl
->arg_pointer_save_area_init
)
5260 /* Save the arg pointer at the beginning of the function. The
5261 generated stack slot may not be a valid memory address, so we
5262 have to check it and fix it if necessary. */
5264 emit_move_insn (validize_mem (ret
),
5265 crtl
->args
.internal_arg_pointer
);
5269 push_topmost_sequence ();
5270 emit_insn_after (seq
, entry_of_function ());
5271 pop_topmost_sequence ();
5273 crtl
->arg_pointer_save_area_init
= true;
5279 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5280 for the first time. */
5283 record_insns (rtx insns
, rtx end
, htab_t
*hashp
)
5286 htab_t hash
= *hashp
;
5290 = htab_create_ggc (17, htab_hash_pointer
, htab_eq_pointer
, NULL
);
5292 for (tmp
= insns
; tmp
!= end
; tmp
= NEXT_INSN (tmp
))
5294 void **slot
= htab_find_slot (hash
, tmp
, INSERT
);
5295 gcc_assert (*slot
== NULL
);
5300 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5301 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5302 insn, then record COPY as well. */
5305 maybe_copy_prologue_epilogue_insn (rtx insn
, rtx copy
)
5310 hash
= epilogue_insn_hash
;
5311 if (!hash
|| !htab_find (hash
, insn
))
5313 hash
= prologue_insn_hash
;
5314 if (!hash
|| !htab_find (hash
, insn
))
5318 slot
= htab_find_slot (hash
, copy
, INSERT
);
5319 gcc_assert (*slot
== NULL
);
5323 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5324 we can be running after reorg, SEQUENCE rtl is possible. */
5327 contains (const_rtx insn
, htab_t hash
)
5332 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
5335 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
5336 if (htab_find (hash
, XVECEXP (PATTERN (insn
), 0, i
)))
5341 return htab_find (hash
, insn
) != NULL
;
5345 prologue_epilogue_contains (const_rtx insn
)
5347 if (contains (insn
, prologue_insn_hash
))
5349 if (contains (insn
, epilogue_insn_hash
))
5355 /* Insert use of return register before the end of BB. */
5358 emit_use_return_register_into_block (basic_block bb
)
5362 use_return_register ();
5367 if (reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
5368 insn
= prev_cc0_setter (insn
);
5370 emit_insn_before (seq
, insn
);
5374 /* Create a return pattern, either simple_return or return, depending on
5378 gen_return_pattern (bool simple_p
)
5380 #ifdef HAVE_simple_return
5381 return simple_p
? gen_simple_return () : gen_return ();
5383 gcc_assert (!simple_p
);
5384 return gen_return ();
5388 /* Insert an appropriate return pattern at the end of block BB. This
5389 also means updating block_for_insn appropriately. SIMPLE_P is
5390 the same as in gen_return_pattern and passed to it. */
5393 emit_return_into_block (bool simple_p
, basic_block bb
)
5396 jump
= emit_jump_insn_after (gen_return_pattern (simple_p
), BB_END (bb
));
5397 pat
= PATTERN (jump
);
5398 if (GET_CODE (pat
) == PARALLEL
)
5399 pat
= XVECEXP (pat
, 0, 0);
5400 gcc_assert (ANY_RETURN_P (pat
));
5401 JUMP_LABEL (jump
) = pat
;
5405 /* Set JUMP_LABEL for a return insn. */
5408 set_return_jump_label (rtx returnjump
)
5410 rtx pat
= PATTERN (returnjump
);
5411 if (GET_CODE (pat
) == PARALLEL
)
5412 pat
= XVECEXP (pat
, 0, 0);
5413 if (ANY_RETURN_P (pat
))
5414 JUMP_LABEL (returnjump
) = pat
;
5416 JUMP_LABEL (returnjump
) = ret_rtx
;
5419 #if defined (HAVE_return) || defined (HAVE_simple_return)
5420 /* Return true if there are any active insns between HEAD and TAIL. */
5422 active_insn_between (rtx head
, rtx tail
)
5426 if (active_insn_p (tail
))
5430 tail
= PREV_INSN (tail
);
5435 /* LAST_BB is a block that exits, and empty of active instructions.
