Add missing break statement.
[official-gcc.git] / gcc / bb-reorder.c
blob96547c25c1868ac1baa1f687194f85382d815b87
1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This (greedy) algorithm constructs traces in several rounds.
21 The construction starts from "seeds". The seed for the first round
22 is the entry point of the function. When there are more than one seed,
23 the one with the lowest key in the heap is selected first (see bb_to_key).
24 Then the algorithm repeatedly adds the most probable successor to the end
25 of a trace. Finally it connects the traces.
27 There are two parameters: Branch Threshold and Exec Threshold.
28 If the probability of an edge to a successor of the current basic block is
29 lower than Branch Threshold or its frequency is lower than Exec Threshold,
30 then the successor will be the seed in one of the next rounds.
31 Each round has these parameters lower than the previous one.
32 The last round has to have these parameters set to zero so that the
33 remaining blocks are picked up.
35 The algorithm selects the most probable successor from all unvisited
36 successors and successors that have been added to this trace.
37 The other successors (that has not been "sent" to the next round) will be
38 other seeds for this round and the secondary traces will start from them.
39 If the successor has not been visited in this trace, it is added to the
40 trace (however, there is some heuristic for simple branches).
41 If the successor has been visited in this trace, a loop has been found.
42 If the loop has many iterations, the loop is rotated so that the source
43 block of the most probable edge going out of the loop is the last block
44 of the trace.
45 If the loop has few iterations and there is no edge from the last block of
46 the loop going out of the loop, the loop header is duplicated.
48 When connecting traces, the algorithm first checks whether there is an edge
49 from the last block of a trace to the first block of another trace.
50 When there are still some unconnected traces it checks whether there exists
51 a basic block BB such that BB is a successor of the last block of a trace
52 and BB is a predecessor of the first block of another trace. In this case,
53 BB is duplicated, added at the end of the first trace and the traces are
54 connected through it.
55 The rest of traces are simply connected so there will be a jump to the
56 beginning of the rest of traces.
58 The above description is for the full algorithm, which is used when the
59 function is optimized for speed. When the function is optimized for size,
60 in order to reduce long jumps and connect more fallthru edges, the
61 algorithm is modified as follows:
62 (1) Break long traces to short ones. A trace is broken at a block that has
63 multiple predecessors/ successors during trace discovery. When connecting
64 traces, only connect Trace n with Trace n + 1. This change reduces most
65 long jumps compared with the above algorithm.
66 (2) Ignore the edge probability and frequency for fallthru edges.
67 (3) Keep the original order of blocks when there is no chance to fall
68 through. We rely on the results of cfg_cleanup.
70 To implement the change for code size optimization, block's index is
71 selected as the key and all traces are found in one round.
73 References:
75 "Software Trace Cache"
76 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
77 http://citeseer.nj.nec.com/15361.html
81 #include "config.h"
82 #include "system.h"
83 #include "coretypes.h"
84 #include "tm.h"
85 #include "tree.h"
86 #include "rtl.h"
87 #include "regs.h"
88 #include "flags.h"
89 #include "output.h"
90 #include "fibheap.h"
91 #include "target.h"
92 #include "function.h"
93 #include "tm_p.h"
94 #include "obstack.h"
95 #include "expr.h"
96 #include "params.h"
97 #include "diagnostic-core.h"
98 #include "toplev.h" /* user_defined_section_attribute */
99 #include "tree-pass.h"
100 #include "df.h"
101 #include "bb-reorder.h"
102 #include "cgraph.h"
103 #include "except.h"
105 /* The number of rounds. In most cases there will only be 4 rounds, but
106 when partitioning hot and cold basic blocks into separate sections of
107 the object file there will be an extra round. */
108 #define N_ROUNDS 5
110 /* Stubs in case we don't have a return insn.
111 We have to check at run time too, not only compile time. */
113 #ifndef HAVE_return
114 #define HAVE_return 0
115 #define gen_return() NULL_RTX
116 #endif
119 struct target_bb_reorder default_target_bb_reorder;
120 #if SWITCHABLE_TARGET
121 struct target_bb_reorder *this_target_bb_reorder = &default_target_bb_reorder;
122 #endif
124 #define uncond_jump_length \
125 (this_target_bb_reorder->x_uncond_jump_length)
127 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
128 static const int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
130 /* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
131 static const int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
133 /* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
134 block the edge destination is not duplicated while connecting traces. */
135 #define DUPLICATION_THRESHOLD 100
137 /* Structure to hold needed information for each basic block. */
138 typedef struct bbro_basic_block_data_def
140 /* Which trace is the bb start of (-1 means it is not a start of any). */
141 int start_of_trace;
143 /* Which trace is the bb end of (-1 means it is not an end of any). */
144 int end_of_trace;
146 /* Which trace is the bb in? */
147 int in_trace;
149 /* Which trace was this bb visited in? */
150 int visited;
152 /* Which heap is BB in (if any)? */
153 fibheap_t heap;
155 /* Which heap node is BB in (if any)? */
156 fibnode_t node;
157 } bbro_basic_block_data;
159 /* The current size of the following dynamic array. */
160 static int array_size;
162 /* The array which holds needed information for basic blocks. */
163 static bbro_basic_block_data *bbd;
165 /* To avoid frequent reallocation the size of arrays is greater than needed,
166 the number of elements is (not less than) 1.25 * size_wanted. */
167 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
169 /* Free the memory and set the pointer to NULL. */
170 #define FREE(P) (gcc_assert (P), free (P), P = 0)
172 /* Structure for holding information about a trace. */
173 struct trace
175 /* First and last basic block of the trace. */
176 basic_block first, last;
178 /* The round of the STC creation which this trace was found in. */
179 int round;
181 /* The length (i.e. the number of basic blocks) of the trace. */
182 int length;
185 /* Maximum frequency and count of one of the entry blocks. */
186 static int max_entry_frequency;
187 static gcov_type max_entry_count;
189 /* Local function prototypes. */
190 static void find_traces (int *, struct trace *);
191 static basic_block rotate_loop (edge, struct trace *, int);
192 static void mark_bb_visited (basic_block, int);
193 static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
194 int, fibheap_t *, int);
195 static basic_block copy_bb (basic_block, edge, basic_block, int);
196 static fibheapkey_t bb_to_key (basic_block);
197 static bool better_edge_p (const_basic_block, const_edge, int, int, int, int,
198 const_edge);
199 static bool connect_better_edge_p (const_edge, bool, int, const_edge,
200 struct trace *);
201 static void connect_traces (int, struct trace *);
202 static bool copy_bb_p (const_basic_block, int);
203 static bool push_to_next_round_p (const_basic_block, int, int, int, gcov_type);
205 /* Return the trace number in which BB was visited. */
207 static int
208 bb_visited_trace (const_basic_block bb)
210 gcc_assert (bb->index < array_size);
211 return bbd[bb->index].visited;
214 /* This function marks BB that it was visited in trace number TRACE. */
216 static void
217 mark_bb_visited (basic_block bb, int trace)
219 bbd[bb->index].visited = trace;
220 if (bbd[bb->index].heap)
222 fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
223 bbd[bb->index].heap = NULL;
224 bbd[bb->index].node = NULL;
228 /* Check to see if bb should be pushed into the next round of trace
229 collections or not. Reasons for pushing the block forward are 1).
230 If the block is cold, we are doing partitioning, and there will be
231 another round (cold partition blocks are not supposed to be
232 collected into traces until the very last round); or 2). There will
233 be another round, and the basic block is not "hot enough" for the
234 current round of trace collection. */
236 static bool
237 push_to_next_round_p (const_basic_block bb, int round, int number_of_rounds,
238 int exec_th, gcov_type count_th)
240 bool there_exists_another_round;
241 bool block_not_hot_enough;
243 there_exists_another_round = round < number_of_rounds - 1;
245 block_not_hot_enough = (bb->frequency < exec_th
246 || bb->count < count_th
247 || probably_never_executed_bb_p (cfun, bb));
249 if (there_exists_another_round
250 && block_not_hot_enough)
251 return true;
252 else
253 return false;
256 /* Find the traces for Software Trace Cache. Chain each trace through
257 RBI()->next. Store the number of traces to N_TRACES and description of
258 traces to TRACES. */
260 static void
261 find_traces (int *n_traces, struct trace *traces)
263 int i;
264 int number_of_rounds;
265 edge e;
266 edge_iterator ei;
267 fibheap_t heap;
269 /* Add one extra round of trace collection when partitioning hot/cold
270 basic blocks into separate sections. The last round is for all the
271 cold blocks (and ONLY the cold blocks). */
273 number_of_rounds = N_ROUNDS - 1;
275 /* Insert entry points of function into heap. */
276 heap = fibheap_new ();
277 max_entry_frequency = 0;
278 max_entry_count = 0;
279 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
281 bbd[e->dest->index].heap = heap;
282 bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
283 e->dest);
284 if (e->dest->frequency > max_entry_frequency)
285 max_entry_frequency = e->dest->frequency;
286 if (e->dest->count > max_entry_count)
287 max_entry_count = e->dest->count;
290 /* Find the traces. */
291 for (i = 0; i < number_of_rounds; i++)
293 gcov_type count_threshold;
295 if (dump_file)
296 fprintf (dump_file, "STC - round %d\n", i + 1);
298 if (max_entry_count < INT_MAX / 1000)
299 count_threshold = max_entry_count * exec_threshold[i] / 1000;
300 else
301 count_threshold = max_entry_count / 1000 * exec_threshold[i];
303 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
304 max_entry_frequency * exec_threshold[i] / 1000,
305 count_threshold, traces, n_traces, i, &heap,
306 number_of_rounds);
308 fibheap_delete (heap);
310 if (dump_file)
312 for (i = 0; i < *n_traces; i++)
314 basic_block bb;
315 fprintf (dump_file, "Trace %d (round %d): ", i + 1,
316 traces[i].round + 1);
317 for (bb = traces[i].first;
318 bb != traces[i].last;
319 bb = (basic_block) bb->aux)
320 fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
321 fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
323 fflush (dump_file);
327 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
328 (with sequential number TRACE_N). */
330 static basic_block
331 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
333 basic_block bb;
335 /* Information about the best end (end after rotation) of the loop. */
336 basic_block best_bb = NULL;
337 edge best_edge = NULL;
338 int best_freq = -1;
339 gcov_type best_count = -1;
340 /* The best edge is preferred when its destination is not visited yet
341 or is a start block of some trace. */
342 bool is_preferred = false;
344 /* Find the most frequent edge that goes out from current trace. */
345 bb = back_edge->dest;
348 edge e;
349 edge_iterator ei;
351 FOR_EACH_EDGE (e, ei, bb->succs)
352 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
353 && bb_visited_trace (e->dest) != trace_n
354 && (e->flags & EDGE_CAN_FALLTHRU)
355 && !(e->flags & EDGE_COMPLEX))
357 if (is_preferred)
359 /* The best edge is preferred. */
360 if (!bb_visited_trace (e->dest)
361 || bbd[e->dest->index].start_of_trace >= 0)
363 /* The current edge E is also preferred. */
364 int freq = EDGE_FREQUENCY (e);
365 if (freq > best_freq || e->count > best_count)
367 best_freq = freq;
368 best_count = e->count;
369 best_edge = e;
370 best_bb = bb;
374 else
376 if (!bb_visited_trace (e->dest)
377 || bbd[e->dest->index].start_of_trace >= 0)
379 /* The current edge E is preferred. */
380 is_preferred = true;
381 best_freq = EDGE_FREQUENCY (e);
382 best_count = e->count;
383 best_edge = e;
384 best_bb = bb;
386 else
388 int freq = EDGE_FREQUENCY (e);
389 if (!best_edge || freq > best_freq || e->count > best_count)
391 best_freq = freq;
392 best_count = e->count;
393 best_edge = e;
394 best_bb = bb;
399 bb = (basic_block) bb->aux;
401 while (bb != back_edge->dest);
403 if (best_bb)
405 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
406 the trace. */
407 if (back_edge->dest == trace->first)
409 trace->first = (basic_block) best_bb->aux;
411 else
413 basic_block prev_bb;
415 for (prev_bb = trace->first;
416 prev_bb->aux != back_edge->dest;
417 prev_bb = (basic_block) prev_bb->aux)
419 prev_bb->aux = best_bb->aux;
421 /* Try to get rid of uncond jump to cond jump. */
422 if (single_succ_p (prev_bb))
424 basic_block header = single_succ (prev_bb);
426 /* Duplicate HEADER if it is a small block containing cond jump
427 in the end. */
428 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
429 && !CROSSING_JUMP_P (BB_END (header)))
430 copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
434 else
436 /* We have not found suitable loop tail so do no rotation. */
437 best_bb = back_edge->src;
439 best_bb->aux = NULL;
440 return best_bb;
443 /* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
444 not include basic blocks whose probability is lower than BRANCH_TH or whose
445 frequency is lower than EXEC_TH into traces (or whose count is lower than
446 COUNT_TH). Store the new traces into TRACES and modify the number of
447 traces *N_TRACES. Set the round (which the trace belongs to) to ROUND.
