2015-10-26 Javier Miranda <miranda@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob9b5f5dac3d90fa9e454c7f857faa22895b1be09f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Ghost; use Ghost;
44 with Itypes; use Itypes;
45 with Layout; use Layout;
46 with Lib; use Lib;
47 with Lib.Xref; use Lib.Xref;
48 with Namet; use Namet;
49 with Nmake; use Nmake;
50 with Opt; use Opt;
51 with Restrict; use Restrict;
52 with Rident; use Rident;
53 with Rtsfind; use Rtsfind;
54 with Sem; use Sem;
55 with Sem_Aux; use Sem_Aux;
56 with Sem_Case; use Sem_Case;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch6; use Sem_Ch6;
59 with Sem_Ch7; use Sem_Ch7;
60 with Sem_Ch8; use Sem_Ch8;
61 with Sem_Ch13; use Sem_Ch13;
62 with Sem_Dim; use Sem_Dim;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Dist; use Sem_Dist;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
361 procedure Constrain_Access
362 (Def_Id : in out Entity_Id;
363 S : Node_Id;
364 Related_Nod : Node_Id);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
369 procedure Constrain_Array
370 (Def_Id : in out Entity_Id;
371 SI : Node_Id;
372 Related_Nod : Node_Id;
373 Related_Id : Entity_Id;
374 Suffix : Character);
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
386 procedure Constrain_Concurrent
387 (Def_Id : in out Entity_Id;
388 SI : Node_Id;
389 Related_Nod : Node_Id;
390 Related_Id : Entity_Id;
391 Suffix : Character);
392 -- Apply list of discriminant constraints to an unconstrained concurrent
393 -- type.
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
404 -- Related_Nod gives the place where this type has to be inserted
405 -- in the tree.
407 -- The last two arguments are used to create its external name if needed.
409 function Constrain_Corresponding_Record
410 (Prot_Subt : Entity_Id;
411 Corr_Rec : Entity_Id;
412 Related_Nod : Node_Id) return Entity_Id;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
420 procedure Constrain_Discriminated_Type
421 (Def_Id : Entity_Id;
422 S : Node_Id;
423 Related_Nod : Node_Id;
424 For_Access : Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430 -- of For_Access.
432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
440 procedure Constrain_Index
441 (Index : Node_Id;
442 S : Node_Id;
443 Related_Nod : Node_Id;
444 Related_Id : Entity_Id;
445 Suffix : Character;
446 Suffix_Index : Nat);
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454 -- Build subtype of a signed or modular integer type
456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
460 procedure Copy_And_Swap (Priv, Full : Entity_Id);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
465 procedure Decimal_Fixed_Point_Type_Declaration
466 (T : Entity_Id;
467 Def : Node_Id);
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
471 procedure Complete_Private_Subtype
472 (Priv : Entity_Id;
473 Full : Entity_Id;
474 Full_Base : Entity_Id;
475 Related_Nod : Node_Id);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type : Entity_Id;
482 Tagged_Type : Entity_Id);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
491 procedure Derived_Standard_Character
492 (N : Node_Id;
493 Parent_Type : Entity_Id;
494 Derived_Type : Entity_Id);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
498 procedure Derived_Type_Declaration
499 (T : Entity_Id;
500 N : Node_Id;
501 Is_Completion : Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
515 function Expand_To_Stored_Constraint
516 (Typ : Entity_Id;
517 Constraint : Elist_Id) return Elist_Id;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
522 function Find_Type_Of_Object
523 (Obj_Def : Node_Id;
524 Related_Nod : Node_Id) return Entity_Id;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529 -- Create a new float and apply the constraint to obtain subtype of it
531 function Has_Range_Constraint (N : Node_Id) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
537 function Inherit_Components
538 (N : Node_Id;
539 Parent_Base : Entity_Id;
540 Derived_Base : Entity_Id;
541 Is_Tagged : Boolean;
542 Inherit_Discr : Boolean;
543 Discs : Elist_Id) return Elist_Id;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
549 -- N is the original derived type declaration
551 -- Is_Tagged is set if we are dealing with tagged types
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
563 -- which gets treated as
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
571 -- (Old_Component => New_Component),
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
589 function Is_Valid_Constraint_Kind
590 (T_Kind : Type_Kind;
591 Constraint_Kind : Node_Kind) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596 -- Create new modular type. Verify that modulus is in bounds
598 procedure New_Concatenation_Op (Typ : Entity_Id);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
602 procedure Ordinary_Fixed_Point_Type_Declaration
603 (T : Entity_Id;
604 Def : Node_Id);
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
608 procedure Prepare_Private_Subtype_Completion
609 (Id : Entity_Id;
610 Related_Nod : Node_Id);
611 -- Id is a subtype of some private type. Creates the full declaration
612 -- associated with Id whenever possible, i.e. when the full declaration
613 -- of the base type is already known. Records each subtype into
614 -- Private_Dependents of the base type.
616 procedure Process_Incomplete_Dependents
617 (N : Node_Id;
618 Full_T : Entity_Id;
619 Inc_T : Entity_Id);
620 -- Process all entities that depend on an incomplete type. There include
621 -- subtypes, subprogram types that mention the incomplete type in their
622 -- profiles, and subprogram with access parameters that designate the
623 -- incomplete type.
625 -- Inc_T is the defining identifier of an incomplete type declaration, its
626 -- Ekind is E_Incomplete_Type.
628 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
630 -- Full_T is N's defining identifier.
632 -- Subtypes of incomplete types with discriminants are completed when the
633 -- parent type is. This is simpler than private subtypes, because they can
634 -- only appear in the same scope, and there is no need to exchange views.
635 -- Similarly, access_to_subprogram types may have a parameter or a return
636 -- type that is an incomplete type, and that must be replaced with the
637 -- full type.
639 -- If the full type is tagged, subprogram with access parameters that
640 -- designated the incomplete may be primitive operations of the full type,
641 -- and have to be processed accordingly.
643 procedure Process_Real_Range_Specification (Def : Node_Id);
644 -- Given the type definition for a real type, this procedure processes and
645 -- checks the real range specification of this type definition if one is
646 -- present. If errors are found, error messages are posted, and the
647 -- Real_Range_Specification of Def is reset to Empty.
649 procedure Propagate_Default_Init_Cond_Attributes
650 (From_Typ : Entity_Id;
651 To_Typ : Entity_Id;
652 Parent_To_Derivation : Boolean := False;
653 Private_To_Full_View : Boolean := False);
654 -- Subsidiary to routines Build_Derived_Type and Process_Full_View. Inherit
655 -- all attributes related to pragma Default_Initial_Condition from From_Typ
656 -- to To_Typ. Flag Parent_To_Derivation should be set when the context is
657 -- the creation of a derived type. Flag Private_To_Full_View should be set
658 -- when processing both views of a private type.
660 procedure Record_Type_Declaration
661 (T : Entity_Id;
662 N : Node_Id;
663 Prev : Entity_Id);
664 -- Process a record type declaration (for both untagged and tagged
665 -- records). Parameters T and N are exactly like in procedure
666 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
667 -- for this routine. If this is the completion of an incomplete type
668 -- declaration, Prev is the entity of the incomplete declaration, used for
669 -- cross-referencing. Otherwise Prev = T.
671 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
672 -- This routine is used to process the actual record type definition (both
673 -- for untagged and tagged records). Def is a record type definition node.
674 -- This procedure analyzes the components in this record type definition.
675 -- Prev_T is the entity for the enclosing record type. It is provided so
676 -- that its Has_Task flag can be set if any of the component have Has_Task
677 -- set. If the declaration is the completion of an incomplete type
678 -- declaration, Prev_T is the original incomplete type, whose full view is
679 -- the record type.
681 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
682 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
683 -- build a copy of the declaration tree of the parent, and we create
684 -- independently the list of components for the derived type. Semantic
685 -- information uses the component entities, but record representation
686 -- clauses are validated on the declaration tree. This procedure replaces
687 -- discriminants and components in the declaration with those that have
688 -- been created by Inherit_Components.
690 procedure Set_Fixed_Range
691 (E : Entity_Id;
692 Loc : Source_Ptr;
693 Lo : Ureal;
694 Hi : Ureal);
695 -- Build a range node with the given bounds and set it as the Scalar_Range
696 -- of the given fixed-point type entity. Loc is the source location used
697 -- for the constructed range. See body for further details.
699 procedure Set_Scalar_Range_For_Subtype
700 (Def_Id : Entity_Id;
701 R : Node_Id;
702 Subt : Entity_Id);
703 -- This routine is used to set the scalar range field for a subtype given
704 -- Def_Id, the entity for the subtype, and R, the range expression for the
705 -- scalar range. Subt provides the parent subtype to be used to analyze,
706 -- resolve, and check the given range.
708 procedure Set_Default_SSO (T : Entity_Id);
709 -- T is the entity for an array or record being declared. This procedure
710 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
711 -- to the setting of Opt.Default_SSO.
713 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
714 -- Create a new signed integer entity, and apply the constraint to obtain
715 -- the required first named subtype of this type.
717 procedure Set_Stored_Constraint_From_Discriminant_Constraint
718 (E : Entity_Id);
719 -- E is some record type. This routine computes E's Stored_Constraint
720 -- from its Discriminant_Constraint.
722 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
723 -- Check that an entity in a list of progenitors is an interface,
724 -- emit error otherwise.
726 -----------------------
727 -- Access_Definition --
728 -----------------------
730 function Access_Definition
731 (Related_Nod : Node_Id;
732 N : Node_Id) return Entity_Id
734 Anon_Type : Entity_Id;
735 Anon_Scope : Entity_Id;
736 Desig_Type : Entity_Id;
737 Enclosing_Prot_Type : Entity_Id := Empty;
739 begin
740 Check_SPARK_05_Restriction ("access type is not allowed", N);
742 if Is_Entry (Current_Scope)
743 and then Is_Task_Type (Etype (Scope (Current_Scope)))
744 then
745 Error_Msg_N ("task entries cannot have access parameters", N);
746 return Empty;
747 end if;
749 -- Ada 2005: For an object declaration the corresponding anonymous
750 -- type is declared in the current scope.
752 -- If the access definition is the return type of another access to
753 -- function, scope is the current one, because it is the one of the
754 -- current type declaration, except for the pathological case below.
756 if Nkind_In (Related_Nod, N_Object_Declaration,
757 N_Access_Function_Definition)
758 then
759 Anon_Scope := Current_Scope;
761 -- A pathological case: function returning access functions that
762 -- return access functions, etc. Each anonymous access type created
763 -- is in the enclosing scope of the outermost function.
765 declare
766 Par : Node_Id;
768 begin
769 Par := Related_Nod;
770 while Nkind_In (Par, N_Access_Function_Definition,
771 N_Access_Definition)
772 loop
773 Par := Parent (Par);
774 end loop;
776 if Nkind (Par) = N_Function_Specification then
777 Anon_Scope := Scope (Defining_Entity (Par));
778 end if;
779 end;
781 -- For the anonymous function result case, retrieve the scope of the
782 -- function specification's associated entity rather than using the
783 -- current scope. The current scope will be the function itself if the
784 -- formal part is currently being analyzed, but will be the parent scope
785 -- in the case of a parameterless function, and we always want to use
786 -- the function's parent scope. Finally, if the function is a child
787 -- unit, we must traverse the tree to retrieve the proper entity.
789 elsif Nkind (Related_Nod) = N_Function_Specification
790 and then Nkind (Parent (N)) /= N_Parameter_Specification
791 then
792 -- If the current scope is a protected type, the anonymous access
793 -- is associated with one of the protected operations, and must
794 -- be available in the scope that encloses the protected declaration.
795 -- Otherwise the type is in the scope enclosing the subprogram.
797 -- If the function has formals, The return type of a subprogram
798 -- declaration is analyzed in the scope of the subprogram (see
799 -- Process_Formals) and thus the protected type, if present, is
800 -- the scope of the current function scope.
802 if Ekind (Current_Scope) = E_Protected_Type then
803 Enclosing_Prot_Type := Current_Scope;
805 elsif Ekind (Current_Scope) = E_Function
806 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
807 then
808 Enclosing_Prot_Type := Scope (Current_Scope);
809 end if;
811 if Present (Enclosing_Prot_Type) then
812 Anon_Scope := Scope (Enclosing_Prot_Type);
814 else
815 Anon_Scope := Scope (Defining_Entity (Related_Nod));
816 end if;
818 -- For an access type definition, if the current scope is a child
819 -- unit it is the scope of the type.
821 elsif Is_Compilation_Unit (Current_Scope) then
822 Anon_Scope := Current_Scope;
824 -- For access formals, access components, and access discriminants, the
825 -- scope is that of the enclosing declaration,
827 else
828 Anon_Scope := Scope (Current_Scope);
829 end if;
831 Anon_Type :=
832 Create_Itype
833 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
835 if All_Present (N)
836 and then Ada_Version >= Ada_2005
837 then
838 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
839 end if;
841 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
842 -- the corresponding semantic routine
844 if Present (Access_To_Subprogram_Definition (N)) then
846 -- Compiler runtime units are compiled in Ada 2005 mode when building
847 -- the runtime library but must also be compilable in Ada 95 mode
848 -- (when bootstrapping the compiler).
850 Check_Compiler_Unit ("anonymous access to subprogram", N);
852 Access_Subprogram_Declaration
853 (T_Name => Anon_Type,
854 T_Def => Access_To_Subprogram_Definition (N));
856 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
857 Set_Ekind
858 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
859 else
860 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
861 end if;
863 Set_Can_Use_Internal_Rep
864 (Anon_Type, not Always_Compatible_Rep_On_Target);
866 -- If the anonymous access is associated with a protected operation,
867 -- create a reference to it after the enclosing protected definition
868 -- because the itype will be used in the subsequent bodies.
870 -- If the anonymous access itself is protected, a full type
871 -- declaratiton will be created for it, so that the equivalent
872 -- record type can be constructed. For further details, see
873 -- Replace_Anonymous_Access_To_Protected-Subprogram.
875 if Ekind (Current_Scope) = E_Protected_Type
876 and then not Protected_Present (Access_To_Subprogram_Definition (N))
877 then
878 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
879 end if;
881 return Anon_Type;
882 end if;
884 Find_Type (Subtype_Mark (N));
885 Desig_Type := Entity (Subtype_Mark (N));
887 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
888 Set_Etype (Anon_Type, Anon_Type);
890 -- Make sure the anonymous access type has size and alignment fields
891 -- set, as required by gigi. This is necessary in the case of the
892 -- Task_Body_Procedure.
894 if not Has_Private_Component (Desig_Type) then
895 Layout_Type (Anon_Type);
896 end if;
898 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
899 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
900 -- the null value is allowed. In Ada 95 the null value is never allowed.
902 if Ada_Version >= Ada_2005 then
903 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
904 else
905 Set_Can_Never_Be_Null (Anon_Type, True);
906 end if;
908 -- The anonymous access type is as public as the discriminated type or
909 -- subprogram that defines it. It is imported (for back-end purposes)
910 -- if the designated type is.
912 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
914 -- Ada 2005 (AI-231): Propagate the access-constant attribute
916 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
918 -- The context is either a subprogram declaration, object declaration,
919 -- or an access discriminant, in a private or a full type declaration.
920 -- In the case of a subprogram, if the designated type is incomplete,
921 -- the operation will be a primitive operation of the full type, to be
922 -- updated subsequently. If the type is imported through a limited_with
923 -- clause, the subprogram is not a primitive operation of the type
924 -- (which is declared elsewhere in some other scope).
926 if Ekind (Desig_Type) = E_Incomplete_Type
927 and then not From_Limited_With (Desig_Type)
928 and then Is_Overloadable (Current_Scope)
929 then
930 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
931 Set_Has_Delayed_Freeze (Current_Scope);
932 end if;
934 -- Ada 2005: If the designated type is an interface that may contain
935 -- tasks, create a Master entity for the declaration. This must be done
936 -- before expansion of the full declaration, because the declaration may
937 -- include an expression that is an allocator, whose expansion needs the
938 -- proper Master for the created tasks.
940 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
941 then
942 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
943 then
944 Build_Class_Wide_Master (Anon_Type);
946 -- Similarly, if the type is an anonymous access that designates
947 -- tasks, create a master entity for it in the current context.
949 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
950 then
951 Build_Master_Entity (Defining_Identifier (Related_Nod));
952 Build_Master_Renaming (Anon_Type);
953 end if;
954 end if;
956 -- For a private component of a protected type, it is imperative that
957 -- the back-end elaborate the type immediately after the protected
958 -- declaration, because this type will be used in the declarations
959 -- created for the component within each protected body, so we must
960 -- create an itype reference for it now.
962 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
963 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
965 -- Similarly, if the access definition is the return result of a
966 -- function, create an itype reference for it because it will be used
967 -- within the function body. For a regular function that is not a
968 -- compilation unit, insert reference after the declaration. For a
969 -- protected operation, insert it after the enclosing protected type
970 -- declaration. In either case, do not create a reference for a type
971 -- obtained through a limited_with clause, because this would introduce
972 -- semantic dependencies.
974 -- Similarly, do not create a reference if the designated type is a
975 -- generic formal, because no use of it will reach the backend.
977 elsif Nkind (Related_Nod) = N_Function_Specification
978 and then not From_Limited_With (Desig_Type)
979 and then not Is_Generic_Type (Desig_Type)
980 then
981 if Present (Enclosing_Prot_Type) then
982 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
984 elsif Is_List_Member (Parent (Related_Nod))
985 and then Nkind (Parent (N)) /= N_Parameter_Specification
986 then
987 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
988 end if;
990 -- Finally, create an itype reference for an object declaration of an
991 -- anonymous access type. This is strictly necessary only for deferred
992 -- constants, but in any case will avoid out-of-scope problems in the
993 -- back-end.
995 elsif Nkind (Related_Nod) = N_Object_Declaration then
996 Build_Itype_Reference (Anon_Type, Related_Nod);
997 end if;
999 return Anon_Type;
1000 end Access_Definition;
1002 -----------------------------------
1003 -- Access_Subprogram_Declaration --
1004 -----------------------------------
1006 procedure Access_Subprogram_Declaration
1007 (T_Name : Entity_Id;
1008 T_Def : Node_Id)
1010 procedure Check_For_Premature_Usage (Def : Node_Id);
1011 -- Check that type T_Name is not used, directly or recursively, as a
1012 -- parameter or a return type in Def. Def is either a subtype, an
1013 -- access_definition, or an access_to_subprogram_definition.
1015 -------------------------------
1016 -- Check_For_Premature_Usage --
1017 -------------------------------
1019 procedure Check_For_Premature_Usage (Def : Node_Id) is
1020 Param : Node_Id;
1022 begin
1023 -- Check for a subtype mark
1025 if Nkind (Def) in N_Has_Etype then
1026 if Etype (Def) = T_Name then
1027 Error_Msg_N
1028 ("type& cannot be used before end of its declaration", Def);
1029 end if;
1031 -- If this is not a subtype, then this is an access_definition
1033 elsif Nkind (Def) = N_Access_Definition then
1034 if Present (Access_To_Subprogram_Definition (Def)) then
1035 Check_For_Premature_Usage
1036 (Access_To_Subprogram_Definition (Def));
1037 else
1038 Check_For_Premature_Usage (Subtype_Mark (Def));
1039 end if;
1041 -- The only cases left are N_Access_Function_Definition and
1042 -- N_Access_Procedure_Definition.
1044 else
1045 if Present (Parameter_Specifications (Def)) then
1046 Param := First (Parameter_Specifications (Def));
1047 while Present (Param) loop
1048 Check_For_Premature_Usage (Parameter_Type (Param));
1049 Param := Next (Param);
1050 end loop;
1051 end if;
1053 if Nkind (Def) = N_Access_Function_Definition then
1054 Check_For_Premature_Usage (Result_Definition (Def));
1055 end if;
1056 end if;
1057 end Check_For_Premature_Usage;
1059 -- Local variables
1061 Formals : constant List_Id := Parameter_Specifications (T_Def);
1062 Formal : Entity_Id;
1063 D_Ityp : Node_Id;
1064 Desig_Type : constant Entity_Id :=
1065 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1067 -- Start of processing for Access_Subprogram_Declaration
1069 begin
1070 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1072 -- Associate the Itype node with the inner full-type declaration or
1073 -- subprogram spec or entry body. This is required to handle nested
1074 -- anonymous declarations. For example:
1076 -- procedure P
1077 -- (X : access procedure
1078 -- (Y : access procedure
1079 -- (Z : access T)))
1081 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1082 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1083 N_Private_Type_Declaration,
1084 N_Private_Extension_Declaration,
1085 N_Procedure_Specification,
1086 N_Function_Specification,
1087 N_Entry_Body)
1089 or else
1090 Nkind_In (D_Ityp, N_Object_Declaration,
1091 N_Object_Renaming_Declaration,
1092 N_Formal_Object_Declaration,
1093 N_Formal_Type_Declaration,
1094 N_Task_Type_Declaration,
1095 N_Protected_Type_Declaration))
1096 loop
1097 D_Ityp := Parent (D_Ityp);
1098 pragma Assert (D_Ityp /= Empty);
1099 end loop;
1101 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1103 if Nkind_In (D_Ityp, N_Procedure_Specification,
1104 N_Function_Specification)
1105 then
1106 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1108 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1109 N_Object_Declaration,
1110 N_Object_Renaming_Declaration,
1111 N_Formal_Type_Declaration)
1112 then
1113 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1114 end if;
1116 if Nkind (T_Def) = N_Access_Function_Definition then
1117 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1118 declare
1119 Acc : constant Node_Id := Result_Definition (T_Def);
1121 begin
1122 if Present (Access_To_Subprogram_Definition (Acc))
1123 and then
1124 Protected_Present (Access_To_Subprogram_Definition (Acc))
1125 then
1126 Set_Etype
1127 (Desig_Type,
1128 Replace_Anonymous_Access_To_Protected_Subprogram
1129 (T_Def));
1131 else
1132 Set_Etype
1133 (Desig_Type,
1134 Access_Definition (T_Def, Result_Definition (T_Def)));
1135 end if;
1136 end;
1138 else
1139 Analyze (Result_Definition (T_Def));
1141 declare
1142 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1144 begin
1145 -- If a null exclusion is imposed on the result type, then
1146 -- create a null-excluding itype (an access subtype) and use
1147 -- it as the function's Etype.
1149 if Is_Access_Type (Typ)
1150 and then Null_Exclusion_In_Return_Present (T_Def)
1151 then
1152 Set_Etype (Desig_Type,
1153 Create_Null_Excluding_Itype
1154 (T => Typ,
1155 Related_Nod => T_Def,
1156 Scope_Id => Current_Scope));
1158 else
1159 if From_Limited_With (Typ) then
1161 -- AI05-151: Incomplete types are allowed in all basic
1162 -- declarations, including access to subprograms.
1164 if Ada_Version >= Ada_2012 then
1165 null;
1167 else
1168 Error_Msg_NE
1169 ("illegal use of incomplete type&",
1170 Result_Definition (T_Def), Typ);
1171 end if;
1173 elsif Ekind (Current_Scope) = E_Package
1174 and then In_Private_Part (Current_Scope)
1175 then
1176 if Ekind (Typ) = E_Incomplete_Type then
1177 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1179 elsif Is_Class_Wide_Type (Typ)
1180 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1181 then
1182 Append_Elmt
1183 (Desig_Type, Private_Dependents (Etype (Typ)));
1184 end if;
1185 end if;
1187 Set_Etype (Desig_Type, Typ);
1188 end if;
1189 end;
1190 end if;
1192 if not (Is_Type (Etype (Desig_Type))) then
1193 Error_Msg_N
1194 ("expect type in function specification",
1195 Result_Definition (T_Def));
1196 end if;
1198 else
1199 Set_Etype (Desig_Type, Standard_Void_Type);
1200 end if;
1202 if Present (Formals) then
1203 Push_Scope (Desig_Type);
1205 -- Some special tests here. These special tests can be removed
1206 -- if and when Itypes always have proper parent pointers to their
1207 -- declarations???
1209 -- Special test 1) Link defining_identifier of formals. Required by
1210 -- First_Formal to provide its functionality.
1212 declare
1213 F : Node_Id;
1215 begin
1216 F := First (Formals);
1218 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1219 -- when it is part of an unconstrained type and subtype expansion
1220 -- is disabled. To avoid back-end problems with shared profiles,
1221 -- use previous subprogram type as the designated type, and then
1222 -- remove scope added above.
1224 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1225 then
1226 Set_Etype (T_Name, T_Name);
1227 Init_Size_Align (T_Name);
1228 Set_Directly_Designated_Type (T_Name,
1229 Scope (Defining_Identifier (F)));
1230 End_Scope;
1231 return;
1232 end if;
1234 while Present (F) loop
1235 if No (Parent (Defining_Identifier (F))) then
1236 Set_Parent (Defining_Identifier (F), F);
1237 end if;
1239 Next (F);
1240 end loop;
1241 end;
1243 Process_Formals (Formals, Parent (T_Def));
1245 -- Special test 2) End_Scope requires that the parent pointer be set
1246 -- to something reasonable, but Itypes don't have parent pointers. So
1247 -- we set it and then unset it ???
1249 Set_Parent (Desig_Type, T_Name);
1250 End_Scope;
1251 Set_Parent (Desig_Type, Empty);
1252 end if;
1254 -- Check for premature usage of the type being defined
1256 Check_For_Premature_Usage (T_Def);
1258 -- The return type and/or any parameter type may be incomplete. Mark the
1259 -- subprogram_type as depending on the incomplete type, so that it can
1260 -- be updated when the full type declaration is seen. This only applies
1261 -- to incomplete types declared in some enclosing scope, not to limited
1262 -- views from other packages.
1264 -- Prior to Ada 2012, access to functions can only have in_parameters.
1266 if Present (Formals) then
1267 Formal := First_Formal (Desig_Type);
1268 while Present (Formal) loop
1269 if Ekind (Formal) /= E_In_Parameter
1270 and then Nkind (T_Def) = N_Access_Function_Definition
1271 and then Ada_Version < Ada_2012
1272 then
1273 Error_Msg_N ("functions can only have IN parameters", Formal);
1274 end if;
1276 if Ekind (Etype (Formal)) = E_Incomplete_Type
1277 and then In_Open_Scopes (Scope (Etype (Formal)))
1278 then
1279 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1280 Set_Has_Delayed_Freeze (Desig_Type);
1281 end if;
1283 Next_Formal (Formal);
1284 end loop;
1285 end if;
1287 -- Check whether an indirect call without actuals may be possible. This
1288 -- is used when resolving calls whose result is then indexed.
1290 May_Need_Actuals (Desig_Type);
1292 -- If the return type is incomplete, this is legal as long as the type
1293 -- is declared in the current scope and will be completed in it (rather
1294 -- than being part of limited view).
1296 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1297 and then not Has_Delayed_Freeze (Desig_Type)
1298 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1299 then
1300 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1301 Set_Has_Delayed_Freeze (Desig_Type);
1302 end if;
1304 Check_Delayed_Subprogram (Desig_Type);
1306 if Protected_Present (T_Def) then
1307 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1308 Set_Convention (Desig_Type, Convention_Protected);
1309 else
1310 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1311 end if;
1313 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1315 Set_Etype (T_Name, T_Name);
1316 Init_Size_Align (T_Name);
1317 Set_Directly_Designated_Type (T_Name, Desig_Type);
1319 Generate_Reference_To_Formals (T_Name);
1321 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1323 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1325 Check_Restriction (No_Access_Subprograms, T_Def);
1326 end Access_Subprogram_Declaration;
1328 ----------------------------
1329 -- Access_Type_Declaration --
1330 ----------------------------
1332 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1333 P : constant Node_Id := Parent (Def);
1334 S : constant Node_Id := Subtype_Indication (Def);
1336 Full_Desig : Entity_Id;
1338 begin
1339 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1341 -- Check for permissible use of incomplete type
1343 if Nkind (S) /= N_Subtype_Indication then
1344 Analyze (S);
1346 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
1347 Set_Directly_Designated_Type (T, Entity (S));
1349 -- If the designated type is a limited view, we cannot tell if
1350 -- the full view contains tasks, and there is no way to handle
1351 -- that full view in a client. We create a master entity for the
1352 -- scope, which will be used when a client determines that one
1353 -- is needed.
1355 if From_Limited_With (Entity (S))
1356 and then not Is_Class_Wide_Type (Entity (S))
1357 then
1358 Set_Ekind (T, E_Access_Type);
1359 Build_Master_Entity (T);
1360 Build_Master_Renaming (T);
1361 end if;
1363 else
1364 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1365 end if;
1367 -- If the access definition is of the form: ACCESS NOT NULL ..
1368 -- the subtype indication must be of an access type. Create
1369 -- a null-excluding subtype of it.
1371 if Null_Excluding_Subtype (Def) then
1372 if not Is_Access_Type (Entity (S)) then
1373 Error_Msg_N ("null exclusion must apply to access type", Def);
1375 else
1376 declare
1377 Loc : constant Source_Ptr := Sloc (S);
1378 Decl : Node_Id;
1379 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1381 begin
1382 Decl :=
1383 Make_Subtype_Declaration (Loc,
1384 Defining_Identifier => Nam,
1385 Subtype_Indication =>
1386 New_Occurrence_Of (Entity (S), Loc));
1387 Set_Null_Exclusion_Present (Decl);
1388 Insert_Before (Parent (Def), Decl);
1389 Analyze (Decl);
1390 Set_Entity (S, Nam);
1391 end;
1392 end if;
1393 end if;
1395 else
1396 Set_Directly_Designated_Type (T,
1397 Process_Subtype (S, P, T, 'P'));
1398 end if;
1400 if All_Present (Def) or Constant_Present (Def) then
1401 Set_Ekind (T, E_General_Access_Type);
1402 else
1403 Set_Ekind (T, E_Access_Type);
1404 end if;
1406 Full_Desig := Designated_Type (T);
1408 if Base_Type (Full_Desig) = T then
1409 Error_Msg_N ("access type cannot designate itself", S);
1411 -- In Ada 2005, the type may have a limited view through some unit in
1412 -- its own context, allowing the following circularity that cannot be
1413 -- detected earlier.
1415 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1416 then
1417 Error_Msg_N
1418 ("access type cannot designate its own classwide type", S);
1420 -- Clean up indication of tagged status to prevent cascaded errors
1422 Set_Is_Tagged_Type (T, False);
1423 end if;
1425 Set_Etype (T, T);
1427 -- If the type has appeared already in a with_type clause, it is frozen
1428 -- and the pointer size is already set. Else, initialize.
1430 if not From_Limited_With (T) then
1431 Init_Size_Align (T);
1432 end if;
1434 -- Note that Has_Task is always false, since the access type itself
1435 -- is not a task type. See Einfo for more description on this point.
1436 -- Exactly the same consideration applies to Has_Controlled_Component
1437 -- and to Has_Protected.
1439 Set_Has_Task (T, False);
1440 Set_Has_Controlled_Component (T, False);
1441 Set_Has_Protected (T, False);
1443 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1444 -- problems where an incomplete view of this entity has been previously
1445 -- established by a limited with and an overlaid version of this field
1446 -- (Stored_Constraint) was initialized for the incomplete view.
1448 -- This reset is performed in most cases except where the access type
1449 -- has been created for the purposes of allocating or deallocating a
1450 -- build-in-place object. Such access types have explicitly set pools
1451 -- and finalization masters.
1453 if No (Associated_Storage_Pool (T)) then
1454 Set_Finalization_Master (T, Empty);
1455 end if;
1457 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1458 -- attributes
1460 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1461 Set_Is_Access_Constant (T, Constant_Present (Def));
1462 end Access_Type_Declaration;
1464 ----------------------------------
1465 -- Add_Interface_Tag_Components --
1466 ----------------------------------
1468 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1469 Loc : constant Source_Ptr := Sloc (N);
1470 L : List_Id;
1471 Last_Tag : Node_Id;
1473 procedure Add_Tag (Iface : Entity_Id);
1474 -- Add tag for one of the progenitor interfaces
1476 -------------
1477 -- Add_Tag --
1478 -------------
1480 procedure Add_Tag (Iface : Entity_Id) is
1481 Decl : Node_Id;
1482 Def : Node_Id;
1483 Tag : Entity_Id;
1484 Offset : Entity_Id;
1486 begin
1487 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1489 -- This is a reasonable place to propagate predicates
1491 if Has_Predicates (Iface) then
1492 Set_Has_Predicates (Typ);
1493 end if;
1495 Def :=
1496 Make_Component_Definition (Loc,
1497 Aliased_Present => True,
1498 Subtype_Indication =>
1499 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1501 Tag := Make_Temporary (Loc, 'V');
1503 Decl :=
1504 Make_Component_Declaration (Loc,
1505 Defining_Identifier => Tag,
1506 Component_Definition => Def);
1508 Analyze_Component_Declaration (Decl);
1510 Set_Analyzed (Decl);
1511 Set_Ekind (Tag, E_Component);
1512 Set_Is_Tag (Tag);
1513 Set_Is_Aliased (Tag);
1514 Set_Related_Type (Tag, Iface);
1515 Init_Component_Location (Tag);
1517 pragma Assert (Is_Frozen (Iface));
1519 Set_DT_Entry_Count (Tag,
1520 DT_Entry_Count (First_Entity (Iface)));
1522 if No (Last_Tag) then
1523 Prepend (Decl, L);
1524 else
1525 Insert_After (Last_Tag, Decl);
1526 end if;
1528 Last_Tag := Decl;
1530 -- If the ancestor has discriminants we need to give special support
1531 -- to store the offset_to_top value of the secondary dispatch tables.
1532 -- For this purpose we add a supplementary component just after the
1533 -- field that contains the tag associated with each secondary DT.
1535 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1536 Def :=
1537 Make_Component_Definition (Loc,
1538 Subtype_Indication =>
1539 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1541 Offset := Make_Temporary (Loc, 'V');
1543 Decl :=
1544 Make_Component_Declaration (Loc,
1545 Defining_Identifier => Offset,
1546 Component_Definition => Def);
1548 Analyze_Component_Declaration (Decl);
1550 Set_Analyzed (Decl);
1551 Set_Ekind (Offset, E_Component);
1552 Set_Is_Aliased (Offset);
1553 Set_Related_Type (Offset, Iface);
1554 Init_Component_Location (Offset);
1555 Insert_After (Last_Tag, Decl);
1556 Last_Tag := Decl;
1557 end if;
1558 end Add_Tag;
1560 -- Local variables
1562 Elmt : Elmt_Id;
1563 Ext : Node_Id;
1564 Comp : Node_Id;
1566 -- Start of processing for Add_Interface_Tag_Components
1568 begin
1569 if not RTE_Available (RE_Interface_Tag) then
1570 Error_Msg
1571 ("(Ada 2005) interface types not supported by this run-time!",
1572 Sloc (N));
1573 return;
1574 end if;
1576 if Ekind (Typ) /= E_Record_Type
1577 or else (Is_Concurrent_Record_Type (Typ)
1578 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1579 or else (not Is_Concurrent_Record_Type (Typ)
1580 and then No (Interfaces (Typ))
1581 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1582 then
1583 return;
1584 end if;
1586 -- Find the current last tag
1588 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1589 Ext := Record_Extension_Part (Type_Definition (N));
1590 else
1591 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1592 Ext := Type_Definition (N);
1593 end if;
1595 Last_Tag := Empty;
1597 if not (Present (Component_List (Ext))) then
1598 Set_Null_Present (Ext, False);
1599 L := New_List;
1600 Set_Component_List (Ext,
1601 Make_Component_List (Loc,
1602 Component_Items => L,
1603 Null_Present => False));
1604 else
1605 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1606 L := Component_Items
1607 (Component_List
1608 (Record_Extension_Part
1609 (Type_Definition (N))));
1610 else
1611 L := Component_Items
1612 (Component_List
1613 (Type_Definition (N)));
1614 end if;
1616 -- Find the last tag component
1618 Comp := First (L);
1619 while Present (Comp) loop
1620 if Nkind (Comp) = N_Component_Declaration
1621 and then Is_Tag (Defining_Identifier (Comp))
1622 then
1623 Last_Tag := Comp;
1624 end if;
1626 Next (Comp);
1627 end loop;
1628 end if;
1630 -- At this point L references the list of components and Last_Tag
1631 -- references the current last tag (if any). Now we add the tag
1632 -- corresponding with all the interfaces that are not implemented
1633 -- by the parent.
1635 if Present (Interfaces (Typ)) then
1636 Elmt := First_Elmt (Interfaces (Typ));
1637 while Present (Elmt) loop
1638 Add_Tag (Node (Elmt));
1639 Next_Elmt (Elmt);
1640 end loop;
1641 end if;
1642 end Add_Interface_Tag_Components;
1644 -------------------------------------
1645 -- Add_Internal_Interface_Entities --
1646 -------------------------------------
1648 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1649 Elmt : Elmt_Id;
1650 Iface : Entity_Id;
1651 Iface_Elmt : Elmt_Id;
1652 Iface_Prim : Entity_Id;
1653 Ifaces_List : Elist_Id;
1654 New_Subp : Entity_Id := Empty;
1655 Prim : Entity_Id;
1656 Restore_Scope : Boolean := False;
1658 begin
1659 pragma Assert (Ada_Version >= Ada_2005
1660 and then Is_Record_Type (Tagged_Type)
1661 and then Is_Tagged_Type (Tagged_Type)
1662 and then Has_Interfaces (Tagged_Type)
1663 and then not Is_Interface (Tagged_Type));
1665 -- Ensure that the internal entities are added to the scope of the type
1667 if Scope (Tagged_Type) /= Current_Scope then
1668 Push_Scope (Scope (Tagged_Type));
1669 Restore_Scope := True;
1670 end if;
1672 Collect_Interfaces (Tagged_Type, Ifaces_List);
1674 Iface_Elmt := First_Elmt (Ifaces_List);
1675 while Present (Iface_Elmt) loop
1676 Iface := Node (Iface_Elmt);
1678 -- Originally we excluded here from this processing interfaces that
1679 -- are parents of Tagged_Type because their primitives are located
1680 -- in the primary dispatch table (and hence no auxiliary internal
1681 -- entities are required to handle secondary dispatch tables in such
1682 -- case). However, these auxiliary entities are also required to
1683 -- handle derivations of interfaces in formals of generics (see
1684 -- Derive_Subprograms).
1686 Elmt := First_Elmt (Primitive_Operations (Iface));
1687 while Present (Elmt) loop
1688 Iface_Prim := Node (Elmt);
1690 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1691 Prim :=
1692 Find_Primitive_Covering_Interface
1693 (Tagged_Type => Tagged_Type,
1694 Iface_Prim => Iface_Prim);
1696 if No (Prim) and then Serious_Errors_Detected > 0 then
1697 goto Continue;
1698 end if;
1700 pragma Assert (Present (Prim));
1702 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1703 -- differs from the name of the interface primitive then it is
1704 -- a private primitive inherited from a parent type. In such
1705 -- case, given that Tagged_Type covers the interface, the
1706 -- inherited private primitive becomes visible. For such
1707 -- purpose we add a new entity that renames the inherited
1708 -- private primitive.
1710 if Chars (Prim) /= Chars (Iface_Prim) then
1711 pragma Assert (Has_Suffix (Prim, 'P'));
1712 Derive_Subprogram
1713 (New_Subp => New_Subp,
1714 Parent_Subp => Iface_Prim,
1715 Derived_Type => Tagged_Type,
1716 Parent_Type => Iface);
1717 Set_Alias (New_Subp, Prim);
1718 Set_Is_Abstract_Subprogram
1719 (New_Subp, Is_Abstract_Subprogram (Prim));
1720 end if;
1722 Derive_Subprogram
1723 (New_Subp => New_Subp,
1724 Parent_Subp => Iface_Prim,
1725 Derived_Type => Tagged_Type,
1726 Parent_Type => Iface);
1728 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1729 -- associated with interface types. These entities are
1730 -- only registered in the list of primitives of its
1731 -- corresponding tagged type because they are only used
1732 -- to fill the contents of the secondary dispatch tables.
1733 -- Therefore they are removed from the homonym chains.
1735 Set_Is_Hidden (New_Subp);
1736 Set_Is_Internal (New_Subp);
1737 Set_Alias (New_Subp, Prim);
1738 Set_Is_Abstract_Subprogram
1739 (New_Subp, Is_Abstract_Subprogram (Prim));
1740 Set_Interface_Alias (New_Subp, Iface_Prim);
1742 -- If the returned type is an interface then propagate it to
1743 -- the returned type. Needed by the thunk to generate the code
1744 -- which displaces "this" to reference the corresponding
1745 -- secondary dispatch table in the returned object.
1747 if Is_Interface (Etype (Iface_Prim)) then
1748 Set_Etype (New_Subp, Etype (Iface_Prim));
1749 end if;
1751 -- Internal entities associated with interface types are only
1752 -- registered in the list of primitives of the tagged type.
1753 -- They are only used to fill the contents of the secondary
1754 -- dispatch tables. Therefore they are not needed in the
1755 -- homonym chains.
1757 Remove_Homonym (New_Subp);
1759 -- Hidden entities associated with interfaces must have set
1760 -- the Has_Delay_Freeze attribute to ensure that, in case
1761 -- of locally defined tagged types (or compiling with static
1762 -- dispatch tables generation disabled) the corresponding
1763 -- entry of the secondary dispatch table is filled when such
1764 -- an entity is frozen. This is an expansion activity that must
1765 -- be suppressed for ASIS because it leads to gigi elaboration
1766 -- issues in annotate mode.
1768 if not ASIS_Mode then
1769 Set_Has_Delayed_Freeze (New_Subp);
1770 end if;
1771 end if;
1773 <<Continue>>
1774 Next_Elmt (Elmt);
1775 end loop;
1777 Next_Elmt (Iface_Elmt);
1778 end loop;
1780 if Restore_Scope then
1781 Pop_Scope;
1782 end if;
1783 end Add_Internal_Interface_Entities;
1785 -----------------------------------
1786 -- Analyze_Component_Declaration --
1787 -----------------------------------
1789 procedure Analyze_Component_Declaration (N : Node_Id) is
1790 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1791 Id : constant Entity_Id := Defining_Identifier (N);
1792 E : constant Node_Id := Expression (N);
1793 Typ : constant Node_Id :=
1794 Subtype_Indication (Component_Definition (N));
1795 T : Entity_Id;
1796 P : Entity_Id;
1798 function Contains_POC (Constr : Node_Id) return Boolean;
1799 -- Determines whether a constraint uses the discriminant of a record
1800 -- type thus becoming a per-object constraint (POC).
1802 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1803 -- Typ is the type of the current component, check whether this type is
1804 -- a limited type. Used to validate declaration against that of
1805 -- enclosing record.
1807 ------------------
1808 -- Contains_POC --
1809 ------------------
1811 function Contains_POC (Constr : Node_Id) return Boolean is
1812 begin
1813 -- Prevent cascaded errors
1815 if Error_Posted (Constr) then
1816 return False;
1817 end if;
1819 case Nkind (Constr) is
1820 when N_Attribute_Reference =>
1821 return Attribute_Name (Constr) = Name_Access
1822 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1824 when N_Discriminant_Association =>
1825 return Denotes_Discriminant (Expression (Constr));
1827 when N_Identifier =>
1828 return Denotes_Discriminant (Constr);
1830 when N_Index_Or_Discriminant_Constraint =>
1831 declare
1832 IDC : Node_Id;
1834 begin
1835 IDC := First (Constraints (Constr));
1836 while Present (IDC) loop
1838 -- One per-object constraint is sufficient
1840 if Contains_POC (IDC) then
1841 return True;
1842 end if;
1844 Next (IDC);
1845 end loop;
1847 return False;
1848 end;
1850 when N_Range =>
1851 return Denotes_Discriminant (Low_Bound (Constr))
1852 or else
1853 Denotes_Discriminant (High_Bound (Constr));
1855 when N_Range_Constraint =>
1856 return Denotes_Discriminant (Range_Expression (Constr));
1858 when others =>
1859 return False;
1861 end case;
1862 end Contains_POC;
1864 ----------------------
1865 -- Is_Known_Limited --
1866 ----------------------
1868 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1869 P : constant Entity_Id := Etype (Typ);
1870 R : constant Entity_Id := Root_Type (Typ);
1872 begin
1873 if Is_Limited_Record (Typ) then
1874 return True;
1876 -- If the root type is limited (and not a limited interface)
1877 -- so is the current type
1879 elsif Is_Limited_Record (R)
1880 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1881 then
1882 return True;
1884 -- Else the type may have a limited interface progenitor, but a
1885 -- limited record parent.
1887 elsif R /= P and then Is_Limited_Record (P) then
1888 return True;
1890 else
1891 return False;
1892 end if;
1893 end Is_Known_Limited;
1895 -- Start of processing for Analyze_Component_Declaration
1897 begin
1898 Generate_Definition (Id);
1899 Enter_Name (Id);
1901 if Present (Typ) then
1902 T := Find_Type_Of_Object
1903 (Subtype_Indication (Component_Definition (N)), N);
1905 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1906 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1907 end if;
1909 -- Ada 2005 (AI-230): Access Definition case
1911 else
1912 pragma Assert (Present
1913 (Access_Definition (Component_Definition (N))));
1915 T := Access_Definition
1916 (Related_Nod => N,
1917 N => Access_Definition (Component_Definition (N)));
1918 Set_Is_Local_Anonymous_Access (T);
1920 -- Ada 2005 (AI-254)
1922 if Present (Access_To_Subprogram_Definition
1923 (Access_Definition (Component_Definition (N))))
1924 and then Protected_Present (Access_To_Subprogram_Definition
1925 (Access_Definition
1926 (Component_Definition (N))))
1927 then
1928 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1929 end if;
1930 end if;
1932 -- If the subtype is a constrained subtype of the enclosing record,
1933 -- (which must have a partial view) the back-end does not properly
1934 -- handle the recursion. Rewrite the component declaration with an
1935 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1936 -- the tree directly because side effects have already been removed from
1937 -- discriminant constraints.
1939 if Ekind (T) = E_Access_Subtype
1940 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1941 and then Comes_From_Source (T)
1942 and then Nkind (Parent (T)) = N_Subtype_Declaration
1943 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1944 then
1945 Rewrite
1946 (Subtype_Indication (Component_Definition (N)),
1947 New_Copy_Tree (Subtype_Indication (Parent (T))));
1948 T := Find_Type_Of_Object
1949 (Subtype_Indication (Component_Definition (N)), N);
1950 end if;
1952 -- If the component declaration includes a default expression, then we
1953 -- check that the component is not of a limited type (RM 3.7(5)),
1954 -- and do the special preanalysis of the expression (see section on
1955 -- "Handling of Default and Per-Object Expressions" in the spec of
1956 -- package Sem).
1958 if Present (E) then
1959 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1960 Preanalyze_Default_Expression (E, T);
1961 Check_Initialization (T, E);
1963 if Ada_Version >= Ada_2005
1964 and then Ekind (T) = E_Anonymous_Access_Type
1965 and then Etype (E) /= Any_Type
1966 then
1967 -- Check RM 3.9.2(9): "if the expected type for an expression is
1968 -- an anonymous access-to-specific tagged type, then the object
1969 -- designated by the expression shall not be dynamically tagged
1970 -- unless it is a controlling operand in a call on a dispatching
1971 -- operation"
1973 if Is_Tagged_Type (Directly_Designated_Type (T))
1974 and then
1975 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
1976 and then
1977 Ekind (Directly_Designated_Type (Etype (E))) =
1978 E_Class_Wide_Type
1979 then
1980 Error_Msg_N
1981 ("access to specific tagged type required (RM 3.9.2(9))", E);
1982 end if;
1984 -- (Ada 2005: AI-230): Accessibility check for anonymous
1985 -- components
1987 if Type_Access_Level (Etype (E)) >
1988 Deepest_Type_Access_Level (T)
1989 then
1990 Error_Msg_N
1991 ("expression has deeper access level than component " &
1992 "(RM 3.10.2 (12.2))", E);
1993 end if;
1995 -- The initialization expression is a reference to an access
1996 -- discriminant. The type of the discriminant is always deeper
1997 -- than any access type.
1999 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2000 and then Is_Entity_Name (E)
2001 and then Ekind (Entity (E)) = E_In_Parameter
2002 and then Present (Discriminal_Link (Entity (E)))
2003 then
2004 Error_Msg_N
2005 ("discriminant has deeper accessibility level than target",
2007 end if;
2008 end if;
2009 end if;
2011 -- The parent type may be a private view with unknown discriminants,
2012 -- and thus unconstrained. Regular components must be constrained.
2014 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2015 if Is_Class_Wide_Type (T) then
2016 Error_Msg_N
2017 ("class-wide subtype with unknown discriminants" &
2018 " in component declaration",
2019 Subtype_Indication (Component_Definition (N)));
2020 else
2021 Error_Msg_N
2022 ("unconstrained subtype in component declaration",
2023 Subtype_Indication (Component_Definition (N)));
2024 end if;
2026 -- Components cannot be abstract, except for the special case of
2027 -- the _Parent field (case of extending an abstract tagged type)
2029 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2030 Error_Msg_N ("type of a component cannot be abstract", N);
2031 end if;
2033 Set_Etype (Id, T);
2034 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2036 -- The component declaration may have a per-object constraint, set
2037 -- the appropriate flag in the defining identifier of the subtype.
2039 if Present (Subtype_Indication (Component_Definition (N))) then
2040 declare
2041 Sindic : constant Node_Id :=
2042 Subtype_Indication (Component_Definition (N));
2043 begin
2044 if Nkind (Sindic) = N_Subtype_Indication
2045 and then Present (Constraint (Sindic))
2046 and then Contains_POC (Constraint (Sindic))
2047 then
2048 Set_Has_Per_Object_Constraint (Id);
2049 end if;
2050 end;
2051 end if;
2053 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2054 -- out some static checks.
2056 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2057 Null_Exclusion_Static_Checks (N);
2058 end if;
2060 -- If this component is private (or depends on a private type), flag the
2061 -- record type to indicate that some operations are not available.
2063 P := Private_Component (T);
2065 if Present (P) then
2067 -- Check for circular definitions
2069 if P = Any_Type then
2070 Set_Etype (Id, Any_Type);
2072 -- There is a gap in the visibility of operations only if the
2073 -- component type is not defined in the scope of the record type.
2075 elsif Scope (P) = Scope (Current_Scope) then
2076 null;
2078 elsif Is_Limited_Type (P) then
2079 Set_Is_Limited_Composite (Current_Scope);
2081 else
2082 Set_Is_Private_Composite (Current_Scope);
2083 end if;
2084 end if;
2086 if P /= Any_Type
2087 and then Is_Limited_Type (T)
2088 and then Chars (Id) /= Name_uParent
2089 and then Is_Tagged_Type (Current_Scope)
2090 then
2091 if Is_Derived_Type (Current_Scope)
2092 and then not Is_Known_Limited (Current_Scope)
2093 then
2094 Error_Msg_N
2095 ("extension of nonlimited type cannot have limited components",
2098 if Is_Interface (Root_Type (Current_Scope)) then
2099 Error_Msg_N
2100 ("\limitedness is not inherited from limited interface", N);
2101 Error_Msg_N ("\add LIMITED to type indication", N);
2102 end if;
2104 Explain_Limited_Type (T, N);
2105 Set_Etype (Id, Any_Type);
2106 Set_Is_Limited_Composite (Current_Scope, False);
2108 elsif not Is_Derived_Type (Current_Scope)
2109 and then not Is_Limited_Record (Current_Scope)
2110 and then not Is_Concurrent_Type (Current_Scope)
2111 then
2112 Error_Msg_N
2113 ("nonlimited tagged type cannot have limited components", N);
2114 Explain_Limited_Type (T, N);
2115 Set_Etype (Id, Any_Type);
2116 Set_Is_Limited_Composite (Current_Scope, False);
2117 end if;
2118 end if;
2120 -- If the component is an unconstrained task or protected type with
2121 -- discriminants, the component and the enclosing record are limited
2122 -- and the component is constrained by its default values. Compute
2123 -- its actual subtype, else it may be allocated the maximum size by
2124 -- the backend, and possibly overflow.
2126 if Is_Concurrent_Type (T)
2127 and then not Is_Constrained (T)
2128 and then Has_Discriminants (T)
2129 and then not Has_Discriminants (Current_Scope)
2130 then
2131 declare
2132 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2134 begin
2135 Set_Etype (Id, Act_T);
2137 -- Rewrite component definition to use the constrained subtype
2139 Rewrite (Component_Definition (N),
2140 Make_Component_Definition (Loc,
2141 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2142 end;
2143 end if;
2145 Set_Original_Record_Component (Id, Id);
2147 if Has_Aspects (N) then
2148 Analyze_Aspect_Specifications (N, Id);
2149 end if;
2151 Analyze_Dimension (N);
2152 end Analyze_Component_Declaration;
2154 --------------------------
2155 -- Analyze_Declarations --
2156 --------------------------
2158 procedure Analyze_Declarations (L : List_Id) is
2159 Decl : Node_Id;
2161 procedure Adjust_Decl;
2162 -- Adjust Decl not to include implicit label declarations, since these
2163 -- have strange Sloc values that result in elaboration check problems.
2164 -- (They have the sloc of the label as found in the source, and that
2165 -- is ahead of the current declarative part).
2167 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2168 -- Determine whether Body_Decl denotes the body of a late controlled
2169 -- primitive (either Initialize, Adjust or Finalize). If this is the
2170 -- case, add a proper spec if the body lacks one. The spec is inserted
2171 -- before Body_Decl and immedately analyzed.
2173 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2174 -- Spec_Id is the entity of a package that may define abstract states.
2175 -- If the states have visible refinement, remove the visibility of each
2176 -- constituent at the end of the package body declarations.
2178 -----------------
2179 -- Adjust_Decl --
2180 -----------------
2182 procedure Adjust_Decl is
2183 begin
2184 while Present (Prev (Decl))
2185 and then Nkind (Decl) = N_Implicit_Label_Declaration
2186 loop
2187 Prev (Decl);
2188 end loop;
2189 end Adjust_Decl;
2191 --------------------------------------
2192 -- Handle_Late_Controlled_Primitive --
2193 --------------------------------------
2195 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2196 Body_Spec : constant Node_Id := Specification (Body_Decl);
2197 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2198 Loc : constant Source_Ptr := Sloc (Body_Id);
2199 Params : constant List_Id :=
2200 Parameter_Specifications (Body_Spec);
2201 Spec : Node_Id;
2202 Spec_Id : Entity_Id;
2203 Typ : Node_Id;
2205 begin
2206 -- Consider only procedure bodies whose name matches one of the three
2207 -- controlled primitives.
2209 if Nkind (Body_Spec) /= N_Procedure_Specification
2210 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2211 Name_Finalize,
2212 Name_Initialize)
2213 then
2214 return;
2216 -- A controlled primitive must have exactly one formal which is not
2217 -- an anonymous access type.
2219 elsif List_Length (Params) /= 1 then
2220 return;
2221 end if;
2223 Typ := Parameter_Type (First (Params));
2225 if Nkind (Typ) = N_Access_Definition then
2226 return;
2227 end if;
2229 Find_Type (Typ);
2231 -- The type of the formal must be derived from [Limited_]Controlled
2233 if not Is_Controlled (Entity (Typ)) then
2234 return;
2235 end if;
2237 -- Check whether a specification exists for this body. We do not
2238 -- analyze the spec of the body in full, because it will be analyzed
2239 -- again when the body is properly analyzed, and we cannot create
2240 -- duplicate entries in the formals chain. We look for an explicit
2241 -- specification because the body may be an overriding operation and
2242 -- an inherited spec may be present.
2244 Spec_Id := Current_Entity (Body_Id);
2246 while Present (Spec_Id) loop
2247 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2248 and then Scope (Spec_Id) = Current_Scope
2249 and then Present (First_Formal (Spec_Id))
2250 and then No (Next_Formal (First_Formal (Spec_Id)))
2251 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2252 and then Comes_From_Source (Spec_Id)
2253 then
2254 return;
2255 end if;
2257 Spec_Id := Homonym (Spec_Id);
2258 end loop;
2260 -- At this point the body is known to be a late controlled primitive.
2261 -- Generate a matching spec and insert it before the body. Note the
2262 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2263 -- tree in this case.
2265 Spec := Copy_Separate_Tree (Body_Spec);
2267 -- Ensure that the subprogram declaration does not inherit the null
2268 -- indicator from the body as we now have a proper spec/body pair.
2270 Set_Null_Present (Spec, False);
2272 Insert_Before_And_Analyze (Body_Decl,
2273 Make_Subprogram_Declaration (Loc, Specification => Spec));
2274 end Handle_Late_Controlled_Primitive;
2276 --------------------------------
2277 -- Remove_Visible_Refinements --
2278 --------------------------------
2280 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2281 State_Elmt : Elmt_Id;
2282 begin
2283 if Present (Abstract_States (Spec_Id)) then
2284 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2285 while Present (State_Elmt) loop
2286 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2287 Next_Elmt (State_Elmt);
2288 end loop;
2289 end if;
2290 end Remove_Visible_Refinements;
2292 -- Local variables
2294 Context : Node_Id := Empty;
2295 Freeze_From : Entity_Id := Empty;
2296 Next_Decl : Node_Id;
2298 Body_Seen : Boolean := False;
2299 -- Flag set when the first body [stub] is encountered
2301 -- Start of processing for Analyze_Declarations
2303 begin
2304 if Restriction_Check_Required (SPARK_05) then
2305 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2306 end if;
2308 Decl := First (L);
2309 while Present (Decl) loop
2311 -- Package spec cannot contain a package declaration in SPARK
2313 if Nkind (Decl) = N_Package_Declaration
2314 and then Nkind (Parent (L)) = N_Package_Specification
2315 then
2316 Check_SPARK_05_Restriction
2317 ("package specification cannot contain a package declaration",
2318 Decl);
2319 end if;
2321 -- Complete analysis of declaration
2323 Analyze (Decl);
2324 Next_Decl := Next (Decl);
2326 if No (Freeze_From) then
2327 Freeze_From := First_Entity (Current_Scope);
2328 end if;
2330 -- At the end of a declarative part, freeze remaining entities
2331 -- declared in it. The end of the visible declarations of package
2332 -- specification is not the end of a declarative part if private
2333 -- declarations are present. The end of a package declaration is a
2334 -- freezing point only if it a library package. A task definition or
2335 -- protected type definition is not a freeze point either. Finally,
2336 -- we do not freeze entities in generic scopes, because there is no
2337 -- code generated for them and freeze nodes will be generated for
2338 -- the instance.
2340 -- The end of a package instantiation is not a freeze point, but
2341 -- for now we make it one, because the generic body is inserted
2342 -- (currently) immediately after. Generic instantiations will not
2343 -- be a freeze point once delayed freezing of bodies is implemented.
2344 -- (This is needed in any case for early instantiations ???).
2346 if No (Next_Decl) then
2347 if Nkind_In (Parent (L), N_Component_List,
2348 N_Task_Definition,
2349 N_Protected_Definition)
2350 then
2351 null;
2353 elsif Nkind (Parent (L)) /= N_Package_Specification then
2354 if Nkind (Parent (L)) = N_Package_Body then
2355 Freeze_From := First_Entity (Current_Scope);
2356 end if;
2358 -- There may have been several freezing points previously,
2359 -- for example object declarations or subprogram bodies, but
2360 -- at the end of a declarative part we check freezing from
2361 -- the beginning, even though entities may already be frozen,
2362 -- in order to perform visibility checks on delayed aspects.
2364 Adjust_Decl;
2365 Freeze_All (First_Entity (Current_Scope), Decl);
2366 Freeze_From := Last_Entity (Current_Scope);
2368 elsif Scope (Current_Scope) /= Standard_Standard
2369 and then not Is_Child_Unit (Current_Scope)
2370 and then No (Generic_Parent (Parent (L)))
2371 then
2372 null;
2374 elsif L /= Visible_Declarations (Parent (L))
2375 or else No (Private_Declarations (Parent (L)))
2376 or else Is_Empty_List (Private_Declarations (Parent (L)))
2377 then
2378 Adjust_Decl;
2379 Freeze_All (First_Entity (Current_Scope), Decl);
2380 Freeze_From := Last_Entity (Current_Scope);
2382 -- At the end of the visible declarations the expressions in
2383 -- aspects of all entities declared so far must be resolved.
2384 -- The entities themselves might be frozen later, and the
2385 -- generated pragmas and attribute definition clauses analyzed
2386 -- in full at that point, but name resolution must take place
2387 -- now.
2388 -- In addition to being the proper semantics, this is mandatory
2389 -- within generic units, because global name capture requires
2390 -- those expressions to be analyzed, given that the generated
2391 -- pragmas do not appear in the original generic tree.
2393 elsif Serious_Errors_Detected = 0 then
2394 declare
2395 E : Entity_Id;
2397 begin
2398 E := First_Entity (Current_Scope);
2399 while Present (E) loop
2400 Resolve_Aspect_Expressions (E);
2401 Next_Entity (E);
2402 end loop;
2403 end;
2404 end if;
2406 -- If next node is a body then freeze all types before the body.
2407 -- An exception occurs for some expander-generated bodies. If these
2408 -- are generated at places where in general language rules would not
2409 -- allow a freeze point, then we assume that the expander has
2410 -- explicitly checked that all required types are properly frozen,
2411 -- and we do not cause general freezing here. This special circuit
2412 -- is used when the encountered body is marked as having already
2413 -- been analyzed.
2415 -- In all other cases (bodies that come from source, and expander
2416 -- generated bodies that have not been analyzed yet), freeze all
2417 -- types now. Note that in the latter case, the expander must take
2418 -- care to attach the bodies at a proper place in the tree so as to
2419 -- not cause unwanted freezing at that point.
2421 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl) then
2423 -- When a controlled type is frozen, the expander generates stream
2424 -- and controlled type support routines. If the freeze is caused
2425 -- by the stand alone body of Initialize, Adjust and Finalize, the
2426 -- expander will end up using the wrong version of these routines
2427 -- as the body has not been processed yet. To remedy this, detect
2428 -- a late controlled primitive and create a proper spec for it.
2429 -- This ensures that the primitive will override its inherited
2430 -- counterpart before the freeze takes place.
2432 -- If the declaration we just processed is a body, do not attempt
2433 -- to examine Next_Decl as the late primitive idiom can only apply
2434 -- to the first encountered body.
2436 -- The spec of the late primitive is not generated in ASIS mode to
2437 -- ensure a consistent list of primitives that indicates the true
2438 -- semantic structure of the program (which is not relevant when
2439 -- generating executable code.
2441 -- ??? a cleaner approach may be possible and/or this solution
2442 -- could be extended to general-purpose late primitives, TBD.
2444 if not ASIS_Mode and then not Body_Seen and then not Is_Body (Decl)
2445 then
2446 Body_Seen := True;
2448 if Nkind (Next_Decl) = N_Subprogram_Body then
2449 Handle_Late_Controlled_Primitive (Next_Decl);
2450 end if;
2451 end if;
2453 Adjust_Decl;
2454 Freeze_All (Freeze_From, Decl);
2455 Freeze_From := Last_Entity (Current_Scope);
2456 end if;
2458 Decl := Next_Decl;
2459 end loop;
2461 -- Analyze the contracts of packages and their bodies
2463 if Present (L) then
2464 Context := Parent (L);
2466 if Nkind (Context) = N_Package_Specification then
2468 -- When a package has private declarations, its contract must be
2469 -- analyzed at the end of the said declarations. This way both the
2470 -- analysis and freeze actions are properly synchronized in case
2471 -- of private type use within the contract.
2473 if L = Private_Declarations (Context) then
2474 Analyze_Package_Contract (Defining_Entity (Context));
2476 -- Build the bodies of the default initial condition procedures
2477 -- for all types subject to pragma Default_Initial_Condition.
2478 -- From a purely Ada stand point, this is a freezing activity,
2479 -- however freezing is not available under GNATprove_Mode. To
2480 -- accomodate both scenarios, the bodies are build at the end
2481 -- of private declaration analysis.
2483 Build_Default_Init_Cond_Procedure_Bodies (L);
2485 -- Otherwise the contract is analyzed at the end of the visible
2486 -- declarations.
2488 elsif L = Visible_Declarations (Context)
2489 and then No (Private_Declarations (Context))
2490 then
2491 Analyze_Package_Contract (Defining_Entity (Context));
2492 end if;
2494 elsif Nkind (Context) = N_Package_Body then
2495 Analyze_Package_Body_Contract (Defining_Entity (Context));
2496 end if;
2498 -- Analyze the contracts of all subprogram declarations, subprogram
2499 -- bodies and variables due to the delayed visibility needs of their
2500 -- aspects and pragmas.
2502 Decl := First (L);
2503 while Present (Decl) loop
2504 if Nkind (Decl) = N_Object_Declaration then
2505 Analyze_Object_Contract (Defining_Entity (Decl));
2507 elsif Nkind_In (Decl, N_Abstract_Subprogram_Declaration,
2508 N_Entry_Declaration,
2509 N_Generic_Subprogram_Declaration,
2510 N_Subprogram_Declaration)
2511 then
2512 Analyze_Entry_Or_Subprogram_Contract (Defining_Entity (Decl));
2514 elsif Nkind_In (Decl, N_Entry_Body, N_Subprogram_Body) then
2515 Analyze_Entry_Or_Subprogram_Body_Contract
2516 (Defining_Entity (Decl));
2518 elsif Nkind (Decl) = N_Subprogram_Body_Stub then
2519 Analyze_Subprogram_Body_Stub_Contract (Defining_Entity (Decl));
2521 elsif Nkind_In (Decl, N_Single_Task_Declaration,
2522 N_Task_Type_Declaration)
2523 then
2524 Analyze_Task_Contract (Defining_Entity (Decl));
2525 end if;
2527 Next (Decl);
2528 end loop;
2530 if Nkind (Context) = N_Package_Body then
2532 -- Ensure that all abstract states and objects declared in the
2533 -- state space of a package body are utilized as constituents.
2535 Check_Unused_Body_States (Defining_Entity (Context));
2537 -- State refinements are visible upto the end the of the package
2538 -- body declarations. Hide the state refinements from visibility
2539 -- to restore the original state conditions.
2541 Remove_Visible_Refinements (Corresponding_Spec (Context));
2542 end if;
2543 end if;
2544 end Analyze_Declarations;
2546 -----------------------------------
2547 -- Analyze_Full_Type_Declaration --
2548 -----------------------------------
2550 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2551 Def : constant Node_Id := Type_Definition (N);
2552 Def_Id : constant Entity_Id := Defining_Identifier (N);
2553 T : Entity_Id;
2554 Prev : Entity_Id;
2556 Is_Remote : constant Boolean :=
2557 (Is_Remote_Types (Current_Scope)
2558 or else Is_Remote_Call_Interface (Current_Scope))
2559 and then not (In_Private_Part (Current_Scope)
2560 or else In_Package_Body (Current_Scope));
2562 procedure Check_Nonoverridable_Aspects;
2563 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2564 -- be overridden, and can only be confirmed on derivation.
2566 procedure Check_Ops_From_Incomplete_Type;
2567 -- If there is a tagged incomplete partial view of the type, traverse
2568 -- the primitives of the incomplete view and change the type of any
2569 -- controlling formals and result to indicate the full view. The
2570 -- primitives will be added to the full type's primitive operations
2571 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2572 -- is called from Process_Incomplete_Dependents).
2574 ----------------------------------
2575 -- Check_Nonoverridable_Aspects --
2576 ----------------------------------
2578 procedure Check_Nonoverridable_Aspects is
2579 Prev_Aspects : constant List_Id :=
2580 Aspect_Specifications (Parent (Def_Id));
2581 Par_Type : Entity_Id;
2583 function Has_Aspect_Spec
2584 (Specs : List_Id;
2585 Aspect_Name : Name_Id) return Boolean;
2586 -- Check whether a list of aspect specifications includes an entry
2587 -- for a specific aspect. The list is either that of a partial or
2588 -- a full view.
2590 ---------------------
2591 -- Has_Aspect_Spec --
2592 ---------------------
2594 function Has_Aspect_Spec
2595 (Specs : List_Id;
2596 Aspect_Name : Name_Id) return Boolean
2598 Spec : Node_Id;
2599 begin
2600 Spec := First (Specs);
2601 while Present (Spec) loop
2602 if Chars (Identifier (Spec)) = Aspect_Name then
2603 return True;
2604 end if;
2605 Next (Spec);
2606 end loop;
2607 return False;
2608 end Has_Aspect_Spec;
2610 -- Start of processing for Check_Nonoverridable_Aspects
2612 begin
2614 -- Get parent type of derived type. Note that Prev is the entity
2615 -- in the partial declaration, but its contents are now those of
2616 -- full view, while Def_Id reflects the partial view.
2618 if Is_Private_Type (Def_Id) then
2619 Par_Type := Etype (Full_View (Def_Id));
2620 else
2621 Par_Type := Etype (Def_Id);
2622 end if;
2624 -- If there is an inherited Implicit_Dereference, verify that it is
2625 -- made explicit in the partial view.
2627 if Has_Discriminants (Base_Type (Par_Type))
2628 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2629 and then Present (Discriminant_Specifications (Parent (Prev)))
2630 and then Present (Get_Reference_Discriminant (Par_Type))
2631 then
2633 not Has_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference)
2634 then
2635 Error_Msg_N
2636 ("type does not inherit implicit dereference", Prev);
2638 else
2639 -- If one of the views has the aspect specified, verify that it
2640 -- is consistent with that of the parent.
2642 declare
2643 Par_Discr : constant Entity_Id :=
2644 Get_Reference_Discriminant (Par_Type);
2645 Cur_Discr : constant Entity_Id :=
2646 Get_Reference_Discriminant (Prev);
2647 begin
2648 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
2649 Error_Msg_N ("aspect incosistent with that of parent", N);
2650 end if;
2651 end;
2652 end if;
2653 end if;
2655 -- TBD : other nonoverridable aspects.
2656 end Check_Nonoverridable_Aspects;
2658 ------------------------------------
2659 -- Check_Ops_From_Incomplete_Type --
2660 ------------------------------------
2662 procedure Check_Ops_From_Incomplete_Type is
2663 Elmt : Elmt_Id;
2664 Formal : Entity_Id;
2665 Op : Entity_Id;
2667 begin
2668 if Prev /= T
2669 and then Ekind (Prev) = E_Incomplete_Type
2670 and then Is_Tagged_Type (Prev)
2671 and then Is_Tagged_Type (T)
2672 then
2673 Elmt := First_Elmt (Primitive_Operations (Prev));
2674 while Present (Elmt) loop
2675 Op := Node (Elmt);
2677 Formal := First_Formal (Op);
2678 while Present (Formal) loop
2679 if Etype (Formal) = Prev then
2680 Set_Etype (Formal, T);
2681 end if;
2683 Next_Formal (Formal);
2684 end loop;
2686 if Etype (Op) = Prev then
2687 Set_Etype (Op, T);
2688 end if;
2690 Next_Elmt (Elmt);
2691 end loop;
2692 end if;
2693 end Check_Ops_From_Incomplete_Type;
2695 -- Start of processing for Analyze_Full_Type_Declaration
2697 begin
2698 Prev := Find_Type_Name (N);
2700 -- The full view, if present, now points to the current type. If there
2701 -- is an incomplete partial view, set a link to it, to simplify the
2702 -- retrieval of primitive operations of the type.
2704 -- Ada 2005 (AI-50217): If the type was previously decorated when
2705 -- imported through a LIMITED WITH clause, it appears as incomplete
2706 -- but has no full view.
2708 if Ekind (Prev) = E_Incomplete_Type
2709 and then Present (Full_View (Prev))
2710 then
2711 T := Full_View (Prev);
2712 Set_Incomplete_View (N, Parent (Prev));
2713 else
2714 T := Prev;
2715 end if;
2717 Set_Is_Pure (T, Is_Pure (Current_Scope));
2719 -- We set the flag Is_First_Subtype here. It is needed to set the
2720 -- corresponding flag for the Implicit class-wide-type created
2721 -- during tagged types processing.
2723 Set_Is_First_Subtype (T, True);
2725 -- Only composite types other than array types are allowed to have
2726 -- discriminants.
2728 case Nkind (Def) is
2730 -- For derived types, the rule will be checked once we've figured
2731 -- out the parent type.
2733 when N_Derived_Type_Definition =>
2734 null;
2736 -- For record types, discriminants are allowed, unless we are in
2737 -- SPARK.
2739 when N_Record_Definition =>
2740 if Present (Discriminant_Specifications (N)) then
2741 Check_SPARK_05_Restriction
2742 ("discriminant type is not allowed",
2743 Defining_Identifier
2744 (First (Discriminant_Specifications (N))));
2745 end if;
2747 when others =>
2748 if Present (Discriminant_Specifications (N)) then
2749 Error_Msg_N
2750 ("elementary or array type cannot have discriminants",
2751 Defining_Identifier
2752 (First (Discriminant_Specifications (N))));
2753 end if;
2754 end case;
2756 -- Elaborate the type definition according to kind, and generate
2757 -- subsidiary (implicit) subtypes where needed. We skip this if it was
2758 -- already done (this happens during the reanalysis that follows a call
2759 -- to the high level optimizer).
2761 if not Analyzed (T) then
2762 Set_Analyzed (T);
2764 case Nkind (Def) is
2765 when N_Access_To_Subprogram_Definition =>
2766 Access_Subprogram_Declaration (T, Def);
2768 -- If this is a remote access to subprogram, we must create the
2769 -- equivalent fat pointer type, and related subprograms.
2771 if Is_Remote then
2772 Process_Remote_AST_Declaration (N);
2773 end if;
2775 -- Validate categorization rule against access type declaration
2776 -- usually a violation in Pure unit, Shared_Passive unit.
2778 Validate_Access_Type_Declaration (T, N);
2780 when N_Access_To_Object_Definition =>
2781 Access_Type_Declaration (T, Def);
2783 -- Validate categorization rule against access type declaration
2784 -- usually a violation in Pure unit, Shared_Passive unit.
2786 Validate_Access_Type_Declaration (T, N);
2788 -- If we are in a Remote_Call_Interface package and define a
2789 -- RACW, then calling stubs and specific stream attributes
2790 -- must be added.
2792 if Is_Remote
2793 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2794 then
2795 Add_RACW_Features (Def_Id);
2796 end if;
2798 when N_Array_Type_Definition =>
2799 Array_Type_Declaration (T, Def);
2801 when N_Derived_Type_Definition =>
2802 Derived_Type_Declaration (T, N, T /= Def_Id);
2804 when N_Enumeration_Type_Definition =>
2805 Enumeration_Type_Declaration (T, Def);
2807 when N_Floating_Point_Definition =>
2808 Floating_Point_Type_Declaration (T, Def);
2810 when N_Decimal_Fixed_Point_Definition =>
2811 Decimal_Fixed_Point_Type_Declaration (T, Def);
2813 when N_Ordinary_Fixed_Point_Definition =>
2814 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2816 when N_Signed_Integer_Type_Definition =>
2817 Signed_Integer_Type_Declaration (T, Def);
2819 when N_Modular_Type_Definition =>
2820 Modular_Type_Declaration (T, Def);
2822 when N_Record_Definition =>
2823 Record_Type_Declaration (T, N, Prev);
2825 -- If declaration has a parse error, nothing to elaborate.
2827 when N_Error =>
2828 null;
2830 when others =>
2831 raise Program_Error;
2833 end case;
2834 end if;
2836 if Etype (T) = Any_Type then
2837 return;
2838 end if;
2840 -- Controlled type is not allowed in SPARK
2842 if Is_Visibly_Controlled (T) then
2843 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
2844 end if;
2846 -- A type declared within a Ghost region is automatically Ghost
2847 -- (SPARK RM 6.9(2)).
2849 if Ghost_Mode > None then
2850 Set_Is_Ghost_Entity (T);
2851 end if;
2853 -- Some common processing for all types
2855 Set_Depends_On_Private (T, Has_Private_Component (T));
2856 Check_Ops_From_Incomplete_Type;
2858 -- Both the declared entity, and its anonymous base type if one was
2859 -- created, need freeze nodes allocated.
2861 declare
2862 B : constant Entity_Id := Base_Type (T);
2864 begin
2865 -- In the case where the base type differs from the first subtype, we
2866 -- pre-allocate a freeze node, and set the proper link to the first
2867 -- subtype. Freeze_Entity will use this preallocated freeze node when
2868 -- it freezes the entity.
2870 -- This does not apply if the base type is a generic type, whose
2871 -- declaration is independent of the current derived definition.
2873 if B /= T and then not Is_Generic_Type (B) then
2874 Ensure_Freeze_Node (B);
2875 Set_First_Subtype_Link (Freeze_Node (B), T);
2876 end if;
2878 -- A type that is imported through a limited_with clause cannot
2879 -- generate any code, and thus need not be frozen. However, an access
2880 -- type with an imported designated type needs a finalization list,
2881 -- which may be referenced in some other package that has non-limited
2882 -- visibility on the designated type. Thus we must create the
2883 -- finalization list at the point the access type is frozen, to
2884 -- prevent unsatisfied references at link time.
2886 if not From_Limited_With (T) or else Is_Access_Type (T) then
2887 Set_Has_Delayed_Freeze (T);
2888 end if;
2889 end;
2891 -- Case where T is the full declaration of some private type which has
2892 -- been swapped in Defining_Identifier (N).
2894 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2895 Process_Full_View (N, T, Def_Id);
2897 -- Record the reference. The form of this is a little strange, since
2898 -- the full declaration has been swapped in. So the first parameter
2899 -- here represents the entity to which a reference is made which is
2900 -- the "real" entity, i.e. the one swapped in, and the second
2901 -- parameter provides the reference location.
2903 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
2904 -- since we don't want a complaint about the full type being an
2905 -- unwanted reference to the private type
2907 declare
2908 B : constant Boolean := Has_Pragma_Unreferenced (T);
2909 begin
2910 Set_Has_Pragma_Unreferenced (T, False);
2911 Generate_Reference (T, T, 'c');
2912 Set_Has_Pragma_Unreferenced (T, B);
2913 end;
2915 Set_Completion_Referenced (Def_Id);
2917 -- For completion of incomplete type, process incomplete dependents
2918 -- and always mark the full type as referenced (it is the incomplete
2919 -- type that we get for any real reference).
2921 elsif Ekind (Prev) = E_Incomplete_Type then
2922 Process_Incomplete_Dependents (N, T, Prev);
2923 Generate_Reference (Prev, Def_Id, 'c');
2924 Set_Completion_Referenced (Def_Id);
2926 -- If not private type or incomplete type completion, this is a real
2927 -- definition of a new entity, so record it.
2929 else
2930 Generate_Definition (Def_Id);
2931 end if;
2933 -- Propagate any pending access types whose finalization masters need to
2934 -- be fully initialized from the partial to the full view. Guard against
2935 -- an illegal full view that remains unanalyzed.