5436 Examine its predecessors for jumps that can be converted to
5437 (conditional) returns. */
5439 convert_jumps_to_returns (basic_block last_bb
, bool simple_p
,
5440 vec
<edge
> unconverted ATTRIBUTE_UNUSED
)
5447 auto_vec
<basic_block
> src_bbs (EDGE_COUNT (last_bb
->preds
));
5449 FOR_EACH_EDGE (e
, ei
, last_bb
->preds
)
5450 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
5451 src_bbs
.quick_push (e
->src
);
5453 label
= BB_HEAD (last_bb
);
5455 FOR_EACH_VEC_ELT (src_bbs
, i
, bb
)
5457 rtx jump
= BB_END (bb
);
5459 if (!JUMP_P (jump
) || JUMP_LABEL (jump
) != label
)
5462 e
= find_edge (bb
, last_bb
);
5464 /* If we have an unconditional jump, we can replace that
5465 with a simple return instruction. */
5466 if (simplejump_p (jump
))
5468 /* The use of the return register might be present in the exit
5469 fallthru block. Either:
5470 - removing the use is safe, and we should remove the use in
5471 the exit fallthru block, or
5472 - removing the use is not safe, and we should add it here.
5473 For now, we conservatively choose the latter. Either of the
5474 2 helps in crossjumping. */
5475 emit_use_return_register_into_block (bb
);
5477 emit_return_into_block (simple_p
, bb
);
5481 /* If we have a conditional jump branching to the last
5482 block, we can try to replace that with a conditional
5483 return instruction. */
5484 else if (condjump_p (jump
))
5489 dest
= simple_return_rtx
;
5492 if (!redirect_jump (jump
, dest
, 0))
5494 #ifdef HAVE_simple_return
5499 "Failed to redirect bb %d branch.\n", bb
->index
);
5500 unconverted
.safe_push (e
);
5506 /* See comment in simplejump_p case above. */
5507 emit_use_return_register_into_block (bb
);
5509 /* If this block has only one successor, it both jumps
5510 and falls through to the fallthru block, so we can't
5512 if (single_succ_p (bb
))
5517 #ifdef HAVE_simple_return
5522 "Failed to redirect bb %d branch.\n", bb
->index
);
5523 unconverted
.safe_push (e
);
5529 /* Fix up the CFG for the successful change we just made. */
5530 redirect_edge_succ (e
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
5531 e
->flags
&= ~EDGE_CROSSING
;
5537 /* Emit a return insn for the exit fallthru block. */
5539 emit_return_for_exit (edge exit_fallthru_edge
, bool simple_p
)
5541 basic_block last_bb
= exit_fallthru_edge
->src
;
5543 if (JUMP_P (BB_END (last_bb
)))
5545 last_bb
= split_edge (exit_fallthru_edge
);
5546 exit_fallthru_edge
= single_succ_edge (last_bb
);
5548 emit_barrier_after (BB_END (last_bb
));
5549 emit_return_into_block (simple_p
, last_bb
);
5550 exit_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
5556 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5557 this into place with notes indicating where the prologue ends and where
5558 the epilogue begins. Update the basic block information when possible.
5560 Notes on epilogue placement:
5561 There are several kinds of edges to the exit block:
5562 * a single fallthru edge from LAST_BB
5563 * possibly, edges from blocks containing sibcalls
5564 * possibly, fake edges from infinite loops
5566 The epilogue is always emitted on the fallthru edge from the last basic
5567 block in the function, LAST_BB, into the exit block.
5569 If LAST_BB is empty except for a label, it is the target of every
5570 other basic block in the function that ends in a return. If a
5571 target has a return or simple_return pattern (possibly with
5572 conditional variants), these basic blocks can be changed so that a
5573 return insn is emitted into them, and their target is adjusted to
5574 the real exit block.
5576 Notes on shrink wrapping: We implement a fairly conservative
5577 version of shrink-wrapping rather than the textbook one. We only
5578 generate a single prologue and a single epilogue. This is
5579 sufficient to catch a number of interesting cases involving early
5582 First, we identify the blocks that require the prologue to occur before
5583 them. These are the ones that modify a call-saved register, or reference
5584 any of the stack or frame pointer registers. To simplify things, we then
5585 mark everything reachable from these blocks as also requiring a prologue.
5586 This takes care of loops automatically, and avoids the need to examine
5587 whether MEMs reference the frame, since it is sufficient to check for
5588 occurrences of the stack or frame pointer.