448 The function expects starting basic blocks to be in *HEAP and will delete
449 *HEAP and store starting points for the next round into new *HEAP. */
451 static void
452 find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
453 struct trace *traces, int *n_traces, int round,
454 fibheap_t *heap, int number_of_rounds)
456 /* Heap for discarded basic blocks which are possible starting points for
457 the next round. */
458 fibheap_t new_heap = fibheap_new ();
459 bool for_size = optimize_function_for_size_p (cfun);
461 while (!fibheap_empty (*heap))
463 basic_block bb;
464 struct trace *trace;
465 edge best_edge, e;
466 fibheapkey_t key;
467 edge_iterator ei;
469 bb = (basic_block) fibheap_extract_min (*heap);
470 bbd[bb->index].heap = NULL;
471 bbd[bb->index].node = NULL;
473 if (dump_file)
474 fprintf (dump_file, "Getting bb %d\n", bb->index);
476 /* If the BB's frequency is too low, send BB to the next round. When
477 partitioning hot/cold blocks into separate sections, make sure all
478 the cold blocks (and ONLY the cold blocks) go into the (extra) final
479 round. When optimizing for size, do not push to next round. */
481 if (!for_size
482 && push_to_next_round_p (bb, round, number_of_rounds, exec_th,
483 count_th))
485 int key = bb_to_key (bb);
486 bbd[bb->index].heap = new_heap;
487 bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
489 if (dump_file)
490 fprintf (dump_file,
491 " Possible start point of next round: %d (key: %d)\n",
492 bb->index, key);
493 continue;
496 trace = traces + *n_traces;
497 trace->first = bb;
498 trace->round = round;
499 trace->length = 0;
500 bbd[bb->index].in_trace = *n_traces;
501 (*n_traces)++;
505 int prob, freq;
506 bool ends_in_call;
508 /* The probability and frequency of the best edge. */
509 int best_prob = INT_MIN / 2;
510 int best_freq = INT_MIN / 2;
512 best_edge = NULL;
513 mark_bb_visited (bb, *n_traces);
514 trace->length++;
516 if (dump_file)
517 fprintf (dump_file, "Basic block %d was visited in trace %d\n",
518 bb->index, *n_traces - 1);
520 ends_in_call = block_ends_with_call_p (bb);
522 /* Select the successor that will be placed after BB. */
523 FOR_EACH_EDGE (e, ei, bb->succs)
525 gcc_assert (!(e->flags & EDGE_FAKE));
527 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
528 continue;
530 if (bb_visited_trace (e->dest)
531 && bb_visited_trace (e->dest) != *n_traces)
532 continue;
534 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
535 continue;
537 prob = e->probability;
538 freq = e->dest->frequency;
540 /* The only sensible preference for a call instruction is the
541 fallthru edge. Don't bother selecting anything else. */
542 if (ends_in_call)
544 if (e->flags & EDGE_CAN_FALLTHRU)
546 best_edge = e;
547 best_prob = prob;
548 best_freq = freq;
550 continue;
553 /* Edge that cannot be fallthru or improbable or infrequent
554 successor (i.e. it is unsuitable successor). When optimizing
555 for size, ignore the probability and frequency. */
556 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
557 || ((prob < branch_th || EDGE_FREQUENCY (e) < exec_th
558 || e->count < count_th) && (!for_size)))
559 continue;
561 /* If partitioning hot/cold basic blocks, don't consider edges
562 that cross section boundaries. */
564 if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
565 best_edge))
567 best_edge = e;
568 best_prob = prob;
569 best_freq = freq;
573 /* If the best destination has multiple predecessors, and can be
574 duplicated cheaper than a jump, don't allow it to be added
575 to a trace. We'll duplicate it when connecting traces. */
576 if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
577 && copy_bb_p (best_edge->dest, 0))
578 best_edge = NULL;
580 /* If the best destination has multiple successors or predecessors,
581 don't allow it to be added when optimizing for size. This makes
582 sure predecessors with smaller index are handled before the best
583 destinarion. It breaks long trace and reduces long jumps.
585 Take if-then-else as an example.
591 If we do not remove the best edge B->D/C->D, the final order might
592 be A B D ... C. C is at the end of the program. If D's successors
593 and D are complicated, might need long jumps for A->C and C->D.
594 Similar issue for order: A C D ... B.
596 After removing the best edge, the final result will be ABCD/ ACBD.
597 It does not add jump compared with the previous order. But it
598 reduces the possibility of long jumps. */
599 if (best_edge && for_size
600 && (EDGE_COUNT (best_edge->dest->succs) > 1
601 || EDGE_COUNT (best_edge->dest->preds) > 1))
602 best_edge = NULL;
604 /* Add all non-selected successors to the heaps. */
605 FOR_EACH_EDGE (e, ei, bb->succs)
607 if (e == best_edge
608 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
609 || bb_visited_trace (e->dest))
610 continue;
612 key = bb_to_key (e->dest);
614 if (bbd[e->dest->index].heap)
616 /* E->DEST is already in some heap. */
617 if (key != bbd[e->dest->index].node->key)
619 if (dump_file)
621 fprintf (dump_file,
622 "Changing key for bb %d from %ld to %ld.\n",
623 e->dest->index,
624 (long) bbd[e->dest->index].node->key,
625 key);
627 fibheap_replace_key (bbd[e->dest->index].heap,
628 bbd[e->dest->index].node, key);
631 else
633 fibheap_t which_heap = *heap;
635 prob = e->probability;
636 freq = EDGE_FREQUENCY (e);
638 if (!(e->flags & EDGE_CAN_FALLTHRU)
639 || (e->flags & EDGE_COMPLEX)
640 || prob < branch_th || freq < exec_th
641 || e->count < count_th)
643 /* When partitioning hot/cold basic blocks, make sure
644 the cold blocks (and only the cold blocks) all get
645 pushed to the last round of trace collection. When
646 optimizing for size, do not push to next round. */
648 if (!for_size && push_to_next_round_p (e->dest, round,
649 number_of_rounds,
650 exec_th, count_th))
651 which_heap = new_heap;
654 bbd[e->dest->index].heap = which_heap;
655 bbd[e->dest->index].node = fibheap_insert (which_heap,
656 key, e->dest);
658 if (dump_file)
660 fprintf (dump_file,
661 " Possible start of %s round: %d (key: %ld)\n",
662 (which_heap == new_heap) ? "next" : "this",
663 e->dest->index, (long) key);
669 if (best_edge) /* Suitable successor was found. */
671 if (bb_visited_trace (best_edge->dest) == *n_traces)
673 /* We do nothing with one basic block loops. */
674 if (best_edge->dest != bb)
676 if (EDGE_FREQUENCY (best_edge)
677 > 4 * best_edge->dest->frequency / 5)
679 /* The loop has at least 4 iterations. If the loop
680 header is not the first block of the function
681 we can rotate the loop. */
683 if (best_edge->dest
684 != ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
686 if (dump_file)
688 fprintf (dump_file,
689 "Rotating loop %d - %d\n",
690 best_edge->dest->index, bb->index);
692 bb->aux = best_edge->dest;
693 bbd[best_edge->dest->index].in_trace =
694 (*n_traces) - 1;
695 bb = rotate_loop (best_edge, trace, *n_traces);
698 else
700 /* The loop has less than 4 iterations. */
702 if (single_succ_p (bb)
703 && copy_bb_p (best_edge->dest,
704 optimize_edge_for_speed_p
705 (best_edge)))
707 bb = copy_bb (best_edge->dest, best_edge, bb,
708 *n_traces);
709 trace->length++;
714 /* Terminate the trace. */
715 break;
717 else
719 /* Check for a situation
727 where
728 EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
729 >= EDGE_FREQUENCY (AC).