2937 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
2938 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
2939 end if;
2941 if Chars (Scope (Def_Id)) = Name_System
2942 and then Chars (Def_Id) = Name_Address
2943 and then Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (N)))
2944 then
2945 Set_Is_Descendent_Of_Address (Def_Id);
2946 Set_Is_Descendent_Of_Address (Base_Type (Def_Id));
2947 Set_Is_Descendent_Of_Address (Prev);
2948 end if;
2950 Set_Optimize_Alignment_Flags (Def_Id);
2951 Check_Eliminated (Def_Id);
2953 -- If the declaration is a completion and aspects are present, apply
2954 -- them to the entity for the type which is currently the partial
2955 -- view, but which is the one that will be frozen.
2957 if Has_Aspects (N) then
2959 -- In most cases the partial view is a private type, and both views
2960 -- appear in different declarative parts. In the unusual case where
2961 -- the partial view is incomplete, perform the analysis on the
2962 -- full view, to prevent freezing anomalies with the corresponding
2963 -- class-wide type, which otherwise might be frozen before the
2964 -- dispatch table is built.
2966 if Prev /= Def_Id
2967 and then Ekind (Prev) /= E_Incomplete_Type
2968 then
2969 Analyze_Aspect_Specifications (N, Prev);
2971 -- Normal case
2973 else
2974 Analyze_Aspect_Specifications (N, Def_Id);
2975 end if;
2976 end if;
2978 if Is_Derived_Type (Prev)
2979 and then Def_Id /= Prev
2980 then
2981 Check_Nonoverridable_Aspects;
2982 end if;
2983 end Analyze_Full_Type_Declaration;
2985 ----------------------------------
2986 -- Analyze_Incomplete_Type_Decl --
2987 ----------------------------------
2989 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
2990 F : constant Boolean := Is_Pure (Current_Scope);
2991 T : Entity_Id;
2993 begin
2994 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
2996 Generate_Definition (Defining_Identifier (N));
2998 -- Process an incomplete declaration. The identifier must not have been
2999 -- declared already in the scope. However, an incomplete declaration may
3000 -- appear in the private part of a package, for a private type that has
3001 -- already been declared.
3003 -- In this case, the discriminants (if any) must match
3005 T := Find_Type_Name (N);
3007 Set_Ekind (T, E_Incomplete_Type);
3008 Init_Size_Align (T);
3009 Set_Is_First_Subtype (T, True);
3010 Set_Etype (T, T);
3012 -- An incomplete type declared within a Ghost region is automatically
3013 -- Ghost (SPARK RM 6.9(2)).
3015 if Ghost_Mode > None then
3016 Set_Is_Ghost_Entity (T);
3017 end if;
3019 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3020 -- incomplete types.
3022 if Tagged_Present (N) then
3023 Set_Is_Tagged_Type (T, True);
3024 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3025 Make_Class_Wide_Type (T);
3026 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3027 end if;
3029 Push_Scope (T);
3031 Set_Stored_Constraint (T, No_Elist);
3033 if Present (Discriminant_Specifications (N)) then
3034 Process_Discriminants (N);
3035 end if;
3037 End_Scope;
3039 -- If the type has discriminants, non-trivial subtypes may be
3040 -- declared before the full view of the type. The full views of those
3041 -- subtypes will be built after the full view of the type.
3043 Set_Private_Dependents (T, New_Elmt_List);
3044 Set_Is_Pure (T, F);
3045 end Analyze_Incomplete_Type_Decl;
3047 -----------------------------------
3048 -- Analyze_Interface_Declaration --
3049 -----------------------------------
3051 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3052 CW : constant Entity_Id := Class_Wide_Type (T);
3054 begin
3055 Set_Is_Tagged_Type (T);
3056 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3058 Set_Is_Limited_Record (T, Limited_Present (Def)
3059 or else Task_Present (Def)
3060 or else Protected_Present (Def)
3061 or else Synchronized_Present (Def));
3063 -- Type is abstract if full declaration carries keyword, or if previous
3064 -- partial view did.
3066 Set_Is_Abstract_Type (T);
3067 Set_Is_Interface (T);
3069 -- Type is a limited interface if it includes the keyword limited, task,
3070 -- protected, or synchronized.
3072 Set_Is_Limited_Interface
3073 (T, Limited_Present (Def)
3074 or else Protected_Present (Def)
3075 or else Synchronized_Present (Def)
3076 or else Task_Present (Def));
3078 Set_Interfaces (T, New_Elmt_List);
3079 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3081 -- Complete the decoration of the class-wide entity if it was already
3082 -- built (i.e. during the creation of the limited view)
3084 if Present (CW) then
3085 Set_Is_Interface (CW);
3086 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3087 end if;
3089 -- Check runtime support for synchronized interfaces
3091 if (Is_Task_Interface (T)
3092 or else Is_Protected_Interface (T)
3093 or else Is_Synchronized_Interface (T))
3094 and then not RTE_Available (RE_Select_Specific_Data)
3095 then
3096 Error_Msg_CRT ("synchronized interfaces", T);
3097 end if;
3098 end Analyze_Interface_Declaration;
3100 -----------------------------
3101 -- Analyze_Itype_Reference --
3102 -----------------------------
3104 -- Nothing to do. This node is placed in the tree only for the benefit of
3105 -- back end processing, and has no effect on the semantic processing.
3107 procedure Analyze_Itype_Reference (N : Node_Id) is
3108 begin
3109 pragma Assert (Is_Itype (Itype (N)));
3110 null;
3111 end Analyze_Itype_Reference;
3113 --------------------------------
3114 -- Analyze_Number_Declaration --
3115 --------------------------------
3117 procedure Analyze_Number_Declaration (N : Node_Id) is
3118 E : constant Node_Id := Expression (N);
3119 Id : constant Entity_Id := Defining_Identifier (N);
3120 Index : Interp_Index;
3121 It : Interp;
3122 T : Entity_Id;
3124 begin
3125 Generate_Definition (Id);
3126 Enter_Name (Id);
3128 -- A number declared within a Ghost region is automatically Ghost
3129 -- (SPARK RM 6.9(2)).
3131 if Ghost_Mode > None then
3132 Set_Is_Ghost_Entity (Id);
3133 end if;
3135 -- This is an optimization of a common case of an integer literal
3137 if Nkind (E) = N_Integer_Literal then
3138 Set_Is_Static_Expression (E, True);
3139 Set_Etype (E, Universal_Integer);
3141 Set_Etype (Id, Universal_Integer);
3142 Set_Ekind (Id, E_Named_Integer);
3143 Set_Is_Frozen (Id, True);
3144 return;
3145 end if;
3147 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3149 -- Process expression, replacing error by integer zero, to avoid
3150 -- cascaded errors or aborts further along in the processing
3152 -- Replace Error by integer zero, which seems least likely to cause
3153 -- cascaded errors.
3155 if E = Error then
3156 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3157 Set_Error_Posted (E);
3158 end if;
3160 Analyze (E);
3162 -- Verify that the expression is static and numeric. If
3163 -- the expression is overloaded, we apply the preference
3164 -- rule that favors root numeric types.
3166 if not Is_Overloaded (E) then
3167 T := Etype (E);
3168 if Has_Dynamic_Predicate_Aspect (T) then
3169 Error_Msg_N
3170 ("subtype has dynamic predicate, "
3171 & "not allowed in number declaration", N);
3172 end if;
3174 else
3175 T := Any_Type;
3177 Get_First_Interp (E, Index, It);
3178 while Present (It.Typ) loop
3179 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3180 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3181 then
3182 if T = Any_Type then
3183 T := It.Typ;
3185 elsif It.Typ = Universal_Real
3186 or else
3187 It.Typ = Universal_Integer
3188 then
3189 -- Choose universal interpretation over any other
3191 T := It.Typ;
3192 exit;
3193 end if;
3194 end if;
3196 Get_Next_Interp (Index, It);
3197 end loop;
3198 end if;
3200 if Is_Integer_Type (T) then
3201 Resolve (E, T);
3202 Set_Etype (Id, Universal_Integer);
3203 Set_Ekind (Id, E_Named_Integer);
3205 elsif Is_Real_Type (T) then
3207 -- Because the real value is converted to universal_real, this is a
3208 -- legal context for a universal fixed expression.
3210 if T = Universal_Fixed then
3211 declare
3212 Loc : constant Source_Ptr := Sloc (N);
3213 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3214 Subtype_Mark =>
3215 New_Occurrence_Of (Universal_Real, Loc),
3216 Expression => Relocate_Node (E));
3218 begin
3219 Rewrite (E, Conv);
3220 Analyze (E);
3221 end;
3223 elsif T = Any_Fixed then
3224 Error_Msg_N ("illegal context for mixed mode operation", E);
3226 -- Expression is of the form : universal_fixed * integer. Try to
3227 -- resolve as universal_real.
3229 T := Universal_Real;
3230 Set_Etype (E, T);
3231 end if;
3233 Resolve (E, T);
3234 Set_Etype (Id, Universal_Real);
3235 Set_Ekind (Id, E_Named_Real);
3237 else
3238 Wrong_Type (E, Any_Numeric);
3239 Resolve (E, T);
3241 Set_Etype (Id, T);
3242 Set_Ekind (Id, E_Constant);
3243 Set_Never_Set_In_Source (Id, True);
3244 Set_Is_True_Constant (Id, True);
3245 return;
3246 end if;
3248 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3249 Set_Etype (E, Etype (Id));
3250 end if;
3252 if not Is_OK_Static_Expression (E) then
3253 Flag_Non_Static_Expr
3254 ("non-static expression used in number declaration!", E);
3255 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3256 Set_Etype (E, Any_Type);
3257 end if;
3258 end Analyze_Number_Declaration;
3260 --------------------------------
3261 -- Analyze_Object_Declaration --
3262 --------------------------------
3264 procedure Analyze_Object_Declaration (N : Node_Id) is
3265 Loc : constant Source_Ptr := Sloc (N);
3266 Id : constant Entity_Id := Defining_Identifier (N);
3267 Act_T : Entity_Id;
3268 T : Entity_Id;
3270 E : Node_Id := Expression (N);
3271 -- E is set to Expression (N) throughout this routine. When
3272 -- Expression (N) is modified, E is changed accordingly.
3274 Prev_Entity : Entity_Id := Empty;
3276 function Count_Tasks (T : Entity_Id) return Uint;
3277 -- This function is called when a non-generic library level object of a
3278 -- task type is declared. Its function is to count the static number of
3279 -- tasks declared within the type (it is only called if Has_Tasks is set
3280 -- for T). As a side effect, if an array of tasks with non-static bounds
3281 -- or a variant record type is encountered, Check_Restriction is called
3282 -- indicating the count is unknown.
3284 function Delayed_Aspect_Present return Boolean;
3285 -- If the declaration has an expression that is an aggregate, and it
3286 -- has aspects that require delayed analysis, the resolution of the
3287 -- aggregate must be deferred to the freeze point of the objet. This
3288 -- special processing was created for address clauses, but it must
3289 -- also apply to Alignment. This must be done before the aspect
3290 -- specifications are analyzed because we must handle the aggregate
3291 -- before the analysis of the object declaration is complete.
3293 -- Any other relevant delayed aspects on object declarations ???
3295 -----------------
3296 -- Count_Tasks --
3297 -----------------
3299 function Count_Tasks (T : Entity_Id) return Uint is
3300 C : Entity_Id;
3301 X : Node_Id;
3302 V : Uint;
3304 begin
3305 if Is_Task_Type (T) then
3306 return Uint_1;
3308 elsif Is_Record_Type (T) then
3309 if Has_Discriminants (T) then
3310 Check_Restriction (Max_Tasks, N);
3311 return Uint_0;
3313 else
3314 V := Uint_0;
3315 C := First_Component (T);
3316 while Present (C) loop
3317 V := V + Count_Tasks (Etype (C));
3318 Next_Component (C);
3319 end loop;
3321 return V;
3322 end if;
3324 elsif Is_Array_Type (T) then
3325 X := First_Index (T);
3326 V := Count_Tasks (Component_Type (T));
3327 while Present (X) loop
3328 C := Etype (X);
3330 if not Is_OK_Static_Subtype (C) then
3331 Check_Restriction (Max_Tasks, N);
3332 return Uint_0;
3333 else
3334 V := V * (UI_Max (Uint_0,
3335 Expr_Value (Type_High_Bound (C)) -
3336 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3337 end if;
3339 Next_Index (X);
3340 end loop;
3342 return V;
3344 else
3345 return Uint_0;
3346 end if;
3347 end Count_Tasks;
3349 ----------------------------
3350 -- Delayed_Aspect_Present --
3351 ----------------------------
3353 function Delayed_Aspect_Present return Boolean is
3354 A : Node_Id;
3355 A_Id : Aspect_Id;
3357 begin
3358 if Present (Aspect_Specifications (N)) then
3359 A := First (Aspect_Specifications (N));
3360 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3361 while Present (A) loop
3362 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3363 return True;
3364 end if;
3366 Next (A);
3367 end loop;
3368 end if;
3370 return False;
3371 end Delayed_Aspect_Present;
3373 -- Local variables
3375 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
3377 -- Start of processing for Analyze_Object_Declaration
3379 begin
3380 -- There are three kinds of implicit types generated by an
3381 -- object declaration:
3383 -- 1. Those generated by the original Object Definition
3385 -- 2. Those generated by the Expression
3387 -- 3. Those used to constrain the Object Definition with the
3388 -- expression constraints when the definition is unconstrained.
3390 -- They must be generated in this order to avoid order of elaboration
3391 -- issues. Thus the first step (after entering the name) is to analyze
3392 -- the object definition.
3394 if Constant_Present (N) then
3395 Prev_Entity := Current_Entity_In_Scope (Id);
3397 if Present (Prev_Entity)
3398 and then
3399 -- If the homograph is an implicit subprogram, it is overridden
3400 -- by the current declaration.
3402 ((Is_Overloadable (Prev_Entity)
3403 and then Is_Inherited_Operation (Prev_Entity))
3405 -- The current object is a discriminal generated for an entry
3406 -- family index. Even though the index is a constant, in this
3407 -- particular context there is no true constant redeclaration.
3408 -- Enter_Name will handle the visibility.
3410 or else
3411 (Is_Discriminal (Id)
3412 and then Ekind (Discriminal_Link (Id)) =
3413 E_Entry_Index_Parameter)
3415 -- The current object is the renaming for a generic declared
3416 -- within the instance.
3418 or else
3419 (Ekind (Prev_Entity) = E_Package
3420 and then Nkind (Parent (Prev_Entity)) =
3421 N_Package_Renaming_Declaration
3422 and then not Comes_From_Source (Prev_Entity)
3423 and then
3424 Is_Generic_Instance (Renamed_Entity (Prev_Entity))))
3425 then
3426 Prev_Entity := Empty;
3427 end if;
3428 end if;
3430 -- The object declaration is Ghost when it is subject to pragma Ghost or
3431 -- completes a deferred Ghost constant. Set the mode now to ensure that
3432 -- any nodes generated during analysis and expansion are properly marked
3433 -- as Ghost.
3435 Set_Ghost_Mode (N, Prev_Entity);
3437 if Present (Prev_Entity) then
3438 Constant_Redeclaration (Id, N, T);
3440 Generate_Reference (Prev_Entity, Id, 'c');
3441 Set_Completion_Referenced (Id);
3443 if Error_Posted (N) then
3445 -- Type mismatch or illegal redeclaration, Do not analyze
3446 -- expression to avoid cascaded errors.
3448 T := Find_Type_Of_Object (Object_Definition (N), N);
3449 Set_Etype (Id, T);
3450 Set_Ekind (Id, E_Variable);
3451 goto Leave;
3452 end if;
3454 -- In the normal case, enter identifier at the start to catch premature
3455 -- usage in the initialization expression.
3457 else
3458 Generate_Definition (Id);
3459 Enter_Name (Id);
3461 Mark_Coextensions (N, Object_Definition (N));
3463 T := Find_Type_Of_Object (Object_Definition (N), N);
3465 if Nkind (Object_Definition (N)) = N_Access_Definition
3466 and then Present
3467 (Access_To_Subprogram_Definition (Object_Definition (N)))
3468 and then Protected_Present
3469 (Access_To_Subprogram_Definition (Object_Definition (N)))
3470 then
3471 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3472 end if;
3474 if Error_Posted (Id) then
3475 Set_Etype (Id, T);
3476 Set_Ekind (Id, E_Variable);
3477 goto Leave;
3478 end if;
3479 end if;
3481 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3482 -- out some static checks
3484 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
3486 -- In case of aggregates we must also take care of the correct
3487 -- initialization of nested aggregates bug this is done at the
3488 -- point of the analysis of the aggregate (see sem_aggr.adb).
3490 if Present (Expression (N))
3491 and then Nkind (Expression (N)) = N_Aggregate
3492 then
3493 null;
3495 else
3496 declare
3497 Save_Typ : constant Entity_Id := Etype (Id);
3498 begin
3499 Set_Etype (Id, T); -- Temp. decoration for static checks
3500 Null_Exclusion_Static_Checks (N);
3501 Set_Etype (Id, Save_Typ);
3502 end;
3503 end if;
3504 end if;
3506 -- Object is marked pure if it is in a pure scope
3508 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3510 -- If deferred constant, make sure context is appropriate. We detect
3511 -- a deferred constant as a constant declaration with no expression.
3512 -- A deferred constant can appear in a package body if its completion
3513 -- is by means of an interface pragma.
3515 if Constant_Present (N) and then No (E) then
3517 -- A deferred constant may appear in the declarative part of the
3518 -- following constructs:
3520 -- blocks
3521 -- entry bodies
3522 -- extended return statements
3523 -- package specs
3524 -- package bodies
3525 -- subprogram bodies
3526 -- task bodies
3528 -- When declared inside a package spec, a deferred constant must be
3529 -- completed by a full constant declaration or pragma Import. In all
3530 -- other cases, the only proper completion is pragma Import. Extended
3531 -- return statements are flagged as invalid contexts because they do
3532 -- not have a declarative part and so cannot accommodate the pragma.
3534 if Ekind (Current_Scope) = E_Return_Statement then
3535 Error_Msg_N
3536 ("invalid context for deferred constant declaration (RM 7.4)",
3538 Error_Msg_N
3539 ("\declaration requires an initialization expression",
3541 Set_Constant_Present (N, False);
3543 -- In Ada 83, deferred constant must be of private type
3545 elsif not Is_Private_Type (T) then
3546 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3547 Error_Msg_N
3548 ("(Ada 83) deferred constant must be private type", N);
3549 end if;
3550 end if;
3552 -- If not a deferred constant, then the object declaration freezes
3553 -- its type, unless the object is of an anonymous type and has delayed
3554 -- aspects. In that case the type is frozen when the object itself is.
3556 else
3557 Check_Fully_Declared (T, N);
3559 if Has_Delayed_Aspects (Id)
3560 and then Is_Array_Type (T)
3561 and then Is_Itype (T)
3562 then
3563 Set_Has_Delayed_Freeze (T);
3564 else
3565 Freeze_Before (N, T);
3566 end if;
3567 end if;
3569 -- If the object was created by a constrained array definition, then
3570 -- set the link in both the anonymous base type and anonymous subtype
3571 -- that are built to represent the array type to point to the object.
3573 if Nkind (Object_Definition (Declaration_Node (Id))) =
3574 N_Constrained_Array_Definition
3575 then
3576 Set_Related_Array_Object (T, Id);
3577 Set_Related_Array_Object (Base_Type (T), Id);
3578 end if;
3580 -- Special checks for protected objects not at library level
3582 if Is_Protected_Type (T)
3583 and then not Is_Library_Level_Entity (Id)
3584 then
3585 Check_Restriction (No_Local_Protected_Objects, Id);
3587 -- Protected objects with interrupt handlers must be at library level
3589 -- Ada 2005: This test is not needed (and the corresponding clause
3590 -- in the RM is removed) because accessibility checks are sufficient
3591 -- to make handlers not at the library level illegal.
3593 -- AI05-0303: The AI is in fact a binding interpretation, and thus
3594 -- applies to the '95 version of the language as well.
3596 if Has_Interrupt_Handler (T) and then Ada_Version < Ada_95 then
3597 Error_Msg_N
3598 ("interrupt object can only be declared at library level", Id);
3599 end if;
3600 end if;
3602 -- The actual subtype of the object is the nominal subtype, unless
3603 -- the nominal one is unconstrained and obtained from the expression.
3605 Act_T := T;
3607 -- These checks should be performed before the initialization expression
3608 -- is considered, so that the Object_Definition node is still the same
3609 -- as in source code.
3611 -- In SPARK, the nominal subtype is always given by a subtype mark
3612 -- and must not be unconstrained. (The only exception to this is the
3613 -- acceptance of declarations of constants of type String.)
3615 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
3616 then
3617 Check_SPARK_05_Restriction
3618 ("subtype mark required", Object_Definition (N));
3620 elsif Is_Array_Type (T)
3621 and then not Is_Constrained (T)
3622 and then T /= Standard_String
3623 then
3624 Check_SPARK_05_Restriction
3625 ("subtype mark of constrained type expected",
3626 Object_Definition (N));
3627 end if;
3629 -- There are no aliased objects in SPARK
3631 if Aliased_Present (N) then
3632 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
3633 end if;
3635 -- Process initialization expression if present and not in error
3637 if Present (E) and then E /= Error then
3639 -- Generate an error in case of CPP class-wide object initialization.
3640 -- Required because otherwise the expansion of the class-wide
3641 -- assignment would try to use 'size to initialize the object
3642 -- (primitive that is not available in CPP tagged types).
3644 if Is_Class_Wide_Type (Act_T)
3645 and then
3646 (Is_CPP_Class (Root_Type (Etype (Act_T)))
3647 or else
3648 (Present (Full_View (Root_Type (Etype (Act_T))))
3649 and then
3650 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
3651 then
3652 Error_Msg_N
3653 ("predefined assignment not available for 'C'P'P tagged types",
3655 end if;
3657 Mark_Coextensions (N, E);
3658 Analyze (E);
3660 -- In case of errors detected in the analysis of the expression,
3661 -- decorate it with the expected type to avoid cascaded errors
3663 if No (Etype (E)) then
3664 Set_Etype (E, T);
3665 end if;
3667 -- If an initialization expression is present, then we set the
3668 -- Is_True_Constant flag. It will be reset if this is a variable
3669 -- and it is indeed modified.
3671 Set_Is_True_Constant (Id, True);
3673 -- If we are analyzing a constant declaration, set its completion
3674 -- flag after analyzing and resolving the expression.
3676 if Constant_Present (N) then
3677 Set_Has_Completion (Id);
3678 end if;
3680 -- Set type and resolve (type may be overridden later on). Note:
3681 -- Ekind (Id) must still be E_Void at this point so that incorrect
3682 -- early usage within E is properly diagnosed.
3684 Set_Etype (Id, T);
3686 -- If the expression is an aggregate we must look ahead to detect
3687 -- the possible presence of an address clause, and defer resolution
3688 -- and expansion of the aggregate to the freeze point of the entity.
3690 -- This is not always legal because the aggregate may contain other
3691 -- references that need freezing, e.g. references to other entities
3692 -- with address clauses. In any case, when compiling with -gnatI the
3693 -- presence of the address clause must be ignored.
3695 if Comes_From_Source (N)
3696 and then Expander_Active
3697 and then Nkind (E) = N_Aggregate
3698 and then
3699 ((Present (Following_Address_Clause (N))
3700 and then not Ignore_Rep_Clauses)
3701 or else Delayed_Aspect_Present)
3702 then
3703 Set_Etype (E, T);
3705 else
3706 Resolve (E, T);
3707 end if;
3709 -- No further action needed if E is a call to an inlined function
3710 -- which returns an unconstrained type and it has been expanded into
3711 -- a procedure call. In that case N has been replaced by an object
3712 -- declaration without initializing expression and it has been
3713 -- analyzed (see Expand_Inlined_Call).
3715 if Back_End_Inlining
3716 and then Expander_Active
3717 and then Nkind (E) = N_Function_Call
3718 and then Nkind (Name (E)) in N_Has_Entity
3719 and then Is_Inlined (Entity (Name (E)))
3720 and then not Is_Constrained (Etype (E))
3721 and then Analyzed (N)
3722 and then No (Expression (N))
3723 then
3724 Ghost_Mode := Save_Ghost_Mode;
3725 return;
3726 end if;
3728 -- If E is null and has been replaced by an N_Raise_Constraint_Error
3729 -- node (which was marked already-analyzed), we need to set the type
3730 -- to something other than Any_Access in order to keep gigi happy.
3732 if Etype (E) = Any_Access then
3733 Set_Etype (E, T);
3734 end if;
3736 -- If the object is an access to variable, the initialization
3737 -- expression cannot be an access to constant.
3739 if Is_Access_Type (T)
3740 and then not Is_Access_Constant (T)
3741 and then Is_Access_Type (Etype (E))
3742 and then Is_Access_Constant (Etype (E))
3743 then
3744 Error_Msg_N
3745 ("access to variable cannot be initialized with an "
3746 & "access-to-constant expression", E);
3747 end if;
3749 if not Assignment_OK (N) then
3750 Check_Initialization (T, E);
3751 end if;
3753 Check_Unset_Reference (E);
3755 -- If this is a variable, then set current value. If this is a
3756 -- declared constant of a scalar type with a static expression,
3757 -- indicate that it is always valid.
3759 if not Constant_Present (N) then
3760 if Compile_Time_Known_Value (E) then
3761 Set_Current_Value (Id, E);
3762 end if;
3764 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
3765 Set_Is_Known_Valid (Id);
3766 end if;
3768 -- Deal with setting of null flags
3770 if Is_Access_Type (T) then
3771 if Known_Non_Null (E) then
3772 Set_Is_Known_Non_Null (Id, True);
3773 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
3774 Set_Is_Known_Null (Id, True);
3775 end if;
3776 end if;
3778 -- Check incorrect use of dynamically tagged expressions
3780 if Is_Tagged_Type (T) then
3781 Check_Dynamically_Tagged_Expression
3782 (Expr => E,
3783 Typ => T,
3784 Related_Nod => N);
3785 end if;
3787 Apply_Scalar_Range_Check (E, T);
3788 Apply_Static_Length_Check (E, T);
3790 if Nkind (Original_Node (N)) = N_Object_Declaration
3791 and then Comes_From_Source (Original_Node (N))
3793 -- Only call test if needed
3795 and then Restriction_Check_Required (SPARK_05)
3796 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
3797 then
3798 Check_SPARK_05_Restriction
3799 ("initialization expression is not appropriate", E);
3800 end if;
3802 -- A formal parameter of a specific tagged type whose related
3803 -- subprogram is subject to pragma Extensions_Visible with value
3804 -- "False" cannot be implicitly converted to a class-wide type by
3805 -- means of an initialization expression (SPARK RM 6.1.7(3)).
3807 if Is_Class_Wide_Type (T) and then Is_EVF_Expression (E) then
3808 Error_Msg_N
3809 ("formal parameter with Extensions_Visible False cannot be "
3810 & "implicitly converted to class-wide type", E);
3811 end if;
3812 end if;
3814 -- If the No_Streams restriction is set, check that the type of the
3815 -- object is not, and does not contain, any subtype derived from
3816 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
3817 -- Has_Stream just for efficiency reasons. There is no point in
3818 -- spending time on a Has_Stream check if the restriction is not set.
3820 if Restriction_Check_Required (No_Streams) then
3821 if Has_Stream (T) then
3822 Check_Restriction (No_Streams, N);
3823 end if;
3824 end if;
3826 -- Deal with predicate check before we start to do major rewriting. It
3827 -- is OK to initialize and then check the initialized value, since the
3828 -- object goes out of scope if we get a predicate failure. Note that we
3829 -- do this in the analyzer and not the expander because the analyzer
3830 -- does some substantial rewriting in some cases.
3832 -- We need a predicate check if the type has predicates, and if either
3833 -- there is an initializing expression, or for default initialization
3834 -- when we have at least one case of an explicit default initial value
3835 -- and then this is not an internal declaration whose initialization
3836 -- comes later (as for an aggregate expansion).
3838 if not Suppress_Assignment_Checks (N)
3839 and then Present (Predicate_Function (T))
3840 and then not No_Initialization (N)
3841 and then
3842 (Present (E)
3843 or else
3844 Is_Partially_Initialized_Type (T, Include_Implicit => False))
3845 then
3846 -- If the type has a static predicate and the expression is known at
3847 -- compile time, see if the expression satisfies the predicate.
3849 if Present (E) then
3850 Check_Expression_Against_Static_Predicate (E, T);
3851 end if;
3853 Insert_After (N,
3854 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
3855 end if;
3857 -- Case of unconstrained type
3859 if not Is_Definite_Subtype (T) then
3861 -- In SPARK, a declaration of unconstrained type is allowed
3862 -- only for constants of type string.
3864 if Is_String_Type (T) and then not Constant_Present (N) then
3865 Check_SPARK_05_Restriction
3866 ("declaration of object of unconstrained type not allowed", N);
3867 end if;
3869 -- Nothing to do in deferred constant case
3871 if Constant_Present (N) and then No (E) then
3872 null;
3874 -- Case of no initialization present
3876 elsif No (E) then
3877 if No_Initialization (N) then
3878 null;
3880 elsif Is_Class_Wide_Type (T) then
3881 Error_Msg_N
3882 ("initialization required in class-wide declaration ", N);
3884 else
3885 Error_Msg_N
3886 ("unconstrained subtype not allowed (need initialization)",
3887 Object_Definition (N));
3889 if Is_Record_Type (T) and then Has_Discriminants (T) then
3890 Error_Msg_N
3891 ("\provide initial value or explicit discriminant values",
3892 Object_Definition (N));
3894 Error_Msg_NE
3895 ("\or give default discriminant values for type&",
3896 Object_Definition (N), T);
3898 elsif Is_Array_Type (T) then
3899 Error_Msg_N
3900 ("\provide initial value or explicit array bounds",
3901 Object_Definition (N));
3902 end if;
3903 end if;
3905 -- Case of initialization present but in error. Set initial
3906 -- expression as absent (but do not make above complaints)
3908 elsif E = Error then
3909 Set_Expression (N, Empty);
3910 E := Empty;
3912 -- Case of initialization present
3914 else
3915 -- Check restrictions in Ada 83
3917 if not Constant_Present (N) then
3919 -- Unconstrained variables not allowed in Ada 83 mode
3921 if Ada_Version = Ada_83
3922 and then Comes_From_Source (Object_Definition (N))
3923 then
3924 Error_Msg_N
3925 ("(Ada 83) unconstrained variable not allowed",
3926 Object_Definition (N));
3927 end if;
3928 end if;
3930 -- Now we constrain the variable from the initializing expression
3932 -- If the expression is an aggregate, it has been expanded into
3933 -- individual assignments. Retrieve the actual type from the
3934 -- expanded construct.
3936 if Is_Array_Type (T)
3937 and then No_Initialization (N)
3938 and then Nkind (Original_Node (E)) = N_Aggregate
3939 then
3940 Act_T := Etype (E);
3942 -- In case of class-wide interface object declarations we delay
3943 -- the generation of the equivalent record type declarations until
3944 -- its expansion because there are cases in they are not required.
3946 elsif Is_Interface (T) then
3947 null;
3949 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
3950 -- we should prevent the generation of another Itype with the
3951 -- same name as the one already generated, or we end up with
3952 -- two identical types in GNATprove.
3954 elsif GNATprove_Mode then
3955 null;
3957 -- If the type is an unchecked union, no subtype can be built from
3958 -- the expression. Rewrite declaration as a renaming, which the
3959 -- back-end can handle properly. This is a rather unusual case,
3960 -- because most unchecked_union declarations have default values
3961 -- for discriminants and are thus not indefinite.
3963 elsif Is_Unchecked_Union (T) then
3964 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
3965 Set_Ekind (Id, E_Constant);
3966 else
3967 Set_Ekind (Id, E_Variable);
3968 end if;
3970 -- An object declared within a Ghost region is automatically
3971 -- Ghost (SPARK RM 6.9(2)).
3973 if Ghost_Mode > None then
3974 Set_Is_Ghost_Entity (Id);
3976 -- The Ghost policy in effect at the point of declaration
3977 -- and at the point of completion must match
3978 -- (SPARK RM 6.9(14)).
3980 if Present (Prev_Entity)
3981 and then Is_Ghost_Entity (Prev_Entity)
3982 then
3983 Check_Ghost_Completion (Prev_Entity, Id);
3984 end if;
3985 end if;
3987 Rewrite (N,
3988 Make_Object_Renaming_Declaration (Loc,
3989 Defining_Identifier => Id,
3990 Subtype_Mark => New_Occurrence_Of (T, Loc),
3991 Name => E));
3993 Set_Renamed_Object (Id, E);
3994 Freeze_Before (N, T);
3995 Set_Is_Frozen (Id);
3997 Ghost_Mode := Save_Ghost_Mode;
3998 return;
4000 else
4001 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
4002 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4003 end if;
4005 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4007 if Aliased_Present (N) then
4008 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4009 end if;
4011 Freeze_Before (N, Act_T);
4012 Freeze_Before (N, T);
4013 end if;
4015 elsif Is_Array_Type (T)
4016 and then No_Initialization (N)
4017 and then Nkind (Original_Node (E)) = N_Aggregate
4018 then
4019 if not Is_Entity_Name (Object_Definition (N)) then
4020 Act_T := Etype (E);
4021 Check_Compile_Time_Size (Act_T);
4023 if Aliased_Present (N) then
4024 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4025 end if;
4026 end if;
4028 -- When the given object definition and the aggregate are specified
4029 -- independently, and their lengths might differ do a length check.
4030 -- This cannot happen if the aggregate is of the form (others =>...)
4032 if not Is_Constrained (T) then
4033 null;
4035 elsif Nkind (E) = N_Raise_Constraint_Error then
4037 -- Aggregate is statically illegal. Place back in declaration
4039 Set_Expression (N, E);
4040 Set_No_Initialization (N, False);
4042 elsif T = Etype (E) then
4043 null;
4045 elsif Nkind (E) = N_Aggregate
4046 and then Present (Component_Associations (E))
4047 and then Present (Choices (First (Component_Associations (E))))
4048 and then Nkind (First
4049 (Choices (First (Component_Associations (E))))) = N_Others_Choice
4050 then
4051 null;
4053 else
4054 Apply_Length_Check (E, T);
4055 end if;
4057 -- If the type is limited unconstrained with defaulted discriminants and
4058 -- there is no expression, then the object is constrained by the
4059 -- defaults, so it is worthwhile building the corresponding subtype.
4061 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4062 and then not Is_Constrained (T)
4063 and then Has_Discriminants (T)
4064 then
4065 if No (E) then
4066 Act_T := Build_Default_Subtype (T, N);
4067 else
4068 -- Ada 2005: A limited object may be initialized by means of an
4069 -- aggregate. If the type has default discriminants it has an
4070 -- unconstrained nominal type, Its actual subtype will be obtained
4071 -- from the aggregate, and not from the default discriminants.
4073 Act_T := Etype (E);
4074 end if;
4076 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4078 elsif Nkind (E) = N_Function_Call
4079 and then Constant_Present (N)
4080 and then Has_Unconstrained_Elements (Etype (E))
4081 then
4082 -- The back-end has problems with constants of a discriminated type
4083 -- with defaults, if the initial value is a function call. We
4084 -- generate an intermediate temporary that will receive a reference
4085 -- to the result of the call. The initialization expression then
4086 -- becomes a dereference of that temporary.
4088 Remove_Side_Effects (E);
4090 -- If this is a constant declaration of an unconstrained type and
4091 -- the initialization is an aggregate, we can use the subtype of the
4092 -- aggregate for the declared entity because it is immutable.
4094 elsif not Is_Constrained (T)
4095 and then Has_Discriminants (T)
4096 and then Constant_Present (N)
4097 and then not Has_Unchecked_Union (T)
4098 and then Nkind (E) = N_Aggregate
4099 then
4100 Act_T := Etype (E);
4101 end if;
4103 -- Check No_Wide_Characters restriction
4105 Check_Wide_Character_Restriction (T, Object_Definition (N));
4107 -- Indicate this is not set in source. Certainly true for constants, and
4108 -- true for variables so far (will be reset for a variable if and when
4109 -- we encounter a modification in the source).
4111 Set_Never_Set_In_Source (Id);
4113 -- Now establish the proper kind and type of the object
4115 if Constant_Present (N) then
4116 Set_Ekind (Id, E_Constant);
4117 Set_Is_True_Constant (Id);
4119 else
4120 Set_Ekind (Id, E_Variable);
4122 -- A variable is set as shared passive if it appears in a shared
4123 -- passive package, and is at the outer level. This is not done for
4124 -- entities generated during expansion, because those are always
4125 -- manipulated locally.
4127 if Is_Shared_Passive (Current_Scope)
4128 and then Is_Library_Level_Entity (Id)
4129 and then Comes_From_Source (Id)
4130 then
4131 Set_Is_Shared_Passive (Id);
4132 Check_Shared_Var (Id, T, N);
4133 end if;
4135 -- Set Has_Initial_Value if initializing expression present. Note
4136 -- that if there is no initializing expression, we leave the state
4137 -- of this flag unchanged (usually it will be False, but notably in
4138 -- the case of exception choice variables, it will already be true).
4140 if Present (E) then
4141 Set_Has_Initial_Value (Id);
4142 end if;
4143 end if;
4145 -- Initialize alignment and size and capture alignment setting
4147 Init_Alignment (Id);
4148 Init_Esize (Id);
4149 Set_Optimize_Alignment_Flags (Id);
4151 -- An object declared within a Ghost region is automatically Ghost
4152 -- (SPARK RM 6.9(2)).
4154 if Ghost_Mode > None
4155 or else (Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity))
4156 then
4157 Set_Is_Ghost_Entity (Id);
4159 -- The Ghost policy in effect at the point of declaration and at the
4160 -- point of completion must match (SPARK RM 6.9(14)).
4162 if Present (Prev_Entity) and then Is_Ghost_Entity (Prev_Entity) then
4163 Check_Ghost_Completion (Prev_Entity, Id);
4164 end if;
4165 end if;
4167 -- Deal with aliased case
4169 if Aliased_Present (N) then
4170 Set_Is_Aliased (Id);
4172 -- If the object is aliased and the type is unconstrained with
4173 -- defaulted discriminants and there is no expression, then the
4174 -- object is constrained by the defaults, so it is worthwhile
4175 -- building the corresponding subtype.
4177 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4178 -- unconstrained, then only establish an actual subtype if the
4179 -- nominal subtype is indefinite. In definite cases the object is
4180 -- unconstrained in Ada 2005.
4182 if No (E)
4183 and then Is_Record_Type (T)
4184 and then not Is_Constrained (T)
4185 and then Has_Discriminants (T)
4186 and then (Ada_Version < Ada_2005
4187 or else not Is_Definite_Subtype (T))
4188 then
4189 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4190 end if;
4191 end if;
4193 -- Now we can set the type of the object
4195 Set_Etype (Id, Act_T);
4197 -- Non-constant object is marked to be treated as volatile if type is
4198 -- volatile and we clear the Current_Value setting that may have been
4199 -- set above. Doing so for constants isn't required and might interfere
4200 -- with possible uses of the object as a static expression in contexts
4201 -- incompatible with volatility (e.g. as a case-statement alternative).
4203 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4204 Set_Treat_As_Volatile (Id);
4205 Set_Current_Value (Id, Empty);
4206 end if;
4208 -- Deal with controlled types
4210 if Has_Controlled_Component (Etype (Id))
4211 or else Is_Controlled (Etype (Id))
4212 then
4213 if not Is_Library_Level_Entity (Id) then
4214 Check_Restriction (No_Nested_Finalization, N);
4215 else
4216 Validate_Controlled_Object (Id);
4217 end if;
4218 end if;
4220 if Has_Task (Etype (Id)) then
4221 Check_Restriction (No_Tasking, N);
4223 -- Deal with counting max tasks
4225 -- Nothing to do if inside a generic
4227 if Inside_A_Generic then
4228 null;
4230 -- If library level entity, then count tasks
4232 elsif Is_Library_Level_Entity (Id) then
4233 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4235 -- If not library level entity, then indicate we don't know max
4236 -- tasks and also check task hierarchy restriction and blocking
4237 -- operation (since starting a task is definitely blocking).
4239 else
4240 Check_Restriction (Max_Tasks, N);
4241 Check_Restriction (No_Task_Hierarchy, N);
4242 Check_Potentially_Blocking_Operation (N);
4243 end if;
4245 -- A rather specialized test. If we see two tasks being declared
4246 -- of the same type in the same object declaration, and the task
4247 -- has an entry with an address clause, we know that program error
4248 -- will be raised at run time since we can't have two tasks with
4249 -- entries at the same address.
4251 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4252 declare
4253 E : Entity_Id;
4255 begin
4256 E := First_Entity (Etype (Id));
4257 while Present (E) loop
4258 if Ekind (E) = E_Entry
4259 and then Present (Get_Attribute_Definition_Clause
4260 (E, Attribute_Address))
4261 then
4262 Error_Msg_Warn := SPARK_Mode /= On;
4263 Error_Msg_N
4264 ("more than one task with same entry address<<", N);
4265 Error_Msg_N ("\Program_Error [<<", N);
4266 Insert_Action (N,
4267 Make_Raise_Program_Error (Loc,
4268 Reason => PE_Duplicated_Entry_Address));
4269 exit;
4270 end if;
4272 Next_Entity (E);
4273 end loop;
4274 end;
4275 end if;
4276 end if;
4278 -- Some simple constant-propagation: if the expression is a constant
4279 -- string initialized with a literal, share the literal. This avoids
4280 -- a run-time copy.
4282 if Present (E)
4283 and then Is_Entity_Name (E)
4284 and then Ekind (Entity (E)) = E_Constant
4285 and then Base_Type (Etype (E)) = Standard_String
4286 then
4287 declare
4288 Val : constant Node_Id := Constant_Value (Entity (E));
4289 begin
4290 if Present (Val) and then Nkind (Val) = N_String_Literal then
4291 Rewrite (E, New_Copy (Val));
4292 end if;
4293 end;
4294 end if;
4296 -- Another optimization: if the nominal subtype is unconstrained and
4297 -- the expression is a function call that returns an unconstrained
4298 -- type, rewrite the declaration as a renaming of the result of the
4299 -- call. The exceptions below are cases where the copy is expected,
4300 -- either by the back end (Aliased case) or by the semantics, as for
4301 -- initializing controlled types or copying tags for classwide types.
4303 if Present (E)
4304 and then Nkind (E) = N_Explicit_Dereference
4305 and then Nkind (Original_Node (E)) = N_Function_Call
4306 and then not Is_Library_Level_Entity (Id)
4307 and then not Is_Constrained (Underlying_Type (T))
4308 and then not Is_Aliased (Id)
4309 and then not Is_Class_Wide_Type (T)
4310 and then not Is_Controlled_Active (T)
4311 and then not Has_Controlled_Component (Base_Type (T))
4312 and then Expander_Active
4313 then
4314 Rewrite (N,
4315 Make_Object_Renaming_Declaration (Loc,
4316 Defining_Identifier => Id,
4317 Access_Definition => Empty,
4318 Subtype_Mark => New_Occurrence_Of
4319 (Base_Type (Etype (Id)), Loc),
4320 Name => E));
4322 Set_Renamed_Object (Id, E);
4324 -- Force generation of debugging information for the constant and for
4325 -- the renamed function call.
4327 Set_Debug_Info_Needed (Id);
4328 Set_Debug_Info_Needed (Entity (Prefix (E)));
4329 end if;
4331 if Present (Prev_Entity)
4332 and then Is_Frozen (Prev_Entity)
4333 and then not Error_Posted (Id)
4334 then
4335 Error_Msg_N ("full constant declaration appears too late", N);
4336 end if;
4338 Check_Eliminated (Id);
4340 -- Deal with setting In_Private_Part flag if in private part
4342 if Ekind (Scope (Id)) = E_Package
4343 and then In_Private_Part (Scope (Id))
4344 then
4345 Set_In_Private_Part (Id);
4346 end if;
4348 -- Check for violation of No_Local_Timing_Events
4350 if Restriction_Check_Required (No_Local_Timing_Events)
4351 and then not Is_Library_Level_Entity (Id)
4352 and then Is_RTE (Etype (Id), RE_Timing_Event)
4353 then
4354 Check_Restriction (No_Local_Timing_Events, N);
4355 end if;
4357 <<Leave>>
4358 -- Initialize the refined state of a variable here because this is a
4359 -- common destination for legal and illegal object declarations.
4361 if Ekind (Id) = E_Variable then
4362 Set_Encapsulating_State (Id, Empty);
4363 end if;
4365 if Has_Aspects (N) then
4366 Analyze_Aspect_Specifications (N, Id);
4367 end if;
4369 Analyze_Dimension (N);
4371 -- Verify whether the object declaration introduces an illegal hidden
4372 -- state within a package subject to a null abstract state.
4374 if Ekind (Id) = E_Variable then
4375 Check_No_Hidden_State (Id);
4376 end if;
4378 Ghost_Mode := Save_Ghost_Mode;
4379 end Analyze_Object_Declaration;
4381 ---------------------------
4382 -- Analyze_Others_Choice --
4383 ---------------------------
4385 -- Nothing to do for the others choice node itself, the semantic analysis
4386 -- of the others choice will occur as part of the processing of the parent
4388 procedure Analyze_Others_Choice (N : Node_Id) is
4389 pragma Warnings (Off, N);
4390 begin
4391 null;
4392 end Analyze_Others_Choice;
4394 -------------------------------------------
4395 -- Analyze_Private_Extension_Declaration --
4396 -------------------------------------------
4398 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4399 Indic : constant Node_Id := Subtype_Indication (N);
4400 T : constant Entity_Id := Defining_Identifier (N);
4401 Parent_Base : Entity_Id;
4402 Parent_Type : Entity_Id;
4404 begin
4405 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4407 if Is_Non_Empty_List (Interface_List (N)) then
4408 declare
4409 Intf : Node_Id;
4410 T : Entity_Id;
4412 begin
4413 Intf := First (Interface_List (N));
4414 while Present (Intf) loop
4415 T := Find_Type_Of_Subtype_Indic (Intf);
4417 Diagnose_Interface (Intf, T);
4418 Next (Intf);
4419 end loop;
4420 end;
4421 end if;
4423 Generate_Definition (T);
4425 -- For other than Ada 2012, just enter the name in the current scope
4427 if Ada_Version < Ada_2012 then
4428 Enter_Name (T);
4430 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4431 -- case of private type that completes an incomplete type.
4433 else
4434 declare
4435 Prev : Entity_Id;
4437 begin
4438 Prev := Find_Type_Name (N);
4440 pragma Assert (Prev = T
4441 or else (Ekind (Prev) = E_Incomplete_Type
4442 and then Present (Full_View (Prev))
4443 and then Full_View (Prev) = T));
4444 end;
4445 end if;
4447 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4448 Parent_Base := Base_Type (Parent_Type);
4450 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4451 Set_Ekind (T, Ekind (Parent_Type));
4452 Set_Etype (T, Any_Type);
4453 goto Leave;
4455 elsif not Is_Tagged_Type (Parent_Type) then
4456 Error_Msg_N
4457 ("parent of type extension must be a tagged type ", Indic);
4458 goto Leave;
4460 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4461 Error_Msg_N ("premature derivation of incomplete type", Indic);
4462 goto Leave;
4464 elsif Is_Concurrent_Type (Parent_Type) then
4465 Error_Msg_N
4466 ("parent type of a private extension cannot be "
4467 & "a synchronized tagged type (RM 3.9.1 (3/1))", N);
4469 Set_Etype (T, Any_Type);
4470 Set_Ekind (T, E_Limited_Private_Type);
4471 Set_Private_Dependents (T, New_Elmt_List);
4472 Set_Error_Posted (T);
4473 goto Leave;
4474 end if;
4476 -- Perhaps the parent type should be changed to the class-wide type's
4477 -- specific type in this case to prevent cascading errors ???
4479 if Is_Class_Wide_Type (Parent_Type) then
4480 Error_Msg_N
4481 ("parent of type extension must not be a class-wide type", Indic);
4482 goto Leave;
4483 end if;
4485 if (not Is_Package_Or_Generic_Package (Current_Scope)
4486 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
4487 or else In_Private_Part (Current_Scope)
4489 then
4490 Error_Msg_N ("invalid context for private extension", N);
4491 end if;
4493 -- Set common attributes
4495 Set_Is_Pure (T, Is_Pure (Current_Scope));
4496 Set_Scope (T, Current_Scope);
4497 Set_Ekind (T, E_Record_Type_With_Private);
4498 Init_Size_Align (T);
4499 Set_Default_SSO (T);
4501 Set_Etype (T, Parent_Base);
4502 Set_Has_Task (T, Has_Task (Parent_Base));
4503 Set_Has_Protected (T, Has_Task (Parent_Base));
4505 Set_Convention (T, Convention (Parent_Type));
4506 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
4507 Set_Is_First_Subtype (T);
4508 Make_Class_Wide_Type (T);
4510 if Unknown_Discriminants_Present (N) then
4511 Set_Discriminant_Constraint (T, No_Elist);
4512 end if;
4514 Build_Derived_Record_Type (N, Parent_Type, T);
4516 -- Propagate inherited invariant information. The new type has
4517 -- invariants, if the parent type has inheritable invariants,
4518 -- and these invariants can in turn be inherited.
4520 if Has_Inheritable_Invariants (Parent_Type) then
4521 Set_Has_Inheritable_Invariants (T);
4522 Set_Has_Invariants (T);
4523 end if;
4525 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
4526 -- synchronized formal derived type.
4528 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
4529 Set_Is_Limited_Record (T);
4531 -- Formal derived type case
4533 if Is_Generic_Type (T) then
4535 -- The parent must be a tagged limited type or a synchronized
4536 -- interface.
4538 if (not Is_Tagged_Type (Parent_Type)
4539 or else not Is_Limited_Type (Parent_Type))
4540 and then
4541 (not Is_Interface (Parent_Type)
4542 or else not Is_Synchronized_Interface (Parent_Type))
4543 then
4544 Error_Msg_NE ("parent type of & must be tagged limited " &
4545 "or synchronized", N, T);
4546 end if;
4548 -- The progenitors (if any) must be limited or synchronized
4549 -- interfaces.
4551 if Present (Interfaces (T)) then
4552 declare
4553 Iface : Entity_Id;
4554 Iface_Elmt : Elmt_Id;
4556 begin
4557 Iface_Elmt := First_Elmt (Interfaces (T));
4558 while Present (Iface_Elmt) loop
4559 Iface := Node (Iface_Elmt);
4561 if not Is_Limited_Interface (Iface)
4562 and then not Is_Synchronized_Interface (Iface)
4563 then
4564 Error_Msg_NE ("progenitor & must be limited " &
4565 "or synchronized", N, Iface);
4566 end if;
4568 Next_Elmt (Iface_Elmt);
4569 end loop;
4570 end;
4571 end if;
4573 -- Regular derived extension, the parent must be a limited or
4574 -- synchronized interface.
4576 else
4577 if not Is_Interface (Parent_Type)
4578 or else (not Is_Limited_Interface (Parent_Type)
4579 and then not Is_Synchronized_Interface (Parent_Type))
4580 then
4581 Error_Msg_NE
4582 ("parent type of & must be limited interface", N, T);
4583 end if;
4584 end if;
4586 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
4587 -- extension with a synchronized parent must be explicitly declared
4588 -- synchronized, because the full view will be a synchronized type.
4589 -- This must be checked before the check for limited types below,
4590 -- to ensure that types declared limited are not allowed to extend
4591 -- synchronized interfaces.
4593 elsif Is_Interface (Parent_Type)
4594 and then Is_Synchronized_Interface (Parent_Type)
4595 and then not Synchronized_Present (N)
4596 then
4597 Error_Msg_NE
4598 ("private extension of& must be explicitly synchronized",
4599 N, Parent_Type);
4601 elsif Limited_Present (N) then
4602 Set_Is_Limited_Record (T);
4604 if not Is_Limited_Type (Parent_Type)
4605 and then
4606 (not Is_Interface (Parent_Type)
4607 or else not Is_Limited_Interface (Parent_Type))
4608 then
4609 Error_Msg_NE ("parent type& of limited extension must be limited",
4610 N, Parent_Type);
4611 end if;
4612 end if;
4614 <<Leave>>
4615 if Has_Aspects (N) then
4616 Analyze_Aspect_Specifications (N, T);
4617 end if;
4618 end Analyze_Private_Extension_Declaration;
4620 ---------------------------------
4621 -- Analyze_Subtype_Declaration --
4622 ---------------------------------
4624 procedure Analyze_Subtype_Declaration
4625 (N : Node_Id;
4626 Skip : Boolean := False)
4628 Id : constant Entity_Id := Defining_Identifier (N);
4629 R_Checks : Check_Result;
4630 T : Entity_Id;
4632 begin
4633 Generate_Definition (Id);
4634 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4635 Init_Size_Align (Id);
4637 -- The following guard condition on Enter_Name is to handle cases where
4638 -- the defining identifier has already been entered into the scope but
4639 -- the declaration as a whole needs to be analyzed.
4641 -- This case in particular happens for derived enumeration types. The
4642 -- derived enumeration type is processed as an inserted enumeration type
4643 -- declaration followed by a rewritten subtype declaration. The defining
4644 -- identifier, however, is entered into the name scope very early in the
4645 -- processing of the original type declaration and therefore needs to be
4646 -- avoided here, when the created subtype declaration is analyzed. (See
4647 -- Build_Derived_Types)
4649 -- This also happens when the full view of a private type is derived
4650 -- type with constraints. In this case the entity has been introduced
4651 -- in the private declaration.
4653 -- Finally this happens in some complex cases when validity checks are
4654 -- enabled, where the same subtype declaration may be analyzed twice.
4655 -- This can happen if the subtype is created by the pre-analysis of
4656 -- an attribute tht gives the range of a loop statement, and the loop
4657 -- itself appears within an if_statement that will be rewritten during
4658 -- expansion.
4660 if Skip
4661 or else (Present (Etype (Id))
4662 and then (Is_Private_Type (Etype (Id))
4663 or else Is_Task_Type (Etype (Id))
4664 or else Is_Rewrite_Substitution (N)))
4665 then
4666 null;
4668 elsif Current_Entity (Id) = Id then
4669 null;
4671 else
4672 Enter_Name (Id);
4673 end if;
4675 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
4677 -- Class-wide equivalent types of records with unknown discriminants
4678 -- involve the generation of an itype which serves as the private view
4679 -- of a constrained record subtype. In such cases the base type of the
4680 -- current subtype we are processing is the private itype. Use the full
4681 -- of the private itype when decorating various attributes.
4683 if Is_Itype (T)
4684 and then Is_Private_Type (T)
4685 and then Present (Full_View (T))
4686 then
4687 T := Full_View (T);
4688 end if;
4690 -- Inherit common attributes
4692 Set_Is_Volatile (Id, Is_Volatile (T));
4693 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
4694 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
4695 Set_Convention (Id, Convention (T));
4697 -- If ancestor has predicates then so does the subtype, and in addition
4698 -- we must delay the freeze to properly arrange predicate inheritance.
4700 -- The Ancestor_Type test is really unpleasant, there seem to be cases
4701 -- in which T = ID, so the above tests and assignments do nothing???
4703 if Has_Predicates (T)
4704 or else (Present (Ancestor_Subtype (T))
4705 and then Has_Predicates (Ancestor_Subtype (T)))
4706 then
4707 Set_Has_Predicates (Id);
4708 Set_Has_Delayed_Freeze (Id);
4709 end if;
4711 -- Subtype of Boolean cannot have a constraint in SPARK
4713 if Is_Boolean_Type (T)
4714 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
4715 then
4716 Check_SPARK_05_Restriction
4717 ("subtype of Boolean cannot have constraint", N);
4718 end if;
4720 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
4721 declare
4722 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
4723 One_Cstr : Node_Id;
4724 Low : Node_Id;
4725 High : Node_Id;
4727 begin
4728 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
4729 One_Cstr := First (Constraints (Cstr));
4730 while Present (One_Cstr) loop
4732 -- Index or discriminant constraint in SPARK must be a
4733 -- subtype mark.
4735 if not
4736 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
4737 then
4738 Check_SPARK_05_Restriction
4739 ("subtype mark required", One_Cstr);
4741 -- String subtype must have a lower bound of 1 in SPARK.
4742 -- Note that we do not need to test for the non-static case
4743 -- here, since that was already taken care of in
4744 -- Process_Range_Expr_In_Decl.
4746 elsif Base_Type (T) = Standard_String then
4747 Get_Index_Bounds (One_Cstr, Low, High);
4749 if Is_OK_Static_Expression (Low)
4750 and then Expr_Value (Low) /= 1
4751 then
4752 Check_SPARK_05_Restriction
4753 ("String subtype must have lower bound of 1", N);
4754 end if;
4755 end if;
4757 Next (One_Cstr);
4758 end loop;
4759 end if;
4760 end;
4761 end if;
4763 -- In the case where there is no constraint given in the subtype
4764 -- indication, Process_Subtype just returns the Subtype_Mark, so its
4765 -- semantic attributes must be established here.
4767 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
4768 Set_Etype (Id, Base_Type (T));
4770 -- Subtype of unconstrained array without constraint is not allowed
4771 -- in SPARK.
4773 if Is_Array_Type (T) and then not Is_Constrained (T) then
4774 Check_SPARK_05_Restriction
4775 ("subtype of unconstrained array must have constraint", N);
4776 end if;
4778 case Ekind (T) is
4779 when Array_Kind =>
4780 Set_Ekind (Id, E_Array_Subtype);
4781 Copy_Array_Subtype_Attributes (Id, T);
4783 when Decimal_Fixed_Point_Kind =>
4784 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
4785 Set_Digits_Value (Id, Digits_Value (T));
4786 Set_Delta_Value (Id, Delta_Value (T));
4787 Set_Scale_Value (Id, Scale_Value (T));
4788 Set_Small_Value (Id, Small_Value (T));
4789 Set_Scalar_Range (Id, Scalar_Range (T));
4790 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
4791 Set_Is_Constrained (Id, Is_Constrained (T));
4792 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4793 Set_RM_Size (Id, RM_Size (T));
4795 when Enumeration_Kind =>
4796 Set_Ekind (Id, E_Enumeration_Subtype);
4797 Set_First_Literal (Id, First_Literal (Base_Type (T)));
4798 Set_Scalar_Range (Id, Scalar_Range (T));
4799 Set_Is_Character_Type (Id, Is_Character_Type (T));
4800 Set_Is_Constrained (Id, Is_Constrained (T));
4801 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4802 Set_RM_Size (Id, RM_Size (T));
4803 Inherit_Predicate_Flags (Id, T);
4805 when Ordinary_Fixed_Point_Kind =>
4806 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
4807 Set_Scalar_Range (Id, Scalar_Range (T));
4808 Set_Small_Value (Id, Small_Value (T));
4809 Set_Delta_Value (Id, Delta_Value (T));
4810 Set_Is_Constrained (Id, Is_Constrained (T));
4811 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4812 Set_RM_Size (Id, RM_Size (T));
4814 when Float_Kind =>
4815 Set_Ekind (Id, E_Floating_Point_Subtype);
4816 Set_Scalar_Range (Id, Scalar_Range (T));
4817 Set_Digits_Value (Id, Digits_Value (T));
4818 Set_Is_Constrained (Id, Is_Constrained (T));
4820 when Signed_Integer_Kind =>
4821 Set_Ekind (Id, E_Signed_Integer_Subtype);
4822 Set_Scalar_Range (Id, Scalar_Range (T));
4823 Set_Is_Constrained (Id, Is_Constrained (T));
4824 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4825 Set_RM_Size (Id, RM_Size (T));
4826 Inherit_Predicate_Flags (Id, T);
4828 when Modular_Integer_Kind =>
4829 Set_Ekind (Id, E_Modular_Integer_Subtype);
4830 Set_Scalar_Range (Id, Scalar_Range (T));
4831 Set_Is_Constrained (Id, Is_Constrained (T));
4832 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
4833 Set_RM_Size (Id, RM_Size (T));
4834 Inherit_Predicate_Flags (Id, T);
4836 when Class_Wide_Kind =>
4837 Set_Ekind (Id, E_Class_Wide_Subtype);
4838 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4839 Set_Cloned_Subtype (Id, T);
4840 Set_Is_Tagged_Type (Id, True);
4841 Set_Has_Unknown_Discriminants
4842 (Id, True);
4843 Set_No_Tagged_Streams_Pragma
4844 (Id, No_Tagged_Streams_Pragma (T));
4846 if Ekind (T) = E_Class_Wide_Subtype then
4847 Set_Equivalent_Type (Id, Equivalent_Type (T));
4848 end if;
4850 when E_Record_Type | E_Record_Subtype =>
4851 Set_Ekind (Id, E_Record_Subtype);
4853 if Ekind (T) = E_Record_Subtype
4854 and then Present (Cloned_Subtype (T))
4855 then
4856 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
4857 else
4858 Set_Cloned_Subtype (Id, T);
4859 end if;
4861 Set_First_Entity (Id, First_Entity (T));
4862 Set_Last_Entity (Id, Last_Entity (T));
4863 Set_Has_Discriminants (Id, Has_Discriminants (T));
4864 Set_Is_Constrained (Id, Is_Constrained (T));
4865 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4866 Set_Has_Implicit_Dereference
4867 (Id, Has_Implicit_Dereference (T));
4868 Set_Has_Unknown_Discriminants
4869 (Id, Has_Unknown_Discriminants (T));
4871 if Has_Discriminants (T) then
4872 Set_Discriminant_Constraint
4873 (Id, Discriminant_Constraint (T));
4874 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4876 elsif Has_Unknown_Discriminants (Id) then
4877 Set_Discriminant_Constraint (Id, No_Elist);
4878 end if;
4880 if Is_Tagged_Type (T) then
4881 Set_Is_Tagged_Type (Id, True);
4882 Set_No_Tagged_Streams_Pragma
4883 (Id, No_Tagged_Streams_Pragma (T));
4884 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4885 Set_Direct_Primitive_Operations
4886 (Id, Direct_Primitive_Operations (T));
4887 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4889 if Is_Interface (T) then
4890 Set_Is_Interface (Id);
4891 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
4892 end if;
4893 end if;
4895 when Private_Kind =>
4896 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4897 Set_Has_Discriminants (Id, Has_Discriminants (T));
4898 Set_Is_Constrained (Id, Is_Constrained (T));
4899 Set_First_Entity (Id, First_Entity (T));
4900 Set_Last_Entity (Id, Last_Entity (T));
4901 Set_Private_Dependents (Id, New_Elmt_List);
4902 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
4903 Set_Has_Implicit_Dereference
4904 (Id, Has_Implicit_Dereference (T));
4905 Set_Has_Unknown_Discriminants
4906 (Id, Has_Unknown_Discriminants (T));
4907 Set_Known_To_Have_Preelab_Init
4908 (Id, Known_To_Have_Preelab_Init (T));
4910 if Is_Tagged_Type (T) then
4911 Set_Is_Tagged_Type (Id);
4912 Set_No_Tagged_Streams_Pragma (Id,
4913 No_Tagged_Streams_Pragma (T));
4914 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
4915 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
4916 Set_Direct_Primitive_Operations (Id,
4917 Direct_Primitive_Operations (T));
4918 end if;
4920 -- In general the attributes of the subtype of a private type
4921 -- are the attributes of the partial view of parent. However,
4922 -- the full view may be a discriminated type, and the subtype
4923 -- must share the discriminant constraint to generate correct
4924 -- calls to initialization procedures.
4926 if Has_Discriminants (T) then
4927 Set_Discriminant_Constraint
4928 (Id, Discriminant_Constraint (T));
4929 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4931 elsif Present (Full_View (T))
4932 and then Has_Discriminants (Full_View (T))
4933 then
4934 Set_Discriminant_Constraint
4935 (Id, Discriminant_Constraint (Full_View (T)));
4936 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
4938 -- This would seem semantically correct, but apparently
4939 -- generates spurious errors about missing components ???
4941 -- Set_Has_Discriminants (Id);
4942 end if;
4944 Prepare_Private_Subtype_Completion (Id, N);
4946 -- If this is the subtype of a constrained private type with
4947 -- discriminants that has got a full view and we also have
4948 -- built a completion just above, show that the completion
4949 -- is a clone of the full view to the back-end.
4951 if Has_Discriminants (T)
4952 and then not Has_Unknown_Discriminants (T)
4953 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
4954 and then Present (Full_View (T))
4955 and then Present (Full_View (Id))
4956 then
4957 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
4958 end if;
4960 when Access_Kind =>
4961 Set_Ekind (Id, E_Access_Subtype);
4962 Set_Is_Constrained (Id, Is_Constrained (T));
4963 Set_Is_Access_Constant
4964 (Id, Is_Access_Constant (T));
4965 Set_Directly_Designated_Type
4966 (Id, Designated_Type (T));
4967 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
4969 -- A Pure library_item must not contain the declaration of a
4970 -- named access type, except within a subprogram, generic
4971 -- subprogram, task unit, or protected unit, or if it has
4972 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
4974 if Comes_From_Source (Id)
4975 and then In_Pure_Unit
4976 and then not In_Subprogram_Task_Protected_Unit
4977 and then not No_Pool_Assigned (Id)
4978 then
4979 Error_Msg_N
4980 ("named access types not allowed in pure unit", N);
4981 end if;
4983 when Concurrent_Kind =>
4984 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
4985 Set_Corresponding_Record_Type (Id,
4986 Corresponding_Record_Type (T));
4987 Set_First_Entity (Id, First_Entity (T));
4988 Set_First_Private_Entity (Id, First_Private_Entity (T));
4989 Set_Has_Discriminants (Id, Has_Discriminants (T));
4990 Set_Is_Constrained (Id, Is_Constrained (T));
4991 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
4992 Set_Last_Entity (Id, Last_Entity (T));
4994 if Is_Tagged_Type (T) then
4995 Set_No_Tagged_Streams_Pragma
4996 (Id, No_Tagged_Streams_Pragma (T));
4997 end if;
4999 if Has_Discriminants (T) then
5000 Set_Discriminant_Constraint
5001 (Id, Discriminant_Constraint (T));
5002 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5003 end if;
5005 when Incomplete_Kind =>
5006 if Ada_Version >= Ada_2005 then
5008 -- In Ada 2005 an incomplete type can be explicitly tagged:
5009 -- propagate indication. Note that we also have to include
5010 -- subtypes for Ada 2012 extended use of incomplete types.
5012 Set_Ekind (Id, E_Incomplete_Subtype);
5013 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5014 Set_Private_Dependents (Id, New_Elmt_List);
5016 if Is_Tagged_Type (Id) then
5017 Set_No_Tagged_Streams_Pragma
5018 (Id, No_Tagged_Streams_Pragma (T));
5019 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5020 end if;
5022 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5023 -- incomplete type visible through a limited with clause.
5025 if From_Limited_With (T)
5026 and then Present (Non_Limited_View (T))
5027 then
5028 Set_From_Limited_With (Id);
5029 Set_Non_Limited_View (Id, Non_Limited_View (T));
5031 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5032 -- to the private dependents of the original incomplete
5033 -- type for future transformation.
5035 else
5036 Append_Elmt (Id, Private_Dependents (T));
5037 end if;
5039 -- If the subtype name denotes an incomplete type an error
5040 -- was already reported by Process_Subtype.
5042 else
5043 Set_Etype (Id, Any_Type);
5044 end if;
5046 when others =>
5047 raise Program_Error;
5048 end case;
5049 end if;
5051 if Etype (Id) = Any_Type then
5052 goto Leave;
5053 end if;
5055 -- Some common processing on all types
5057 Set_Size_Info (Id, T);
5058 Set_First_Rep_Item (Id, First_Rep_Item (T));
5060 -- If the parent type is a generic actual, so is the subtype. This may
5061 -- happen in a nested instance. Why Comes_From_Source test???
5063 if not Comes_From_Source (N) then
5064 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5065 end if;
5067 T := Etype (Id);
5069 Set_Is_Immediately_Visible (Id, True);
5070 Set_Depends_On_Private (Id, Has_Private_Component (T));
5071 Set_Is_Descendent_Of_Address (Id, Is_Descendent_Of_Address (T));
5073 if Is_Interface (T) then
5074 Set_Is_Interface (Id);
5075 end if;
5077 if Present (Generic_Parent_Type (N))
5078 and then
5079 (Nkind (Parent (Generic_Parent_Type (N))) /=
5080 N_Formal_Type_Declaration
5081 or else Nkind (Formal_Type_Definition
5082 (Parent (Generic_Parent_Type (N)))) /=
5083 N_Formal_Private_Type_Definition)
5084 then
5085 if Is_Tagged_Type (Id) then
5087 -- If this is a generic actual subtype for a synchronized type,
5088 -- the primitive operations are those of the corresponding record
5089 -- for which there is a separate subtype declaration.
5091 if Is_Concurrent_Type (Id) then
5092 null;
5093 elsif Is_Class_Wide_Type (Id) then
5094 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5095 else
5096 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5097 end if;
5099 elsif Scope (Etype (Id)) /= Standard_Standard then
5100 Derive_Subprograms (Generic_Parent_Type (N), Id);
5101 end if;
5102 end if;
5104 if Is_Private_Type (T) and then Present (Full_View (T)) then
5105 Conditional_Delay (Id, Full_View (T));
5107 -- The subtypes of components or subcomponents of protected types
5108 -- do not need freeze nodes, which would otherwise appear in the
5109 -- wrong scope (before the freeze node for the protected type). The
5110 -- proper subtypes are those of the subcomponents of the corresponding
5111 -- record.
5113 elsif Ekind (Scope (Id)) /= E_Protected_Type
5114 and then Present (Scope (Scope (Id))) -- error defense
5115 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5116 then
5117 Conditional_Delay (Id, T);
5118 end if;
5120 -- Check that Constraint_Error is raised for a scalar subtype indication
5121 -- when the lower or upper bound of a non-null range lies outside the
5122 -- range of the type mark.
5124 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5125 if Is_Scalar_Type (Etype (Id))
5126 and then Scalar_Range (Id) /=
5127 Scalar_Range (Etype (Subtype_Mark
5128 (Subtype_Indication (N))))
5129 then
5130 Apply_Range_Check
5131 (Scalar_Range (Id),
5132 Etype (Subtype_Mark (Subtype_Indication (N))));
5134 -- In the array case, check compatibility for each index
5136 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5137 then
5138 -- This really should be a subprogram that finds the indications
5139 -- to check???
5141 declare
5142 Subt_Index : Node_Id := First_Index (Id);
5143 Target_Index : Node_Id :=
5144 First_Index (Etype
5145 (Subtype_Mark (Subtype_Indication (N))));
5146 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5148 begin
5149 while Present (Subt_Index) loop
5150 if ((Nkind (Subt_Index) = N_Identifier
5151 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5152 or else Nkind (Subt_Index) = N_Subtype_Indication)
5153 and then
5154 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5155 then
5156 declare
5157 Target_Typ : constant Entity_Id :=
5158 Etype (Target_Index);
5159 begin
5160 R_Checks :=
5161 Get_Range_Checks
5162 (Scalar_Range (Etype (Subt_Index)),
5163 Target_Typ,
5164 Etype (Subt_Index),
5165 Defining_Identifier (N));
5167 -- Reset Has_Dynamic_Range_Check on the subtype to
5168 -- prevent elision of the index check due to a dynamic
5169 -- check generated for a preceding index (needed since
5170 -- Insert_Range_Checks tries to avoid generating
5171 -- redundant checks on a given declaration).
5173 Set_Has_Dynamic_Range_Check (N, False);
5175 Insert_Range_Checks
5176 (R_Checks,
5178 Target_Typ,
5179 Sloc (Defining_Identifier (N)));
5181 -- Record whether this index involved a dynamic check
5183 Has_Dyn_Chk :=
5184 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5185 end;
5186 end if;
5188 Next_Index (Subt_Index);
5189 Next_Index (Target_Index);
5190 end loop;
5192 -- Finally, mark whether the subtype involves dynamic checks
5194 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5195 end;
5196 end if;
5197 end if;
5199 -- A type invariant applies to any subtype in its scope, in particular
5200 -- to a generic actual.
5202 if Has_Invariants (T) and then In_Open_Scopes (Scope (T)) then
5203 Set_Has_Invariants (Id);
5204 Set_Invariant_Procedure (Id, Invariant_Procedure (T));
5205 end if;
5207 -- Make sure that generic actual types are properly frozen. The subtype
5208 -- is marked as a generic actual type when the enclosing instance is
5209 -- analyzed, so here we identify the subtype from the tree structure.
5211 if Expander_Active
5212 and then Is_Generic_Actual_Type (Id)
5213 and then In_Instance
5214 and then not Comes_From_Source (N)
5215 and then Nkind (Subtype_Indication (N)) /= N_Subtype_Indication
5216 and then Is_Frozen (T)
5217 then
5218 Freeze_Before (N, Id);
5219 end if;
5221 Set_Optimize_Alignment_Flags (Id);
5222 Check_Eliminated (Id);
5224 <<Leave>>
5225 if Has_Aspects (N) then
5226 Analyze_Aspect_Specifications (N, Id);
5227 end if;
5229 Analyze_Dimension (N);
5231 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5232 -- indications on composite types where the constraints are dynamic.
5233 -- Note that object declarations and aggregates generate implicit
5234 -- subtype declarations, which this covers. One special case is that the
5235 -- implicitly generated "=" for discriminated types includes an
5236 -- offending subtype declaration, which is harmless, so we ignore it
5237 -- here.
5239 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5240 declare
5241 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5242 begin
5243 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5244 and then not (Is_Internal (Defining_Identifier (N))
5245 and then Is_TSS (Scope (Defining_Identifier (N)),
5246 TSS_Composite_Equality))
5247 and then not Within_Init_Proc
5248 then
5249 if not All_Composite_Constraints_Static (Cstr) then
5250 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5251 end if;
5252 end if;
5253 end;
5254 end if;
5255 end Analyze_Subtype_Declaration;
5257 --------------------------------
5258 -- Analyze_Subtype_Indication --
5259 --------------------------------
5261 procedure Analyze_Subtype_Indication (N : Node_Id) is
5262 T : constant Entity_Id := Subtype_Mark (N);
5263 R : constant Node_Id := Range_Expression (Constraint (N));
5265 begin
5266 Analyze (T);
5268 if R /= Error then
5269 Analyze (R);
5270 Set_Etype (N, Etype (R));
5271 Resolve (R, Entity (T));
5272 else
5273 Set_Error_Posted (R);
5274 Set_Error_Posted (T);
5275 end if;
5276 end Analyze_Subtype_Indication;
5278 --------------------------
5279 -- Analyze_Variant_Part --
5280 --------------------------
5282 procedure Analyze_Variant_Part (N : Node_Id) is
5283 Discr_Name : Node_Id;
5284 Discr_Type : Entity_Id;
5286 procedure Process_Variant (A : Node_Id);
5287 -- Analyze declarations for a single variant
5289 package Analyze_Variant_Choices is
5290 new Generic_Analyze_Choices (Process_Variant);
5291 use Analyze_Variant_Choices;
5293 ---------------------
5294 -- Process_Variant --
5295 ---------------------
5297 procedure Process_Variant (A : Node_Id) is
5298 CL : constant Node_Id := Component_List (A);
5299 begin
5300 if not Null_Present (CL) then
5301 Analyze_Declarations (Component_Items (CL));
5303 if Present (Variant_Part (CL)) then
5304 Analyze (Variant_Part (CL));
5305 end if;
5306 end if;
5307 end Process_Variant;
5309 -- Start of processing for Analyze_Variant_Part
5311 begin
5312 Discr_Name := Name (N);
5313 Analyze (Discr_Name);
5315 -- If Discr_Name bad, get out (prevent cascaded errors)
5317 if Etype (Discr_Name) = Any_Type then
5318 return;
5319 end if;
5321 -- Check invalid discriminant in variant part
5323 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5324 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5325 end if;
5327 Discr_Type := Etype (Entity (Discr_Name));
5329 if not Is_Discrete_Type (Discr_Type) then
5330 Error_Msg_N
5331 ("discriminant in a variant part must be of a discrete type",
5332 Name (N));
5333 return;
5334 end if;
5336 -- Now analyze the choices, which also analyzes the declarations that
5337 -- are associated with each choice.
5339 Analyze_Choices (Variants (N), Discr_Type);
5341 -- Note: we used to instantiate and call Check_Choices here to check
5342 -- that the choices covered the discriminant, but it's too early to do
5343 -- that because of statically predicated subtypes, whose analysis may
5344 -- be deferred to their freeze point which may be as late as the freeze
5345 -- point of the containing record. So this call is now to be found in
5346 -- Freeze_Record_Declaration.
5348 end Analyze_Variant_Part;
5350 ----------------------------
5351 -- Array_Type_Declaration --
5352 ----------------------------
5354 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5355 Component_Def : constant Node_Id := Component_Definition (Def);
5356 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5357 Element_Type : Entity_Id;
5358 Implicit_Base : Entity_Id;
5359 Index : Node_Id;
5360 Related_Id : Entity_Id := Empty;
5361 Nb_Index : Nat;
5362 P : constant Node_Id := Parent (Def);
5363 Priv : Entity_Id;
5365 begin
5366 if Nkind (Def) = N_Constrained_Array_Definition then
5367 Index := First (Discrete_Subtype_Definitions (Def));
5368 else
5369 Index := First (Subtype_Marks (Def));
5370 end if;
5372 -- Find proper names for the implicit types which may be public. In case
5373 -- of anonymous arrays we use the name of the first object of that type
5374 -- as prefix.
5376 if No (T) then
5377 Related_Id := Defining_Identifier (P);
5378 else
5379 Related_Id := T;
5380 end if;
5382 Nb_Index := 1;
5383 while Present (Index) loop
5384 Analyze (Index);
5386 -- Test for odd case of trying to index a type by the type itself
5388 if Is_Entity_Name (Index) and then Entity (Index) = T then
5389 Error_Msg_N ("type& cannot be indexed by itself", Index);
5390 Set_Entity (Index, Standard_Boolean);
5391 Set_Etype (Index, Standard_Boolean);
5392 end if;
5394 -- Check SPARK restriction requiring a subtype mark
5396 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5397 Check_SPARK_05_Restriction ("subtype mark required", Index);
5398 end if;
5400 -- Add a subtype declaration for each index of private array type
5401 -- declaration whose etype is also private. For example:
5403 -- package Pkg is
5404 -- type Index is private;
5405 -- private
5406 -- type Table is array (Index) of ...
5407 -- end;
5409 -- This is currently required by the expander for the internally
5410 -- generated equality subprogram of records with variant parts in
5411 -- which the etype of some component is such private type.