5590 We then compute the set of blocks for which the need for a prologue
5591 is anticipatable (borrowing terminology from the shrink-wrapping
5592 description in Muchnick's book). These are the blocks which either
5593 require a prologue themselves, or those that have only successors
5594 where the prologue is anticipatable. The prologue needs to be
5595 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5596 is not. For the moment, we ensure that only one such edge exists.
5598 The epilogue is placed as described above, but we make a
5599 distinction between inserting return and simple_return patterns
5600 when modifying other blocks that end in a return. Blocks that end
5601 in a sibcall omit the sibcall_epilogue if the block is not in
5605 thread_prologue_and_epilogue_insns (void)
5608 #ifdef HAVE_simple_return
5609 vec
<edge
> unconverted_simple_returns
= vNULL
;
5610 bitmap_head bb_flags
;
5613 rtx seq ATTRIBUTE_UNUSED
, epilogue_end ATTRIBUTE_UNUSED
;
5614 rtx prologue_seq ATTRIBUTE_UNUSED
, split_prologue_seq ATTRIBUTE_UNUSED
;
5615 edge e
, entry_edge
, orig_entry_edge
, exit_fallthru_edge
;
5620 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
5624 epilogue_end
= NULL_RTX
;
5625 returnjump
= NULL_RTX
;
5627 /* Can't deal with multiple successors of the entry block at the
5628 moment. Function should always have at least one entry
5630 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
5631 entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
5632 orig_entry_edge
= entry_edge
;
5634 split_prologue_seq
= NULL_RTX
;
5635 if (flag_split_stack
5636 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun
->decl
))
5639 #ifndef HAVE_split_stack_prologue
5642 gcc_assert (HAVE_split_stack_prologue
);
5645 emit_insn (gen_split_stack_prologue ());
5646 split_prologue_seq
= get_insns ();
5649 record_insns (split_prologue_seq
, NULL
, &prologue_insn_hash
);
5650 set_insn_locations (split_prologue_seq
, prologue_location
);
5654 prologue_seq
= NULL_RTX
;
5655 #ifdef HAVE_prologue
5659 seq
= gen_prologue ();
5662 /* Insert an explicit USE for the frame pointer
5663 if the profiling is on and the frame pointer is required. */
5664 if (crtl
->profile
&& frame_pointer_needed
)
5665 emit_use (hard_frame_pointer_rtx
);
5667 /* Retain a map of the prologue insns. */
5668 record_insns (seq
, NULL
, &prologue_insn_hash
);
5669 emit_note (NOTE_INSN_PROLOGUE_END
);
5671 /* Ensure that instructions are not moved into the prologue when
5672 profiling is on. The call to the profiling routine can be
5673 emitted within the live range of a call-clobbered register. */
5674 if (!targetm
.profile_before_prologue () && crtl
->profile
)
5675 emit_insn (gen_blockage ());
5677 prologue_seq
= get_insns ();
5679 set_insn_locations (prologue_seq
, prologue_location
);
5683 #ifdef HAVE_simple_return
5684 bitmap_initialize (&bb_flags
, &bitmap_default_obstack
);
5686 /* Try to perform a kind of shrink-wrapping, making sure the
5687 prologue/epilogue is emitted only around those parts of the
5688 function that require it. */
5690 try_shrink_wrapping (&entry_edge
, orig_entry_edge
, &bb_flags
, prologue_seq
);
5693 if (split_prologue_seq
!= NULL_RTX
)
5695 insert_insn_on_edge (split_prologue_seq
, orig_entry_edge
);
5698 if (prologue_seq
!= NULL_RTX
)
5700 insert_insn_on_edge (prologue_seq
, entry_edge
);
5704 /* If the exit block has no non-fake predecessors, we don't need
5706 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5707 if ((e
->flags
& EDGE_FAKE
) == 0)
5712 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
));
5714 exit_fallthru_edge
= find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
);
5716 #ifdef HAVE_simple_return
5717 if (entry_edge
!= orig_entry_edge
)
5719 = get_unconverted_simple_return (exit_fallthru_edge
, bb_flags
,
5720 &unconverted_simple_returns
,
5726 if (exit_fallthru_edge
== NULL
)
5731 basic_block last_bb
= exit_fallthru_edge
->src
;
5733 if (LABEL_P (BB_HEAD (last_bb
))
5734 && !active_insn_between (BB_HEAD (last_bb
), BB_END (last_bb
)))
5735 convert_jumps_to_returns (last_bb
, false, vNULL
);
5737 if (EDGE_COUNT (last_bb
->preds
) != 0
5738 && single_succ_p (last_bb
))
5740 last_bb
= emit_return_for_exit (exit_fallthru_edge
, false);
5741 epilogue_end
= returnjump
= BB_END (last_bb
);
5742 #ifdef HAVE_simple_return
5743 /* Emitting the return may add a basic block.