730 (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
731 Best ordering is then A B C.
733 When optimizing for size, A B C is always the best order.
735 This situation is created for example by:
737 if (A) B;
742 FOR_EACH_EDGE (e, ei, bb->succs)
743 if (e != best_edge
744 && (e->flags & EDGE_CAN_FALLTHRU)
745 && !(e->flags & EDGE_COMPLEX)
746 && !bb_visited_trace (e->dest)
747 && single_pred_p (e->dest)
748 && !(e->flags & EDGE_CROSSING)
749 && single_succ_p (e->dest)
750 && (single_succ_edge (e->dest)->flags
751 & EDGE_CAN_FALLTHRU)
752 && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
753 && single_succ (e->dest) == best_edge->dest
754 && (2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge)
755 || for_size))
757 best_edge = e;
758 if (dump_file)
759 fprintf (dump_file, "Selecting BB %d\n",
760 best_edge->dest->index);
761 break;
764 bb->aux = best_edge->dest;
765 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
766 bb = best_edge->dest;
770 while (best_edge);
771 trace->last = bb;
772 bbd[trace->first->index].start_of_trace = *n_traces - 1;
773 bbd[trace->last->index].end_of_trace = *n_traces - 1;
775 /* The trace is terminated so we have to recount the keys in heap
776 (some block can have a lower key because now one of its predecessors
777 is an end of the trace). */
778 FOR_EACH_EDGE (e, ei, bb->succs)
780 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
781 || bb_visited_trace (e->dest))
782 continue;
784 if (bbd[e->dest->index].heap)
786 key = bb_to_key (e->dest);
787 if (key != bbd[e->dest->index].node->key)
789 if (dump_file)
791 fprintf (dump_file,
792 "Changing key for bb %d from %ld to %ld.\n",
793 e->dest->index,
794 (long) bbd[e->dest->index].node->key, key);
796 fibheap_replace_key (bbd[e->dest->index].heap,
797 bbd[e->dest->index].node,
798 key);
804 fibheap_delete (*heap);
806 /* "Return" the new heap. */
807 *heap = new_heap;
810 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
811 it to trace after BB, mark OLD_BB visited and update pass' data structures
812 (TRACE is a number of trace which OLD_BB is duplicated to). */
814 static basic_block
815 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
817 basic_block new_bb;
819 new_bb = duplicate_block (old_bb, e, bb);
820 BB_COPY_PARTITION (new_bb, old_bb);
822 gcc_assert (e->dest == new_bb);
824 if (dump_file)
825 fprintf (dump_file,
826 "Duplicated bb %d (created bb %d)\n",
827 old_bb->index, new_bb->index);
829 if (new_bb->index >= array_size
830 || last_basic_block_for_fn (cfun) > array_size)
832 int i;
833 int new_size;
835 new_size = MAX (last_basic_block_for_fn (cfun), new_bb->index + 1);
836 new_size = GET_ARRAY_SIZE (new_size);
837 bbd = XRESIZEVEC (bbro_basic_block_data, bbd, new_size);
838 for (i = array_size; i < new_size; i++)
840 bbd[i].start_of_trace = -1;
841 bbd[i].end_of_trace = -1;
842 bbd[i].in_trace = -1;
843 bbd[i].visited = 0;
844 bbd[i].heap = NULL;
845 bbd[i].node = NULL;
847 array_size = new_size;
849 if (dump_file)
851 fprintf (dump_file,
852 "Growing the dynamic array to %d elements.\n",
853 array_size);
857 gcc_assert (!bb_visited_trace (e->dest));
858 mark_bb_visited (new_bb, trace);
859 new_bb->aux = bb->aux;
860 bb->aux = new_bb;
862 bbd[new_bb->index].in_trace = trace;
864 return new_bb;
867 /* Compute and return the key (for the heap) of the basic block BB. */
869 static fibheapkey_t
870 bb_to_key (basic_block bb)
872 edge e;
873 edge_iterator ei;
874 int priority = 0;
876 /* Use index as key to align with its original order. */
877 if (optimize_function_for_size_p (cfun))
878 return bb->index;
880 /* Do not start in probably never executed blocks. */
882 if (BB_PARTITION (bb) == BB_COLD_PARTITION
883 || probably_never_executed_bb_p (cfun, bb))
884 return BB_FREQ_MAX;
886 /* Prefer blocks whose predecessor is an end of some trace
887 or whose predecessor edge is EDGE_DFS_BACK. */
888 FOR_EACH_EDGE (e, ei, bb->preds)
890 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
891 && bbd[e->src->index].end_of_trace >= 0)
892 || (e->flags & EDGE_DFS_BACK))
894 int edge_freq = EDGE_FREQUENCY (e);
896 if (edge_freq > priority)
897 priority = edge_freq;
901 if (priority)
902 /* The block with priority should have significantly lower key. */
903 return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
905 return -bb->frequency;
908 /* Return true when the edge E from basic block BB is better than the temporary
909 best edge (details are in function). The probability of edge E is PROB. The
910 frequency of the successor is FREQ. The current best probability is
911 BEST_PROB, the best frequency is BEST_FREQ.
912 The edge is considered to be equivalent when PROB does not differ much from
913 BEST_PROB; similarly for frequency. */
915 static bool
916 better_edge_p (const_basic_block bb, const_edge e, int prob, int freq,
917 int best_prob, int best_freq, const_edge cur_best_edge)
919 bool is_better_edge;
921 /* The BEST_* values do not have to be best, but can be a bit smaller than
922 maximum values. */
923 int diff_prob = best_prob / 10;
924 int diff_freq = best_freq / 10;
926 /* The smaller one is better to keep the original order. */
927 if (optimize_function_for_size_p (cfun))
928 return !cur_best_edge
929 || cur_best_edge->dest->index > e->dest->index;
931 if (prob > best_prob + diff_prob)
932 /* The edge has higher probability than the temporary best edge. */
933 is_better_edge = true;
934 else if (prob < best_prob - diff_prob)
935 /* The edge has lower probability than the temporary best edge. */
936 is_better_edge = false;
937 else if (freq < best_freq - diff_freq)
938 /* The edge and the temporary best edge have almost equivalent
939 probabilities. The higher frequency of a successor now means
940 that there is another edge going into that successor.
941 This successor has lower frequency so it is better. */
942 is_better_edge = true;
943 else if (freq > best_freq + diff_freq)
944 /* This successor has higher frequency so it is worse. */
945 is_better_edge = false;
946 else if (e->dest->prev_bb == bb)
947 /* The edges have equivalent probabilities and the successors
948 have equivalent frequencies. Select the previous successor. */
949 is_better_edge = true;
950 else
951 is_better_edge = false;
953 /* If we are doing hot/cold partitioning, make sure that we always favor
954 non-crossing edges over crossing edges. */
956 if (!is_better_edge
957 && flag_reorder_blocks_and_partition
958 && cur_best_edge
959 && (cur_best_edge->flags & EDGE_CROSSING)
960 && !(e->flags & EDGE_CROSSING))
961 is_better_edge = true;
963 return is_better_edge;
966 /* Return true when the edge E is better than the temporary best edge
967 CUR_BEST_EDGE. If SRC_INDEX_P is true, the function compares the src bb of
968 E and CUR_BEST_EDGE; otherwise it will compare the dest bb.
969 BEST_LEN is the trace length of src (or dest) bb in CUR_BEST_EDGE.
970 TRACES record the information about traces.
971 When optimizing for size, the edge with smaller index is better.
972 When optimizing for speed, the edge with bigger probability or longer trace
973 is better. */
975 static bool
976 connect_better_edge_p (const_edge e, bool src_index_p, int best_len,
977 const_edge cur_best_edge, struct trace *traces)
979 int e_index;
980 int b_index;
981 bool is_better_edge;
983 if (!cur_best_edge)
984 return true;
986 if (optimize_function_for_size_p (cfun))
988 e_index = src_index_p ? e->src->index : e->dest->index;
989 b_index = src_index_p ? cur_best_edge->src->index
990 : cur_best_edge->dest->index;
991 /* The smaller one is better to keep the original order. */
992 return b_index > e_index;
995 if (src_index_p)
997 e_index = e->src->index;
999 if (e->probability > cur_best_edge->probability)
1000 /* The edge has higher probability than the temporary best edge. */
1001 is_better_edge = true;
1002 else if (e->probability < cur_best_edge->probability)
1003 /* The edge has lower probability than the temporary best edge. */
1004 is_better_edge = false;
1005 else if (traces[bbd[e_index].end_of_trace].length > best_len)
1006 /* The edge and the temporary best edge have equivalent probabilities.
1007 The edge with longer trace is better. */
1008 is_better_edge = true;
1009 else
1010 is_better_edge = false;
1012 else
1014 e_index = e->dest->index;
1016 if (e->probability > cur_best_edge->probability)
1017 /* The edge has higher probability than the temporary best edge. */
1018 is_better_edge = true;
1019 else if (e->probability < cur_best_edge->probability)
1020 /* The edge has lower probability than the temporary best edge. */
1021 is_better_edge = false;
1022 else if (traces[bbd[e_index].start_of_trace].length > best_len)
1023 /* The edge and the temporary best edge have equivalent probabilities.