5413 if Ekind (Current_Scope) = E_Package
5414 and then In_Private_Part (Current_Scope)
5415 and then Has_Private_Declaration (Etype (Index))
5416 then
5417 declare
5418 Loc : constant Source_Ptr := Sloc (Def);
5419 New_E : Entity_Id;
5420 Decl : Entity_Id;
5422 begin
5423 New_E := Make_Temporary (Loc, 'T');
5424 Set_Is_Internal (New_E);
5426 Decl :=
5427 Make_Subtype_Declaration (Loc,
5428 Defining_Identifier => New_E,
5429 Subtype_Indication =>
5430 New_Occurrence_Of (Etype (Index), Loc));
5432 Insert_Before (Parent (Def), Decl);
5433 Analyze (Decl);
5434 Set_Etype (Index, New_E);
5436 -- If the index is a range the Entity attribute is not
5437 -- available. Example:
5439 -- package Pkg is
5440 -- type T is private;
5441 -- private
5442 -- type T is new Natural;
5443 -- Table : array (T(1) .. T(10)) of Boolean;
5444 -- end Pkg;
5446 if Nkind (Index) /= N_Range then
5447 Set_Entity (Index, New_E);
5448 end if;
5449 end;
5450 end if;
5452 Make_Index (Index, P, Related_Id, Nb_Index);
5454 -- Check error of subtype with predicate for index type
5456 Bad_Predicated_Subtype_Use
5457 ("subtype& has predicate, not allowed as index subtype",
5458 Index, Etype (Index));
5460 -- Move to next index
5462 Next_Index (Index);
5463 Nb_Index := Nb_Index + 1;
5464 end loop;
5466 -- Process subtype indication if one is present
5468 if Present (Component_Typ) then
5469 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
5471 Set_Etype (Component_Typ, Element_Type);
5473 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
5474 Check_SPARK_05_Restriction
5475 ("subtype mark required", Component_Typ);
5476 end if;
5478 -- Ada 2005 (AI-230): Access Definition case
5480 else pragma Assert (Present (Access_Definition (Component_Def)));
5482 -- Indicate that the anonymous access type is created by the
5483 -- array type declaration.
5485 Element_Type := Access_Definition
5486 (Related_Nod => P,
5487 N => Access_Definition (Component_Def));
5488 Set_Is_Local_Anonymous_Access (Element_Type);
5490 -- Propagate the parent. This field is needed if we have to generate
5491 -- the master_id associated with an anonymous access to task type
5492 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
5494 Set_Parent (Element_Type, Parent (T));
5496 -- Ada 2005 (AI-230): In case of components that are anonymous access
5497 -- types the level of accessibility depends on the enclosing type
5498 -- declaration
5500 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
5502 -- Ada 2005 (AI-254)
5504 declare
5505 CD : constant Node_Id :=
5506 Access_To_Subprogram_Definition
5507 (Access_Definition (Component_Def));
5508 begin
5509 if Present (CD) and then Protected_Present (CD) then
5510 Element_Type :=
5511 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
5512 end if;
5513 end;
5514 end if;
5516 -- Constrained array case
5518 if No (T) then
5519 T := Create_Itype (E_Void, P, Related_Id, 'T');
5520 end if;
5522 if Nkind (Def) = N_Constrained_Array_Definition then
5524 -- Establish Implicit_Base as unconstrained base type
5526 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
5528 Set_Etype (Implicit_Base, Implicit_Base);
5529 Set_Scope (Implicit_Base, Current_Scope);
5530 Set_Has_Delayed_Freeze (Implicit_Base);
5531 Set_Default_SSO (Implicit_Base);
5533 -- The constrained array type is a subtype of the unconstrained one
5535 Set_Ekind (T, E_Array_Subtype);
5536 Init_Size_Align (T);
5537 Set_Etype (T, Implicit_Base);
5538 Set_Scope (T, Current_Scope);
5539 Set_Is_Constrained (T);
5540 Set_First_Index (T,
5541 First (Discrete_Subtype_Definitions (Def)));
5542 Set_Has_Delayed_Freeze (T);
5544 -- Complete setup of implicit base type
5546 Set_First_Index (Implicit_Base, First_Index (T));
5547 Set_Component_Type (Implicit_Base, Element_Type);
5548 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
5549 Set_Has_Protected (Implicit_Base, Has_Protected (Element_Type));
5550 Set_Component_Size (Implicit_Base, Uint_0);
5551 Set_Packed_Array_Impl_Type (Implicit_Base, Empty);
5552 Set_Has_Controlled_Component (Implicit_Base,
5553 Has_Controlled_Component (Element_Type)
5554 or else Is_Controlled_Active (Element_Type));
5555 Set_Finalize_Storage_Only (Implicit_Base,
5556 Finalize_Storage_Only (Element_Type));
5558 -- Inherit the "ghostness" from the constrained array type
5560 if Ghost_Mode > None or else Is_Ghost_Entity (T) then
5561 Set_Is_Ghost_Entity (Implicit_Base);
5562 end if;
5564 -- Unconstrained array case
5566 else
5567 Set_Ekind (T, E_Array_Type);
5568 Init_Size_Align (T);
5569 Set_Etype (T, T);
5570 Set_Scope (T, Current_Scope);
5571 Set_Component_Size (T, Uint_0);
5572 Set_Is_Constrained (T, False);
5573 Set_First_Index (T, First (Subtype_Marks (Def)));
5574 Set_Has_Delayed_Freeze (T, True);
5575 Set_Has_Task (T, Has_Task (Element_Type));
5576 Set_Has_Protected (T, Has_Protected (Element_Type));
5577 Set_Has_Controlled_Component (T, Has_Controlled_Component
5578 (Element_Type)
5579 or else
5580 Is_Controlled_Active (Element_Type));
5581 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
5582 (Element_Type));
5583 Set_Default_SSO (T);
5584 end if;
5586 -- Common attributes for both cases
5588 Set_Component_Type (Base_Type (T), Element_Type);
5589 Set_Packed_Array_Impl_Type (T, Empty);
5591 if Aliased_Present (Component_Definition (Def)) then
5592 Check_SPARK_05_Restriction
5593 ("aliased is not allowed", Component_Definition (Def));
5594 Set_Has_Aliased_Components (Etype (T));
5595 end if;
5597 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
5598 -- array type to ensure that objects of this type are initialized.
5600 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
5601 Set_Can_Never_Be_Null (T);
5603 if Null_Exclusion_Present (Component_Definition (Def))
5605 -- No need to check itypes because in their case this check was
5606 -- done at their point of creation
5608 and then not Is_Itype (Element_Type)
5609 then
5610 Error_Msg_N
5611 ("`NOT NULL` not allowed (null already excluded)",
5612 Subtype_Indication (Component_Definition (Def)));
5613 end if;
5614 end if;
5616 Priv := Private_Component (Element_Type);
5618 if Present (Priv) then
5620 -- Check for circular definitions
5622 if Priv = Any_Type then
5623 Set_Component_Type (Etype (T), Any_Type);
5625 -- There is a gap in the visibility of operations on the composite
5626 -- type only if the component type is defined in a different scope.
5628 elsif Scope (Priv) = Current_Scope then
5629 null;
5631 elsif Is_Limited_Type (Priv) then
5632 Set_Is_Limited_Composite (Etype (T));
5633 Set_Is_Limited_Composite (T);
5634 else
5635 Set_Is_Private_Composite (Etype (T));
5636 Set_Is_Private_Composite (T);
5637 end if;
5638 end if;
5640 -- A syntax error in the declaration itself may lead to an empty index
5641 -- list, in which case do a minimal patch.
5643 if No (First_Index (T)) then
5644 Error_Msg_N ("missing index definition in array type declaration", T);
5646 declare
5647 Indexes : constant List_Id :=
5648 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
5649 begin
5650 Set_Discrete_Subtype_Definitions (Def, Indexes);
5651 Set_First_Index (T, First (Indexes));
5652 return;
5653 end;
5654 end if;
5656 -- Create a concatenation operator for the new type. Internal array
5657 -- types created for packed entities do not need such, they are
5658 -- compatible with the user-defined type.
5660 if Number_Dimensions (T) = 1
5661 and then not Is_Packed_Array_Impl_Type (T)
5662 then
5663 New_Concatenation_Op (T);
5664 end if;
5666 -- In the case of an unconstrained array the parser has already verified
5667 -- that all the indexes are unconstrained but we still need to make sure
5668 -- that the element type is constrained.
5670 if not Is_Definite_Subtype (Element_Type) then
5671 Error_Msg_N
5672 ("unconstrained element type in array declaration",
5673 Subtype_Indication (Component_Def));
5675 elsif Is_Abstract_Type (Element_Type) then
5676 Error_Msg_N
5677 ("the type of a component cannot be abstract",
5678 Subtype_Indication (Component_Def));
5679 end if;
5681 -- There may be an invariant declared for the component type, but
5682 -- the construction of the component invariant checking procedure
5683 -- takes place during expansion.
5684 end Array_Type_Declaration;
5686 ------------------------------------------------------
5687 -- Replace_Anonymous_Access_To_Protected_Subprogram --
5688 ------------------------------------------------------
5690 function Replace_Anonymous_Access_To_Protected_Subprogram
5691 (N : Node_Id) return Entity_Id
5693 Loc : constant Source_Ptr := Sloc (N);
5695 Curr_Scope : constant Scope_Stack_Entry :=
5696 Scope_Stack.Table (Scope_Stack.Last);
5698 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
5700 Acc : Node_Id;
5701 -- Access definition in declaration
5703 Comp : Node_Id;
5704 -- Object definition or formal definition with an access definition
5706 Decl : Node_Id;
5707 -- Declaration of anonymous access to subprogram type
5709 Spec : Node_Id;
5710 -- Original specification in access to subprogram
5712 P : Node_Id;
5714 begin
5715 Set_Is_Internal (Anon);
5717 case Nkind (N) is
5718 when N_Component_Declaration |
5719 N_Unconstrained_Array_Definition |
5720 N_Constrained_Array_Definition =>
5721 Comp := Component_Definition (N);
5722 Acc := Access_Definition (Comp);
5724 when N_Discriminant_Specification =>
5725 Comp := Discriminant_Type (N);
5726 Acc := Comp;
5728 when N_Parameter_Specification =>
5729 Comp := Parameter_Type (N);
5730 Acc := Comp;
5732 when N_Access_Function_Definition =>
5733 Comp := Result_Definition (N);
5734 Acc := Comp;
5736 when N_Object_Declaration =>
5737 Comp := Object_Definition (N);
5738 Acc := Comp;
5740 when N_Function_Specification =>
5741 Comp := Result_Definition (N);
5742 Acc := Comp;
5744 when others =>
5745 raise Program_Error;
5746 end case;
5748 Spec := Access_To_Subprogram_Definition (Acc);
5750 Decl :=
5751 Make_Full_Type_Declaration (Loc,
5752 Defining_Identifier => Anon,
5753 Type_Definition => Copy_Separate_Tree (Spec));
5755 Mark_Rewrite_Insertion (Decl);
5757 -- In ASIS mode, analyze the profile on the original node, because
5758 -- the separate copy does not provide enough links to recover the
5759 -- original tree. Analysis is limited to type annotations, within
5760 -- a temporary scope that serves as an anonymous subprogram to collect
5761 -- otherwise useless temporaries and itypes.
5763 if ASIS_Mode then
5764 declare
5765 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
5767 begin
5768 if Nkind (Spec) = N_Access_Function_Definition then
5769 Set_Ekind (Typ, E_Function);
5770 else
5771 Set_Ekind (Typ, E_Procedure);
5772 end if;
5774 Set_Parent (Typ, N);
5775 Set_Scope (Typ, Current_Scope);
5776 Push_Scope (Typ);
5778 -- Nothing to do if procedure is parameterless
5780 if Present (Parameter_Specifications (Spec)) then
5781 Process_Formals (Parameter_Specifications (Spec), Spec);
5782 end if;
5784 if Nkind (Spec) = N_Access_Function_Definition then
5785 declare
5786 Def : constant Node_Id := Result_Definition (Spec);
5788 begin
5789 -- The result might itself be an anonymous access type, so
5790 -- have to recurse.
5792 if Nkind (Def) = N_Access_Definition then
5793 if Present (Access_To_Subprogram_Definition (Def)) then
5794 Set_Etype
5795 (Def,
5796 Replace_Anonymous_Access_To_Protected_Subprogram
5797 (Spec));
5798 else
5799 Find_Type (Subtype_Mark (Def));
5800 end if;
5802 else
5803 Find_Type (Def);
5804 end if;
5805 end;
5806 end if;
5808 End_Scope;
5809 end;
5810 end if;
5812 -- Insert the new declaration in the nearest enclosing scope. If the
5813 -- node is a body and N is its return type, the declaration belongs in
5814 -- the enclosing scope.
5816 P := Parent (N);
5818 if Nkind (P) = N_Subprogram_Body
5819 and then Nkind (N) = N_Function_Specification
5820 then
5821 P := Parent (P);
5822 end if;
5824 while Present (P) and then not Has_Declarations (P) loop
5825 P := Parent (P);
5826 end loop;
5828 pragma Assert (Present (P));
5830 if Nkind (P) = N_Package_Specification then
5831 Prepend (Decl, Visible_Declarations (P));
5832 else
5833 Prepend (Decl, Declarations (P));
5834 end if;
5836 -- Replace the anonymous type with an occurrence of the new declaration.
5837 -- In all cases the rewritten node does not have the null-exclusion
5838 -- attribute because (if present) it was already inherited by the
5839 -- anonymous entity (Anon). Thus, in case of components we do not
5840 -- inherit this attribute.
5842 if Nkind (N) = N_Parameter_Specification then
5843 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5844 Set_Etype (Defining_Identifier (N), Anon);
5845 Set_Null_Exclusion_Present (N, False);
5847 elsif Nkind (N) = N_Object_Declaration then
5848 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5849 Set_Etype (Defining_Identifier (N), Anon);
5851 elsif Nkind (N) = N_Access_Function_Definition then
5852 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5854 elsif Nkind (N) = N_Function_Specification then
5855 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
5856 Set_Etype (Defining_Unit_Name (N), Anon);
5858 else
5859 Rewrite (Comp,
5860 Make_Component_Definition (Loc,
5861 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
5862 end if;
5864 Mark_Rewrite_Insertion (Comp);
5866 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
5867 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
5868 and then not Is_Type (Current_Scope))
5869 then
5871 -- Declaration can be analyzed in the current scope.
5873 Analyze (Decl);
5875 else
5876 -- Temporarily remove the current scope (record or subprogram) from
5877 -- the stack to add the new declarations to the enclosing scope.
5878 -- The anonymous entity is an Itype with the proper attributes.
5880 Scope_Stack.Decrement_Last;
5881 Analyze (Decl);
5882 Set_Is_Itype (Anon);
5883 Set_Associated_Node_For_Itype (Anon, N);
5884 Scope_Stack.Append (Curr_Scope);
5885 end if;
5887 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
5888 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
5889 return Anon;
5890 end Replace_Anonymous_Access_To_Protected_Subprogram;
5892 -------------------------------
5893 -- Build_Derived_Access_Type --
5894 -------------------------------
5896 procedure Build_Derived_Access_Type
5897 (N : Node_Id;
5898 Parent_Type : Entity_Id;
5899 Derived_Type : Entity_Id)
5901 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
5903 Desig_Type : Entity_Id;
5904 Discr : Entity_Id;
5905 Discr_Con_Elist : Elist_Id;
5906 Discr_Con_El : Elmt_Id;
5907 Subt : Entity_Id;
5909 begin
5910 -- Set the designated type so it is available in case this is an access
5911 -- to a self-referential type, e.g. a standard list type with a next
5912 -- pointer. Will be reset after subtype is built.
5914 Set_Directly_Designated_Type
5915 (Derived_Type, Designated_Type (Parent_Type));
5917 Subt := Process_Subtype (S, N);
5919 if Nkind (S) /= N_Subtype_Indication
5920 and then Subt /= Base_Type (Subt)
5921 then
5922 Set_Ekind (Derived_Type, E_Access_Subtype);
5923 end if;
5925 if Ekind (Derived_Type) = E_Access_Subtype then
5926 declare
5927 Pbase : constant Entity_Id := Base_Type (Parent_Type);
5928 Ibase : constant Entity_Id :=
5929 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
5930 Svg_Chars : constant Name_Id := Chars (Ibase);
5931 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
5933 begin
5934 Copy_Node (Pbase, Ibase);
5936 Set_Chars (Ibase, Svg_Chars);
5937 Set_Next_Entity (Ibase, Svg_Next_E);
5938 Set_Sloc (Ibase, Sloc (Derived_Type));
5939 Set_Scope (Ibase, Scope (Derived_Type));
5940 Set_Freeze_Node (Ibase, Empty);
5941 Set_Is_Frozen (Ibase, False);
5942 Set_Comes_From_Source (Ibase, False);
5943 Set_Is_First_Subtype (Ibase, False);
5945 Set_Etype (Ibase, Pbase);
5946 Set_Etype (Derived_Type, Ibase);
5947 end;
5948 end if;
5950 Set_Directly_Designated_Type
5951 (Derived_Type, Designated_Type (Subt));
5953 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
5954 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
5955 Set_Size_Info (Derived_Type, Parent_Type);
5956 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5957 Set_Depends_On_Private (Derived_Type,
5958 Has_Private_Component (Derived_Type));
5959 Conditional_Delay (Derived_Type, Subt);
5961 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
5962 -- that it is not redundant.
5964 if Null_Exclusion_Present (Type_Definition (N)) then
5965 Set_Can_Never_Be_Null (Derived_Type);
5967 -- What is with the "AND THEN FALSE" here ???
5969 if Can_Never_Be_Null (Parent_Type)
5970 and then False
5971 then
5972 Error_Msg_NE
5973 ("`NOT NULL` not allowed (& already excludes null)",
5974 N, Parent_Type);
5975 end if;
5977 elsif Can_Never_Be_Null (Parent_Type) then
5978 Set_Can_Never_Be_Null (Derived_Type);
5979 end if;
5981 -- Note: we do not copy the Storage_Size_Variable, since we always go to
5982 -- the root type for this information.
5984 -- Apply range checks to discriminants for derived record case
5985 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
5987 Desig_Type := Designated_Type (Derived_Type);
5988 if Is_Composite_Type (Desig_Type)
5989 and then (not Is_Array_Type (Desig_Type))
5990 and then Has_Discriminants (Desig_Type)
5991 and then Base_Type (Desig_Type) /= Desig_Type
5992 then
5993 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
5994 Discr_Con_El := First_Elmt (Discr_Con_Elist);
5996 Discr := First_Discriminant (Base_Type (Desig_Type));
5997 while Present (Discr_Con_El) loop
5998 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
5999 Next_Elmt (Discr_Con_El);
6000 Next_Discriminant (Discr);
6001 end loop;
6002 end if;
6003 end Build_Derived_Access_Type;
6005 ------------------------------
6006 -- Build_Derived_Array_Type --
6007 ------------------------------
6009 procedure Build_Derived_Array_Type
6010 (N : Node_Id;
6011 Parent_Type : Entity_Id;
6012 Derived_Type : Entity_Id)
6014 Loc : constant Source_Ptr := Sloc (N);
6015 Tdef : constant Node_Id := Type_Definition (N);
6016 Indic : constant Node_Id := Subtype_Indication (Tdef);
6017 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6018 Implicit_Base : Entity_Id;
6019 New_Indic : Node_Id;
6021 procedure Make_Implicit_Base;
6022 -- If the parent subtype is constrained, the derived type is a subtype
6023 -- of an implicit base type derived from the parent base.
6025 ------------------------
6026 -- Make_Implicit_Base --
6027 ------------------------
6029 procedure Make_Implicit_Base is
6030 begin
6031 Implicit_Base :=
6032 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6034 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6035 Set_Etype (Implicit_Base, Parent_Base);
6037 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6038 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6040 Set_Has_Delayed_Freeze (Implicit_Base, True);
6042 -- Inherit the "ghostness" from the parent base type
6044 if Ghost_Mode > None or else Is_Ghost_Entity (Parent_Base) then
6045 Set_Is_Ghost_Entity (Implicit_Base);
6046 end if;
6047 end Make_Implicit_Base;
6049 -- Start of processing for Build_Derived_Array_Type
6051 begin
6052 if not Is_Constrained (Parent_Type) then
6053 if Nkind (Indic) /= N_Subtype_Indication then
6054 Set_Ekind (Derived_Type, E_Array_Type);
6056 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6057 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6059 Set_Has_Delayed_Freeze (Derived_Type, True);
6061 else
6062 Make_Implicit_Base;
6063 Set_Etype (Derived_Type, Implicit_Base);
6065 New_Indic :=
6066 Make_Subtype_Declaration (Loc,
6067 Defining_Identifier => Derived_Type,
6068 Subtype_Indication =>
6069 Make_Subtype_Indication (Loc,
6070 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6071 Constraint => Constraint (Indic)));
6073 Rewrite (N, New_Indic);
6074 Analyze (N);
6075 end if;
6077 else
6078 if Nkind (Indic) /= N_Subtype_Indication then
6079 Make_Implicit_Base;
6081 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6082 Set_Etype (Derived_Type, Implicit_Base);
6083 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6085 else
6086 Error_Msg_N ("illegal constraint on constrained type", Indic);
6087 end if;
6088 end if;
6090 -- If parent type is not a derived type itself, and is declared in
6091 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6092 -- the new type's concatenation operator since Derive_Subprograms
6093 -- will not inherit the parent's operator. If the parent type is
6094 -- unconstrained, the operator is of the unconstrained base type.
6096 if Number_Dimensions (Parent_Type) = 1
6097 and then not Is_Limited_Type (Parent_Type)
6098 and then not Is_Derived_Type (Parent_Type)
6099 and then not Is_Package_Or_Generic_Package
6100 (Scope (Base_Type (Parent_Type)))
6101 then
6102 if not Is_Constrained (Parent_Type)
6103 and then Is_Constrained (Derived_Type)
6104 then
6105 New_Concatenation_Op (Implicit_Base);
6106 else
6107 New_Concatenation_Op (Derived_Type);
6108 end if;
6109 end if;
6110 end Build_Derived_Array_Type;
6112 -----------------------------------
6113 -- Build_Derived_Concurrent_Type --
6114 -----------------------------------
6116 procedure Build_Derived_Concurrent_Type
6117 (N : Node_Id;
6118 Parent_Type : Entity_Id;
6119 Derived_Type : Entity_Id)
6121 Loc : constant Source_Ptr := Sloc (N);
6123 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6124 Corr_Decl : Node_Id;
6125 Corr_Decl_Needed : Boolean;
6126 -- If the derived type has fewer discriminants than its parent, the
6127 -- corresponding record is also a derived type, in order to account for
6128 -- the bound discriminants. We create a full type declaration for it in
6129 -- this case.
6131 Constraint_Present : constant Boolean :=
6132 Nkind (Subtype_Indication (Type_Definition (N))) =
6133 N_Subtype_Indication;
6135 D_Constraint : Node_Id;
6136 New_Constraint : Elist_Id;
6137 Old_Disc : Entity_Id;
6138 New_Disc : Entity_Id;
6139 New_N : Node_Id;
6141 begin
6142 Set_Stored_Constraint (Derived_Type, No_Elist);
6143 Corr_Decl_Needed := False;
6144 Old_Disc := Empty;
6146 if Present (Discriminant_Specifications (N))
6147 and then Constraint_Present
6148 then
6149 Old_Disc := First_Discriminant (Parent_Type);
6150 New_Disc := First (Discriminant_Specifications (N));
6151 while Present (New_Disc) and then Present (Old_Disc) loop
6152 Next_Discriminant (Old_Disc);
6153 Next (New_Disc);
6154 end loop;
6155 end if;
6157 if Present (Old_Disc) and then Expander_Active then
6159 -- The new type has fewer discriminants, so we need to create a new
6160 -- corresponding record, which is derived from the corresponding
6161 -- record of the parent, and has a stored constraint that captures
6162 -- the values of the discriminant constraints. The corresponding
6163 -- record is needed only if expander is active and code generation is
6164 -- enabled.
6166 -- The type declaration for the derived corresponding record has the
6167 -- same discriminant part and constraints as the current declaration.
6168 -- Copy the unanalyzed tree to build declaration.
6170 Corr_Decl_Needed := True;
6171 New_N := Copy_Separate_Tree (N);
6173 Corr_Decl :=
6174 Make_Full_Type_Declaration (Loc,
6175 Defining_Identifier => Corr_Record,
6176 Discriminant_Specifications =>
6177 Discriminant_Specifications (New_N),
6178 Type_Definition =>
6179 Make_Derived_Type_Definition (Loc,
6180 Subtype_Indication =>
6181 Make_Subtype_Indication (Loc,
6182 Subtype_Mark =>
6183 New_Occurrence_Of
6184 (Corresponding_Record_Type (Parent_Type), Loc),
6185 Constraint =>
6186 Constraint
6187 (Subtype_Indication (Type_Definition (New_N))))));
6188 end if;
6190 -- Copy Storage_Size and Relative_Deadline variables if task case
6192 if Is_Task_Type (Parent_Type) then
6193 Set_Storage_Size_Variable (Derived_Type,
6194 Storage_Size_Variable (Parent_Type));
6195 Set_Relative_Deadline_Variable (Derived_Type,
6196 Relative_Deadline_Variable (Parent_Type));
6197 end if;
6199 if Present (Discriminant_Specifications (N)) then
6200 Push_Scope (Derived_Type);
6201 Check_Or_Process_Discriminants (N, Derived_Type);
6203 if Constraint_Present then
6204 New_Constraint :=
6205 Expand_To_Stored_Constraint
6206 (Parent_Type,
6207 Build_Discriminant_Constraints
6208 (Parent_Type,
6209 Subtype_Indication (Type_Definition (N)), True));
6210 end if;
6212 End_Scope;
6214 elsif Constraint_Present then
6216 -- Build constrained subtype, copying the constraint, and derive
6217 -- from it to create a derived constrained type.
6219 declare
6220 Loc : constant Source_Ptr := Sloc (N);
6221 Anon : constant Entity_Id :=
6222 Make_Defining_Identifier (Loc,
6223 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6224 Decl : Node_Id;
6226 begin
6227 Decl :=
6228 Make_Subtype_Declaration (Loc,
6229 Defining_Identifier => Anon,
6230 Subtype_Indication =>
6231 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6232 Insert_Before (N, Decl);
6233 Analyze (Decl);
6235 Rewrite (Subtype_Indication (Type_Definition (N)),
6236 New_Occurrence_Of (Anon, Loc));
6237 Set_Analyzed (Derived_Type, False);
6238 Analyze (N);
6239 return;
6240 end;
6241 end if;
6243 -- By default, operations and private data are inherited from parent.
6244 -- However, in the presence of bound discriminants, a new corresponding
6245 -- record will be created, see below.
6247 Set_Has_Discriminants
6248 (Derived_Type, Has_Discriminants (Parent_Type));
6249 Set_Corresponding_Record_Type
6250 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6252 -- Is_Constrained is set according the parent subtype, but is set to
6253 -- False if the derived type is declared with new discriminants.
6255 Set_Is_Constrained
6256 (Derived_Type,
6257 (Is_Constrained (Parent_Type) or else Constraint_Present)
6258 and then not Present (Discriminant_Specifications (N)));
6260 if Constraint_Present then
6261 if not Has_Discriminants (Parent_Type) then
6262 Error_Msg_N ("untagged parent must have discriminants", N);
6264 elsif Present (Discriminant_Specifications (N)) then
6266 -- Verify that new discriminants are used to constrain old ones
6268 D_Constraint :=
6269 First
6270 (Constraints
6271 (Constraint (Subtype_Indication (Type_Definition (N)))));
6273 Old_Disc := First_Discriminant (Parent_Type);
6275 while Present (D_Constraint) loop
6276 if Nkind (D_Constraint) /= N_Discriminant_Association then
6278 -- Positional constraint. If it is a reference to a new
6279 -- discriminant, it constrains the corresponding old one.
6281 if Nkind (D_Constraint) = N_Identifier then
6282 New_Disc := First_Discriminant (Derived_Type);
6283 while Present (New_Disc) loop
6284 exit when Chars (New_Disc) = Chars (D_Constraint);
6285 Next_Discriminant (New_Disc);
6286 end loop;
6288 if Present (New_Disc) then
6289 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6290 end if;
6291 end if;
6293 Next_Discriminant (Old_Disc);
6295 -- if this is a named constraint, search by name for the old
6296 -- discriminants constrained by the new one.
6298 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6300 -- Find new discriminant with that name
6302 New_Disc := First_Discriminant (Derived_Type);
6303 while Present (New_Disc) loop
6304 exit when
6305 Chars (New_Disc) = Chars (Expression (D_Constraint));
6306 Next_Discriminant (New_Disc);
6307 end loop;
6309 if Present (New_Disc) then
6311 -- Verify that new discriminant renames some discriminant
6312 -- of the parent type, and associate the new discriminant
6313 -- with one or more old ones that it renames.
6315 declare
6316 Selector : Node_Id;
6318 begin
6319 Selector := First (Selector_Names (D_Constraint));
6320 while Present (Selector) loop
6321 Old_Disc := First_Discriminant (Parent_Type);
6322 while Present (Old_Disc) loop
6323 exit when Chars (Old_Disc) = Chars (Selector);
6324 Next_Discriminant (Old_Disc);
6325 end loop;
6327 if Present (Old_Disc) then
6328 Set_Corresponding_Discriminant
6329 (New_Disc, Old_Disc);
6330 end if;
6332 Next (Selector);
6333 end loop;
6334 end;
6335 end if;
6336 end if;
6338 Next (D_Constraint);
6339 end loop;
6341 New_Disc := First_Discriminant (Derived_Type);
6342 while Present (New_Disc) loop
6343 if No (Corresponding_Discriminant (New_Disc)) then
6344 Error_Msg_NE
6345 ("new discriminant& must constrain old one", N, New_Disc);
6347 elsif not
6348 Subtypes_Statically_Compatible
6349 (Etype (New_Disc),
6350 Etype (Corresponding_Discriminant (New_Disc)))
6351 then
6352 Error_Msg_NE
6353 ("& not statically compatible with parent discriminant",
6354 N, New_Disc);
6355 end if;
6357 Next_Discriminant (New_Disc);
6358 end loop;
6359 end if;
6361 elsif Present (Discriminant_Specifications (N)) then
6362 Error_Msg_N
6363 ("missing discriminant constraint in untagged derivation", N);
6364 end if;
6366 -- The entity chain of the derived type includes the new discriminants
6367 -- but shares operations with the parent.
6369 if Present (Discriminant_Specifications (N)) then
6370 Old_Disc := First_Discriminant (Parent_Type);
6371 while Present (Old_Disc) loop
6372 if No (Next_Entity (Old_Disc))
6373 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6374 then
6375 Set_Next_Entity
6376 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6377 exit;
6378 end if;
6380 Next_Discriminant (Old_Disc);
6381 end loop;
6383 else
6384 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6385 if Has_Discriminants (Parent_Type) then
6386 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6387 Set_Discriminant_Constraint (
6388 Derived_Type, Discriminant_Constraint (Parent_Type));
6389 end if;
6390 end if;
6392 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6394 Set_Has_Completion (Derived_Type);
6396 if Corr_Decl_Needed then
6397 Set_Stored_Constraint (Derived_Type, New_Constraint);
6398 Insert_After (N, Corr_Decl);
6399 Analyze (Corr_Decl);
6400 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6401 end if;
6402 end Build_Derived_Concurrent_Type;
6404 ------------------------------------
6405 -- Build_Derived_Enumeration_Type --
6406 ------------------------------------
6408 procedure Build_Derived_Enumeration_Type
6409 (N : Node_Id;
6410 Parent_Type : Entity_Id;
6411 Derived_Type : Entity_Id)
6413 Loc : constant Source_Ptr := Sloc (N);
6414 Def : constant Node_Id := Type_Definition (N);
6415 Indic : constant Node_Id := Subtype_Indication (Def);
6416 Implicit_Base : Entity_Id;
6417 Literal : Entity_Id;
6418 New_Lit : Entity_Id;
6419 Literals_List : List_Id;
6420 Type_Decl : Node_Id;
6421 Hi, Lo : Node_Id;
6422 Rang_Expr : Node_Id;
6424 begin
6425 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6426 -- not have explicit literals lists we need to process types derived
6427 -- from them specially. This is handled by Derived_Standard_Character.
6428 -- If the parent type is a generic type, there are no literals either,
6429 -- and we construct the same skeletal representation as for the generic
6430 -- parent type.
6432 if Is_Standard_Character_Type (Parent_Type) then
6433 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6435 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6436 declare
6437 Lo : Node_Id;
6438 Hi : Node_Id;
6440 begin
6441 if Nkind (Indic) /= N_Subtype_Indication then
6442 Lo :=
6443 Make_Attribute_Reference (Loc,
6444 Attribute_Name => Name_First,
6445 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6446 Set_Etype (Lo, Derived_Type);
6448 Hi :=
6449 Make_Attribute_Reference (Loc,
6450 Attribute_Name => Name_Last,
6451 Prefix => New_Occurrence_Of (Derived_Type, Loc));
6452 Set_Etype (Hi, Derived_Type);
6454 Set_Scalar_Range (Derived_Type,
6455 Make_Range (Loc,
6456 Low_Bound => Lo,
6457 High_Bound => Hi));
6458 else
6460 -- Analyze subtype indication and verify compatibility
6461 -- with parent type.
6463 if Base_Type (Process_Subtype (Indic, N)) /=
6464 Base_Type (Parent_Type)
6465 then
6466 Error_Msg_N
6467 ("illegal constraint for formal discrete type", N);
6468 end if;
6469 end if;
6470 end;
6472 else
6473 -- If a constraint is present, analyze the bounds to catch
6474 -- premature usage of the derived literals.
6476 if Nkind (Indic) = N_Subtype_Indication
6477 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
6478 then
6479 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
6480 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
6481 end if;
6483 -- Introduce an implicit base type for the derived type even if there
6484 -- is no constraint attached to it, since this seems closer to the
6485 -- Ada semantics. Build a full type declaration tree for the derived
6486 -- type using the implicit base type as the defining identifier. The
6487 -- build a subtype declaration tree which applies the constraint (if
6488 -- any) have it replace the derived type declaration.
6490 Literal := First_Literal (Parent_Type);
6491 Literals_List := New_List;
6492 while Present (Literal)
6493 and then Ekind (Literal) = E_Enumeration_Literal
6494 loop
6495 -- Literals of the derived type have the same representation as
6496 -- those of the parent type, but this representation can be
6497 -- overridden by an explicit representation clause. Indicate
6498 -- that there is no explicit representation given yet. These
6499 -- derived literals are implicit operations of the new type,
6500 -- and can be overridden by explicit ones.
6502 if Nkind (Literal) = N_Defining_Character_Literal then
6503 New_Lit :=
6504 Make_Defining_Character_Literal (Loc, Chars (Literal));
6505 else
6506 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
6507 end if;
6509 Set_Ekind (New_Lit, E_Enumeration_Literal);
6510 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
6511 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
6512 Set_Enumeration_Rep_Expr (New_Lit, Empty);
6513 Set_Alias (New_Lit, Literal);
6514 Set_Is_Known_Valid (New_Lit, True);
6516 Append (New_Lit, Literals_List);
6517 Next_Literal (Literal);
6518 end loop;
6520 Implicit_Base :=
6521 Make_Defining_Identifier (Sloc (Derived_Type),
6522 Chars => New_External_Name (Chars (Derived_Type), 'B'));
6524 -- Indicate the proper nature of the derived type. This must be done
6525 -- before analysis of the literals, to recognize cases when a literal
6526 -- may be hidden by a previous explicit function definition (cf.
6527 -- c83031a).
6529 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
6530 Set_Etype (Derived_Type, Implicit_Base);
6532 Type_Decl :=
6533 Make_Full_Type_Declaration (Loc,
6534 Defining_Identifier => Implicit_Base,
6535 Discriminant_Specifications => No_List,
6536 Type_Definition =>
6537 Make_Enumeration_Type_Definition (Loc, Literals_List));
6539 Mark_Rewrite_Insertion (Type_Decl);
6540 Insert_Before (N, Type_Decl);
6541 Analyze (Type_Decl);
6543 -- The anonymous base now has a full declaration, but this base
6544 -- is not a first subtype.
6546 Set_Is_First_Subtype (Implicit_Base, False);
6548 -- After the implicit base is analyzed its Etype needs to be changed
6549 -- to reflect the fact that it is derived from the parent type which
6550 -- was ignored during analysis. We also set the size at this point.
6552 Set_Etype (Implicit_Base, Parent_Type);
6554 Set_Size_Info (Implicit_Base, Parent_Type);
6555 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
6556 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
6558 -- Copy other flags from parent type
6560 Set_Has_Non_Standard_Rep
6561 (Implicit_Base, Has_Non_Standard_Rep
6562 (Parent_Type));
6563 Set_Has_Pragma_Ordered
6564 (Implicit_Base, Has_Pragma_Ordered
6565 (Parent_Type));
6566 Set_Has_Delayed_Freeze (Implicit_Base);
6568 -- Process the subtype indication including a validation check on the
6569 -- constraint, if any. If a constraint is given, its bounds must be
6570 -- implicitly converted to the new type.
6572 if Nkind (Indic) = N_Subtype_Indication then
6573 declare
6574 R : constant Node_Id :=
6575 Range_Expression (Constraint (Indic));
6577 begin
6578 if Nkind (R) = N_Range then
6579 Hi := Build_Scalar_Bound
6580 (High_Bound (R), Parent_Type, Implicit_Base);
6581 Lo := Build_Scalar_Bound
6582 (Low_Bound (R), Parent_Type, Implicit_Base);
6584 else
6585 -- Constraint is a Range attribute. Replace with explicit
6586 -- mention of the bounds of the prefix, which must be a
6587 -- subtype.
6589 Analyze (Prefix (R));
6590 Hi :=
6591 Convert_To (Implicit_Base,
6592 Make_Attribute_Reference (Loc,
6593 Attribute_Name => Name_Last,
6594 Prefix =>
6595 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6597 Lo :=
6598 Convert_To (Implicit_Base,
6599 Make_Attribute_Reference (Loc,
6600 Attribute_Name => Name_First,
6601 Prefix =>
6602 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
6603 end if;
6604 end;
6606 else
6607 Hi :=
6608 Build_Scalar_Bound
6609 (Type_High_Bound (Parent_Type),
6610 Parent_Type, Implicit_Base);
6611 Lo :=
6612 Build_Scalar_Bound
6613 (Type_Low_Bound (Parent_Type),
6614 Parent_Type, Implicit_Base);
6615 end if;
6617 Rang_Expr :=
6618 Make_Range (Loc,
6619 Low_Bound => Lo,
6620 High_Bound => Hi);
6622 -- If we constructed a default range for the case where no range
6623 -- was given, then the expressions in the range must not freeze
6624 -- since they do not correspond to expressions in the source.
6626 if Nkind (Indic) /= N_Subtype_Indication then
6627 Set_Must_Not_Freeze (Lo);
6628 Set_Must_Not_Freeze (Hi);
6629 Set_Must_Not_Freeze (Rang_Expr);
6630 end if;
6632 Rewrite (N,
6633 Make_Subtype_Declaration (Loc,
6634 Defining_Identifier => Derived_Type,
6635 Subtype_Indication =>
6636 Make_Subtype_Indication (Loc,
6637 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6638 Constraint =>
6639 Make_Range_Constraint (Loc,
6640 Range_Expression => Rang_Expr))));
6642 Analyze (N);
6644 -- Propagate the aspects from the original type declaration to the
6645 -- declaration of the implicit base.
6647 Move_Aspects (From => Original_Node (N), To => Type_Decl);
6649 -- Apply a range check. Since this range expression doesn't have an
6650 -- Etype, we have to specifically pass the Source_Typ parameter. Is
6651 -- this right???
6653 if Nkind (Indic) = N_Subtype_Indication then
6654 Apply_Range_Check
6655 (Range_Expression (Constraint (Indic)), Parent_Type,
6656 Source_Typ => Entity (Subtype_Mark (Indic)));
6657 end if;
6658 end if;
6659 end Build_Derived_Enumeration_Type;
6661 --------------------------------
6662 -- Build_Derived_Numeric_Type --
6663 --------------------------------
6665 procedure Build_Derived_Numeric_Type
6666 (N : Node_Id;
6667 Parent_Type : Entity_Id;
6668 Derived_Type : Entity_Id)
6670 Loc : constant Source_Ptr := Sloc (N);
6671 Tdef : constant Node_Id := Type_Definition (N);
6672 Indic : constant Node_Id := Subtype_Indication (Tdef);
6673 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6674 No_Constraint : constant Boolean := Nkind (Indic) /=
6675 N_Subtype_Indication;
6676 Implicit_Base : Entity_Id;
6678 Lo : Node_Id;
6679 Hi : Node_Id;
6681 begin
6682 -- Process the subtype indication including a validation check on
6683 -- the constraint if any.
6685 Discard_Node (Process_Subtype (Indic, N));
6687 -- Introduce an implicit base type for the derived type even if there
6688 -- is no constraint attached to it, since this seems closer to the Ada
6689 -- semantics.
6691 Implicit_Base :=
6692 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6694 Set_Etype (Implicit_Base, Parent_Base);
6695 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6696 Set_Size_Info (Implicit_Base, Parent_Base);
6697 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
6698 Set_Parent (Implicit_Base, Parent (Derived_Type));
6699 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
6701 -- Set RM Size for discrete type or decimal fixed-point type
6702 -- Ordinary fixed-point is excluded, why???
6704 if Is_Discrete_Type (Parent_Base)
6705 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
6706 then
6707 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
6708 end if;
6710 Set_Has_Delayed_Freeze (Implicit_Base);
6712 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
6713 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
6715 Set_Scalar_Range (Implicit_Base,
6716 Make_Range (Loc,
6717 Low_Bound => Lo,
6718 High_Bound => Hi));
6720 if Has_Infinities (Parent_Base) then
6721 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
6722 end if;
6724 -- The Derived_Type, which is the entity of the declaration, is a
6725 -- subtype of the implicit base. Its Ekind is a subtype, even in the
6726 -- absence of an explicit constraint.
6728 Set_Etype (Derived_Type, Implicit_Base);
6730 -- If we did not have a constraint, then the Ekind is set from the
6731 -- parent type (otherwise Process_Subtype has set the bounds)
6733 if No_Constraint then
6734 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
6735 end if;
6737 -- If we did not have a range constraint, then set the range from the
6738 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
6740 if No_Constraint or else not Has_Range_Constraint (Indic) then
6741 Set_Scalar_Range (Derived_Type,
6742 Make_Range (Loc,
6743 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
6744 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
6745 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6747 if Has_Infinities (Parent_Type) then
6748 Set_Includes_Infinities (Scalar_Range (Derived_Type));
6749 end if;
6751 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
6752 end if;
6754 Set_Is_Descendent_Of_Address (Derived_Type,
6755 Is_Descendent_Of_Address (Parent_Type));
6756 Set_Is_Descendent_Of_Address (Implicit_Base,
6757 Is_Descendent_Of_Address (Parent_Type));
6759 -- Set remaining type-specific fields, depending on numeric type
6761 if Is_Modular_Integer_Type (Parent_Type) then
6762 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
6764 Set_Non_Binary_Modulus
6765 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
6767 Set_Is_Known_Valid
6768 (Implicit_Base, Is_Known_Valid (Parent_Base));
6770 elsif Is_Floating_Point_Type (Parent_Type) then
6772 -- Digits of base type is always copied from the digits value of
6773 -- the parent base type, but the digits of the derived type will
6774 -- already have been set if there was a constraint present.
6776 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6777 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
6779 if No_Constraint then
6780 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
6781 end if;
6783 elsif Is_Fixed_Point_Type (Parent_Type) then
6785 -- Small of base type and derived type are always copied from the
6786 -- parent base type, since smalls never change. The delta of the
6787 -- base type is also copied from the parent base type. However the
6788 -- delta of the derived type will have been set already if a
6789 -- constraint was present.
6791 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
6792 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
6793 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
6795 if No_Constraint then
6796 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
6797 end if;
6799 -- The scale and machine radix in the decimal case are always
6800 -- copied from the parent base type.
6802 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
6803 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
6804 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
6806 Set_Machine_Radix_10
6807 (Derived_Type, Machine_Radix_10 (Parent_Base));
6808 Set_Machine_Radix_10
6809 (Implicit_Base, Machine_Radix_10 (Parent_Base));
6811 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
6813 if No_Constraint then
6814 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
6816 else
6817 -- the analysis of the subtype_indication sets the
6818 -- digits value of the derived type.
6820 null;
6821 end if;
6822 end if;
6823 end if;
6825 if Is_Integer_Type (Parent_Type) then
6826 Set_Has_Shift_Operator
6827 (Implicit_Base, Has_Shift_Operator (Parent_Type));
6828 end if;
6830 -- The type of the bounds is that of the parent type, and they
6831 -- must be converted to the derived type.
6833 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
6835 -- The implicit_base should be frozen when the derived type is frozen,
6836 -- but note that it is used in the conversions of the bounds. For fixed
6837 -- types we delay the determination of the bounds until the proper
6838 -- freezing point. For other numeric types this is rejected by GCC, for
6839 -- reasons that are currently unclear (???), so we choose to freeze the
6840 -- implicit base now. In the case of integers and floating point types
6841 -- this is harmless because subsequent representation clauses cannot
6842 -- affect anything, but it is still baffling that we cannot use the
6843 -- same mechanism for all derived numeric types.
6845 -- There is a further complication: actually some representation
6846 -- clauses can affect the implicit base type. For example, attribute
6847 -- definition clauses for stream-oriented attributes need to set the
6848 -- corresponding TSS entries on the base type, and this normally
6849 -- cannot be done after the base type is frozen, so the circuitry in
6850 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
6851 -- and not use Set_TSS in this case.
6853 -- There are also consequences for the case of delayed representation
6854 -- aspects for some cases. For example, a Size aspect is delayed and
6855 -- should not be evaluated to the freeze point. This early freezing
6856 -- means that the size attribute evaluation happens too early???
6858 if Is_Fixed_Point_Type (Parent_Type) then
6859 Conditional_Delay (Implicit_Base, Parent_Type);
6860 else
6861 Freeze_Before (N, Implicit_Base);
6862 end if;
6863 end Build_Derived_Numeric_Type;
6865 --------------------------------
6866 -- Build_Derived_Private_Type --
6867 --------------------------------
6869 procedure Build_Derived_Private_Type
6870 (N : Node_Id;
6871 Parent_Type : Entity_Id;
6872 Derived_Type : Entity_Id;
6873 Is_Completion : Boolean;
6874 Derive_Subps : Boolean := True)
6876 Loc : constant Source_Ptr := Sloc (N);
6877 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
6878 Par_Scope : constant Entity_Id := Scope (Par_Base);
6879 Full_N : constant Node_Id := New_Copy_Tree (N);
6880 Full_Der : Entity_Id := New_Copy (Derived_Type);
6881 Full_P : Entity_Id;
6883 procedure Build_Full_Derivation;
6884 -- Build full derivation, i.e. derive from the full view
6886 procedure Copy_And_Build;
6887 -- Copy derived type declaration, replace parent with its full view,
6888 -- and build derivation
6890 ---------------------------
6891 -- Build_Full_Derivation --
6892 ---------------------------
6894 procedure Build_Full_Derivation is
6895 begin
6896 -- If parent scope is not open, install the declarations
6898 if not In_Open_Scopes (Par_Scope) then
6899 Install_Private_Declarations (Par_Scope);
6900 Install_Visible_Declarations (Par_Scope);
6901 Copy_And_Build;
6902 Uninstall_Declarations (Par_Scope);
6904 -- If parent scope is open and in another unit, and parent has a
6905 -- completion, then the derivation is taking place in the visible
6906 -- part of a child unit. In that case retrieve the full view of
6907 -- the parent momentarily.
6909 elsif not In_Same_Source_Unit (N, Parent_Type) then
6910 Full_P := Full_View (Parent_Type);
6911 Exchange_Declarations (Parent_Type);
6912 Copy_And_Build;
6913 Exchange_Declarations (Full_P);
6915 -- Otherwise it is a local derivation
6917 else
6918 Copy_And_Build;
6919 end if;
6920 end Build_Full_Derivation;
6922 --------------------
6923 -- Copy_And_Build --
6924 --------------------
6926 procedure Copy_And_Build is
6927 Full_Parent : Entity_Id := Parent_Type;
6929 begin
6930 -- If the parent is itself derived from another private type,
6931 -- installing the private declarations has not affected its
6932 -- privacy status, so use its own full view explicitly.
6934 if Is_Private_Type (Full_Parent)
6935 and then Present (Full_View (Full_Parent))
6936 then
6937 Full_Parent := Full_View (Full_Parent);
6938 end if;
6940 -- And its underlying full view if necessary
6942 if Is_Private_Type (Full_Parent)
6943 and then Present (Underlying_Full_View (Full_Parent))
6944 then
6945 Full_Parent := Underlying_Full_View (Full_Parent);
6946 end if;
6948 -- For record, access and most enumeration types, derivation from
6949 -- the full view requires a fully-fledged declaration. In the other
6950 -- cases, just use an itype.
6952 if Ekind (Full_Parent) in Record_Kind
6953 or else Ekind (Full_Parent) in Access_Kind
6954 or else
6955 (Ekind (Full_Parent) in Enumeration_Kind
6956 and then not Is_Standard_Character_Type (Full_Parent)
6957 and then not Is_Generic_Type (Root_Type (Full_Parent)))
6958 then
6959 -- Copy and adjust declaration to provide a completion for what
6960 -- is originally a private declaration. Indicate that full view
6961 -- is internally generated.
6963 Set_Comes_From_Source (Full_N, False);
6964 Set_Comes_From_Source (Full_Der, False);
6965 Set_Parent (Full_Der, Full_N);
6966 Set_Defining_Identifier (Full_N, Full_Der);
6968 -- If there are no constraints, adjust the subtype mark
6970 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
6971 N_Subtype_Indication
6972 then
6973 Set_Subtype_Indication
6974 (Type_Definition (Full_N),
6975 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
6976 end if;
6978 Insert_After (N, Full_N);
6980 -- Build full view of derived type from full view of parent which
6981 -- is now installed. Subprograms have been derived on the partial
6982 -- view, the completion does not derive them anew.
6984 if Ekind (Full_Parent) in Record_Kind then
6986 -- If parent type is tagged, the completion inherits the proper
6987 -- primitive operations.
6989 if Is_Tagged_Type (Parent_Type) then
6990 Build_Derived_Record_Type
6991 (Full_N, Full_Parent, Full_Der, Derive_Subps);
6992 else
6993 Build_Derived_Record_Type
6994 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
6995 end if;
6997 else
6998 Build_Derived_Type
6999 (Full_N, Full_Parent, Full_Der,
7000 Is_Completion => False, Derive_Subps => False);
7001 end if;
7003 -- The full declaration has been introduced into the tree and
7004 -- processed in the step above. It should not be analyzed again
7005 -- (when encountered later in the current list of declarations)
7006 -- to prevent spurious name conflicts. The full entity remains
7007 -- invisible.
7009 Set_Analyzed (Full_N);
7011 else
7012 Full_Der :=
7013 Make_Defining_Identifier (Sloc (Derived_Type),
7014 Chars => Chars (Derived_Type));
7015 Set_Is_Itype (Full_Der);
7016 Set_Associated_Node_For_Itype (Full_Der, N);
7017 Set_Parent (Full_Der, N);
7018 Build_Derived_Type
7019 (N, Full_Parent, Full_Der,
7020 Is_Completion => False, Derive_Subps => False);
7021 end if;
7023 Set_Has_Private_Declaration (Full_Der);
7024 Set_Has_Private_Declaration (Derived_Type);
7026 Set_Scope (Full_Der, Scope (Derived_Type));
7027 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7028 Set_Has_Size_Clause (Full_Der, False);
7029 Set_Has_Alignment_Clause (Full_Der, False);
7030 Set_Has_Delayed_Freeze (Full_Der);
7031 Set_Is_Frozen (Full_Der, False);
7032 Set_Freeze_Node (Full_Der, Empty);
7033 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7034 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7036 -- The convention on the base type may be set in the private part
7037 -- and not propagated to the subtype until later, so we obtain the
7038 -- convention from the base type of the parent.
7040 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7041 end Copy_And_Build;
7043 -- Start of processing for Build_Derived_Private_Type
7045 begin
7046 if Is_Tagged_Type (Parent_Type) then
7047 Full_P := Full_View (Parent_Type);
7049 -- A type extension of a type with unknown discriminants is an
7050 -- indefinite type that the back-end cannot handle directly.
7051 -- We treat it as a private type, and build a completion that is
7052 -- derived from the full view of the parent, and hopefully has
7053 -- known discriminants.
7055 -- If the full view of the parent type has an underlying record view,
7056 -- use it to generate the underlying record view of this derived type
7057 -- (required for chains of derivations with unknown discriminants).
7059 -- Minor optimization: we avoid the generation of useless underlying
7060 -- record view entities if the private type declaration has unknown
7061 -- discriminants but its corresponding full view has no
7062 -- discriminants.
7064 if Has_Unknown_Discriminants (Parent_Type)
7065 and then Present (Full_P)
7066 and then (Has_Discriminants (Full_P)
7067 or else Present (Underlying_Record_View (Full_P)))
7068 and then not In_Open_Scopes (Par_Scope)
7069 and then Expander_Active
7070 then
7071 declare
7072 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7073 New_Ext : constant Node_Id :=
7074 Copy_Separate_Tree
7075 (Record_Extension_Part (Type_Definition (N)));
7076 Decl : Node_Id;
7078 begin
7079 Build_Derived_Record_Type
7080 (N, Parent_Type, Derived_Type, Derive_Subps);
7082 -- Build anonymous completion, as a derivation from the full
7083 -- view of the parent. This is not a completion in the usual
7084 -- sense, because the current type is not private.
7086 Decl :=
7087 Make_Full_Type_Declaration (Loc,
7088 Defining_Identifier => Full_Der,
7089 Type_Definition =>
7090 Make_Derived_Type_Definition (Loc,
7091 Subtype_Indication =>
7092 New_Copy_Tree
7093 (Subtype_Indication (Type_Definition (N))),
7094 Record_Extension_Part => New_Ext));
7096 -- If the parent type has an underlying record view, use it
7097 -- here to build the new underlying record view.
7099 if Present (Underlying_Record_View (Full_P)) then
7100 pragma Assert
7101 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7102 = N_Identifier);
7103 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7104 Underlying_Record_View (Full_P));
7105 end if;
7107 Install_Private_Declarations (Par_Scope);
7108 Install_Visible_Declarations (Par_Scope);
7109 Insert_Before (N, Decl);
7111 -- Mark entity as an underlying record view before analysis,
7112 -- to avoid generating the list of its primitive operations
7113 -- (which is not really required for this entity) and thus
7114 -- prevent spurious errors associated with missing overriding
7115 -- of abstract primitives (overridden only for Derived_Type).
7117 Set_Ekind (Full_Der, E_Record_Type);
7118 Set_Is_Underlying_Record_View (Full_Der);
7119 Set_Default_SSO (Full_Der);
7121 Analyze (Decl);
7123 pragma Assert (Has_Discriminants (Full_Der)
7124 and then not Has_Unknown_Discriminants (Full_Der));
7126 Uninstall_Declarations (Par_Scope);
7128 -- Freeze the underlying record view, to prevent generation of
7129 -- useless dispatching information, which is simply shared with
7130 -- the real derived type.
7132 Set_Is_Frozen (Full_Der);
7134 -- If the derived type has access discriminants, create
7135 -- references to their anonymous types now, to prevent
7136 -- back-end problems when their first use is in generated
7137 -- bodies of primitives.
7139 declare
7140 E : Entity_Id;
7142 begin
7143 E := First_Entity (Full_Der);
7145 while Present (E) loop
7146 if Ekind (E) = E_Discriminant
7147 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7148 then
7149 Build_Itype_Reference (Etype (E), Decl);
7150 end if;
7152 Next_Entity (E);
7153 end loop;
7154 end;
7156 -- Set up links between real entity and underlying record view
7158 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7159 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7160 end;
7162 -- If discriminants are known, build derived record
7164 else
7165 Build_Derived_Record_Type
7166 (N, Parent_Type, Derived_Type, Derive_Subps);
7167 end if;
7169 return;
7171 elsif Has_Discriminants (Parent_Type) then
7173 -- Build partial view of derived type from partial view of parent.
7174 -- This must be done before building the full derivation because the
7175 -- second derivation will modify the discriminants of the first and
7176 -- the discriminants are chained with the rest of the components in
7177 -- the full derivation.
7179 Build_Derived_Record_Type
7180 (N, Parent_Type, Derived_Type, Derive_Subps);
7182 -- Build the full derivation if this is not the anonymous derived
7183 -- base type created by Build_Derived_Record_Type in the constrained
7184 -- case (see point 5. of its head comment) since we build it for the
7185 -- derived subtype. And skip it for protected types altogether, as
7186 -- gigi does not use these types directly.
7188 if Present (Full_View (Parent_Type))
7189 and then not Is_Itype (Derived_Type)
7190 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7191 then
7192 declare
7193 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7194 Discr : Entity_Id;
7195 Last_Discr : Entity_Id;
7197 begin
7198 -- If this is not a completion, construct the implicit full
7199 -- view by deriving from the full view of the parent type.
7200 -- But if this is a completion, the derived private type
7201 -- being built is a full view and the full derivation can
7202 -- only be its underlying full view.
7204 Build_Full_Derivation;
7206 if not Is_Completion then
7207 Set_Full_View (Derived_Type, Full_Der);
7208 else
7209 Set_Underlying_Full_View (Derived_Type, Full_Der);
7210 end if;
7212 if not Is_Base_Type (Derived_Type) then
7213 Set_Full_View (Der_Base, Base_Type (Full_Der));
7214 end if;
7216 -- Copy the discriminant list from full view to the partial
7217 -- view (base type and its subtype). Gigi requires that the
7218 -- partial and full views have the same discriminants.
7220 -- Note that since the partial view points to discriminants
7221 -- in the full view, their scope will be that of the full
7222 -- view. This might cause some front end problems and need
7223 -- adjustment???
7225 Discr := First_Discriminant (Base_Type (Full_Der));
7226 Set_First_Entity (Der_Base, Discr);
7228 loop
7229 Last_Discr := Discr;
7230 Next_Discriminant (Discr);
7231 exit when No (Discr);
7232 end loop;
7234 Set_Last_Entity (Der_Base, Last_Discr);
7235 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7236 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7238 Set_Stored_Constraint
7239 (Full_Der, Stored_Constraint (Derived_Type));
7240 end;
7241 end if;
7243 elsif Present (Full_View (Parent_Type))
7244 and then Has_Discriminants (Full_View (Parent_Type))
7245 then
7246 if Has_Unknown_Discriminants (Parent_Type)
7247 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7248 N_Subtype_Indication
7249 then
7250 Error_Msg_N
7251 ("cannot constrain type with unknown discriminants",
7252 Subtype_Indication (Type_Definition (N)));
7253 return;
7254 end if;
7256 -- If this is not a completion, construct the implicit full view by
7257 -- deriving from the full view of the parent type. But if this is a
7258 -- completion, the derived private type being built is a full view
7259 -- and the full derivation can only be its underlying full view.
7261 Build_Full_Derivation;
7263 if not Is_Completion then
7264 Set_Full_View (Derived_Type, Full_Der);
7265 else
7266 Set_Underlying_Full_View (Derived_Type, Full_Der);
7267 end if;
7269 -- In any case, the primitive operations are inherited from the
7270 -- parent type, not from the internal full view.
7272 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7274 if Derive_Subps then
7275 Derive_Subprograms (Parent_Type, Derived_Type);
7276 end if;
7278 Set_Stored_Constraint (Derived_Type, No_Elist);
7279 Set_Is_Constrained
7280 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7282 else
7283 -- Untagged type, No discriminants on either view
7285 if Nkind (Subtype_Indication (Type_Definition (N))) =
7286 N_Subtype_Indication
7287 then
7288 Error_Msg_N
7289 ("illegal constraint on type without discriminants", N);
7290 end if;
7292 if Present (Discriminant_Specifications (N))
7293 and then Present (Full_View (Parent_Type))
7294 and then not Is_Tagged_Type (Full_View (Parent_Type))
7295 then
7296 Error_Msg_N ("cannot add discriminants to untagged type", N);
7297 end if;
7299 Set_Stored_Constraint (Derived_Type, No_Elist);
7300 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7301 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7302 Set_Disable_Controlled (Derived_Type, Disable_Controlled
7303 (Parent_Type));
7304 Set_Has_Controlled_Component
7305 (Derived_Type, Has_Controlled_Component
7306 (Parent_Type));
7308 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7310 if not Is_Controlled_Active (Parent_Type) then
7311 Set_Finalize_Storage_Only
7312 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7313 end if;
7315 -- If this is not a completion, construct the implicit full view by
7316 -- deriving from the full view of the parent type.
7318 -- ??? If the parent is untagged private and its completion is
7319 -- tagged, this mechanism will not work because we cannot derive from
7320 -- the tagged full view unless we have an extension.
7322 if Present (Full_View (Parent_Type))
7323 and then not Is_Tagged_Type (Full_View (Parent_Type))
7324 and then not Is_Completion
7325 then
7326 Build_Full_Derivation;
7327 Set_Full_View (Derived_Type, Full_Der);
7328 end if;
7329 end if;
7331 Set_Has_Unknown_Discriminants (Derived_Type,
7332 Has_Unknown_Discriminants (Parent_Type));
7334 if Is_Private_Type (Derived_Type) then
7335 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7336 end if;
7338 -- If the parent base type is in scope, add the derived type to its
7339 -- list of private dependents, because its full view may become
7340 -- visible subsequently (in a nested private part, a body, or in a
7341 -- further child unit).
7343 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7344 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7346 -- Check for unusual case where a type completed by a private
7347 -- derivation occurs within a package nested in a child unit, and
7348 -- the parent is declared in an ancestor.
7350 if Is_Child_Unit (Scope (Current_Scope))
7351 and then Is_Completion
7352 and then In_Private_Part (Current_Scope)
7353 and then Scope (Parent_Type) /= Current_Scope
7355 -- Note that if the parent has a completion in the private part,
7356 -- (which is itself a derivation from some other private type)
7357 -- it is that completion that is visible, there is no full view
7358 -- available, and no special processing is needed.
7360 and then Present (Full_View (Parent_Type))
7361 then
7362 -- In this case, the full view of the parent type will become
7363 -- visible in the body of the enclosing child, and only then will
7364 -- the current type be possibly non-private. Build an underlying
7365 -- full view that will be installed when the enclosing child body
7366 -- is compiled.
7368 if Present (Underlying_Full_View (Derived_Type)) then
7369 Full_Der := Underlying_Full_View (Derived_Type);
7370 else
7371 Build_Full_Derivation;
7372 Set_Underlying_Full_View (Derived_Type, Full_Der);
7373 end if;
7375 -- The full view will be used to swap entities on entry/exit to
7376 -- the body, and must appear in the entity list for the package.
7378 Append_Entity (Full_Der, Scope (Derived_Type));
7379 end if;
7380 end if;
7381 end Build_Derived_Private_Type;
7383 -------------------------------
7384 -- Build_Derived_Record_Type --
7385 -------------------------------
7387 -- 1. INTRODUCTION
7389 -- Ideally we would like to use the same model of type derivation for
7390 -- tagged and untagged record types. Unfortunately this is not quite
7391 -- possible because the semantics of representation clauses is different
7392 -- for tagged and untagged records under inheritance. Consider the
7393 -- following:
7395 -- type R (...) is [tagged] record ... end record;
7396 -- type T (...) is new R (...) [with ...];
7398 -- The representation clauses for T can specify a completely different
7399 -- record layout from R's. Hence the same component can be placed in two
7400 -- very different positions in objects of type T and R. If R and T are
7401 -- tagged types, representation clauses for T can only specify the layout
7402 -- of non inherited components, thus components that are common in R and T
7403 -- have the same position in objects of type R and T.
7405 -- This has two implications. The first is that the entire tree for R's
7406 -- declaration needs to be copied for T in the untagged case, so that T
7407 -- can be viewed as a record type of its own with its own representation
7408 -- clauses. The second implication is the way we handle discriminants.
7409 -- Specifically, in the untagged case we need a way to communicate to Gigi
7410 -- what are the real discriminants in the record, while for the semantics
7411 -- we need to consider those introduced by the user to rename the
7412 -- discriminants in the parent type. This is handled by introducing the
7413 -- notion of stored discriminants. See below for more.
7415 -- Fortunately the way regular components are inherited can be handled in
7416 -- the same way in tagged and untagged types.
7418 -- To complicate things a bit more the private view of a private extension
7419 -- cannot be handled in the same way as the full view (for one thing the
7420 -- semantic rules are somewhat different). We will explain what differs
7421 -- below.
7423 -- 2. DISCRIMINANTS UNDER INHERITANCE
7425 -- The semantic rules governing the discriminants of derived types are
7426 -- quite subtle.
7428 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7429 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7431 -- If parent type has discriminants, then the discriminants that are
7432 -- declared in the derived type are [3.4 (11)]:
7434 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7435 -- there is one;
7437 -- o Otherwise, each discriminant of the parent type (implicitly declared
7438 -- in the same order with the same specifications). In this case, the
7439 -- discriminants are said to be "inherited", or if unknown in the parent
7440 -- are also unknown in the derived type.
7442 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
7444 -- o The parent subtype must be constrained;
7446 -- o If the parent type is not a tagged type, then each discriminant of
7447 -- the derived type must be used in the constraint defining a parent
7448 -- subtype. [Implementation note: This ensures that the new discriminant
7449 -- can share storage with an existing discriminant.]
7451 -- For the derived type each discriminant of the parent type is either
7452 -- inherited, constrained to equal some new discriminant of the derived
7453 -- type, or constrained to the value of an expression.
7455 -- When inherited or constrained to equal some new discriminant, the
7456 -- parent discriminant and the discriminant of the derived type are said
7457 -- to "correspond".
7459 -- If a discriminant of the parent type is constrained to a specific value
7460 -- in the derived type definition, then the discriminant is said to be
7461 -- "specified" by that derived type definition.
7463 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
7465 -- We have spoken about stored discriminants in point 1 (introduction)
7466 -- above. There are two sort of stored discriminants: implicit and
7467 -- explicit. As long as the derived type inherits the same discriminants as
7468 -- the root record type, stored discriminants are the same as regular
7469 -- discriminants, and are said to be implicit. However, if any discriminant
7470 -- in the root type was renamed in the derived type, then the derived
7471 -- type will contain explicit stored discriminants. Explicit stored
7472 -- discriminants are discriminants in addition to the semantically visible
7473 -- discriminants defined for the derived type. Stored discriminants are
7474 -- used by Gigi to figure out what are the physical discriminants in
7475 -- objects of the derived type (see precise definition in einfo.ads).
7476 -- As an example, consider the following:
7478 -- type R (D1, D2, D3 : Int) is record ... end record;
7479 -- type T1 is new R;
7480 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
7481 -- type T3 is new T2;
7482 -- type T4 (Y : Int) is new T3 (Y, 99);
7484 -- The following table summarizes the discriminants and stored
7485 -- discriminants in R and T1 through T4.
7487 -- Type Discrim Stored Discrim Comment
7488 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
7489 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
7490 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
7491 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
7492 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
7494 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
7495 -- find the corresponding discriminant in the parent type, while
7496 -- Original_Record_Component (abbreviated ORC below), the actual physical
7497 -- component that is renamed. Finally the field Is_Completely_Hidden
7498 -- (abbreviated ICH below) is set for all explicit stored discriminants
7499 -- (see einfo.ads for more info). For the above example this gives:
7501 -- Discrim CD ORC ICH
7502 -- ^^^^^^^ ^^ ^^^ ^^^
7503 -- D1 in R empty itself no
7504 -- D2 in R empty itself no
7505 -- D3 in R empty itself no
7507 -- D1 in T1 D1 in R itself no
7508 -- D2 in T1 D2 in R itself no
7509 -- D3 in T1 D3 in R itself no
7511 -- X1 in T2 D3 in T1 D3 in T2 no
7512 -- X2 in T2 D1 in T1 D1 in T2 no
7513 -- D1 in T2 empty itself yes
7514 -- D2 in T2 empty itself yes
7515 -- D3 in T2 empty itself yes
7517 -- X1 in T3 X1 in T2 D3 in T3 no
7518 -- X2 in T3 X2 in T2 D1 in T3 no
7519 -- D1 in T3 empty itself yes
7520 -- D2 in T3 empty itself yes
7521 -- D3 in T3 empty itself yes
7523 -- Y in T4 X1 in T3 D3 in T3 no
7524 -- D1 in T3 empty itself yes
7525 -- D2 in T3 empty itself yes
7526 -- D3 in T3 empty itself yes
7528 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
7530 -- Type derivation for tagged types is fairly straightforward. If no
7531 -- discriminants are specified by the derived type, these are inherited
7532 -- from the parent. No explicit stored discriminants are ever necessary.
7533 -- The only manipulation that is done to the tree is that of adding a
7534 -- _parent field with parent type and constrained to the same constraint
7535 -- specified for the parent in the derived type definition. For instance:
7537 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
7538 -- type T1 is new R with null record;
7539 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
7541 -- are changed into:
7543 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
7544 -- _parent : R (D1, D2, D3);
7545 -- end record;
7547 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
7548 -- _parent : T1 (X2, 88, X1);
7549 -- end record;
7551 -- The discriminants actually present in R, T1 and T2 as well as their CD,
7552 -- ORC and ICH fields are:
7554 -- Discrim CD ORC ICH
7555 -- ^^^^^^^ ^^ ^^^ ^^^
7556 -- D1 in R empty itself no
7557 -- D2 in R empty itself no
7558 -- D3 in R empty itself no
7560 -- D1 in T1 D1 in R D1 in R no
7561 -- D2 in T1 D2 in R D2 in R no
7562 -- D3 in T1 D3 in R D3 in R no
7564 -- X1 in T2 D3 in T1 D3 in R no
7565 -- X2 in T2 D1 in T1 D1 in R no
7567 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
7569 -- Regardless of whether we dealing with a tagged or untagged type
7570 -- we will transform all derived type declarations of the form
7572 -- type T is new R (...) [with ...];
7573 -- or
7574 -- subtype S is R (...);
7575 -- type T is new S [with ...];
7576 -- into
7577 -- type BT is new R [with ...];
7578 -- subtype T is BT (...);
7580 -- That is, the base derived type is constrained only if it has no
7581 -- discriminants. The reason for doing this is that GNAT's semantic model
7582 -- assumes that a base type with discriminants is unconstrained.
7584 -- Note that, strictly speaking, the above transformation is not always
7585 -- correct. Consider for instance the following excerpt from ACVC b34011a:
7587 -- procedure B34011A is
7588 -- type REC (D : integer := 0) is record
7589 -- I : Integer;
7590 -- end record;
7592 -- package P is
7593 -- type T6 is new Rec;
7594 -- function F return T6;
7595 -- end P;
7597 -- use P;
7598 -- package Q6 is
7599 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
7600 -- end Q6;
7602 -- The definition of Q6.U is illegal. However transforming Q6.U into
7604 -- type BaseU is new T6;
7605 -- subtype U is BaseU (Q6.F.I)
7607 -- turns U into a legal subtype, which is incorrect. To avoid this problem
7608 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
7609 -- the transformation described above.
7611 -- There is another instance where the above transformation is incorrect.
7612 -- Consider:
7614 -- package Pack is
7615 -- type Base (D : Integer) is tagged null record;
7616 -- procedure P (X : Base);
7618 -- type Der is new Base (2) with null record;
7619 -- procedure P (X : Der);
7620 -- end Pack;
7622 -- Then the above transformation turns this into
7624 -- type Der_Base is new Base with null record;
7625 -- -- procedure P (X : Base) is implicitly inherited here
7626 -- -- as procedure P (X : Der_Base).
7628 -- subtype Der is Der_Base (2);
7629 -- procedure P (X : Der);
7630 -- -- The overriding of P (X : Der_Base) is illegal since we
7631 -- -- have a parameter conformance problem.
7633 -- To get around this problem, after having semantically processed Der_Base
7634 -- and the rewritten subtype declaration for Der, we copy Der_Base field
7635 -- Discriminant_Constraint from Der so that when parameter conformance is
7636 -- checked when P is overridden, no semantic errors are flagged.
7638 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
7640 -- Regardless of whether we are dealing with a tagged or untagged type
7641 -- we will transform all derived type declarations of the form
7643 -- type R (D1, .., Dn : ...) is [tagged] record ...;
7644 -- type T is new R [with ...];
7645 -- into
7646 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
7648 -- The reason for such transformation is that it allows us to implement a
7649 -- very clean form of component inheritance as explained below.
7651 -- Note that this transformation is not achieved by direct tree rewriting
7652 -- and manipulation, but rather by redoing the semantic actions that the
7653 -- above transformation will entail. This is done directly in routine
7654 -- Inherit_Components.
7656 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
7658 -- In both tagged and untagged derived types, regular non discriminant
7659 -- components are inherited in the derived type from the parent type. In
7660 -- the absence of discriminants component, inheritance is straightforward
7661 -- as components can simply be copied from the parent.
7663 -- If the parent has discriminants, inheriting components constrained with
7664 -- these discriminants requires caution. Consider the following example:
7666 -- type R (D1, D2 : Positive) is [tagged] record
7667 -- S : String (D1 .. D2);
7668 -- end record;
7670 -- type T1 is new R [with null record];
7671 -- type T2 (X : positive) is new R (1, X) [with null record];
7673 -- As explained in 6. above, T1 is rewritten as
7674 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
7675 -- which makes the treatment for T1 and T2 identical.
7677 -- What we want when inheriting S, is that references to D1 and D2 in R are
7678 -- replaced with references to their correct constraints, i.e. D1 and D2 in
7679 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
7680 -- with either discriminant references in the derived type or expressions.
7681 -- This replacement is achieved as follows: before inheriting R's
7682 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
7683 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
7684 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
7685 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
7686 -- by String (1 .. X).
7688 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
7690 -- We explain here the rules governing private type extensions relevant to
7691 -- type derivation. These rules are explained on the following example:
7693 -- type D [(...)] is new A [(...)] with private; <-- partial view
7694 -- type D [(...)] is new P [(...)] with null record; <-- full view
7696 -- Type A is called the ancestor subtype of the private extension.
7697 -- Type P is the parent type of the full view of the private extension. It
7698 -- must be A or a type derived from A.
7700 -- The rules concerning the discriminants of private type extensions are
7701 -- [7.3(10-13)]:
7703 -- o If a private extension inherits known discriminants from the ancestor
7704 -- subtype, then the full view must also inherit its discriminants from
7705 -- the ancestor subtype and the parent subtype of the full view must be
7706 -- constrained if and only if the ancestor subtype is constrained.
7708 -- o If a partial view has unknown discriminants, then the full view may
7709 -- define a definite or an indefinite subtype, with or without
7710 -- discriminants.
7712 -- o If a partial view has neither known nor unknown discriminants, then
7713 -- the full view must define a definite subtype.
7715 -- o If the ancestor subtype of a private extension has constrained
7716 -- discriminants, then the parent subtype of the full view must impose a
7717 -- statically matching constraint on those discriminants.
7719 -- This means that only the following forms of private extensions are
7720 -- allowed:
7722 -- type D is new A with private; <-- partial view
7723 -- type D is new P with null record; <-- full view
7725 -- If A has no discriminants than P has no discriminants, otherwise P must
7726 -- inherit A's discriminants.
7728 -- type D is new A (...) with private; <-- partial view
7729 -- type D is new P (:::) with null record; <-- full view
7731 -- P must inherit A's discriminants and (...) and (:::) must statically
7732 -- match.
7734 -- subtype A is R (...);
7735 -- type D is new A with private; <-- partial view
7736 -- type D is new P with null record; <-- full view
7738 -- P must have inherited R's discriminants and must be derived from A or
7739 -- any of its subtypes.
7741 -- type D (..) is new A with private; <-- partial view
7742 -- type D (..) is new P [(:::)] with null record; <-- full view
7744 -- No specific constraints on P's discriminants or constraint (:::).
7745 -- Note that A can be unconstrained, but the parent subtype P must either
7746 -- be constrained or (:::) must be present.
7748 -- type D (..) is new A [(...)] with private; <-- partial view
7749 -- type D (..) is new P [(:::)] with null record; <-- full view
7751 -- P's constraints on A's discriminants must statically match those
7752 -- imposed by (...).
7754 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
7756 -- The full view of a private extension is handled exactly as described
7757 -- above. The model chose for the private view of a private extension is
7758 -- the same for what concerns discriminants (i.e. they receive the same
7759 -- treatment as in the tagged case). However, the private view of the
7760 -- private extension always inherits the components of the parent base,
7761 -- without replacing any discriminant reference. Strictly speaking this is
7762 -- incorrect. However, Gigi never uses this view to generate code so this
7763 -- is a purely semantic issue. In theory, a set of transformations similar
7764 -- to those given in 5. and 6. above could be applied to private views of
7765 -- private extensions to have the same model of component inheritance as
7766 -- for non private extensions. However, this is not done because it would
7767 -- further complicate private type processing. Semantically speaking, this
7768 -- leaves us in an uncomfortable situation. As an example consider:
7770 -- package Pack is
7771 -- type R (D : integer) is tagged record
7772 -- S : String (1 .. D);
7773 -- end record;
7774 -- procedure P (X : R);
7775 -- type T is new R (1) with private;
7776 -- private
7777 -- type T is new R (1) with null record;
7778 -- end;
7780 -- This is transformed into:
7782 -- package Pack is
7783 -- type R (D : integer) is tagged record
7784 -- S : String (1 .. D);
7785 -- end record;
7786 -- procedure P (X : R);
7787 -- type T is new R (1) with private;
7788 -- private
7789 -- type BaseT is new R with null record;
7790 -- subtype T is BaseT (1);
7791 -- end;
7793 -- (strictly speaking the above is incorrect Ada)
7795 -- From the semantic standpoint the private view of private extension T
7796 -- should be flagged as constrained since one can clearly have
7798 -- Obj : T;
7800 -- in a unit withing Pack. However, when deriving subprograms for the
7801 -- private view of private extension T, T must be seen as unconstrained
7802 -- since T has discriminants (this is a constraint of the current
7803 -- subprogram derivation model). Thus, when processing the private view of
7804 -- a private extension such as T, we first mark T as unconstrained, we
7805 -- process it, we perform program derivation and just before returning from
7806 -- Build_Derived_Record_Type we mark T as constrained.
7808 -- ??? Are there are other uncomfortable cases that we will have to
7809 -- deal with.
7811 -- 10. RECORD_TYPE_WITH_PRIVATE complications
7813 -- Types that are derived from a visible record type and have a private
7814 -- extension present other peculiarities. They behave mostly like private
7815 -- types, but if they have primitive operations defined, these will not
7816 -- have the proper signatures for further inheritance, because other
7817 -- primitive operations will use the implicit base that we define for
7818 -- private derivations below. This affect subprogram inheritance (see
7819 -- Derive_Subprograms for details). We also derive the implicit base from
7820 -- the base type of the full view, so that the implicit base is a record
7821 -- type and not another private type, This avoids infinite loops.