5744 Fix bb_flags for the added block. */
5745 if (last_bb
!= exit_fallthru_edge
->src
)
5746 bitmap_set_bit (&bb_flags
, last_bb
->index
);
5754 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5755 this marker for the splits of EH_RETURN patterns, and nothing else
5756 uses the flag in the meantime. */
5757 epilogue_completed
= 1;
5759 #ifdef HAVE_eh_return
5760 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5761 some targets, these get split to a special version of the epilogue
5762 code. In order to be able to properly annotate these with unwind
5763 info, try to split them now. If we get a valid split, drop an
5764 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5765 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5767 rtx prev
, last
, trial
;
5769 if (e
->flags
& EDGE_FALLTHRU
)
5771 last
= BB_END (e
->src
);
5772 if (!eh_returnjump_p (last
))
5775 prev
= PREV_INSN (last
);
5776 trial
= try_split (PATTERN (last
), last
, 1);
5780 record_insns (NEXT_INSN (prev
), NEXT_INSN (trial
), &epilogue_insn_hash
);
5781 emit_note_after (NOTE_INSN_EPILOGUE_BEG
, prev
);
5785 /* If nothing falls through into the exit block, we don't need an
5788 if (exit_fallthru_edge
== NULL
)
5791 #ifdef HAVE_epilogue
5795 epilogue_end
= emit_note (NOTE_INSN_EPILOGUE_BEG
);
5796 seq
= gen_epilogue ();
5798 emit_jump_insn (seq
);
5800 /* Retain a map of the epilogue insns. */
5801 record_insns (seq
, NULL
, &epilogue_insn_hash
);
5802 set_insn_locations (seq
, epilogue_location
);
5805 returnjump
= get_last_insn ();
5808 insert_insn_on_edge (seq
, exit_fallthru_edge
);
5811 if (JUMP_P (returnjump
))
5812 set_return_jump_label (returnjump
);
5819 if (! next_active_insn (BB_END (exit_fallthru_edge
->src
)))
5821 /* We have a fall-through edge to the exit block, the source is not
5822 at the end of the function, and there will be an assembler epilogue
5823 at the end of the function.
5824 We can't use force_nonfallthru here, because that would try to
5825 use return. Inserting a jump 'by hand' is extremely messy, so
5826 we take advantage of cfg_layout_finalize using
5827 fixup_fallthru_exit_predecessor. */
5828 cfg_layout_initialize (0);
5829 FOR_EACH_BB_FN (cur_bb
, cfun
)
5830 if (cur_bb
->index
>= NUM_FIXED_BLOCKS
5831 && cur_bb
->next_bb
->index
>= NUM_FIXED_BLOCKS
)
5832 cur_bb
->aux
= cur_bb
->next_bb
;
5833 cfg_layout_finalize ();
5838 default_rtl_profile ();
5844 commit_edge_insertions ();
5846 /* Look for basic blocks within the prologue insns. */
5847 blocks
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
5848 bitmap_clear (blocks
);
5849 bitmap_set_bit (blocks
, entry_edge
->dest
->index
);
5850 bitmap_set_bit (blocks
, orig_entry_edge
->dest
->index
);
5851 find_many_sub_basic_blocks (blocks
);
5852 sbitmap_free (blocks
);
5854 /* The epilogue insns we inserted may cause the exit edge to no longer
5856 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5858 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
5859 && returnjump_p (BB_END (e
->src
)))
5860 e
->flags
&= ~EDGE_FALLTHRU
;
5864 #ifdef HAVE_simple_return
5865 convert_to_simple_return (entry_edge
, orig_entry_edge
, bb_flags
, returnjump
,
5866 unconverted_simple_returns
);
5869 #ifdef HAVE_sibcall_epilogue
5870 /* Emit sibling epilogues before any sibling call sites. */
5871 for (ei
= ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
); (e
=
5875 basic_block bb
= e
->src
;
5876 rtx insn
= BB_END (bb
);
5880 || ! SIBLING_CALL_P (insn
)
5881 #ifdef HAVE_simple_return
5882 || (entry_edge
!= orig_entry_edge
5883 && !bitmap_bit_p (&bb_flags
, bb
->index
))
5891 ep_seq
= gen_sibcall_epilogue ();
5895 emit_note (NOTE_INSN_EPILOGUE_BEG
);
5900 /* Retain a map of the epilogue insns. Used in life analysis to
5901 avoid getting rid of sibcall epilogue insns. Do this before we
5902 actually emit the sequence. */
5903 record_insns (seq
, NULL
, &epilogue_insn_hash
);
5904 set_insn_locations (seq
, epilogue_location
);
5906 emit_insn_before (seq
, insn
);
5912 #ifdef HAVE_epilogue
5917 /* Similarly, move any line notes that appear after the epilogue.