1024 The edge with longer trace is better. */
1025 is_better_edge = true;
1026 else
1027 is_better_edge = false;
1030 return is_better_edge;
1033 /* Connect traces in array TRACES, N_TRACES is the count of traces. */
1035 static void
1036 connect_traces (int n_traces, struct trace *traces)
1038 int i;
1039 bool *connected;
1040 bool two_passes;
1041 int last_trace;
1042 int current_pass;
1043 int current_partition;
1044 int freq_threshold;
1045 gcov_type count_threshold;
1046 bool for_size = optimize_function_for_size_p (cfun);
1048 freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
1049 if (max_entry_count < INT_MAX / 1000)
1050 count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
1051 else
1052 count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
1054 connected = XCNEWVEC (bool, n_traces);
1055 last_trace = -1;
1056 current_pass = 1;
1057 current_partition = BB_PARTITION (traces[0].first);
1058 two_passes = false;
1060 if (crtl->has_bb_partition)
1061 for (i = 0; i < n_traces && !two_passes; i++)
1062 if (BB_PARTITION (traces[0].first)
1063 != BB_PARTITION (traces[i].first))
1064 two_passes = true;
1066 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
1068 int t = i;
1069 int t2;
1070 edge e, best;
1071 int best_len;
1073 if (i >= n_traces)
1075 gcc_assert (two_passes && current_pass == 1);
1076 i = 0;
1077 t = i;
1078 current_pass = 2;
1079 if (current_partition == BB_HOT_PARTITION)
1080 current_partition = BB_COLD_PARTITION;
1081 else
1082 current_partition = BB_HOT_PARTITION;
1085 if (connected[t])
1086 continue;
1088 if (two_passes
1089 && BB_PARTITION (traces[t].first) != current_partition)
1090 continue;
1092 connected[t] = true;
1094 /* Find the predecessor traces. */
1095 for (t2 = t; t2 > 0;)
1097 edge_iterator ei;
1098 best = NULL;
1099 best_len = 0;
1100 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
1102 int si = e->src->index;
1104 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1105 && (e->flags & EDGE_CAN_FALLTHRU)
1106 && !(e->flags & EDGE_COMPLEX)
1107 && bbd[si].end_of_trace >= 0
1108 && !connected[bbd[si].end_of_trace]
1109 && (BB_PARTITION (e->src) == current_partition)
1110 && connect_better_edge_p (e, true, best_len, best, traces))
1112 best = e;
1113 best_len = traces[bbd[si].end_of_trace].length;
1116 if (best)
1118 best->src->aux = best->dest;
1119 t2 = bbd[best->src->index].end_of_trace;
1120 connected[t2] = true;
1122 if (dump_file)
1124 fprintf (dump_file, "Connection: %d %d\n",
1125 best->src->index, best->dest->index);
1128 else
1129 break;
1132 if (last_trace >= 0)
1133 traces[last_trace].last->aux = traces[t2].first;
1134 last_trace = t;
1136 /* Find the successor traces. */
1137 while (1)
1139 /* Find the continuation of the chain. */
1140 edge_iterator ei;
1141 best = NULL;
1142 best_len = 0;
1143 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1145 int di = e->dest->index;
1147 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1148 && (e->flags & EDGE_CAN_FALLTHRU)
1149 && !(e->flags & EDGE_COMPLEX)
1150 && bbd[di].start_of_trace >= 0
1151 && !connected[bbd[di].start_of_trace]
1152 && (BB_PARTITION (e->dest) == current_partition)
1153 && connect_better_edge_p (e, false, best_len, best, traces))
1155 best = e;
1156 best_len = traces[bbd[di].start_of_trace].length;
1160 if (for_size)
1162 if (!best)
1163 /* Stop finding the successor traces. */
1164 break;
1166 /* It is OK to connect block n with block n + 1 or a block
1167 before n. For others, only connect to the loop header. */
1168 if (best->dest->index > (traces[t].last->index + 1))
1170 int count = EDGE_COUNT (best->dest->preds);
1172 FOR_EACH_EDGE (e, ei, best->dest->preds)
1173 if (e->flags & EDGE_DFS_BACK)
1174 count--;
1176 /* If dest has multiple predecessors, skip it. We expect
1177 that one predecessor with smaller index connects with it
1178 later. */
1179 if (count != 1)
1180 break;
1183 /* Only connect Trace n with Trace n + 1. It is conservative
1184 to keep the order as close as possible to the original order.
1185 It also helps to reduce long jumps. */
1186 if (last_trace != bbd[best->dest->index].start_of_trace - 1)
1187 break;
1189 if (dump_file)
1190 fprintf (dump_file, "Connection: %d %d\n",
1191 best->src->index, best->dest->index);
1193 t = bbd[best->dest->index].start_of_trace;
1194 traces[last_trace].last->aux = traces[t].first;
1195 connected[t] = true;
1196 last_trace = t;
1198 else if (best)
1200 if (dump_file)
1202 fprintf (dump_file, "Connection: %d %d\n",
1203 best->src->index, best->dest->index);
1205 t = bbd[best->dest->index].start_of_trace;
1206 traces[last_trace].last->aux = traces[t].first;
1207 connected[t] = true;
1208 last_trace = t;
1210 else
1212 /* Try to connect the traces by duplication of 1 block. */
1213 edge e2;
1214 basic_block next_bb = NULL;
1215 bool try_copy = false;
1217 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1218 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1219 && (e->flags & EDGE_CAN_FALLTHRU)
1220 && !(e->flags & EDGE_COMPLEX)
1221 && (!best || e->probability > best->probability))
1223 edge_iterator ei;
1224 edge best2 = NULL;
1225 int best2_len = 0;
1227 /* If the destination is a start of a trace which is only
1228 one block long, then no need to search the successor
1229 blocks of the trace. Accept it. */
1230 if (bbd[e->dest->index].start_of_trace >= 0
1231 && traces[bbd[e->dest->index].start_of_trace].length
1232 == 1)
1234 best = e;
1235 try_copy = true;
1236 continue;
1239 FOR_EACH_EDGE (e2, ei, e->dest->succs)
1241 int di = e2->dest->index;
1243 if (e2->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
1244 || ((e2->flags & EDGE_CAN_FALLTHRU)
1245 && !(e2->flags & EDGE_COMPLEX)
1246 && bbd[di].start_of_trace >= 0
1247 && !connected[bbd[di].start_of_trace]
1248 && BB_PARTITION (e2->dest) == current_partition
1249 && EDGE_FREQUENCY (e2) >= freq_threshold
1250 && e2->count >= count_threshold
1251 && (!best2
1252 || e2->probability > best2->probability
1253 || (e2->probability == best2->probability
1254 && traces[bbd[di].start_of_trace].length
1255 > best2_len))))
1257 best = e;
1258 best2 = e2;
1259 if (e2->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1260 best2_len = traces[bbd[di].start_of_trace].length;
1261 else
1262 best2_len = INT_MAX;
1263 next_bb = e2->dest;
1264 try_copy = true;
1269 if (crtl->has_bb_partition)
1270 try_copy = false;
1272 /* Copy tiny blocks always; copy larger blocks only when the
1273 edge is traversed frequently enough. */
1274 if (try_copy
1275 && copy_bb_p (best->dest,
1276 optimize_edge_for_speed_p (best)
1277 && EDGE_FREQUENCY (best) >= freq_threshold
1278 && best->count >= count_threshold))
1280 basic_block new_bb;
1282 if (dump_file)
1284 fprintf (dump_file, "Connection: %d %d ",
1285 traces[t].last->index, best->dest->index);
1286 if (!next_bb)
1287 fputc ('\n', dump_file);
1288 else if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1289 fprintf (dump_file, "exit\n");
1290 else
1291 fprintf (dump_file, "%d\n", next_bb->index);
1294 new_bb = copy_bb (best->dest, best, traces[t].last, t);
1295 traces[t].last = new_bb;
1296 if (next_bb && next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
1298 t = bbd[next_bb->index].start_of_trace;
1299 traces[last_trace].last->aux = traces[t].first;
1300 connected[t] = true;
1301 last_trace = t;
1303 else
1304 break; /* Stop finding the successor traces. */
1306 else
1307 break; /* Stop finding the successor traces. */
1312 if (dump_file)
1314 basic_block bb;
1316 fprintf (dump_file, "Final order:\n");
1317 for (bb = traces[0].first; bb; bb = (basic_block) bb->aux)
1318 fprintf (dump_file, "%d ", bb->index);
1319 fprintf (dump_file, "\n");
1320 fflush (dump_file);
1323 FREE (connected);
1326 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1327 when code size is allowed to grow by duplication. */
1329 static bool
1330 copy_bb_p (const_basic_block bb, int code_may_grow)
1332 int size = 0;
1333 int max_size = uncond_jump_length;
1334 rtx insn;
1336 if (!bb->frequency)
1337 return false;
1338 if (EDGE_COUNT (bb->preds) < 2)
1339 return false;
1340 if (!can_duplicate_block_p (bb))
1341 return false;
1343 /* Avoid duplicating blocks which have many successors (PR/13430). */
1344 if (EDGE_COUNT (bb->succs) > 8)
1345 return false;
1347 if (code_may_grow && optimize_bb_for_speed_p (bb))
1348 max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1350 FOR_BB_INSNS (bb, insn)
1352 if (INSN_P (insn))
1353 size += get_attr_min_length (insn);
1356 if (size <= max_size)
1357 return true;
1359 if (dump_file)
1361 fprintf (dump_file,
1362 "Block %d can't be copied because its size = %d.\n",
1363 bb->index, size);
1366 return false;
1369 /* Return the length of unconditional jump instruction. */
1372 get_uncond_jump_length (void)
1374 rtx label, jump;
1375 int length;
1377 label = emit_label_before (gen_label_rtx (), get_insns ());
1378 jump = emit_jump_insn (gen_jump (label));
1380 length = get_attr_min_length (jump);
1382 delete_insn (jump);
1383 delete_insn (label);
1384 return length;
1387 /* The landing pad OLD_LP, in block OLD_BB, has edges from both partitions.
1388 Duplicate the landing pad and split the edges so that no EH edge
1389 crosses partitions. */
1391 static void
1392 fix_up_crossing_landing_pad (eh_landing_pad old_lp, basic_block old_bb)
1394 eh_landing_pad new_lp;
1395 basic_block new_bb, last_bb, post_bb;
1396 rtx new_label, jump, post_label;
1397 unsigned new_partition;
1398 edge_iterator ei;
1399 edge e;
1401 /* Generate the new landing-pad structure. */
1402 new_lp = gen_eh_landing_pad (old_lp->region);
1403 new_lp->post_landing_pad = old_lp->post_landing_pad;
1404 new_lp->landing_pad = gen_label_rtx ();
1405 LABEL_PRESERVE_P (new_lp->landing_pad) = 1;
1407 /* Put appropriate instructions in new bb. */
1408 new_label = emit_label (new_lp->landing_pad);
1410 expand_dw2_landing_pad_for_region (old_lp->region);
1412 post_bb = BLOCK_FOR_INSN (old_lp->landing_pad);
1413 post_bb = single_succ (post_bb);
1414 post_label = block_label (post_bb);
1415 jump = emit_jump_insn (gen_jump (post_label));
1416 JUMP_LABEL (jump) = post_label;
1418 /* Create new basic block to be dest for lp. */
1419 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
1420 new_bb = create_basic_block (new_label, jump, last_bb);
1421 new_bb->aux = last_bb->aux;
1422 last_bb->aux = new_bb;
1424 emit_barrier_after_bb (new_bb);
1426 make_edge (new_bb, post_bb, 0);
1428 /* Make sure new bb is in the other partition. */
1429 new_partition = BB_PARTITION (old_bb);
1430 new_partition ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1431 BB_SET_PARTITION (new_bb, new_partition);
1433 /* Fix up the edges. */
1434 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)) != NULL; )
1435 if (BB_PARTITION (e->src) == new_partition)
1437 rtx insn = BB_END (e->src);
1438 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1440 gcc_assert (note != NULL);
1441 gcc_checking_assert (INTVAL (XEXP (note, 0)) == old_lp->index);
1442 XEXP (note, 0) = GEN_INT (new_lp->index);
1444 /* Adjust the edge to the new destination. */
1445 redirect_edge_succ (e, new_bb);
1447 else
1448 ei_next (&ei);
1452 /* Ensure that all hot bbs are included in a hot path through the
1453 procedure. This is done by calling this function twice, once
1454 with WALK_UP true (to look for paths from the entry to hot bbs) and
1455 once with WALK_UP false (to look for paths from hot bbs to the exit).