7823 procedure Build_Derived_Record_Type
7824 (N : Node_Id;
7825 Parent_Type : Entity_Id;
7826 Derived_Type : Entity_Id;
7827 Derive_Subps : Boolean := True)
7829 Discriminant_Specs : constant Boolean :=
7830 Present (Discriminant_Specifications (N));
7831 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
7832 Loc : constant Source_Ptr := Sloc (N);
7833 Private_Extension : constant Boolean :=
7834 Nkind (N) = N_Private_Extension_Declaration;
7835 Assoc_List : Elist_Id;
7836 Constraint_Present : Boolean;
7837 Constrs : Elist_Id;
7838 Discrim : Entity_Id;
7839 Indic : Node_Id;
7840 Inherit_Discrims : Boolean := False;
7841 Last_Discrim : Entity_Id;
7842 New_Base : Entity_Id;
7843 New_Decl : Node_Id;
7844 New_Discrs : Elist_Id;
7845 New_Indic : Node_Id;
7846 Parent_Base : Entity_Id;
7847 Save_Etype : Entity_Id;
7848 Save_Discr_Constr : Elist_Id;
7849 Save_Next_Entity : Entity_Id;
7850 Type_Def : Node_Id;
7852 Discs : Elist_Id := New_Elmt_List;
7853 -- An empty Discs list means that there were no constraints in the
7854 -- subtype indication or that there was an error processing it.
7856 begin
7857 if Ekind (Parent_Type) = E_Record_Type_With_Private
7858 and then Present (Full_View (Parent_Type))
7859 and then Has_Discriminants (Parent_Type)
7860 then
7861 Parent_Base := Base_Type (Full_View (Parent_Type));
7862 else
7863 Parent_Base := Base_Type (Parent_Type);
7864 end if;
7866 -- AI05-0115 : if this is a derivation from a private type in some
7867 -- other scope that may lead to invisible components for the derived
7868 -- type, mark it accordingly.
7870 if Is_Private_Type (Parent_Type) then
7871 if Scope (Parent_Type) = Scope (Derived_Type) then
7872 null;
7874 elsif In_Open_Scopes (Scope (Parent_Type))
7875 and then In_Private_Part (Scope (Parent_Type))
7876 then
7877 null;
7879 else
7880 Set_Has_Private_Ancestor (Derived_Type);
7881 end if;
7883 else
7884 Set_Has_Private_Ancestor
7885 (Derived_Type, Has_Private_Ancestor (Parent_Type));
7886 end if;
7888 -- Before we start the previously documented transformations, here is
7889 -- little fix for size and alignment of tagged types. Normally when we
7890 -- derive type D from type P, we copy the size and alignment of P as the
7891 -- default for D, and in the absence of explicit representation clauses
7892 -- for D, the size and alignment are indeed the same as the parent.
7894 -- But this is wrong for tagged types, since fields may be added, and
7895 -- the default size may need to be larger, and the default alignment may
7896 -- need to be larger.
7898 -- We therefore reset the size and alignment fields in the tagged case.
7899 -- Note that the size and alignment will in any case be at least as
7900 -- large as the parent type (since the derived type has a copy of the
7901 -- parent type in the _parent field)
7903 -- The type is also marked as being tagged here, which is needed when
7904 -- processing components with a self-referential anonymous access type
7905 -- in the call to Check_Anonymous_Access_Components below. Note that
7906 -- this flag is also set later on for completeness.
7908 if Is_Tagged then
7909 Set_Is_Tagged_Type (Derived_Type);
7910 Init_Size_Align (Derived_Type);
7911 end if;
7913 -- STEP 0a: figure out what kind of derived type declaration we have
7915 if Private_Extension then
7916 Type_Def := N;
7917 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
7918 Set_Default_SSO (Derived_Type);
7920 else
7921 Type_Def := Type_Definition (N);
7923 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
7924 -- Parent_Base can be a private type or private extension. However,
7925 -- for tagged types with an extension the newly added fields are
7926 -- visible and hence the Derived_Type is always an E_Record_Type.
7927 -- (except that the parent may have its own private fields).
7928 -- For untagged types we preserve the Ekind of the Parent_Base.
7930 if Present (Record_Extension_Part (Type_Def)) then
7931 Set_Ekind (Derived_Type, E_Record_Type);
7932 Set_Default_SSO (Derived_Type);
7934 -- Create internal access types for components with anonymous
7935 -- access types.
7937 if Ada_Version >= Ada_2005 then
7938 Check_Anonymous_Access_Components
7939 (N, Derived_Type, Derived_Type,
7940 Component_List (Record_Extension_Part (Type_Def)));
7941 end if;
7943 else
7944 Set_Ekind (Derived_Type, Ekind (Parent_Base));
7945 end if;
7946 end if;
7948 -- Indic can either be an N_Identifier if the subtype indication
7949 -- contains no constraint or an N_Subtype_Indication if the subtype
7950 -- indication has a constraint.
7952 Indic := Subtype_Indication (Type_Def);
7953 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
7955 -- Check that the type has visible discriminants. The type may be
7956 -- a private type with unknown discriminants whose full view has
7957 -- discriminants which are invisible.
7959 if Constraint_Present then
7960 if not Has_Discriminants (Parent_Base)
7961 or else
7962 (Has_Unknown_Discriminants (Parent_Base)
7963 and then Is_Private_Type (Parent_Base))
7964 then
7965 Error_Msg_N
7966 ("invalid constraint: type has no discriminant",
7967 Constraint (Indic));
7969 Constraint_Present := False;
7970 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7972 elsif Is_Constrained (Parent_Type) then
7973 Error_Msg_N
7974 ("invalid constraint: parent type is already constrained",
7975 Constraint (Indic));
7977 Constraint_Present := False;
7978 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
7979 end if;
7980 end if;
7982 -- STEP 0b: If needed, apply transformation given in point 5. above
7984 if not Private_Extension
7985 and then Has_Discriminants (Parent_Type)
7986 and then not Discriminant_Specs
7987 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
7988 then
7989 -- First, we must analyze the constraint (see comment in point 5.)
7990 -- The constraint may come from the subtype indication of the full
7991 -- declaration.
7993 if Constraint_Present then
7994 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
7996 -- If there is no explicit constraint, there might be one that is
7997 -- inherited from a constrained parent type. In that case verify that
7998 -- it conforms to the constraint in the partial view. In perverse
7999 -- cases the parent subtypes of the partial and full view can have
8000 -- different constraints.
8002 elsif Present (Stored_Constraint (Parent_Type)) then
8003 New_Discrs := Stored_Constraint (Parent_Type);
8005 else
8006 New_Discrs := No_Elist;
8007 end if;
8009 if Has_Discriminants (Derived_Type)
8010 and then Has_Private_Declaration (Derived_Type)
8011 and then Present (Discriminant_Constraint (Derived_Type))
8012 and then Present (New_Discrs)
8013 then
8014 -- Verify that constraints of the full view statically match
8015 -- those given in the partial view.
8017 declare
8018 C1, C2 : Elmt_Id;
8020 begin
8021 C1 := First_Elmt (New_Discrs);
8022 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8023 while Present (C1) and then Present (C2) loop
8024 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8025 or else
8026 (Is_OK_Static_Expression (Node (C1))
8027 and then Is_OK_Static_Expression (Node (C2))
8028 and then
8029 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8030 then
8031 null;
8033 else
8034 if Constraint_Present then
8035 Error_Msg_N
8036 ("constraint not conformant to previous declaration",
8037 Node (C1));
8038 else
8039 Error_Msg_N
8040 ("constraint of full view is incompatible "
8041 & "with partial view", N);
8042 end if;
8043 end if;
8045 Next_Elmt (C1);
8046 Next_Elmt (C2);
8047 end loop;
8048 end;
8049 end if;
8051 -- Insert and analyze the declaration for the unconstrained base type
8053 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8055 New_Decl :=
8056 Make_Full_Type_Declaration (Loc,
8057 Defining_Identifier => New_Base,
8058 Type_Definition =>
8059 Make_Derived_Type_Definition (Loc,
8060 Abstract_Present => Abstract_Present (Type_Def),
8061 Limited_Present => Limited_Present (Type_Def),
8062 Subtype_Indication =>
8063 New_Occurrence_Of (Parent_Base, Loc),
8064 Record_Extension_Part =>
8065 Relocate_Node (Record_Extension_Part (Type_Def)),
8066 Interface_List => Interface_List (Type_Def)));
8068 Set_Parent (New_Decl, Parent (N));
8069 Mark_Rewrite_Insertion (New_Decl);
8070 Insert_Before (N, New_Decl);
8072 -- In the extension case, make sure ancestor is frozen appropriately
8073 -- (see also non-discriminated case below).
8075 if Present (Record_Extension_Part (Type_Def))
8076 or else Is_Interface (Parent_Base)
8077 then
8078 Freeze_Before (New_Decl, Parent_Type);
8079 end if;
8081 -- Note that this call passes False for the Derive_Subps parameter
8082 -- because subprogram derivation is deferred until after creating
8083 -- the subtype (see below).
8085 Build_Derived_Type
8086 (New_Decl, Parent_Base, New_Base,
8087 Is_Completion => False, Derive_Subps => False);
8089 -- ??? This needs re-examination to determine whether the
8090 -- above call can simply be replaced by a call to Analyze.
8092 Set_Analyzed (New_Decl);
8094 -- Insert and analyze the declaration for the constrained subtype
8096 if Constraint_Present then
8097 New_Indic :=
8098 Make_Subtype_Indication (Loc,
8099 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8100 Constraint => Relocate_Node (Constraint (Indic)));
8102 else
8103 declare
8104 Constr_List : constant List_Id := New_List;
8105 C : Elmt_Id;
8106 Expr : Node_Id;
8108 begin
8109 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8110 while Present (C) loop
8111 Expr := Node (C);
8113 -- It is safe here to call New_Copy_Tree since we called
8114 -- Force_Evaluation on each constraint previously
8115 -- in Build_Discriminant_Constraints.
8117 Append (New_Copy_Tree (Expr), To => Constr_List);
8119 Next_Elmt (C);
8120 end loop;
8122 New_Indic :=
8123 Make_Subtype_Indication (Loc,
8124 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8125 Constraint =>
8126 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8127 end;
8128 end if;
8130 Rewrite (N,
8131 Make_Subtype_Declaration (Loc,
8132 Defining_Identifier => Derived_Type,
8133 Subtype_Indication => New_Indic));
8135 Analyze (N);
8137 -- Derivation of subprograms must be delayed until the full subtype
8138 -- has been established, to ensure proper overriding of subprograms
8139 -- inherited by full types. If the derivations occurred as part of
8140 -- the call to Build_Derived_Type above, then the check for type
8141 -- conformance would fail because earlier primitive subprograms
8142 -- could still refer to the full type prior the change to the new
8143 -- subtype and hence would not match the new base type created here.
8144 -- Subprograms are not derived, however, when Derive_Subps is False
8145 -- (since otherwise there could be redundant derivations).
8147 if Derive_Subps then
8148 Derive_Subprograms (Parent_Type, Derived_Type);
8149 end if;
8151 -- For tagged types the Discriminant_Constraint of the new base itype
8152 -- is inherited from the first subtype so that no subtype conformance
8153 -- problem arise when the first subtype overrides primitive
8154 -- operations inherited by the implicit base type.
8156 if Is_Tagged then
8157 Set_Discriminant_Constraint
8158 (New_Base, Discriminant_Constraint (Derived_Type));
8159 end if;
8161 return;
8162 end if;
8164 -- If we get here Derived_Type will have no discriminants or it will be
8165 -- a discriminated unconstrained base type.
8167 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8169 if Is_Tagged then
8171 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8172 -- The declaration of a specific descendant of an interface type
8173 -- freezes the interface type (RM 13.14).
8175 if not Private_Extension or else Is_Interface (Parent_Base) then
8176 Freeze_Before (N, Parent_Type);
8177 end if;
8179 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8180 -- cannot be declared at a deeper level than its parent type is
8181 -- removed. The check on derivation within a generic body is also
8182 -- relaxed, but there's a restriction that a derived tagged type
8183 -- cannot be declared in a generic body if it's derived directly
8184 -- or indirectly from a formal type of that generic.
8186 if Ada_Version >= Ada_2005 then
8187 if Present (Enclosing_Generic_Body (Derived_Type)) then
8188 declare
8189 Ancestor_Type : Entity_Id;
8191 begin
8192 -- Check to see if any ancestor of the derived type is a
8193 -- formal type.
8195 Ancestor_Type := Parent_Type;
8196 while not Is_Generic_Type (Ancestor_Type)
8197 and then Etype (Ancestor_Type) /= Ancestor_Type
8198 loop
8199 Ancestor_Type := Etype (Ancestor_Type);
8200 end loop;
8202 -- If the derived type does have a formal type as an
8203 -- ancestor, then it's an error if the derived type is
8204 -- declared within the body of the generic unit that
8205 -- declares the formal type in its generic formal part. It's
8206 -- sufficient to check whether the ancestor type is declared
8207 -- inside the same generic body as the derived type (such as
8208 -- within a nested generic spec), in which case the
8209 -- derivation is legal. If the formal type is declared
8210 -- outside of that generic body, then it's guaranteed that
8211 -- the derived type is declared within the generic body of
8212 -- the generic unit declaring the formal type.
8214 if Is_Generic_Type (Ancestor_Type)
8215 and then Enclosing_Generic_Body (Ancestor_Type) /=
8216 Enclosing_Generic_Body (Derived_Type)
8217 then
8218 Error_Msg_NE
8219 ("parent type of& must not be descendant of formal type"
8220 & " of an enclosing generic body",
8221 Indic, Derived_Type);
8222 end if;
8223 end;
8224 end if;
8226 elsif Type_Access_Level (Derived_Type) /=
8227 Type_Access_Level (Parent_Type)
8228 and then not Is_Generic_Type (Derived_Type)
8229 then
8230 if Is_Controlled (Parent_Type) then
8231 Error_Msg_N
8232 ("controlled type must be declared at the library level",
8233 Indic);
8234 else
8235 Error_Msg_N
8236 ("type extension at deeper accessibility level than parent",
8237 Indic);
8238 end if;
8240 else
8241 declare
8242 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8243 begin
8244 if Present (GB)
8245 and then GB /= Enclosing_Generic_Body (Parent_Base)
8246 then
8247 Error_Msg_NE
8248 ("parent type of& must not be outside generic body"
8249 & " (RM 3.9.1(4))",
8250 Indic, Derived_Type);
8251 end if;
8252 end;
8253 end if;
8254 end if;
8256 -- Ada 2005 (AI-251)
8258 if Ada_Version >= Ada_2005 and then Is_Tagged then
8260 -- "The declaration of a specific descendant of an interface type
8261 -- freezes the interface type" (RM 13.14).
8263 declare
8264 Iface : Node_Id;
8265 begin
8266 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8267 Iface := First (Interface_List (Type_Def));
8268 while Present (Iface) loop
8269 Freeze_Before (N, Etype (Iface));
8270 Next (Iface);
8271 end loop;
8272 end if;
8273 end;
8274 end if;
8276 -- STEP 1b : preliminary cleanup of the full view of private types
8278 -- If the type is already marked as having discriminants, then it's the
8279 -- completion of a private type or private extension and we need to
8280 -- retain the discriminants from the partial view if the current
8281 -- declaration has Discriminant_Specifications so that we can verify
8282 -- conformance. However, we must remove any existing components that
8283 -- were inherited from the parent (and attached in Copy_And_Swap)
8284 -- because the full type inherits all appropriate components anyway, and
8285 -- we do not want the partial view's components interfering.
8287 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8288 Discrim := First_Discriminant (Derived_Type);
8289 loop
8290 Last_Discrim := Discrim;
8291 Next_Discriminant (Discrim);
8292 exit when No (Discrim);
8293 end loop;
8295 Set_Last_Entity (Derived_Type, Last_Discrim);
8297 -- In all other cases wipe out the list of inherited components (even
8298 -- inherited discriminants), it will be properly rebuilt here.
8300 else
8301 Set_First_Entity (Derived_Type, Empty);
8302 Set_Last_Entity (Derived_Type, Empty);
8303 end if;
8305 -- STEP 1c: Initialize some flags for the Derived_Type
8307 -- The following flags must be initialized here so that
8308 -- Process_Discriminants can check that discriminants of tagged types do
8309 -- not have a default initial value and that access discriminants are
8310 -- only specified for limited records. For completeness, these flags are
8311 -- also initialized along with all the other flags below.
8313 -- AI-419: Limitedness is not inherited from an interface parent, so to
8314 -- be limited in that case the type must be explicitly declared as
8315 -- limited. However, task and protected interfaces are always limited.
8317 if Limited_Present (Type_Def) then
8318 Set_Is_Limited_Record (Derived_Type);
8320 elsif Is_Limited_Record (Parent_Type)
8321 or else (Present (Full_View (Parent_Type))
8322 and then Is_Limited_Record (Full_View (Parent_Type)))
8323 then
8324 if not Is_Interface (Parent_Type)
8325 or else Is_Synchronized_Interface (Parent_Type)
8326 or else Is_Protected_Interface (Parent_Type)
8327 or else Is_Task_Interface (Parent_Type)
8328 then
8329 Set_Is_Limited_Record (Derived_Type);
8330 end if;
8331 end if;
8333 -- STEP 2a: process discriminants of derived type if any
8335 Push_Scope (Derived_Type);
8337 if Discriminant_Specs then
8338 Set_Has_Unknown_Discriminants (Derived_Type, False);
8340 -- The following call initializes fields Has_Discriminants and
8341 -- Discriminant_Constraint, unless we are processing the completion
8342 -- of a private type declaration.
8344 Check_Or_Process_Discriminants (N, Derived_Type);
8346 -- For untagged types, the constraint on the Parent_Type must be
8347 -- present and is used to rename the discriminants.
8349 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8350 Error_Msg_N ("untagged parent must have discriminants", Indic);
8352 elsif not Is_Tagged and then not Constraint_Present then
8353 Error_Msg_N
8354 ("discriminant constraint needed for derived untagged records",
8355 Indic);
8357 -- Otherwise the parent subtype must be constrained unless we have a
8358 -- private extension.
8360 elsif not Constraint_Present
8361 and then not Private_Extension
8362 and then not Is_Constrained (Parent_Type)
8363 then
8364 Error_Msg_N
8365 ("unconstrained type not allowed in this context", Indic);
8367 elsif Constraint_Present then
8368 -- The following call sets the field Corresponding_Discriminant
8369 -- for the discriminants in the Derived_Type.
8371 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8373 -- For untagged types all new discriminants must rename
8374 -- discriminants in the parent. For private extensions new
8375 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8377 Discrim := First_Discriminant (Derived_Type);
8378 while Present (Discrim) loop
8379 if not Is_Tagged
8380 and then No (Corresponding_Discriminant (Discrim))
8381 then
8382 Error_Msg_N
8383 ("new discriminants must constrain old ones", Discrim);
8385 elsif Private_Extension
8386 and then Present (Corresponding_Discriminant (Discrim))
8387 then
8388 Error_Msg_N
8389 ("only static constraints allowed for parent"
8390 & " discriminants in the partial view", Indic);
8391 exit;
8392 end if;
8394 -- If a new discriminant is used in the constraint, then its
8395 -- subtype must be statically compatible with the parent
8396 -- discriminant's subtype (3.7(15)).
8398 -- However, if the record contains an array constrained by
8399 -- the discriminant but with some different bound, the compiler
8400 -- attemps to create a smaller range for the discriminant type.
8401 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8402 -- the discriminant type is a scalar type, the check must use
8403 -- the original discriminant type in the parent declaration.
8405 declare
8406 Corr_Disc : constant Entity_Id :=
8407 Corresponding_Discriminant (Discrim);
8408 Disc_Type : constant Entity_Id := Etype (Discrim);
8409 Corr_Type : Entity_Id;
8411 begin
8412 if Present (Corr_Disc) then
8413 if Is_Scalar_Type (Disc_Type) then
8414 Corr_Type :=
8415 Entity (Discriminant_Type (Parent (Corr_Disc)));
8416 else
8417 Corr_Type := Etype (Corr_Disc);
8418 end if;
8420 if not
8421 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8422 then
8423 Error_Msg_N
8424 ("subtype must be compatible "
8425 & "with parent discriminant",
8426 Discrim);
8427 end if;
8428 end if;
8429 end;
8431 Next_Discriminant (Discrim);
8432 end loop;
8434 -- Check whether the constraints of the full view statically
8435 -- match those imposed by the parent subtype [7.3(13)].
8437 if Present (Stored_Constraint (Derived_Type)) then
8438 declare
8439 C1, C2 : Elmt_Id;
8441 begin
8442 C1 := First_Elmt (Discs);
8443 C2 := First_Elmt (Stored_Constraint (Derived_Type));
8444 while Present (C1) and then Present (C2) loop
8445 if not
8446 Fully_Conformant_Expressions (Node (C1), Node (C2))
8447 then
8448 Error_Msg_N
8449 ("not conformant with previous declaration",
8450 Node (C1));
8451 end if;
8453 Next_Elmt (C1);
8454 Next_Elmt (C2);
8455 end loop;
8456 end;
8457 end if;
8458 end if;
8460 -- STEP 2b: No new discriminants, inherit discriminants if any
8462 else
8463 if Private_Extension then
8464 Set_Has_Unknown_Discriminants
8465 (Derived_Type,
8466 Has_Unknown_Discriminants (Parent_Type)
8467 or else Unknown_Discriminants_Present (N));
8469 -- The partial view of the parent may have unknown discriminants,
8470 -- but if the full view has discriminants and the parent type is
8471 -- in scope they must be inherited.
8473 elsif Has_Unknown_Discriminants (Parent_Type)
8474 and then
8475 (not Has_Discriminants (Parent_Type)
8476 or else not In_Open_Scopes (Scope (Parent_Type)))
8477 then
8478 Set_Has_Unknown_Discriminants (Derived_Type);
8479 end if;
8481 if not Has_Unknown_Discriminants (Derived_Type)
8482 and then not Has_Unknown_Discriminants (Parent_Base)
8483 and then Has_Discriminants (Parent_Type)
8484 then
8485 Inherit_Discrims := True;
8486 Set_Has_Discriminants
8487 (Derived_Type, True);
8488 Set_Discriminant_Constraint
8489 (Derived_Type, Discriminant_Constraint (Parent_Base));
8490 end if;
8492 -- The following test is true for private types (remember
8493 -- transformation 5. is not applied to those) and in an error
8494 -- situation.
8496 if Constraint_Present then
8497 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
8498 end if;
8500 -- For now mark a new derived type as constrained only if it has no
8501 -- discriminants. At the end of Build_Derived_Record_Type we properly
8502 -- set this flag in the case of private extensions. See comments in
8503 -- point 9. just before body of Build_Derived_Record_Type.
8505 Set_Is_Constrained
8506 (Derived_Type,
8507 not (Inherit_Discrims
8508 or else Has_Unknown_Discriminants (Derived_Type)));
8509 end if;
8511 -- STEP 3: initialize fields of derived type
8513 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
8514 Set_Stored_Constraint (Derived_Type, No_Elist);
8516 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
8517 -- but cannot be interfaces
8519 if not Private_Extension
8520 and then Ekind (Derived_Type) /= E_Private_Type
8521 and then Ekind (Derived_Type) /= E_Limited_Private_Type
8522 then
8523 if Interface_Present (Type_Def) then
8524 Analyze_Interface_Declaration (Derived_Type, Type_Def);
8525 end if;
8527 Set_Interfaces (Derived_Type, No_Elist);
8528 end if;
8530 -- Fields inherited from the Parent_Type
8532 Set_Has_Specified_Layout
8533 (Derived_Type, Has_Specified_Layout (Parent_Type));
8534 Set_Is_Limited_Composite
8535 (Derived_Type, Is_Limited_Composite (Parent_Type));
8536 Set_Is_Private_Composite
8537 (Derived_Type, Is_Private_Composite (Parent_Type));
8539 if Is_Tagged_Type (Parent_Type) then
8540 Set_No_Tagged_Streams_Pragma
8541 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8542 end if;
8544 -- Fields inherited from the Parent_Base
8546 Set_Has_Controlled_Component
8547 (Derived_Type, Has_Controlled_Component (Parent_Base));
8548 Set_Has_Non_Standard_Rep
8549 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8550 Set_Has_Primitive_Operations
8551 (Derived_Type, Has_Primitive_Operations (Parent_Base));
8553 -- Fields inherited from the Parent_Base in the non-private case
8555 if Ekind (Derived_Type) = E_Record_Type then
8556 Set_Has_Complex_Representation
8557 (Derived_Type, Has_Complex_Representation (Parent_Base));
8558 end if;
8560 -- Fields inherited from the Parent_Base for record types
8562 if Is_Record_Type (Derived_Type) then
8563 declare
8564 Parent_Full : Entity_Id;
8566 begin
8567 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8568 -- Parent_Base can be a private type or private extension. Go
8569 -- to the full view here to get the E_Record_Type specific flags.
8571 if Present (Full_View (Parent_Base)) then
8572 Parent_Full := Full_View (Parent_Base);
8573 else
8574 Parent_Full := Parent_Base;
8575 end if;
8577 Set_OK_To_Reorder_Components
8578 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
8579 end;
8580 end if;
8582 -- Set fields for private derived types
8584 if Is_Private_Type (Derived_Type) then
8585 Set_Depends_On_Private (Derived_Type, True);
8586 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8588 -- Inherit fields from non private record types. If this is the
8589 -- completion of a derivation from a private type, the parent itself
8590 -- is private, and the attributes come from its full view, which must
8591 -- be present.
8593 else
8594 if Is_Private_Type (Parent_Base)
8595 and then not Is_Record_Type (Parent_Base)
8596 then
8597 Set_Component_Alignment
8598 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
8599 Set_C_Pass_By_Copy
8600 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
8601 else
8602 Set_Component_Alignment
8603 (Derived_Type, Component_Alignment (Parent_Base));
8604 Set_C_Pass_By_Copy
8605 (Derived_Type, C_Pass_By_Copy (Parent_Base));
8606 end if;
8607 end if;
8609 -- Set fields for tagged types
8611 if Is_Tagged then
8612 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
8614 -- All tagged types defined in Ada.Finalization are controlled
8616 if Chars (Scope (Derived_Type)) = Name_Finalization
8617 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
8618 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
8619 then
8620 Set_Is_Controlled (Derived_Type);
8621 else
8622 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
8623 end if;
8625 -- Minor optimization: there is no need to generate the class-wide
8626 -- entity associated with an underlying record view.
8628 if not Is_Underlying_Record_View (Derived_Type) then
8629 Make_Class_Wide_Type (Derived_Type);
8630 end if;
8632 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
8634 if Has_Discriminants (Derived_Type)
8635 and then Constraint_Present
8636 then
8637 Set_Stored_Constraint
8638 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
8639 end if;
8641 if Ada_Version >= Ada_2005 then
8642 declare
8643 Ifaces_List : Elist_Id;
8645 begin
8646 -- Checks rules 3.9.4 (13/2 and 14/2)
8648 if Comes_From_Source (Derived_Type)
8649 and then not Is_Private_Type (Derived_Type)
8650 and then Is_Interface (Parent_Type)
8651 and then not Is_Interface (Derived_Type)
8652 then
8653 if Is_Task_Interface (Parent_Type) then
8654 Error_Msg_N
8655 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
8656 Derived_Type);
8658 elsif Is_Protected_Interface (Parent_Type) then
8659 Error_Msg_N
8660 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
8661 Derived_Type);
8662 end if;
8663 end if;
8665 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
8667 Check_Interfaces (N, Type_Def);
8669 -- Ada 2005 (AI-251): Collect the list of progenitors that are
8670 -- not already in the parents.
8672 Collect_Interfaces
8673 (T => Derived_Type,
8674 Ifaces_List => Ifaces_List,
8675 Exclude_Parents => True);
8677 Set_Interfaces (Derived_Type, Ifaces_List);
8679 -- If the derived type is the anonymous type created for
8680 -- a declaration whose parent has a constraint, propagate
8681 -- the interface list to the source type. This must be done
8682 -- prior to the completion of the analysis of the source type
8683 -- because the components in the extension may contain current
8684 -- instances whose legality depends on some ancestor.
8686 if Is_Itype (Derived_Type) then
8687 declare
8688 Def : constant Node_Id :=
8689 Associated_Node_For_Itype (Derived_Type);
8690 begin
8691 if Present (Def)
8692 and then Nkind (Def) = N_Full_Type_Declaration
8693 then
8694 Set_Interfaces
8695 (Defining_Identifier (Def), Ifaces_List);
8696 end if;
8697 end;
8698 end if;
8700 -- Propagate inherited invariant information of parents
8701 -- and progenitors
8703 if Ada_Version >= Ada_2012
8704 and then not Is_Interface (Derived_Type)
8705 then
8706 if Has_Inheritable_Invariants (Parent_Type) then
8707 Set_Has_Invariants (Derived_Type);
8708 Set_Has_Inheritable_Invariants (Derived_Type);
8710 elsif not Is_Empty_Elmt_List (Ifaces_List) then
8711 declare
8712 AI : Elmt_Id;
8714 begin
8715 AI := First_Elmt (Ifaces_List);
8716 while Present (AI) loop
8717 if Has_Inheritable_Invariants (Node (AI)) then
8718 Set_Has_Invariants (Derived_Type);
8719 Set_Has_Inheritable_Invariants (Derived_Type);
8721 exit;
8722 end if;
8724 Next_Elmt (AI);
8725 end loop;
8726 end;
8727 end if;
8728 end if;
8730 -- A type extension is automatically Ghost when one of its
8731 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
8732 -- also inherited when the parent type is Ghost, but this is
8733 -- done in Build_Derived_Type as the mechanism also handles
8734 -- untagged derivations.
8736 if Implements_Ghost_Interface (Derived_Type) then
8737 Set_Is_Ghost_Entity (Derived_Type);
8738 end if;
8739 end;
8740 end if;
8742 else
8743 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
8744 Set_Has_Non_Standard_Rep
8745 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
8746 end if;
8748 -- STEP 4: Inherit components from the parent base and constrain them.
8749 -- Apply the second transformation described in point 6. above.
8751 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
8752 or else not Has_Discriminants (Parent_Type)
8753 or else not Is_Constrained (Parent_Type)
8754 then
8755 Constrs := Discs;
8756 else
8757 Constrs := Discriminant_Constraint (Parent_Type);
8758 end if;
8760 Assoc_List :=
8761 Inherit_Components
8762 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
8764 -- STEP 5a: Copy the parent record declaration for untagged types
8766 if not Is_Tagged then
8768 -- Discriminant_Constraint (Derived_Type) has been properly
8769 -- constructed. Save it and temporarily set it to Empty because we
8770 -- do not want the call to New_Copy_Tree below to mess this list.
8772 if Has_Discriminants (Derived_Type) then
8773 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
8774 Set_Discriminant_Constraint (Derived_Type, No_Elist);
8775 else
8776 Save_Discr_Constr := No_Elist;
8777 end if;
8779 -- Save the Etype field of Derived_Type. It is correctly set now,
8780 -- but the call to New_Copy tree may remap it to point to itself,
8781 -- which is not what we want. Ditto for the Next_Entity field.
8783 Save_Etype := Etype (Derived_Type);
8784 Save_Next_Entity := Next_Entity (Derived_Type);
8786 -- Assoc_List maps all stored discriminants in the Parent_Base to
8787 -- stored discriminants in the Derived_Type. It is fundamental that
8788 -- no types or itypes with discriminants other than the stored
8789 -- discriminants appear in the entities declared inside
8790 -- Derived_Type, since the back end cannot deal with it.
8792 New_Decl :=
8793 New_Copy_Tree
8794 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
8796 -- Restore the fields saved prior to the New_Copy_Tree call
8797 -- and compute the stored constraint.
8799 Set_Etype (Derived_Type, Save_Etype);
8800 Set_Next_Entity (Derived_Type, Save_Next_Entity);
8802 if Has_Discriminants (Derived_Type) then
8803 Set_Discriminant_Constraint
8804 (Derived_Type, Save_Discr_Constr);
8805 Set_Stored_Constraint
8806 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
8807 Replace_Components (Derived_Type, New_Decl);
8808 Set_Has_Implicit_Dereference
8809 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
8810 end if;
8812 -- Insert the new derived type declaration
8814 Rewrite (N, New_Decl);
8816 -- STEP 5b: Complete the processing for record extensions in generics
8818 -- There is no completion for record extensions declared in the
8819 -- parameter part of a generic, so we need to complete processing for
8820 -- these generic record extensions here. The Record_Type_Definition call
8821 -- will change the Ekind of the components from E_Void to E_Component.
8823 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
8824 Record_Type_Definition (Empty, Derived_Type);
8826 -- STEP 5c: Process the record extension for non private tagged types
8828 elsif not Private_Extension then
8829 Expand_Record_Extension (Derived_Type, Type_Def);
8831 -- Note : previously in ASIS mode we set the Parent_Subtype of the
8832 -- derived type to propagate some semantic information. This led
8833 -- to other ASIS failures and has been removed.
8835 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
8836 -- implemented interfaces if we are in expansion mode
8838 if Expander_Active
8839 and then Has_Interfaces (Derived_Type)
8840 then
8841 Add_Interface_Tag_Components (N, Derived_Type);
8842 end if;
8844 -- Analyze the record extension
8846 Record_Type_Definition
8847 (Record_Extension_Part (Type_Def), Derived_Type);
8848 end if;
8850 End_Scope;
8852 -- Nothing else to do if there is an error in the derivation.
8853 -- An unusual case: the full view may be derived from a type in an
8854 -- instance, when the partial view was used illegally as an actual
8855 -- in that instance, leading to a circular definition.
8857 if Etype (Derived_Type) = Any_Type
8858 or else Etype (Parent_Type) = Derived_Type
8859 then
8860 return;
8861 end if;
8863 -- Set delayed freeze and then derive subprograms, we need to do
8864 -- this in this order so that derived subprograms inherit the
8865 -- derived freeze if necessary.
8867 Set_Has_Delayed_Freeze (Derived_Type);
8869 if Derive_Subps then
8870 Derive_Subprograms (Parent_Type, Derived_Type);
8871 end if;
8873 -- If we have a private extension which defines a constrained derived
8874 -- type mark as constrained here after we have derived subprograms. See
8875 -- comment on point 9. just above the body of Build_Derived_Record_Type.
8877 if Private_Extension and then Inherit_Discrims then
8878 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
8879 Set_Is_Constrained (Derived_Type, True);
8880 Set_Discriminant_Constraint (Derived_Type, Discs);
8882 elsif Is_Constrained (Parent_Type) then
8883 Set_Is_Constrained
8884 (Derived_Type, True);
8885 Set_Discriminant_Constraint
8886 (Derived_Type, Discriminant_Constraint (Parent_Type));
8887 end if;
8888 end if;
8890 -- Update the class-wide type, which shares the now-completed entity
8891 -- list with its specific type. In case of underlying record views,
8892 -- we do not generate the corresponding class wide entity.
8894 if Is_Tagged
8895 and then not Is_Underlying_Record_View (Derived_Type)
8896 then
8897 Set_First_Entity
8898 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
8899 Set_Last_Entity
8900 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
8901 end if;
8903 Check_Function_Writable_Actuals (N);
8904 end Build_Derived_Record_Type;
8906 ------------------------
8907 -- Build_Derived_Type --
8908 ------------------------
8910 procedure Build_Derived_Type
8911 (N : Node_Id;
8912 Parent_Type : Entity_Id;
8913 Derived_Type : Entity_Id;
8914 Is_Completion : Boolean;
8915 Derive_Subps : Boolean := True)
8917 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
8919 begin
8920 -- Set common attributes
8922 Set_Scope (Derived_Type, Current_Scope);
8924 Set_Etype (Derived_Type, Parent_Base);
8925 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8926 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
8927 Set_Has_Protected (Derived_Type, Has_Protected (Parent_Base));
8929 Set_Size_Info (Derived_Type, Parent_Type);
8930 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
8931 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
8932 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
8934 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
8935 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
8937 if Is_Tagged_Type (Derived_Type) then
8938 Set_No_Tagged_Streams_Pragma
8939 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
8940 end if;
8942 -- If the parent has primitive routines, set the derived type link
8944 if Has_Primitive_Operations (Parent_Type) then
8945 Set_Derived_Type_Link (Parent_Base, Derived_Type);
8946 end if;
8948 -- If the parent type is a private subtype, the convention on the base
8949 -- type may be set in the private part, and not propagated to the
8950 -- subtype until later, so we obtain the convention from the base type.
8952 Set_Convention (Derived_Type, Convention (Parent_Base));
8954 -- Set SSO default for record or array type
8956 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
8957 and then Is_Base_Type (Derived_Type)
8958 then
8959 Set_Default_SSO (Derived_Type);
8960 end if;
8962 -- Propagate invariant information. The new type has invariants if
8963 -- they are inherited from the parent type, and these invariants can
8964 -- be further inherited, so both flags are set.
8966 -- We similarly inherit predicates
8968 if Has_Predicates (Parent_Type) then
8969 Set_Has_Predicates (Derived_Type);
8970 end if;
8972 -- The derived type inherits the representation clauses of the parent
8974 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
8976 -- Propagate the attributes related to pragma Default_Initial_Condition
8977 -- from the parent type to the private extension. A derived type always
8978 -- inherits the default initial condition flag from the parent type. If
8979 -- the derived type carries its own Default_Initial_Condition pragma,
8980 -- the flag is later reset in Analyze_Pragma. Note that both flags are
8981 -- mutually exclusive.
8983 Propagate_Default_Init_Cond_Attributes
8984 (From_Typ => Parent_Type,
8985 To_Typ => Derived_Type,
8986 Parent_To_Derivation => True);
8988 -- If the parent type has delayed rep aspects, then mark the derived
8989 -- type as possibly inheriting a delayed rep aspect.
8991 if Has_Delayed_Rep_Aspects (Parent_Type) then
8992 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
8993 end if;
8995 -- Propagate the attributes related to pragma Ghost from the parent type
8996 -- to the derived type or type extension (SPARK RM 6.9(9)).
8998 if Is_Ghost_Entity (Parent_Type) then
8999 Set_Is_Ghost_Entity (Derived_Type);
9000 end if;
9002 -- Type dependent processing
9004 case Ekind (Parent_Type) is
9005 when Numeric_Kind =>
9006 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9008 when Array_Kind =>
9009 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9011 when E_Record_Type
9012 | E_Record_Subtype
9013 | Class_Wide_Kind =>
9014 Build_Derived_Record_Type
9015 (N, Parent_Type, Derived_Type, Derive_Subps);
9016 return;
9018 when Enumeration_Kind =>
9019 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9021 when Access_Kind =>
9022 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9024 when Incomplete_Or_Private_Kind =>
9025 Build_Derived_Private_Type
9026 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9028 -- For discriminated types, the derivation includes deriving
9029 -- primitive operations. For others it is done below.
9031 if Is_Tagged_Type (Parent_Type)
9032 or else Has_Discriminants (Parent_Type)
9033 or else (Present (Full_View (Parent_Type))
9034 and then Has_Discriminants (Full_View (Parent_Type)))
9035 then
9036 return;
9037 end if;
9039 when Concurrent_Kind =>
9040 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9042 when others =>
9043 raise Program_Error;
9044 end case;
9046 -- Nothing more to do if some error occurred
9048 if Etype (Derived_Type) = Any_Type then
9049 return;
9050 end if;
9052 -- Set delayed freeze and then derive subprograms, we need to do this
9053 -- in this order so that derived subprograms inherit the derived freeze
9054 -- if necessary.
9056 Set_Has_Delayed_Freeze (Derived_Type);
9058 if Derive_Subps then
9059 Derive_Subprograms (Parent_Type, Derived_Type);
9060 end if;
9062 Set_Has_Primitive_Operations
9063 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9064 end Build_Derived_Type;
9066 -----------------------
9067 -- Build_Discriminal --
9068 -----------------------
9070 procedure Build_Discriminal (Discrim : Entity_Id) is
9071 D_Minal : Entity_Id;
9072 CR_Disc : Entity_Id;
9074 begin
9075 -- A discriminal has the same name as the discriminant
9077 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9079 Set_Ekind (D_Minal, E_In_Parameter);
9080 Set_Mechanism (D_Minal, Default_Mechanism);
9081 Set_Etype (D_Minal, Etype (Discrim));
9082 Set_Scope (D_Minal, Current_Scope);
9084 Set_Discriminal (Discrim, D_Minal);
9085 Set_Discriminal_Link (D_Minal, Discrim);
9087 -- For task types, build at once the discriminants of the corresponding
9088 -- record, which are needed if discriminants are used in entry defaults
9089 -- and in family bounds.
9091 if Is_Concurrent_Type (Current_Scope)
9092 or else
9093 Is_Limited_Type (Current_Scope)
9094 then
9095 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9097 Set_Ekind (CR_Disc, E_In_Parameter);
9098 Set_Mechanism (CR_Disc, Default_Mechanism);
9099 Set_Etype (CR_Disc, Etype (Discrim));
9100 Set_Scope (CR_Disc, Current_Scope);
9101 Set_Discriminal_Link (CR_Disc, Discrim);
9102 Set_CR_Discriminant (Discrim, CR_Disc);
9103 end if;
9104 end Build_Discriminal;
9106 ------------------------------------
9107 -- Build_Discriminant_Constraints --
9108 ------------------------------------
9110 function Build_Discriminant_Constraints
9111 (T : Entity_Id;
9112 Def : Node_Id;
9113 Derived_Def : Boolean := False) return Elist_Id
9115 C : constant Node_Id := Constraint (Def);
9116 Nb_Discr : constant Nat := Number_Discriminants (T);
9118 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9119 -- Saves the expression corresponding to a given discriminant in T
9121 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9122 -- Return the Position number within array Discr_Expr of a discriminant
9123 -- D within the discriminant list of the discriminated type T.
9125 procedure Process_Discriminant_Expression
9126 (Expr : Node_Id;
9127 D : Entity_Id);
9128 -- If this is a discriminant constraint on a partial view, do not
9129 -- generate an overflow check on the discriminant expression. The check
9130 -- will be generated when constraining the full view. Otherwise the
9131 -- backend creates duplicate symbols for the temporaries corresponding
9132 -- to the expressions to be checked, causing spurious assembler errors.
9134 ------------------
9135 -- Pos_Of_Discr --
9136 ------------------
9138 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9139 Disc : Entity_Id;
9141 begin
9142 Disc := First_Discriminant (T);
9143 for J in Discr_Expr'Range loop
9144 if Disc = D then
9145 return J;
9146 end if;
9148 Next_Discriminant (Disc);
9149 end loop;
9151 -- Note: Since this function is called on discriminants that are
9152 -- known to belong to the discriminated type, falling through the
9153 -- loop with no match signals an internal compiler error.
9155 raise Program_Error;
9156 end Pos_Of_Discr;
9158 -------------------------------------
9159 -- Process_Discriminant_Expression --
9160 -------------------------------------
9162 procedure Process_Discriminant_Expression
9163 (Expr : Node_Id;
9164 D : Entity_Id)
9166 BDT : constant Entity_Id := Base_Type (Etype (D));
9168 begin
9169 -- If this is a discriminant constraint on a partial view, do
9170 -- not generate an overflow on the discriminant expression. The
9171 -- check will be generated when constraining the full view.
9173 if Is_Private_Type (T)
9174 and then Present (Full_View (T))
9175 then
9176 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9177 else
9178 Analyze_And_Resolve (Expr, BDT);
9179 end if;
9180 end Process_Discriminant_Expression;
9182 -- Declarations local to Build_Discriminant_Constraints
9184 Discr : Entity_Id;
9185 E : Entity_Id;
9186 Elist : constant Elist_Id := New_Elmt_List;
9188 Constr : Node_Id;
9189 Expr : Node_Id;
9190 Id : Node_Id;
9191 Position : Nat;
9192 Found : Boolean;
9194 Discrim_Present : Boolean := False;
9196 -- Start of processing for Build_Discriminant_Constraints
9198 begin
9199 -- The following loop will process positional associations only.
9200 -- For a positional association, the (single) discriminant is
9201 -- implicitly specified by position, in textual order (RM 3.7.2).
9203 Discr := First_Discriminant (T);
9204 Constr := First (Constraints (C));
9205 for D in Discr_Expr'Range loop
9206 exit when Nkind (Constr) = N_Discriminant_Association;
9208 if No (Constr) then
9209 Error_Msg_N ("too few discriminants given in constraint", C);
9210 return New_Elmt_List;
9212 elsif Nkind (Constr) = N_Range
9213 or else (Nkind (Constr) = N_Attribute_Reference
9214 and then Attribute_Name (Constr) = Name_Range)
9215 then
9216 Error_Msg_N
9217 ("a range is not a valid discriminant constraint", Constr);
9218 Discr_Expr (D) := Error;
9220 else
9221 Process_Discriminant_Expression (Constr, Discr);
9222 Discr_Expr (D) := Constr;
9223 end if;
9225 Next_Discriminant (Discr);
9226 Next (Constr);
9227 end loop;
9229 if No (Discr) and then Present (Constr) then
9230 Error_Msg_N ("too many discriminants given in constraint", Constr);
9231 return New_Elmt_List;
9232 end if;
9234 -- Named associations can be given in any order, but if both positional
9235 -- and named associations are used in the same discriminant constraint,
9236 -- then positional associations must occur first, at their normal
9237 -- position. Hence once a named association is used, the rest of the
9238 -- discriminant constraint must use only named associations.
9240 while Present (Constr) loop
9242 -- Positional association forbidden after a named association
9244 if Nkind (Constr) /= N_Discriminant_Association then
9245 Error_Msg_N ("positional association follows named one", Constr);
9246 return New_Elmt_List;
9248 -- Otherwise it is a named association
9250 else
9251 -- E records the type of the discriminants in the named
9252 -- association. All the discriminants specified in the same name
9253 -- association must have the same type.
9255 E := Empty;
9257 -- Search the list of discriminants in T to see if the simple name
9258 -- given in the constraint matches any of them.
9260 Id := First (Selector_Names (Constr));
9261 while Present (Id) loop
9262 Found := False;
9264 -- If Original_Discriminant is present, we are processing a
9265 -- generic instantiation and this is an instance node. We need
9266 -- to find the name of the corresponding discriminant in the
9267 -- actual record type T and not the name of the discriminant in
9268 -- the generic formal. Example:
9270 -- generic
9271 -- type G (D : int) is private;
9272 -- package P is
9273 -- subtype W is G (D => 1);
9274 -- end package;
9275 -- type Rec (X : int) is record ... end record;
9276 -- package Q is new P (G => Rec);
9278 -- At the point of the instantiation, formal type G is Rec
9279 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9280 -- which really looks like "subtype W is Rec (D => 1);" at
9281 -- the point of instantiation, we want to find the discriminant
9282 -- that corresponds to D in Rec, i.e. X.
9284 if Present (Original_Discriminant (Id))
9285 and then In_Instance
9286 then
9287 Discr := Find_Corresponding_Discriminant (Id, T);
9288 Found := True;
9290 else
9291 Discr := First_Discriminant (T);
9292 while Present (Discr) loop
9293 if Chars (Discr) = Chars (Id) then
9294 Found := True;
9295 exit;
9296 end if;
9298 Next_Discriminant (Discr);
9299 end loop;
9301 if not Found then
9302 Error_Msg_N ("& does not match any discriminant", Id);
9303 return New_Elmt_List;
9305 -- If the parent type is a generic formal, preserve the
9306 -- name of the discriminant for subsequent instances.
9307 -- see comment at the beginning of this if statement.
9309 elsif Is_Generic_Type (Root_Type (T)) then
9310 Set_Original_Discriminant (Id, Discr);
9311 end if;
9312 end if;
9314 Position := Pos_Of_Discr (T, Discr);
9316 if Present (Discr_Expr (Position)) then
9317 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9319 else
9320 -- Each discriminant specified in the same named association
9321 -- must be associated with a separate copy of the
9322 -- corresponding expression.
9324 if Present (Next (Id)) then
9325 Expr := New_Copy_Tree (Expression (Constr));
9326 Set_Parent (Expr, Parent (Expression (Constr)));
9327 else
9328 Expr := Expression (Constr);
9329 end if;
9331 Discr_Expr (Position) := Expr;
9332 Process_Discriminant_Expression (Expr, Discr);
9333 end if;
9335 -- A discriminant association with more than one discriminant
9336 -- name is only allowed if the named discriminants are all of
9337 -- the same type (RM 3.7.1(8)).
9339 if E = Empty then
9340 E := Base_Type (Etype (Discr));
9342 elsif Base_Type (Etype (Discr)) /= E then
9343 Error_Msg_N
9344 ("all discriminants in an association " &
9345 "must have the same type", Id);
9346 end if;
9348 Next (Id);
9349 end loop;
9350 end if;
9352 Next (Constr);
9353 end loop;
9355 -- A discriminant constraint must provide exactly one value for each
9356 -- discriminant of the type (RM 3.7.1(8)).
9358 for J in Discr_Expr'Range loop
9359 if No (Discr_Expr (J)) then
9360 Error_Msg_N ("too few discriminants given in constraint", C);
9361 return New_Elmt_List;
9362 end if;
9363 end loop;
9365 -- Determine if there are discriminant expressions in the constraint
9367 for J in Discr_Expr'Range loop
9368 if Denotes_Discriminant
9369 (Discr_Expr (J), Check_Concurrent => True)
9370 then
9371 Discrim_Present := True;
9372 end if;
9373 end loop;
9375 -- Build an element list consisting of the expressions given in the
9376 -- discriminant constraint and apply the appropriate checks. The list
9377 -- is constructed after resolving any named discriminant associations
9378 -- and therefore the expressions appear in the textual order of the
9379 -- discriminants.
9381 Discr := First_Discriminant (T);
9382 for J in Discr_Expr'Range loop
9383 if Discr_Expr (J) /= Error then
9384 Append_Elmt (Discr_Expr (J), Elist);
9386 -- If any of the discriminant constraints is given by a
9387 -- discriminant and we are in a derived type declaration we
9388 -- have a discriminant renaming. Establish link between new
9389 -- and old discriminant.
9391 if Denotes_Discriminant (Discr_Expr (J)) then
9392 if Derived_Def then
9393 Set_Corresponding_Discriminant
9394 (Entity (Discr_Expr (J)), Discr);
9395 end if;
9397 -- Force the evaluation of non-discriminant expressions.
9398 -- If we have found a discriminant in the constraint 3.4(26)
9399 -- and 3.8(18) demand that no range checks are performed are
9400 -- after evaluation. If the constraint is for a component
9401 -- definition that has a per-object constraint, expressions are
9402 -- evaluated but not checked either. In all other cases perform
9403 -- a range check.
9405 else
9406 if Discrim_Present then
9407 null;
9409 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9410 and then
9411 Has_Per_Object_Constraint
9412 (Defining_Identifier (Parent (Parent (Def))))
9413 then
9414 null;
9416 elsif Is_Access_Type (Etype (Discr)) then
9417 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9419 else
9420 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9421 end if;
9423 Force_Evaluation (Discr_Expr (J));
9424 end if;
9426 -- Check that the designated type of an access discriminant's
9427 -- expression is not a class-wide type unless the discriminant's
9428 -- designated type is also class-wide.
9430 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
9431 and then not Is_Class_Wide_Type
9432 (Designated_Type (Etype (Discr)))
9433 and then Etype (Discr_Expr (J)) /= Any_Type
9434 and then Is_Class_Wide_Type
9435 (Designated_Type (Etype (Discr_Expr (J))))
9436 then
9437 Wrong_Type (Discr_Expr (J), Etype (Discr));
9439 elsif Is_Access_Type (Etype (Discr))
9440 and then not Is_Access_Constant (Etype (Discr))
9441 and then Is_Access_Type (Etype (Discr_Expr (J)))
9442 and then Is_Access_Constant (Etype (Discr_Expr (J)))
9443 then
9444 Error_Msg_NE
9445 ("constraint for discriminant& must be access to variable",
9446 Def, Discr);
9447 end if;
9448 end if;
9450 Next_Discriminant (Discr);
9451 end loop;
9453 return Elist;
9454 end Build_Discriminant_Constraints;
9456 ---------------------------------
9457 -- Build_Discriminated_Subtype --
9458 ---------------------------------
9460 procedure Build_Discriminated_Subtype
9461 (T : Entity_Id;
9462 Def_Id : Entity_Id;
9463 Elist : Elist_Id;
9464 Related_Nod : Node_Id;
9465 For_Access : Boolean := False)
9467 Has_Discrs : constant Boolean := Has_Discriminants (T);
9468 Constrained : constant Boolean :=
9469 (Has_Discrs
9470 and then not Is_Empty_Elmt_List (Elist)
9471 and then not Is_Class_Wide_Type (T))
9472 or else Is_Constrained (T);
9474 begin
9475 if Ekind (T) = E_Record_Type then
9476 if For_Access then
9477 Set_Ekind (Def_Id, E_Private_Subtype);
9478 Set_Is_For_Access_Subtype (Def_Id, True);
9479 else
9480 Set_Ekind (Def_Id, E_Record_Subtype);
9481 end if;
9483 -- Inherit preelaboration flag from base, for types for which it
9484 -- may have been set: records, private types, protected types.
9486 Set_Known_To_Have_Preelab_Init
9487 (Def_Id, Known_To_Have_Preelab_Init (T));
9489 elsif Ekind (T) = E_Task_Type then
9490 Set_Ekind (Def_Id, E_Task_Subtype);
9492 elsif Ekind (T) = E_Protected_Type then
9493 Set_Ekind (Def_Id, E_Protected_Subtype);
9494 Set_Known_To_Have_Preelab_Init
9495 (Def_Id, Known_To_Have_Preelab_Init (T));
9497 elsif Is_Private_Type (T) then
9498 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
9499 Set_Known_To_Have_Preelab_Init
9500 (Def_Id, Known_To_Have_Preelab_Init (T));
9502 -- Private subtypes may have private dependents
9504 Set_Private_Dependents (Def_Id, New_Elmt_List);
9506 elsif Is_Class_Wide_Type (T) then
9507 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
9509 else
9510 -- Incomplete type. Attach subtype to list of dependents, to be
9511 -- completed with full view of parent type, unless is it the
9512 -- designated subtype of a record component within an init_proc.
9513 -- This last case arises for a component of an access type whose
9514 -- designated type is incomplete (e.g. a Taft Amendment type).
9515 -- The designated subtype is within an inner scope, and needs no
9516 -- elaboration, because only the access type is needed in the
9517 -- initialization procedure.
9519 Set_Ekind (Def_Id, Ekind (T));
9521 if For_Access and then Within_Init_Proc then
9522 null;
9523 else
9524 Append_Elmt (Def_Id, Private_Dependents (T));
9525 end if;
9526 end if;
9528 Set_Etype (Def_Id, T);
9529 Init_Size_Align (Def_Id);
9530 Set_Has_Discriminants (Def_Id, Has_Discrs);
9531 Set_Is_Constrained (Def_Id, Constrained);
9533 Set_First_Entity (Def_Id, First_Entity (T));
9534 Set_Last_Entity (Def_Id, Last_Entity (T));
9535 Set_Has_Implicit_Dereference
9536 (Def_Id, Has_Implicit_Dereference (T));
9538 -- If the subtype is the completion of a private declaration, there may
9539 -- have been representation clauses for the partial view, and they must
9540 -- be preserved. Build_Derived_Type chains the inherited clauses with
9541 -- the ones appearing on the extension. If this comes from a subtype
9542 -- declaration, all clauses are inherited.
9544 if No (First_Rep_Item (Def_Id)) then
9545 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
9546 end if;
9548 if Is_Tagged_Type (T) then
9549 Set_Is_Tagged_Type (Def_Id);
9550 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
9551 Make_Class_Wide_Type (Def_Id);
9552 end if;
9554 Set_Stored_Constraint (Def_Id, No_Elist);
9556 if Has_Discrs then
9557 Set_Discriminant_Constraint (Def_Id, Elist);
9558 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
9559 end if;
9561 if Is_Tagged_Type (T) then
9563 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
9564 -- concurrent record type (which has the list of primitive
9565 -- operations).
9567 if Ada_Version >= Ada_2005
9568 and then Is_Concurrent_Type (T)
9569 then
9570 Set_Corresponding_Record_Type (Def_Id,
9571 Corresponding_Record_Type (T));
9572 else
9573 Set_Direct_Primitive_Operations (Def_Id,
9574 Direct_Primitive_Operations (T));
9575 end if;
9577 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
9578 end if;
9580 -- Subtypes introduced by component declarations do not need to be
9581 -- marked as delayed, and do not get freeze nodes, because the semantics
9582 -- verifies that the parents of the subtypes are frozen before the
9583 -- enclosing record is frozen.
9585 if not Is_Type (Scope (Def_Id)) then
9586 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
9588 if Is_Private_Type (T)
9589 and then Present (Full_View (T))
9590 then
9591 Conditional_Delay (Def_Id, Full_View (T));
9592 else
9593 Conditional_Delay (Def_Id, T);
9594 end if;
9595 end if;
9597 if Is_Record_Type (T) then
9598 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
9600 if Has_Discrs
9601 and then not Is_Empty_Elmt_List (Elist)
9602 and then not For_Access
9603 then
9604 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
9605 elsif not For_Access then
9606 Set_Cloned_Subtype (Def_Id, T);
9607 end if;
9608 end if;
9609 end Build_Discriminated_Subtype;
9611 ---------------------------
9612 -- Build_Itype_Reference --
9613 ---------------------------
9615 procedure Build_Itype_Reference
9616 (Ityp : Entity_Id;
9617 Nod : Node_Id)
9619 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
9620 begin
9622 -- Itype references are only created for use by the back-end
9624 if Inside_A_Generic then
9625 return;
9626 else
9627 Set_Itype (IR, Ityp);
9628 Insert_After (Nod, IR);
9629 end if;
9630 end Build_Itype_Reference;
9632 ------------------------
9633 -- Build_Scalar_Bound --
9634 ------------------------
9636 function Build_Scalar_Bound
9637 (Bound : Node_Id;
9638 Par_T : Entity_Id;
9639 Der_T : Entity_Id) return Node_Id
9641 New_Bound : Entity_Id;
9643 begin
9644 -- Note: not clear why this is needed, how can the original bound
9645 -- be unanalyzed at this point? and if it is, what business do we
9646 -- have messing around with it? and why is the base type of the
9647 -- parent type the right type for the resolution. It probably is
9648 -- not. It is OK for the new bound we are creating, but not for
9649 -- the old one??? Still if it never happens, no problem.
9651 Analyze_And_Resolve (Bound, Base_Type (Par_T));
9653 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
9654 New_Bound := New_Copy (Bound);
9655 Set_Etype (New_Bound, Der_T);
9656 Set_Analyzed (New_Bound);
9658 elsif Is_Entity_Name (Bound) then
9659 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
9661 -- The following is almost certainly wrong. What business do we have
9662 -- relocating a node (Bound) that is presumably still attached to
9663 -- the tree elsewhere???
9665 else
9666 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
9667 end if;
9669 Set_Etype (New_Bound, Der_T);
9670 return New_Bound;
9671 end Build_Scalar_Bound;
9673 --------------------------------
9674 -- Build_Underlying_Full_View --
9675 --------------------------------
9677 procedure Build_Underlying_Full_View
9678 (N : Node_Id;
9679 Typ : Entity_Id;
9680 Par : Entity_Id)
9682 Loc : constant Source_Ptr := Sloc (N);
9683 Subt : constant Entity_Id :=
9684 Make_Defining_Identifier
9685 (Loc, New_External_Name (Chars (Typ), 'S'));
9687 Constr : Node_Id;
9688 Indic : Node_Id;
9689 C : Node_Id;
9690 Id : Node_Id;
9692 procedure Set_Discriminant_Name (Id : Node_Id);
9693 -- If the derived type has discriminants, they may rename discriminants
9694 -- of the parent. When building the full view of the parent, we need to
9695 -- recover the names of the original discriminants if the constraint is
9696 -- given by named associations.
9698 ---------------------------
9699 -- Set_Discriminant_Name --
9700 ---------------------------
9702 procedure Set_Discriminant_Name (Id : Node_Id) is
9703 Disc : Entity_Id;
9705 begin
9706 Set_Original_Discriminant (Id, Empty);
9708 if Has_Discriminants (Typ) then
9709 Disc := First_Discriminant (Typ);
9710 while Present (Disc) loop
9711 if Chars (Disc) = Chars (Id)
9712 and then Present (Corresponding_Discriminant (Disc))
9713 then
9714 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
9715 end if;
9716 Next_Discriminant (Disc);
9717 end loop;
9718 end if;
9719 end Set_Discriminant_Name;
9721 -- Start of processing for Build_Underlying_Full_View
9723 begin
9724 if Nkind (N) = N_Full_Type_Declaration then
9725 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
9727 elsif Nkind (N) = N_Subtype_Declaration then
9728 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
9730 elsif Nkind (N) = N_Component_Declaration then
9731 Constr :=
9732 New_Copy_Tree
9733 (Constraint (Subtype_Indication (Component_Definition (N))));
9735 else
9736 raise Program_Error;
9737 end if;
9739 C := First (Constraints (Constr));
9740 while Present (C) loop
9741 if Nkind (C) = N_Discriminant_Association then
9742 Id := First (Selector_Names (C));
9743 while Present (Id) loop
9744 Set_Discriminant_Name (Id);
9745 Next (Id);
9746 end loop;
9747 end if;
9749 Next (C);
9750 end loop;
9752 Indic :=
9753 Make_Subtype_Declaration (Loc,
9754 Defining_Identifier => Subt,
9755 Subtype_Indication =>
9756 Make_Subtype_Indication (Loc,
9757 Subtype_Mark => New_Occurrence_Of (Par, Loc),
9758 Constraint => New_Copy_Tree (Constr)));
9760 -- If this is a component subtype for an outer itype, it is not
9761 -- a list member, so simply set the parent link for analysis: if
9762 -- the enclosing type does not need to be in a declarative list,
9763 -- neither do the components.
9765 if Is_List_Member (N)
9766 and then Nkind (N) /= N_Component_Declaration
9767 then
9768 Insert_Before (N, Indic);
9769 else
9770 Set_Parent (Indic, Parent (N));
9771 end if;
9773 Analyze (Indic);
9774 Set_Underlying_Full_View (Typ, Full_View (Subt));
9775 end Build_Underlying_Full_View;
9777 -------------------------------
9778 -- Check_Abstract_Overriding --
9779 -------------------------------
9781 procedure Check_Abstract_Overriding (T : Entity_Id) is
9782 Alias_Subp : Entity_Id;
9783 Elmt : Elmt_Id;
9784 Op_List : Elist_Id;
9785 Subp : Entity_Id;
9786 Type_Def : Node_Id;
9788 procedure Check_Pragma_Implemented (Subp : Entity_Id);
9789 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
9790 -- which has pragma Implemented already set. Check whether Subp's entity
9791 -- kind conforms to the implementation kind of the overridden routine.
9793 procedure Check_Pragma_Implemented
9794 (Subp : Entity_Id;
9795 Iface_Subp : Entity_Id);
9796 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
9797 -- Iface_Subp and both entities have pragma Implemented already set on
9798 -- them. Check whether the two implementation kinds are conforming.
9800 procedure Inherit_Pragma_Implemented
9801 (Subp : Entity_Id;
9802 Iface_Subp : Entity_Id);
9803 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
9804 -- subprogram Iface_Subp which has been marked by pragma Implemented.
9805 -- Propagate the implementation kind of Iface_Subp to Subp.
9807 ------------------------------
9808 -- Check_Pragma_Implemented --
9809 ------------------------------
9811 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
9812 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
9813 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
9814 Subp_Alias : constant Entity_Id := Alias (Subp);
9815 Contr_Typ : Entity_Id;
9816 Impl_Subp : Entity_Id;
9818 begin
9819 -- Subp must have an alias since it is a hidden entity used to link
9820 -- an interface subprogram to its overriding counterpart.
9822 pragma Assert (Present (Subp_Alias));
9824 -- Handle aliases to synchronized wrappers
9826 Impl_Subp := Subp_Alias;
9828 if Is_Primitive_Wrapper (Impl_Subp) then
9829 Impl_Subp := Wrapped_Entity (Impl_Subp);
9830 end if;
9832 -- Extract the type of the controlling formal
9834 Contr_Typ := Etype (First_Formal (Subp_Alias));
9836 if Is_Concurrent_Record_Type (Contr_Typ) then
9837 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
9838 end if;
9840 -- An interface subprogram whose implementation kind is By_Entry must
9841 -- be implemented by an entry.
9843 if Impl_Kind = Name_By_Entry
9844 and then Ekind (Impl_Subp) /= E_Entry
9845 then
9846 Error_Msg_Node_2 := Iface_Alias;
9847 Error_Msg_NE
9848 ("type & must implement abstract subprogram & with an entry",
9849 Subp_Alias, Contr_Typ);
9851 elsif Impl_Kind = Name_By_Protected_Procedure then
9853 -- An interface subprogram whose implementation kind is By_
9854 -- Protected_Procedure cannot be implemented by a primitive
9855 -- procedure of a task type.
9857 if Ekind (Contr_Typ) /= E_Protected_Type then
9858 Error_Msg_Node_2 := Contr_Typ;
9859 Error_Msg_NE
9860 ("interface subprogram & cannot be implemented by a " &
9861 "primitive procedure of task type &", Subp_Alias,
9862 Iface_Alias);
9864 -- An interface subprogram whose implementation kind is By_
9865 -- Protected_Procedure must be implemented by a procedure.
9867 elsif Ekind (Impl_Subp) /= E_Procedure then
9868 Error_Msg_Node_2 := Iface_Alias;
9869 Error_Msg_NE
9870 ("type & must implement abstract subprogram & with a " &
9871 "procedure", Subp_Alias, Contr_Typ);
9873 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9874 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9875 then
9876 Error_Msg_Name_1 := Impl_Kind;
9877 Error_Msg_N
9878 ("overriding operation& must have synchronization%",
9879 Subp_Alias);
9880 end if;
9882 -- If primitive has Optional synchronization, overriding operation
9883 -- must match if it has an explicit synchronization..
9885 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
9886 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
9887 then
9888 Error_Msg_Name_1 := Impl_Kind;
9889 Error_Msg_N
9890 ("overriding operation& must have syncrhonization%",
9891 Subp_Alias);
9892 end if;
9893 end Check_Pragma_Implemented;
9895 ------------------------------
9896 -- Check_Pragma_Implemented --
9897 ------------------------------
9899 procedure Check_Pragma_Implemented
9900 (Subp : Entity_Id;
9901 Iface_Subp : Entity_Id)
9903 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9904 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
9906 begin
9907 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
9908 -- and overriding subprogram are different. In general this is an
9909 -- error except when the implementation kind of the overridden
9910 -- subprograms is By_Any or Optional.
9912 if Iface_Kind /= Subp_Kind
9913 and then Iface_Kind /= Name_By_Any
9914 and then Iface_Kind /= Name_Optional
9915 then
9916 if Iface_Kind = Name_By_Entry then
9917 Error_Msg_N
9918 ("incompatible implementation kind, overridden subprogram " &
9919 "is marked By_Entry", Subp);
9920 else
9921 Error_Msg_N
9922 ("incompatible implementation kind, overridden subprogram " &
9923 "is marked By_Protected_Procedure", Subp);
9924 end if;
9925 end if;
9926 end Check_Pragma_Implemented;
9928 --------------------------------
9929 -- Inherit_Pragma_Implemented --
9930 --------------------------------
9932 procedure Inherit_Pragma_Implemented
9933 (Subp : Entity_Id;
9934 Iface_Subp : Entity_Id)
9936 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
9937 Loc : constant Source_Ptr := Sloc (Subp);
9938 Impl_Prag : Node_Id;
9940 begin
9941 -- Since the implementation kind is stored as a representation item
9942 -- rather than a flag, create a pragma node.
9944 Impl_Prag :=
9945 Make_Pragma (Loc,
9946 Chars => Name_Implemented,
9947 Pragma_Argument_Associations => New_List (
9948 Make_Pragma_Argument_Association (Loc,
9949 Expression => New_Occurrence_Of (Subp, Loc)),
9951 Make_Pragma_Argument_Association (Loc,
9952 Expression => Make_Identifier (Loc, Iface_Kind))));
9954 -- The pragma doesn't need to be analyzed because it is internally
9955 -- built. It is safe to directly register it as a rep item since we
9956 -- are only interested in the characters of the implementation kind.
9958 Record_Rep_Item (Subp, Impl_Prag);
9959 end Inherit_Pragma_Implemented;
9961 -- Start of processing for Check_Abstract_Overriding
9963 begin
9964 Op_List := Primitive_Operations (T);
9966 -- Loop to check primitive operations
9968 Elmt := First_Elmt (Op_List);
9969 while Present (Elmt) loop
9970 Subp := Node (Elmt);
9971 Alias_Subp := Alias (Subp);
9973 -- Inherited subprograms are identified by the fact that they do not
9974 -- come from source, and the associated source location is the
9975 -- location of the first subtype of the derived type.
9977 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
9978 -- subprograms that "require overriding".
9980 -- Special exception, do not complain about failure to override the
9981 -- stream routines _Input and _Output, as well as the primitive
9982 -- operations used in dispatching selects since we always provide
9983 -- automatic overridings for these subprograms.
9985 -- The partial view of T may have been a private extension, for
9986 -- which inherited functions dispatching on result are abstract.
9987 -- If the full view is a null extension, there is no need for
9988 -- overriding in Ada 2005, but wrappers need to be built for them
9989 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
9991 if Is_Null_Extension (T)
9992 and then Has_Controlling_Result (Subp)
9993 and then Ada_Version >= Ada_2005
9994 and then Present (Alias_Subp)
9995 and then not Comes_From_Source (Subp)
9996 and then not Is_Abstract_Subprogram (Alias_Subp)
9997 and then not Is_Access_Type (Etype (Subp))
9998 then
9999 null;
10001 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10002 -- processing because this check is done with the aliased
10003 -- entity
10005 elsif Present (Interface_Alias (Subp)) then
10006 null;
10008 elsif (Is_Abstract_Subprogram (Subp)
10009 or else Requires_Overriding (Subp)
10010 or else
10011 (Has_Controlling_Result (Subp)
10012 and then Present (Alias_Subp)
10013 and then not Comes_From_Source (Subp)
10014 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10015 and then not Is_TSS (Subp, TSS_Stream_Input)
10016 and then not Is_TSS (Subp, TSS_Stream_Output)
10017 and then not Is_Abstract_Type (T)
10018 and then not Is_Predefined_Interface_Primitive (Subp)
10020 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10021 -- with abstract interface types because the check will be done
10022 -- with the aliased entity (otherwise we generate a duplicated
10023 -- error message).
10025 and then not Present (Interface_Alias (Subp))
10026 then
10027 if Present (Alias_Subp) then
10029 -- Only perform the check for a derived subprogram when the
10030 -- type has an explicit record extension. This avoids incorrect
10031 -- flagging of abstract subprograms for the case of a type
10032 -- without an extension that is derived from a formal type
10033 -- with a tagged actual (can occur within a private part).
10035 -- Ada 2005 (AI-391): In the case of an inherited function with
10036 -- a controlling result of the type, the rule does not apply if
10037 -- the type is a null extension (unless the parent function
10038 -- itself is abstract, in which case the function must still be
10039 -- be overridden). The expander will generate an overriding
10040 -- wrapper function calling the parent subprogram (see
10041 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10043 Type_Def := Type_Definition (Parent (T));
10045 if Nkind (Type_Def) = N_Derived_Type_Definition
10046 and then Present (Record_Extension_Part (Type_Def))
10047 and then
10048 (Ada_Version < Ada_2005
10049 or else not Is_Null_Extension (T)
10050 or else Ekind (Subp) = E_Procedure
10051 or else not Has_Controlling_Result (Subp)
10052 or else Is_Abstract_Subprogram (Alias_Subp)
10053 or else Requires_Overriding (Subp)
10054 or else Is_Access_Type (Etype (Subp)))
10055 then
10056 -- Avoid reporting error in case of abstract predefined
10057 -- primitive inherited from interface type because the
10058 -- body of internally generated predefined primitives
10059 -- of tagged types are generated later by Freeze_Type
10061 if Is_Interface (Root_Type (T))
10062 and then Is_Abstract_Subprogram (Subp)
10063 and then Is_Predefined_Dispatching_Operation (Subp)
10064 and then not Comes_From_Source (Ultimate_Alias (Subp))
10065 then
10066 null;
10068 -- A null extension is not obliged to override an inherited
10069 -- procedure subject to pragma Extensions_Visible with value
10070 -- False and at least one controlling OUT parameter
10071 -- (SPARK RM 6.1.7(6)).
10073 elsif Is_Null_Extension (T)
10074 and then Is_EVF_Procedure (Subp)
10075 then
10076 null;
10078 else
10079 Error_Msg_NE
10080 ("type must be declared abstract or & overridden",
10081 T, Subp);
10083 -- Traverse the whole chain of aliased subprograms to
10084 -- complete the error notification. This is especially
10085 -- useful for traceability of the chain of entities when
10086 -- the subprogram corresponds with an interface
10087 -- subprogram (which may be defined in another package).
10089 if Present (Alias_Subp) then
10090 declare
10091 E : Entity_Id;
10093 begin
10094 E := Subp;
10095 while Present (Alias (E)) loop
10097 -- Avoid reporting redundant errors on entities
10098 -- inherited from interfaces
10100 if Sloc (E) /= Sloc (T) then
10101 Error_Msg_Sloc := Sloc (E);
10102 Error_Msg_NE
10103 ("\& has been inherited #", T, Subp);
10104 end if;
10106 E := Alias (E);
10107 end loop;
10109 Error_Msg_Sloc := Sloc (E);
10111 -- AI05-0068: report if there is an overriding
10112 -- non-abstract subprogram that is invisible.
10114 if Is_Hidden (E)
10115 and then not Is_Abstract_Subprogram (E)
10116 then
10117 Error_Msg_NE
10118 ("\& subprogram# is not visible",
10119 T, Subp);
10121 -- Clarify the case where a non-null extension must
10122 -- override inherited procedure subject to pragma
10123 -- Extensions_Visible with value False and at least
10124 -- one controlling OUT param.
10126 elsif Is_EVF_Procedure (E) then
10127 Error_Msg_NE
10128 ("\& # is subject to Extensions_Visible False",
10129 T, Subp);
10131 else
10132 Error_Msg_NE
10133 ("\& has been inherited from subprogram #",
10134 T, Subp);
10135 end if;
10136 end;
10137 end if;
10138 end if;
10140 -- Ada 2005 (AI-345): Protected or task type implementing
10141 -- abstract interfaces.
10143 elsif Is_Concurrent_Record_Type (T)
10144 and then Present (Interfaces (T))
10145 then
10146 -- There is no need to check here RM 9.4(11.9/3) since we
10147 -- are processing the corresponding record type and the
10148 -- mode of the overriding subprograms was verified by
10149 -- Check_Conformance when the corresponding concurrent
10150 -- type declaration was analyzed.
10152 Error_Msg_NE
10153 ("interface subprogram & must be overridden", T, Subp);
10155 -- Examine primitive operations of synchronized type to find
10156 -- homonyms that have the wrong profile.
10158 declare
10159 Prim : Entity_Id;
10161 begin
10162 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10163 while Present (Prim) loop
10164 if Chars (Prim) = Chars (Subp) then
10165 Error_Msg_NE
10166 ("profile is not type conformant with prefixed "
10167 & "view profile of inherited operation&",
10168 Prim, Subp);
10169 end if;
10171 Next_Entity (Prim);
10172 end loop;
10173 end;
10174 end if;
10176 else
10177 Error_Msg_Node_2 := T;
10178 Error_Msg_N
10179 ("abstract subprogram& not allowed for type&", Subp);
10181 -- Also post unconditional warning on the type (unconditional
10182 -- so that if there are more than one of these cases, we get
10183 -- them all, and not just the first one).
10185 Error_Msg_Node_2 := Subp;
10186 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10187 end if;
10189 -- A subprogram subject to pragma Extensions_Visible with value
10190 -- "True" cannot override a subprogram subject to the same pragma
10191 -- with value "False" (SPARK RM 6.1.7(5)).
10193 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10194 and then Present (Overridden_Operation (Subp))
10195 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10196 Extensions_Visible_False
10197 then
10198 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10199 Error_Msg_N
10200 ("subprogram & with Extensions_Visible True cannot override "
10201 & "subprogram # with Extensions_Visible False", Subp);
10202 end if;
10204 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10206 -- Subp is an expander-generated procedure which maps an interface
10207 -- alias to a protected wrapper. The interface alias is flagged by
10208 -- pragma Implemented. Ensure that Subp is a procedure when the
10209 -- implementation kind is By_Protected_Procedure or an entry when
10210 -- By_Entry.
10212 if Ada_Version >= Ada_2012
10213 and then Is_Hidden (Subp)
10214 and then Present (Interface_Alias (Subp))
10215 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10216 then
10217 Check_Pragma_Implemented (Subp);
10218 end if;
10220 -- Subp is an interface primitive which overrides another interface
10221 -- primitive marked with pragma Implemented.
10223 if Ada_Version >= Ada_2012
10224 and then Present (Overridden_Operation (Subp))
10225 and then Has_Rep_Pragma
10226 (Overridden_Operation (Subp), Name_Implemented)
10227 then
10228 -- If the overriding routine is also marked by Implemented, check
10229 -- that the two implementation kinds are conforming.
10231 if Has_Rep_Pragma (Subp, Name_Implemented) then
10232 Check_Pragma_Implemented
10233 (Subp => Subp,
10234 Iface_Subp => Overridden_Operation (Subp));
10236 -- Otherwise the overriding routine inherits the implementation
10237 -- kind from the overridden subprogram.
10239 else
10240 Inherit_Pragma_Implemented
10241 (Subp => Subp,
10242 Iface_Subp => Overridden_Operation (Subp));
10243 end if;
10244 end if;
10246 -- If the operation is a wrapper for a synchronized primitive, it
10247 -- may be called indirectly through a dispatching select. We assume
10248 -- that it will be referenced elsewhere indirectly, and suppress
10249 -- warnings about an unused entity.
10251 if Is_Primitive_Wrapper (Subp)
10252 and then Present (Wrapped_Entity (Subp))
10253 then
10254 Set_Referenced (Wrapped_Entity (Subp));
10255 end if;
10257 Next_Elmt (Elmt);
10258 end loop;
10259 end Check_Abstract_Overriding;
10261 ------------------------------------------------
10262 -- Check_Access_Discriminant_Requires_Limited --
10263 ------------------------------------------------
10265 procedure Check_Access_Discriminant_Requires_Limited
10266 (D : Node_Id;
10267 Loc : Node_Id)
10269 begin
10270 -- A discriminant_specification for an access discriminant shall appear
10271 -- only in the declaration for a task or protected type, or for a type
10272 -- with the reserved word 'limited' in its definition or in one of its
10273 -- ancestors (RM 3.7(10)).
10275 -- AI-0063: The proper condition is that type must be immutably limited,
10276 -- or else be a partial view.