5918 There is no need, however, to be quite so anal about the existence
5919 of such a note. Also possibly move
5920 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5922 for (insn
= epilogue_end
; insn
; insn
= next
)
5924 next
= NEXT_INSN (insn
);
5926 && (NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
))
5927 reorder_insns (insn
, insn
, PREV_INSN (epilogue_end
));
5932 #ifdef HAVE_simple_return
5933 bitmap_clear (&bb_flags
);
5936 /* Threading the prologue and epilogue changes the artificial refs
5937 in the entry and exit blocks. */
5938 epilogue_completed
= 1;
5939 df_update_entry_exit_and_calls ();
5942 /* Reposition the prologue-end and epilogue-begin notes after
5943 instruction scheduling. */
5946 reposition_prologue_and_epilogue_notes (void)
5948 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5949 || defined (HAVE_sibcall_epilogue)
5950 /* Since the hash table is created on demand, the fact that it is
5951 non-null is a signal that it is non-empty. */
5952 if (prologue_insn_hash
!= NULL
)
5954 size_t len
= htab_elements (prologue_insn_hash
);
5955 rtx insn
, last
= NULL
, note
= NULL
;
5957 /* Scan from the beginning until we reach the last prologue insn. */
5958 /* ??? While we do have the CFG intact, there are two problems:
5959 (1) The prologue can contain loops (typically probing the stack),
5960 which means that the end of the prologue isn't in the first bb.
5961 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5962 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
5966 if (NOTE_KIND (insn
) == NOTE_INSN_PROLOGUE_END
)
5969 else if (contains (insn
, prologue_insn_hash
))
5981 /* Scan forward looking for the PROLOGUE_END note. It should
5982 be right at the beginning of the block, possibly with other
5983 insn notes that got moved there. */
5984 for (note
= NEXT_INSN (last
); ; note
= NEXT_INSN (note
))
5987 && NOTE_KIND (note
) == NOTE_INSN_PROLOGUE_END
)
5992 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5994 last
= NEXT_INSN (last
);
5995 reorder_insns (note
, note
, last
);
5999 if (epilogue_insn_hash
!= NULL
)
6004 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
6006 rtx insn
, first
= NULL
, note
= NULL
;
6007 basic_block bb
= e
->src
;
6009 /* Scan from the beginning until we reach the first epilogue insn. */
6010 FOR_BB_INSNS (bb
, insn
)
6014 if (NOTE_KIND (insn
) == NOTE_INSN_EPILOGUE_BEG
)
6021 else if (first
== NULL
&& contains (insn
, epilogue_insn_hash
))
6031 /* If the function has a single basic block, and no real
6032 epilogue insns (e.g. sibcall with no cleanup), the
6033 epilogue note can get scheduled before the prologue
6034 note. If we have frame related prologue insns, having
6035 them scanned during the epilogue will result in a crash.