1456 Returns the updated value of COLD_BB_COUNT and adds newly-hot bbs
1457 to BBS_IN_HOT_PARTITION. */
1459 static unsigned int
1460 sanitize_hot_paths (bool walk_up, unsigned int cold_bb_count,
1461 vec<basic_block> *bbs_in_hot_partition)
1463 /* Callers check this. */
1464 gcc_checking_assert (cold_bb_count);
1466 /* Keep examining hot bbs while we still have some left to check
1467 and there are remaining cold bbs. */
1468 vec<basic_block> hot_bbs_to_check = bbs_in_hot_partition->copy ();
1469 while (! hot_bbs_to_check.is_empty ()
1470 && cold_bb_count)
1472 basic_block bb = hot_bbs_to_check.pop ();
1473 vec<edge, va_gc> *edges = walk_up ? bb->preds : bb->succs;
1474 edge e;
1475 edge_iterator ei;
1476 int highest_probability = 0;
1477 int highest_freq = 0;
1478 gcov_type highest_count = 0;
1479 bool found = false;
1481 /* Walk the preds/succs and check if there is at least one already
1482 marked hot. Keep track of the most frequent pred/succ so that we
1483 can mark it hot if we don't find one. */
1484 FOR_EACH_EDGE (e, ei, edges)
1486 basic_block reach_bb = walk_up ? e->src : e->dest;
1488 if (e->flags & EDGE_DFS_BACK)
1489 continue;
1491 if (BB_PARTITION (reach_bb) != BB_COLD_PARTITION)
1493 found = true;
1494 break;
1496 /* The following loop will look for the hottest edge via
1497 the edge count, if it is non-zero, then fallback to the edge
1498 frequency and finally the edge probability. */
1499 if (e->count > highest_count)
1500 highest_count = e->count;
1501 int edge_freq = EDGE_FREQUENCY (e);
1502 if (edge_freq > highest_freq)
1503 highest_freq = edge_freq;
1504 if (e->probability > highest_probability)
1505 highest_probability = e->probability;
1508 /* If bb is reached by (or reaches, in the case of !WALK_UP) another hot
1509 block (or unpartitioned, e.g. the entry block) then it is ok. If not,
1510 then the most frequent pred (or succ) needs to be adjusted. In the
1511 case where multiple preds/succs have the same frequency (e.g. a
1512 50-50 branch), then both will be adjusted. */
1513 if (found)
1514 continue;
1516 FOR_EACH_EDGE (e, ei, edges)
1518 if (e->flags & EDGE_DFS_BACK)
1519 continue;
1520 /* Select the hottest edge using the edge count, if it is non-zero,
1521 then fallback to the edge frequency and finally the edge
1522 probability. */
1523 if (highest_count)
1525 if (e->count < highest_count)
1526 continue;
1528 else if (highest_freq)
1530 if (EDGE_FREQUENCY (e) < highest_freq)
1531 continue;
1533 else if (e->probability < highest_probability)
1534 continue;
1536 basic_block reach_bb = walk_up ? e->src : e->dest;
1538 /* We have a hot bb with an immediate dominator that is cold.
1539 The dominator needs to be re-marked hot. */
1540 BB_SET_PARTITION (reach_bb, BB_HOT_PARTITION);
1541 cold_bb_count--;
1543 /* Now we need to examine newly-hot reach_bb to see if it is also
1544 dominated by a cold bb. */
1545 bbs_in_hot_partition->safe_push (reach_bb);
1546 hot_bbs_to_check.safe_push (reach_bb);
1550 return cold_bb_count;
1554 /* Find the basic blocks that are rarely executed and need to be moved to
1555 a separate section of the .o file (to cut down on paging and improve
1556 cache locality). Return a vector of all edges that cross. */
1558 static vec<edge>
1559 find_rarely_executed_basic_blocks_and_crossing_edges (void)
1561 vec<edge> crossing_edges = vNULL;
1562 basic_block bb;
1563 edge e;
1564 edge_iterator ei;
1565 unsigned int cold_bb_count = 0;
1566 vec<basic_block> bbs_in_hot_partition = vNULL;
1568 /* Mark which partition (hot/cold) each basic block belongs in. */
1569 FOR_EACH_BB_FN (bb, cfun)
1571 bool cold_bb = false;
1573 if (probably_never_executed_bb_p (cfun, bb))
1575 /* Handle profile insanities created by upstream optimizations
1576 by also checking the incoming edge weights. If there is a non-cold
1577 incoming edge, conservatively prevent this block from being split
1578 into the cold section. */
1579 cold_bb = true;
1580 FOR_EACH_EDGE (e, ei, bb->preds)
1581 if (!probably_never_executed_edge_p (cfun, e))
1583 cold_bb = false;
1584 break;
1587 if (cold_bb)
1589 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1590 cold_bb_count++;
1592 else
1594 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1595 bbs_in_hot_partition.safe_push (bb);
1599 /* Ensure that hot bbs are included along a hot path from the entry to exit.
1600 Several different possibilities may include cold bbs along all paths
1601 to/from a hot bb. One is that there are edge weight insanities
1602 due to optimization phases that do not properly update basic block profile
1603 counts. The second is that the entry of the function may not be hot, because
1604 it is entered fewer times than the number of profile training runs, but there
1605 is a loop inside the function that causes blocks within the function to be
1606 above the threshold for hotness. This is fixed by walking up from hot bbs
1607 to the entry block, and then down from hot bbs to the exit, performing
1608 partitioning fixups as necessary. */
1609 if (cold_bb_count)
1611 mark_dfs_back_edges ();
1612 cold_bb_count = sanitize_hot_paths (true, cold_bb_count,
1613 &bbs_in_hot_partition);
1614 if (cold_bb_count)
1615 sanitize_hot_paths (false, cold_bb_count, &bbs_in_hot_partition);
1618 /* The format of .gcc_except_table does not allow landing pads to
1619 be in a different partition as the throw. Fix this by either
1620 moving or duplicating the landing pads. */
1621 if (cfun->eh->lp_array)
1623 unsigned i;
1624 eh_landing_pad lp;
1626 FOR_EACH_VEC_ELT (*cfun->eh->lp_array, i, lp)
1628 bool all_same, all_diff;
1630 if (lp == NULL
1631 || lp->landing_pad == NULL_RTX
1632 || !LABEL_P (lp->landing_pad))
1633 continue;
1635 all_same = all_diff = true;
1636 bb = BLOCK_FOR_INSN (lp->landing_pad);
1637 FOR_EACH_EDGE (e, ei, bb->preds)
1639 gcc_assert (e->flags & EDGE_EH);
1640 if (BB_PARTITION (bb) == BB_PARTITION (e->src))
1641 all_diff = false;
1642 else
1643 all_same = false;
1646 if (all_same)
1648 else if (all_diff)
1650 int which = BB_PARTITION (bb);
1651 which ^= BB_HOT_PARTITION | BB_COLD_PARTITION;
1652 BB_SET_PARTITION (bb, which);
1654 else
1655 fix_up_crossing_landing_pad (lp, bb);
1659 /* Mark every edge that crosses between sections. */
1661 FOR_EACH_BB_FN (bb, cfun)
1662 FOR_EACH_EDGE (e, ei, bb->succs)
1664 unsigned int flags = e->flags;
1666 /* We should never have EDGE_CROSSING set yet. */
1667 gcc_checking_assert ((flags & EDGE_CROSSING) == 0);
1669 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1670 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
1671 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1673 crossing_edges.safe_push (e);
1674 flags |= EDGE_CROSSING;
1677 /* Now that we've split eh edges as appropriate, allow landing pads
1678 to be merged with the post-landing pads. */
1679 flags &= ~EDGE_PRESERVE;
1681 e->flags = flags;
1684 return crossing_edges;
1687 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
1689 static void
1690 set_edge_can_fallthru_flag (void)
1692 basic_block bb;
1694 FOR_EACH_BB_FN (bb, cfun)
1696 edge e;
1697 edge_iterator ei;
1699 FOR_EACH_EDGE (e, ei, bb->succs)
1701 e->flags &= ~EDGE_CAN_FALLTHRU;
1703 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
1704 if (e->flags & EDGE_FALLTHRU)
1705 e->flags |= EDGE_CAN_FALLTHRU;
1708 /* If the BB ends with an invertible condjump all (2) edges are
1709 CAN_FALLTHRU edges. */
1710 if (EDGE_COUNT (bb->succs) != 2)
1711 continue;
1712 if (!any_condjump_p (BB_END (bb)))
1713 continue;
1714 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
1715 continue;
1716 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
1717 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
1718 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
1722 /* If any destination of a crossing edge does not have a label, add label;
1723 Convert any easy fall-through crossing edges to unconditional jumps. */
1725 static void
1726 add_labels_and_missing_jumps (vec<edge> crossing_edges)
1728 size_t i;
1729 edge e;
1731 FOR_EACH_VEC_ELT (crossing_edges, i, e)
1733 basic_block src = e->src;
1734 basic_block dest = e->dest;
1735 rtx label, new_jump;
1737 if (dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1738 continue;
1740 /* Make sure dest has a label. */
1741 label = block_label (dest);
1743 /* Nothing to do for non-fallthru edges. */
1744 if (src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1745 continue;
1746 if ((e->flags & EDGE_FALLTHRU) == 0)
1747 continue;
1749 /* If the block does not end with a control flow insn, then we
1750 can trivially add a jump to the end to fixup the crossing.
1751 Otherwise the jump will have to go in a new bb, which will
1752 be handled by fix_up_fall_thru_edges function. */
1753 if (control_flow_insn_p (BB_END (src)))
1754 continue;
1756 /* Make sure there's only one successor. */
1757 gcc_assert (single_succ_p (src));
1759 new_jump = emit_jump_insn_after (gen_jump (label), BB_END (src));
1760 BB_END (src) = new_jump;
1761 JUMP_LABEL (new_jump) = label;
1762 LABEL_NUSES (label) += 1;
1764 emit_barrier_after_bb (src);
1766 /* Mark edge as non-fallthru. */
1767 e->flags &= ~EDGE_FALLTHRU;
1771 /* Find any bb's where the fall-through edge is a crossing edge (note that
1772 these bb's must also contain a conditional jump or end with a call
1773 instruction; we've already dealt with fall-through edges for blocks
1774 that didn't have a conditional jump or didn't end with call instruction
1775 in the call to add_labels_and_missing_jumps). Convert the fall-through
1776 edge to non-crossing edge by inserting a new bb to fall-through into.