10278 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10279 if Is_Limited_View (Current_Scope)
10280 or else
10281 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10282 and then Limited_Present (Parent (Current_Scope)))
10283 then
10284 null;
10286 else
10287 Error_Msg_N
10288 ("access discriminants allowed only for limited types", Loc);
10289 end if;
10290 end if;
10291 end Check_Access_Discriminant_Requires_Limited;
10293 -----------------------------------
10294 -- Check_Aliased_Component_Types --
10295 -----------------------------------
10297 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10298 C : Entity_Id;
10300 begin
10301 -- ??? Also need to check components of record extensions, but not
10302 -- components of protected types (which are always limited).
10304 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10305 -- types to be unconstrained. This is safe because it is illegal to
10306 -- create access subtypes to such types with explicit discriminant
10307 -- constraints.
10309 if not Is_Limited_Type (T) then
10310 if Ekind (T) = E_Record_Type then
10311 C := First_Component (T);
10312 while Present (C) loop
10313 if Is_Aliased (C)
10314 and then Has_Discriminants (Etype (C))
10315 and then not Is_Constrained (Etype (C))
10316 and then not In_Instance_Body
10317 and then Ada_Version < Ada_2005
10318 then
10319 Error_Msg_N
10320 ("aliased component must be constrained (RM 3.6(11))",
10322 end if;
10324 Next_Component (C);
10325 end loop;
10327 elsif Ekind (T) = E_Array_Type then
10328 if Has_Aliased_Components (T)
10329 and then Has_Discriminants (Component_Type (T))
10330 and then not Is_Constrained (Component_Type (T))
10331 and then not In_Instance_Body
10332 and then Ada_Version < Ada_2005
10333 then
10334 Error_Msg_N
10335 ("aliased component type must be constrained (RM 3.6(11))",
10337 end if;
10338 end if;
10339 end if;
10340 end Check_Aliased_Component_Types;
10342 ---------------------------------------
10343 -- Check_Anonymous_Access_Components --
10344 ---------------------------------------
10346 procedure Check_Anonymous_Access_Components
10347 (Typ_Decl : Node_Id;
10348 Typ : Entity_Id;
10349 Prev : Entity_Id;
10350 Comp_List : Node_Id)
10352 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10353 Anon_Access : Entity_Id;
10354 Acc_Def : Node_Id;
10355 Comp : Node_Id;
10356 Comp_Def : Node_Id;
10357 Decl : Node_Id;
10358 Type_Def : Node_Id;
10360 procedure Build_Incomplete_Type_Declaration;
10361 -- If the record type contains components that include an access to the
10362 -- current record, then create an incomplete type declaration for the
10363 -- record, to be used as the designated type of the anonymous access.
10364 -- This is done only once, and only if there is no previous partial
10365 -- view of the type.
10367 function Designates_T (Subt : Node_Id) return Boolean;
10368 -- Check whether a node designates the enclosing record type, or 'Class
10369 -- of that type
10371 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10372 -- Check whether an access definition includes a reference to
10373 -- the enclosing record type. The reference can be a subtype mark
10374 -- in the access definition itself, a 'Class attribute reference, or
10375 -- recursively a reference appearing in a parameter specification
10376 -- or result definition of an access_to_subprogram definition.
10378 --------------------------------------
10379 -- Build_Incomplete_Type_Declaration --
10380 --------------------------------------
10382 procedure Build_Incomplete_Type_Declaration is
10383 Decl : Node_Id;
10384 Inc_T : Entity_Id;
10385 H : Entity_Id;
10387 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10388 -- it's "is new ... with record" or else "is tagged record ...".
10390 Is_Tagged : constant Boolean :=
10391 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10392 and then
10393 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10394 or else
10395 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10396 and then Tagged_Present (Type_Definition (Typ_Decl)));
10398 begin
10399 -- If there is a previous partial view, no need to create a new one
10400 -- If the partial view, given by Prev, is incomplete, If Prev is
10401 -- a private declaration, full declaration is flagged accordingly.
10403 if Prev /= Typ then
10404 if Is_Tagged then
10405 Make_Class_Wide_Type (Prev);
10406 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10407 Set_Etype (Class_Wide_Type (Typ), Typ);
10408 end if;
10410 return;
10412 elsif Has_Private_Declaration (Typ) then
10414 -- If we refer to T'Class inside T, and T is the completion of a
10415 -- private type, then make sure the class-wide type exists.
10417 if Is_Tagged then
10418 Make_Class_Wide_Type (Typ);
10419 end if;
10421 return;
10423 -- If there was a previous anonymous access type, the incomplete
10424 -- type declaration will have been created already.
10426 elsif Present (Current_Entity (Typ))
10427 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
10428 and then Full_View (Current_Entity (Typ)) = Typ
10429 then
10430 if Is_Tagged
10431 and then Comes_From_Source (Current_Entity (Typ))
10432 and then not Is_Tagged_Type (Current_Entity (Typ))
10433 then
10434 Make_Class_Wide_Type (Typ);
10435 Error_Msg_N
10436 ("incomplete view of tagged type should be declared tagged??",
10437 Parent (Current_Entity (Typ)));
10438 end if;
10439 return;
10441 else
10442 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
10443 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
10445 -- Type has already been inserted into the current scope. Remove
10446 -- it, and add incomplete declaration for type, so that subsequent
10447 -- anonymous access types can use it. The entity is unchained from
10448 -- the homonym list and from immediate visibility. After analysis,
10449 -- the entity in the incomplete declaration becomes immediately
10450 -- visible in the record declaration that follows.
10452 H := Current_Entity (Typ);
10454 if H = Typ then
10455 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
10456 else
10457 while Present (H)
10458 and then Homonym (H) /= Typ
10459 loop
10460 H := Homonym (Typ);
10461 end loop;
10463 Set_Homonym (H, Homonym (Typ));
10464 end if;
10466 Insert_Before (Typ_Decl, Decl);
10467 Analyze (Decl);
10468 Set_Full_View (Inc_T, Typ);
10470 if Is_Tagged then
10472 -- Create a common class-wide type for both views, and set the
10473 -- Etype of the class-wide type to the full view.
10475 Make_Class_Wide_Type (Inc_T);
10476 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
10477 Set_Etype (Class_Wide_Type (Typ), Typ);
10478 end if;
10479 end if;
10480 end Build_Incomplete_Type_Declaration;
10482 ------------------
10483 -- Designates_T --
10484 ------------------
10486 function Designates_T (Subt : Node_Id) return Boolean is
10487 Type_Id : constant Name_Id := Chars (Typ);
10489 function Names_T (Nam : Node_Id) return Boolean;
10490 -- The record type has not been introduced in the current scope
10491 -- yet, so we must examine the name of the type itself, either
10492 -- an identifier T, or an expanded name of the form P.T, where
10493 -- P denotes the current scope.
10495 -------------
10496 -- Names_T --
10497 -------------
10499 function Names_T (Nam : Node_Id) return Boolean is
10500 begin
10501 if Nkind (Nam) = N_Identifier then
10502 return Chars (Nam) = Type_Id;
10504 elsif Nkind (Nam) = N_Selected_Component then
10505 if Chars (Selector_Name (Nam)) = Type_Id then
10506 if Nkind (Prefix (Nam)) = N_Identifier then
10507 return Chars (Prefix (Nam)) = Chars (Current_Scope);
10509 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
10510 return Chars (Selector_Name (Prefix (Nam))) =
10511 Chars (Current_Scope);
10512 else
10513 return False;
10514 end if;
10516 else
10517 return False;
10518 end if;
10520 else
10521 return False;
10522 end if;
10523 end Names_T;
10525 -- Start of processing for Designates_T
10527 begin
10528 if Nkind (Subt) = N_Identifier then
10529 return Chars (Subt) = Type_Id;
10531 -- Reference can be through an expanded name which has not been
10532 -- analyzed yet, and which designates enclosing scopes.
10534 elsif Nkind (Subt) = N_Selected_Component then
10535 if Names_T (Subt) then
10536 return True;
10538 -- Otherwise it must denote an entity that is already visible.
10539 -- The access definition may name a subtype of the enclosing
10540 -- type, if there is a previous incomplete declaration for it.
10542 else
10543 Find_Selected_Component (Subt);
10544 return
10545 Is_Entity_Name (Subt)
10546 and then Scope (Entity (Subt)) = Current_Scope
10547 and then
10548 (Chars (Base_Type (Entity (Subt))) = Type_Id
10549 or else
10550 (Is_Class_Wide_Type (Entity (Subt))
10551 and then
10552 Chars (Etype (Base_Type (Entity (Subt)))) =
10553 Type_Id));
10554 end if;
10556 -- A reference to the current type may appear as the prefix of
10557 -- a 'Class attribute.
10559 elsif Nkind (Subt) = N_Attribute_Reference
10560 and then Attribute_Name (Subt) = Name_Class
10561 then
10562 return Names_T (Prefix (Subt));
10564 else
10565 return False;
10566 end if;
10567 end Designates_T;
10569 ----------------
10570 -- Mentions_T --
10571 ----------------
10573 function Mentions_T (Acc_Def : Node_Id) return Boolean is
10574 Param_Spec : Node_Id;
10576 Acc_Subprg : constant Node_Id :=
10577 Access_To_Subprogram_Definition (Acc_Def);
10579 begin
10580 if No (Acc_Subprg) then
10581 return Designates_T (Subtype_Mark (Acc_Def));
10582 end if;
10584 -- Component is an access_to_subprogram: examine its formals,
10585 -- and result definition in the case of an access_to_function.
10587 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
10588 while Present (Param_Spec) loop
10589 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
10590 and then Mentions_T (Parameter_Type (Param_Spec))
10591 then
10592 return True;
10594 elsif Designates_T (Parameter_Type (Param_Spec)) then
10595 return True;
10596 end if;
10598 Next (Param_Spec);
10599 end loop;
10601 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
10602 if Nkind (Result_Definition (Acc_Subprg)) =
10603 N_Access_Definition
10604 then
10605 return Mentions_T (Result_Definition (Acc_Subprg));
10606 else
10607 return Designates_T (Result_Definition (Acc_Subprg));
10608 end if;
10609 end if;
10611 return False;
10612 end Mentions_T;
10614 -- Start of processing for Check_Anonymous_Access_Components
10616 begin
10617 if No (Comp_List) then
10618 return;
10619 end if;
10621 Comp := First (Component_Items (Comp_List));
10622 while Present (Comp) loop
10623 if Nkind (Comp) = N_Component_Declaration
10624 and then Present
10625 (Access_Definition (Component_Definition (Comp)))
10626 and then
10627 Mentions_T (Access_Definition (Component_Definition (Comp)))
10628 then
10629 Comp_Def := Component_Definition (Comp);
10630 Acc_Def :=
10631 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
10633 Build_Incomplete_Type_Declaration;
10634 Anon_Access := Make_Temporary (Loc, 'S');
10636 -- Create a declaration for the anonymous access type: either
10637 -- an access_to_object or an access_to_subprogram.
10639 if Present (Acc_Def) then
10640 if Nkind (Acc_Def) = N_Access_Function_Definition then
10641 Type_Def :=
10642 Make_Access_Function_Definition (Loc,
10643 Parameter_Specifications =>
10644 Parameter_Specifications (Acc_Def),
10645 Result_Definition => Result_Definition (Acc_Def));
10646 else
10647 Type_Def :=
10648 Make_Access_Procedure_Definition (Loc,
10649 Parameter_Specifications =>
10650 Parameter_Specifications (Acc_Def));
10651 end if;
10653 else
10654 Type_Def :=
10655 Make_Access_To_Object_Definition (Loc,
10656 Subtype_Indication =>
10657 Relocate_Node
10658 (Subtype_Mark (Access_Definition (Comp_Def))));
10660 Set_Constant_Present
10661 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
10662 Set_All_Present
10663 (Type_Def, All_Present (Access_Definition (Comp_Def)));
10664 end if;
10666 Set_Null_Exclusion_Present
10667 (Type_Def,
10668 Null_Exclusion_Present (Access_Definition (Comp_Def)));
10670 Decl :=
10671 Make_Full_Type_Declaration (Loc,
10672 Defining_Identifier => Anon_Access,
10673 Type_Definition => Type_Def);
10675 Insert_Before (Typ_Decl, Decl);
10676 Analyze (Decl);
10678 -- If an access to subprogram, create the extra formals
10680 if Present (Acc_Def) then
10681 Create_Extra_Formals (Designated_Type (Anon_Access));
10683 -- If an access to object, preserve entity of designated type,
10684 -- for ASIS use, before rewriting the component definition.
10686 else
10687 declare
10688 Desig : Entity_Id;
10690 begin
10691 Desig := Entity (Subtype_Indication (Type_Def));
10693 -- If the access definition is to the current record,
10694 -- the visible entity at this point is an incomplete
10695 -- type. Retrieve the full view to simplify ASIS queries
10697 if Ekind (Desig) = E_Incomplete_Type then
10698 Desig := Full_View (Desig);
10699 end if;
10701 Set_Entity
10702 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
10703 end;
10704 end if;
10706 Rewrite (Comp_Def,
10707 Make_Component_Definition (Loc,
10708 Subtype_Indication =>
10709 New_Occurrence_Of (Anon_Access, Loc)));
10711 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
10712 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
10713 else
10714 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
10715 end if;
10717 Set_Is_Local_Anonymous_Access (Anon_Access);
10718 end if;
10720 Next (Comp);
10721 end loop;
10723 if Present (Variant_Part (Comp_List)) then
10724 declare
10725 V : Node_Id;
10726 begin
10727 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
10728 while Present (V) loop
10729 Check_Anonymous_Access_Components
10730 (Typ_Decl, Typ, Prev, Component_List (V));
10731 Next_Non_Pragma (V);
10732 end loop;
10733 end;
10734 end if;
10735 end Check_Anonymous_Access_Components;
10737 ----------------------
10738 -- Check_Completion --
10739 ----------------------
10741 procedure Check_Completion (Body_Id : Node_Id := Empty) is
10742 E : Entity_Id;
10744 procedure Post_Error;
10745 -- Post error message for lack of completion for entity E
10747 ----------------
10748 -- Post_Error --
10749 ----------------
10751 procedure Post_Error is
10752 procedure Missing_Body;
10753 -- Output missing body message
10755 ------------------
10756 -- Missing_Body --
10757 ------------------
10759 procedure Missing_Body is
10760 begin
10761 -- Spec is in same unit, so we can post on spec
10763 if In_Same_Source_Unit (Body_Id, E) then
10764 Error_Msg_N ("missing body for &", E);
10766 -- Spec is in a separate unit, so we have to post on the body
10768 else
10769 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
10770 end if;
10771 end Missing_Body;
10773 -- Start of processing for Post_Error
10775 begin
10776 if not Comes_From_Source (E) then
10777 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
10779 -- It may be an anonymous protected type created for a
10780 -- single variable. Post error on variable, if present.
10782 declare
10783 Var : Entity_Id;
10785 begin
10786 Var := First_Entity (Current_Scope);
10787 while Present (Var) loop
10788 exit when Etype (Var) = E
10789 and then Comes_From_Source (Var);
10791 Next_Entity (Var);
10792 end loop;
10794 if Present (Var) then
10795 E := Var;
10796 end if;
10797 end;
10798 end if;
10799 end if;
10801 -- If a generated entity has no completion, then either previous
10802 -- semantic errors have disabled the expansion phase, or else we had
10803 -- missing subunits, or else we are compiling without expansion,
10804 -- or else something is very wrong.
10806 if not Comes_From_Source (E) then
10807 pragma Assert
10808 (Serious_Errors_Detected > 0
10809 or else Configurable_Run_Time_Violations > 0
10810 or else Subunits_Missing
10811 or else not Expander_Active);
10812 return;
10814 -- Here for source entity
10816 else
10817 -- Here if no body to post the error message, so we post the error
10818 -- on the declaration that has no completion. This is not really
10819 -- the right place to post it, think about this later ???
10821 if No (Body_Id) then
10822 if Is_Type (E) then
10823 Error_Msg_NE
10824 ("missing full declaration for }", Parent (E), E);
10825 else
10826 Error_Msg_NE ("missing body for &", Parent (E), E);
10827 end if;
10829 -- Package body has no completion for a declaration that appears
10830 -- in the corresponding spec. Post error on the body, with a
10831 -- reference to the non-completed declaration.
10833 else
10834 Error_Msg_Sloc := Sloc (E);
10836 if Is_Type (E) then
10837 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
10839 elsif Is_Overloadable (E)
10840 and then Current_Entity_In_Scope (E) /= E
10841 then
10842 -- It may be that the completion is mistyped and appears as
10843 -- a distinct overloading of the entity.
10845 declare
10846 Candidate : constant Entity_Id :=
10847 Current_Entity_In_Scope (E);
10848 Decl : constant Node_Id :=
10849 Unit_Declaration_Node (Candidate);
10851 begin
10852 if Is_Overloadable (Candidate)
10853 and then Ekind (Candidate) = Ekind (E)
10854 and then Nkind (Decl) = N_Subprogram_Body
10855 and then Acts_As_Spec (Decl)
10856 then
10857 Check_Type_Conformant (Candidate, E);
10859 else
10860 Missing_Body;
10861 end if;
10862 end;
10864 else
10865 Missing_Body;
10866 end if;
10867 end if;
10868 end if;
10869 end Post_Error;
10871 -- Local variables
10873 Pack_Id : constant Entity_Id := Current_Scope;
10875 -- Start of processing for Check_Completion
10877 begin
10878 E := First_Entity (Pack_Id);
10879 while Present (E) loop
10880 if Is_Intrinsic_Subprogram (E) then
10881 null;
10883 -- The following situation requires special handling: a child unit
10884 -- that appears in the context clause of the body of its parent:
10886 -- procedure Parent.Child (...);
10888 -- with Parent.Child;
10889 -- package body Parent is
10891 -- Here Parent.Child appears as a local entity, but should not be
10892 -- flagged as requiring completion, because it is a compilation
10893 -- unit.
10895 -- Ignore missing completion for a subprogram that does not come from
10896 -- source (including the _Call primitive operation of RAS types,
10897 -- which has to have the flag Comes_From_Source for other purposes):
10898 -- we assume that the expander will provide the missing completion.
10899 -- In case of previous errors, other expansion actions that provide
10900 -- bodies for null procedures with not be invoked, so inhibit message
10901 -- in those cases.
10903 -- Note that E_Operator is not in the list that follows, because
10904 -- this kind is reserved for predefined operators, that are
10905 -- intrinsic and do not need completion.
10907 elsif Ekind_In (E, E_Function,
10908 E_Procedure,
10909 E_Generic_Function,
10910 E_Generic_Procedure)
10911 then
10912 if Has_Completion (E) then
10913 null;
10915 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
10916 null;
10918 elsif Is_Subprogram (E)
10919 and then (not Comes_From_Source (E)
10920 or else Chars (E) = Name_uCall)
10921 then
10922 null;
10924 elsif
10925 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
10926 then
10927 null;
10929 elsif Nkind (Parent (E)) = N_Procedure_Specification
10930 and then Null_Present (Parent (E))
10931 and then Serious_Errors_Detected > 0
10932 then
10933 null;
10935 else
10936 Post_Error;
10937 end if;
10939 elsif Is_Entry (E) then
10940 if not Has_Completion (E) and then
10941 (Ekind (Scope (E)) = E_Protected_Object
10942 or else Ekind (Scope (E)) = E_Protected_Type)
10943 then
10944 Post_Error;
10945 end if;
10947 elsif Is_Package_Or_Generic_Package (E) then
10948 if Unit_Requires_Body (E) then
10949 if not Has_Completion (E)
10950 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
10951 N_Compilation_Unit
10952 then
10953 Post_Error;
10954 end if;
10956 elsif not Is_Child_Unit (E) then
10957 May_Need_Implicit_Body (E);
10958 end if;
10960 -- A formal incomplete type (Ada 2012) does not require a completion;
10961 -- other incomplete type declarations do.
10963 elsif Ekind (E) = E_Incomplete_Type
10964 and then No (Underlying_Type (E))
10965 and then not Is_Generic_Type (E)
10966 then
10967 Post_Error;
10969 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
10970 and then not Has_Completion (E)
10971 then
10972 Post_Error;
10974 -- A single task declared in the current scope is a constant, verify
10975 -- that the body of its anonymous type is in the same scope. If the
10976 -- task is defined elsewhere, this may be a renaming declaration for
10977 -- which no completion is needed.
10979 elsif Ekind (E) = E_Constant
10980 and then Ekind (Etype (E)) = E_Task_Type
10981 and then not Has_Completion (Etype (E))
10982 and then Scope (Etype (E)) = Current_Scope
10983 then
10984 Post_Error;
10986 elsif Ekind (E) = E_Protected_Object
10987 and then not Has_Completion (Etype (E))
10988 then
10989 Post_Error;
10991 elsif Ekind (E) = E_Record_Type then
10992 if Is_Tagged_Type (E) then
10993 Check_Abstract_Overriding (E);
10994 Check_Conventions (E);
10995 end if;
10997 Check_Aliased_Component_Types (E);
10999 elsif Ekind (E) = E_Array_Type then
11000 Check_Aliased_Component_Types (E);
11002 end if;
11004 Next_Entity (E);
11005 end loop;
11006 end Check_Completion;
11008 ------------------------------------
11009 -- Check_CPP_Type_Has_No_Defaults --
11010 ------------------------------------
11012 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11013 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11014 Clist : Node_Id;
11015 Comp : Node_Id;
11017 begin
11018 -- Obtain the component list
11020 if Nkind (Tdef) = N_Record_Definition then
11021 Clist := Component_List (Tdef);
11022 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11023 Clist := Component_List (Record_Extension_Part (Tdef));
11024 end if;
11026 -- Check all components to ensure no default expressions
11028 if Present (Clist) then
11029 Comp := First (Component_Items (Clist));
11030 while Present (Comp) loop
11031 if Present (Expression (Comp)) then
11032 Error_Msg_N
11033 ("component of imported 'C'P'P type cannot have "
11034 & "default expression", Expression (Comp));
11035 end if;
11037 Next (Comp);
11038 end loop;
11039 end if;
11040 end Check_CPP_Type_Has_No_Defaults;
11042 ----------------------------
11043 -- Check_Delta_Expression --
11044 ----------------------------
11046 procedure Check_Delta_Expression (E : Node_Id) is
11047 begin
11048 if not (Is_Real_Type (Etype (E))) then
11049 Wrong_Type (E, Any_Real);
11051 elsif not Is_OK_Static_Expression (E) then
11052 Flag_Non_Static_Expr
11053 ("non-static expression used for delta value!", E);
11055 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11056 Error_Msg_N ("delta expression must be positive", E);
11058 else
11059 return;
11060 end if;
11062 -- If any of above errors occurred, then replace the incorrect
11063 -- expression by the real 0.1, which should prevent further errors.
11065 Rewrite (E,
11066 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11067 Analyze_And_Resolve (E, Standard_Float);
11068 end Check_Delta_Expression;
11070 -----------------------------
11071 -- Check_Digits_Expression --
11072 -----------------------------
11074 procedure Check_Digits_Expression (E : Node_Id) is
11075 begin
11076 if not (Is_Integer_Type (Etype (E))) then
11077 Wrong_Type (E, Any_Integer);
11079 elsif not Is_OK_Static_Expression (E) then
11080 Flag_Non_Static_Expr
11081 ("non-static expression used for digits value!", E);
11083 elsif Expr_Value (E) <= 0 then
11084 Error_Msg_N ("digits value must be greater than zero", E);
11086 else
11087 return;
11088 end if;
11090 -- If any of above errors occurred, then replace the incorrect
11091 -- expression by the integer 1, which should prevent further errors.
11093 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11094 Analyze_And_Resolve (E, Standard_Integer);
11096 end Check_Digits_Expression;
11098 --------------------------
11099 -- Check_Initialization --
11100 --------------------------
11102 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11103 begin
11104 -- Special processing for limited types
11106 if Is_Limited_Type (T)
11107 and then not In_Instance
11108 and then not In_Inlined_Body
11109 then
11110 if not OK_For_Limited_Init (T, Exp) then
11112 -- In GNAT mode, this is just a warning, to allow it to be evilly
11113 -- turned off. Otherwise it is a real error.
11115 if GNAT_Mode then
11116 Error_Msg_N
11117 ("??cannot initialize entities of limited type!", Exp);
11119 elsif Ada_Version < Ada_2005 then
11121 -- The side effect removal machinery may generate illegal Ada
11122 -- code to avoid the usage of access types and 'reference in
11123 -- SPARK mode. Since this is legal code with respect to theorem
11124 -- proving, do not emit the error.
11126 if GNATprove_Mode
11127 and then Nkind (Exp) = N_Function_Call
11128 and then Nkind (Parent (Exp)) = N_Object_Declaration
11129 and then not Comes_From_Source
11130 (Defining_Identifier (Parent (Exp)))
11131 then
11132 null;
11134 else
11135 Error_Msg_N
11136 ("cannot initialize entities of limited type", Exp);
11137 Explain_Limited_Type (T, Exp);
11138 end if;
11140 else
11141 -- Specialize error message according to kind of illegal
11142 -- initial expression.
11144 if Nkind (Exp) = N_Type_Conversion
11145 and then Nkind (Expression (Exp)) = N_Function_Call
11146 then
11147 Error_Msg_N
11148 ("illegal context for call"
11149 & " to function with limited result", Exp);
11151 else
11152 Error_Msg_N
11153 ("initialization of limited object requires aggregate "
11154 & "or function call", Exp);
11155 end if;
11156 end if;
11157 end if;
11158 end if;
11160 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11161 -- set unless we can be sure that no range check is required.
11163 if (GNATprove_Mode or not Expander_Active)
11164 and then Is_Scalar_Type (T)
11165 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11166 then
11167 Set_Do_Range_Check (Exp);
11168 end if;
11169 end Check_Initialization;
11171 ----------------------
11172 -- Check_Interfaces --
11173 ----------------------
11175 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11176 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11178 Iface : Node_Id;
11179 Iface_Def : Node_Id;
11180 Iface_Typ : Entity_Id;
11181 Parent_Node : Node_Id;
11183 Is_Task : Boolean := False;
11184 -- Set True if parent type or any progenitor is a task interface
11186 Is_Protected : Boolean := False;
11187 -- Set True if parent type or any progenitor is a protected interface
11189 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11190 -- Check that a progenitor is compatible with declaration. If an error
11191 -- message is output, it is posted on Error_Node.
11193 ------------------
11194 -- Check_Ifaces --
11195 ------------------
11197 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11198 Iface_Id : constant Entity_Id :=
11199 Defining_Identifier (Parent (Iface_Def));
11200 Type_Def : Node_Id;
11202 begin
11203 if Nkind (N) = N_Private_Extension_Declaration then
11204 Type_Def := N;
11205 else
11206 Type_Def := Type_Definition (N);
11207 end if;
11209 if Is_Task_Interface (Iface_Id) then
11210 Is_Task := True;
11212 elsif Is_Protected_Interface (Iface_Id) then
11213 Is_Protected := True;
11214 end if;
11216 if Is_Synchronized_Interface (Iface_Id) then
11218 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11219 -- extension derived from a synchronized interface must explicitly
11220 -- be declared synchronized, because the full view will be a
11221 -- synchronized type.
11223 if Nkind (N) = N_Private_Extension_Declaration then
11224 if not Synchronized_Present (N) then
11225 Error_Msg_NE
11226 ("private extension of& must be explicitly synchronized",
11227 N, Iface_Id);
11228 end if;
11230 -- However, by 3.9.4(16/2), a full type that is a record extension
11231 -- is never allowed to derive from a synchronized interface (note
11232 -- that interfaces must be excluded from this check, because those
11233 -- are represented by derived type definitions in some cases).
11235 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11236 and then not Interface_Present (Type_Definition (N))
11237 then
11238 Error_Msg_N ("record extension cannot derive from synchronized "
11239 & "interface", Error_Node);
11240 end if;
11241 end if;
11243 -- Check that the characteristics of the progenitor are compatible
11244 -- with the explicit qualifier in the declaration.
11245 -- The check only applies to qualifiers that come from source.
11246 -- Limited_Present also appears in the declaration of corresponding
11247 -- records, and the check does not apply to them.
11249 if Limited_Present (Type_Def)
11250 and then not
11251 Is_Concurrent_Record_Type (Defining_Identifier (N))
11252 then
11253 if Is_Limited_Interface (Parent_Type)
11254 and then not Is_Limited_Interface (Iface_Id)
11255 then
11256 Error_Msg_NE
11257 ("progenitor & must be limited interface",
11258 Error_Node, Iface_Id);
11260 elsif
11261 (Task_Present (Iface_Def)
11262 or else Protected_Present (Iface_Def)
11263 or else Synchronized_Present (Iface_Def))
11264 and then Nkind (N) /= N_Private_Extension_Declaration
11265 and then not Error_Posted (N)
11266 then
11267 Error_Msg_NE
11268 ("progenitor & must be limited interface",
11269 Error_Node, Iface_Id);
11270 end if;
11272 -- Protected interfaces can only inherit from limited, synchronized
11273 -- or protected interfaces.
11275 elsif Nkind (N) = N_Full_Type_Declaration
11276 and then Protected_Present (Type_Def)
11277 then
11278 if Limited_Present (Iface_Def)
11279 or else Synchronized_Present (Iface_Def)
11280 or else Protected_Present (Iface_Def)
11281 then
11282 null;
11284 elsif Task_Present (Iface_Def) then
11285 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11286 & "from task interface", Error_Node);
11288 else
11289 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11290 & "from non-limited interface", Error_Node);
11291 end if;
11293 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11294 -- limited and synchronized.
11296 elsif Synchronized_Present (Type_Def) then
11297 if Limited_Present (Iface_Def)
11298 or else Synchronized_Present (Iface_Def)
11299 then
11300 null;
11302 elsif Protected_Present (Iface_Def)
11303 and then Nkind (N) /= N_Private_Extension_Declaration
11304 then
11305 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11306 & "from protected interface", Error_Node);
11308 elsif Task_Present (Iface_Def)
11309 and then Nkind (N) /= N_Private_Extension_Declaration
11310 then
11311 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11312 & "from task interface", Error_Node);
11314 elsif not Is_Limited_Interface (Iface_Id) then
11315 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11316 & "from non-limited interface", Error_Node);
11317 end if;
11319 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11320 -- synchronized or task interfaces.
11322 elsif Nkind (N) = N_Full_Type_Declaration
11323 and then Task_Present (Type_Def)
11324 then
11325 if Limited_Present (Iface_Def)
11326 or else Synchronized_Present (Iface_Def)
11327 or else Task_Present (Iface_Def)
11328 then
11329 null;
11331 elsif Protected_Present (Iface_Def) then
11332 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11333 & "protected interface", Error_Node);
11335 else
11336 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11337 & "non-limited interface", Error_Node);
11338 end if;
11339 end if;
11340 end Check_Ifaces;
11342 -- Start of processing for Check_Interfaces
11344 begin
11345 if Is_Interface (Parent_Type) then
11346 if Is_Task_Interface (Parent_Type) then
11347 Is_Task := True;
11349 elsif Is_Protected_Interface (Parent_Type) then
11350 Is_Protected := True;
11351 end if;
11352 end if;
11354 if Nkind (N) = N_Private_Extension_Declaration then
11356 -- Check that progenitors are compatible with declaration
11358 Iface := First (Interface_List (Def));
11359 while Present (Iface) loop
11360 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11362 Parent_Node := Parent (Base_Type (Iface_Typ));
11363 Iface_Def := Type_Definition (Parent_Node);
11365 if not Is_Interface (Iface_Typ) then
11366 Diagnose_Interface (Iface, Iface_Typ);
11367 else
11368 Check_Ifaces (Iface_Def, Iface);
11369 end if;
11371 Next (Iface);
11372 end loop;
11374 if Is_Task and Is_Protected then
11375 Error_Msg_N
11376 ("type cannot derive from task and protected interface", N);
11377 end if;
11379 return;
11380 end if;
11382 -- Full type declaration of derived type.
11383 -- Check compatibility with parent if it is interface type
11385 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11386 and then Is_Interface (Parent_Type)
11387 then
11388 Parent_Node := Parent (Parent_Type);
11390 -- More detailed checks for interface varieties
11392 Check_Ifaces
11393 (Iface_Def => Type_Definition (Parent_Node),
11394 Error_Node => Subtype_Indication (Type_Definition (N)));
11395 end if;
11397 Iface := First (Interface_List (Def));
11398 while Present (Iface) loop
11399 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11401 Parent_Node := Parent (Base_Type (Iface_Typ));
11402 Iface_Def := Type_Definition (Parent_Node);
11404 if not Is_Interface (Iface_Typ) then
11405 Diagnose_Interface (Iface, Iface_Typ);
11407 else
11408 -- "The declaration of a specific descendant of an interface
11409 -- type freezes the interface type" RM 13.14
11411 Freeze_Before (N, Iface_Typ);
11412 Check_Ifaces (Iface_Def, Error_Node => Iface);
11413 end if;
11415 Next (Iface);
11416 end loop;
11418 if Is_Task and Is_Protected then
11419 Error_Msg_N
11420 ("type cannot derive from task and protected interface", N);
11421 end if;
11422 end Check_Interfaces;
11424 ------------------------------------
11425 -- Check_Or_Process_Discriminants --
11426 ------------------------------------
11428 -- If an incomplete or private type declaration was already given for the
11429 -- type, the discriminants may have already been processed if they were
11430 -- present on the incomplete declaration. In this case a full conformance
11431 -- check has been performed in Find_Type_Name, and we then recheck here
11432 -- some properties that can't be checked on the partial view alone.
11433 -- Otherwise we call Process_Discriminants.
11435 procedure Check_Or_Process_Discriminants
11436 (N : Node_Id;
11437 T : Entity_Id;
11438 Prev : Entity_Id := Empty)
11440 begin
11441 if Has_Discriminants (T) then
11443 -- Discriminants are already set on T if they were already present
11444 -- on the partial view. Make them visible to component declarations.
11446 declare
11447 D : Entity_Id;
11448 -- Discriminant on T (full view) referencing expr on partial view
11450 Prev_D : Entity_Id;
11451 -- Entity of corresponding discriminant on partial view
11453 New_D : Node_Id;
11454 -- Discriminant specification for full view, expression is
11455 -- the syntactic copy on full view (which has been checked for
11456 -- conformance with partial view), only used here to post error
11457 -- message.
11459 begin
11460 D := First_Discriminant (T);
11461 New_D := First (Discriminant_Specifications (N));
11462 while Present (D) loop
11463 Prev_D := Current_Entity (D);
11464 Set_Current_Entity (D);
11465 Set_Is_Immediately_Visible (D);
11466 Set_Homonym (D, Prev_D);
11468 -- Handle the case where there is an untagged partial view and
11469 -- the full view is tagged: must disallow discriminants with
11470 -- defaults, unless compiling for Ada 2012, which allows a
11471 -- limited tagged type to have defaulted discriminants (see
11472 -- AI05-0214). However, suppress error here if it was already
11473 -- reported on the default expression of the partial view.
11475 if Is_Tagged_Type (T)
11476 and then Present (Expression (Parent (D)))
11477 and then (not Is_Limited_Type (Current_Scope)
11478 or else Ada_Version < Ada_2012)
11479 and then not Error_Posted (Expression (Parent (D)))
11480 then
11481 if Ada_Version >= Ada_2012 then
11482 Error_Msg_N
11483 ("discriminants of nonlimited tagged type cannot have "
11484 & "defaults",
11485 Expression (New_D));
11486 else
11487 Error_Msg_N
11488 ("discriminants of tagged type cannot have defaults",
11489 Expression (New_D));
11490 end if;
11491 end if;
11493 -- Ada 2005 (AI-230): Access discriminant allowed in
11494 -- non-limited record types.
11496 if Ada_Version < Ada_2005 then
11498 -- This restriction gets applied to the full type here. It
11499 -- has already been applied earlier to the partial view.
11501 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
11502 end if;
11504 Next_Discriminant (D);
11505 Next (New_D);
11506 end loop;
11507 end;
11509 elsif Present (Discriminant_Specifications (N)) then
11510 Process_Discriminants (N, Prev);
11511 end if;
11512 end Check_Or_Process_Discriminants;
11514 ----------------------
11515 -- Check_Real_Bound --
11516 ----------------------
11518 procedure Check_Real_Bound (Bound : Node_Id) is
11519 begin
11520 if not Is_Real_Type (Etype (Bound)) then
11521 Error_Msg_N
11522 ("bound in real type definition must be of real type", Bound);
11524 elsif not Is_OK_Static_Expression (Bound) then
11525 Flag_Non_Static_Expr
11526 ("non-static expression used for real type bound!", Bound);
11528 else
11529 return;
11530 end if;
11532 Rewrite
11533 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
11534 Analyze (Bound);
11535 Resolve (Bound, Standard_Float);
11536 end Check_Real_Bound;
11538 ------------------------------
11539 -- Complete_Private_Subtype --
11540 ------------------------------
11542 procedure Complete_Private_Subtype
11543 (Priv : Entity_Id;
11544 Full : Entity_Id;
11545 Full_Base : Entity_Id;
11546 Related_Nod : Node_Id)
11548 Save_Next_Entity : Entity_Id;
11549 Save_Homonym : Entity_Id;
11551 begin
11552 -- Set semantic attributes for (implicit) private subtype completion.
11553 -- If the full type has no discriminants, then it is a copy of the
11554 -- full view of the base. Otherwise, it is a subtype of the base with
11555 -- a possible discriminant constraint. Save and restore the original
11556 -- Next_Entity field of full to ensure that the calls to Copy_Node do
11557 -- not corrupt the entity chain.
11559 -- Note that the type of the full view is the same entity as the type
11560 -- of the partial view. In this fashion, the subtype has access to the
11561 -- correct view of the parent.
11563 Save_Next_Entity := Next_Entity (Full);
11564 Save_Homonym := Homonym (Priv);
11566 case Ekind (Full_Base) is
11567 when E_Record_Type |
11568 E_Record_Subtype |
11569 Class_Wide_Kind |
11570 Private_Kind |
11571 Task_Kind |
11572 Protected_Kind =>
11573 Copy_Node (Priv, Full);
11575 Set_Has_Discriminants
11576 (Full, Has_Discriminants (Full_Base));
11577 Set_Has_Unknown_Discriminants
11578 (Full, Has_Unknown_Discriminants (Full_Base));
11579 Set_First_Entity (Full, First_Entity (Full_Base));
11580 Set_Last_Entity (Full, Last_Entity (Full_Base));
11582 -- If the underlying base type is constrained, we know that the
11583 -- full view of the subtype is constrained as well (the converse
11584 -- is not necessarily true).
11586 if Is_Constrained (Full_Base) then
11587 Set_Is_Constrained (Full);
11588 end if;
11590 when others =>
11591 Copy_Node (Full_Base, Full);
11593 Set_Chars (Full, Chars (Priv));
11594 Conditional_Delay (Full, Priv);
11595 Set_Sloc (Full, Sloc (Priv));
11596 end case;
11598 Set_Next_Entity (Full, Save_Next_Entity);
11599 Set_Homonym (Full, Save_Homonym);
11600 Set_Associated_Node_For_Itype (Full, Related_Nod);
11602 -- Set common attributes for all subtypes: kind, convention, etc.
11604 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
11605 Set_Convention (Full, Convention (Full_Base));
11607 -- The Etype of the full view is inconsistent. Gigi needs to see the
11608 -- structural full view, which is what the current scheme gives: the
11609 -- Etype of the full view is the etype of the full base. However, if the
11610 -- full base is a derived type, the full view then looks like a subtype
11611 -- of the parent, not a subtype of the full base. If instead we write:
11613 -- Set_Etype (Full, Full_Base);
11615 -- then we get inconsistencies in the front-end (confusion between
11616 -- views). Several outstanding bugs are related to this ???
11618 Set_Is_First_Subtype (Full, False);
11619 Set_Scope (Full, Scope (Priv));
11620 Set_Size_Info (Full, Full_Base);
11621 Set_RM_Size (Full, RM_Size (Full_Base));
11622 Set_Is_Itype (Full);
11624 -- A subtype of a private-type-without-discriminants, whose full-view
11625 -- has discriminants with default expressions, is not constrained.
11627 if not Has_Discriminants (Priv) then
11628 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
11630 if Has_Discriminants (Full_Base) then
11631 Set_Discriminant_Constraint
11632 (Full, Discriminant_Constraint (Full_Base));
11634 -- The partial view may have been indefinite, the full view
11635 -- might not be.
11637 Set_Has_Unknown_Discriminants
11638 (Full, Has_Unknown_Discriminants (Full_Base));
11639 end if;
11640 end if;
11642 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
11643 Set_Depends_On_Private (Full, Has_Private_Component (Full));
11645 -- Freeze the private subtype entity if its parent is delayed, and not
11646 -- already frozen. We skip this processing if the type is an anonymous
11647 -- subtype of a record component, or is the corresponding record of a
11648 -- protected type, since these are processed when the enclosing type
11649 -- is frozen.
11651 if not Is_Type (Scope (Full)) then
11652 Set_Has_Delayed_Freeze (Full,
11653 Has_Delayed_Freeze (Full_Base)
11654 and then (not Is_Frozen (Full_Base)));
11655 end if;
11657 Set_Freeze_Node (Full, Empty);
11658 Set_Is_Frozen (Full, False);
11659 Set_Full_View (Priv, Full);
11661 if Has_Discriminants (Full) then
11662 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
11663 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
11665 if Has_Unknown_Discriminants (Full) then
11666 Set_Discriminant_Constraint (Full, No_Elist);
11667 end if;
11668 end if;
11670 if Ekind (Full_Base) = E_Record_Type
11671 and then Has_Discriminants (Full_Base)
11672 and then Has_Discriminants (Priv) -- might not, if errors
11673 and then not Has_Unknown_Discriminants (Priv)
11674 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
11675 then
11676 Create_Constrained_Components
11677 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
11679 -- If the full base is itself derived from private, build a congruent
11680 -- subtype of its underlying type, for use by the back end. For a
11681 -- constrained record component, the declaration cannot be placed on
11682 -- the component list, but it must nevertheless be built an analyzed, to
11683 -- supply enough information for Gigi to compute the size of component.
11685 elsif Ekind (Full_Base) in Private_Kind
11686 and then Is_Derived_Type (Full_Base)
11687 and then Has_Discriminants (Full_Base)
11688 and then (Ekind (Current_Scope) /= E_Record_Subtype)
11689 then
11690 if not Is_Itype (Priv)
11691 and then
11692 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
11693 then
11694 Build_Underlying_Full_View
11695 (Parent (Priv), Full, Etype (Full_Base));
11697 elsif Nkind (Related_Nod) = N_Component_Declaration then
11698 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
11699 end if;
11701 elsif Is_Record_Type (Full_Base) then
11703 -- Show Full is simply a renaming of Full_Base
11705 Set_Cloned_Subtype (Full, Full_Base);
11706 end if;
11708 -- It is unsafe to share the bounds of a scalar type, because the Itype
11709 -- is elaborated on demand, and if a bound is non-static then different
11710 -- orders of elaboration in different units will lead to different
11711 -- external symbols.
11713 if Is_Scalar_Type (Full_Base) then
11714 Set_Scalar_Range (Full,
11715 Make_Range (Sloc (Related_Nod),
11716 Low_Bound =>
11717 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
11718 High_Bound =>
11719 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
11721 -- This completion inherits the bounds of the full parent, but if
11722 -- the parent is an unconstrained floating point type, so is the
11723 -- completion.
11725 if Is_Floating_Point_Type (Full_Base) then
11726 Set_Includes_Infinities
11727 (Scalar_Range (Full), Has_Infinities (Full_Base));
11728 end if;
11729 end if;
11731 -- ??? It seems that a lot of fields are missing that should be copied
11732 -- from Full_Base to Full. Here are some that are introduced in a
11733 -- non-disruptive way but a cleanup is necessary.
11735 if Is_Tagged_Type (Full_Base) then
11736 Set_Is_Tagged_Type (Full);
11737 Set_Direct_Primitive_Operations
11738 (Full, Direct_Primitive_Operations (Full_Base));
11739 Set_No_Tagged_Streams_Pragma
11740 (Full, No_Tagged_Streams_Pragma (Full_Base));
11742 -- Inherit class_wide type of full_base in case the partial view was
11743 -- not tagged. Otherwise it has already been created when the private
11744 -- subtype was analyzed.
11746 if No (Class_Wide_Type (Full)) then
11747 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
11748 end if;
11750 -- If this is a subtype of a protected or task type, constrain its
11751 -- corresponding record, unless this is a subtype without constraints,
11752 -- i.e. a simple renaming as with an actual subtype in an instance.
11754 elsif Is_Concurrent_Type (Full_Base) then
11755 if Has_Discriminants (Full)
11756 and then Present (Corresponding_Record_Type (Full_Base))
11757 and then
11758 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
11759 then
11760 Set_Corresponding_Record_Type (Full,
11761 Constrain_Corresponding_Record
11762 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
11764 else
11765 Set_Corresponding_Record_Type (Full,
11766 Corresponding_Record_Type (Full_Base));
11767 end if;
11768 end if;
11770 -- Link rep item chain, and also setting of Has_Predicates from private
11771 -- subtype to full subtype, since we will need these on the full subtype
11772 -- to create the predicate function. Note that the full subtype may
11773 -- already have rep items, inherited from the full view of the base
11774 -- type, so we must be sure not to overwrite these entries.
11776 declare
11777 Append : Boolean;
11778 Item : Node_Id;
11779 Next_Item : Node_Id;
11781 begin
11782 Item := First_Rep_Item (Full);
11784 -- If no existing rep items on full type, we can just link directly
11785 -- to the list of items on the private type, if any exist.. Same if
11786 -- the rep items are only those inherited from the base
11788 if (No (Item)
11789 or else Nkind (Item) /= N_Aspect_Specification
11790 or else Entity (Item) = Full_Base)
11791 and then Present (First_Rep_Item (Priv))
11792 then
11793 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
11795 -- Otherwise, search to the end of items currently linked to the full
11796 -- subtype and append the private items to the end. However, if Priv
11797 -- and Full already have the same list of rep items, then the append
11798 -- is not done, as that would create a circularity.
11800 elsif Item /= First_Rep_Item (Priv) then
11801 Append := True;
11802 loop
11803 Next_Item := Next_Rep_Item (Item);
11804 exit when No (Next_Item);
11805 Item := Next_Item;
11807 -- If the private view has aspect specifications, the full view
11808 -- inherits them. Since these aspects may already have been
11809 -- attached to the full view during derivation, do not append
11810 -- them if already present.
11812 if Item = First_Rep_Item (Priv) then
11813 Append := False;
11814 exit;
11815 end if;
11816 end loop;
11818 -- And link the private type items at the end of the chain
11820 if Append then
11821 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
11822 end if;
11823 end if;
11824 end;
11826 -- Make sure Has_Predicates is set on full type if it is set on the
11827 -- private type. Note that it may already be set on the full type and
11828 -- if so, we don't want to unset it. Similarly, propagate information
11829 -- about delayed aspects, because the corresponding pragmas must be
11830 -- analyzed when one of the views is frozen. This last step is needed
11831 -- in particular when the full type is a scalar type for which an
11832 -- anonymous base type is constructed.
11834 if Has_Predicates (Priv) then
11835 Set_Has_Predicates (Full);
11836 end if;
11838 if Has_Delayed_Aspects (Priv) then
11839 Set_Has_Delayed_Aspects (Full);
11840 end if;
11841 end Complete_Private_Subtype;
11843 ----------------------------
11844 -- Constant_Redeclaration --
11845 ----------------------------
11847 procedure Constant_Redeclaration
11848 (Id : Entity_Id;
11849 N : Node_Id;
11850 T : out Entity_Id)
11852 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
11853 Obj_Def : constant Node_Id := Object_Definition (N);
11854 New_T : Entity_Id;
11856 procedure Check_Possible_Deferred_Completion
11857 (Prev_Id : Entity_Id;
11858 Prev_Obj_Def : Node_Id;
11859 Curr_Obj_Def : Node_Id);
11860 -- Determine whether the two object definitions describe the partial
11861 -- and the full view of a constrained deferred constant. Generate
11862 -- a subtype for the full view and verify that it statically matches
11863 -- the subtype of the partial view.
11865 procedure Check_Recursive_Declaration (Typ : Entity_Id);
11866 -- If deferred constant is an access type initialized with an allocator,
11867 -- check whether there is an illegal recursion in the definition,
11868 -- through a default value of some record subcomponent. This is normally
11869 -- detected when generating init procs, but requires this additional
11870 -- mechanism when expansion is disabled.
11872 ----------------------------------------
11873 -- Check_Possible_Deferred_Completion --
11874 ----------------------------------------
11876 procedure Check_Possible_Deferred_Completion
11877 (Prev_Id : Entity_Id;
11878 Prev_Obj_Def : Node_Id;
11879 Curr_Obj_Def : Node_Id)
11881 begin
11882 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
11883 and then Present (Constraint (Prev_Obj_Def))
11884 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
11885 and then Present (Constraint (Curr_Obj_Def))
11886 then
11887 declare
11888 Loc : constant Source_Ptr := Sloc (N);
11889 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
11890 Decl : constant Node_Id :=
11891 Make_Subtype_Declaration (Loc,
11892 Defining_Identifier => Def_Id,
11893 Subtype_Indication =>
11894 Relocate_Node (Curr_Obj_Def));
11896 begin
11897 Insert_Before_And_Analyze (N, Decl);
11898 Set_Etype (Id, Def_Id);
11900 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
11901 Error_Msg_Sloc := Sloc (Prev_Id);
11902 Error_Msg_N ("subtype does not statically match deferred "
11903 & "declaration #", N);
11904 end if;
11905 end;
11906 end if;
11907 end Check_Possible_Deferred_Completion;
11909 ---------------------------------
11910 -- Check_Recursive_Declaration --
11911 ---------------------------------
11913 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
11914 Comp : Entity_Id;
11916 begin
11917 if Is_Record_Type (Typ) then
11918 Comp := First_Component (Typ);
11919 while Present (Comp) loop
11920 if Comes_From_Source (Comp) then
11921 if Present (Expression (Parent (Comp)))
11922 and then Is_Entity_Name (Expression (Parent (Comp)))
11923 and then Entity (Expression (Parent (Comp))) = Prev
11924 then
11925 Error_Msg_Sloc := Sloc (Parent (Comp));
11926 Error_Msg_NE
11927 ("illegal circularity with declaration for & #",
11928 N, Comp);
11929 return;
11931 elsif Is_Record_Type (Etype (Comp)) then
11932 Check_Recursive_Declaration (Etype (Comp));
11933 end if;
11934 end if;
11936 Next_Component (Comp);
11937 end loop;
11938 end if;
11939 end Check_Recursive_Declaration;
11941 -- Start of processing for Constant_Redeclaration
11943 begin
11944 if Nkind (Parent (Prev)) = N_Object_Declaration then
11945 if Nkind (Object_Definition
11946 (Parent (Prev))) = N_Subtype_Indication
11947 then
11948 -- Find type of new declaration. The constraints of the two
11949 -- views must match statically, but there is no point in
11950 -- creating an itype for the full view.
11952 if Nkind (Obj_Def) = N_Subtype_Indication then
11953 Find_Type (Subtype_Mark (Obj_Def));
11954 New_T := Entity (Subtype_Mark (Obj_Def));
11956 else
11957 Find_Type (Obj_Def);
11958 New_T := Entity (Obj_Def);
11959 end if;
11961 T := Etype (Prev);
11963 else
11964 -- The full view may impose a constraint, even if the partial
11965 -- view does not, so construct the subtype.
11967 New_T := Find_Type_Of_Object (Obj_Def, N);
11968 T := New_T;
11969 end if;
11971 else
11972 -- Current declaration is illegal, diagnosed below in Enter_Name
11974 T := Empty;
11975 New_T := Any_Type;
11976 end if;
11978 -- If previous full declaration or a renaming declaration exists, or if
11979 -- a homograph is present, let Enter_Name handle it, either with an
11980 -- error or with the removal of an overridden implicit subprogram.
11981 -- The previous one is a full declaration if it has an expression
11982 -- (which in the case of an aggregate is indicated by the Init flag).
11984 if Ekind (Prev) /= E_Constant
11985 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
11986 or else Present (Expression (Parent (Prev)))
11987 or else Has_Init_Expression (Parent (Prev))
11988 or else Present (Full_View (Prev))
11989 then
11990 Enter_Name (Id);
11992 -- Verify that types of both declarations match, or else that both types
11993 -- are anonymous access types whose designated subtypes statically match
11994 -- (as allowed in Ada 2005 by AI-385).
11996 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
11997 and then
11998 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
11999 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12000 or else Is_Access_Constant (Etype (New_T)) /=
12001 Is_Access_Constant (Etype (Prev))
12002 or else Can_Never_Be_Null (Etype (New_T)) /=
12003 Can_Never_Be_Null (Etype (Prev))
12004 or else Null_Exclusion_Present (Parent (Prev)) /=
12005 Null_Exclusion_Present (Parent (Id))
12006 or else not Subtypes_Statically_Match
12007 (Designated_Type (Etype (Prev)),
12008 Designated_Type (Etype (New_T))))
12009 then
12010 Error_Msg_Sloc := Sloc (Prev);
12011 Error_Msg_N ("type does not match declaration#", N);
12012 Set_Full_View (Prev, Id);
12013 Set_Etype (Id, Any_Type);
12015 -- A deferred constant whose type is an anonymous array is always
12016 -- illegal (unless imported). A detailed error message might be
12017 -- helpful for Ada beginners.
12019 if Nkind (Object_Definition (Parent (Prev)))
12020 = N_Constrained_Array_Definition
12021 and then Nkind (Object_Definition (N))
12022 = N_Constrained_Array_Definition
12023 then
12024 Error_Msg_N ("\each anonymous array is a distinct type", N);
12025 Error_Msg_N ("a deferred constant must have a named type",
12026 Object_Definition (Parent (Prev)));
12027 end if;
12029 elsif
12030 Null_Exclusion_Present (Parent (Prev))
12031 and then not Null_Exclusion_Present (N)
12032 then
12033 Error_Msg_Sloc := Sloc (Prev);
12034 Error_Msg_N ("null-exclusion does not match declaration#", N);
12035 Set_Full_View (Prev, Id);
12036 Set_Etype (Id, Any_Type);
12038 -- If so, process the full constant declaration
12040 else
12041 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12042 -- the deferred declaration is constrained, then the subtype defined
12043 -- by the subtype_indication in the full declaration shall match it
12044 -- statically.
12046 Check_Possible_Deferred_Completion
12047 (Prev_Id => Prev,
12048 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12049 Curr_Obj_Def => Obj_Def);
12051 Set_Full_View (Prev, Id);
12052 Set_Is_Public (Id, Is_Public (Prev));
12053 Set_Is_Internal (Id);
12054 Append_Entity (Id, Current_Scope);
12056 -- Check ALIASED present if present before (RM 7.4(7))
12058 if Is_Aliased (Prev)
12059 and then not Aliased_Present (N)
12060 then
12061 Error_Msg_Sloc := Sloc (Prev);
12062 Error_Msg_N ("ALIASED required (see declaration #)", N);
12063 end if;
12065 -- Check that placement is in private part and that the incomplete
12066 -- declaration appeared in the visible part.
12068 if Ekind (Current_Scope) = E_Package
12069 and then not In_Private_Part (Current_Scope)
12070 then
12071 Error_Msg_Sloc := Sloc (Prev);
12072 Error_Msg_N
12073 ("full constant for declaration # must be in private part", N);
12075 elsif Ekind (Current_Scope) = E_Package
12076 and then
12077 List_Containing (Parent (Prev)) /=
12078 Visible_Declarations (Package_Specification (Current_Scope))
12079 then
12080 Error_Msg_N
12081 ("deferred constant must be declared in visible part",
12082 Parent (Prev));
12083 end if;
12085 if Is_Access_Type (T)
12086 and then Nkind (Expression (N)) = N_Allocator
12087 then
12088 Check_Recursive_Declaration (Designated_Type (T));
12089 end if;
12091 -- A deferred constant is a visible entity. If type has invariants,
12092 -- verify that the initial value satisfies them.
12094 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12095 Insert_After (N,
12096 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12097 end if;
12098 end if;
12099 end Constant_Redeclaration;
12101 ----------------------
12102 -- Constrain_Access --
12103 ----------------------
12105 procedure Constrain_Access
12106 (Def_Id : in out Entity_Id;
12107 S : Node_Id;
12108 Related_Nod : Node_Id)
12110 T : constant Entity_Id := Entity (Subtype_Mark (S));
12111 Desig_Type : constant Entity_Id := Designated_Type (T);
12112 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12113 Constraint_OK : Boolean := True;
12115 begin
12116 if Is_Array_Type (Desig_Type) then
12117 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12119 elsif (Is_Record_Type (Desig_Type)
12120 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12121 and then not Is_Constrained (Desig_Type)
12122 then
12123 -- ??? The following code is a temporary bypass to ignore a
12124 -- discriminant constraint on access type if it is constraining
12125 -- the current record. Avoid creating the implicit subtype of the
12126 -- record we are currently compiling since right now, we cannot
12127 -- handle these. For now, just return the access type itself.
12129 if Desig_Type = Current_Scope
12130 and then No (Def_Id)
12131 then
12132 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12133 Def_Id := Entity (Subtype_Mark (S));
12135 -- This call added to ensure that the constraint is analyzed
12136 -- (needed for a B test). Note that we still return early from
12137 -- this procedure to avoid recursive processing. ???
12139 Constrain_Discriminated_Type
12140 (Desig_Subtype, S, Related_Nod, For_Access => True);
12141 return;
12142 end if;
12144 -- Enforce rule that the constraint is illegal if there is an
12145 -- unconstrained view of the designated type. This means that the
12146 -- partial view (either a private type declaration or a derivation
12147 -- from a private type) has no discriminants. (Defect Report
12148 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12150 -- Rule updated for Ada 2005: The private type is said to have
12151 -- a constrained partial view, given that objects of the type
12152 -- can be declared. Furthermore, the rule applies to all access
12153 -- types, unlike the rule concerning default discriminants (see
12154 -- RM 3.7.1(7/3))
12156 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12157 and then Has_Private_Declaration (Desig_Type)
12158 and then In_Open_Scopes (Scope (Desig_Type))
12159 and then Has_Discriminants (Desig_Type)
12160 then
12161 declare
12162 Pack : constant Node_Id :=
12163 Unit_Declaration_Node (Scope (Desig_Type));
12164 Decls : List_Id;
12165 Decl : Node_Id;
12167 begin
12168 if Nkind (Pack) = N_Package_Declaration then
12169 Decls := Visible_Declarations (Specification (Pack));
12170 Decl := First (Decls);
12171 while Present (Decl) loop
12172 if (Nkind (Decl) = N_Private_Type_Declaration
12173 and then Chars (Defining_Identifier (Decl)) =
12174 Chars (Desig_Type))
12176 or else
12177 (Nkind (Decl) = N_Full_Type_Declaration
12178 and then
12179 Chars (Defining_Identifier (Decl)) =
12180 Chars (Desig_Type)
12181 and then Is_Derived_Type (Desig_Type)
12182 and then
12183 Has_Private_Declaration (Etype (Desig_Type)))
12184 then
12185 if No (Discriminant_Specifications (Decl)) then
12186 Error_Msg_N
12187 ("cannot constrain access type if designated "
12188 & "type has constrained partial view", S);
12189 end if;
12191 exit;
12192 end if;
12194 Next (Decl);
12195 end loop;
12196 end if;
12197 end;
12198 end if;
12200 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12201 For_Access => True);
12203 elsif Is_Concurrent_Type (Desig_Type)
12204 and then not Is_Constrained (Desig_Type)
12205 then
12206 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12208 else
12209 Error_Msg_N ("invalid constraint on access type", S);
12211 -- We simply ignore an invalid constraint
12213 Desig_Subtype := Desig_Type;
12214 Constraint_OK := False;
12215 end if;
12217 if No (Def_Id) then
12218 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12219 else
12220 Set_Ekind (Def_Id, E_Access_Subtype);
12221 end if;
12223 if Constraint_OK then
12224 Set_Etype (Def_Id, Base_Type (T));
12226 if Is_Private_Type (Desig_Type) then
12227 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12228 end if;
12229 else
12230 Set_Etype (Def_Id, Any_Type);
12231 end if;
12233 Set_Size_Info (Def_Id, T);
12234 Set_Is_Constrained (Def_Id, Constraint_OK);
12235 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12236 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12237 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12239 Conditional_Delay (Def_Id, T);
12241 -- AI-363 : Subtypes of general access types whose designated types have
12242 -- default discriminants are disallowed. In instances, the rule has to
12243 -- be checked against the actual, of which T is the subtype. In a
12244 -- generic body, the rule is checked assuming that the actual type has
12245 -- defaulted discriminants.
12247 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12248 if Ekind (Base_Type (T)) = E_General_Access_Type
12249 and then Has_Defaulted_Discriminants (Desig_Type)
12250 then
12251 if Ada_Version < Ada_2005 then
12252 Error_Msg_N
12253 ("access subtype of general access type would not " &
12254 "be allowed in Ada 2005?y?", S);
12255 else
12256 Error_Msg_N
12257 ("access subtype of general access type not allowed", S);
12258 end if;
12260 Error_Msg_N ("\discriminants have defaults", S);
12262 elsif Is_Access_Type (T)
12263 and then Is_Generic_Type (Desig_Type)
12264 and then Has_Discriminants (Desig_Type)
12265 and then In_Package_Body (Current_Scope)
12266 then
12267 if Ada_Version < Ada_2005 then
12268 Error_Msg_N
12269 ("access subtype would not be allowed in generic body "
12270 & "in Ada 2005?y?", S);
12271 else
12272 Error_Msg_N
12273 ("access subtype not allowed in generic body", S);
12274 end if;
12276 Error_Msg_N
12277 ("\designated type is a discriminated formal", S);
12278 end if;
12279 end if;
12280 end Constrain_Access;
12282 ---------------------
12283 -- Constrain_Array --
12284 ---------------------
12286 procedure Constrain_Array
12287 (Def_Id : in out Entity_Id;
12288 SI : Node_Id;
12289 Related_Nod : Node_Id;
12290 Related_Id : Entity_Id;
12291 Suffix : Character)
12293 C : constant Node_Id := Constraint (SI);
12294 Number_Of_Constraints : Nat := 0;
12295 Index : Node_Id;
12296 S, T : Entity_Id;
12297 Constraint_OK : Boolean := True;
12299 begin
12300 T := Entity (Subtype_Mark (SI));
12302 if Is_Access_Type (T) then
12303 T := Designated_Type (T);
12304 end if;
12306 -- If an index constraint follows a subtype mark in a subtype indication
12307 -- then the type or subtype denoted by the subtype mark must not already
12308 -- impose an index constraint. The subtype mark must denote either an
12309 -- unconstrained array type or an access type whose designated type
12310 -- is such an array type... (RM 3.6.1)
12312 if Is_Constrained (T) then
12313 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12314 Constraint_OK := False;
12316 else
12317 S := First (Constraints (C));
12318 while Present (S) loop
12319 Number_Of_Constraints := Number_Of_Constraints + 1;
12320 Next (S);
12321 end loop;
12323 -- In either case, the index constraint must provide a discrete
12324 -- range for each index of the array type and the type of each
12325 -- discrete range must be the same as that of the corresponding
12326 -- index. (RM 3.6.1)
12328 if Number_Of_Constraints /= Number_Dimensions (T) then
12329 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12330 Constraint_OK := False;
12332 else
12333 S := First (Constraints (C));
12334 Index := First_Index (T);
12335 Analyze (Index);
12337 -- Apply constraints to each index type
12339 for J in 1 .. Number_Of_Constraints loop
12340 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12341 Next (Index);
12342 Next (S);
12343 end loop;
12345 end if;
12346 end if;
12348 if No (Def_Id) then
12349 Def_Id :=
12350 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12351 Set_Parent (Def_Id, Related_Nod);
12353 else
12354 Set_Ekind (Def_Id, E_Array_Subtype);
12355 end if;
12357 Set_Size_Info (Def_Id, (T));
12358 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12359 Set_Etype (Def_Id, Base_Type (T));
12361 if Constraint_OK then
12362 Set_First_Index (Def_Id, First (Constraints (C)));
12363 else
12364 Set_First_Index (Def_Id, First_Index (T));
12365 end if;
12367 Set_Is_Constrained (Def_Id, True);
12368 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12369 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12371 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12372 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12374 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12375 -- We need to initialize the attribute because if Def_Id is previously
12376 -- analyzed through a limited_with clause, it will have the attributes
12377 -- of an incomplete type, one of which is an Elist that overlaps the
12378 -- Packed_Array_Impl_Type field.
12380 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12382 -- Build a freeze node if parent still needs one. Also make sure that
12383 -- the Depends_On_Private status is set because the subtype will need
12384 -- reprocessing at the time the base type does, and also we must set a
12385 -- conditional delay.
12387 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
12388 Conditional_Delay (Def_Id, T);
12389 end Constrain_Array;
12391 ------------------------------
12392 -- Constrain_Component_Type --
12393 ------------------------------
12395 function Constrain_Component_Type
12396 (Comp : Entity_Id;
12397 Constrained_Typ : Entity_Id;
12398 Related_Node : Node_Id;
12399 Typ : Entity_Id;
12400 Constraints : Elist_Id) return Entity_Id
12402 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
12403 Compon_Type : constant Entity_Id := Etype (Comp);
12405 function Build_Constrained_Array_Type
12406 (Old_Type : Entity_Id) return Entity_Id;
12407 -- If Old_Type is an array type, one of whose indexes is constrained
12408 -- by a discriminant, build an Itype whose constraint replaces the
12409 -- discriminant with its value in the constraint.
12411 function Build_Constrained_Discriminated_Type
12412 (Old_Type : Entity_Id) return Entity_Id;
12413 -- Ditto for record components
12415 function Build_Constrained_Access_Type
12416 (Old_Type : Entity_Id) return Entity_Id;
12417 -- Ditto for access types. Makes use of previous two functions, to
12418 -- constrain designated type.
12420 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
12421 -- T is an array or discriminated type, C is a list of constraints
12422 -- that apply to T. This routine builds the constrained subtype.
12424 function Is_Discriminant (Expr : Node_Id) return Boolean;
12425 -- Returns True if Expr is a discriminant
12427 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
12428 -- Find the value of discriminant Discrim in Constraint
12430 -----------------------------------
12431 -- Build_Constrained_Access_Type --
12432 -----------------------------------
12434 function Build_Constrained_Access_Type
12435 (Old_Type : Entity_Id) return Entity_Id
12437 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
12438 Itype : Entity_Id;
12439 Desig_Subtype : Entity_Id;
12440 Scop : Entity_Id;
12442 begin
12443 -- if the original access type was not embedded in the enclosing
12444 -- type definition, there is no need to produce a new access
12445 -- subtype. In fact every access type with an explicit constraint
12446 -- generates an itype whose scope is the enclosing record.
12448 if not Is_Type (Scope (Old_Type)) then
12449 return Old_Type;
12451 elsif Is_Array_Type (Desig_Type) then
12452 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
12454 elsif Has_Discriminants (Desig_Type) then
12456 -- This may be an access type to an enclosing record type for
12457 -- which we are constructing the constrained components. Return
12458 -- the enclosing record subtype. This is not always correct,
12459 -- but avoids infinite recursion. ???
12461 Desig_Subtype := Any_Type;
12463 for J in reverse 0 .. Scope_Stack.Last loop
12464 Scop := Scope_Stack.Table (J).Entity;
12466 if Is_Type (Scop)
12467 and then Base_Type (Scop) = Base_Type (Desig_Type)
12468 then
12469 Desig_Subtype := Scop;
12470 end if;
12472 exit when not Is_Type (Scop);
12473 end loop;
12475 if Desig_Subtype = Any_Type then
12476 Desig_Subtype :=
12477 Build_Constrained_Discriminated_Type (Desig_Type);
12478 end if;
12480 else
12481 return Old_Type;
12482 end if;
12484 if Desig_Subtype /= Desig_Type then
12486 -- The Related_Node better be here or else we won't be able
12487 -- to attach new itypes to a node in the tree.
12489 pragma Assert (Present (Related_Node));
12491 Itype := Create_Itype (E_Access_Subtype, Related_Node);
12493 Set_Etype (Itype, Base_Type (Old_Type));
12494 Set_Size_Info (Itype, (Old_Type));
12495 Set_Directly_Designated_Type (Itype, Desig_Subtype);
12496 Set_Depends_On_Private (Itype, Has_Private_Component
12497 (Old_Type));
12498 Set_Is_Access_Constant (Itype, Is_Access_Constant
12499 (Old_Type));
12501 -- The new itype needs freezing when it depends on a not frozen
12502 -- type and the enclosing subtype needs freezing.
12504 if Has_Delayed_Freeze (Constrained_Typ)
12505 and then not Is_Frozen (Constrained_Typ)
12506 then
12507 Conditional_Delay (Itype, Base_Type (Old_Type));
12508 end if;
12510 return Itype;
12512 else
12513 return Old_Type;
12514 end if;
12515 end Build_Constrained_Access_Type;
12517 ----------------------------------
12518 -- Build_Constrained_Array_Type --
12519 ----------------------------------
12521 function Build_Constrained_Array_Type
12522 (Old_Type : Entity_Id) return Entity_Id
12524 Lo_Expr : Node_Id;
12525 Hi_Expr : Node_Id;
12526 Old_Index : Node_Id;
12527 Range_Node : Node_Id;
12528 Constr_List : List_Id;
12530 Need_To_Create_Itype : Boolean := False;
12532 begin
12533 Old_Index := First_Index (Old_Type);
12534 while Present (Old_Index) loop
12535 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12537 if Is_Discriminant (Lo_Expr)
12538 or else
12539 Is_Discriminant (Hi_Expr)
12540 then
12541 Need_To_Create_Itype := True;
12542 end if;
12544 Next_Index (Old_Index);
12545 end loop;
12547 if Need_To_Create_Itype then
12548 Constr_List := New_List;
12550 Old_Index := First_Index (Old_Type);
12551 while Present (Old_Index) loop
12552 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
12554 if Is_Discriminant (Lo_Expr) then
12555 Lo_Expr := Get_Discr_Value (Lo_Expr);
12556 end if;
12558 if Is_Discriminant (Hi_Expr) then
12559 Hi_Expr := Get_Discr_Value (Hi_Expr);
12560 end if;
12562 Range_Node :=
12563 Make_Range
12564 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
12566 Append (Range_Node, To => Constr_List);
12568 Next_Index (Old_Index);
12569 end loop;
12571 return Build_Subtype (Old_Type, Constr_List);
12573 else
12574 return Old_Type;
12575 end if;
12576 end Build_Constrained_Array_Type;
12578 ------------------------------------------
12579 -- Build_Constrained_Discriminated_Type --
12580 ------------------------------------------
12582 function Build_Constrained_Discriminated_Type
12583 (Old_Type : Entity_Id) return Entity_Id
12585 Expr : Node_Id;
12586 Constr_List : List_Id;
12587 Old_Constraint : Elmt_Id;
12589 Need_To_Create_Itype : Boolean := False;
12591 begin
12592 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12593 while Present (Old_Constraint) loop
12594 Expr := Node (Old_Constraint);
12596 if Is_Discriminant (Expr) then
12597 Need_To_Create_Itype := True;
12598 end if;
12600 Next_Elmt (Old_Constraint);
12601 end loop;
12603 if Need_To_Create_Itype then
12604 Constr_List := New_List;
12606 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
12607 while Present (Old_Constraint) loop
12608 Expr := Node (Old_Constraint);
12610 if Is_Discriminant (Expr) then
12611 Expr := Get_Discr_Value (Expr);
12612 end if;
12614 Append (New_Copy_Tree (Expr), To => Constr_List);
12616 Next_Elmt (Old_Constraint);
12617 end loop;
12619 return Build_Subtype (Old_Type, Constr_List);
12621 else
12622 return Old_Type;
12623 end if;
12624 end Build_Constrained_Discriminated_Type;
12626 -------------------
12627 -- Build_Subtype --
12628 -------------------
12630 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
12631 Indic : Node_Id;
12632 Subtyp_Decl : Node_Id;
12633 Def_Id : Entity_Id;
12634 Btyp : Entity_Id := Base_Type (T);
12636 begin
12637 -- The Related_Node better be here or else we won't be able to
12638 -- attach new itypes to a node in the tree.
12640 pragma Assert (Present (Related_Node));
12642 -- If the view of the component's type is incomplete or private
12643 -- with unknown discriminants, then the constraint must be applied
12644 -- to the full type.
12646 if Has_Unknown_Discriminants (Btyp)
12647 and then Present (Underlying_Type (Btyp))
12648 then
12649 Btyp := Underlying_Type (Btyp);
12650 end if;
12652 Indic :=
12653 Make_Subtype_Indication (Loc,
12654 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
12655 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
12657 Def_Id := Create_Itype (Ekind (T), Related_Node);
12659 Subtyp_Decl :=
12660 Make_Subtype_Declaration (Loc,
12661 Defining_Identifier => Def_Id,
12662 Subtype_Indication => Indic);
12664 Set_Parent (Subtyp_Decl, Parent (Related_Node));
12666 -- Itypes must be analyzed with checks off (see package Itypes)
12668 Analyze (Subtyp_Decl, Suppress => All_Checks);
12670 return Def_Id;
12671 end Build_Subtype;
12673 ---------------------
12674 -- Get_Discr_Value --
12675 ---------------------
12677 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
12678 D : Entity_Id;
12679 E : Elmt_Id;
12681 begin
12682 -- The discriminant may be declared for the type, in which case we
12683 -- find it by iterating over the list of discriminants. If the
12684 -- discriminant is inherited from a parent type, it appears as the
12685 -- corresponding discriminant of the current type. This will be the
12686 -- case when constraining an inherited component whose constraint is
12687 -- given by a discriminant of the parent.
12689 D := First_Discriminant (Typ);
12690 E := First_Elmt (Constraints);
12692 while Present (D) loop
12693 if D = Entity (Discrim)
12694 or else D = CR_Discriminant (Entity (Discrim))
12695 or else Corresponding_Discriminant (D) = Entity (Discrim)
12696 then
12697 return Node (E);
12698 end if;
12700 Next_Discriminant (D);
12701 Next_Elmt (E);
12702 end loop;
12704 -- The Corresponding_Discriminant mechanism is incomplete, because
12705 -- the correspondence between new and old discriminants is not one
12706 -- to one: one new discriminant can constrain several old ones. In
12707 -- that case, scan sequentially the stored_constraint, the list of
12708 -- discriminants of the parents, and the constraints.
12710 -- Previous code checked for the present of the Stored_Constraint
12711 -- list for the derived type, but did not use it at all. Should it
12712 -- be present when the component is a discriminated task type?
12714 if Is_Derived_Type (Typ)
12715 and then Scope (Entity (Discrim)) = Etype (Typ)
12716 then
12717 D := First_Discriminant (Etype (Typ));
12718 E := First_Elmt (Constraints);
12719 while Present (D) loop
12720 if D = Entity (Discrim) then
12721 return Node (E);
12722 end if;
12724 Next_Discriminant (D);
12725 Next_Elmt (E);
12726 end loop;
12727 end if;
12729 -- Something is wrong if we did not find the value
12731 raise Program_Error;
12732 end Get_Discr_Value;
12734 ---------------------
12735 -- Is_Discriminant --
12736 ---------------------
12738 function Is_Discriminant (Expr : Node_Id) return Boolean is
12739 Discrim_Scope : Entity_Id;
12741 begin
12742 if Denotes_Discriminant (Expr) then
12743 Discrim_Scope := Scope (Entity (Expr));
12745 -- Either we have a reference to one of Typ's discriminants,
12747 pragma Assert (Discrim_Scope = Typ
12749 -- or to the discriminants of the parent type, in the case
12750 -- of a derivation of a tagged type with variants.
12752 or else Discrim_Scope = Etype (Typ)
12753 or else Full_View (Discrim_Scope) = Etype (Typ)
12755 -- or same as above for the case where the discriminants
12756 -- were declared in Typ's private view.
12758 or else (Is_Private_Type (Discrim_Scope)
12759 and then Chars (Discrim_Scope) = Chars (Typ))
12761 -- or else we are deriving from the full view and the
12762 -- discriminant is declared in the private entity.
12764 or else (Is_Private_Type (Typ)
12765 and then Chars (Discrim_Scope) = Chars (Typ))
12767 -- Or we are constrained the corresponding record of a
12768 -- synchronized type that completes a private declaration.
12770 or else (Is_Concurrent_Record_Type (Typ)
12771 and then
12772 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
12774 -- or we have a class-wide type, in which case make sure the
12775 -- discriminant found belongs to the root type.
12777 or else (Is_Class_Wide_Type (Typ)
12778 and then Etype (Typ) = Discrim_Scope));
12780 return True;
12781 end if;
12783 -- In all other cases we have something wrong
12785 return False;
12786 end Is_Discriminant;
12788 -- Start of processing for Constrain_Component_Type
12790 begin
12791 if Nkind (Parent (Comp)) = N_Component_Declaration
12792 and then Comes_From_Source (Parent (Comp))
12793 and then Comes_From_Source
12794 (Subtype_Indication (Component_Definition (Parent (Comp))))
12795 and then
12796 Is_Entity_Name
12797 (Subtype_Indication (Component_Definition (Parent (Comp))))
12798 then
12799 return Compon_Type;
12801 elsif Is_Array_Type (Compon_Type) then
12802 return Build_Constrained_Array_Type (Compon_Type);
12804 elsif Has_Discriminants (Compon_Type) then
12805 return Build_Constrained_Discriminated_Type (Compon_Type);
12807 elsif Is_Access_Type (Compon_Type) then
12808 return Build_Constrained_Access_Type (Compon_Type);
12810 else
12811 return Compon_Type;
12812 end if;
12813 end Constrain_Component_Type;
12815 --------------------------
12816 -- Constrain_Concurrent --
12817 --------------------------
12819 -- For concurrent types, the associated record value type carries the same
12820 -- discriminants, so when we constrain a concurrent type, we must constrain
12821 -- the corresponding record type as well.
12823 procedure Constrain_Concurrent
12824 (Def_Id : in out Entity_Id;
12825 SI : Node_Id;
12826 Related_Nod : Node_Id;
12827 Related_Id : Entity_Id;
12828 Suffix : Character)
12830 -- Retrieve Base_Type to ensure getting to the concurrent type in the
12831 -- case of a private subtype (needed when only doing semantic analysis).
12833 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
12834 T_Val : Entity_Id;
12836 begin
12837 if Is_Access_Type (T_Ent) then
12838 T_Ent := Designated_Type (T_Ent);
12839 end if;
12841 T_Val := Corresponding_Record_Type (T_Ent);
12843 if Present (T_Val) then
12845 if No (Def_Id) then
12846 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12848 -- Elaborate itype now, as it may be used in a subsequent
12849 -- synchronized operation in another scope.
12851 if Nkind (Related_Nod) = N_Full_Type_Declaration then
12852 Build_Itype_Reference (Def_Id, Related_Nod);
12853 end if;
12854 end if;
12856 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12858 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12859 Set_Corresponding_Record_Type (Def_Id,
12860 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
12862 else
12863 -- If there is no associated record, expansion is disabled and this
12864 -- is a generic context. Create a subtype in any case, so that
12865 -- semantic analysis can proceed.