6036 In this case re-order the epilogue note to just before
6037 the last insn in the block. */
6039 first
= BB_END (bb
);
6041 if (PREV_INSN (first
) != note
)
6042 reorder_insns (note
, note
, PREV_INSN (first
));
6046 #endif /* HAVE_prologue or HAVE_epilogue */
6049 /* Returns the name of function declared by FNDECL. */
6051 fndecl_name (tree fndecl
)
6055 return lang_hooks
.decl_printable_name (fndecl
, 2);
6058 /* Returns the name of function FN. */
6060 function_name (struct function
*fn
)
6062 tree fndecl
= (fn
== NULL
) ? NULL
: fn
->decl
;
6063 return fndecl_name (fndecl
);
6066 /* Returns the name of the current function. */
6068 current_function_name (void)
6070 return function_name (cfun
);
6075 rest_of_handle_check_leaf_regs (void)
6077 #ifdef LEAF_REGISTERS
6078 crtl
->uses_only_leaf_regs
6079 = optimize
> 0 && only_leaf_regs_used () && leaf_function_p ();
6084 /* Insert a TYPE into the used types hash table of CFUN. */
6087 used_types_insert_helper (tree type
, struct function
*func
)
6089 if (type
!= NULL
&& func
!= NULL
)
6093 if (func
->used_types_hash
== NULL
)
6094 func
->used_types_hash
= htab_create_ggc (37, htab_hash_pointer
,
6095 htab_eq_pointer
, NULL
);
6096 slot
= htab_find_slot (func
->used_types_hash
, type
, INSERT
);
6102 /* Given a type, insert it into the used hash table in cfun. */
6104 used_types_insert (tree t
)
6106 while (POINTER_TYPE_P (t
) || TREE_CODE (t
) == ARRAY_TYPE
)
6111 if (TREE_CODE (t
) == ERROR_MARK
)
6113 if (TYPE_NAME (t
) == NULL_TREE
6114 || TYPE_NAME (t
) == TYPE_NAME (TYPE_MAIN_VARIANT (t
)))
6115 t
= TYPE_MAIN_VARIANT (t
);
6116 if (debug_info_level
> DINFO_LEVEL_NONE
)
6119 used_types_insert_helper (t
, cfun
);
6122 /* So this might be a type referenced by a global variable.
6123 Record that type so that we can later decide to emit its
6124 debug information. */
6125 vec_safe_push (types_used_by_cur_var_decl
, t
);
6130 /* Helper to Hash a struct types_used_by_vars_entry. */
6133 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry
*entry
)
6135 gcc_assert (entry
&& entry
->var_decl
&& entry
->type
);
6137 return iterative_hash_object (entry
->type
,
6138 iterative_hash_object (entry
->var_decl
, 0));
6141 /* Hash function of the types_used_by_vars_entry hash table. */
6144 types_used_by_vars_do_hash (const void *x
)
6146 const struct types_used_by_vars_entry
*entry
=
6147 (const struct types_used_by_vars_entry
*) x
;
6149 return hash_types_used_by_vars_entry (entry
);
6152 /*Equality function of the types_used_by_vars_entry hash table. */
6155 types_used_by_vars_eq (const void *x1
, const void *x2
)
6157 const struct types_used_by_vars_entry
*e1
=
6158 (const struct types_used_by_vars_entry
*) x1
;
6159 const struct types_used_by_vars_entry
*e2
=
6160 (const struct types_used_by_vars_entry
*)x2
;
6162 return (e1
->var_decl
== e2
->var_decl
&& e1
->type
== e2
->type
);
6165 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6168 types_used_by_var_decl_insert (tree type
, tree var_decl
)
6170 if (type
!= NULL
&& var_decl
!= NULL
)
6173 struct types_used_by_vars_entry e
;
6174 e
.var_decl
= var_decl
;
6176 if (types_used_by_vars_hash
== NULL
)
6177 types_used_by_vars_hash
=
6178 htab_create_ggc (37, types_used_by_vars_do_hash
,
6179 types_used_by_vars_eq
, NULL
);
6180 slot
= htab_find_slot_with_hash (types_used_by_vars_hash
, &e
,
6181 hash_types_used_by_vars_entry (&e
), INSERT
);
6184 struct types_used_by_vars_entry
*entry
;
6185 entry
= ggc_alloc
<types_used_by_vars_entry
> ();
6187 entry
->var_decl
= var_decl
;
6195 const pass_data pass_data_leaf_regs
=
6197 RTL_PASS
, /* type */
6198 "*leaf_regs", /* name */
6199 OPTGROUP_NONE
, /* optinfo_flags */
6200 TV_NONE
, /* tv_id */
6201 0, /* properties_required */
6202 0, /* properties_provided */
6203 0, /* properties_destroyed */
6204 0, /* todo_flags_start */
6205 0, /* todo_flags_finish */
6208 class pass_leaf_regs
: public rtl_opt_pass
6211 pass_leaf_regs (gcc::context
*ctxt
)
6212 : rtl_opt_pass (pass_data_leaf_regs
, ctxt
)
6215 /* opt_pass methods: */
6216 virtual unsigned int execute (function
*)
6218 return rest_of_handle_check_leaf_regs ();
6221 }; // class pass_leaf_regs
6226 make_pass_leaf_regs (gcc::context
*ctxt
)
6228 return new pass_leaf_regs (ctxt
);
6232 rest_of_handle_thread_prologue_and_epilogue (void)
6235 cleanup_cfg (CLEANUP_EXPENSIVE
);
6237 /* On some machines, the prologue and epilogue code, or parts thereof,
6238 can be represented as RTL. Doing so lets us schedule insns between
6239 it and the rest of the code and also allows delayed branch
6240 scheduling to operate in the epilogue. */
6241 thread_prologue_and_epilogue_insns ();
6243 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6247 /* The stack usage info is finalized during prologue expansion. */