1777 The new bb will contain an unconditional jump (crossing edge) to the
1778 original fall through destination. */
1780 static void
1781 fix_up_fall_thru_edges (void)
1783 basic_block cur_bb;
1784 basic_block new_bb;
1785 edge succ1;
1786 edge succ2;
1787 edge fall_thru;
1788 edge cond_jump = NULL;
1789 edge e;
1790 bool cond_jump_crosses;
1791 int invert_worked;
1792 rtx old_jump;
1793 rtx fall_thru_label;
1795 FOR_EACH_BB_FN (cur_bb, cfun)
1797 fall_thru = NULL;
1798 if (EDGE_COUNT (cur_bb->succs) > 0)
1799 succ1 = EDGE_SUCC (cur_bb, 0);
1800 else
1801 succ1 = NULL;
1803 if (EDGE_COUNT (cur_bb->succs) > 1)
1804 succ2 = EDGE_SUCC (cur_bb, 1);
1805 else
1806 succ2 = NULL;
1808 /* Find the fall-through edge. */
1810 if (succ1
1811 && (succ1->flags & EDGE_FALLTHRU))
1813 fall_thru = succ1;
1814 cond_jump = succ2;
1816 else if (succ2
1817 && (succ2->flags & EDGE_FALLTHRU))
1819 fall_thru = succ2;
1820 cond_jump = succ1;
1822 else if (succ1
1823 && (block_ends_with_call_p (cur_bb)
1824 || can_throw_internal (BB_END (cur_bb))))
1826 edge e;
1827 edge_iterator ei;
1829 FOR_EACH_EDGE (e, ei, cur_bb->succs)
1830 if (e->flags & EDGE_FALLTHRU)
1832 fall_thru = e;
1833 break;
1837 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
1839 /* Check to see if the fall-thru edge is a crossing edge. */
1841 if (fall_thru->flags & EDGE_CROSSING)
1843 /* The fall_thru edge crosses; now check the cond jump edge, if
1844 it exists. */
1846 cond_jump_crosses = true;
1847 invert_worked = 0;
1848 old_jump = BB_END (cur_bb);
1850 /* Find the jump instruction, if there is one. */
1852 if (cond_jump)
1854 if (!(cond_jump->flags & EDGE_CROSSING))
1855 cond_jump_crosses = false;
1857 /* We know the fall-thru edge crosses; if the cond
1858 jump edge does NOT cross, and its destination is the
1859 next block in the bb order, invert the jump
1860 (i.e. fix it so the fall through does not cross and
1861 the cond jump does). */
1863 if (!cond_jump_crosses)
1865 /* Find label in fall_thru block. We've already added
1866 any missing labels, so there must be one. */
1868 fall_thru_label = block_label (fall_thru->dest);
1870 if (old_jump && JUMP_P (old_jump) && fall_thru_label)
1871 invert_worked = invert_jump (old_jump,
1872 fall_thru_label,0);
1873 if (invert_worked)
1875 fall_thru->flags &= ~EDGE_FALLTHRU;
1876 cond_jump->flags |= EDGE_FALLTHRU;
1877 update_br_prob_note (cur_bb);
1878 e = fall_thru;
1879 fall_thru = cond_jump;
1880 cond_jump = e;
1881 cond_jump->flags |= EDGE_CROSSING;
1882 fall_thru->flags &= ~EDGE_CROSSING;
1887 if (cond_jump_crosses || !invert_worked)
1889 /* This is the case where both edges out of the basic
1890 block are crossing edges. Here we will fix up the
1891 fall through edge. The jump edge will be taken care
1892 of later. The EDGE_CROSSING flag of fall_thru edge
1893 is unset before the call to force_nonfallthru
1894 function because if a new basic-block is created
1895 this edge remains in the current section boundary
1896 while the edge between new_bb and the fall_thru->dest
1897 becomes EDGE_CROSSING. */
1899 fall_thru->flags &= ~EDGE_CROSSING;
1900 new_bb = force_nonfallthru (fall_thru);
1902 if (new_bb)
1904 new_bb->aux = cur_bb->aux;
1905 cur_bb->aux = new_bb;
1907 /* This is done by force_nonfallthru_and_redirect. */
1908 gcc_assert (BB_PARTITION (new_bb)
1909 == BB_PARTITION (cur_bb));
1911 single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1913 else
1915 /* If a new basic-block was not created; restore
1916 the EDGE_CROSSING flag. */
1917 fall_thru->flags |= EDGE_CROSSING;
1920 /* Add barrier after new jump */
1921 emit_barrier_after_bb (new_bb ? new_bb : cur_bb);
1928 /* This function checks the destination block of a "crossing jump" to
1929 see if it has any crossing predecessors that begin with a code label
1930 and end with an unconditional jump. If so, it returns that predecessor
1931 block. (This is to avoid creating lots of new basic blocks that all
1932 contain unconditional jumps to the same destination). */
1934 static basic_block
1935 find_jump_block (basic_block jump_dest)
1937 basic_block source_bb = NULL;
1938 edge e;
1939 rtx insn;
1940 edge_iterator ei;
1942 FOR_EACH_EDGE (e, ei, jump_dest->preds)
1943 if (e->flags & EDGE_CROSSING)
1945 basic_block src = e->src;
1947 /* Check each predecessor to see if it has a label, and contains
1948 only one executable instruction, which is an unconditional jump.
1949 If so, we can use it. */
1951 if (LABEL_P (BB_HEAD (src)))
1952 for (insn = BB_HEAD (src);
1953 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1954 insn = NEXT_INSN (insn))
1956 if (INSN_P (insn)
1957 && insn == BB_END (src)
1958 && JUMP_P (insn)
1959 && !any_condjump_p (insn))
1961 source_bb = src;
1962 break;
1966 if (source_bb)
1967 break;
1970 return source_bb;
1973 /* Find all BB's with conditional jumps that are crossing edges;
1974 insert a new bb and make the conditional jump branch to the new
1975 bb instead (make the new bb same color so conditional branch won't
1976 be a 'crossing' edge). Insert an unconditional jump from the
1977 new bb to the original destination of the conditional jump. */
1979 static void
1980 fix_crossing_conditional_branches (void)
1982 basic_block cur_bb;
1983 basic_block new_bb;
1984 basic_block dest;
1985 edge succ1;
1986 edge succ2;
1987 edge crossing_edge;
1988 edge new_edge;
1989 rtx old_jump;
1990 rtx set_src;
1991 rtx old_label = NULL_RTX;
1992 rtx new_label;
1994 FOR_EACH_BB_FN (cur_bb, cfun)
1996 crossing_edge = NULL;
1997 if (EDGE_COUNT (cur_bb->succs) > 0)
1998 succ1 = EDGE_SUCC (cur_bb, 0);
1999 else
2000 succ1 = NULL;
2002 if (EDGE_COUNT (cur_bb->succs) > 1)
2003 succ2 = EDGE_SUCC (cur_bb, 1);
2004 else
2005 succ2 = NULL;
2007 /* We already took care of fall-through edges, so only one successor
2008 can be a crossing edge. */
2010 if (succ1 && (succ1->flags & EDGE_CROSSING))
2011 crossing_edge = succ1;
2012 else if (succ2 && (succ2->flags & EDGE_CROSSING))
2013 crossing_edge = succ2;
2015 if (crossing_edge)
2017 old_jump = BB_END (cur_bb);
2019 /* Check to make sure the jump instruction is a
2020 conditional jump. */
2022 set_src = NULL_RTX;
2024 if (any_condjump_p (old_jump))
2026 if (GET_CODE (PATTERN (old_jump)) == SET)
2027 set_src = SET_SRC (PATTERN (old_jump));
2028 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
2030 set_src = XVECEXP (PATTERN (old_jump), 0,0);
2031 if (GET_CODE (set_src) == SET)
2032 set_src = SET_SRC (set_src);
2033 else
2034 set_src = NULL_RTX;
2038 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
2040 if (GET_CODE (XEXP (set_src, 1)) == PC)
2041 old_label = XEXP (set_src, 2);
2042 else if (GET_CODE (XEXP (set_src, 2)) == PC)
2043 old_label = XEXP (set_src, 1);
2045 /* Check to see if new bb for jumping to that dest has
2046 already been created; if so, use it; if not, create
2047 a new one. */
2049 new_bb = find_jump_block (crossing_edge->dest);
2051 if (new_bb)
2052 new_label = block_label (new_bb);
2053 else
2055 basic_block last_bb;
2056 rtx new_jump;
2058 /* Create new basic block to be dest for
2059 conditional jump. */
2061 /* Put appropriate instructions in new bb. */
2063 new_label = gen_label_rtx ();
2064 emit_label (new_label);
2066 gcc_assert (GET_CODE (old_label) == LABEL_REF);
2067 old_label = JUMP_LABEL (old_jump);
2068 new_jump = emit_jump_insn (gen_jump (old_label));
2069 JUMP_LABEL (new_jump) = old_label;
2071 last_bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
2072 new_bb = create_basic_block (new_label, new_jump, last_bb);
2073 new_bb->aux = last_bb->aux;
2074 last_bb->aux = new_bb;
2076 emit_barrier_after_bb (new_bb);
2078 /* Make sure new bb is in same partition as source
2079 of conditional branch. */
2080 BB_COPY_PARTITION (new_bb, cur_bb);
2083 /* Make old jump branch to new bb. */
2085 redirect_jump (old_jump, new_label, 0);
2087 /* Remove crossing_edge as predecessor of 'dest'. */
2089 dest = crossing_edge->dest;
2091 redirect_edge_succ (crossing_edge, new_bb);
2093 /* Make a new edge from new_bb to old dest; new edge
2094 will be a successor for new_bb and a predecessor
2095 for 'dest'. */
2097 if (EDGE_COUNT (new_bb->succs) == 0)
2098 new_edge = make_edge (new_bb, dest, 0);
2099 else
2100 new_edge = EDGE_SUCC (new_bb, 0);
2102 crossing_edge->flags &= ~EDGE_CROSSING;
2103 new_edge->flags |= EDGE_CROSSING;
2109 /* Find any unconditional branches that cross between hot and cold
2110 sections. Convert them into indirect jumps instead. */
2112 static void
2113 fix_crossing_unconditional_branches (void)
2115 basic_block cur_bb;
2116 rtx last_insn;
2117 rtx label;
2118 rtx label_addr;
2119 rtx indirect_jump_sequence;
2120 rtx jump_insn = NULL_RTX;
2121 rtx new_reg;
2122 rtx cur_insn;
2123 edge succ;
2125 FOR_EACH_BB_FN (cur_bb, cfun)
2127 last_insn = BB_END (cur_bb);
2129 if (EDGE_COUNT (cur_bb->succs) < 1)
2130 continue;
2132 succ = EDGE_SUCC (cur_bb, 0);
2134 /* Check to see if bb ends in a crossing (unconditional) jump. At
2135 this point, no crossing jumps should be conditional. */
2137 if (JUMP_P (last_insn)
2138 && (succ->flags & EDGE_CROSSING))
2140 gcc_assert (!any_condjump_p (last_insn));
2142 /* Make sure the jump is not already an indirect or table jump. */
2144 if (!computed_jump_p (last_insn)
2145 && !tablejump_p (last_insn, NULL, NULL))
2147 /* We have found a "crossing" unconditional branch. Now
2148 we must convert it to an indirect jump. First create