12867 if No (Def_Id) then
12868 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12869 end if;
12871 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
12872 end if;
12873 end Constrain_Concurrent;
12875 ------------------------------------
12876 -- Constrain_Corresponding_Record --
12877 ------------------------------------
12879 function Constrain_Corresponding_Record
12880 (Prot_Subt : Entity_Id;
12881 Corr_Rec : Entity_Id;
12882 Related_Nod : Node_Id) return Entity_Id
12884 T_Sub : constant Entity_Id :=
12885 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
12887 begin
12888 Set_Etype (T_Sub, Corr_Rec);
12889 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
12890 Set_Is_Constrained (T_Sub, True);
12891 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
12892 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
12894 if Has_Discriminants (Prot_Subt) then -- False only if errors.
12895 Set_Discriminant_Constraint
12896 (T_Sub, Discriminant_Constraint (Prot_Subt));
12897 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
12898 Create_Constrained_Components
12899 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
12900 end if;
12902 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
12904 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
12905 Conditional_Delay (T_Sub, Corr_Rec);
12907 else
12908 -- This is a component subtype: it will be frozen in the context of
12909 -- the enclosing record's init_proc, so that discriminant references
12910 -- are resolved to discriminals. (Note: we used to skip freezing
12911 -- altogether in that case, which caused errors downstream for
12912 -- components of a bit packed array type).
12914 Set_Has_Delayed_Freeze (T_Sub);
12915 end if;
12917 return T_Sub;
12918 end Constrain_Corresponding_Record;
12920 -----------------------
12921 -- Constrain_Decimal --
12922 -----------------------
12924 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
12925 T : constant Entity_Id := Entity (Subtype_Mark (S));
12926 C : constant Node_Id := Constraint (S);
12927 Loc : constant Source_Ptr := Sloc (C);
12928 Range_Expr : Node_Id;
12929 Digits_Expr : Node_Id;
12930 Digits_Val : Uint;
12931 Bound_Val : Ureal;
12933 begin
12934 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
12936 if Nkind (C) = N_Range_Constraint then
12937 Range_Expr := Range_Expression (C);
12938 Digits_Val := Digits_Value (T);
12940 else
12941 pragma Assert (Nkind (C) = N_Digits_Constraint);
12943 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
12945 Digits_Expr := Digits_Expression (C);
12946 Analyze_And_Resolve (Digits_Expr, Any_Integer);
12948 Check_Digits_Expression (Digits_Expr);
12949 Digits_Val := Expr_Value (Digits_Expr);
12951 if Digits_Val > Digits_Value (T) then
12952 Error_Msg_N
12953 ("digits expression is incompatible with subtype", C);
12954 Digits_Val := Digits_Value (T);
12955 end if;
12957 if Present (Range_Constraint (C)) then
12958 Range_Expr := Range_Expression (Range_Constraint (C));
12959 else
12960 Range_Expr := Empty;
12961 end if;
12962 end if;
12964 Set_Etype (Def_Id, Base_Type (T));
12965 Set_Size_Info (Def_Id, (T));
12966 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12967 Set_Delta_Value (Def_Id, Delta_Value (T));
12968 Set_Scale_Value (Def_Id, Scale_Value (T));
12969 Set_Small_Value (Def_Id, Small_Value (T));
12970 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
12971 Set_Digits_Value (Def_Id, Digits_Val);
12973 -- Manufacture range from given digits value if no range present
12975 if No (Range_Expr) then
12976 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
12977 Range_Expr :=
12978 Make_Range (Loc,
12979 Low_Bound =>
12980 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
12981 High_Bound =>
12982 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
12983 end if;
12985 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
12986 Set_Discrete_RM_Size (Def_Id);
12988 -- Unconditionally delay the freeze, since we cannot set size
12989 -- information in all cases correctly until the freeze point.
12991 Set_Has_Delayed_Freeze (Def_Id);
12992 end Constrain_Decimal;
12994 ----------------------------------
12995 -- Constrain_Discriminated_Type --
12996 ----------------------------------
12998 procedure Constrain_Discriminated_Type
12999 (Def_Id : Entity_Id;
13000 S : Node_Id;
13001 Related_Nod : Node_Id;
13002 For_Access : Boolean := False)
13004 E : constant Entity_Id := Entity (Subtype_Mark (S));
13005 T : Entity_Id;
13006 C : Node_Id;
13007 Elist : Elist_Id := New_Elmt_List;
13009 procedure Fixup_Bad_Constraint;
13010 -- This is called after finding a bad constraint, and after having
13011 -- posted an appropriate error message. The mission is to leave the
13012 -- entity T in as reasonable state as possible.
13014 --------------------------
13015 -- Fixup_Bad_Constraint --
13016 --------------------------
13018 procedure Fixup_Bad_Constraint is
13019 begin
13020 -- Set a reasonable Ekind for the entity. For an incomplete type,
13021 -- we can't do much, but for other types, we can set the proper
13022 -- corresponding subtype kind.
13024 if Ekind (T) = E_Incomplete_Type then
13025 Set_Ekind (Def_Id, Ekind (T));
13026 else
13027 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13028 end if;
13030 -- Set Etype to the known type, to reduce chances of cascaded errors
13032 Set_Etype (Def_Id, E);
13033 Set_Error_Posted (Def_Id);
13034 end Fixup_Bad_Constraint;
13036 -- Start of processing for Constrain_Discriminated_Type
13038 begin
13039 C := Constraint (S);
13041 -- A discriminant constraint is only allowed in a subtype indication,
13042 -- after a subtype mark. This subtype mark must denote either a type
13043 -- with discriminants, or an access type whose designated type is a
13044 -- type with discriminants. A discriminant constraint specifies the
13045 -- values of these discriminants (RM 3.7.2(5)).
13047 T := Base_Type (Entity (Subtype_Mark (S)));
13049 if Is_Access_Type (T) then
13050 T := Designated_Type (T);
13051 end if;
13053 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal.
13054 -- Avoid generating an error for access-to-incomplete subtypes.
13056 if Ada_Version >= Ada_2005
13057 and then Ekind (T) = E_Incomplete_Type
13058 and then Nkind (Parent (S)) = N_Subtype_Declaration
13059 and then not Is_Itype (Def_Id)
13060 then
13061 -- A little sanity check, emit an error message if the type
13062 -- has discriminants to begin with. Type T may be a regular
13063 -- incomplete type or imported via a limited with clause.
13065 if Has_Discriminants (T)
13066 or else (From_Limited_With (T)
13067 and then Present (Non_Limited_View (T))
13068 and then Nkind (Parent (Non_Limited_View (T))) =
13069 N_Full_Type_Declaration
13070 and then Present (Discriminant_Specifications
13071 (Parent (Non_Limited_View (T)))))
13072 then
13073 Error_Msg_N
13074 ("(Ada 2005) incomplete subtype may not be constrained", C);
13075 else
13076 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13077 end if;
13079 Fixup_Bad_Constraint;
13080 return;
13082 -- Check that the type has visible discriminants. The type may be
13083 -- a private type with unknown discriminants whose full view has
13084 -- discriminants which are invisible.
13086 elsif not Has_Discriminants (T)
13087 or else
13088 (Has_Unknown_Discriminants (T)
13089 and then Is_Private_Type (T))
13090 then
13091 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13092 Fixup_Bad_Constraint;
13093 return;
13095 elsif Is_Constrained (E)
13096 or else (Ekind (E) = E_Class_Wide_Subtype
13097 and then Present (Discriminant_Constraint (E)))
13098 then
13099 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13100 Fixup_Bad_Constraint;
13101 return;
13102 end if;
13104 -- T may be an unconstrained subtype (e.g. a generic actual).
13105 -- Constraint applies to the base type.
13107 T := Base_Type (T);
13109 Elist := Build_Discriminant_Constraints (T, S);
13111 -- If the list returned was empty we had an error in building the
13112 -- discriminant constraint. We have also already signalled an error
13113 -- in the incomplete type case
13115 if Is_Empty_Elmt_List (Elist) then
13116 Fixup_Bad_Constraint;
13117 return;
13118 end if;
13120 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
13121 end Constrain_Discriminated_Type;
13123 ---------------------------
13124 -- Constrain_Enumeration --
13125 ---------------------------
13127 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13128 T : constant Entity_Id := Entity (Subtype_Mark (S));
13129 C : constant Node_Id := Constraint (S);
13131 begin
13132 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13134 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13136 Set_Etype (Def_Id, Base_Type (T));
13137 Set_Size_Info (Def_Id, (T));
13138 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13139 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13141 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13143 Set_Discrete_RM_Size (Def_Id);
13144 end Constrain_Enumeration;
13146 ----------------------
13147 -- Constrain_Float --
13148 ----------------------
13150 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13151 T : constant Entity_Id := Entity (Subtype_Mark (S));
13152 C : Node_Id;
13153 D : Node_Id;
13154 Rais : Node_Id;
13156 begin
13157 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13159 Set_Etype (Def_Id, Base_Type (T));
13160 Set_Size_Info (Def_Id, (T));
13161 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13163 -- Process the constraint
13165 C := Constraint (S);
13167 -- Digits constraint present
13169 if Nkind (C) = N_Digits_Constraint then
13171 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13172 Check_Restriction (No_Obsolescent_Features, C);
13174 if Warn_On_Obsolescent_Feature then
13175 Error_Msg_N
13176 ("subtype digits constraint is an " &
13177 "obsolescent feature (RM J.3(8))?j?", C);
13178 end if;
13180 D := Digits_Expression (C);
13181 Analyze_And_Resolve (D, Any_Integer);
13182 Check_Digits_Expression (D);
13183 Set_Digits_Value (Def_Id, Expr_Value (D));
13185 -- Check that digits value is in range. Obviously we can do this
13186 -- at compile time, but it is strictly a runtime check, and of
13187 -- course there is an ACVC test that checks this.
13189 if Digits_Value (Def_Id) > Digits_Value (T) then
13190 Error_Msg_Uint_1 := Digits_Value (T);
13191 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13192 Rais :=
13193 Make_Raise_Constraint_Error (Sloc (D),
13194 Reason => CE_Range_Check_Failed);
13195 Insert_Action (Declaration_Node (Def_Id), Rais);
13196 end if;
13198 C := Range_Constraint (C);
13200 -- No digits constraint present
13202 else
13203 Set_Digits_Value (Def_Id, Digits_Value (T));
13204 end if;
13206 -- Range constraint present
13208 if Nkind (C) = N_Range_Constraint then
13209 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13211 -- No range constraint present
13213 else
13214 pragma Assert (No (C));
13215 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13216 end if;
13218 Set_Is_Constrained (Def_Id);
13219 end Constrain_Float;
13221 ---------------------
13222 -- Constrain_Index --
13223 ---------------------
13225 procedure Constrain_Index
13226 (Index : Node_Id;
13227 S : Node_Id;
13228 Related_Nod : Node_Id;
13229 Related_Id : Entity_Id;
13230 Suffix : Character;
13231 Suffix_Index : Nat)
13233 Def_Id : Entity_Id;
13234 R : Node_Id := Empty;
13235 T : constant Entity_Id := Etype (Index);
13237 begin
13238 Def_Id :=
13239 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13240 Set_Etype (Def_Id, Base_Type (T));
13242 if Nkind (S) = N_Range
13243 or else
13244 (Nkind (S) = N_Attribute_Reference
13245 and then Attribute_Name (S) = Name_Range)
13246 then
13247 -- A Range attribute will be transformed into N_Range by Resolve
13249 Analyze (S);
13250 Set_Etype (S, T);
13251 R := S;
13253 Process_Range_Expr_In_Decl (R, T);
13255 if not Error_Posted (S)
13256 and then
13257 (Nkind (S) /= N_Range
13258 or else not Covers (T, (Etype (Low_Bound (S))))
13259 or else not Covers (T, (Etype (High_Bound (S)))))
13260 then
13261 if Base_Type (T) /= Any_Type
13262 and then Etype (Low_Bound (S)) /= Any_Type
13263 and then Etype (High_Bound (S)) /= Any_Type
13264 then
13265 Error_Msg_N ("range expected", S);
13266 end if;
13267 end if;
13269 elsif Nkind (S) = N_Subtype_Indication then
13271 -- The parser has verified that this is a discrete indication
13273 Resolve_Discrete_Subtype_Indication (S, T);
13274 Bad_Predicated_Subtype_Use
13275 ("subtype& has predicate, not allowed in index constraint",
13276 S, Entity (Subtype_Mark (S)));
13278 R := Range_Expression (Constraint (S));
13280 -- Capture values of bounds and generate temporaries for them if
13281 -- needed, since checks may cause duplication of the expressions
13282 -- which must not be reevaluated.
13284 -- The forced evaluation removes side effects from expressions, which
13285 -- should occur also in GNATprove mode. Otherwise, we end up with
13286 -- unexpected insertions of actions at places where this is not
13287 -- supposed to occur, e.g. on default parameters of a call.
13289 if Expander_Active or GNATprove_Mode then
13290 Force_Evaluation
13291 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
13292 Force_Evaluation
13293 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13294 end if;
13296 elsif Nkind (S) = N_Discriminant_Association then
13298 -- Syntactically valid in subtype indication
13300 Error_Msg_N ("invalid index constraint", S);
13301 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13302 return;
13304 -- Subtype_Mark case, no anonymous subtypes to construct
13306 else
13307 Analyze (S);
13309 if Is_Entity_Name (S) then
13310 if not Is_Type (Entity (S)) then
13311 Error_Msg_N ("expect subtype mark for index constraint", S);
13313 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13314 Wrong_Type (S, Base_Type (T));
13316 -- Check error of subtype with predicate in index constraint
13318 else
13319 Bad_Predicated_Subtype_Use
13320 ("subtype& has predicate, not allowed in index constraint",
13321 S, Entity (S));
13322 end if;
13324 return;
13326 else
13327 Error_Msg_N ("invalid index constraint", S);
13328 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13329 return;
13330 end if;
13331 end if;
13333 -- Complete construction of the Itype
13335 if Is_Modular_Integer_Type (T) then
13336 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13338 elsif Is_Integer_Type (T) then
13339 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13341 else
13342 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13343 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13344 Set_First_Literal (Def_Id, First_Literal (T));
13345 end if;
13347 Set_Size_Info (Def_Id, (T));
13348 Set_RM_Size (Def_Id, RM_Size (T));
13349 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13351 Set_Scalar_Range (Def_Id, R);
13353 Set_Etype (S, Def_Id);
13354 Set_Discrete_RM_Size (Def_Id);
13355 end Constrain_Index;
13357 -----------------------
13358 -- Constrain_Integer --
13359 -----------------------
13361 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13362 T : constant Entity_Id := Entity (Subtype_Mark (S));
13363 C : constant Node_Id := Constraint (S);
13365 begin
13366 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13368 if Is_Modular_Integer_Type (T) then
13369 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13370 else
13371 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13372 end if;
13374 Set_Etype (Def_Id, Base_Type (T));
13375 Set_Size_Info (Def_Id, (T));
13376 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13377 Set_Discrete_RM_Size (Def_Id);
13378 end Constrain_Integer;
13380 ------------------------------
13381 -- Constrain_Ordinary_Fixed --
13382 ------------------------------
13384 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
13385 T : constant Entity_Id := Entity (Subtype_Mark (S));
13386 C : Node_Id;
13387 D : Node_Id;
13388 Rais : Node_Id;
13390 begin
13391 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
13392 Set_Etype (Def_Id, Base_Type (T));
13393 Set_Size_Info (Def_Id, (T));
13394 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13395 Set_Small_Value (Def_Id, Small_Value (T));
13397 -- Process the constraint
13399 C := Constraint (S);
13401 -- Delta constraint present
13403 if Nkind (C) = N_Delta_Constraint then
13405 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
13406 Check_Restriction (No_Obsolescent_Features, C);
13408 if Warn_On_Obsolescent_Feature then
13409 Error_Msg_S
13410 ("subtype delta constraint is an " &
13411 "obsolescent feature (RM J.3(7))?j?");
13412 end if;
13414 D := Delta_Expression (C);
13415 Analyze_And_Resolve (D, Any_Real);
13416 Check_Delta_Expression (D);
13417 Set_Delta_Value (Def_Id, Expr_Value_R (D));
13419 -- Check that delta value is in range. Obviously we can do this
13420 -- at compile time, but it is strictly a runtime check, and of
13421 -- course there is an ACVC test that checks this.
13423 if Delta_Value (Def_Id) < Delta_Value (T) then
13424 Error_Msg_N ("??delta value is too small", D);
13425 Rais :=
13426 Make_Raise_Constraint_Error (Sloc (D),
13427 Reason => CE_Range_Check_Failed);
13428 Insert_Action (Declaration_Node (Def_Id), Rais);
13429 end if;
13431 C := Range_Constraint (C);
13433 -- No delta constraint present
13435 else
13436 Set_Delta_Value (Def_Id, Delta_Value (T));
13437 end if;
13439 -- Range constraint present
13441 if Nkind (C) = N_Range_Constraint then
13442 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13444 -- No range constraint present
13446 else
13447 pragma Assert (No (C));
13448 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13449 end if;
13451 Set_Discrete_RM_Size (Def_Id);
13453 -- Unconditionally delay the freeze, since we cannot set size
13454 -- information in all cases correctly until the freeze point.
13456 Set_Has_Delayed_Freeze (Def_Id);
13457 end Constrain_Ordinary_Fixed;
13459 -----------------------
13460 -- Contain_Interface --
13461 -----------------------
13463 function Contain_Interface
13464 (Iface : Entity_Id;
13465 Ifaces : Elist_Id) return Boolean
13467 Iface_Elmt : Elmt_Id;
13469 begin
13470 if Present (Ifaces) then
13471 Iface_Elmt := First_Elmt (Ifaces);
13472 while Present (Iface_Elmt) loop
13473 if Node (Iface_Elmt) = Iface then
13474 return True;
13475 end if;
13477 Next_Elmt (Iface_Elmt);
13478 end loop;
13479 end if;
13481 return False;
13482 end Contain_Interface;
13484 ---------------------------
13485 -- Convert_Scalar_Bounds --
13486 ---------------------------
13488 procedure Convert_Scalar_Bounds
13489 (N : Node_Id;
13490 Parent_Type : Entity_Id;
13491 Derived_Type : Entity_Id;
13492 Loc : Source_Ptr)
13494 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
13496 Lo : Node_Id;
13497 Hi : Node_Id;
13498 Rng : Node_Id;
13500 begin
13501 -- Defend against previous errors
13503 if No (Scalar_Range (Derived_Type)) then
13504 Check_Error_Detected;
13505 return;
13506 end if;
13508 Lo := Build_Scalar_Bound
13509 (Type_Low_Bound (Derived_Type),
13510 Parent_Type, Implicit_Base);
13512 Hi := Build_Scalar_Bound
13513 (Type_High_Bound (Derived_Type),
13514 Parent_Type, Implicit_Base);
13516 Rng :=
13517 Make_Range (Loc,
13518 Low_Bound => Lo,
13519 High_Bound => Hi);
13521 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
13523 Set_Parent (Rng, N);
13524 Set_Scalar_Range (Derived_Type, Rng);
13526 -- Analyze the bounds
13528 Analyze_And_Resolve (Lo, Implicit_Base);
13529 Analyze_And_Resolve (Hi, Implicit_Base);
13531 -- Analyze the range itself, except that we do not analyze it if
13532 -- the bounds are real literals, and we have a fixed-point type.
13533 -- The reason for this is that we delay setting the bounds in this
13534 -- case till we know the final Small and Size values (see circuit
13535 -- in Freeze.Freeze_Fixed_Point_Type for further details).
13537 if Is_Fixed_Point_Type (Parent_Type)
13538 and then Nkind (Lo) = N_Real_Literal
13539 and then Nkind (Hi) = N_Real_Literal
13540 then
13541 return;
13543 -- Here we do the analysis of the range
13545 -- Note: we do this manually, since if we do a normal Analyze and
13546 -- Resolve call, there are problems with the conversions used for
13547 -- the derived type range.
13549 else
13550 Set_Etype (Rng, Implicit_Base);
13551 Set_Analyzed (Rng, True);
13552 end if;
13553 end Convert_Scalar_Bounds;
13555 -------------------
13556 -- Copy_And_Swap --
13557 -------------------
13559 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
13560 begin
13561 -- Initialize new full declaration entity by copying the pertinent
13562 -- fields of the corresponding private declaration entity.
13564 -- We temporarily set Ekind to a value appropriate for a type to
13565 -- avoid assert failures in Einfo from checking for setting type
13566 -- attributes on something that is not a type. Ekind (Priv) is an
13567 -- appropriate choice, since it allowed the attributes to be set
13568 -- in the first place. This Ekind value will be modified later.
13570 Set_Ekind (Full, Ekind (Priv));
13572 -- Also set Etype temporarily to Any_Type, again, in the absence
13573 -- of errors, it will be properly reset, and if there are errors,
13574 -- then we want a value of Any_Type to remain.
13576 Set_Etype (Full, Any_Type);
13578 -- Now start copying attributes
13580 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
13582 if Has_Discriminants (Full) then
13583 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
13584 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
13585 end if;
13587 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
13588 Set_Homonym (Full, Homonym (Priv));
13589 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
13590 Set_Is_Public (Full, Is_Public (Priv));
13591 Set_Is_Pure (Full, Is_Pure (Priv));
13592 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
13593 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
13594 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
13595 Set_Has_Pragma_Unreferenced_Objects
13596 (Full, Has_Pragma_Unreferenced_Objects
13597 (Priv));
13599 Conditional_Delay (Full, Priv);
13601 if Is_Tagged_Type (Full) then
13602 Set_Direct_Primitive_Operations
13603 (Full, Direct_Primitive_Operations (Priv));
13604 Set_No_Tagged_Streams_Pragma
13605 (Full, No_Tagged_Streams_Pragma (Priv));
13607 if Is_Base_Type (Priv) then
13608 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
13609 end if;
13610 end if;
13612 Set_Is_Volatile (Full, Is_Volatile (Priv));
13613 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
13614 Set_Scope (Full, Scope (Priv));
13615 Set_Next_Entity (Full, Next_Entity (Priv));
13616 Set_First_Entity (Full, First_Entity (Priv));
13617 Set_Last_Entity (Full, Last_Entity (Priv));
13619 -- If access types have been recorded for later handling, keep them in
13620 -- the full view so that they get handled when the full view freeze
13621 -- node is expanded.
13623 if Present (Freeze_Node (Priv))
13624 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
13625 then
13626 Ensure_Freeze_Node (Full);
13627 Set_Access_Types_To_Process
13628 (Freeze_Node (Full),
13629 Access_Types_To_Process (Freeze_Node (Priv)));
13630 end if;
13632 -- Swap the two entities. Now Private is the full type entity and Full
13633 -- is the private one. They will be swapped back at the end of the
13634 -- private part. This swapping ensures that the entity that is visible
13635 -- in the private part is the full declaration.
13637 Exchange_Entities (Priv, Full);
13638 Append_Entity (Full, Scope (Full));
13639 end Copy_And_Swap;
13641 -------------------------------------
13642 -- Copy_Array_Base_Type_Attributes --
13643 -------------------------------------
13645 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
13646 begin
13647 Set_Component_Alignment (T1, Component_Alignment (T2));
13648 Set_Component_Type (T1, Component_Type (T2));
13649 Set_Component_Size (T1, Component_Size (T2));
13650 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
13651 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
13652 Set_Has_Protected (T1, Has_Protected (T2));
13653 Set_Has_Task (T1, Has_Task (T2));
13654 Set_Is_Packed (T1, Is_Packed (T2));
13655 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
13656 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
13657 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
13658 end Copy_Array_Base_Type_Attributes;
13660 -----------------------------------
13661 -- Copy_Array_Subtype_Attributes --
13662 -----------------------------------
13664 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
13665 begin
13666 Set_Size_Info (T1, T2);
13668 Set_First_Index (T1, First_Index (T2));
13669 Set_Is_Aliased (T1, Is_Aliased (T2));
13670 Set_Is_Volatile (T1, Is_Volatile (T2));
13671 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
13672 Set_Is_Constrained (T1, Is_Constrained (T2));
13673 Set_Depends_On_Private (T1, Has_Private_Component (T2));
13674 Inherit_Rep_Item_Chain (T1, T2);
13675 Set_Convention (T1, Convention (T2));
13676 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
13677 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
13678 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
13679 end Copy_Array_Subtype_Attributes;
13681 -----------------------------------
13682 -- Create_Constrained_Components --
13683 -----------------------------------
13685 procedure Create_Constrained_Components
13686 (Subt : Entity_Id;
13687 Decl_Node : Node_Id;
13688 Typ : Entity_Id;
13689 Constraints : Elist_Id)
13691 Loc : constant Source_Ptr := Sloc (Subt);
13692 Comp_List : constant Elist_Id := New_Elmt_List;
13693 Parent_Type : constant Entity_Id := Etype (Typ);
13694 Assoc_List : constant List_Id := New_List;
13695 Discr_Val : Elmt_Id;
13696 Errors : Boolean;
13697 New_C : Entity_Id;
13698 Old_C : Entity_Id;
13699 Is_Static : Boolean := True;
13701 procedure Collect_Fixed_Components (Typ : Entity_Id);
13702 -- Collect parent type components that do not appear in a variant part
13704 procedure Create_All_Components;
13705 -- Iterate over Comp_List to create the components of the subtype
13707 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
13708 -- Creates a new component from Old_Compon, copying all the fields from
13709 -- it, including its Etype, inserts the new component in the Subt entity
13710 -- chain and returns the new component.
13712 function Is_Variant_Record (T : Entity_Id) return Boolean;
13713 -- If true, and discriminants are static, collect only components from
13714 -- variants selected by discriminant values.
13716 ------------------------------
13717 -- Collect_Fixed_Components --
13718 ------------------------------
13720 procedure Collect_Fixed_Components (Typ : Entity_Id) is
13721 begin
13722 -- Build association list for discriminants, and find components of the
13723 -- variant part selected by the values of the discriminants.
13725 Old_C := First_Discriminant (Typ);
13726 Discr_Val := First_Elmt (Constraints);
13727 while Present (Old_C) loop
13728 Append_To (Assoc_List,
13729 Make_Component_Association (Loc,
13730 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
13731 Expression => New_Copy (Node (Discr_Val))));
13733 Next_Elmt (Discr_Val);
13734 Next_Discriminant (Old_C);
13735 end loop;
13737 -- The tag and the possible parent component are unconditionally in
13738 -- the subtype.
13740 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
13741 Old_C := First_Component (Typ);
13742 while Present (Old_C) loop
13743 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
13744 Append_Elmt (Old_C, Comp_List);
13745 end if;
13747 Next_Component (Old_C);
13748 end loop;
13749 end if;
13750 end Collect_Fixed_Components;
13752 ---------------------------
13753 -- Create_All_Components --
13754 ---------------------------
13756 procedure Create_All_Components is
13757 Comp : Elmt_Id;
13759 begin
13760 Comp := First_Elmt (Comp_List);
13761 while Present (Comp) loop
13762 Old_C := Node (Comp);
13763 New_C := Create_Component (Old_C);
13765 Set_Etype
13766 (New_C,
13767 Constrain_Component_Type
13768 (Old_C, Subt, Decl_Node, Typ, Constraints));
13769 Set_Is_Public (New_C, Is_Public (Subt));
13771 Next_Elmt (Comp);
13772 end loop;
13773 end Create_All_Components;
13775 ----------------------
13776 -- Create_Component --
13777 ----------------------
13779 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
13780 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
13782 begin
13783 if Ekind (Old_Compon) = E_Discriminant
13784 and then Is_Completely_Hidden (Old_Compon)
13785 then
13786 -- This is a shadow discriminant created for a discriminant of
13787 -- the parent type, which needs to be present in the subtype.
13788 -- Give the shadow discriminant an internal name that cannot
13789 -- conflict with that of visible components.
13791 Set_Chars (New_Compon, New_Internal_Name ('C'));
13792 end if;
13794 -- Set the parent so we have a proper link for freezing etc. This is
13795 -- not a real parent pointer, since of course our parent does not own
13796 -- up to us and reference us, we are an illegitimate child of the
13797 -- original parent.
13799 Set_Parent (New_Compon, Parent (Old_Compon));
13801 -- If the old component's Esize was already determined and is a
13802 -- static value, then the new component simply inherits it. Otherwise
13803 -- the old component's size may require run-time determination, but
13804 -- the new component's size still might be statically determinable
13805 -- (if, for example it has a static constraint). In that case we want
13806 -- Layout_Type to recompute the component's size, so we reset its
13807 -- size and positional fields.
13809 if Frontend_Layout_On_Target
13810 and then not Known_Static_Esize (Old_Compon)
13811 then
13812 Set_Esize (New_Compon, Uint_0);
13813 Init_Normalized_First_Bit (New_Compon);
13814 Init_Normalized_Position (New_Compon);
13815 Init_Normalized_Position_Max (New_Compon);
13816 end if;
13818 -- We do not want this node marked as Comes_From_Source, since
13819 -- otherwise it would get first class status and a separate cross-
13820 -- reference line would be generated. Illegitimate children do not
13821 -- rate such recognition.
13823 Set_Comes_From_Source (New_Compon, False);
13825 -- But it is a real entity, and a birth certificate must be properly
13826 -- registered by entering it into the entity list.
13828 Enter_Name (New_Compon);
13830 return New_Compon;
13831 end Create_Component;
13833 -----------------------
13834 -- Is_Variant_Record --
13835 -----------------------
13837 function Is_Variant_Record (T : Entity_Id) return Boolean is
13838 begin
13839 return Nkind (Parent (T)) = N_Full_Type_Declaration
13840 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
13841 and then Present (Component_List (Type_Definition (Parent (T))))
13842 and then
13843 Present
13844 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
13845 end Is_Variant_Record;
13847 -- Start of processing for Create_Constrained_Components
13849 begin
13850 pragma Assert (Subt /= Base_Type (Subt));
13851 pragma Assert (Typ = Base_Type (Typ));
13853 Set_First_Entity (Subt, Empty);
13854 Set_Last_Entity (Subt, Empty);
13856 -- Check whether constraint is fully static, in which case we can
13857 -- optimize the list of components.
13859 Discr_Val := First_Elmt (Constraints);
13860 while Present (Discr_Val) loop
13861 if not Is_OK_Static_Expression (Node (Discr_Val)) then
13862 Is_Static := False;
13863 exit;
13864 end if;
13866 Next_Elmt (Discr_Val);
13867 end loop;
13869 Set_Has_Static_Discriminants (Subt, Is_Static);
13871 Push_Scope (Subt);
13873 -- Inherit the discriminants of the parent type
13875 Add_Discriminants : declare
13876 Num_Disc : Int;
13877 Num_Gird : Int;
13879 begin
13880 Num_Disc := 0;
13881 Old_C := First_Discriminant (Typ);
13883 while Present (Old_C) loop
13884 Num_Disc := Num_Disc + 1;
13885 New_C := Create_Component (Old_C);
13886 Set_Is_Public (New_C, Is_Public (Subt));
13887 Next_Discriminant (Old_C);
13888 end loop;
13890 -- For an untagged derived subtype, the number of discriminants may
13891 -- be smaller than the number of inherited discriminants, because
13892 -- several of them may be renamed by a single new discriminant or
13893 -- constrained. In this case, add the hidden discriminants back into
13894 -- the subtype, because they need to be present if the optimizer of
13895 -- the GCC 4.x back-end decides to break apart assignments between
13896 -- objects using the parent view into member-wise assignments.
13898 Num_Gird := 0;
13900 if Is_Derived_Type (Typ)
13901 and then not Is_Tagged_Type (Typ)
13902 then
13903 Old_C := First_Stored_Discriminant (Typ);
13905 while Present (Old_C) loop
13906 Num_Gird := Num_Gird + 1;
13907 Next_Stored_Discriminant (Old_C);
13908 end loop;
13909 end if;
13911 if Num_Gird > Num_Disc then
13913 -- Find out multiple uses of new discriminants, and add hidden
13914 -- components for the extra renamed discriminants. We recognize
13915 -- multiple uses through the Corresponding_Discriminant of a
13916 -- new discriminant: if it constrains several old discriminants,
13917 -- this field points to the last one in the parent type. The
13918 -- stored discriminants of the derived type have the same name
13919 -- as those of the parent.
13921 declare
13922 Constr : Elmt_Id;
13923 New_Discr : Entity_Id;
13924 Old_Discr : Entity_Id;
13926 begin
13927 Constr := First_Elmt (Stored_Constraint (Typ));
13928 Old_Discr := First_Stored_Discriminant (Typ);
13929 while Present (Constr) loop
13930 if Is_Entity_Name (Node (Constr))
13931 and then Ekind (Entity (Node (Constr))) = E_Discriminant
13932 then
13933 New_Discr := Entity (Node (Constr));
13935 if Chars (Corresponding_Discriminant (New_Discr)) /=
13936 Chars (Old_Discr)
13937 then
13938 -- The new discriminant has been used to rename a
13939 -- subsequent old discriminant. Introduce a shadow
13940 -- component for the current old discriminant.
13942 New_C := Create_Component (Old_Discr);
13943 Set_Original_Record_Component (New_C, Old_Discr);
13944 end if;
13946 else
13947 -- The constraint has eliminated the old discriminant.
13948 -- Introduce a shadow component.
13950 New_C := Create_Component (Old_Discr);
13951 Set_Original_Record_Component (New_C, Old_Discr);
13952 end if;
13954 Next_Elmt (Constr);
13955 Next_Stored_Discriminant (Old_Discr);
13956 end loop;
13957 end;
13958 end if;
13959 end Add_Discriminants;
13961 if Is_Static
13962 and then Is_Variant_Record (Typ)
13963 then
13964 Collect_Fixed_Components (Typ);
13966 Gather_Components (
13967 Typ,
13968 Component_List (Type_Definition (Parent (Typ))),
13969 Governed_By => Assoc_List,
13970 Into => Comp_List,
13971 Report_Errors => Errors);
13972 pragma Assert (not Errors);
13974 Create_All_Components;
13976 -- If the subtype declaration is created for a tagged type derivation
13977 -- with constraints, we retrieve the record definition of the parent
13978 -- type to select the components of the proper variant.
13980 elsif Is_Static
13981 and then Is_Tagged_Type (Typ)
13982 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
13983 and then
13984 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
13985 and then Is_Variant_Record (Parent_Type)
13986 then
13987 Collect_Fixed_Components (Typ);
13989 Gather_Components
13990 (Typ,
13991 Component_List (Type_Definition (Parent (Parent_Type))),
13992 Governed_By => Assoc_List,
13993 Into => Comp_List,
13994 Report_Errors => Errors);
13996 -- Note: previously there was a check at this point that no errors
13997 -- were detected. As a consequence of AI05-220 there may be an error
13998 -- if an inherited discriminant that controls a variant has a non-
13999 -- static constraint.
14001 -- If the tagged derivation has a type extension, collect all the
14002 -- new components therein.
14004 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14005 then
14006 Old_C := First_Component (Typ);
14007 while Present (Old_C) loop
14008 if Original_Record_Component (Old_C) = Old_C
14009 and then Chars (Old_C) /= Name_uTag
14010 and then Chars (Old_C) /= Name_uParent
14011 then
14012 Append_Elmt (Old_C, Comp_List);
14013 end if;
14015 Next_Component (Old_C);
14016 end loop;
14017 end if;
14019 Create_All_Components;
14021 else
14022 -- If discriminants are not static, or if this is a multi-level type
14023 -- extension, we have to include all components of the parent type.
14025 Old_C := First_Component (Typ);
14026 while Present (Old_C) loop
14027 New_C := Create_Component (Old_C);
14029 Set_Etype
14030 (New_C,
14031 Constrain_Component_Type
14032 (Old_C, Subt, Decl_Node, Typ, Constraints));
14033 Set_Is_Public (New_C, Is_Public (Subt));
14035 Next_Component (Old_C);
14036 end loop;
14037 end if;
14039 End_Scope;
14040 end Create_Constrained_Components;
14042 ------------------------------------------
14043 -- Decimal_Fixed_Point_Type_Declaration --
14044 ------------------------------------------
14046 procedure Decimal_Fixed_Point_Type_Declaration
14047 (T : Entity_Id;
14048 Def : Node_Id)
14050 Loc : constant Source_Ptr := Sloc (Def);
14051 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14052 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14053 Implicit_Base : Entity_Id;
14054 Digs_Val : Uint;
14055 Delta_Val : Ureal;
14056 Scale_Val : Uint;
14057 Bound_Val : Ureal;
14059 begin
14060 Check_SPARK_05_Restriction
14061 ("decimal fixed point type is not allowed", Def);
14062 Check_Restriction (No_Fixed_Point, Def);
14064 -- Create implicit base type
14066 Implicit_Base :=
14067 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14068 Set_Etype (Implicit_Base, Implicit_Base);
14070 -- Analyze and process delta expression
14072 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14074 Check_Delta_Expression (Delta_Expr);
14075 Delta_Val := Expr_Value_R (Delta_Expr);
14077 -- Check delta is power of 10, and determine scale value from it
14079 declare
14080 Val : Ureal;
14082 begin
14083 Scale_Val := Uint_0;
14084 Val := Delta_Val;
14086 if Val < Ureal_1 then
14087 while Val < Ureal_1 loop
14088 Val := Val * Ureal_10;
14089 Scale_Val := Scale_Val + 1;
14090 end loop;
14092 if Scale_Val > 18 then
14093 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14094 Scale_Val := UI_From_Int (+18);
14095 end if;
14097 else
14098 while Val > Ureal_1 loop
14099 Val := Val / Ureal_10;
14100 Scale_Val := Scale_Val - 1;
14101 end loop;
14103 if Scale_Val < -18 then
14104 Error_Msg_N ("scale is less than minimum value of -18", Def);
14105 Scale_Val := UI_From_Int (-18);
14106 end if;
14107 end if;
14109 if Val /= Ureal_1 then
14110 Error_Msg_N ("delta expression must be a power of 10", Def);
14111 Delta_Val := Ureal_10 ** (-Scale_Val);
14112 end if;
14113 end;
14115 -- Set delta, scale and small (small = delta for decimal type)
14117 Set_Delta_Value (Implicit_Base, Delta_Val);
14118 Set_Scale_Value (Implicit_Base, Scale_Val);
14119 Set_Small_Value (Implicit_Base, Delta_Val);
14121 -- Analyze and process digits expression
14123 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14124 Check_Digits_Expression (Digs_Expr);
14125 Digs_Val := Expr_Value (Digs_Expr);
14127 if Digs_Val > 18 then
14128 Digs_Val := UI_From_Int (+18);
14129 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14130 end if;
14132 Set_Digits_Value (Implicit_Base, Digs_Val);
14133 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14135 -- Set range of base type from digits value for now. This will be
14136 -- expanded to represent the true underlying base range by Freeze.
14138 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14140 -- Note: We leave size as zero for now, size will be set at freeze
14141 -- time. We have to do this for ordinary fixed-point, because the size
14142 -- depends on the specified small, and we might as well do the same for
14143 -- decimal fixed-point.
14145 pragma Assert (Esize (Implicit_Base) = Uint_0);
14147 -- If there are bounds given in the declaration use them as the
14148 -- bounds of the first named subtype.
14150 if Present (Real_Range_Specification (Def)) then
14151 declare
14152 RRS : constant Node_Id := Real_Range_Specification (Def);
14153 Low : constant Node_Id := Low_Bound (RRS);
14154 High : constant Node_Id := High_Bound (RRS);
14155 Low_Val : Ureal;
14156 High_Val : Ureal;
14158 begin
14159 Analyze_And_Resolve (Low, Any_Real);
14160 Analyze_And_Resolve (High, Any_Real);
14161 Check_Real_Bound (Low);
14162 Check_Real_Bound (High);
14163 Low_Val := Expr_Value_R (Low);
14164 High_Val := Expr_Value_R (High);
14166 if Low_Val < (-Bound_Val) then
14167 Error_Msg_N
14168 ("range low bound too small for digits value", Low);
14169 Low_Val := -Bound_Val;
14170 end if;
14172 if High_Val > Bound_Val then
14173 Error_Msg_N
14174 ("range high bound too large for digits value", High);
14175 High_Val := Bound_Val;
14176 end if;
14178 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14179 end;
14181 -- If no explicit range, use range that corresponds to given
14182 -- digits value. This will end up as the final range for the
14183 -- first subtype.
14185 else
14186 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14187 end if;
14189 -- Complete entity for first subtype. The inheritance of the rep item
14190 -- chain ensures that SPARK-related pragmas are not clobbered when the
14191 -- decimal fixed point type acts as a full view of a private type.
14193 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14194 Set_Etype (T, Implicit_Base);
14195 Set_Size_Info (T, Implicit_Base);
14196 Inherit_Rep_Item_Chain (T, Implicit_Base);
14197 Set_Digits_Value (T, Digs_Val);
14198 Set_Delta_Value (T, Delta_Val);
14199 Set_Small_Value (T, Delta_Val);
14200 Set_Scale_Value (T, Scale_Val);
14201 Set_Is_Constrained (T);
14202 end Decimal_Fixed_Point_Type_Declaration;
14204 -----------------------------------
14205 -- Derive_Progenitor_Subprograms --
14206 -----------------------------------
14208 procedure Derive_Progenitor_Subprograms
14209 (Parent_Type : Entity_Id;
14210 Tagged_Type : Entity_Id)
14212 E : Entity_Id;
14213 Elmt : Elmt_Id;
14214 Iface : Entity_Id;
14215 Iface_Elmt : Elmt_Id;
14216 Iface_Subp : Entity_Id;
14217 New_Subp : Entity_Id := Empty;
14218 Prim_Elmt : Elmt_Id;
14219 Subp : Entity_Id;
14220 Typ : Entity_Id;
14222 begin
14223 pragma Assert (Ada_Version >= Ada_2005
14224 and then Is_Record_Type (Tagged_Type)
14225 and then Is_Tagged_Type (Tagged_Type)
14226 and then Has_Interfaces (Tagged_Type));
14228 -- Step 1: Transfer to the full-view primitives associated with the
14229 -- partial-view that cover interface primitives. Conceptually this
14230 -- work should be done later by Process_Full_View; done here to
14231 -- simplify its implementation at later stages. It can be safely
14232 -- done here because interfaces must be visible in the partial and
14233 -- private view (RM 7.3(7.3/2)).
14235 -- Small optimization: This work is only required if the parent may
14236 -- have entities whose Alias attribute reference an interface primitive.
14237 -- Such a situation may occur if the parent is an abstract type and the
14238 -- primitive has not been yet overridden or if the parent is a generic
14239 -- formal type covering interfaces.
14241 -- If the tagged type is not abstract, it cannot have abstract
14242 -- primitives (the only entities in the list of primitives of
14243 -- non-abstract tagged types that can reference abstract primitives
14244 -- through its Alias attribute are the internal entities that have
14245 -- attribute Interface_Alias, and these entities are generated later
14246 -- by Add_Internal_Interface_Entities).
14248 if In_Private_Part (Current_Scope)
14249 and then (Is_Abstract_Type (Parent_Type)
14250 or else
14251 Is_Generic_Type (Parent_Type))
14252 then
14253 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14254 while Present (Elmt) loop
14255 Subp := Node (Elmt);
14257 -- At this stage it is not possible to have entities in the list
14258 -- of primitives that have attribute Interface_Alias.
14260 pragma Assert (No (Interface_Alias (Subp)));
14262 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14264 if Is_Interface (Typ) then
14265 E := Find_Primitive_Covering_Interface
14266 (Tagged_Type => Tagged_Type,
14267 Iface_Prim => Subp);
14269 if Present (E)
14270 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14271 then
14272 Replace_Elmt (Elmt, E);
14273 Remove_Homonym (Subp);
14274 end if;
14275 end if;
14277 Next_Elmt (Elmt);
14278 end loop;
14279 end if;
14281 -- Step 2: Add primitives of progenitors that are not implemented by
14282 -- parents of Tagged_Type.
14284 if Present (Interfaces (Base_Type (Tagged_Type))) then
14285 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14286 while Present (Iface_Elmt) loop
14287 Iface := Node (Iface_Elmt);
14289 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14290 while Present (Prim_Elmt) loop
14291 Iface_Subp := Node (Prim_Elmt);
14293 -- Exclude derivation of predefined primitives except those
14294 -- that come from source, or are inherited from one that comes
14295 -- from source. Required to catch declarations of equality
14296 -- operators of interfaces. For example:
14298 -- type Iface is interface;
14299 -- function "=" (Left, Right : Iface) return Boolean;
14301 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14302 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14303 then
14304 E := Find_Primitive_Covering_Interface
14305 (Tagged_Type => Tagged_Type,
14306 Iface_Prim => Iface_Subp);
14308 -- If not found we derive a new primitive leaving its alias
14309 -- attribute referencing the interface primitive.
14311 if No (E) then
14312 Derive_Subprogram
14313 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14315 -- Ada 2012 (AI05-0197): If the covering primitive's name
14316 -- differs from the name of the interface primitive then it
14317 -- is a private primitive inherited from a parent type. In
14318 -- such case, given that Tagged_Type covers the interface,
14319 -- the inherited private primitive becomes visible. For such
14320 -- purpose we add a new entity that renames the inherited
14321 -- private primitive.
14323 elsif Chars (E) /= Chars (Iface_Subp) then
14324 pragma Assert (Has_Suffix (E, 'P'));
14325 Derive_Subprogram
14326 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14327 Set_Alias (New_Subp, E);
14328 Set_Is_Abstract_Subprogram (New_Subp,
14329 Is_Abstract_Subprogram (E));
14331 -- Propagate to the full view interface entities associated
14332 -- with the partial view.
14334 elsif In_Private_Part (Current_Scope)
14335 and then Present (Alias (E))
14336 and then Alias (E) = Iface_Subp
14337 and then
14338 List_Containing (Parent (E)) /=
14339 Private_Declarations
14340 (Specification
14341 (Unit_Declaration_Node (Current_Scope)))
14342 then
14343 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14344 end if;
14345 end if;
14347 Next_Elmt (Prim_Elmt);
14348 end loop;
14350 Next_Elmt (Iface_Elmt);
14351 end loop;
14352 end if;
14353 end Derive_Progenitor_Subprograms;
14355 -----------------------
14356 -- Derive_Subprogram --
14357 -----------------------
14359 procedure Derive_Subprogram
14360 (New_Subp : in out Entity_Id;
14361 Parent_Subp : Entity_Id;
14362 Derived_Type : Entity_Id;
14363 Parent_Type : Entity_Id;
14364 Actual_Subp : Entity_Id := Empty)
14366 Formal : Entity_Id;
14367 -- Formal parameter of parent primitive operation
14369 Formal_Of_Actual : Entity_Id;
14370 -- Formal parameter of actual operation, when the derivation is to
14371 -- create a renaming for a primitive operation of an actual in an
14372 -- instantiation.
14374 New_Formal : Entity_Id;
14375 -- Formal of inherited operation
14377 Visible_Subp : Entity_Id := Parent_Subp;
14379 function Is_Private_Overriding return Boolean;
14380 -- If Subp is a private overriding of a visible operation, the inherited
14381 -- operation derives from the overridden op (even though its body is the
14382 -- overriding one) and the inherited operation is visible now. See
14383 -- sem_disp to see the full details of the handling of the overridden
14384 -- subprogram, which is removed from the list of primitive operations of
14385 -- the type. The overridden subprogram is saved locally in Visible_Subp,
14386 -- and used to diagnose abstract operations that need overriding in the
14387 -- derived type.
14389 procedure Replace_Type (Id, New_Id : Entity_Id);
14390 -- When the type is an anonymous access type, create a new access type
14391 -- designating the derived type.
14393 procedure Set_Derived_Name;
14394 -- This procedure sets the appropriate Chars name for New_Subp. This
14395 -- is normally just a copy of the parent name. An exception arises for
14396 -- type support subprograms, where the name is changed to reflect the
14397 -- name of the derived type, e.g. if type foo is derived from type bar,
14398 -- then a procedure barDA is derived with a name fooDA.
14400 ---------------------------
14401 -- Is_Private_Overriding --
14402 ---------------------------
14404 function Is_Private_Overriding return Boolean is
14405 Prev : Entity_Id;
14407 begin
14408 -- If the parent is not a dispatching operation there is no
14409 -- need to investigate overridings
14411 if not Is_Dispatching_Operation (Parent_Subp) then
14412 return False;
14413 end if;
14415 -- The visible operation that is overridden is a homonym of the
14416 -- parent subprogram. We scan the homonym chain to find the one
14417 -- whose alias is the subprogram we are deriving.
14419 Prev := Current_Entity (Parent_Subp);
14420 while Present (Prev) loop
14421 if Ekind (Prev) = Ekind (Parent_Subp)
14422 and then Alias (Prev) = Parent_Subp
14423 and then Scope (Parent_Subp) = Scope (Prev)
14424 and then not Is_Hidden (Prev)
14425 then
14426 Visible_Subp := Prev;
14427 return True;
14428 end if;
14430 Prev := Homonym (Prev);
14431 end loop;
14433 return False;
14434 end Is_Private_Overriding;
14436 ------------------
14437 -- Replace_Type --
14438 ------------------
14440 procedure Replace_Type (Id, New_Id : Entity_Id) is
14441 Id_Type : constant Entity_Id := Etype (Id);
14442 Acc_Type : Entity_Id;
14443 Par : constant Node_Id := Parent (Derived_Type);
14445 begin
14446 -- When the type is an anonymous access type, create a new access
14447 -- type designating the derived type. This itype must be elaborated
14448 -- at the point of the derivation, not on subsequent calls that may
14449 -- be out of the proper scope for Gigi, so we insert a reference to
14450 -- it after the derivation.
14452 if Ekind (Id_Type) = E_Anonymous_Access_Type then
14453 declare
14454 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
14456 begin
14457 if Ekind (Desig_Typ) = E_Record_Type_With_Private
14458 and then Present (Full_View (Desig_Typ))
14459 and then not Is_Private_Type (Parent_Type)
14460 then
14461 Desig_Typ := Full_View (Desig_Typ);
14462 end if;
14464 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
14466 -- Ada 2005 (AI-251): Handle also derivations of abstract
14467 -- interface primitives.
14469 or else (Is_Interface (Desig_Typ)
14470 and then not Is_Class_Wide_Type (Desig_Typ))
14471 then
14472 Acc_Type := New_Copy (Id_Type);
14473 Set_Etype (Acc_Type, Acc_Type);
14474 Set_Scope (Acc_Type, New_Subp);
14476 -- Set size of anonymous access type. If we have an access
14477 -- to an unconstrained array, this is a fat pointer, so it
14478 -- is sizes at twice addtress size.
14480 if Is_Array_Type (Desig_Typ)
14481 and then not Is_Constrained (Desig_Typ)
14482 then
14483 Init_Size (Acc_Type, 2 * System_Address_Size);
14485 -- Other cases use a thin pointer
14487 else
14488 Init_Size (Acc_Type, System_Address_Size);
14489 end if;
14491 -- Set remaining characterstics of anonymous access type
14493 Init_Alignment (Acc_Type);
14494 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
14496 Set_Etype (New_Id, Acc_Type);
14497 Set_Scope (New_Id, New_Subp);
14499 -- Create a reference to it
14501 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
14503 else
14504 Set_Etype (New_Id, Id_Type);
14505 end if;
14506 end;
14508 -- In Ada2012, a formal may have an incomplete type but the type
14509 -- derivation that inherits the primitive follows the full view.
14511 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
14512 or else
14513 (Ekind (Id_Type) = E_Record_Type_With_Private
14514 and then Present (Full_View (Id_Type))
14515 and then
14516 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
14517 or else
14518 (Ada_Version >= Ada_2012
14519 and then Ekind (Id_Type) = E_Incomplete_Type
14520 and then Full_View (Id_Type) = Parent_Type)
14521 then
14522 -- Constraint checks on formals are generated during expansion,
14523 -- based on the signature of the original subprogram. The bounds
14524 -- of the derived type are not relevant, and thus we can use
14525 -- the base type for the formals. However, the return type may be
14526 -- used in a context that requires that the proper static bounds
14527 -- be used (a case statement, for example) and for those cases
14528 -- we must use the derived type (first subtype), not its base.
14530 -- If the derived_type_definition has no constraints, we know that
14531 -- the derived type has the same constraints as the first subtype
14532 -- of the parent, and we can also use it rather than its base,
14533 -- which can lead to more efficient code.
14535 if Etype (Id) = Parent_Type then
14536 if Is_Scalar_Type (Parent_Type)
14537 and then
14538 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
14539 then
14540 Set_Etype (New_Id, Derived_Type);
14542 elsif Nkind (Par) = N_Full_Type_Declaration
14543 and then
14544 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
14545 and then
14546 Is_Entity_Name
14547 (Subtype_Indication (Type_Definition (Par)))
14548 then
14549 Set_Etype (New_Id, Derived_Type);
14551 else
14552 Set_Etype (New_Id, Base_Type (Derived_Type));
14553 end if;
14555 else
14556 Set_Etype (New_Id, Base_Type (Derived_Type));
14557 end if;
14559 else
14560 Set_Etype (New_Id, Etype (Id));
14561 end if;
14562 end Replace_Type;
14564 ----------------------
14565 -- Set_Derived_Name --
14566 ----------------------
14568 procedure Set_Derived_Name is
14569 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
14570 begin
14571 if Nm = TSS_Null then
14572 Set_Chars (New_Subp, Chars (Parent_Subp));
14573 else
14574 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
14575 end if;
14576 end Set_Derived_Name;
14578 -- Start of processing for Derive_Subprogram
14580 begin
14581 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
14582 Set_Ekind (New_Subp, Ekind (Parent_Subp));
14584 -- Check whether the inherited subprogram is a private operation that
14585 -- should be inherited but not yet made visible. Such subprograms can
14586 -- become visible at a later point (e.g., the private part of a public
14587 -- child unit) via Declare_Inherited_Private_Subprograms. If the
14588 -- following predicate is true, then this is not such a private
14589 -- operation and the subprogram simply inherits the name of the parent
14590 -- subprogram. Note the special check for the names of controlled
14591 -- operations, which are currently exempted from being inherited with
14592 -- a hidden name because they must be findable for generation of
14593 -- implicit run-time calls.
14595 if not Is_Hidden (Parent_Subp)
14596 or else Is_Internal (Parent_Subp)
14597 or else Is_Private_Overriding
14598 or else Is_Internal_Name (Chars (Parent_Subp))
14599 or else Nam_In (Chars (Parent_Subp), Name_Initialize,
14600 Name_Adjust,
14601 Name_Finalize)
14602 then
14603 Set_Derived_Name;
14605 -- An inherited dispatching equality will be overridden by an internally
14606 -- generated one, or by an explicit one, so preserve its name and thus
14607 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
14608 -- private operation it may become invisible if the full view has
14609 -- progenitors, and the dispatch table will be malformed.
14610 -- We check that the type is limited to handle the anomalous declaration
14611 -- of Limited_Controlled, which is derived from a non-limited type, and
14612 -- which is handled specially elsewhere as well.
14614 elsif Chars (Parent_Subp) = Name_Op_Eq
14615 and then Is_Dispatching_Operation (Parent_Subp)
14616 and then Etype (Parent_Subp) = Standard_Boolean
14617 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
14618 and then
14619 Etype (First_Formal (Parent_Subp)) =
14620 Etype (Next_Formal (First_Formal (Parent_Subp)))
14621 then
14622 Set_Derived_Name;
14624 -- If parent is hidden, this can be a regular derivation if the
14625 -- parent is immediately visible in a non-instantiating context,
14626 -- or if we are in the private part of an instance. This test
14627 -- should still be refined ???
14629 -- The test for In_Instance_Not_Visible avoids inheriting the derived
14630 -- operation as a non-visible operation in cases where the parent
14631 -- subprogram might not be visible now, but was visible within the
14632 -- original generic, so it would be wrong to make the inherited
14633 -- subprogram non-visible now. (Not clear if this test is fully
14634 -- correct; are there any cases where we should declare the inherited
14635 -- operation as not visible to avoid it being overridden, e.g., when
14636 -- the parent type is a generic actual with private primitives ???)
14638 -- (they should be treated the same as other private inherited
14639 -- subprograms, but it's not clear how to do this cleanly). ???
14641 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
14642 and then Is_Immediately_Visible (Parent_Subp)
14643 and then not In_Instance)
14644 or else In_Instance_Not_Visible
14645 then
14646 Set_Derived_Name;
14648 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
14649 -- overrides an interface primitive because interface primitives
14650 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
14652 elsif Ada_Version >= Ada_2005
14653 and then Is_Dispatching_Operation (Parent_Subp)
14654 and then Covers_Some_Interface (Parent_Subp)
14655 then
14656 Set_Derived_Name;
14658 -- Otherwise, the type is inheriting a private operation, so enter
14659 -- it with a special name so it can't be overridden.
14661 else
14662 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
14663 end if;
14665 Set_Parent (New_Subp, Parent (Derived_Type));
14667 if Present (Actual_Subp) then
14668 Replace_Type (Actual_Subp, New_Subp);
14669 else
14670 Replace_Type (Parent_Subp, New_Subp);
14671 end if;
14673 Conditional_Delay (New_Subp, Parent_Subp);
14675 -- If we are creating a renaming for a primitive operation of an
14676 -- actual of a generic derived type, we must examine the signature
14677 -- of the actual primitive, not that of the generic formal, which for
14678 -- example may be an interface. However the name and initial value
14679 -- of the inherited operation are those of the formal primitive.
14681 Formal := First_Formal (Parent_Subp);
14683 if Present (Actual_Subp) then
14684 Formal_Of_Actual := First_Formal (Actual_Subp);
14685 else
14686 Formal_Of_Actual := Empty;
14687 end if;
14689 while Present (Formal) loop
14690 New_Formal := New_Copy (Formal);
14692 -- Normally we do not go copying parents, but in the case of
14693 -- formals, we need to link up to the declaration (which is the
14694 -- parameter specification), and it is fine to link up to the
14695 -- original formal's parameter specification in this case.
14697 Set_Parent (New_Formal, Parent (Formal));
14698 Append_Entity (New_Formal, New_Subp);
14700 if Present (Formal_Of_Actual) then
14701 Replace_Type (Formal_Of_Actual, New_Formal);
14702 Next_Formal (Formal_Of_Actual);
14703 else
14704 Replace_Type (Formal, New_Formal);
14705 end if;
14707 Next_Formal (Formal);
14708 end loop;
14710 -- If this derivation corresponds to a tagged generic actual, then
14711 -- primitive operations rename those of the actual. Otherwise the
14712 -- primitive operations rename those of the parent type, If the parent
14713 -- renames an intrinsic operator, so does the new subprogram. We except
14714 -- concatenation, which is always properly typed, and does not get
14715 -- expanded as other intrinsic operations.
14717 if No (Actual_Subp) then
14718 if Is_Intrinsic_Subprogram (Parent_Subp) then
14719 Set_Is_Intrinsic_Subprogram (New_Subp);
14721 if Present (Alias (Parent_Subp))
14722 and then Chars (Parent_Subp) /= Name_Op_Concat
14723 then
14724 Set_Alias (New_Subp, Alias (Parent_Subp));
14725 else
14726 Set_Alias (New_Subp, Parent_Subp);
14727 end if;
14729 else
14730 Set_Alias (New_Subp, Parent_Subp);
14731 end if;
14733 else
14734 Set_Alias (New_Subp, Actual_Subp);
14735 end if;
14737 -- Inherit the "ghostness" from the parent subprogram
14739 if Is_Ghost_Entity (Alias (New_Subp)) then
14740 Set_Is_Ghost_Entity (New_Subp);
14741 end if;
14743 -- Derived subprograms of a tagged type must inherit the convention
14744 -- of the parent subprogram (a requirement of AI-117). Derived
14745 -- subprograms of untagged types simply get convention Ada by default.
14747 -- If the derived type is a tagged generic formal type with unknown
14748 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
14750 -- However, if the type is derived from a generic formal, the further
14751 -- inherited subprogram has the convention of the non-generic ancestor.
14752 -- Otherwise there would be no way to override the operation.
14753 -- (This is subject to forthcoming ARG discussions).
14755 if Is_Tagged_Type (Derived_Type) then
14756 if Is_Generic_Type (Derived_Type)
14757 and then Has_Unknown_Discriminants (Derived_Type)
14758 then
14759 Set_Convention (New_Subp, Convention_Intrinsic);
14761 else
14762 if Is_Generic_Type (Parent_Type)
14763 and then Has_Unknown_Discriminants (Parent_Type)
14764 then
14765 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
14766 else
14767 Set_Convention (New_Subp, Convention (Parent_Subp));
14768 end if;
14769 end if;
14770 end if;
14772 -- Predefined controlled operations retain their name even if the parent
14773 -- is hidden (see above), but they are not primitive operations if the
14774 -- ancestor is not visible, for example if the parent is a private
14775 -- extension completed with a controlled extension. Note that a full
14776 -- type that is controlled can break privacy: the flag Is_Controlled is
14777 -- set on both views of the type.
14779 if Is_Controlled (Parent_Type)
14780 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
14781 Name_Adjust,
14782 Name_Finalize)
14783 and then Is_Hidden (Parent_Subp)
14784 and then not Is_Visibly_Controlled (Parent_Type)
14785 then
14786 Set_Is_Hidden (New_Subp);
14787 end if;
14789 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
14790 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
14792 if Ekind (Parent_Subp) = E_Procedure then
14793 Set_Is_Valued_Procedure
14794 (New_Subp, Is_Valued_Procedure (Parent_Subp));
14795 else
14796 Set_Has_Controlling_Result
14797 (New_Subp, Has_Controlling_Result (Parent_Subp));
14798 end if;
14800 -- No_Return must be inherited properly. If this is overridden in the
14801 -- case of a dispatching operation, then a check is made in Sem_Disp
14802 -- that the overriding operation is also No_Return (no such check is
14803 -- required for the case of non-dispatching operation.
14805 Set_No_Return (New_Subp, No_Return (Parent_Subp));
14807 -- A derived function with a controlling result is abstract. If the
14808 -- Derived_Type is a nonabstract formal generic derived type, then
14809 -- inherited operations are not abstract: the required check is done at
14810 -- instantiation time. If the derivation is for a generic actual, the
14811 -- function is not abstract unless the actual is.
14813 if Is_Generic_Type (Derived_Type)
14814 and then not Is_Abstract_Type (Derived_Type)
14815 then
14816 null;
14818 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
14819 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
14821 -- A subprogram subject to pragma Extensions_Visible with value False
14822 -- requires overriding if the subprogram has at least one controlling
14823 -- OUT parameter (SPARK RM 6.1.7(6)).
14825 elsif Ada_Version >= Ada_2005
14826 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14827 or else (Is_Tagged_Type (Derived_Type)
14828 and then Etype (New_Subp) = Derived_Type
14829 and then not Is_Null_Extension (Derived_Type))
14830 or else (Is_Tagged_Type (Derived_Type)
14831 and then Ekind (Etype (New_Subp)) =
14832 E_Anonymous_Access_Type
14833 and then Designated_Type (Etype (New_Subp)) =
14834 Derived_Type
14835 and then not Is_Null_Extension (Derived_Type))
14836 or else (Comes_From_Source (Alias (New_Subp))
14837 and then Is_EVF_Procedure (Alias (New_Subp))))
14838 and then No (Actual_Subp)
14839 then
14840 if not Is_Tagged_Type (Derived_Type)
14841 or else Is_Abstract_Type (Derived_Type)
14842 or else Is_Abstract_Subprogram (Alias (New_Subp))
14843 then
14844 Set_Is_Abstract_Subprogram (New_Subp);
14845 else
14846 Set_Requires_Overriding (New_Subp);
14847 end if;
14849 elsif Ada_Version < Ada_2005
14850 and then (Is_Abstract_Subprogram (Alias (New_Subp))
14851 or else (Is_Tagged_Type (Derived_Type)
14852 and then Etype (New_Subp) = Derived_Type
14853 and then No (Actual_Subp)))
14854 then
14855 Set_Is_Abstract_Subprogram (New_Subp);
14857 -- AI05-0097 : an inherited operation that dispatches on result is
14858 -- abstract if the derived type is abstract, even if the parent type
14859 -- is concrete and the derived type is a null extension.
14861 elsif Has_Controlling_Result (Alias (New_Subp))
14862 and then Is_Abstract_Type (Etype (New_Subp))
14863 then
14864 Set_Is_Abstract_Subprogram (New_Subp);
14866 -- Finally, if the parent type is abstract we must verify that all
14867 -- inherited operations are either non-abstract or overridden, or that
14868 -- the derived type itself is abstract (this check is performed at the
14869 -- end of a package declaration, in Check_Abstract_Overriding). A
14870 -- private overriding in the parent type will not be visible in the
14871 -- derivation if we are not in an inner package or in a child unit of
14872 -- the parent type, in which case the abstractness of the inherited
14873 -- operation is carried to the new subprogram.
14875 elsif Is_Abstract_Type (Parent_Type)
14876 and then not In_Open_Scopes (Scope (Parent_Type))
14877 and then Is_Private_Overriding
14878 and then Is_Abstract_Subprogram (Visible_Subp)
14879 then
14880 if No (Actual_Subp) then
14881 Set_Alias (New_Subp, Visible_Subp);
14882 Set_Is_Abstract_Subprogram (New_Subp, True);
14884 else
14885 -- If this is a derivation for an instance of a formal derived
14886 -- type, abstractness comes from the primitive operation of the
14887 -- actual, not from the operation inherited from the ancestor.
14889 Set_Is_Abstract_Subprogram
14890 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
14891 end if;
14892 end if;
14894 New_Overloaded_Entity (New_Subp, Derived_Type);
14896 -- Check for case of a derived subprogram for the instantiation of a
14897 -- formal derived tagged type, if so mark the subprogram as dispatching
14898 -- and inherit the dispatching attributes of the actual subprogram. The
14899 -- derived subprogram is effectively renaming of the actual subprogram,
14900 -- so it needs to have the same attributes as the actual.
14902 if Present (Actual_Subp)
14903 and then Is_Dispatching_Operation (Actual_Subp)
14904 then
14905 Set_Is_Dispatching_Operation (New_Subp);
14907 if Present (DTC_Entity (Actual_Subp)) then
14908 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
14909 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
14910 end if;
14911 end if;
14913 -- Indicate that a derived subprogram does not require a body and that
14914 -- it does not require processing of default expressions.
14916 Set_Has_Completion (New_Subp);
14917 Set_Default_Expressions_Processed (New_Subp);
14919 if Ekind (New_Subp) = E_Function then
14920 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
14921 end if;
14922 end Derive_Subprogram;
14924 ------------------------
14925 -- Derive_Subprograms --
14926 ------------------------
14928 procedure Derive_Subprograms
14929 (Parent_Type : Entity_Id;
14930 Derived_Type : Entity_Id;
14931 Generic_Actual : Entity_Id := Empty)
14933 Op_List : constant Elist_Id :=
14934 Collect_Primitive_Operations (Parent_Type);
14936 function Check_Derived_Type return Boolean;
14937 -- Check that all the entities derived from Parent_Type are found in
14938 -- the list of primitives of Derived_Type exactly in the same order.
14940 procedure Derive_Interface_Subprogram
14941 (New_Subp : in out Entity_Id;
14942 Subp : Entity_Id;
14943 Actual_Subp : Entity_Id);
14944 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
14945 -- (which is an interface primitive). If Generic_Actual is present then
14946 -- Actual_Subp is the actual subprogram corresponding with the generic
14947 -- subprogram Subp.
14949 function Check_Derived_Type return Boolean is
14950 E : Entity_Id;
14951 Elmt : Elmt_Id;
14952 List : Elist_Id;
14953 New_Subp : Entity_Id;
14954 Op_Elmt : Elmt_Id;
14955 Subp : Entity_Id;
14957 begin
14958 -- Traverse list of entities in the current scope searching for
14959 -- an incomplete type whose full-view is derived type
14961 E := First_Entity (Scope (Derived_Type));
14962 while Present (E) and then E /= Derived_Type loop
14963 if Ekind (E) = E_Incomplete_Type
14964 and then Present (Full_View (E))
14965 and then Full_View (E) = Derived_Type
14966 then
14967 -- Disable this test if Derived_Type completes an incomplete
14968 -- type because in such case more primitives can be added
14969 -- later to the list of primitives of Derived_Type by routine
14970 -- Process_Incomplete_Dependents
14972 return True;
14973 end if;
14975 E := Next_Entity (E);
14976 end loop;
14978 List := Collect_Primitive_Operations (Derived_Type);
14979 Elmt := First_Elmt (List);
14981 Op_Elmt := First_Elmt (Op_List);
14982 while Present (Op_Elmt) loop
14983 Subp := Node (Op_Elmt);
14984 New_Subp := Node (Elmt);
14986 -- At this early stage Derived_Type has no entities with attribute
14987 -- Interface_Alias. In addition, such primitives are always
14988 -- located at the end of the list of primitives of Parent_Type.
14989 -- Therefore, if found we can safely stop processing pending
14990 -- entities.
14992 exit when Present (Interface_Alias (Subp));
14994 -- Handle hidden entities
14996 if not Is_Predefined_Dispatching_Operation (Subp)
14997 and then Is_Hidden (Subp)
14998 then
14999 if Present (New_Subp)
15000 and then Primitive_Names_Match (Subp, New_Subp)
15001 then
15002 Next_Elmt (Elmt);
15003 end if;
15005 else
15006 if not Present (New_Subp)
15007 or else Ekind (Subp) /= Ekind (New_Subp)
15008 or else not Primitive_Names_Match (Subp, New_Subp)
15009 then
15010 return False;
15011 end if;
15013 Next_Elmt (Elmt);
15014 end if;
15016 Next_Elmt (Op_Elmt);
15017 end loop;
15019 return True;
15020 end Check_Derived_Type;
15022 ---------------------------------
15023 -- Derive_Interface_Subprogram --
15024 ---------------------------------
15026 procedure Derive_Interface_Subprogram
15027 (New_Subp : in out Entity_Id;
15028 Subp : Entity_Id;
15029 Actual_Subp : Entity_Id)
15031 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15032 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15034 begin
15035 pragma Assert (Is_Interface (Iface_Type));
15037 Derive_Subprogram
15038 (New_Subp => New_Subp,
15039 Parent_Subp => Iface_Subp,
15040 Derived_Type => Derived_Type,
15041 Parent_Type => Iface_Type,
15042 Actual_Subp => Actual_Subp);
15044 -- Given that this new interface entity corresponds with a primitive
15045 -- of the parent that was not overridden we must leave it associated
15046 -- with its parent primitive to ensure that it will share the same
15047 -- dispatch table slot when overridden. We must set the Alias to Subp
15048 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15049 -- (in case we inherited Subp from Iface_Type via a nonabstract
15050 -- generic formal type).
15052 if No (Actual_Subp) then
15053 Set_Alias (New_Subp, Subp);
15055 declare
15056 T : Entity_Id := Find_Dispatching_Type (Subp);
15057 begin
15058 while Etype (T) /= T loop
15059 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15060 Set_Is_Abstract_Subprogram (New_Subp, False);
15061 exit;
15062 end if;
15064 T := Etype (T);
15065 end loop;
15066 end;
15068 -- For instantiations this is not needed since the previous call to
15069 -- Derive_Subprogram leaves the entity well decorated.
15071 else
15072 pragma Assert (Alias (New_Subp) = Actual_Subp);
15073 null;
15074 end if;
15075 end Derive_Interface_Subprogram;
15077 -- Local variables
15079 Alias_Subp : Entity_Id;
15080 Act_List : Elist_Id;
15081 Act_Elmt : Elmt_Id;
15082 Act_Subp : Entity_Id := Empty;
15083 Elmt : Elmt_Id;
15084 Need_Search : Boolean := False;
15085 New_Subp : Entity_Id := Empty;
15086 Parent_Base : Entity_Id;
15087 Subp : Entity_Id;
15089 -- Start of processing for Derive_Subprograms
15091 begin
15092 if Ekind (Parent_Type) = E_Record_Type_With_Private
15093 and then Has_Discriminants (Parent_Type)
15094 and then Present (Full_View (Parent_Type))
15095 then
15096 Parent_Base := Full_View (Parent_Type);
15097 else
15098 Parent_Base := Parent_Type;
15099 end if;
15101 if Present (Generic_Actual) then
15102 Act_List := Collect_Primitive_Operations (Generic_Actual);
15103 Act_Elmt := First_Elmt (Act_List);
15104 else
15105 Act_List := No_Elist;
15106 Act_Elmt := No_Elmt;
15107 end if;
15109 -- Derive primitives inherited from the parent. Note that if the generic
15110 -- actual is present, this is not really a type derivation, it is a
15111 -- completion within an instance.
15113 -- Case 1: Derived_Type does not implement interfaces
15115 if not Is_Tagged_Type (Derived_Type)
15116 or else (not Has_Interfaces (Derived_Type)
15117 and then not (Present (Generic_Actual)
15118 and then Has_Interfaces (Generic_Actual)))
15119 then
15120 Elmt := First_Elmt (Op_List);
15121 while Present (Elmt) loop
15122 Subp := Node (Elmt);
15124 -- Literals are derived earlier in the process of building the
15125 -- derived type, and are skipped here.
15127 if Ekind (Subp) = E_Enumeration_Literal then
15128 null;
15130 -- The actual is a direct descendant and the common primitive
15131 -- operations appear in the same order.
15133 -- If the generic parent type is present, the derived type is an
15134 -- instance of a formal derived type, and within the instance its
15135 -- operations are those of the actual. We derive from the formal
15136 -- type but make the inherited operations aliases of the
15137 -- corresponding operations of the actual.
15139 else
15140 pragma Assert (No (Node (Act_Elmt))
15141 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15142 and then
15143 Type_Conformant
15144 (Subp, Node (Act_Elmt),
15145 Skip_Controlling_Formals => True)));
15147 Derive_Subprogram
15148 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15150 if Present (Act_Elmt) then
15151 Next_Elmt (Act_Elmt);
15152 end if;
15153 end if;
15155 Next_Elmt (Elmt);
15156 end loop;
15158 -- Case 2: Derived_Type implements interfaces
15160 else
15161 -- If the parent type has no predefined primitives we remove
15162 -- predefined primitives from the list of primitives of generic
15163 -- actual to simplify the complexity of this algorithm.
15165 if Present (Generic_Actual) then
15166 declare
15167 Has_Predefined_Primitives : Boolean := False;
15169 begin
15170 -- Check if the parent type has predefined primitives
15172 Elmt := First_Elmt (Op_List);
15173 while Present (Elmt) loop
15174 Subp := Node (Elmt);
15176 if Is_Predefined_Dispatching_Operation (Subp)
15177 and then not Comes_From_Source (Ultimate_Alias (Subp))
15178 then
15179 Has_Predefined_Primitives := True;
15180 exit;
15181 end if;
15183 Next_Elmt (Elmt);
15184 end loop;
15186 -- Remove predefined primitives of Generic_Actual. We must use
15187 -- an auxiliary list because in case of tagged types the value
15188 -- returned by Collect_Primitive_Operations is the value stored
15189 -- in its Primitive_Operations attribute (and we don't want to
15190 -- modify its current contents).
15192 if not Has_Predefined_Primitives then
15193 declare
15194 Aux_List : constant Elist_Id := New_Elmt_List;
15196 begin
15197 Elmt := First_Elmt (Act_List);
15198 while Present (Elmt) loop
15199 Subp := Node (Elmt);
15201 if not Is_Predefined_Dispatching_Operation (Subp)
15202 or else Comes_From_Source (Subp)
15203 then
15204 Append_Elmt (Subp, Aux_List);
15205 end if;
15207 Next_Elmt (Elmt);
15208 end loop;
15210 Act_List := Aux_List;
15211 end;
15212 end if;
15214 Act_Elmt := First_Elmt (Act_List);
15215 Act_Subp := Node (Act_Elmt);
15216 end;
15217 end if;
15219 -- Stage 1: If the generic actual is not present we derive the
15220 -- primitives inherited from the parent type. If the generic parent
15221 -- type is present, the derived type is an instance of a formal
15222 -- derived type, and within the instance its operations are those of
15223 -- the actual. We derive from the formal type but make the inherited
15224 -- operations aliases of the corresponding operations of the actual.
15226 Elmt := First_Elmt (Op_List);
15227 while Present (Elmt) loop
15228 Subp := Node (Elmt);
15229 Alias_Subp := Ultimate_Alias (Subp);
15231 -- Do not derive internal entities of the parent that link
15232 -- interface primitives with their covering primitive. These
15233 -- entities will be added to this type when frozen.
15235 if Present (Interface_Alias (Subp)) then
15236 goto Continue;
15237 end if;
15239 -- If the generic actual is present find the corresponding
15240 -- operation in the generic actual. If the parent type is a
15241 -- direct ancestor of the derived type then, even if it is an
15242 -- interface, the operations are inherited from the primary
15243 -- dispatch table and are in the proper order. If we detect here
15244 -- that primitives are not in the same order we traverse the list
15245 -- of primitive operations of the actual to find the one that
15246 -- implements the interface primitive.
15248 if Need_Search
15249 or else
15250 (Present (Generic_Actual)
15251 and then Present (Act_Subp)
15252 and then not
15253 (Primitive_Names_Match (Subp, Act_Subp)
15254 and then
15255 Type_Conformant (Subp, Act_Subp,
15256 Skip_Controlling_Formals => True)))
15257 then
15258 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15259 Use_Full_View => True));
15261 -- Remember that we need searching for all pending primitives
15263 Need_Search := True;
15265 -- Handle entities associated with interface primitives
15267 if Present (Alias_Subp)
15268 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15269 and then not Is_Predefined_Dispatching_Operation (Subp)
15270 then
15271 -- Search for the primitive in the homonym chain
15273 Act_Subp :=
15274 Find_Primitive_Covering_Interface
15275 (Tagged_Type => Generic_Actual,
15276 Iface_Prim => Alias_Subp);
15278 -- Previous search may not locate primitives covering
15279 -- interfaces defined in generics units or instantiations.
15280 -- (it fails if the covering primitive has formals whose
15281 -- type is also defined in generics or instantiations).
15282 -- In such case we search in the list of primitives of the
15283 -- generic actual for the internal entity that links the
15284 -- interface primitive and the covering primitive.
15286 if No (Act_Subp)
15287 and then Is_Generic_Type (Parent_Type)
15288 then
15289 -- This code has been designed to handle only generic
15290 -- formals that implement interfaces that are defined
15291 -- in a generic unit or instantiation. If this code is
15292 -- needed for other cases we must review it because
15293 -- (given that it relies on Original_Location to locate
15294 -- the primitive of Generic_Actual that covers the
15295 -- interface) it could leave linked through attribute
15296 -- Alias entities of unrelated instantiations).