6248 if (flag_stack_usage_info
)
6249 output_stack_usage ();
6256 const pass_data pass_data_thread_prologue_and_epilogue
=
6258 RTL_PASS
, /* type */
6259 "pro_and_epilogue", /* name */
6260 OPTGROUP_NONE
, /* optinfo_flags */
6261 TV_THREAD_PROLOGUE_AND_EPILOGUE
, /* tv_id */
6262 0, /* properties_required */
6263 0, /* properties_provided */
6264 0, /* properties_destroyed */
6265 0, /* todo_flags_start */
6266 ( TODO_df_verify
| TODO_df_finish
), /* todo_flags_finish */
6269 class pass_thread_prologue_and_epilogue
: public rtl_opt_pass
6272 pass_thread_prologue_and_epilogue (gcc::context
*ctxt
)
6273 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue
, ctxt
)
6276 /* opt_pass methods: */
6277 virtual unsigned int execute (function
*)
6279 return rest_of_handle_thread_prologue_and_epilogue ();
6282 }; // class pass_thread_prologue_and_epilogue
6287 make_pass_thread_prologue_and_epilogue (gcc::context
*ctxt
)
6289 return new pass_thread_prologue_and_epilogue (ctxt
);
6293 /* This mini-pass fixes fall-out from SSA in asm statements that have
6294 in-out constraints. Say you start with
6297 asm ("": "+mr" (inout));
6300 which is transformed very early to use explicit output and match operands:
6303 asm ("": "=mr" (inout) : "0" (inout));
6306 Or, after SSA and copyprop,
6308 asm ("": "=mr" (inout_2) : "0" (inout_1));
6311 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6312 they represent two separate values, so they will get different pseudo
6313 registers during expansion. Then, since the two operands need to match
6314 per the constraints, but use different pseudo registers, reload can
6315 only register a reload for these operands. But reloads can only be
6316 satisfied by hardregs, not by memory, so we need a register for this
6317 reload, just because we are presented with non-matching operands.
6318 So, even though we allow memory for this operand, no memory can be
6319 used for it, just because the two operands don't match. This can
6320 cause reload failures on register-starved targets.
6322 So it's a symptom of reload not being able to use memory for reloads
6323 or, alternatively it's also a symptom of both operands not coming into
6324 reload as matching (in which case the pseudo could go to memory just
6325 fine, as the alternative allows it, and no reload would be necessary).
6326 We fix the latter problem here, by transforming
6328 asm ("": "=mr" (inout_2) : "0" (inout_1));
6333 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6336 match_asm_constraints_1 (rtx insn
, rtx
*p_sets
, int noutputs
)
6339 bool changed
= false;
6340 rtx op
= SET_SRC (p_sets
[0]);
6341 int ninputs
= ASM_OPERANDS_INPUT_LENGTH (op
);
6342 rtvec inputs
= ASM_OPERANDS_INPUT_VEC (op
);
6343 bool *output_matched
= XALLOCAVEC (bool, noutputs
);
6345 memset (output_matched
, 0, noutputs
* sizeof (bool));
6346 for (i
= 0; i
< ninputs
; i
++)
6348 rtx input
, output
, insns
;
6349 const char *constraint
= ASM_OPERANDS_INPUT_CONSTRAINT (op
, i
);
6353 if (*constraint
== '%')
6356 match
= strtoul (constraint
, &end
, 10);
6357 if (end
== constraint
)
6360 gcc_assert (match
< noutputs
);
6361 output
= SET_DEST (p_sets
[match
]);
6362 input
= RTVEC_ELT (inputs
, i
);
6363 /* Only do the transformation for pseudos. */
6364 if (! REG_P (output
)
6365 || rtx_equal_p (output
, input
)
6366 || (GET_MODE (input
) != VOIDmode
6367 && GET_MODE (input
) != GET_MODE (output
)))
6370 /* We can't do anything if the output is also used as input,
6371 as we're going to overwrite it. */
6372 for (j
= 0; j
< ninputs
; j
++)
6373 if (reg_overlap_mentioned_p (output
, RTVEC_ELT (inputs
, j
)))
6378 /* Avoid changing the same input several times. For
6379 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6380 only change in once (to out1), rather than changing it
6381 first to out1 and afterwards to out2. */
6384 for (j
= 0; j
< noutputs
; j
++)
6385 if (output_matched
[j
] && input
== SET_DEST (p_sets
[j
]))
6390 output_matched
[match
] = true;
6393 emit_move_insn (output
, input
);
6394 insns
= get_insns ();
6396 emit_insn_before (insns
, insn
);
6398 /* Now replace all mentions of the input with output. We can't
6399 just replace the occurrence in inputs[i], as the register might
6400 also be used in some other input (or even in an address of an
6401 output), which would mean possibly increasing the number of
6402 inputs by one (namely 'output' in addition), which might pose
6403 a too complicated problem for reload to solve. E.g. this situation:
6405 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6407 Here 'input' is used in two occurrences as input (once for the
6408 input operand, once for the address in the second output operand).