2149 reference of label, as target for jump. */
2151 label = JUMP_LABEL (last_insn);
2152 label_addr = gen_rtx_LABEL_REF (Pmode, label);
2153 LABEL_NUSES (label) += 1;
2155 /* Get a register to use for the indirect jump. */
2157 new_reg = gen_reg_rtx (Pmode);
2159 /* Generate indirect the jump sequence. */
2161 start_sequence ();
2162 emit_move_insn (new_reg, label_addr);
2163 emit_indirect_jump (new_reg);
2164 indirect_jump_sequence = get_insns ();
2165 end_sequence ();
2167 /* Make sure every instruction in the new jump sequence has
2168 its basic block set to be cur_bb. */
2170 for (cur_insn = indirect_jump_sequence; cur_insn;
2171 cur_insn = NEXT_INSN (cur_insn))
2173 if (!BARRIER_P (cur_insn))
2174 BLOCK_FOR_INSN (cur_insn) = cur_bb;
2175 if (JUMP_P (cur_insn))
2176 jump_insn = cur_insn;
2179 /* Insert the new (indirect) jump sequence immediately before
2180 the unconditional jump, then delete the unconditional jump. */
2182 emit_insn_before (indirect_jump_sequence, last_insn);
2183 delete_insn (last_insn);
2185 JUMP_LABEL (jump_insn) = label;
2186 LABEL_NUSES (label)++;
2188 /* Make BB_END for cur_bb be the jump instruction (NOT the
2189 barrier instruction at the end of the sequence...). */
2191 BB_END (cur_bb) = jump_insn;
2197 /* Update CROSSING_JUMP_P flags on all jump insns. */
2199 static void
2200 update_crossing_jump_flags (void)
2202 basic_block bb;
2203 edge e;
2204 edge_iterator ei;
2206 FOR_EACH_BB_FN (bb, cfun)
2207 FOR_EACH_EDGE (e, ei, bb->succs)
2208 if (e->flags & EDGE_CROSSING)
2210 if (JUMP_P (BB_END (bb))
2211 /* Some flags were added during fix_up_fall_thru_edges, via
2212 force_nonfallthru_and_redirect. */
2213 && !CROSSING_JUMP_P (BB_END (bb)))
2214 CROSSING_JUMP_P (BB_END (bb)) = 1;
2215 break;
2219 /* Reorder basic blocks. The main entry point to this file. FLAGS is
2220 the set of flags to pass to cfg_layout_initialize(). */
2222 static void
2223 reorder_basic_blocks (void)
2225 int n_traces;
2226 int i;
2227 struct trace *traces;
2229 gcc_assert (current_ir_type () == IR_RTL_CFGLAYOUT);
2231 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1)
2232 return;
2234 set_edge_can_fallthru_flag ();
2235 mark_dfs_back_edges ();
2237 /* We are estimating the length of uncond jump insn only once since the code
2238 for getting the insn length always returns the minimal length now. */
2239 if (uncond_jump_length == 0)
2240 uncond_jump_length = get_uncond_jump_length ();
2242 /* We need to know some information for each basic block. */
2243 array_size = GET_ARRAY_SIZE (last_basic_block_for_fn (cfun));
2244 bbd = XNEWVEC (bbro_basic_block_data, array_size);
2245 for (i = 0; i < array_size; i++)
2247 bbd[i].start_of_trace = -1;
2248 bbd[i].end_of_trace = -1;
2249 bbd[i].in_trace = -1;
2250 bbd[i].visited = 0;
2251 bbd[i].heap = NULL;
2252 bbd[i].node = NULL;
2255 traces = XNEWVEC (struct trace, n_basic_blocks_for_fn (cfun));
2256 n_traces = 0;
2257 find_traces (&n_traces, traces);
2258 connect_traces (n_traces, traces);
2259 FREE (traces);
2260 FREE (bbd);
2262 relink_block_chain (/*stay_in_cfglayout_mode=*/true);
2264 if (dump_file)
2266 if (dump_flags & TDF_DETAILS)
2267 dump_reg_info (dump_file);
2268 dump_flow_info (dump_file, dump_flags);
2271 /* Signal that rtl_verify_flow_info_1 can now verify that there
2272 is at most one switch between hot/cold sections. */
2273 crtl->bb_reorder_complete = true;
2276 /* Determine which partition the first basic block in the function
2277 belongs to, then find the first basic block in the current function
2278 that belongs to a different section, and insert a
2279 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
2280 instruction stream. When writing out the assembly code,
2281 encountering this note will make the compiler switch between the
2282 hot and cold text sections. */
2284 void
2285 insert_section_boundary_note (void)
2287 basic_block bb;
2288 bool switched_sections = false;
2289 int current_partition = 0;
2291 if (!crtl->has_bb_partition)
2292 return;
2294 FOR_EACH_BB_FN (bb, cfun)
2296 if (!current_partition)
2297 current_partition = BB_PARTITION (bb);
2298 if (BB_PARTITION (bb) != current_partition)
2300 gcc_assert (!switched_sections);
2301 switched_sections = true;
2302 emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS, BB_HEAD (bb));
2303 current_partition = BB_PARTITION (bb);
2308 namespace {
2310 const pass_data pass_data_reorder_blocks =
2312 RTL_PASS, /* type */
2313 "bbro", /* name */
2314 OPTGROUP_NONE, /* optinfo_flags */
2315 TV_REORDER_BLOCKS, /* tv_id */
2316 0, /* properties_required */
2317 0, /* properties_provided */
2318 0, /* properties_destroyed */
2319 0, /* todo_flags_start */
2320 0, /* todo_flags_finish */
2323 class pass_reorder_blocks : public rtl_opt_pass
2325 public:
2326 pass_reorder_blocks (gcc::context *ctxt)
2327 : rtl_opt_pass (pass_data_reorder_blocks, ctxt)
2330 /* opt_pass methods: */
2331 virtual bool gate (function *)
2333 if (targetm.cannot_modify_jumps_p ())
2334 return false;
2335 return (optimize > 0
2336 && (flag_reorder_blocks || flag_reorder_blocks_and_partition));
2339 virtual unsigned int execute (function *);
2341 }; // class pass_reorder_blocks
2343 unsigned int
2344 pass_reorder_blocks::execute (function *fun)
2346 basic_block bb;
2348 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2349 splitting possibly introduced more crossjumping opportunities. */
2350 cfg_layout_initialize (CLEANUP_EXPENSIVE);
2352 reorder_basic_blocks ();
2353 cleanup_cfg (CLEANUP_EXPENSIVE);
2355 FOR_EACH_BB_FN (bb, fun)
2356 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
2357 bb->aux = bb->next_bb;
2358 cfg_layout_finalize ();
2360 return 0;
2363 } // anon namespace
2365 rtl_opt_pass *
2366 make_pass_reorder_blocks (gcc::context *ctxt)
2368 return new pass_reorder_blocks (ctxt);
2371 /* Duplicate the blocks containing computed gotos. This basically unfactors
2372 computed gotos that were factored early on in the compilation process to
2373 speed up edge based data flow. We used to not unfactoring them again,
2374 which can seriously pessimize code with many computed jumps in the source
2375 code, such as interpreters. See e.g. PR15242. */
2377 namespace {
2379 const pass_data pass_data_duplicate_computed_gotos =
2381 RTL_PASS, /* type */
2382 "compgotos", /* name */
2383 OPTGROUP_NONE, /* optinfo_flags */
2384 TV_REORDER_BLOCKS, /* tv_id */
2385 0, /* properties_required */
2386 0, /* properties_provided */
2387 0, /* properties_destroyed */
2388 0, /* todo_flags_start */
2389 0, /* todo_flags_finish */
2392 class pass_duplicate_computed_gotos : public rtl_opt_pass
2394 public:
2395 pass_duplicate_computed_gotos (gcc::context *ctxt)
2396 : rtl_opt_pass (pass_data_duplicate_computed_gotos, ctxt)
2399 /* opt_pass methods: */
2400 virtual bool gate (function *);
2401 virtual unsigned int execute (function *);
2403 }; // class pass_duplicate_computed_gotos
2405 bool
2406 pass_duplicate_computed_gotos::gate (function *fun)
2408 if (targetm.cannot_modify_jumps_p ())
2409 return false;
2410 return (optimize > 0
2411 && flag_expensive_optimizations
2412 && ! optimize_function_for_size_p (fun));
2415 unsigned int
2416 pass_duplicate_computed_gotos::execute (function *fun)
2418 basic_block bb, new_bb;
2419 bitmap candidates;
2420 int max_size;
2421 bool changed = false;
2423 if (n_basic_blocks_for_fn (fun) <= NUM_FIXED_BLOCKS + 1)
2424 return 0;
2426 clear_bb_flags ();
2427 cfg_layout_initialize (0);
2429 /* We are estimating the length of uncond jump insn only once
2430 since the code for getting the insn length always returns
2431 the minimal length now. */
2432 if (uncond_jump_length == 0)
2433 uncond_jump_length = get_uncond_jump_length ();
2435 max_size
2436 = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
2437 candidates = BITMAP_ALLOC (NULL);
2439 /* Look for blocks that end in a computed jump, and see if such blocks
2440 are suitable for unfactoring. If a block is a candidate for unfactoring,
2441 mark it in the candidates. */
2442 FOR_EACH_BB_FN (bb, fun)
2444 rtx insn;
2445 edge e;
2446 edge_iterator ei;
2447 int size, all_flags;
2449 /* Build the reorder chain for the original order of blocks. */
2450 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
2451 bb->aux = bb->next_bb;
2453 /* Obviously the block has to end in a computed jump. */
2454 if (!computed_jump_p (BB_END (bb)))
2455 continue;
2457 /* Only consider blocks that can be duplicated. */
2458 if (CROSSING_JUMP_P (BB_END (bb))
2459 || !can_duplicate_block_p (bb))
2460 continue;
2462 /* Make sure that the block is small enough. */
2463 size = 0;
2464 FOR_BB_INSNS (bb, insn)
2465 if (INSN_P (insn))
2467 size += get_attr_min_length (insn);
2468 if (size > max_size)
2469 break;
2471 if (size > max_size)
2472 continue;
2474 /* Final check: there must not be any incoming abnormal edges. */
2475 all_flags = 0;
2476 FOR_EACH_EDGE (e, ei, bb->preds)
2477 all_flags |= e->flags;
2478 if (all_flags & EDGE_COMPLEX)
2479 continue;
2481 bitmap_set_bit (candidates, bb->index);
2484 /* Nothing to do if there is no computed jump here. */
2485 if (bitmap_empty_p (candidates))
2486 goto done;
2488 /* Duplicate computed gotos. */
2489 FOR_EACH_BB_FN (bb, fun)
2491 if (bb->flags & BB_VISITED)
2492 continue;
2494 bb->flags |= BB_VISITED;
2496 /* BB must have one outgoing edge. That edge must not lead to
2497 the exit block or the next block.