15298 pragma Assert
15299 (Is_Generic_Unit
15300 (Scope (Find_Dispatching_Type (Alias_Subp)))
15301 or else
15302 Instantiation_Depth
15303 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15305 declare
15306 Iface_Prim_Loc : constant Source_Ptr :=
15307 Original_Location (Sloc (Alias_Subp));
15309 Elmt : Elmt_Id;
15310 Prim : Entity_Id;
15312 begin
15313 Elmt :=
15314 First_Elmt (Primitive_Operations (Generic_Actual));
15316 Search : while Present (Elmt) loop
15317 Prim := Node (Elmt);
15319 if Present (Interface_Alias (Prim))
15320 and then Original_Location
15321 (Sloc (Interface_Alias (Prim))) =
15322 Iface_Prim_Loc
15323 then
15324 Act_Subp := Alias (Prim);
15325 exit Search;
15326 end if;
15328 Next_Elmt (Elmt);
15329 end loop Search;
15330 end;
15331 end if;
15333 pragma Assert (Present (Act_Subp)
15334 or else Is_Abstract_Type (Generic_Actual)
15335 or else Serious_Errors_Detected > 0);
15337 -- Handle predefined primitives plus the rest of user-defined
15338 -- primitives
15340 else
15341 Act_Elmt := First_Elmt (Act_List);
15342 while Present (Act_Elmt) loop
15343 Act_Subp := Node (Act_Elmt);
15345 exit when Primitive_Names_Match (Subp, Act_Subp)
15346 and then Type_Conformant
15347 (Subp, Act_Subp,
15348 Skip_Controlling_Formals => True)
15349 and then No (Interface_Alias (Act_Subp));
15351 Next_Elmt (Act_Elmt);
15352 end loop;
15354 if No (Act_Elmt) then
15355 Act_Subp := Empty;
15356 end if;
15357 end if;
15358 end if;
15360 -- Case 1: If the parent is a limited interface then it has the
15361 -- predefined primitives of synchronized interfaces. However, the
15362 -- actual type may be a non-limited type and hence it does not
15363 -- have such primitives.
15365 if Present (Generic_Actual)
15366 and then not Present (Act_Subp)
15367 and then Is_Limited_Interface (Parent_Base)
15368 and then Is_Predefined_Interface_Primitive (Subp)
15369 then
15370 null;
15372 -- Case 2: Inherit entities associated with interfaces that were
15373 -- not covered by the parent type. We exclude here null interface
15374 -- primitives because they do not need special management.
15376 -- We also exclude interface operations that are renamings. If the
15377 -- subprogram is an explicit renaming of an interface primitive,
15378 -- it is a regular primitive operation, and the presence of its
15379 -- alias is not relevant: it has to be derived like any other
15380 -- primitive.
15382 elsif Present (Alias (Subp))
15383 and then Nkind (Unit_Declaration_Node (Subp)) /=
15384 N_Subprogram_Renaming_Declaration
15385 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15386 and then not
15387 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
15388 and then Null_Present (Parent (Alias_Subp)))
15389 then
15390 -- If this is an abstract private type then we transfer the
15391 -- derivation of the interface primitive from the partial view
15392 -- to the full view. This is safe because all the interfaces
15393 -- must be visible in the partial view. Done to avoid adding
15394 -- a new interface derivation to the private part of the
15395 -- enclosing package; otherwise this new derivation would be
15396 -- decorated as hidden when the analysis of the enclosing
15397 -- package completes.
15399 if Is_Abstract_Type (Derived_Type)
15400 and then In_Private_Part (Current_Scope)
15401 and then Has_Private_Declaration (Derived_Type)
15402 then
15403 declare
15404 Partial_View : Entity_Id;
15405 Elmt : Elmt_Id;
15406 Ent : Entity_Id;
15408 begin
15409 Partial_View := First_Entity (Current_Scope);
15410 loop
15411 exit when No (Partial_View)
15412 or else (Has_Private_Declaration (Partial_View)
15413 and then
15414 Full_View (Partial_View) = Derived_Type);
15416 Next_Entity (Partial_View);
15417 end loop;
15419 -- If the partial view was not found then the source code
15420 -- has errors and the derivation is not needed.
15422 if Present (Partial_View) then
15423 Elmt :=
15424 First_Elmt (Primitive_Operations (Partial_View));
15425 while Present (Elmt) loop
15426 Ent := Node (Elmt);
15428 if Present (Alias (Ent))
15429 and then Ultimate_Alias (Ent) = Alias (Subp)
15430 then
15431 Append_Elmt
15432 (Ent, Primitive_Operations (Derived_Type));
15433 exit;
15434 end if;
15436 Next_Elmt (Elmt);
15437 end loop;
15439 -- If the interface primitive was not found in the
15440 -- partial view then this interface primitive was
15441 -- overridden. We add a derivation to activate in
15442 -- Derive_Progenitor_Subprograms the machinery to
15443 -- search for it.
15445 if No (Elmt) then
15446 Derive_Interface_Subprogram
15447 (New_Subp => New_Subp,
15448 Subp => Subp,
15449 Actual_Subp => Act_Subp);
15450 end if;
15451 end if;
15452 end;
15453 else
15454 Derive_Interface_Subprogram
15455 (New_Subp => New_Subp,
15456 Subp => Subp,
15457 Actual_Subp => Act_Subp);
15458 end if;
15460 -- Case 3: Common derivation
15462 else
15463 Derive_Subprogram
15464 (New_Subp => New_Subp,
15465 Parent_Subp => Subp,
15466 Derived_Type => Derived_Type,
15467 Parent_Type => Parent_Base,
15468 Actual_Subp => Act_Subp);
15469 end if;
15471 -- No need to update Act_Elm if we must search for the
15472 -- corresponding operation in the generic actual
15474 if not Need_Search
15475 and then Present (Act_Elmt)
15476 then
15477 Next_Elmt (Act_Elmt);
15478 Act_Subp := Node (Act_Elmt);
15479 end if;
15481 <<Continue>>
15482 Next_Elmt (Elmt);
15483 end loop;
15485 -- Inherit additional operations from progenitors. If the derived
15486 -- type is a generic actual, there are not new primitive operations
15487 -- for the type because it has those of the actual, and therefore
15488 -- nothing needs to be done. The renamings generated above are not
15489 -- primitive operations, and their purpose is simply to make the
15490 -- proper operations visible within an instantiation.
15492 if No (Generic_Actual) then
15493 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
15494 end if;
15495 end if;
15497 -- Final check: Direct descendants must have their primitives in the
15498 -- same order. We exclude from this test untagged types and instances
15499 -- of formal derived types. We skip this test if we have already
15500 -- reported serious errors in the sources.
15502 pragma Assert (not Is_Tagged_Type (Derived_Type)
15503 or else Present (Generic_Actual)
15504 or else Serious_Errors_Detected > 0
15505 or else Check_Derived_Type);
15506 end Derive_Subprograms;
15508 --------------------------------
15509 -- Derived_Standard_Character --
15510 --------------------------------
15512 procedure Derived_Standard_Character
15513 (N : Node_Id;
15514 Parent_Type : Entity_Id;
15515 Derived_Type : Entity_Id)
15517 Loc : constant Source_Ptr := Sloc (N);
15518 Def : constant Node_Id := Type_Definition (N);
15519 Indic : constant Node_Id := Subtype_Indication (Def);
15520 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
15521 Implicit_Base : constant Entity_Id :=
15522 Create_Itype
15523 (E_Enumeration_Type, N, Derived_Type, 'B');
15525 Lo : Node_Id;
15526 Hi : Node_Id;
15528 begin
15529 Discard_Node (Process_Subtype (Indic, N));
15531 Set_Etype (Implicit_Base, Parent_Base);
15532 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
15533 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
15535 Set_Is_Character_Type (Implicit_Base, True);
15536 Set_Has_Delayed_Freeze (Implicit_Base);
15538 -- The bounds of the implicit base are the bounds of the parent base.
15539 -- Note that their type is the parent base.
15541 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
15542 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
15544 Set_Scalar_Range (Implicit_Base,
15545 Make_Range (Loc,
15546 Low_Bound => Lo,
15547 High_Bound => Hi));
15549 Conditional_Delay (Derived_Type, Parent_Type);
15551 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
15552 Set_Etype (Derived_Type, Implicit_Base);
15553 Set_Size_Info (Derived_Type, Parent_Type);
15555 if Unknown_RM_Size (Derived_Type) then
15556 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
15557 end if;
15559 Set_Is_Character_Type (Derived_Type, True);
15561 if Nkind (Indic) /= N_Subtype_Indication then
15563 -- If no explicit constraint, the bounds are those
15564 -- of the parent type.
15566 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
15567 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
15568 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
15569 end if;
15571 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
15573 -- Because the implicit base is used in the conversion of the bounds, we
15574 -- have to freeze it now. This is similar to what is done for numeric
15575 -- types, and it equally suspicious, but otherwise a non-static bound
15576 -- will have a reference to an unfrozen type, which is rejected by Gigi
15577 -- (???). This requires specific care for definition of stream
15578 -- attributes. For details, see comments at the end of
15579 -- Build_Derived_Numeric_Type.
15581 Freeze_Before (N, Implicit_Base);
15582 end Derived_Standard_Character;
15584 ------------------------------
15585 -- Derived_Type_Declaration --
15586 ------------------------------
15588 procedure Derived_Type_Declaration
15589 (T : Entity_Id;
15590 N : Node_Id;
15591 Is_Completion : Boolean)
15593 Parent_Type : Entity_Id;
15595 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
15596 -- Check whether the parent type is a generic formal, or derives
15597 -- directly or indirectly from one.
15599 ------------------------
15600 -- Comes_From_Generic --
15601 ------------------------
15603 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
15604 begin
15605 if Is_Generic_Type (Typ) then
15606 return True;
15608 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
15609 return True;
15611 elsif Is_Private_Type (Typ)
15612 and then Present (Full_View (Typ))
15613 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
15614 then
15615 return True;
15617 elsif Is_Generic_Actual_Type (Typ) then
15618 return True;
15620 else
15621 return False;
15622 end if;
15623 end Comes_From_Generic;
15625 -- Local variables
15627 Def : constant Node_Id := Type_Definition (N);
15628 Iface_Def : Node_Id;
15629 Indic : constant Node_Id := Subtype_Indication (Def);
15630 Extension : constant Node_Id := Record_Extension_Part (Def);
15631 Parent_Node : Node_Id;
15632 Taggd : Boolean;
15634 -- Start of processing for Derived_Type_Declaration
15636 begin
15637 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
15639 -- Ada 2005 (AI-251): In case of interface derivation check that the
15640 -- parent is also an interface.
15642 if Interface_Present (Def) then
15643 Check_SPARK_05_Restriction ("interface is not allowed", Def);
15645 if not Is_Interface (Parent_Type) then
15646 Diagnose_Interface (Indic, Parent_Type);
15648 else
15649 Parent_Node := Parent (Base_Type (Parent_Type));
15650 Iface_Def := Type_Definition (Parent_Node);
15652 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
15653 -- other limited interfaces.
15655 if Limited_Present (Def) then
15656 if Limited_Present (Iface_Def) then
15657 null;
15659 elsif Protected_Present (Iface_Def) then
15660 Error_Msg_NE
15661 ("descendant of & must be declared as a protected "
15662 & "interface", N, Parent_Type);
15664 elsif Synchronized_Present (Iface_Def) then
15665 Error_Msg_NE
15666 ("descendant of & must be declared as a synchronized "
15667 & "interface", N, Parent_Type);
15669 elsif Task_Present (Iface_Def) then
15670 Error_Msg_NE
15671 ("descendant of & must be declared as a task interface",
15672 N, Parent_Type);
15674 else
15675 Error_Msg_N
15676 ("(Ada 2005) limited interface cannot inherit from "
15677 & "non-limited interface", Indic);
15678 end if;
15680 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
15681 -- from non-limited or limited interfaces.
15683 elsif not Protected_Present (Def)
15684 and then not Synchronized_Present (Def)
15685 and then not Task_Present (Def)
15686 then
15687 if Limited_Present (Iface_Def) then
15688 null;
15690 elsif Protected_Present (Iface_Def) then
15691 Error_Msg_NE
15692 ("descendant of & must be declared as a protected "
15693 & "interface", N, Parent_Type);
15695 elsif Synchronized_Present (Iface_Def) then
15696 Error_Msg_NE
15697 ("descendant of & must be declared as a synchronized "
15698 & "interface", N, Parent_Type);
15700 elsif Task_Present (Iface_Def) then
15701 Error_Msg_NE
15702 ("descendant of & must be declared as a task interface",
15703 N, Parent_Type);
15704 else
15705 null;
15706 end if;
15707 end if;
15708 end if;
15709 end if;
15711 if Is_Tagged_Type (Parent_Type)
15712 and then Is_Concurrent_Type (Parent_Type)
15713 and then not Is_Interface (Parent_Type)
15714 then
15715 Error_Msg_N
15716 ("parent type of a record extension cannot be a synchronized "
15717 & "tagged type (RM 3.9.1 (3/1))", N);
15718 Set_Etype (T, Any_Type);
15719 return;
15720 end if;
15722 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
15723 -- interfaces
15725 if Is_Tagged_Type (Parent_Type)
15726 and then Is_Non_Empty_List (Interface_List (Def))
15727 then
15728 declare
15729 Intf : Node_Id;
15730 T : Entity_Id;
15732 begin
15733 Intf := First (Interface_List (Def));
15734 while Present (Intf) loop
15735 T := Find_Type_Of_Subtype_Indic (Intf);
15737 if not Is_Interface (T) then
15738 Diagnose_Interface (Intf, T);
15740 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
15741 -- a limited type from having a nonlimited progenitor.
15743 elsif (Limited_Present (Def)
15744 or else (not Is_Interface (Parent_Type)
15745 and then Is_Limited_Type (Parent_Type)))
15746 and then not Is_Limited_Interface (T)
15747 then
15748 Error_Msg_NE
15749 ("progenitor interface& of limited type must be limited",
15750 N, T);
15751 end if;
15753 Next (Intf);
15754 end loop;
15755 end;
15756 end if;
15758 if Parent_Type = Any_Type
15759 or else Etype (Parent_Type) = Any_Type
15760 or else (Is_Class_Wide_Type (Parent_Type)
15761 and then Etype (Parent_Type) = T)
15762 then
15763 -- If Parent_Type is undefined or illegal, make new type into a
15764 -- subtype of Any_Type, and set a few attributes to prevent cascaded
15765 -- errors. If this is a self-definition, emit error now.
15767 if T = Parent_Type or else T = Etype (Parent_Type) then
15768 Error_Msg_N ("type cannot be used in its own definition", Indic);
15769 end if;
15771 Set_Ekind (T, Ekind (Parent_Type));
15772 Set_Etype (T, Any_Type);
15773 Set_Scalar_Range (T, Scalar_Range (Any_Type));
15775 if Is_Tagged_Type (T)
15776 and then Is_Record_Type (T)
15777 then
15778 Set_Direct_Primitive_Operations (T, New_Elmt_List);
15779 end if;
15781 return;
15782 end if;
15784 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
15785 -- an interface is special because the list of interfaces in the full
15786 -- view can be given in any order. For example:
15788 -- type A is interface;
15789 -- type B is interface and A;
15790 -- type D is new B with private;
15791 -- private
15792 -- type D is new A and B with null record; -- 1 --
15794 -- In this case we perform the following transformation of -1-:
15796 -- type D is new B and A with null record;
15798 -- If the parent of the full-view covers the parent of the partial-view
15799 -- we have two possible cases:
15801 -- 1) They have the same parent
15802 -- 2) The parent of the full-view implements some further interfaces
15804 -- In both cases we do not need to perform the transformation. In the
15805 -- first case the source program is correct and the transformation is
15806 -- not needed; in the second case the source program does not fulfill
15807 -- the no-hidden interfaces rule (AI-396) and the error will be reported
15808 -- later.
15810 -- This transformation not only simplifies the rest of the analysis of
15811 -- this type declaration but also simplifies the correct generation of
15812 -- the object layout to the expander.
15814 if In_Private_Part (Current_Scope)
15815 and then Is_Interface (Parent_Type)
15816 then
15817 declare
15818 Iface : Node_Id;
15819 Partial_View : Entity_Id;
15820 Partial_View_Parent : Entity_Id;
15821 New_Iface : Node_Id;
15823 begin
15824 -- Look for the associated private type declaration
15826 Partial_View := First_Entity (Current_Scope);
15827 loop
15828 exit when No (Partial_View)
15829 or else (Has_Private_Declaration (Partial_View)
15830 and then Full_View (Partial_View) = T);
15832 Next_Entity (Partial_View);
15833 end loop;
15835 -- If the partial view was not found then the source code has
15836 -- errors and the transformation is not needed.
15838 if Present (Partial_View) then
15839 Partial_View_Parent := Etype (Partial_View);
15841 -- If the parent of the full-view covers the parent of the
15842 -- partial-view we have nothing else to do.
15844 if Interface_Present_In_Ancestor
15845 (Parent_Type, Partial_View_Parent)
15846 then
15847 null;
15849 -- Traverse the list of interfaces of the full-view to look
15850 -- for the parent of the partial-view and perform the tree
15851 -- transformation.
15853 else
15854 Iface := First (Interface_List (Def));
15855 while Present (Iface) loop
15856 if Etype (Iface) = Etype (Partial_View) then
15857 Rewrite (Subtype_Indication (Def),
15858 New_Copy (Subtype_Indication
15859 (Parent (Partial_View))));
15861 New_Iface :=
15862 Make_Identifier (Sloc (N), Chars (Parent_Type));
15863 Append (New_Iface, Interface_List (Def));
15865 -- Analyze the transformed code
15867 Derived_Type_Declaration (T, N, Is_Completion);
15868 return;
15869 end if;
15871 Next (Iface);
15872 end loop;
15873 end if;
15874 end if;
15875 end;
15876 end if;
15878 -- Only composite types other than array types are allowed to have
15879 -- discriminants.
15881 if Present (Discriminant_Specifications (N)) then
15882 if (Is_Elementary_Type (Parent_Type)
15883 or else
15884 Is_Array_Type (Parent_Type))
15885 and then not Error_Posted (N)
15886 then
15887 Error_Msg_N
15888 ("elementary or array type cannot have discriminants",
15889 Defining_Identifier (First (Discriminant_Specifications (N))));
15890 Set_Has_Discriminants (T, False);
15892 -- The type is allowed to have discriminants
15894 else
15895 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
15896 end if;
15897 end if;
15899 -- In Ada 83, a derived type defined in a package specification cannot
15900 -- be used for further derivation until the end of its visible part.
15901 -- Note that derivation in the private part of the package is allowed.
15903 if Ada_Version = Ada_83
15904 and then Is_Derived_Type (Parent_Type)
15905 and then In_Visible_Part (Scope (Parent_Type))
15906 then
15907 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
15908 Error_Msg_N
15909 ("(Ada 83): premature use of type for derivation", Indic);
15910 end if;
15911 end if;
15913 -- Check for early use of incomplete or private type
15915 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
15916 Error_Msg_N ("premature derivation of incomplete type", Indic);
15917 return;
15919 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
15920 and then not Comes_From_Generic (Parent_Type))
15921 or else Has_Private_Component (Parent_Type)
15922 then
15923 -- The ancestor type of a formal type can be incomplete, in which
15924 -- case only the operations of the partial view are available in the
15925 -- generic. Subsequent checks may be required when the full view is
15926 -- analyzed to verify that a derivation from a tagged type has an
15927 -- extension.
15929 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
15930 null;
15932 elsif No (Underlying_Type (Parent_Type))
15933 or else Has_Private_Component (Parent_Type)
15934 then
15935 Error_Msg_N
15936 ("premature derivation of derived or private type", Indic);
15938 -- Flag the type itself as being in error, this prevents some
15939 -- nasty problems with subsequent uses of the malformed type.
15941 Set_Error_Posted (T);
15943 -- Check that within the immediate scope of an untagged partial
15944 -- view it's illegal to derive from the partial view if the
15945 -- full view is tagged. (7.3(7))
15947 -- We verify that the Parent_Type is a partial view by checking
15948 -- that it is not a Full_Type_Declaration (i.e. a private type or
15949 -- private extension declaration), to distinguish a partial view
15950 -- from a derivation from a private type which also appears as
15951 -- E_Private_Type. If the parent base type is not declared in an
15952 -- enclosing scope there is no need to check.
15954 elsif Present (Full_View (Parent_Type))
15955 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
15956 and then not Is_Tagged_Type (Parent_Type)
15957 and then Is_Tagged_Type (Full_View (Parent_Type))
15958 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15959 then
15960 Error_Msg_N
15961 ("premature derivation from type with tagged full view",
15962 Indic);
15963 end if;
15964 end if;
15966 -- Check that form of derivation is appropriate
15968 Taggd := Is_Tagged_Type (Parent_Type);
15970 -- Set the parent type to the class-wide type's specific type in this
15971 -- case to prevent cascading errors
15973 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
15974 Error_Msg_N ("parent type must not be a class-wide type", Indic);
15975 Set_Etype (T, Etype (Parent_Type));
15976 return;
15977 end if;
15979 if Present (Extension) and then not Taggd then
15980 Error_Msg_N
15981 ("type derived from untagged type cannot have extension", Indic);
15983 elsif No (Extension) and then Taggd then
15985 -- If this declaration is within a private part (or body) of a
15986 -- generic instantiation then the derivation is allowed (the parent
15987 -- type can only appear tagged in this case if it's a generic actual
15988 -- type, since it would otherwise have been rejected in the analysis
15989 -- of the generic template).
15991 if not Is_Generic_Actual_Type (Parent_Type)
15992 or else In_Visible_Part (Scope (Parent_Type))
15993 then
15994 if Is_Class_Wide_Type (Parent_Type) then
15995 Error_Msg_N
15996 ("parent type must not be a class-wide type", Indic);
15998 -- Use specific type to prevent cascaded errors.
16000 Parent_Type := Etype (Parent_Type);
16002 else
16003 Error_Msg_N
16004 ("type derived from tagged type must have extension", Indic);
16005 end if;
16006 end if;
16007 end if;
16009 -- AI-443: Synchronized formal derived types require a private
16010 -- extension. There is no point in checking the ancestor type or
16011 -- the progenitors since the construct is wrong to begin with.
16013 if Ada_Version >= Ada_2005
16014 and then Is_Generic_Type (T)
16015 and then Present (Original_Node (N))
16016 then
16017 declare
16018 Decl : constant Node_Id := Original_Node (N);
16020 begin
16021 if Nkind (Decl) = N_Formal_Type_Declaration
16022 and then Nkind (Formal_Type_Definition (Decl)) =
16023 N_Formal_Derived_Type_Definition
16024 and then Synchronized_Present (Formal_Type_Definition (Decl))
16025 and then No (Extension)
16027 -- Avoid emitting a duplicate error message
16029 and then not Error_Posted (Indic)
16030 then
16031 Error_Msg_N
16032 ("synchronized derived type must have extension", N);
16033 end if;
16034 end;
16035 end if;
16037 if Null_Exclusion_Present (Def)
16038 and then not Is_Access_Type (Parent_Type)
16039 then
16040 Error_Msg_N ("null exclusion can only apply to an access type", N);
16041 end if;
16043 -- Avoid deriving parent primitives of underlying record views
16045 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16046 Derive_Subps => not Is_Underlying_Record_View (T));
16048 -- AI-419: The parent type of an explicitly limited derived type must
16049 -- be a limited type or a limited interface.
16051 if Limited_Present (Def) then
16052 Set_Is_Limited_Record (T);
16054 if Is_Interface (T) then
16055 Set_Is_Limited_Interface (T);
16056 end if;
16058 if not Is_Limited_Type (Parent_Type)
16059 and then
16060 (not Is_Interface (Parent_Type)
16061 or else not Is_Limited_Interface (Parent_Type))
16062 then
16063 -- AI05-0096: a derivation in the private part of an instance is
16064 -- legal if the generic formal is untagged limited, and the actual
16065 -- is non-limited.
16067 if Is_Generic_Actual_Type (Parent_Type)
16068 and then In_Private_Part (Current_Scope)
16069 and then
16070 not Is_Tagged_Type
16071 (Generic_Parent_Type (Parent (Parent_Type)))
16072 then
16073 null;
16075 else
16076 Error_Msg_NE
16077 ("parent type& of limited type must be limited",
16078 N, Parent_Type);
16079 end if;
16080 end if;
16081 end if;
16083 -- In SPARK, there are no derived type definitions other than type
16084 -- extensions of tagged record types.
16086 if No (Extension) then
16087 Check_SPARK_05_Restriction
16088 ("derived type is not allowed", Original_Node (N));
16089 end if;
16090 end Derived_Type_Declaration;
16092 ------------------------
16093 -- Diagnose_Interface --
16094 ------------------------
16096 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16097 begin
16098 if not Is_Interface (E) and then E /= Any_Type then
16099 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16100 end if;
16101 end Diagnose_Interface;
16103 ----------------------------------
16104 -- Enumeration_Type_Declaration --
16105 ----------------------------------
16107 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16108 Ev : Uint;
16109 L : Node_Id;
16110 R_Node : Node_Id;
16111 B_Node : Node_Id;
16113 begin
16114 -- Create identifier node representing lower bound
16116 B_Node := New_Node (N_Identifier, Sloc (Def));
16117 L := First (Literals (Def));
16118 Set_Chars (B_Node, Chars (L));
16119 Set_Entity (B_Node, L);
16120 Set_Etype (B_Node, T);
16121 Set_Is_Static_Expression (B_Node, True);
16123 R_Node := New_Node (N_Range, Sloc (Def));
16124 Set_Low_Bound (R_Node, B_Node);
16126 Set_Ekind (T, E_Enumeration_Type);
16127 Set_First_Literal (T, L);
16128 Set_Etype (T, T);
16129 Set_Is_Constrained (T);
16131 Ev := Uint_0;
16133 -- Loop through literals of enumeration type setting pos and rep values
16134 -- except that if the Ekind is already set, then it means the literal
16135 -- was already constructed (case of a derived type declaration and we
16136 -- should not disturb the Pos and Rep values.
16138 while Present (L) loop
16139 if Ekind (L) /= E_Enumeration_Literal then
16140 Set_Ekind (L, E_Enumeration_Literal);
16141 Set_Enumeration_Pos (L, Ev);
16142 Set_Enumeration_Rep (L, Ev);
16143 Set_Is_Known_Valid (L, True);
16144 end if;
16146 Set_Etype (L, T);
16147 New_Overloaded_Entity (L);
16148 Generate_Definition (L);
16149 Set_Convention (L, Convention_Intrinsic);
16151 -- Case of character literal
16153 if Nkind (L) = N_Defining_Character_Literal then
16154 Set_Is_Character_Type (T, True);
16156 -- Check violation of No_Wide_Characters
16158 if Restriction_Check_Required (No_Wide_Characters) then
16159 Get_Name_String (Chars (L));
16161 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16162 Check_Restriction (No_Wide_Characters, L);
16163 end if;
16164 end if;
16165 end if;
16167 Ev := Ev + 1;
16168 Next (L);
16169 end loop;
16171 -- Now create a node representing upper bound
16173 B_Node := New_Node (N_Identifier, Sloc (Def));
16174 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16175 Set_Entity (B_Node, Last (Literals (Def)));
16176 Set_Etype (B_Node, T);
16177 Set_Is_Static_Expression (B_Node, True);
16179 Set_High_Bound (R_Node, B_Node);
16181 -- Initialize various fields of the type. Some of this information
16182 -- may be overwritten later through rep.clauses.
16184 Set_Scalar_Range (T, R_Node);
16185 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16186 Set_Enum_Esize (T);
16187 Set_Enum_Pos_To_Rep (T, Empty);
16189 -- Set Discard_Names if configuration pragma set, or if there is
16190 -- a parameterless pragma in the current declarative region
16192 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16193 Set_Discard_Names (T);
16194 end if;
16196 -- Process end label if there is one
16198 if Present (Def) then
16199 Process_End_Label (Def, 'e', T);
16200 end if;
16201 end Enumeration_Type_Declaration;
16203 ---------------------------------
16204 -- Expand_To_Stored_Constraint --
16205 ---------------------------------
16207 function Expand_To_Stored_Constraint
16208 (Typ : Entity_Id;
16209 Constraint : Elist_Id) return Elist_Id
16211 Explicitly_Discriminated_Type : Entity_Id;
16212 Expansion : Elist_Id;
16213 Discriminant : Entity_Id;
16215 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16216 -- Find the nearest type that actually specifies discriminants
16218 ---------------------------------
16219 -- Type_With_Explicit_Discrims --
16220 ---------------------------------
16222 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16223 Typ : constant E := Base_Type (Id);
16225 begin
16226 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16227 if Present (Full_View (Typ)) then
16228 return Type_With_Explicit_Discrims (Full_View (Typ));
16229 end if;
16231 else
16232 if Has_Discriminants (Typ) then
16233 return Typ;
16234 end if;
16235 end if;
16237 if Etype (Typ) = Typ then
16238 return Empty;
16239 elsif Has_Discriminants (Typ) then
16240 return Typ;
16241 else
16242 return Type_With_Explicit_Discrims (Etype (Typ));
16243 end if;
16245 end Type_With_Explicit_Discrims;
16247 -- Start of processing for Expand_To_Stored_Constraint
16249 begin
16250 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16251 return No_Elist;
16252 end if;
16254 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16256 if No (Explicitly_Discriminated_Type) then
16257 return No_Elist;
16258 end if;
16260 Expansion := New_Elmt_List;
16262 Discriminant :=
16263 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16264 while Present (Discriminant) loop
16265 Append_Elmt
16266 (Get_Discriminant_Value
16267 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16268 To => Expansion);
16269 Next_Stored_Discriminant (Discriminant);
16270 end loop;
16272 return Expansion;
16273 end Expand_To_Stored_Constraint;
16275 ---------------------------
16276 -- Find_Hidden_Interface --
16277 ---------------------------
16279 function Find_Hidden_Interface
16280 (Src : Elist_Id;
16281 Dest : Elist_Id) return Entity_Id
16283 Iface : Entity_Id;
16284 Iface_Elmt : Elmt_Id;
16286 begin
16287 if Present (Src) and then Present (Dest) then
16288 Iface_Elmt := First_Elmt (Src);
16289 while Present (Iface_Elmt) loop
16290 Iface := Node (Iface_Elmt);
16292 if Is_Interface (Iface)
16293 and then not Contain_Interface (Iface, Dest)
16294 then
16295 return Iface;
16296 end if;
16298 Next_Elmt (Iface_Elmt);
16299 end loop;
16300 end if;
16302 return Empty;
16303 end Find_Hidden_Interface;
16305 --------------------
16306 -- Find_Type_Name --
16307 --------------------
16309 function Find_Type_Name (N : Node_Id) return Entity_Id is
16310 Id : constant Entity_Id := Defining_Identifier (N);
16311 Prev : Entity_Id;
16312 New_Id : Entity_Id;
16313 Prev_Par : Node_Id;
16315 procedure Check_Duplicate_Aspects;
16316 -- Check that aspects specified in a completion have not been specified
16317 -- already in the partial view. Type_Invariant and others can be
16318 -- specified on either view but never on both.
16320 procedure Tag_Mismatch;
16321 -- Diagnose a tagged partial view whose full view is untagged.
16322 -- We post the message on the full view, with a reference to
16323 -- the previous partial view. The partial view can be private
16324 -- or incomplete, and these are handled in a different manner,
16325 -- so we determine the position of the error message from the
16326 -- respective slocs of both.
16328 -----------------------------
16329 -- Check_Duplicate_Aspects --
16330 -----------------------------
16332 procedure Check_Duplicate_Aspects is
16333 Prev_Aspects : constant List_Id := Aspect_Specifications (Prev_Par);
16334 Full_Aspects : constant List_Id := Aspect_Specifications (N);
16335 F_Spec, P_Spec : Node_Id;
16337 begin
16338 if Present (Full_Aspects) then
16339 F_Spec := First (Full_Aspects);
16340 while Present (F_Spec) loop
16341 if Present (Prev_Aspects) then
16342 P_Spec := First (Prev_Aspects);
16343 while Present (P_Spec) loop
16344 if Chars (Identifier (P_Spec)) =
16345 Chars (Identifier (F_Spec))
16346 then
16347 Error_Msg_N
16348 ("aspect already specified in private declaration",
16349 F_Spec);
16350 Remove (F_Spec);
16351 return;
16352 end if;
16354 Next (P_Spec);
16355 end loop;
16356 end if;
16358 if Has_Discriminants (Prev)
16359 and then not Has_Unknown_Discriminants (Prev)
16360 and then Chars (Identifier (F_Spec)) =
16361 Name_Implicit_Dereference
16362 then
16363 Error_Msg_N ("cannot specify aspect " &
16364 "if partial view has known discriminants", F_Spec);
16365 end if;
16367 Next (F_Spec);
16368 end loop;
16369 end if;
16370 end Check_Duplicate_Aspects;
16372 ------------------
16373 -- Tag_Mismatch --
16374 ------------------
16376 procedure Tag_Mismatch is
16377 begin
16378 if Sloc (Prev) < Sloc (Id) then
16379 if Ada_Version >= Ada_2012
16380 and then Nkind (N) = N_Private_Type_Declaration
16381 then
16382 Error_Msg_NE
16383 ("declaration of private } must be a tagged type ", Id, Prev);
16384 else
16385 Error_Msg_NE
16386 ("full declaration of } must be a tagged type ", Id, Prev);
16387 end if;
16389 else
16390 if Ada_Version >= Ada_2012
16391 and then Nkind (N) = N_Private_Type_Declaration
16392 then
16393 Error_Msg_NE
16394 ("declaration of private } must be a tagged type ", Prev, Id);
16395 else
16396 Error_Msg_NE
16397 ("full declaration of } must be a tagged type ", Prev, Id);
16398 end if;
16399 end if;
16400 end Tag_Mismatch;
16402 -- Start of processing for Find_Type_Name
16404 begin
16405 -- Find incomplete declaration, if one was given
16407 Prev := Current_Entity_In_Scope (Id);
16409 -- New type declaration
16411 if No (Prev) then
16412 Enter_Name (Id);
16413 return Id;
16415 -- Previous declaration exists
16417 else
16418 Prev_Par := Parent (Prev);
16420 -- Error if not incomplete/private case except if previous
16421 -- declaration is implicit, etc. Enter_Name will emit error if
16422 -- appropriate.
16424 if not Is_Incomplete_Or_Private_Type (Prev) then
16425 Enter_Name (Id);
16426 New_Id := Id;
16428 -- Check invalid completion of private or incomplete type
16430 elsif not Nkind_In (N, N_Full_Type_Declaration,
16431 N_Task_Type_Declaration,
16432 N_Protected_Type_Declaration)
16433 and then
16434 (Ada_Version < Ada_2012
16435 or else not Is_Incomplete_Type (Prev)
16436 or else not Nkind_In (N, N_Private_Type_Declaration,
16437 N_Private_Extension_Declaration))
16438 then
16439 -- Completion must be a full type declarations (RM 7.3(4))
16441 Error_Msg_Sloc := Sloc (Prev);
16442 Error_Msg_NE ("invalid completion of }", Id, Prev);
16444 -- Set scope of Id to avoid cascaded errors. Entity is never
16445 -- examined again, except when saving globals in generics.
16447 Set_Scope (Id, Current_Scope);
16448 New_Id := Id;
16450 -- If this is a repeated incomplete declaration, no further
16451 -- checks are possible.
16453 if Nkind (N) = N_Incomplete_Type_Declaration then
16454 return Prev;
16455 end if;
16457 -- Case of full declaration of incomplete type
16459 elsif Ekind (Prev) = E_Incomplete_Type
16460 and then (Ada_Version < Ada_2012
16461 or else No (Full_View (Prev))
16462 or else not Is_Private_Type (Full_View (Prev)))
16463 then
16464 -- Indicate that the incomplete declaration has a matching full
16465 -- declaration. The defining occurrence of the incomplete
16466 -- declaration remains the visible one, and the procedure
16467 -- Get_Full_View dereferences it whenever the type is used.
16469 if Present (Full_View (Prev)) then
16470 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16471 end if;
16473 Set_Full_View (Prev, Id);
16474 Append_Entity (Id, Current_Scope);
16475 Set_Is_Public (Id, Is_Public (Prev));
16476 Set_Is_Internal (Id);
16477 New_Id := Prev;
16479 -- If the incomplete view is tagged, a class_wide type has been
16480 -- created already. Use it for the private type as well, in order
16481 -- to prevent multiple incompatible class-wide types that may be
16482 -- created for self-referential anonymous access components.
16484 if Is_Tagged_Type (Prev)
16485 and then Present (Class_Wide_Type (Prev))
16486 then
16487 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
16488 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
16490 -- The type of the classwide type is the current Id. Previously
16491 -- this was not done for private declarations because of order-
16492 -- of elaboration issues in the back-end, but gigi now handles
16493 -- this properly.
16495 Set_Etype (Class_Wide_Type (Id), Id);
16496 end if;
16498 -- Case of full declaration of private type
16500 else
16501 -- If the private type was a completion of an incomplete type then
16502 -- update Prev to reference the private type
16504 if Ada_Version >= Ada_2012
16505 and then Ekind (Prev) = E_Incomplete_Type
16506 and then Present (Full_View (Prev))
16507 and then Is_Private_Type (Full_View (Prev))
16508 then
16509 Prev := Full_View (Prev);
16510 Prev_Par := Parent (Prev);
16511 end if;
16513 if Nkind (N) = N_Full_Type_Declaration
16514 and then Nkind_In
16515 (Type_Definition (N), N_Record_Definition,
16516 N_Derived_Type_Definition)
16517 and then Interface_Present (Type_Definition (N))
16518 then
16519 Error_Msg_N
16520 ("completion of private type cannot be an interface", N);
16521 end if;
16523 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
16524 if Etype (Prev) /= Prev then
16526 -- Prev is a private subtype or a derived type, and needs
16527 -- no completion.
16529 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
16530 New_Id := Id;
16532 elsif Ekind (Prev) = E_Private_Type
16533 and then Nkind_In (N, N_Task_Type_Declaration,
16534 N_Protected_Type_Declaration)
16535 then
16536 Error_Msg_N
16537 ("completion of nonlimited type cannot be limited", N);
16539 elsif Ekind (Prev) = E_Record_Type_With_Private
16540 and then Nkind_In (N, N_Task_Type_Declaration,
16541 N_Protected_Type_Declaration)
16542 then
16543 if not Is_Limited_Record (Prev) then
16544 Error_Msg_N
16545 ("completion of nonlimited type cannot be limited", N);
16547 elsif No (Interface_List (N)) then
16548 Error_Msg_N
16549 ("completion of tagged private type must be tagged",
16551 end if;
16552 end if;
16554 -- Ada 2005 (AI-251): Private extension declaration of a task
16555 -- type or a protected type. This case arises when covering
16556 -- interface types.
16558 elsif Nkind_In (N, N_Task_Type_Declaration,
16559 N_Protected_Type_Declaration)
16560 then
16561 null;
16563 elsif Nkind (N) /= N_Full_Type_Declaration
16564 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
16565 then
16566 Error_Msg_N
16567 ("full view of private extension must be an extension", N);
16569 elsif not (Abstract_Present (Parent (Prev)))
16570 and then Abstract_Present (Type_Definition (N))
16571 then
16572 Error_Msg_N
16573 ("full view of non-abstract extension cannot be abstract", N);
16574 end if;
16576 if not In_Private_Part (Current_Scope) then
16577 Error_Msg_N
16578 ("declaration of full view must appear in private part", N);
16579 end if;
16581 if Ada_Version >= Ada_2012 then
16582 Check_Duplicate_Aspects;
16583 end if;
16585 Copy_And_Swap (Prev, Id);
16586 Set_Has_Private_Declaration (Prev);
16587 Set_Has_Private_Declaration (Id);
16589 -- AI12-0133: Indicate whether we have a partial view with
16590 -- unknown discriminants, in which case initialization of objects
16591 -- of the type do not receive an invariant check.
16593 Set_Partial_View_Has_Unknown_Discr
16594 (Prev, Has_Unknown_Discriminants (Id));
16596 -- Preserve aspect and iterator flags that may have been set on
16597 -- the partial view.
16599 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
16600 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
16602 -- If no error, propagate freeze_node from private to full view.
16603 -- It may have been generated for an early operational item.
16605 if Present (Freeze_Node (Id))
16606 and then Serious_Errors_Detected = 0
16607 and then No (Full_View (Id))
16608 then
16609 Set_Freeze_Node (Prev, Freeze_Node (Id));
16610 Set_Freeze_Node (Id, Empty);
16611 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
16612 end if;
16614 Set_Full_View (Id, Prev);
16615 New_Id := Prev;
16616 end if;
16618 -- Verify that full declaration conforms to partial one
16620 if Is_Incomplete_Or_Private_Type (Prev)
16621 and then Present (Discriminant_Specifications (Prev_Par))
16622 then
16623 if Present (Discriminant_Specifications (N)) then
16624 if Ekind (Prev) = E_Incomplete_Type then
16625 Check_Discriminant_Conformance (N, Prev, Prev);
16626 else
16627 Check_Discriminant_Conformance (N, Prev, Id);
16628 end if;
16630 else
16631 Error_Msg_N
16632 ("missing discriminants in full type declaration", N);
16634 -- To avoid cascaded errors on subsequent use, share the
16635 -- discriminants of the partial view.
16637 Set_Discriminant_Specifications (N,
16638 Discriminant_Specifications (Prev_Par));
16639 end if;
16640 end if;
16642 -- A prior untagged partial view can have an associated class-wide
16643 -- type due to use of the class attribute, and in this case the full
16644 -- type must also be tagged. This Ada 95 usage is deprecated in favor
16645 -- of incomplete tagged declarations, but we check for it.
16647 if Is_Type (Prev)
16648 and then (Is_Tagged_Type (Prev)
16649 or else Present (Class_Wide_Type (Prev)))
16650 then
16651 -- Ada 2012 (AI05-0162): A private type may be the completion of
16652 -- an incomplete type.
16654 if Ada_Version >= Ada_2012
16655 and then Is_Incomplete_Type (Prev)
16656 and then Nkind_In (N, N_Private_Type_Declaration,
16657 N_Private_Extension_Declaration)
16658 then
16659 -- No need to check private extensions since they are tagged
16661 if Nkind (N) = N_Private_Type_Declaration
16662 and then not Tagged_Present (N)
16663 then
16664 Tag_Mismatch;
16665 end if;
16667 -- The full declaration is either a tagged type (including
16668 -- a synchronized type that implements interfaces) or a
16669 -- type extension, otherwise this is an error.
16671 elsif Nkind_In (N, N_Task_Type_Declaration,
16672 N_Protected_Type_Declaration)
16673 then
16674 if No (Interface_List (N)) and then not Error_Posted (N) then
16675 Tag_Mismatch;
16676 end if;
16678 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
16680 -- Indicate that the previous declaration (tagged incomplete
16681 -- or private declaration) requires the same on the full one.
16683 if not Tagged_Present (Type_Definition (N)) then
16684 Tag_Mismatch;
16685 Set_Is_Tagged_Type (Id);
16686 end if;
16688 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
16689 if No (Record_Extension_Part (Type_Definition (N))) then
16690 Error_Msg_NE
16691 ("full declaration of } must be a record extension",
16692 Prev, Id);
16694 -- Set some attributes to produce a usable full view
16696 Set_Is_Tagged_Type (Id);
16697 end if;
16699 else
16700 Tag_Mismatch;
16701 end if;
16702 end if;
16704 if Present (Prev)
16705 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
16706 and then Present (Premature_Use (Parent (Prev)))
16707 then
16708 Error_Msg_Sloc := Sloc (N);
16709 Error_Msg_N
16710 ("\full declaration #", Premature_Use (Parent (Prev)));
16711 end if;
16713 return New_Id;
16714 end if;
16715 end Find_Type_Name;
16717 -------------------------
16718 -- Find_Type_Of_Object --
16719 -------------------------
16721 function Find_Type_Of_Object
16722 (Obj_Def : Node_Id;
16723 Related_Nod : Node_Id) return Entity_Id
16725 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
16726 P : Node_Id := Parent (Obj_Def);
16727 T : Entity_Id;
16728 Nam : Name_Id;
16730 begin
16731 -- If the parent is a component_definition node we climb to the
16732 -- component_declaration node
16734 if Nkind (P) = N_Component_Definition then
16735 P := Parent (P);
16736 end if;
16738 -- Case of an anonymous array subtype
16740 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
16741 N_Unconstrained_Array_Definition)
16742 then
16743 T := Empty;
16744 Array_Type_Declaration (T, Obj_Def);
16746 -- Create an explicit subtype whenever possible
16748 elsif Nkind (P) /= N_Component_Declaration
16749 and then Def_Kind = N_Subtype_Indication
16750 then
16751 -- Base name of subtype on object name, which will be unique in
16752 -- the current scope.
16754 -- If this is a duplicate declaration, return base type, to avoid
16755 -- generating duplicate anonymous types.
16757 if Error_Posted (P) then
16758 Analyze (Subtype_Mark (Obj_Def));
16759 return Entity (Subtype_Mark (Obj_Def));
16760 end if;
16762 Nam :=
16763 New_External_Name
16764 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
16766 T := Make_Defining_Identifier (Sloc (P), Nam);
16768 Insert_Action (Obj_Def,
16769 Make_Subtype_Declaration (Sloc (P),
16770 Defining_Identifier => T,
16771 Subtype_Indication => Relocate_Node (Obj_Def)));
16773 -- This subtype may need freezing, and this will not be done
16774 -- automatically if the object declaration is not in declarative
16775 -- part. Since this is an object declaration, the type cannot always
16776 -- be frozen here. Deferred constants do not freeze their type
16777 -- (which often enough will be private).
16779 if Nkind (P) = N_Object_Declaration
16780 and then Constant_Present (P)
16781 and then No (Expression (P))
16782 then
16783 null;
16785 -- Here we freeze the base type of object type to catch premature use
16786 -- of discriminated private type without a full view.
16788 else
16789 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
16790 end if;
16792 -- Ada 2005 AI-406: the object definition in an object declaration
16793 -- can be an access definition.
16795 elsif Def_Kind = N_Access_Definition then
16796 T := Access_Definition (Related_Nod, Obj_Def);
16798 Set_Is_Local_Anonymous_Access
16800 V => (Ada_Version < Ada_2012)
16801 or else (Nkind (P) /= N_Object_Declaration)
16802 or else Is_Library_Level_Entity (Defining_Identifier (P)));
16804 -- Otherwise, the object definition is just a subtype_mark
16806 else
16807 T := Process_Subtype (Obj_Def, Related_Nod);
16809 -- If expansion is disabled an object definition that is an aggregate
16810 -- will not get expanded and may lead to scoping problems in the back
16811 -- end, if the object is referenced in an inner scope. In that case
16812 -- create an itype reference for the object definition now. This
16813 -- may be redundant in some cases, but harmless.
16815 if Is_Itype (T)
16816 and then Nkind (Related_Nod) = N_Object_Declaration
16817 and then ASIS_Mode
16818 then
16819 Build_Itype_Reference (T, Related_Nod);
16820 end if;
16821 end if;
16823 return T;
16824 end Find_Type_Of_Object;
16826 --------------------------------
16827 -- Find_Type_Of_Subtype_Indic --
16828 --------------------------------
16830 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
16831 Typ : Entity_Id;
16833 begin
16834 -- Case of subtype mark with a constraint
16836 if Nkind (S) = N_Subtype_Indication then
16837 Find_Type (Subtype_Mark (S));
16838 Typ := Entity (Subtype_Mark (S));
16840 if not
16841 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
16842 then
16843 Error_Msg_N
16844 ("incorrect constraint for this kind of type", Constraint (S));
16845 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
16846 end if;
16848 -- Otherwise we have a subtype mark without a constraint
16850 elsif Error_Posted (S) then
16851 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
16852 return Any_Type;
16854 else
16855 Find_Type (S);
16856 Typ := Entity (S);
16857 end if;
16859 -- Check No_Wide_Characters restriction
16861 Check_Wide_Character_Restriction (Typ, S);
16863 return Typ;
16864 end Find_Type_Of_Subtype_Indic;
16866 -------------------------------------
16867 -- Floating_Point_Type_Declaration --
16868 -------------------------------------
16870 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16871 Digs : constant Node_Id := Digits_Expression (Def);
16872 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
16873 Digs_Val : Uint;
16874 Base_Typ : Entity_Id;
16875 Implicit_Base : Entity_Id;
16876 Bound : Node_Id;
16878 function Can_Derive_From (E : Entity_Id) return Boolean;
16879 -- Find if given digits value, and possibly a specified range, allows
16880 -- derivation from specified type
16882 function Find_Base_Type return Entity_Id;
16883 -- Find a predefined base type that Def can derive from, or generate
16884 -- an error and substitute Long_Long_Float if none exists.
16886 ---------------------
16887 -- Can_Derive_From --
16888 ---------------------
16890 function Can_Derive_From (E : Entity_Id) return Boolean is
16891 Spec : constant Entity_Id := Real_Range_Specification (Def);
16893 begin
16894 -- Check specified "digits" constraint
16896 if Digs_Val > Digits_Value (E) then
16897 return False;
16898 end if;
16900 -- Check for matching range, if specified
16902 if Present (Spec) then
16903 if Expr_Value_R (Type_Low_Bound (E)) >
16904 Expr_Value_R (Low_Bound (Spec))
16905 then
16906 return False;
16907 end if;
16909 if Expr_Value_R (Type_High_Bound (E)) <
16910 Expr_Value_R (High_Bound (Spec))
16911 then
16912 return False;
16913 end if;
16914 end if;
16916 return True;
16917 end Can_Derive_From;
16919 --------------------
16920 -- Find_Base_Type --
16921 --------------------
16923 function Find_Base_Type return Entity_Id is
16924 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
16926 begin
16927 -- Iterate over the predefined types in order, returning the first
16928 -- one that Def can derive from.
16930 while Present (Choice) loop
16931 if Can_Derive_From (Node (Choice)) then
16932 return Node (Choice);
16933 end if;
16935 Next_Elmt (Choice);
16936 end loop;
16938 -- If we can't derive from any existing type, use Long_Long_Float
16939 -- and give appropriate message explaining the problem.
16941 if Digs_Val > Max_Digs_Val then
16942 -- It might be the case that there is a type with the requested
16943 -- range, just not the combination of digits and range.
16945 Error_Msg_N
16946 ("no predefined type has requested range and precision",
16947 Real_Range_Specification (Def));
16949 else
16950 Error_Msg_N
16951 ("range too large for any predefined type",
16952 Real_Range_Specification (Def));
16953 end if;
16955 return Standard_Long_Long_Float;
16956 end Find_Base_Type;
16958 -- Start of processing for Floating_Point_Type_Declaration
16960 begin
16961 Check_Restriction (No_Floating_Point, Def);
16963 -- Create an implicit base type
16965 Implicit_Base :=
16966 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
16968 -- Analyze and verify digits value
16970 Analyze_And_Resolve (Digs, Any_Integer);
16971 Check_Digits_Expression (Digs);
16972 Digs_Val := Expr_Value (Digs);
16974 -- Process possible range spec and find correct type to derive from
16976 Process_Real_Range_Specification (Def);
16978 -- Check that requested number of digits is not too high.
16980 if Digs_Val > Max_Digs_Val then
16982 -- The check for Max_Base_Digits may be somewhat expensive, as it
16983 -- requires reading System, so only do it when necessary.
16985 declare
16986 Max_Base_Digits : constant Uint :=
16987 Expr_Value
16988 (Expression
16989 (Parent (RTE (RE_Max_Base_Digits))));
16991 begin
16992 if Digs_Val > Max_Base_Digits then
16993 Error_Msg_Uint_1 := Max_Base_Digits;
16994 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
16996 elsif No (Real_Range_Specification (Def)) then
16997 Error_Msg_Uint_1 := Max_Digs_Val;
16998 Error_Msg_N ("types with more than ^ digits need range spec "
16999 & "(RM 3.5.7(6))", Digs);
17000 end if;
17001 end;
17002 end if;
17004 -- Find a suitable type to derive from or complain and use a substitute
17006 Base_Typ := Find_Base_Type;
17008 -- If there are bounds given in the declaration use them as the bounds
17009 -- of the type, otherwise use the bounds of the predefined base type
17010 -- that was chosen based on the Digits value.
17012 if Present (Real_Range_Specification (Def)) then
17013 Set_Scalar_Range (T, Real_Range_Specification (Def));
17014 Set_Is_Constrained (T);
17016 -- The bounds of this range must be converted to machine numbers
17017 -- in accordance with RM 4.9(38).
17019 Bound := Type_Low_Bound (T);
17021 if Nkind (Bound) = N_Real_Literal then
17022 Set_Realval
17023 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17024 Set_Is_Machine_Number (Bound);
17025 end if;
17027 Bound := Type_High_Bound (T);
17029 if Nkind (Bound) = N_Real_Literal then
17030 Set_Realval
17031 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17032 Set_Is_Machine_Number (Bound);
17033 end if;
17035 else
17036 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17037 end if;
17039 -- Complete definition of implicit base and declared first subtype. The
17040 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17041 -- are not clobbered when the floating point type acts as a full view of
17042 -- a private type.
17044 Set_Etype (Implicit_Base, Base_Typ);
17045 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17046 Set_Size_Info (Implicit_Base, Base_Typ);
17047 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17048 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17049 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17050 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17052 Set_Ekind (T, E_Floating_Point_Subtype);
17053 Set_Etype (T, Implicit_Base);
17054 Set_Size_Info (T, Implicit_Base);
17055 Set_RM_Size (T, RM_Size (Implicit_Base));
17056 Inherit_Rep_Item_Chain (T, Implicit_Base);
17057 Set_Digits_Value (T, Digs_Val);
17058 end Floating_Point_Type_Declaration;
17060 ----------------------------
17061 -- Get_Discriminant_Value --
17062 ----------------------------
17064 -- This is the situation:
17066 -- There is a non-derived type
17068 -- type T0 (Dx, Dy, Dz...)
17070 -- There are zero or more levels of derivation, with each derivation
17071 -- either purely inheriting the discriminants, or defining its own.
17073 -- type Ti is new Ti-1
17074 -- or
17075 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17076 -- or
17077 -- subtype Ti is ...
17079 -- The subtype issue is avoided by the use of Original_Record_Component,
17080 -- and the fact that derived subtypes also derive the constraints.
17082 -- This chain leads back from
17084 -- Typ_For_Constraint
17086 -- Typ_For_Constraint has discriminants, and the value for each
17087 -- discriminant is given by its corresponding Elmt of Constraints.
17089 -- Discriminant is some discriminant in this hierarchy
17091 -- We need to return its value
17093 -- We do this by recursively searching each level, and looking for
17094 -- Discriminant. Once we get to the bottom, we start backing up
17095 -- returning the value for it which may in turn be a discriminant
17096 -- further up, so on the backup we continue the substitution.
17098 function Get_Discriminant_Value
17099 (Discriminant : Entity_Id;
17100 Typ_For_Constraint : Entity_Id;
17101 Constraint : Elist_Id) return Node_Id
17103 function Root_Corresponding_Discriminant
17104 (Discr : Entity_Id) return Entity_Id;
17105 -- Given a discriminant, traverse the chain of inherited discriminants
17106 -- and return the topmost discriminant.
17108 function Search_Derivation_Levels
17109 (Ti : Entity_Id;
17110 Discrim_Values : Elist_Id;
17111 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17112 -- This is the routine that performs the recursive search of levels
17113 -- as described above.
17115 -------------------------------------
17116 -- Root_Corresponding_Discriminant --
17117 -------------------------------------
17119 function Root_Corresponding_Discriminant
17120 (Discr : Entity_Id) return Entity_Id
17122 D : Entity_Id;
17124 begin
17125 D := Discr;
17126 while Present (Corresponding_Discriminant (D)) loop
17127 D := Corresponding_Discriminant (D);
17128 end loop;
17130 return D;
17131 end Root_Corresponding_Discriminant;
17133 ------------------------------
17134 -- Search_Derivation_Levels --
17135 ------------------------------
17137 function Search_Derivation_Levels
17138 (Ti : Entity_Id;
17139 Discrim_Values : Elist_Id;
17140 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17142 Assoc : Elmt_Id;
17143 Disc : Entity_Id;
17144 Result : Node_Or_Entity_Id;
17145 Result_Entity : Node_Id;
17147 begin
17148 -- If inappropriate type, return Error, this happens only in
17149 -- cascaded error situations, and we want to avoid a blow up.
17151 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17152 return Error;
17153 end if;
17155 -- Look deeper if possible. Use Stored_Constraints only for
17156 -- untagged types. For tagged types use the given constraint.
17157 -- This asymmetry needs explanation???
17159 if not Stored_Discrim_Values
17160 and then Present (Stored_Constraint (Ti))
17161 and then not Is_Tagged_Type (Ti)
17162 then
17163 Result :=
17164 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17165 else
17166 declare
17167 Td : constant Entity_Id := Etype (Ti);
17169 begin
17170 if Td = Ti then
17171 Result := Discriminant;
17173 else
17174 if Present (Stored_Constraint (Ti)) then
17175 Result :=
17176 Search_Derivation_Levels
17177 (Td, Stored_Constraint (Ti), True);
17178 else
17179 Result :=
17180 Search_Derivation_Levels
17181 (Td, Discrim_Values, Stored_Discrim_Values);
17182 end if;
17183 end if;
17184 end;
17185 end if;
17187 -- Extra underlying places to search, if not found above. For
17188 -- concurrent types, the relevant discriminant appears in the
17189 -- corresponding record. For a type derived from a private type
17190 -- without discriminant, the full view inherits the discriminants
17191 -- of the full view of the parent.
17193 if Result = Discriminant then
17194 if Is_Concurrent_Type (Ti)
17195 and then Present (Corresponding_Record_Type (Ti))
17196 then
17197 Result :=
17198 Search_Derivation_Levels (
17199 Corresponding_Record_Type (Ti),
17200 Discrim_Values,
17201 Stored_Discrim_Values);
17203 elsif Is_Private_Type (Ti)
17204 and then not Has_Discriminants (Ti)
17205 and then Present (Full_View (Ti))
17206 and then Etype (Full_View (Ti)) /= Ti
17207 then
17208 Result :=
17209 Search_Derivation_Levels (
17210 Full_View (Ti),
17211 Discrim_Values,
17212 Stored_Discrim_Values);
17213 end if;
17214 end if;
17216 -- If Result is not a (reference to a) discriminant, return it,
17217 -- otherwise set Result_Entity to the discriminant.
17219 if Nkind (Result) = N_Defining_Identifier then
17220 pragma Assert (Result = Discriminant);
17221 Result_Entity := Result;
17223 else
17224 if not Denotes_Discriminant (Result) then
17225 return Result;
17226 end if;
17228 Result_Entity := Entity (Result);
17229 end if;
17231 -- See if this level of derivation actually has discriminants because
17232 -- tagged derivations can add them, hence the lower levels need not
17233 -- have any.
17235 if not Has_Discriminants (Ti) then
17236 return Result;
17237 end if;
17239 -- Scan Ti's discriminants for Result_Entity, and return its
17240 -- corresponding value, if any.
17242 Result_Entity := Original_Record_Component (Result_Entity);
17244 Assoc := First_Elmt (Discrim_Values);
17246 if Stored_Discrim_Values then
17247 Disc := First_Stored_Discriminant (Ti);
17248 else
17249 Disc := First_Discriminant (Ti);
17250 end if;
17252 while Present (Disc) loop
17253 pragma Assert (Present (Assoc));
17255 if Original_Record_Component (Disc) = Result_Entity then
17256 return Node (Assoc);
17257 end if;
17259 Next_Elmt (Assoc);
17261 if Stored_Discrim_Values then
17262 Next_Stored_Discriminant (Disc);
17263 else
17264 Next_Discriminant (Disc);
17265 end if;
17266 end loop;
17268 -- Could not find it
17270 return Result;
17271 end Search_Derivation_Levels;
17273 -- Local Variables
17275 Result : Node_Or_Entity_Id;
17277 -- Start of processing for Get_Discriminant_Value
17279 begin
17280 -- ??? This routine is a gigantic mess and will be deleted. For the
17281 -- time being just test for the trivial case before calling recurse.
17283 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17284 declare
17285 D : Entity_Id;
17286 E : Elmt_Id;
17288 begin
17289 D := First_Discriminant (Typ_For_Constraint);
17290 E := First_Elmt (Constraint);
17291 while Present (D) loop
17292 if Chars (D) = Chars (Discriminant) then
17293 return Node (E);
17294 end if;
17296 Next_Discriminant (D);
17297 Next_Elmt (E);
17298 end loop;
17299 end;
17300 end if;
17302 Result := Search_Derivation_Levels
17303 (Typ_For_Constraint, Constraint, False);
17305 -- ??? hack to disappear when this routine is gone
17307 if Nkind (Result) = N_Defining_Identifier then
17308 declare
17309 D : Entity_Id;
17310 E : Elmt_Id;
17312 begin
17313 D := First_Discriminant (Typ_For_Constraint);
17314 E := First_Elmt (Constraint);
17315 while Present (D) loop
17316 if Root_Corresponding_Discriminant (D) = Discriminant then
17317 return Node (E);
17318 end if;
17320 Next_Discriminant (D);
17321 Next_Elmt (E);
17322 end loop;
17323 end;
17324 end if;
17326 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
17327 return Result;
17328 end Get_Discriminant_Value;
17330 --------------------------
17331 -- Has_Range_Constraint --
17332 --------------------------
17334 function Has_Range_Constraint (N : Node_Id) return Boolean is
17335 C : constant Node_Id := Constraint (N);
17337 begin
17338 if Nkind (C) = N_Range_Constraint then
17339 return True;
17341 elsif Nkind (C) = N_Digits_Constraint then
17342 return
17343 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
17344 or else Present (Range_Constraint (C));
17346 elsif Nkind (C) = N_Delta_Constraint then
17347 return Present (Range_Constraint (C));
17349 else
17350 return False;
17351 end if;
17352 end Has_Range_Constraint;
17354 ------------------------
17355 -- Inherit_Components --
17356 ------------------------
17358 function Inherit_Components
17359 (N : Node_Id;
17360 Parent_Base : Entity_Id;
17361 Derived_Base : Entity_Id;
17362 Is_Tagged : Boolean;
17363 Inherit_Discr : Boolean;
17364 Discs : Elist_Id) return Elist_Id
17366 Assoc_List : constant Elist_Id := New_Elmt_List;
17368 procedure Inherit_Component
17369 (Old_C : Entity_Id;
17370 Plain_Discrim : Boolean := False;
17371 Stored_Discrim : Boolean := False);
17372 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
17373 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
17374 -- True, Old_C is a stored discriminant. If they are both false then
17375 -- Old_C is a regular component.
17377 -----------------------
17378 -- Inherit_Component --
17379 -----------------------
17381 procedure Inherit_Component
17382 (Old_C : Entity_Id;
17383 Plain_Discrim : Boolean := False;
17384 Stored_Discrim : Boolean := False)
17386 procedure Set_Anonymous_Type (Id : Entity_Id);
17387 -- Id denotes the entity of an access discriminant or anonymous
17388 -- access component. Set the type of Id to either the same type of
17389 -- Old_C or create a new one depending on whether the parent and
17390 -- the child types are in the same scope.
17392 ------------------------
17393 -- Set_Anonymous_Type --
17394 ------------------------
17396 procedure Set_Anonymous_Type (Id : Entity_Id) is
17397 Old_Typ : constant Entity_Id := Etype (Old_C);
17399 begin
17400 if Scope (Parent_Base) = Scope (Derived_Base) then
17401 Set_Etype (Id, Old_Typ);
17403 -- The parent and the derived type are in two different scopes.
17404 -- Reuse the type of the original discriminant / component by
17405 -- copying it in order to preserve all attributes.
17407 else
17408 declare
17409 Typ : constant Entity_Id := New_Copy (Old_Typ);
17411 begin
17412 Set_Etype (Id, Typ);
17414 -- Since we do not generate component declarations for
17415 -- inherited components, associate the itype with the
17416 -- derived type.
17418 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
17419 Set_Scope (Typ, Derived_Base);
17420 end;
17421 end if;
17422 end Set_Anonymous_Type;
17424 -- Local variables and constants
17426 New_C : constant Entity_Id := New_Copy (Old_C);
17428 Corr_Discrim : Entity_Id;
17429 Discrim : Entity_Id;
17431 -- Start of processing for Inherit_Component
17433 begin
17434 pragma Assert (not Is_Tagged or not Stored_Discrim);
17436 Set_Parent (New_C, Parent (Old_C));
17438 -- Regular discriminants and components must be inserted in the scope
17439 -- of the Derived_Base. Do it here.
17441 if not Stored_Discrim then
17442 Enter_Name (New_C);
17443 end if;
17445 -- For tagged types the Original_Record_Component must point to
17446 -- whatever this field was pointing to in the parent type. This has
17447 -- already been achieved by the call to New_Copy above.
17449 if not Is_Tagged then
17450 Set_Original_Record_Component (New_C, New_C);
17451 end if;
17453 -- Set the proper type of an access discriminant
17455 if Ekind (New_C) = E_Discriminant
17456 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
17457 then
17458 Set_Anonymous_Type (New_C);
17459 end if;
17461 -- If we have inherited a component then see if its Etype contains
17462 -- references to Parent_Base discriminants. In this case, replace
17463 -- these references with the constraints given in Discs. We do not
17464 -- do this for the partial view of private types because this is
17465 -- not needed (only the components of the full view will be used
17466 -- for code generation) and cause problem. We also avoid this
17467 -- transformation in some error situations.
17469 if Ekind (New_C) = E_Component then
17471 -- Set the proper type of an anonymous access component
17473 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
17474 Set_Anonymous_Type (New_C);
17476 elsif (Is_Private_Type (Derived_Base)
17477 and then not Is_Generic_Type (Derived_Base))
17478 or else (Is_Empty_Elmt_List (Discs)
17479 and then not Expander_Active)
17480 then
17481 Set_Etype (New_C, Etype (Old_C));
17483 else
17484 -- The current component introduces a circularity of the
17485 -- following kind:
17487 -- limited with Pack_2;
17488 -- package Pack_1 is
17489 -- type T_1 is tagged record
17490 -- Comp : access Pack_2.T_2;
17491 -- ...
17492 -- end record;
17493 -- end Pack_1;
17495 -- with Pack_1;
17496 -- package Pack_2 is
17497 -- type T_2 is new Pack_1.T_1 with ...;
17498 -- end Pack_2;
17500 Set_Etype
17501 (New_C,
17502 Constrain_Component_Type
17503 (Old_C, Derived_Base, N, Parent_Base, Discs));
17504 end if;
17505 end if;
17507 -- In derived tagged types it is illegal to reference a non
17508 -- discriminant component in the parent type. To catch this, mark
17509 -- these components with an Ekind of E_Void. This will be reset in
17510 -- Record_Type_Definition after processing the record extension of
17511 -- the derived type.
17513 -- If the declaration is a private extension, there is no further
17514 -- record extension to process, and the components retain their
17515 -- current kind, because they are visible at this point.
17517 if Is_Tagged and then Ekind (New_C) = E_Component
17518 and then Nkind (N) /= N_Private_Extension_Declaration
17519 then
17520 Set_Ekind (New_C, E_Void);
17521 end if;
17523 if Plain_Discrim then
17524 Set_Corresponding_Discriminant (New_C, Old_C);
17525 Build_Discriminal (New_C);
17527 -- If we are explicitly inheriting a stored discriminant it will be
17528 -- completely hidden.
17530 elsif Stored_Discrim then
17531 Set_Corresponding_Discriminant (New_C, Empty);
17532 Set_Discriminal (New_C, Empty);
17533 Set_Is_Completely_Hidden (New_C);
17535 -- Set the Original_Record_Component of each discriminant in the
17536 -- derived base to point to the corresponding stored that we just
17537 -- created.
17539 Discrim := First_Discriminant (Derived_Base);
17540 while Present (Discrim) loop
17541 Corr_Discrim := Corresponding_Discriminant (Discrim);
17543 -- Corr_Discrim could be missing in an error situation
17545 if Present (Corr_Discrim)
17546 and then Original_Record_Component (Corr_Discrim) = Old_C
17547 then
17548 Set_Original_Record_Component (Discrim, New_C);
17549 end if;
17551 Next_Discriminant (Discrim);
17552 end loop;
17554 Append_Entity (New_C, Derived_Base);
17555 end if;
17557 if not Is_Tagged then
17558 Append_Elmt (Old_C, Assoc_List);
17559 Append_Elmt (New_C, Assoc_List);
17560 end if;
17561 end Inherit_Component;
17563 -- Variables local to Inherit_Component
17565 Loc : constant Source_Ptr := Sloc (N);
17567 Parent_Discrim : Entity_Id;
17568 Stored_Discrim : Entity_Id;
17569 D : Entity_Id;
17570 Component : Entity_Id;
17572 -- Start of processing for Inherit_Components
17574 begin
17575 if not Is_Tagged then
17576 Append_Elmt (Parent_Base, Assoc_List);
17577 Append_Elmt (Derived_Base, Assoc_List);
17578 end if;
17580 -- Inherit parent discriminants if needed
17582 if Inherit_Discr then
17583 Parent_Discrim := First_Discriminant (Parent_Base);
17584 while Present (Parent_Discrim) loop
17585 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
17586 Next_Discriminant (Parent_Discrim);
17587 end loop;
17588 end if;
17590 -- Create explicit stored discrims for untagged types when necessary
17592 if not Has_Unknown_Discriminants (Derived_Base)
17593 and then Has_Discriminants (Parent_Base)
17594 and then not Is_Tagged
17595 and then
17596 (not Inherit_Discr
17597 or else First_Discriminant (Parent_Base) /=
17598 First_Stored_Discriminant (Parent_Base))
17599 then
17600 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
17601 while Present (Stored_Discrim) loop
17602 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
17603 Next_Stored_Discriminant (Stored_Discrim);
17604 end loop;
17605 end if;
17607 -- See if we can apply the second transformation for derived types, as
17608 -- explained in point 6. in the comments above Build_Derived_Record_Type
17609 -- This is achieved by appending Derived_Base discriminants into Discs,
17610 -- which has the side effect of returning a non empty Discs list to the
17611 -- caller of Inherit_Components, which is what we want. This must be
17612 -- done for private derived types if there are explicit stored
17613 -- discriminants, to ensure that we can retrieve the values of the
17614 -- constraints provided in the ancestors.
17616 if Inherit_Discr
17617 and then Is_Empty_Elmt_List (Discs)
17618 and then Present (First_Discriminant (Derived_Base))
17619 and then
17620 (not Is_Private_Type (Derived_Base)
17621 or else Is_Completely_Hidden
17622 (First_Stored_Discriminant (Derived_Base))
17623 or else Is_Generic_Type (Derived_Base))
17624 then
17625 D := First_Discriminant (Derived_Base);
17626 while Present (D) loop
17627 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
17628 Next_Discriminant (D);
17629 end loop;
17630 end if;
17632 -- Finally, inherit non-discriminant components unless they are not
17633 -- visible because defined or inherited from the full view of the
17634 -- parent. Don't inherit the _parent field of the parent type.
17636 Component := First_Entity (Parent_Base);
17637 while Present (Component) loop
17639 -- Ada 2005 (AI-251): Do not inherit components associated with
17640 -- secondary tags of the parent.
17642 if Ekind (Component) = E_Component
17643 and then Present (Related_Type (Component))
17644 then
17645 null;
17647 elsif Ekind (Component) /= E_Component
17648 or else Chars (Component) = Name_uParent
17649 then
17650 null;
17652 -- If the derived type is within the parent type's declarative
17653 -- region, then the components can still be inherited even though
17654 -- they aren't visible at this point. This can occur for cases
17655 -- such as within public child units where the components must
17656 -- become visible upon entering the child unit's private part.
17658 elsif not Is_Visible_Component (Component)
17659 and then not In_Open_Scopes (Scope (Parent_Base))
17660 then
17661 null;
17663 elsif Ekind_In (Derived_Base, E_Private_Type,
17664 E_Limited_Private_Type)
17665 then
17666 null;
17668 else
17669 Inherit_Component (Component);
17670 end if;
17672 Next_Entity (Component);
17673 end loop;
17675 -- For tagged derived types, inherited discriminants cannot be used in
17676 -- component declarations of the record extension part. To achieve this
17677 -- we mark the inherited discriminants as not visible.
17679 if Is_Tagged and then Inherit_Discr then
17680 D := First_Discriminant (Derived_Base);
17681 while Present (D) loop
17682 Set_Is_Immediately_Visible (D, False);
17683 Next_Discriminant (D);
17684 end loop;
17685 end if;
17687 return Assoc_List;
17688 end Inherit_Components;
17690 -----------------------------
17691 -- Inherit_Predicate_Flags --
17692 -----------------------------
17694 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
17695 begin
17696 Set_Has_Predicates (Subt, Has_Predicates (Par));
17697 Set_Has_Static_Predicate_Aspect
17698 (Subt, Has_Static_Predicate_Aspect (Par));
17699 Set_Has_Dynamic_Predicate_Aspect
17700 (Subt, Has_Dynamic_Predicate_Aspect (Par));
17701 end Inherit_Predicate_Flags;
17703 ----------------------
17704 -- Is_EVF_Procedure --
17705 ----------------------
17707 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
17708 Formal : Entity_Id;
17710 begin
17711 -- Examine the formals of an Extensions_Visible False procedure looking
17712 -- for a controlling OUT parameter.
17714 if Ekind (Subp) = E_Procedure
17715 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
17716 then
17717 Formal := First_Formal (Subp);
17718 while Present (Formal) loop
17719 if Ekind (Formal) = E_Out_Parameter
17720 and then Is_Controlling_Formal (Formal)
17721 then
17722 return True;
17723 end if;
17725 Next_Formal (Formal);
17726 end loop;
17727 end if;
17729 return False;
17730 end Is_EVF_Procedure;
17732 -----------------------
17733 -- Is_Null_Extension --
17734 -----------------------
17736 function Is_Null_Extension (T : Entity_Id) return Boolean is
17737 Type_Decl : constant Node_Id := Parent (Base_Type (T));
17738 Comp_List : Node_Id;
17739 Comp : Node_Id;
17741 begin
17742 if Nkind (Type_Decl) /= N_Full_Type_Declaration
17743 or else not Is_Tagged_Type (T)
17744 or else Nkind (Type_Definition (Type_Decl)) /=
17745 N_Derived_Type_Definition
17746 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
17747 then
17748 return False;
17749 end if;
17751 Comp_List :=
17752 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
17754 if Present (Discriminant_Specifications (Type_Decl)) then
17755 return False;
17757 elsif Present (Comp_List)
17758 and then Is_Non_Empty_List (Component_Items (Comp_List))
17759 then
17760 Comp := First (Component_Items (Comp_List));
17762 -- Only user-defined components are relevant. The component list
17763 -- may also contain a parent component and internal components
17764 -- corresponding to secondary tags, but these do not determine
17765 -- whether this is a null extension.
17767 while Present (Comp) loop
17768 if Comes_From_Source (Comp) then
17769 return False;
17770 end if;
17772 Next (Comp);
17773 end loop;
17775 return True;
17777 else
17778 return True;
17779 end if;
17780 end Is_Null_Extension;
17782 ------------------------------
17783 -- Is_Valid_Constraint_Kind --
17784 ------------------------------
17786 function Is_Valid_Constraint_Kind
17787 (T_Kind : Type_Kind;
17788 Constraint_Kind : Node_Kind) return Boolean
17790 begin
17791 case T_Kind is
17792 when Enumeration_Kind |
17793 Integer_Kind =>
17794 return Constraint_Kind = N_Range_Constraint;
17796 when Decimal_Fixed_Point_Kind =>
17797 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17798 N_Range_Constraint);
17800 when Ordinary_Fixed_Point_Kind =>
17801 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
17802 N_Range_Constraint);
17804 when Float_Kind =>
17805 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
17806 N_Range_Constraint);
17808 when Access_Kind |
17809 Array_Kind |
17810 E_Record_Type |
17811 E_Record_Subtype |
17812 Class_Wide_Kind |
17813 E_Incomplete_Type |
17814 Private_Kind |
17815 Concurrent_Kind =>
17816 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
17818 when others =>
17819 return True; -- Error will be detected later
17820 end case;
17821 end Is_Valid_Constraint_Kind;
17823 --------------------------
17824 -- Is_Visible_Component --
17825 --------------------------
17827 function Is_Visible_Component
17828 (C : Entity_Id;
17829 N : Node_Id := Empty) return Boolean
17831 Original_Comp : Entity_Id := Empty;
17832 Original_Type : Entity_Id;
17833 Type_Scope : Entity_Id;
17835 function Is_Local_Type (Typ : Entity_Id) return Boolean;
17836 -- Check whether parent type of inherited component is declared locally,
17837 -- possibly within a nested package or instance. The current scope is
17838 -- the derived record itself.
17840 -------------------
17841 -- Is_Local_Type --
17842 -------------------
17844 function Is_Local_Type (Typ : Entity_Id) return Boolean is
17845 Scop : Entity_Id;
17847 begin
17848 Scop := Scope (Typ);
17849 while Present (Scop)
17850 and then Scop /= Standard_Standard
17851 loop
17852 if Scop = Scope (Current_Scope) then
17853 return True;
17854 end if;
17856 Scop := Scope (Scop);
17857 end loop;
17859 return False;
17860 end Is_Local_Type;
17862 -- Start of processing for Is_Visible_Component
17864 begin
17865 if Ekind_In (C, E_Component, E_Discriminant) then
17866 Original_Comp := Original_Record_Component (C);
17867 end if;
17869 if No (Original_Comp) then
17871 -- Premature usage, or previous error
17873 return False;
17875 else
17876 Original_Type := Scope (Original_Comp);
17877 Type_Scope := Scope (Base_Type (Scope (C)));
17878 end if;
17880 -- This test only concerns tagged types
17882 if not Is_Tagged_Type (Original_Type) then
17883 return True;
17885 -- If it is _Parent or _Tag, there is no visibility issue
17887 elsif not Comes_From_Source (Original_Comp) then
17888 return True;
17890 -- Discriminants are visible unless the (private) type has unknown
17891 -- discriminants. If the discriminant reference is inserted for a
17892 -- discriminant check on a full view it is also visible.
17894 elsif Ekind (Original_Comp) = E_Discriminant
17895 and then
17896 (not Has_Unknown_Discriminants (Original_Type)
17897 or else (Present (N)
17898 and then Nkind (N) = N_Selected_Component
17899 and then Nkind (Prefix (N)) = N_Type_Conversion
17900 and then not Comes_From_Source (Prefix (N))))
17901 then
17902 return True;
17904 -- In the body of an instantiation, no need to check for the visibility
17905 -- of a component.
17907 elsif In_Instance_Body then
17908 return True;
17910 -- If the component has been declared in an ancestor which is currently
17911 -- a private type, then it is not visible. The same applies if the
17912 -- component's containing type is not in an open scope and the original
17913 -- component's enclosing type is a visible full view of a private type
17914 -- (which can occur in cases where an attempt is being made to reference
17915 -- a component in a sibling package that is inherited from a visible
17916 -- component of a type in an ancestor package; the component in the
17917 -- sibling package should not be visible even though the component it
17918 -- inherited from is visible). This does not apply however in the case
17919 -- where the scope of the type is a private child unit, or when the
17920 -- parent comes from a local package in which the ancestor is currently
17921 -- visible. The latter suppression of visibility is needed for cases
17922 -- that are tested in B730006.