6409 If we would replace only the occurrence of the input operand (to
6410 make the matching) we would be left with this:
6413 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6415 Now we suddenly have two different input values (containing the same
6416 value, but different pseudos) where we formerly had only one.
6417 With more complicated asms this might lead to reload failures
6418 which wouldn't have happen without this pass. So, iterate over
6419 all operands and replace all occurrences of the register used. */
6420 for (j
= 0; j
< noutputs
; j
++)
6421 if (!rtx_equal_p (SET_DEST (p_sets
[j
]), input
)
6422 && reg_overlap_mentioned_p (input
, SET_DEST (p_sets
[j
])))
6423 SET_DEST (p_sets
[j
]) = replace_rtx (SET_DEST (p_sets
[j
]),
6425 for (j
= 0; j
< ninputs
; j
++)
6426 if (reg_overlap_mentioned_p (input
, RTVEC_ELT (inputs
, j
)))
6427 RTVEC_ELT (inputs
, j
) = replace_rtx (RTVEC_ELT (inputs
, j
),
6434 df_insn_rescan (insn
);
6439 const pass_data pass_data_match_asm_constraints
=
6441 RTL_PASS
, /* type */
6442 "asmcons", /* name */
6443 OPTGROUP_NONE
, /* optinfo_flags */
6444 TV_NONE
, /* tv_id */
6445 0, /* properties_required */
6446 0, /* properties_provided */
6447 0, /* properties_destroyed */
6448 0, /* todo_flags_start */
6449 0, /* todo_flags_finish */
6452 class pass_match_asm_constraints
: public rtl_opt_pass
6455 pass_match_asm_constraints (gcc::context
*ctxt
)
6456 : rtl_opt_pass (pass_data_match_asm_constraints
, ctxt
)
6459 /* opt_pass methods: */
6460 virtual unsigned int execute (function
*);
6462 }; // class pass_match_asm_constraints
6465 pass_match_asm_constraints::execute (function
*fun
)
6468 rtx insn
, pat
, *p_sets
;
6471 if (!crtl
->has_asm_statement
)
6474 df_set_flags (DF_DEFER_INSN_RESCAN
);
6475 FOR_EACH_BB_FN (bb
, fun
)
6477 FOR_BB_INSNS (bb
, insn
)
6482 pat
= PATTERN (insn
);
6483 if (GET_CODE (pat
) == PARALLEL
)
6484 p_sets
= &XVECEXP (pat
, 0, 0), noutputs
= XVECLEN (pat
, 0);
6485 else if (GET_CODE (pat
) == SET
)
6486 p_sets
= &PATTERN (insn
), noutputs
= 1;
6490 if (GET_CODE (*p_sets
) == SET
6491 && GET_CODE (SET_SRC (*p_sets
)) == ASM_OPERANDS
)
6492 match_asm_constraints_1 (insn
, p_sets
, noutputs
);
6496 return TODO_df_finish
;
6502 make_pass_match_asm_constraints (gcc::context
*ctxt
)
6504 return new pass_match_asm_constraints (ctxt
);
6508 #include "gt-function.h"