2498 The destination must have more than one predecessor. */
2499 if (!single_succ_p (bb)
2500 || single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (fun)
2501 || single_succ (bb) == bb->next_bb
2502 || single_pred_p (single_succ (bb)))
2503 continue;
2505 /* The successor block has to be a duplication candidate. */
2506 if (!bitmap_bit_p (candidates, single_succ (bb)->index))
2507 continue;
2509 /* Don't duplicate a partition crossing edge, which requires difficult
2510 fixup. */
2511 if (JUMP_P (BB_END (bb)) && CROSSING_JUMP_P (BB_END (bb)))
2512 continue;
2514 new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
2515 new_bb->aux = bb->aux;
2516 bb->aux = new_bb;
2517 new_bb->flags |= BB_VISITED;
2518 changed = true;
2521 done:
2522 if (changed)
2524 /* Duplicating blocks above will redirect edges and may cause hot
2525 blocks previously reached by both hot and cold blocks to become
2526 dominated only by cold blocks. */
2527 fixup_partitions ();
2529 /* Merge the duplicated blocks into predecessors, when possible. */
2530 cfg_layout_finalize ();
2531 cleanup_cfg (0);
2533 else
2534 cfg_layout_finalize ();
2536 BITMAP_FREE (candidates);
2537 return 0;
2540 } // anon namespace
2542 rtl_opt_pass *
2543 make_pass_duplicate_computed_gotos (gcc::context *ctxt)
2545 return new pass_duplicate_computed_gotos (ctxt);
2548 /* This function is the main 'entrance' for the optimization that
2549 partitions hot and cold basic blocks into separate sections of the
2550 .o file (to improve performance and cache locality). Ideally it
2551 would be called after all optimizations that rearrange the CFG have
2552 been called. However part of this optimization may introduce new
2553 register usage, so it must be called before register allocation has
2554 occurred. This means that this optimization is actually called
2555 well before the optimization that reorders basic blocks (see
2556 function above).
2558 This optimization checks the feedback information to determine
2559 which basic blocks are hot/cold, updates flags on the basic blocks
2560 to indicate which section they belong in. This information is
2561 later used for writing out sections in the .o file. Because hot
2562 and cold sections can be arbitrarily large (within the bounds of
2563 memory), far beyond the size of a single function, it is necessary
2564 to fix up all edges that cross section boundaries, to make sure the
2565 instructions used can actually span the required distance. The
2566 fixes are described below.
2568 Fall-through edges must be changed into jumps; it is not safe or
2569 legal to fall through across a section boundary. Whenever a
2570 fall-through edge crossing a section boundary is encountered, a new
2571 basic block is inserted (in the same section as the fall-through
2572 source), and the fall through edge is redirected to the new basic
2573 block. The new basic block contains an unconditional jump to the
2574 original fall-through target. (If the unconditional jump is
2575 insufficient to cross section boundaries, that is dealt with a
2576 little later, see below).
2578 In order to deal with architectures that have short conditional
2579 branches (which cannot span all of memory) we take any conditional
2580 jump that attempts to cross a section boundary and add a level of
2581 indirection: it becomes a conditional jump to a new basic block, in
2582 the same section. The new basic block contains an unconditional
2583 jump to the original target, in the other section.
2585 For those architectures whose unconditional branch is also
2586 incapable of reaching all of memory, those unconditional jumps are
2587 converted into indirect jumps, through a register.
2589 IMPORTANT NOTE: This optimization causes some messy interactions
2590 with the cfg cleanup optimizations; those optimizations want to
2591 merge blocks wherever possible, and to collapse indirect jump
2592 sequences (change "A jumps to B jumps to C" directly into "A jumps
2593 to C"). Those optimizations can undo the jump fixes that
2594 partitioning is required to make (see above), in order to ensure
2595 that jumps attempting to cross section boundaries are really able
2596 to cover whatever distance the jump requires (on many architectures
2597 conditional or unconditional jumps are not able to reach all of
2598 memory). Therefore tests have to be inserted into each such
2599 optimization to make sure that it does not undo stuff necessary to
2600 cross partition boundaries. This would be much less of a problem
2601 if we could perform this optimization later in the compilation, but
2602 unfortunately the fact that we may need to create indirect jumps
2603 (through registers) requires that this optimization be performed
2604 before register allocation.
2606 Hot and cold basic blocks are partitioned and put in separate
2607 sections of the .o file, to reduce paging and improve cache
2608 performance (hopefully). This can result in bits of code from the
2609 same function being widely separated in the .o file. However this
2610 is not obvious to the current bb structure. Therefore we must take
2611 care to ensure that: 1). There are no fall_thru edges that cross
2612 between sections; 2). For those architectures which have "short"
2613 conditional branches, all conditional branches that attempt to
2614 cross between sections are converted to unconditional branches;
2615 and, 3). For those architectures which have "short" unconditional
2616 branches, all unconditional branches that attempt to cross between
2617 sections are converted to indirect jumps.
2619 The code for fixing up fall_thru edges that cross between hot and
2620 cold basic blocks does so by creating new basic blocks containing
2621 unconditional branches to the appropriate label in the "other"
2622 section. The new basic block is then put in the same (hot or cold)
2623 section as the original conditional branch, and the fall_thru edge
2624 is modified to fall into the new basic block instead. By adding
2625 this level of indirection we end up with only unconditional branches
2626 crossing between hot and cold sections.
2628 Conditional branches are dealt with by adding a level of indirection.
2629 A new basic block is added in the same (hot/cold) section as the
2630 conditional branch, and the conditional branch is retargeted to the
2631 new basic block. The new basic block contains an unconditional branch
2632 to the original target of the conditional branch (in the other section).
2634 Unconditional branches are dealt with by converting them into
2635 indirect jumps. */
2637 namespace {
2639 const pass_data pass_data_partition_blocks =
2641 RTL_PASS, /* type */
2642 "bbpart", /* name */
2643 OPTGROUP_NONE, /* optinfo_flags */
2644 TV_REORDER_BLOCKS, /* tv_id */
2645 PROP_cfglayout, /* properties_required */
2646 0, /* properties_provided */
2647 0, /* properties_destroyed */
2648 0, /* todo_flags_start */
2649 0, /* todo_flags_finish */
2652 class pass_partition_blocks : public rtl_opt_pass
2654 public:
2655 pass_partition_blocks (gcc::context *ctxt)
2656 : rtl_opt_pass (pass_data_partition_blocks, ctxt)
2659 /* opt_pass methods: */
2660 virtual bool gate (function *);
2661 virtual unsigned int execute (function *);
2663 }; // class pass_partition_blocks
2665 bool
2666 pass_partition_blocks::gate (function *fun)
2668 /* The optimization to partition hot/cold basic blocks into separate
2669 sections of the .o file does not work well with linkonce or with
2670 user defined section attributes. Don't call it if either case
2671 arises. */
2672 return (flag_reorder_blocks_and_partition
2673 && optimize
2674 /* See gate_handle_reorder_blocks. We should not partition if
2675 we are going to omit the reordering. */
2676 && optimize_function_for_speed_p (fun)
2677 && !DECL_COMDAT_GROUP (current_function_decl)
2678 && !user_defined_section_attribute);
2681 unsigned
2682 pass_partition_blocks::execute (function *fun)
2684 vec<edge> crossing_edges;
2686 if (n_basic_blocks_for_fn (fun) <= NUM_FIXED_BLOCKS + 1)
2687 return 0;
2689 df_set_flags (DF_DEFER_INSN_RESCAN);
2691 crossing_edges = find_rarely_executed_basic_blocks_and_crossing_edges ();
2692 if (!crossing_edges.exists ())
2693 return 0;
2695 crtl->has_bb_partition = true;
2697 /* Make sure the source of any crossing edge ends in a jump and the
2698 destination of any crossing edge has a label. */
2699 add_labels_and_missing_jumps (crossing_edges);
2701 /* Convert all crossing fall_thru edges to non-crossing fall
2702 thrus to unconditional jumps (that jump to the original fall
2703 through dest). */
2704 fix_up_fall_thru_edges ();
2706 /* If the architecture does not have conditional branches that can
2707 span all of memory, convert crossing conditional branches into
2708 crossing unconditional branches. */
2709 if (!HAS_LONG_COND_BRANCH)
2710 fix_crossing_conditional_branches ();
2712 /* If the architecture does not have unconditional branches that
2713 can span all of memory, convert crossing unconditional branches
2714 into indirect jumps. Since adding an indirect jump also adds
2715 a new register usage, update the register usage information as
2716 well. */
2717 if (!HAS_LONG_UNCOND_BRANCH)
2718 fix_crossing_unconditional_branches ();
2720 update_crossing_jump_flags ();
2722 /* Clear bb->aux fields that the above routines were using. */
2723 clear_aux_for_blocks ();
2725 crossing_edges.release ();
2727 /* ??? FIXME: DF generates the bb info for a block immediately.
2728 And by immediately, I mean *during* creation of the block.
2730 #0 df_bb_refs_collect
2731 #1 in df_bb_refs_record
2732 #2 in create_basic_block_structure
2734 Which means that the bb_has_eh_pred test in df_bb_refs_collect
2735 will *always* fail, because no edges can have been added to the
2736 block yet. Which of course means we don't add the right
2737 artificial refs, which means we fail df_verify (much) later.
2739 Cleanest solution would seem to make DF_DEFER_INSN_RESCAN imply
2740 that we also shouldn't grab data from the new blocks those new
2741 insns are in either. In this way one can create the block, link
2742 it up properly, and have everything Just Work later, when deferred
2743 insns are processed.
2745 In the meantime, we have no other option but to throw away all
2746 of the DF data and recompute it all. */
2747 if (fun->eh->lp_array)
2749 df_finish_pass (true);
2750 df_scan_alloc (NULL);
2751 df_scan_blocks ();
2752 /* Not all post-landing pads use all of the EH_RETURN_DATA_REGNO
2753 data. We blindly generated all of them when creating the new
2754 landing pad. Delete those assignments we don't use. */
2755 df_set_flags (DF_LR_RUN_DCE);
2756 df_analyze ();
2759 return 0;
2762 } // anon namespace
2764 rtl_opt_pass *
2765 make_pass_partition_blocks (gcc::context *ctxt)
2767 return new pass_partition_blocks (ctxt);