17924 elsif Is_Private_Type (Original_Type)
17925 or else
17926 (not Is_Private_Descendant (Type_Scope)
17927 and then not In_Open_Scopes (Type_Scope)
17928 and then Has_Private_Declaration (Original_Type))
17929 then
17930 -- If the type derives from an entity in a formal package, there
17931 -- are no additional visible components.
17933 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
17934 N_Formal_Package_Declaration
17935 then
17936 return False;
17938 -- if we are not in the private part of the current package, there
17939 -- are no additional visible components.
17941 elsif Ekind (Scope (Current_Scope)) = E_Package
17942 and then not In_Private_Part (Scope (Current_Scope))
17943 then
17944 return False;
17945 else
17946 return
17947 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
17948 and then In_Open_Scopes (Scope (Original_Type))
17949 and then Is_Local_Type (Type_Scope);
17950 end if;
17952 -- There is another weird way in which a component may be invisible when
17953 -- the private and the full view are not derived from the same ancestor.
17954 -- Here is an example :
17956 -- type A1 is tagged record F1 : integer; end record;
17957 -- type A2 is new A1 with record F2 : integer; end record;
17958 -- type T is new A1 with private;
17959 -- private
17960 -- type T is new A2 with null record;
17962 -- In this case, the full view of T inherits F1 and F2 but the private
17963 -- view inherits only F1
17965 else
17966 declare
17967 Ancestor : Entity_Id := Scope (C);
17969 begin
17970 loop
17971 if Ancestor = Original_Type then
17972 return True;
17974 -- The ancestor may have a partial view of the original type,
17975 -- but if the full view is in scope, as in a child body, the
17976 -- component is visible.
17978 elsif In_Private_Part (Scope (Original_Type))
17979 and then Full_View (Ancestor) = Original_Type
17980 then
17981 return True;
17983 elsif Ancestor = Etype (Ancestor) then
17985 -- No further ancestors to examine
17987 return False;
17988 end if;
17990 Ancestor := Etype (Ancestor);
17991 end loop;
17992 end;
17993 end if;
17994 end Is_Visible_Component;
17996 --------------------------
17997 -- Make_Class_Wide_Type --
17998 --------------------------
18000 procedure Make_Class_Wide_Type (T : Entity_Id) is
18001 CW_Type : Entity_Id;
18002 CW_Name : Name_Id;
18003 Next_E : Entity_Id;
18005 begin
18006 if Present (Class_Wide_Type (T)) then
18008 -- The class-wide type is a partially decorated entity created for a
18009 -- unanalyzed tagged type referenced through a limited with clause.
18010 -- When the tagged type is analyzed, its class-wide type needs to be
18011 -- redecorated. Note that we reuse the entity created by Decorate_
18012 -- Tagged_Type in order to preserve all links.
18014 if Materialize_Entity (Class_Wide_Type (T)) then
18015 CW_Type := Class_Wide_Type (T);
18016 Set_Materialize_Entity (CW_Type, False);
18018 -- The class wide type can have been defined by the partial view, in
18019 -- which case everything is already done.
18021 else
18022 return;
18023 end if;
18025 -- Default case, we need to create a new class-wide type
18027 else
18028 CW_Type :=
18029 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18030 end if;
18032 -- Inherit root type characteristics
18034 CW_Name := Chars (CW_Type);
18035 Next_E := Next_Entity (CW_Type);
18036 Copy_Node (T, CW_Type);
18037 Set_Comes_From_Source (CW_Type, False);
18038 Set_Chars (CW_Type, CW_Name);
18039 Set_Parent (CW_Type, Parent (T));
18040 Set_Next_Entity (CW_Type, Next_E);
18042 -- Ensure we have a new freeze node for the class-wide type. The partial
18043 -- view may have freeze action of its own, requiring a proper freeze
18044 -- node, and the same freeze node cannot be shared between the two
18045 -- types.
18047 Set_Has_Delayed_Freeze (CW_Type);
18048 Set_Freeze_Node (CW_Type, Empty);
18050 -- Customize the class-wide type: It has no prim. op., it cannot be
18051 -- abstract and its Etype points back to the specific root type.
18053 Set_Ekind (CW_Type, E_Class_Wide_Type);
18054 Set_Is_Tagged_Type (CW_Type, True);
18055 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18056 Set_Is_Abstract_Type (CW_Type, False);
18057 Set_Is_Constrained (CW_Type, False);
18058 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
18059 Set_Default_SSO (CW_Type);
18061 if Ekind (T) = E_Class_Wide_Subtype then
18062 Set_Etype (CW_Type, Etype (Base_Type (T)));
18063 else
18064 Set_Etype (CW_Type, T);
18065 end if;
18067 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18069 -- If this is the class_wide type of a constrained subtype, it does
18070 -- not have discriminants.
18072 Set_Has_Discriminants (CW_Type,
18073 Has_Discriminants (T) and then not Is_Constrained (T));
18075 Set_Has_Unknown_Discriminants (CW_Type, True);
18076 Set_Class_Wide_Type (T, CW_Type);
18077 Set_Equivalent_Type (CW_Type, Empty);
18079 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18081 Set_Class_Wide_Type (CW_Type, CW_Type);
18083 -- Inherit the "ghostness" from the root tagged type
18085 if Ghost_Mode > None or else Is_Ghost_Entity (T) then
18086 Set_Is_Ghost_Entity (CW_Type);
18087 end if;
18088 end Make_Class_Wide_Type;
18090 ----------------
18091 -- Make_Index --
18092 ----------------
18094 procedure Make_Index
18095 (N : Node_Id;
18096 Related_Nod : Node_Id;
18097 Related_Id : Entity_Id := Empty;
18098 Suffix_Index : Nat := 1;
18099 In_Iter_Schm : Boolean := False)
18101 R : Node_Id;
18102 T : Entity_Id;
18103 Def_Id : Entity_Id := Empty;
18104 Found : Boolean := False;
18106 begin
18107 -- For a discrete range used in a constrained array definition and
18108 -- defined by a range, an implicit conversion to the predefined type
18109 -- INTEGER is assumed if each bound is either a numeric literal, a named
18110 -- number, or an attribute, and the type of both bounds (prior to the
18111 -- implicit conversion) is the type universal_integer. Otherwise, both
18112 -- bounds must be of the same discrete type, other than universal
18113 -- integer; this type must be determinable independently of the
18114 -- context, but using the fact that the type must be discrete and that
18115 -- both bounds must have the same type.
18117 -- Character literals also have a universal type in the absence of
18118 -- of additional context, and are resolved to Standard_Character.
18120 if Nkind (N) = N_Range then
18122 -- The index is given by a range constraint. The bounds are known
18123 -- to be of a consistent type.
18125 if not Is_Overloaded (N) then
18126 T := Etype (N);
18128 -- For universal bounds, choose the specific predefined type
18130 if T = Universal_Integer then
18131 T := Standard_Integer;
18133 elsif T = Any_Character then
18134 Ambiguous_Character (Low_Bound (N));
18136 T := Standard_Character;
18137 end if;
18139 -- The node may be overloaded because some user-defined operators
18140 -- are available, but if a universal interpretation exists it is
18141 -- also the selected one.
18143 elsif Universal_Interpretation (N) = Universal_Integer then
18144 T := Standard_Integer;
18146 else
18147 T := Any_Type;
18149 declare
18150 Ind : Interp_Index;
18151 It : Interp;
18153 begin
18154 Get_First_Interp (N, Ind, It);
18155 while Present (It.Typ) loop
18156 if Is_Discrete_Type (It.Typ) then
18158 if Found
18159 and then not Covers (It.Typ, T)
18160 and then not Covers (T, It.Typ)
18161 then
18162 Error_Msg_N ("ambiguous bounds in discrete range", N);
18163 exit;
18164 else
18165 T := It.Typ;
18166 Found := True;
18167 end if;
18168 end if;
18170 Get_Next_Interp (Ind, It);
18171 end loop;
18173 if T = Any_Type then
18174 Error_Msg_N ("discrete type required for range", N);
18175 Set_Etype (N, Any_Type);
18176 return;
18178 elsif T = Universal_Integer then
18179 T := Standard_Integer;
18180 end if;
18181 end;
18182 end if;
18184 if not Is_Discrete_Type (T) then
18185 Error_Msg_N ("discrete type required for range", N);
18186 Set_Etype (N, Any_Type);
18187 return;
18188 end if;
18190 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18191 and then Attribute_Name (Low_Bound (N)) = Name_First
18192 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18193 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18194 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18195 then
18196 -- The type of the index will be the type of the prefix, as long
18197 -- as the upper bound is 'Last of the same type.
18199 Def_Id := Entity (Prefix (Low_Bound (N)));
18201 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18202 or else Attribute_Name (High_Bound (N)) /= Name_Last
18203 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18204 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18205 then
18206 Def_Id := Empty;
18207 end if;
18208 end if;
18210 R := N;
18211 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18213 elsif Nkind (N) = N_Subtype_Indication then
18215 -- The index is given by a subtype with a range constraint
18217 T := Base_Type (Entity (Subtype_Mark (N)));
18219 if not Is_Discrete_Type (T) then
18220 Error_Msg_N ("discrete type required for range", N);
18221 Set_Etype (N, Any_Type);
18222 return;
18223 end if;
18225 R := Range_Expression (Constraint (N));
18227 Resolve (R, T);
18228 Process_Range_Expr_In_Decl
18229 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18231 elsif Nkind (N) = N_Attribute_Reference then
18233 -- Catch beginner's error (use of attribute other than 'Range)
18235 if Attribute_Name (N) /= Name_Range then
18236 Error_Msg_N ("expect attribute ''Range", N);
18237 Set_Etype (N, Any_Type);
18238 return;
18239 end if;
18241 -- If the node denotes the range of a type mark, that is also the
18242 -- resulting type, and we do not need to create an Itype for it.
18244 if Is_Entity_Name (Prefix (N))
18245 and then Comes_From_Source (N)
18246 and then Is_Type (Entity (Prefix (N)))
18247 and then Is_Discrete_Type (Entity (Prefix (N)))
18248 then
18249 Def_Id := Entity (Prefix (N));
18250 end if;
18252 Analyze_And_Resolve (N);
18253 T := Etype (N);
18254 R := N;
18256 -- If none of the above, must be a subtype. We convert this to a
18257 -- range attribute reference because in the case of declared first
18258 -- named subtypes, the types in the range reference can be different
18259 -- from the type of the entity. A range attribute normalizes the
18260 -- reference and obtains the correct types for the bounds.
18262 -- This transformation is in the nature of an expansion, is only
18263 -- done if expansion is active. In particular, it is not done on
18264 -- formal generic types, because we need to retain the name of the
18265 -- original index for instantiation purposes.
18267 else
18268 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
18269 Error_Msg_N ("invalid subtype mark in discrete range ", N);
18270 Set_Etype (N, Any_Integer);
18271 return;
18273 else
18274 -- The type mark may be that of an incomplete type. It is only
18275 -- now that we can get the full view, previous analysis does
18276 -- not look specifically for a type mark.
18278 Set_Entity (N, Get_Full_View (Entity (N)));
18279 Set_Etype (N, Entity (N));
18280 Def_Id := Entity (N);
18282 if not Is_Discrete_Type (Def_Id) then
18283 Error_Msg_N ("discrete type required for index", N);
18284 Set_Etype (N, Any_Type);
18285 return;
18286 end if;
18287 end if;
18289 if Expander_Active then
18290 Rewrite (N,
18291 Make_Attribute_Reference (Sloc (N),
18292 Attribute_Name => Name_Range,
18293 Prefix => Relocate_Node (N)));
18295 -- The original was a subtype mark that does not freeze. This
18296 -- means that the rewritten version must not freeze either.
18298 Set_Must_Not_Freeze (N);
18299 Set_Must_Not_Freeze (Prefix (N));
18300 Analyze_And_Resolve (N);
18301 T := Etype (N);
18302 R := N;
18304 -- If expander is inactive, type is legal, nothing else to construct
18306 else
18307 return;
18308 end if;
18309 end if;
18311 if not Is_Discrete_Type (T) then
18312 Error_Msg_N ("discrete type required for range", N);
18313 Set_Etype (N, Any_Type);
18314 return;
18316 elsif T = Any_Type then
18317 Set_Etype (N, Any_Type);
18318 return;
18319 end if;
18321 -- We will now create the appropriate Itype to describe the range, but
18322 -- first a check. If we originally had a subtype, then we just label
18323 -- the range with this subtype. Not only is there no need to construct
18324 -- a new subtype, but it is wrong to do so for two reasons:
18326 -- 1. A legality concern, if we have a subtype, it must not freeze,
18327 -- and the Itype would cause freezing incorrectly
18329 -- 2. An efficiency concern, if we created an Itype, it would not be
18330 -- recognized as the same type for the purposes of eliminating
18331 -- checks in some circumstances.
18333 -- We signal this case by setting the subtype entity in Def_Id
18335 if No (Def_Id) then
18336 Def_Id :=
18337 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
18338 Set_Etype (Def_Id, Base_Type (T));
18340 if Is_Signed_Integer_Type (T) then
18341 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
18343 elsif Is_Modular_Integer_Type (T) then
18344 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
18346 else
18347 Set_Ekind (Def_Id, E_Enumeration_Subtype);
18348 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
18349 Set_First_Literal (Def_Id, First_Literal (T));
18350 end if;
18352 Set_Size_Info (Def_Id, (T));
18353 Set_RM_Size (Def_Id, RM_Size (T));
18354 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
18356 Set_Scalar_Range (Def_Id, R);
18357 Conditional_Delay (Def_Id, T);
18359 if Nkind (N) = N_Subtype_Indication then
18360 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
18361 end if;
18363 -- In the subtype indication case, if the immediate parent of the
18364 -- new subtype is non-static, then the subtype we create is non-
18365 -- static, even if its bounds are static.
18367 if Nkind (N) = N_Subtype_Indication
18368 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
18369 then
18370 Set_Is_Non_Static_Subtype (Def_Id);
18371 end if;
18372 end if;
18374 -- Final step is to label the index with this constructed type
18376 Set_Etype (N, Def_Id);
18377 end Make_Index;
18379 ------------------------------
18380 -- Modular_Type_Declaration --
18381 ------------------------------
18383 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18384 Mod_Expr : constant Node_Id := Expression (Def);
18385 M_Val : Uint;
18387 procedure Set_Modular_Size (Bits : Int);
18388 -- Sets RM_Size to Bits, and Esize to normal word size above this
18390 ----------------------
18391 -- Set_Modular_Size --
18392 ----------------------
18394 procedure Set_Modular_Size (Bits : Int) is
18395 begin
18396 Set_RM_Size (T, UI_From_Int (Bits));
18398 if Bits <= 8 then
18399 Init_Esize (T, 8);
18401 elsif Bits <= 16 then
18402 Init_Esize (T, 16);
18404 elsif Bits <= 32 then
18405 Init_Esize (T, 32);
18407 else
18408 Init_Esize (T, System_Max_Binary_Modulus_Power);
18409 end if;
18411 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
18412 Set_Is_Known_Valid (T);
18413 end if;
18414 end Set_Modular_Size;
18416 -- Start of processing for Modular_Type_Declaration
18418 begin
18419 -- If the mod expression is (exactly) 2 * literal, where literal is
18420 -- 64 or less,then almost certainly the * was meant to be **. Warn.
18422 if Warn_On_Suspicious_Modulus_Value
18423 and then Nkind (Mod_Expr) = N_Op_Multiply
18424 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
18425 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
18426 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
18427 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
18428 then
18429 Error_Msg_N
18430 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
18431 end if;
18433 -- Proceed with analysis of mod expression
18435 Analyze_And_Resolve (Mod_Expr, Any_Integer);
18436 Set_Etype (T, T);
18437 Set_Ekind (T, E_Modular_Integer_Type);
18438 Init_Alignment (T);
18439 Set_Is_Constrained (T);
18441 if not Is_OK_Static_Expression (Mod_Expr) then
18442 Flag_Non_Static_Expr
18443 ("non-static expression used for modular type bound!", Mod_Expr);
18444 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18445 else
18446 M_Val := Expr_Value (Mod_Expr);
18447 end if;
18449 if M_Val < 1 then
18450 Error_Msg_N ("modulus value must be positive", Mod_Expr);
18451 M_Val := 2 ** System_Max_Binary_Modulus_Power;
18452 end if;
18454 if M_Val > 2 ** Standard_Long_Integer_Size then
18455 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
18456 end if;
18458 Set_Modulus (T, M_Val);
18460 -- Create bounds for the modular type based on the modulus given in
18461 -- the type declaration and then analyze and resolve those bounds.
18463 Set_Scalar_Range (T,
18464 Make_Range (Sloc (Mod_Expr),
18465 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
18466 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
18468 -- Properly analyze the literals for the range. We do this manually
18469 -- because we can't go calling Resolve, since we are resolving these
18470 -- bounds with the type, and this type is certainly not complete yet.
18472 Set_Etype (Low_Bound (Scalar_Range (T)), T);
18473 Set_Etype (High_Bound (Scalar_Range (T)), T);
18474 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
18475 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
18477 -- Loop through powers of two to find number of bits required
18479 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
18481 -- Binary case
18483 if M_Val = 2 ** Bits then
18484 Set_Modular_Size (Bits);
18485 return;
18487 -- Nonbinary case
18489 elsif M_Val < 2 ** Bits then
18490 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
18491 Set_Non_Binary_Modulus (T);
18493 if Bits > System_Max_Nonbinary_Modulus_Power then
18494 Error_Msg_Uint_1 :=
18495 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
18496 Error_Msg_F
18497 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
18498 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18499 return;
18501 else
18502 -- In the nonbinary case, set size as per RM 13.3(55)
18504 Set_Modular_Size (Bits);
18505 return;
18506 end if;
18507 end if;
18509 end loop;
18511 -- If we fall through, then the size exceed System.Max_Binary_Modulus
18512 -- so we just signal an error and set the maximum size.
18514 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
18515 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
18517 Set_Modular_Size (System_Max_Binary_Modulus_Power);
18518 Init_Alignment (T);
18520 end Modular_Type_Declaration;
18522 --------------------------
18523 -- New_Concatenation_Op --
18524 --------------------------
18526 procedure New_Concatenation_Op (Typ : Entity_Id) is
18527 Loc : constant Source_Ptr := Sloc (Typ);
18528 Op : Entity_Id;
18530 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
18531 -- Create abbreviated declaration for the formal of a predefined
18532 -- Operator 'Op' of type 'Typ'
18534 --------------------
18535 -- Make_Op_Formal --
18536 --------------------
18538 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
18539 Formal : Entity_Id;
18540 begin
18541 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
18542 Set_Etype (Formal, Typ);
18543 Set_Mechanism (Formal, Default_Mechanism);
18544 return Formal;
18545 end Make_Op_Formal;
18547 -- Start of processing for New_Concatenation_Op
18549 begin
18550 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
18552 Set_Ekind (Op, E_Operator);
18553 Set_Scope (Op, Current_Scope);
18554 Set_Etype (Op, Typ);
18555 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
18556 Set_Is_Immediately_Visible (Op);
18557 Set_Is_Intrinsic_Subprogram (Op);
18558 Set_Has_Completion (Op);
18559 Append_Entity (Op, Current_Scope);
18561 Set_Name_Entity_Id (Name_Op_Concat, Op);
18563 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18564 Append_Entity (Make_Op_Formal (Typ, Op), Op);
18565 end New_Concatenation_Op;
18567 -------------------------
18568 -- OK_For_Limited_Init --
18569 -------------------------
18571 -- ???Check all calls of this, and compare the conditions under which it's
18572 -- called.
18574 function OK_For_Limited_Init
18575 (Typ : Entity_Id;
18576 Exp : Node_Id) return Boolean
18578 begin
18579 return Is_CPP_Constructor_Call (Exp)
18580 or else (Ada_Version >= Ada_2005
18581 and then not Debug_Flag_Dot_L
18582 and then OK_For_Limited_Init_In_05 (Typ, Exp));
18583 end OK_For_Limited_Init;
18585 -------------------------------
18586 -- OK_For_Limited_Init_In_05 --
18587 -------------------------------
18589 function OK_For_Limited_Init_In_05
18590 (Typ : Entity_Id;
18591 Exp : Node_Id) return Boolean
18593 begin
18594 -- An object of a limited interface type can be initialized with any
18595 -- expression of a nonlimited descendant type.
18597 if Is_Class_Wide_Type (Typ)
18598 and then Is_Limited_Interface (Typ)
18599 and then not Is_Limited_Type (Etype (Exp))
18600 then
18601 return True;
18602 end if;
18604 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
18605 -- case of limited aggregates (including extension aggregates), and
18606 -- function calls. The function call may have been given in prefixed
18607 -- notation, in which case the original node is an indexed component.
18608 -- If the function is parameterless, the original node was an explicit
18609 -- dereference. The function may also be parameterless, in which case
18610 -- the source node is just an identifier.
18612 case Nkind (Original_Node (Exp)) is
18613 when N_Aggregate | N_Extension_Aggregate | N_Function_Call | N_Op =>
18614 return True;
18616 when N_Identifier =>
18617 return Present (Entity (Original_Node (Exp)))
18618 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
18620 when N_Qualified_Expression =>
18621 return
18622 OK_For_Limited_Init_In_05
18623 (Typ, Expression (Original_Node (Exp)));
18625 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
18626 -- with a function call, the expander has rewritten the call into an
18627 -- N_Type_Conversion node to force displacement of the pointer to
18628 -- reference the component containing the secondary dispatch table.
18629 -- Otherwise a type conversion is not a legal context.
18630 -- A return statement for a build-in-place function returning a
18631 -- synchronized type also introduces an unchecked conversion.
18633 when N_Type_Conversion |
18634 N_Unchecked_Type_Conversion =>
18635 return not Comes_From_Source (Exp)
18636 and then
18637 OK_For_Limited_Init_In_05
18638 (Typ, Expression (Original_Node (Exp)));
18640 when N_Indexed_Component |
18641 N_Selected_Component |
18642 N_Explicit_Dereference =>
18643 return Nkind (Exp) = N_Function_Call;
18645 -- A use of 'Input is a function call, hence allowed. Normally the
18646 -- attribute will be changed to a call, but the attribute by itself
18647 -- can occur with -gnatc.
18649 when N_Attribute_Reference =>
18650 return Attribute_Name (Original_Node (Exp)) = Name_Input;
18652 -- For a case expression, all dependent expressions must be legal
18654 when N_Case_Expression =>
18655 declare
18656 Alt : Node_Id;
18658 begin
18659 Alt := First (Alternatives (Original_Node (Exp)));
18660 while Present (Alt) loop
18661 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
18662 return False;
18663 end if;
18665 Next (Alt);
18666 end loop;
18668 return True;
18669 end;
18671 -- For an if expression, all dependent expressions must be legal
18673 when N_If_Expression =>
18674 declare
18675 Then_Expr : constant Node_Id :=
18676 Next (First (Expressions (Original_Node (Exp))));
18677 Else_Expr : constant Node_Id := Next (Then_Expr);
18678 begin
18679 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
18680 and then
18681 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
18682 end;
18684 when others =>
18685 return False;
18686 end case;
18687 end OK_For_Limited_Init_In_05;
18689 -------------------------------------------
18690 -- Ordinary_Fixed_Point_Type_Declaration --
18691 -------------------------------------------
18693 procedure Ordinary_Fixed_Point_Type_Declaration
18694 (T : Entity_Id;
18695 Def : Node_Id)
18697 Loc : constant Source_Ptr := Sloc (Def);
18698 Delta_Expr : constant Node_Id := Delta_Expression (Def);
18699 RRS : constant Node_Id := Real_Range_Specification (Def);
18700 Implicit_Base : Entity_Id;
18701 Delta_Val : Ureal;
18702 Small_Val : Ureal;
18703 Low_Val : Ureal;
18704 High_Val : Ureal;
18706 begin
18707 Check_Restriction (No_Fixed_Point, Def);
18709 -- Create implicit base type
18711 Implicit_Base :=
18712 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
18713 Set_Etype (Implicit_Base, Implicit_Base);
18715 -- Analyze and process delta expression
18717 Analyze_And_Resolve (Delta_Expr, Any_Real);
18719 Check_Delta_Expression (Delta_Expr);
18720 Delta_Val := Expr_Value_R (Delta_Expr);
18722 Set_Delta_Value (Implicit_Base, Delta_Val);
18724 -- Compute default small from given delta, which is the largest power
18725 -- of two that does not exceed the given delta value.
18727 declare
18728 Tmp : Ureal;
18729 Scale : Int;
18731 begin
18732 Tmp := Ureal_1;
18733 Scale := 0;
18735 if Delta_Val < Ureal_1 then
18736 while Delta_Val < Tmp loop
18737 Tmp := Tmp / Ureal_2;
18738 Scale := Scale + 1;
18739 end loop;
18741 else
18742 loop
18743 Tmp := Tmp * Ureal_2;
18744 exit when Tmp > Delta_Val;
18745 Scale := Scale - 1;
18746 end loop;
18747 end if;
18749 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
18750 end;
18752 Set_Small_Value (Implicit_Base, Small_Val);
18754 -- If no range was given, set a dummy range
18756 if RRS <= Empty_Or_Error then
18757 Low_Val := -Small_Val;
18758 High_Val := Small_Val;
18760 -- Otherwise analyze and process given range
18762 else
18763 declare
18764 Low : constant Node_Id := Low_Bound (RRS);
18765 High : constant Node_Id := High_Bound (RRS);
18767 begin
18768 Analyze_And_Resolve (Low, Any_Real);
18769 Analyze_And_Resolve (High, Any_Real);
18770 Check_Real_Bound (Low);
18771 Check_Real_Bound (High);
18773 -- Obtain and set the range
18775 Low_Val := Expr_Value_R (Low);
18776 High_Val := Expr_Value_R (High);
18778 if Low_Val > High_Val then
18779 Error_Msg_NE ("??fixed point type& has null range", Def, T);
18780 end if;
18781 end;
18782 end if;
18784 -- The range for both the implicit base and the declared first subtype
18785 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
18786 -- set a temporary range in place. Note that the bounds of the base
18787 -- type will be widened to be symmetrical and to fill the available
18788 -- bits when the type is frozen.
18790 -- We could do this with all discrete types, and probably should, but
18791 -- we absolutely have to do it for fixed-point, since the end-points
18792 -- of the range and the size are determined by the small value, which
18793 -- could be reset before the freeze point.
18795 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
18796 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
18798 -- Complete definition of first subtype. The inheritance of the rep item
18799 -- chain ensures that SPARK-related pragmas are not clobbered when the
18800 -- ordinary fixed point type acts as a full view of a private type.
18802 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
18803 Set_Etype (T, Implicit_Base);
18804 Init_Size_Align (T);
18805 Inherit_Rep_Item_Chain (T, Implicit_Base);
18806 Set_Small_Value (T, Small_Val);
18807 Set_Delta_Value (T, Delta_Val);
18808 Set_Is_Constrained (T);
18809 end Ordinary_Fixed_Point_Type_Declaration;
18811 ----------------------------------
18812 -- Preanalyze_Assert_Expression --
18813 ----------------------------------
18815 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
18816 begin
18817 In_Assertion_Expr := In_Assertion_Expr + 1;
18818 Preanalyze_Spec_Expression (N, T);
18819 In_Assertion_Expr := In_Assertion_Expr - 1;
18820 end Preanalyze_Assert_Expression;
18822 -----------------------------------
18823 -- Preanalyze_Default_Expression --
18824 -----------------------------------
18826 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
18827 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
18828 begin
18829 In_Default_Expr := True;
18830 Preanalyze_Spec_Expression (N, T);
18831 In_Default_Expr := Save_In_Default_Expr;
18832 end Preanalyze_Default_Expression;
18834 --------------------------------
18835 -- Preanalyze_Spec_Expression --
18836 --------------------------------
18838 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
18839 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
18840 begin
18841 In_Spec_Expression := True;
18842 Preanalyze_And_Resolve (N, T);
18843 In_Spec_Expression := Save_In_Spec_Expression;
18844 end Preanalyze_Spec_Expression;
18846 ----------------------------------------
18847 -- Prepare_Private_Subtype_Completion --
18848 ----------------------------------------
18850 procedure Prepare_Private_Subtype_Completion
18851 (Id : Entity_Id;
18852 Related_Nod : Node_Id)
18854 Id_B : constant Entity_Id := Base_Type (Id);
18855 Full_B : Entity_Id := Full_View (Id_B);
18856 Full : Entity_Id;
18858 begin
18859 if Present (Full_B) then
18861 -- Get to the underlying full view if necessary
18863 if Is_Private_Type (Full_B)
18864 and then Present (Underlying_Full_View (Full_B))
18865 then
18866 Full_B := Underlying_Full_View (Full_B);
18867 end if;
18869 -- The Base_Type is already completed, we can complete the subtype
18870 -- now. We have to create a new entity with the same name, Thus we
18871 -- can't use Create_Itype.
18873 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
18874 Set_Is_Itype (Full);
18875 Set_Associated_Node_For_Itype (Full, Related_Nod);
18876 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
18877 end if;
18879 -- The parent subtype may be private, but the base might not, in some
18880 -- nested instances. In that case, the subtype does not need to be
18881 -- exchanged. It would still be nice to make private subtypes and their
18882 -- bases consistent at all times ???
18884 if Is_Private_Type (Id_B) then
18885 Append_Elmt (Id, Private_Dependents (Id_B));
18886 end if;
18887 end Prepare_Private_Subtype_Completion;
18889 ---------------------------
18890 -- Process_Discriminants --
18891 ---------------------------
18893 procedure Process_Discriminants
18894 (N : Node_Id;
18895 Prev : Entity_Id := Empty)
18897 Elist : constant Elist_Id := New_Elmt_List;
18898 Id : Node_Id;
18899 Discr : Node_Id;
18900 Discr_Number : Uint;
18901 Discr_Type : Entity_Id;
18902 Default_Present : Boolean := False;
18903 Default_Not_Present : Boolean := False;
18905 begin
18906 -- A composite type other than an array type can have discriminants.
18907 -- On entry, the current scope is the composite type.
18909 -- The discriminants are initially entered into the scope of the type
18910 -- via Enter_Name with the default Ekind of E_Void to prevent premature
18911 -- use, as explained at the end of this procedure.
18913 Discr := First (Discriminant_Specifications (N));
18914 while Present (Discr) loop
18915 Enter_Name (Defining_Identifier (Discr));
18917 -- For navigation purposes we add a reference to the discriminant
18918 -- in the entity for the type. If the current declaration is a
18919 -- completion, place references on the partial view. Otherwise the
18920 -- type is the current scope.
18922 if Present (Prev) then
18924 -- The references go on the partial view, if present. If the
18925 -- partial view has discriminants, the references have been
18926 -- generated already.
18928 if not Has_Discriminants (Prev) then
18929 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
18930 end if;
18931 else
18932 Generate_Reference
18933 (Current_Scope, Defining_Identifier (Discr), 'd');
18934 end if;
18936 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
18937 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
18939 -- Ada 2005 (AI-254)
18941 if Present (Access_To_Subprogram_Definition
18942 (Discriminant_Type (Discr)))
18943 and then Protected_Present (Access_To_Subprogram_Definition
18944 (Discriminant_Type (Discr)))
18945 then
18946 Discr_Type :=
18947 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
18948 end if;
18950 else
18951 Find_Type (Discriminant_Type (Discr));
18952 Discr_Type := Etype (Discriminant_Type (Discr));
18954 if Error_Posted (Discriminant_Type (Discr)) then
18955 Discr_Type := Any_Type;
18956 end if;
18957 end if;
18959 -- Handling of discriminants that are access types
18961 if Is_Access_Type (Discr_Type) then
18963 -- Ada 2005 (AI-230): Access discriminant allowed in non-
18964 -- limited record types
18966 if Ada_Version < Ada_2005 then
18967 Check_Access_Discriminant_Requires_Limited
18968 (Discr, Discriminant_Type (Discr));
18969 end if;
18971 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
18972 Error_Msg_N
18973 ("(Ada 83) access discriminant not allowed", Discr);
18974 end if;
18976 -- If not access type, must be a discrete type
18978 elsif not Is_Discrete_Type (Discr_Type) then
18979 Error_Msg_N
18980 ("discriminants must have a discrete or access type",
18981 Discriminant_Type (Discr));
18982 end if;
18984 Set_Etype (Defining_Identifier (Discr), Discr_Type);
18986 -- If a discriminant specification includes the assignment compound
18987 -- delimiter followed by an expression, the expression is the default
18988 -- expression of the discriminant; the default expression must be of
18989 -- the type of the discriminant. (RM 3.7.1) Since this expression is
18990 -- a default expression, we do the special preanalysis, since this
18991 -- expression does not freeze (see section "Handling of Default and
18992 -- Per-Object Expressions" in spec of package Sem).
18994 if Present (Expression (Discr)) then
18995 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
18997 -- Legaity checks
18999 if Nkind (N) = N_Formal_Type_Declaration then
19000 Error_Msg_N
19001 ("discriminant defaults not allowed for formal type",
19002 Expression (Discr));
19004 -- Flag an error for a tagged type with defaulted discriminants,
19005 -- excluding limited tagged types when compiling for Ada 2012
19006 -- (see AI05-0214).
19008 elsif Is_Tagged_Type (Current_Scope)
19009 and then (not Is_Limited_Type (Current_Scope)
19010 or else Ada_Version < Ada_2012)
19011 and then Comes_From_Source (N)
19012 then
19013 -- Note: see similar test in Check_Or_Process_Discriminants, to
19014 -- handle the (illegal) case of the completion of an untagged
19015 -- view with discriminants with defaults by a tagged full view.
19016 -- We skip the check if Discr does not come from source, to
19017 -- account for the case of an untagged derived type providing
19018 -- defaults for a renamed discriminant from a private untagged
19019 -- ancestor with a tagged full view (ACATS B460006).
19021 if Ada_Version >= Ada_2012 then
19022 Error_Msg_N
19023 ("discriminants of nonlimited tagged type cannot have"
19024 & " defaults",
19025 Expression (Discr));
19026 else
19027 Error_Msg_N
19028 ("discriminants of tagged type cannot have defaults",
19029 Expression (Discr));
19030 end if;
19032 else
19033 Default_Present := True;
19034 Append_Elmt (Expression (Discr), Elist);
19036 -- Tag the defining identifiers for the discriminants with
19037 -- their corresponding default expressions from the tree.
19039 Set_Discriminant_Default_Value
19040 (Defining_Identifier (Discr), Expression (Discr));
19041 end if;
19043 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19044 -- gets set unless we can be sure that no range check is required.
19046 if (GNATprove_Mode or not Expander_Active)
19047 and then not
19048 Is_In_Range
19049 (Expression (Discr), Discr_Type, Assume_Valid => True)
19050 then
19051 Set_Do_Range_Check (Expression (Discr));
19052 end if;
19054 -- No default discriminant value given
19056 else
19057 Default_Not_Present := True;
19058 end if;
19060 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19061 -- Discr_Type but with the null-exclusion attribute
19063 if Ada_Version >= Ada_2005 then
19065 -- Ada 2005 (AI-231): Static checks
19067 if Can_Never_Be_Null (Discr_Type) then
19068 Null_Exclusion_Static_Checks (Discr);
19070 elsif Is_Access_Type (Discr_Type)
19071 and then Null_Exclusion_Present (Discr)
19073 -- No need to check itypes because in their case this check
19074 -- was done at their point of creation
19076 and then not Is_Itype (Discr_Type)
19077 then
19078 if Can_Never_Be_Null (Discr_Type) then
19079 Error_Msg_NE
19080 ("`NOT NULL` not allowed (& already excludes null)",
19081 Discr,
19082 Discr_Type);
19083 end if;
19085 Set_Etype (Defining_Identifier (Discr),
19086 Create_Null_Excluding_Itype
19087 (T => Discr_Type,
19088 Related_Nod => Discr));
19090 -- Check for improper null exclusion if the type is otherwise
19091 -- legal for a discriminant.
19093 elsif Null_Exclusion_Present (Discr)
19094 and then Is_Discrete_Type (Discr_Type)
19095 then
19096 Error_Msg_N
19097 ("null exclusion can only apply to an access type", Discr);
19098 end if;
19100 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19101 -- can't have defaults. Synchronized types, or types that are
19102 -- explicitly limited are fine, but special tests apply to derived
19103 -- types in generics: in a generic body we have to assume the
19104 -- worst, and therefore defaults are not allowed if the parent is
19105 -- a generic formal private type (see ACATS B370001).
19107 if Is_Access_Type (Discr_Type) and then Default_Present then
19108 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19109 or else Is_Limited_Record (Current_Scope)
19110 or else Is_Concurrent_Type (Current_Scope)
19111 or else Is_Concurrent_Record_Type (Current_Scope)
19112 or else Ekind (Current_Scope) = E_Limited_Private_Type
19113 then
19114 if not Is_Derived_Type (Current_Scope)
19115 or else not Is_Generic_Type (Etype (Current_Scope))
19116 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19117 or else Limited_Present
19118 (Type_Definition (Parent (Current_Scope)))
19119 then
19120 null;
19122 else
19123 Error_Msg_N
19124 ("access discriminants of nonlimited types cannot "
19125 & "have defaults", Expression (Discr));
19126 end if;
19128 elsif Present (Expression (Discr)) then
19129 Error_Msg_N
19130 ("(Ada 2005) access discriminants of nonlimited types "
19131 & "cannot have defaults", Expression (Discr));
19132 end if;
19133 end if;
19134 end if;
19136 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
19137 -- This check is relevant only when SPARK_Mode is on as it is not a
19138 -- standard Ada legality rule.
19140 if SPARK_Mode = On
19141 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19142 then
19143 Error_Msg_N ("discriminant cannot be volatile", Discr);
19144 end if;
19146 Next (Discr);
19147 end loop;
19149 -- An element list consisting of the default expressions of the
19150 -- discriminants is constructed in the above loop and used to set
19151 -- the Discriminant_Constraint attribute for the type. If an object
19152 -- is declared of this (record or task) type without any explicit
19153 -- discriminant constraint given, this element list will form the
19154 -- actual parameters for the corresponding initialization procedure
19155 -- for the type.
19157 Set_Discriminant_Constraint (Current_Scope, Elist);
19158 Set_Stored_Constraint (Current_Scope, No_Elist);
19160 -- Default expressions must be provided either for all or for none
19161 -- of the discriminants of a discriminant part. (RM 3.7.1)
19163 if Default_Present and then Default_Not_Present then
19164 Error_Msg_N
19165 ("incomplete specification of defaults for discriminants", N);
19166 end if;
19168 -- The use of the name of a discriminant is not allowed in default
19169 -- expressions of a discriminant part if the specification of the
19170 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19172 -- To detect this, the discriminant names are entered initially with an
19173 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19174 -- attempt to use a void entity (for example in an expression that is
19175 -- type-checked) produces the error message: premature usage. Now after
19176 -- completing the semantic analysis of the discriminant part, we can set
19177 -- the Ekind of all the discriminants appropriately.
19179 Discr := First (Discriminant_Specifications (N));
19180 Discr_Number := Uint_1;
19181 while Present (Discr) loop
19182 Id := Defining_Identifier (Discr);
19183 Set_Ekind (Id, E_Discriminant);
19184 Init_Component_Location (Id);
19185 Init_Esize (Id);
19186 Set_Discriminant_Number (Id, Discr_Number);
19188 -- Make sure this is always set, even in illegal programs
19190 Set_Corresponding_Discriminant (Id, Empty);
19192 -- Initialize the Original_Record_Component to the entity itself.
19193 -- Inherit_Components will propagate the right value to
19194 -- discriminants in derived record types.
19196 Set_Original_Record_Component (Id, Id);
19198 -- Create the discriminal for the discriminant
19200 Build_Discriminal (Id);
19202 Next (Discr);
19203 Discr_Number := Discr_Number + 1;
19204 end loop;
19206 Set_Has_Discriminants (Current_Scope);
19207 end Process_Discriminants;
19209 -----------------------
19210 -- Process_Full_View --
19211 -----------------------
19213 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19214 procedure Collect_Implemented_Interfaces
19215 (Typ : Entity_Id;
19216 Ifaces : Elist_Id);
19217 -- Ada 2005: Gather all the interfaces that Typ directly or
19218 -- inherently implements. Duplicate entries are not added to
19219 -- the list Ifaces.
19221 ------------------------------------
19222 -- Collect_Implemented_Interfaces --
19223 ------------------------------------
19225 procedure Collect_Implemented_Interfaces
19226 (Typ : Entity_Id;
19227 Ifaces : Elist_Id)
19229 Iface : Entity_Id;
19230 Iface_Elmt : Elmt_Id;
19232 begin
19233 -- Abstract interfaces are only associated with tagged record types
19235 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
19236 return;
19237 end if;
19239 -- Recursively climb to the ancestors
19241 if Etype (Typ) /= Typ
19243 -- Protect the frontend against wrong cyclic declarations like:
19245 -- type B is new A with private;
19246 -- type C is new A with private;
19247 -- private
19248 -- type B is new C with null record;
19249 -- type C is new B with null record;
19251 and then Etype (Typ) /= Priv_T
19252 and then Etype (Typ) /= Full_T
19253 then
19254 -- Keep separate the management of private type declarations
19256 if Ekind (Typ) = E_Record_Type_With_Private then
19258 -- Handle the following illegal usage:
19259 -- type Private_Type is tagged private;
19260 -- private
19261 -- type Private_Type is new Type_Implementing_Iface;
19263 if Present (Full_View (Typ))
19264 and then Etype (Typ) /= Full_View (Typ)
19265 then
19266 if Is_Interface (Etype (Typ)) then
19267 Append_Unique_Elmt (Etype (Typ), Ifaces);
19268 end if;
19270 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19271 end if;
19273 -- Non-private types
19275 else
19276 if Is_Interface (Etype (Typ)) then
19277 Append_Unique_Elmt (Etype (Typ), Ifaces);
19278 end if;
19280 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
19281 end if;
19282 end if;
19284 -- Handle entities in the list of abstract interfaces
19286 if Present (Interfaces (Typ)) then
19287 Iface_Elmt := First_Elmt (Interfaces (Typ));
19288 while Present (Iface_Elmt) loop
19289 Iface := Node (Iface_Elmt);
19291 pragma Assert (Is_Interface (Iface));
19293 if not Contain_Interface (Iface, Ifaces) then
19294 Append_Elmt (Iface, Ifaces);
19295 Collect_Implemented_Interfaces (Iface, Ifaces);
19296 end if;
19298 Next_Elmt (Iface_Elmt);
19299 end loop;
19300 end if;
19301 end Collect_Implemented_Interfaces;
19303 -- Local variables
19305 Full_Indic : Node_Id;
19306 Full_Parent : Entity_Id;
19307 Priv_Parent : Entity_Id;
19309 -- Start of processing for Process_Full_View
19311 begin
19312 -- First some sanity checks that must be done after semantic
19313 -- decoration of the full view and thus cannot be placed with other
19314 -- similar checks in Find_Type_Name
19316 if not Is_Limited_Type (Priv_T)
19317 and then (Is_Limited_Type (Full_T)
19318 or else Is_Limited_Composite (Full_T))
19319 then
19320 if In_Instance then
19321 null;
19322 else
19323 Error_Msg_N
19324 ("completion of nonlimited type cannot be limited", Full_T);
19325 Explain_Limited_Type (Full_T, Full_T);
19326 end if;
19328 elsif Is_Abstract_Type (Full_T)
19329 and then not Is_Abstract_Type (Priv_T)
19330 then
19331 Error_Msg_N
19332 ("completion of nonabstract type cannot be abstract", Full_T);
19334 elsif Is_Tagged_Type (Priv_T)
19335 and then Is_Limited_Type (Priv_T)
19336 and then not Is_Limited_Type (Full_T)
19337 then
19338 -- If pragma CPP_Class was applied to the private declaration
19339 -- propagate the limitedness to the full-view
19341 if Is_CPP_Class (Priv_T) then
19342 Set_Is_Limited_Record (Full_T);
19344 -- GNAT allow its own definition of Limited_Controlled to disobey
19345 -- this rule in order in ease the implementation. This test is safe
19346 -- because Root_Controlled is defined in a child of System that
19347 -- normal programs are not supposed to use.
19349 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
19350 Set_Is_Limited_Composite (Full_T);
19351 else
19352 Error_Msg_N
19353 ("completion of limited tagged type must be limited", Full_T);
19354 end if;
19356 elsif Is_Generic_Type (Priv_T) then
19357 Error_Msg_N ("generic type cannot have a completion", Full_T);
19358 end if;
19360 -- Check that ancestor interfaces of private and full views are
19361 -- consistent. We omit this check for synchronized types because
19362 -- they are performed on the corresponding record type when frozen.
19364 if Ada_Version >= Ada_2005
19365 and then Is_Tagged_Type (Priv_T)
19366 and then Is_Tagged_Type (Full_T)
19367 and then not Is_Concurrent_Type (Full_T)
19368 then
19369 declare
19370 Iface : Entity_Id;
19371 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
19372 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
19374 begin
19375 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
19376 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
19378 -- Ada 2005 (AI-251): The partial view shall be a descendant of
19379 -- an interface type if and only if the full type is descendant
19380 -- of the interface type (AARM 7.3 (7.3/2)).
19382 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
19384 if Present (Iface) then
19385 Error_Msg_NE
19386 ("interface in partial view& not implemented by full type "
19387 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19388 end if;
19390 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
19392 if Present (Iface) then
19393 Error_Msg_NE
19394 ("interface & not implemented by partial view "
19395 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
19396 end if;
19397 end;
19398 end if;
19400 if Is_Tagged_Type (Priv_T)
19401 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19402 and then Is_Derived_Type (Full_T)
19403 then
19404 Priv_Parent := Etype (Priv_T);
19406 -- The full view of a private extension may have been transformed
19407 -- into an unconstrained derived type declaration and a subtype
19408 -- declaration (see build_derived_record_type for details).
19410 if Nkind (N) = N_Subtype_Declaration then
19411 Full_Indic := Subtype_Indication (N);
19412 Full_Parent := Etype (Base_Type (Full_T));
19413 else
19414 Full_Indic := Subtype_Indication (Type_Definition (N));
19415 Full_Parent := Etype (Full_T);
19416 end if;
19418 -- Check that the parent type of the full type is a descendant of
19419 -- the ancestor subtype given in the private extension. If either
19420 -- entity has an Etype equal to Any_Type then we had some previous
19421 -- error situation [7.3(8)].
19423 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
19424 return;
19426 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
19427 -- any order. Therefore we don't have to check that its parent must
19428 -- be a descendant of the parent of the private type declaration.
19430 elsif Is_Interface (Priv_Parent)
19431 and then Is_Interface (Full_Parent)
19432 then
19433 null;
19435 -- Ada 2005 (AI-251): If the parent of the private type declaration
19436 -- is an interface there is no need to check that it is an ancestor
19437 -- of the associated full type declaration. The required tests for
19438 -- this case are performed by Build_Derived_Record_Type.
19440 elsif not Is_Interface (Base_Type (Priv_Parent))
19441 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
19442 then
19443 Error_Msg_N
19444 ("parent of full type must descend from parent"
19445 & " of private extension", Full_Indic);
19447 -- First check a formal restriction, and then proceed with checking
19448 -- Ada rules. Since the formal restriction is not a serious error, we
19449 -- don't prevent further error detection for this check, hence the
19450 -- ELSE.
19452 else
19453 -- In formal mode, when completing a private extension the type
19454 -- named in the private part must be exactly the same as that
19455 -- named in the visible part.
19457 if Priv_Parent /= Full_Parent then
19458 Error_Msg_Name_1 := Chars (Priv_Parent);
19459 Check_SPARK_05_Restriction ("% expected", Full_Indic);
19460 end if;
19462 -- Check the rules of 7.3(10): if the private extension inherits
19463 -- known discriminants, then the full type must also inherit those
19464 -- discriminants from the same (ancestor) type, and the parent
19465 -- subtype of the full type must be constrained if and only if
19466 -- the ancestor subtype of the private extension is constrained.
19468 if No (Discriminant_Specifications (Parent (Priv_T)))
19469 and then not Has_Unknown_Discriminants (Priv_T)
19470 and then Has_Discriminants (Base_Type (Priv_Parent))
19471 then
19472 declare
19473 Priv_Indic : constant Node_Id :=
19474 Subtype_Indication (Parent (Priv_T));
19476 Priv_Constr : constant Boolean :=
19477 Is_Constrained (Priv_Parent)
19478 or else
19479 Nkind (Priv_Indic) = N_Subtype_Indication
19480 or else
19481 Is_Constrained (Entity (Priv_Indic));
19483 Full_Constr : constant Boolean :=
19484 Is_Constrained (Full_Parent)
19485 or else
19486 Nkind (Full_Indic) = N_Subtype_Indication
19487 or else
19488 Is_Constrained (Entity (Full_Indic));
19490 Priv_Discr : Entity_Id;
19491 Full_Discr : Entity_Id;
19493 begin
19494 Priv_Discr := First_Discriminant (Priv_Parent);
19495 Full_Discr := First_Discriminant (Full_Parent);
19496 while Present (Priv_Discr) and then Present (Full_Discr) loop
19497 if Original_Record_Component (Priv_Discr) =
19498 Original_Record_Component (Full_Discr)
19499 or else
19500 Corresponding_Discriminant (Priv_Discr) =
19501 Corresponding_Discriminant (Full_Discr)
19502 then
19503 null;
19504 else
19505 exit;
19506 end if;
19508 Next_Discriminant (Priv_Discr);
19509 Next_Discriminant (Full_Discr);
19510 end loop;
19512 if Present (Priv_Discr) or else Present (Full_Discr) then
19513 Error_Msg_N
19514 ("full view must inherit discriminants of the parent"
19515 & " type used in the private extension", Full_Indic);
19517 elsif Priv_Constr and then not Full_Constr then
19518 Error_Msg_N
19519 ("parent subtype of full type must be constrained",
19520 Full_Indic);
19522 elsif Full_Constr and then not Priv_Constr then
19523 Error_Msg_N
19524 ("parent subtype of full type must be unconstrained",
19525 Full_Indic);
19526 end if;
19527 end;
19529 -- Check the rules of 7.3(12): if a partial view has neither
19530 -- known or unknown discriminants, then the full type
19531 -- declaration shall define a definite subtype.
19533 elsif not Has_Unknown_Discriminants (Priv_T)
19534 and then not Has_Discriminants (Priv_T)
19535 and then not Is_Constrained (Full_T)
19536 then
19537 Error_Msg_N
19538 ("full view must define a constrained type if partial view"
19539 & " has no discriminants", Full_T);
19540 end if;
19542 -- ??????? Do we implement the following properly ?????
19543 -- If the ancestor subtype of a private extension has constrained
19544 -- discriminants, then the parent subtype of the full view shall
19545 -- impose a statically matching constraint on those discriminants
19546 -- [7.3(13)].
19547 end if;
19549 else
19550 -- For untagged types, verify that a type without discriminants is
19551 -- not completed with an unconstrained type. A separate error message
19552 -- is produced if the full type has defaulted discriminants.
19554 if Is_Definite_Subtype (Priv_T)
19555 and then not Is_Definite_Subtype (Full_T)
19556 then
19557 Error_Msg_Sloc := Sloc (Parent (Priv_T));
19558 Error_Msg_NE
19559 ("full view of& not compatible with declaration#",
19560 Full_T, Priv_T);
19562 if not Is_Tagged_Type (Full_T) then
19563 Error_Msg_N
19564 ("\one is constrained, the other unconstrained", Full_T);
19565 end if;
19566 end if;
19567 end if;
19569 -- AI-419: verify that the use of "limited" is consistent
19571 declare
19572 Orig_Decl : constant Node_Id := Original_Node (N);
19574 begin
19575 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19576 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
19577 and then Nkind
19578 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
19579 then
19580 if not Limited_Present (Parent (Priv_T))
19581 and then not Synchronized_Present (Parent (Priv_T))
19582 and then Limited_Present (Type_Definition (Orig_Decl))
19583 then
19584 Error_Msg_N
19585 ("full view of non-limited extension cannot be limited", N);
19587 -- Conversely, if the partial view carries the limited keyword,
19588 -- the full view must as well, even if it may be redundant.
19590 elsif Limited_Present (Parent (Priv_T))
19591 and then not Limited_Present (Type_Definition (Orig_Decl))
19592 then
19593 Error_Msg_N
19594 ("full view of limited extension must be explicitly limited",
19596 end if;
19597 end if;
19598 end;
19600 -- Ada 2005 (AI-443): A synchronized private extension must be
19601 -- completed by a task or protected type.
19603 if Ada_Version >= Ada_2005
19604 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
19605 and then Synchronized_Present (Parent (Priv_T))
19606 and then not Is_Concurrent_Type (Full_T)
19607 then
19608 Error_Msg_N ("full view of synchronized extension must " &
19609 "be synchronized type", N);
19610 end if;
19612 -- Ada 2005 AI-363: if the full view has discriminants with
19613 -- defaults, it is illegal to declare constrained access subtypes
19614 -- whose designated type is the current type. This allows objects
19615 -- of the type that are declared in the heap to be unconstrained.
19617 if not Has_Unknown_Discriminants (Priv_T)
19618 and then not Has_Discriminants (Priv_T)
19619 and then Has_Discriminants (Full_T)
19620 and then
19621 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
19622 then
19623 Set_Has_Constrained_Partial_View (Full_T);
19624 Set_Has_Constrained_Partial_View (Priv_T);
19625 end if;
19627 -- Create a full declaration for all its subtypes recorded in
19628 -- Private_Dependents and swap them similarly to the base type. These
19629 -- are subtypes that have been define before the full declaration of
19630 -- the private type. We also swap the entry in Private_Dependents list
19631 -- so we can properly restore the private view on exit from the scope.
19633 declare
19634 Priv_Elmt : Elmt_Id;
19635 Priv_Scop : Entity_Id;
19636 Priv : Entity_Id;
19637 Full : Entity_Id;
19639 begin
19640 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
19641 while Present (Priv_Elmt) loop
19642 Priv := Node (Priv_Elmt);
19643 Priv_Scop := Scope (Priv);
19645 if Ekind_In (Priv, E_Private_Subtype,
19646 E_Limited_Private_Subtype,
19647 E_Record_Subtype_With_Private)
19648 then
19649 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
19650 Set_Is_Itype (Full);
19651 Set_Parent (Full, Parent (Priv));
19652 Set_Associated_Node_For_Itype (Full, N);
19654 -- Now we need to complete the private subtype, but since the
19655 -- base type has already been swapped, we must also swap the
19656 -- subtypes (and thus, reverse the arguments in the call to
19657 -- Complete_Private_Subtype). Also note that we may need to
19658 -- re-establish the scope of the private subtype.
19660 Copy_And_Swap (Priv, Full);
19662 if not In_Open_Scopes (Priv_Scop) then
19663 Push_Scope (Priv_Scop);
19665 else
19666 -- Reset Priv_Scop to Empty to indicate no scope was pushed
19668 Priv_Scop := Empty;
19669 end if;
19671 Complete_Private_Subtype (Full, Priv, Full_T, N);
19673 if Present (Priv_Scop) then
19674 Pop_Scope;
19675 end if;
19677 Replace_Elmt (Priv_Elmt, Full);
19678 end if;
19680 Next_Elmt (Priv_Elmt);
19681 end loop;
19682 end;
19684 -- If the private view was tagged, copy the new primitive operations
19685 -- from the private view to the full view.
19687 if Is_Tagged_Type (Full_T) then
19688 declare
19689 Disp_Typ : Entity_Id;
19690 Full_List : Elist_Id;
19691 Prim : Entity_Id;
19692 Prim_Elmt : Elmt_Id;
19693 Priv_List : Elist_Id;
19695 function Contains
19696 (E : Entity_Id;
19697 L : Elist_Id) return Boolean;
19698 -- Determine whether list L contains element E
19700 --------------
19701 -- Contains --
19702 --------------
19704 function Contains
19705 (E : Entity_Id;
19706 L : Elist_Id) return Boolean
19708 List_Elmt : Elmt_Id;
19710 begin
19711 List_Elmt := First_Elmt (L);
19712 while Present (List_Elmt) loop
19713 if Node (List_Elmt) = E then
19714 return True;
19715 end if;
19717 Next_Elmt (List_Elmt);
19718 end loop;
19720 return False;
19721 end Contains;
19723 -- Start of processing
19725 begin
19726 if Is_Tagged_Type (Priv_T) then
19727 Priv_List := Primitive_Operations (Priv_T);
19728 Prim_Elmt := First_Elmt (Priv_List);
19730 -- In the case of a concurrent type completing a private tagged
19731 -- type, primitives may have been declared in between the two
19732 -- views. These subprograms need to be wrapped the same way
19733 -- entries and protected procedures are handled because they
19734 -- cannot be directly shared by the two views.
19736 if Is_Concurrent_Type (Full_T) then
19737 declare
19738 Conc_Typ : constant Entity_Id :=
19739 Corresponding_Record_Type (Full_T);
19740 Curr_Nod : Node_Id := Parent (Conc_Typ);
19741 Wrap_Spec : Node_Id;
19743 begin
19744 while Present (Prim_Elmt) loop
19745 Prim := Node (Prim_Elmt);
19747 if Comes_From_Source (Prim)
19748 and then not Is_Abstract_Subprogram (Prim)
19749 then
19750 Wrap_Spec :=
19751 Make_Subprogram_Declaration (Sloc (Prim),
19752 Specification =>
19753 Build_Wrapper_Spec
19754 (Subp_Id => Prim,
19755 Obj_Typ => Conc_Typ,
19756 Formals =>
19757 Parameter_Specifications (
19758 Parent (Prim))));
19760 Insert_After (Curr_Nod, Wrap_Spec);
19761 Curr_Nod := Wrap_Spec;
19763 Analyze (Wrap_Spec);
19764 end if;
19766 Next_Elmt (Prim_Elmt);
19767 end loop;
19769 return;
19770 end;
19772 -- For non-concurrent types, transfer explicit primitives, but
19773 -- omit those inherited from the parent of the private view
19774 -- since they will be re-inherited later on.
19776 else
19777 Full_List := Primitive_Operations (Full_T);
19779 while Present (Prim_Elmt) loop
19780 Prim := Node (Prim_Elmt);
19782 if Comes_From_Source (Prim)
19783 and then not Contains (Prim, Full_List)
19784 then
19785 Append_Elmt (Prim, Full_List);
19786 end if;
19788 Next_Elmt (Prim_Elmt);
19789 end loop;
19790 end if;
19792 -- Untagged private view
19794 else
19795 Full_List := Primitive_Operations (Full_T);
19797 -- In this case the partial view is untagged, so here we locate
19798 -- all of the earlier primitives that need to be treated as
19799 -- dispatching (those that appear between the two views). Note
19800 -- that these additional operations must all be new operations
19801 -- (any earlier operations that override inherited operations
19802 -- of the full view will already have been inserted in the
19803 -- primitives list, marked by Check_Operation_From_Private_View
19804 -- as dispatching. Note that implicit "/=" operators are
19805 -- excluded from being added to the primitives list since they
19806 -- shouldn't be treated as dispatching (tagged "/=" is handled
19807 -- specially).
19809 Prim := Next_Entity (Full_T);
19810 while Present (Prim) and then Prim /= Priv_T loop
19811 if Ekind_In (Prim, E_Procedure, E_Function) then
19812 Disp_Typ := Find_Dispatching_Type (Prim);
19814 if Disp_Typ = Full_T
19815 and then (Chars (Prim) /= Name_Op_Ne
19816 or else Comes_From_Source (Prim))
19817 then
19818 Check_Controlling_Formals (Full_T, Prim);
19820 if not Is_Dispatching_Operation (Prim) then
19821 Append_Elmt (Prim, Full_List);
19822 Set_Is_Dispatching_Operation (Prim, True);
19823 Set_DT_Position_Value (Prim, No_Uint);
19824 end if;
19826 elsif Is_Dispatching_Operation (Prim)
19827 and then Disp_Typ /= Full_T
19828 then
19830 -- Verify that it is not otherwise controlled by a
19831 -- formal or a return value of type T.
19833 Check_Controlling_Formals (Disp_Typ, Prim);
19834 end if;
19835 end if;
19837 Next_Entity (Prim);
19838 end loop;
19839 end if;
19841 -- For the tagged case, the two views can share the same primitive
19842 -- operations list and the same class-wide type. Update attributes
19843 -- of the class-wide type which depend on the full declaration.
19845 if Is_Tagged_Type (Priv_T) then
19846 Set_Direct_Primitive_Operations (Priv_T, Full_List);
19847 Set_Class_Wide_Type
19848 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
19850 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
19851 Set_Has_Protected
19852 (Class_Wide_Type (Priv_T), Has_Protected (Full_T));
19853 end if;
19854 end;
19855 end if;
19857 -- Ada 2005 AI 161: Check preelaborable initialization consistency
19859 if Known_To_Have_Preelab_Init (Priv_T) then
19861 -- Case where there is a pragma Preelaborable_Initialization. We
19862 -- always allow this in predefined units, which is cheating a bit,
19863 -- but it means we don't have to struggle to meet the requirements in
19864 -- the RM for having Preelaborable Initialization. Otherwise we
19865 -- require that the type meets the RM rules. But we can't check that
19866 -- yet, because of the rule about overriding Initialize, so we simply
19867 -- set a flag that will be checked at freeze time.
19869 if not In_Predefined_Unit (Full_T) then
19870 Set_Must_Have_Preelab_Init (Full_T);
19871 end if;
19872 end if;
19874 -- If pragma CPP_Class was applied to the private type declaration,
19875 -- propagate it now to the full type declaration.
19877 if Is_CPP_Class (Priv_T) then
19878 Set_Is_CPP_Class (Full_T);
19879 Set_Convention (Full_T, Convention_CPP);
19881 -- Check that components of imported CPP types do not have default
19882 -- expressions.
19884 Check_CPP_Type_Has_No_Defaults (Full_T);
19885 end if;
19887 -- If the private view has user specified stream attributes, then so has
19888 -- the full view.
19890 -- Why the test, how could these flags be already set in Full_T ???
19892 if Has_Specified_Stream_Read (Priv_T) then
19893 Set_Has_Specified_Stream_Read (Full_T);
19894 end if;
19896 if Has_Specified_Stream_Write (Priv_T) then
19897 Set_Has_Specified_Stream_Write (Full_T);
19898 end if;
19900 if Has_Specified_Stream_Input (Priv_T) then
19901 Set_Has_Specified_Stream_Input (Full_T);
19902 end if;
19904 if Has_Specified_Stream_Output (Priv_T) then
19905 Set_Has_Specified_Stream_Output (Full_T);
19906 end if;
19908 -- Propagate the attributes related to pragma Default_Initial_Condition
19909 -- from the private to the full view. Note that both flags are mutually
19910 -- exclusive.
19912 if Has_Default_Init_Cond (Priv_T)
19913 or else Has_Inherited_Default_Init_Cond (Priv_T)
19914 then
19915 Propagate_Default_Init_Cond_Attributes
19916 (From_Typ => Priv_T,
19917 To_Typ => Full_T,
19918 Private_To_Full_View => True);
19920 -- In the case where the full view is derived from another private type,
19921 -- the attributes related to pragma Default_Initial_Condition must be
19922 -- propagated from the full to the private view to maintain consistency
19923 -- of views.
19925 -- package Pack is
19926 -- type Parent_Typ is private
19927 -- with Default_Initial_Condition ...;
19928 -- private
19929 -- type Parent_Typ is ...;
19930 -- end Pack;
19932 -- with Pack; use Pack;
19933 -- package Pack_2 is
19934 -- type Deriv_Typ is private; -- must inherit
19935 -- private
19936 -- type Deriv_Typ is new Parent_Typ; -- must inherit
19937 -- end Pack_2;
19939 elsif Has_Default_Init_Cond (Full_T)
19940 or else Has_Inherited_Default_Init_Cond (Full_T)
19941 then
19942 Propagate_Default_Init_Cond_Attributes
19943 (From_Typ => Full_T,
19944 To_Typ => Priv_T,
19945 Private_To_Full_View => True);
19946 end if;
19948 if Is_Ghost_Entity (Priv_T) then
19950 -- The Ghost policy in effect at the point of declaration and at the
19951 -- point of completion must match (SPARK RM 6.9(14)).
19953 Check_Ghost_Completion (Priv_T, Full_T);
19955 -- In the case where the private view of a tagged type lacks a parent
19956 -- type and is subject to pragma Ghost, ensure that the parent type
19957 -- specified by the full view is also Ghost (SPARK RM 6.9(9)).
19959 if Is_Derived_Type (Full_T) then
19960 Check_Ghost_Derivation (Full_T);
19961 end if;
19963 -- Propagate the attributes related to pragma Ghost from the private
19964 -- to the full view.
19966 Mark_Full_View_As_Ghost (Priv_T, Full_T);
19967 end if;
19969 -- Propagate invariants to full type
19971 if Has_Invariants (Priv_T) then
19972 Set_Has_Invariants (Full_T);
19973 Set_Invariant_Procedure (Full_T, Invariant_Procedure (Priv_T));
19974 end if;
19976 if Has_Inheritable_Invariants (Priv_T) then
19977 Set_Has_Inheritable_Invariants (Full_T);
19978 end if;
19980 -- Check hidden inheritance of class-wide type invariants
19982 if Ada_Version >= Ada_2012
19983 and then not Has_Inheritable_Invariants (Full_T)
19984 and then In_Private_Part (Current_Scope)
19985 and then Has_Interfaces (Full_T)
19986 then
19987 declare
19988 Ifaces : Elist_Id;
19989 AI : Elmt_Id;
19991 begin
19992 Collect_Interfaces (Full_T, Ifaces, Exclude_Parents => True);
19994 AI := First_Elmt (Ifaces);
19995 while Present (AI) loop
19996 if Has_Inheritable_Invariants (Node (AI)) then
19997 Error_Msg_N
19998 ("hidden inheritance of class-wide type invariants " &
19999 "not allowed", N);
20000 exit;
20001 end if;
20003 Next_Elmt (AI);
20004 end loop;
20005 end;
20006 end if;
20008 -- Propagate predicates to full type, and predicate function if already
20009 -- defined. It is not clear that this can actually happen? the partial
20010 -- view cannot be frozen yet, and the predicate function has not been
20011 -- built. Still it is a cheap check and seems safer to make it.
20013 if Has_Predicates (Priv_T) then
20014 if Present (Predicate_Function (Priv_T)) then
20015 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20016 end if;
20018 Set_Has_Predicates (Full_T);
20019 end if;
20020 end Process_Full_View;
20022 -----------------------------------
20023 -- Process_Incomplete_Dependents --
20024 -----------------------------------
20026 procedure Process_Incomplete_Dependents
20027 (N : Node_Id;
20028 Full_T : Entity_Id;
20029 Inc_T : Entity_Id)
20031 Inc_Elmt : Elmt_Id;
20032 Priv_Dep : Entity_Id;
20033 New_Subt : Entity_Id;
20035 Disc_Constraint : Elist_Id;
20037 begin
20038 if No (Private_Dependents (Inc_T)) then
20039 return;
20040 end if;
20042 -- Itypes that may be generated by the completion of an incomplete
20043 -- subtype are not used by the back-end and not attached to the tree.
20044 -- They are created only for constraint-checking purposes.
20046 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20047 while Present (Inc_Elmt) loop
20048 Priv_Dep := Node (Inc_Elmt);
20050 if Ekind (Priv_Dep) = E_Subprogram_Type then
20052 -- An Access_To_Subprogram type may have a return type or a
20053 -- parameter type that is incomplete. Replace with the full view.
20055 if Etype (Priv_Dep) = Inc_T then
20056 Set_Etype (Priv_Dep, Full_T);
20057 end if;
20059 declare
20060 Formal : Entity_Id;
20062 begin
20063 Formal := First_Formal (Priv_Dep);
20064 while Present (Formal) loop
20065 if Etype (Formal) = Inc_T then
20066 Set_Etype (Formal, Full_T);
20067 end if;
20069 Next_Formal (Formal);
20070 end loop;
20071 end;
20073 elsif Is_Overloadable (Priv_Dep) then
20075 -- If a subprogram in the incomplete dependents list is primitive
20076 -- for a tagged full type then mark it as a dispatching operation,
20077 -- check whether it overrides an inherited subprogram, and check
20078 -- restrictions on its controlling formals. Note that a protected
20079 -- operation is never dispatching: only its wrapper operation
20080 -- (which has convention Ada) is.
20082 if Is_Tagged_Type (Full_T)
20083 and then Is_Primitive (Priv_Dep)
20084 and then Convention (Priv_Dep) /= Convention_Protected
20085 then
20086 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20087 Set_Is_Dispatching_Operation (Priv_Dep);
20088 Check_Controlling_Formals (Full_T, Priv_Dep);
20089 end if;
20091 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20093 -- Can happen during processing of a body before the completion
20094 -- of a TA type. Ignore, because spec is also on dependent list.
20096 return;
20098 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20099 -- corresponding subtype of the full view.
20101 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
20102 Set_Subtype_Indication
20103 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20104 Set_Etype (Priv_Dep, Full_T);
20105 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20106 Set_Analyzed (Parent (Priv_Dep), False);
20108 -- Reanalyze the declaration, suppressing the call to
20109 -- Enter_Name to avoid duplicate names.
20111 Analyze_Subtype_Declaration
20112 (N => Parent (Priv_Dep),
20113 Skip => True);
20115 -- Dependent is a subtype
20117 else
20118 -- We build a new subtype indication using the full view of the
20119 -- incomplete parent. The discriminant constraints have been
20120 -- elaborated already at the point of the subtype declaration.
20122 New_Subt := Create_Itype (E_Void, N);
20124 if Has_Discriminants (Full_T) then
20125 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20126 else
20127 Disc_Constraint := No_Elist;
20128 end if;
20130 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20131 Set_Full_View (Priv_Dep, New_Subt);
20132 end if;
20134 Next_Elmt (Inc_Elmt);
20135 end loop;
20136 end Process_Incomplete_Dependents;
20138 --------------------------------
20139 -- Process_Range_Expr_In_Decl --
20140 --------------------------------
20142 procedure Process_Range_Expr_In_Decl
20143 (R : Node_Id;
20144 T : Entity_Id;
20145 Subtyp : Entity_Id := Empty;
20146 Check_List : List_Id := Empty_List;
20147 R_Check_Off : Boolean := False;
20148 In_Iter_Schm : Boolean := False)
20150 Lo, Hi : Node_Id;
20151 R_Checks : Check_Result;
20152 Insert_Node : Node_Id;
20153 Def_Id : Entity_Id;
20155 begin
20156 Analyze_And_Resolve (R, Base_Type (T));
20158 if Nkind (R) = N_Range then
20160 -- In SPARK, all ranges should be static, with the exception of the
20161 -- discrete type definition of a loop parameter specification.
20163 if not In_Iter_Schm
20164 and then not Is_OK_Static_Range (R)
20165 then
20166 Check_SPARK_05_Restriction ("range should be static", R);
20167 end if;
20169 Lo := Low_Bound (R);
20170 Hi := High_Bound (R);
20172 -- Validity checks on the range of a quantified expression are
20173 -- delayed until the construct is transformed into a loop.
20175 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20176 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20177 then
20178 null;
20180 -- We need to ensure validity of the bounds here, because if we
20181 -- go ahead and do the expansion, then the expanded code will get
20182 -- analyzed with range checks suppressed and we miss the check.
20184 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20185 -- the temporaries generated by routine Remove_Side_Effects by means
20186 -- of validity checks must use the same names. When a range appears
20187 -- in the parent of a generic, the range is processed with checks
20188 -- disabled as part of the generic context and with checks enabled
20189 -- for code generation purposes. This leads to link issues as the
20190 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20191 -- template sees the temporaries generated by Remove_Side_Effects.
20193 else
20194 Validity_Check_Range (R, Subtyp);
20195 end if;
20197 -- If there were errors in the declaration, try and patch up some
20198 -- common mistakes in the bounds. The cases handled are literals
20199 -- which are Integer where the expected type is Real and vice versa.
20200 -- These corrections allow the compilation process to proceed further
20201 -- along since some basic assumptions of the format of the bounds
20202 -- are guaranteed.
20204 if Etype (R) = Any_Type then
20205 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20206 Rewrite (Lo,
20207 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20209 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20210 Rewrite (Hi,
20211 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20213 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20214 Rewrite (Lo,
20215 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20217 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20218 Rewrite (Hi,
20219 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20220 end if;
20222 Set_Etype (Lo, T);
20223 Set_Etype (Hi, T);
20224 end if;
20226 -- If the bounds of the range have been mistakenly given as string
20227 -- literals (perhaps in place of character literals), then an error
20228 -- has already been reported, but we rewrite the string literal as a
20229 -- bound of the range's type to avoid blowups in later processing
20230 -- that looks at static values.
20232 if Nkind (Lo) = N_String_Literal then
20233 Rewrite (Lo,
20234 Make_Attribute_Reference (Sloc (Lo),
20235 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20236 Attribute_Name => Name_First));
20237 Analyze_And_Resolve (Lo);
20238 end if;
20240 if Nkind (Hi) = N_String_Literal then
20241 Rewrite (Hi,
20242 Make_Attribute_Reference (Sloc (Hi),
20243 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20244 Attribute_Name => Name_First));
20245 Analyze_And_Resolve (Hi);
20246 end if;
20248 -- If bounds aren't scalar at this point then exit, avoiding
20249 -- problems with further processing of the range in this procedure.
20251 if not Is_Scalar_Type (Etype (Lo)) then
20252 return;
20253 end if;
20255 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20256 -- then range of the base type. Here we check whether the bounds
20257 -- are in the range of the subtype itself. Note that if the bounds
20258 -- represent the null range the Constraint_Error exception should
20259 -- not be raised.
20261 -- ??? The following code should be cleaned up as follows
20263 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20264 -- is done in the call to Range_Check (R, T); below
20266 -- 2. The use of R_Check_Off should be investigated and possibly
20267 -- removed, this would clean up things a bit.
20269 if Is_Null_Range (Lo, Hi) then
20270 null;
20272 else
20273 -- Capture values of bounds and generate temporaries for them
20274 -- if needed, before applying checks, since checks may cause
20275 -- duplication of the expression without forcing evaluation.
20277 -- The forced evaluation removes side effects from expressions,
20278 -- which should occur also in GNATprove mode. Otherwise, we end up
20279 -- with unexpected insertions of actions at places where this is
20280 -- not supposed to occur, e.g. on default parameters of a call.
20282 if Expander_Active or GNATprove_Mode then
20284 -- Call Force_Evaluation to create declarations as needed to
20285 -- deal with side effects, and also create typ_FIRST/LAST
20286 -- entities for bounds if we have a subtype name.
20288 -- Note: we do this transformation even if expansion is not
20289 -- active if we are in GNATprove_Mode since the transformation
20290 -- is in general required to ensure that the resulting tree has
20291 -- proper Ada semantics.
20293 Force_Evaluation
20294 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
20295 Force_Evaluation
20296 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
20297 end if;
20299 -- We use a flag here instead of suppressing checks on the type
20300 -- because the type we check against isn't necessarily the place
20301 -- where we put the check.
20303 if not R_Check_Off then
20304 R_Checks := Get_Range_Checks (R, T);
20306 -- Look up tree to find an appropriate insertion point. We
20307 -- can't just use insert_actions because later processing
20308 -- depends on the insertion node. Prior to Ada 2012 the
20309 -- insertion point could only be a declaration or a loop, but
20310 -- quantified expressions can appear within any context in an
20311 -- expression, and the insertion point can be any statement,
20312 -- pragma, or declaration.
20314 Insert_Node := Parent (R);
20315 while Present (Insert_Node) loop
20316 exit when
20317 Nkind (Insert_Node) in N_Declaration
20318 and then
20319 not Nkind_In
20320 (Insert_Node, N_Component_Declaration,
20321 N_Loop_Parameter_Specification,
20322 N_Function_Specification,
20323 N_Procedure_Specification);
20325 exit when Nkind (Insert_Node) in N_Later_Decl_Item
20326 or else Nkind (Insert_Node) in
20327 N_Statement_Other_Than_Procedure_Call
20328 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
20329 N_Pragma);
20331 Insert_Node := Parent (Insert_Node);
20332 end loop;
20334 -- Why would Type_Decl not be present??? Without this test,
20335 -- short regression tests fail.
20337 if Present (Insert_Node) then
20339 -- Case of loop statement. Verify that the range is part
20340 -- of the subtype indication of the iteration scheme.
20342 if Nkind (Insert_Node) = N_Loop_Statement then
20343 declare
20344 Indic : Node_Id;
20346 begin
20347 Indic := Parent (R);
20348 while Present (Indic)
20349 and then Nkind (Indic) /= N_Subtype_Indication
20350 loop
20351 Indic := Parent (Indic);
20352 end loop;
20354 if Present (Indic) then
20355 Def_Id := Etype (Subtype_Mark (Indic));
20357 Insert_Range_Checks
20358 (R_Checks,
20359 Insert_Node,
20360 Def_Id,
20361 Sloc (Insert_Node),
20363 Do_Before => True);
20364 end if;
20365 end;
20367 -- Insertion before a declaration. If the declaration
20368 -- includes discriminants, the list of applicable checks
20369 -- is given by the caller.
20371 elsif Nkind (Insert_Node) in N_Declaration then
20372 Def_Id := Defining_Identifier (Insert_Node);
20374 if (Ekind (Def_Id) = E_Record_Type
20375 and then Depends_On_Discriminant (R))
20376 or else
20377 (Ekind (Def_Id) = E_Protected_Type
20378 and then Has_Discriminants (Def_Id))
20379 then
20380 Append_Range_Checks
20381 (R_Checks,
20382 Check_List, Def_Id, Sloc (Insert_Node), R);
20384 else
20385 Insert_Range_Checks
20386 (R_Checks,
20387 Insert_Node, Def_Id, Sloc (Insert_Node), R);
20389 end if;
20391 -- Insertion before a statement. Range appears in the
20392 -- context of a quantified expression. Insertion will
20393 -- take place when expression is expanded.
20395 else
20396 null;
20397 end if;
20398 end if;
20399 end if;
20400 end if;
20402 -- Case of other than an explicit N_Range node
20404 -- The forced evaluation removes side effects from expressions, which
20405 -- should occur also in GNATprove mode. Otherwise, we end up with
20406 -- unexpected insertions of actions at places where this is not
20407 -- supposed to occur, e.g. on default parameters of a call.
20409 elsif Expander_Active or GNATprove_Mode then
20410 Get_Index_Bounds (R, Lo, Hi);
20411 Force_Evaluation (Lo);
20412 Force_Evaluation (Hi);
20413 end if;
20414 end Process_Range_Expr_In_Decl;
20416 --------------------------------------
20417 -- Process_Real_Range_Specification --
20418 --------------------------------------
20420 procedure Process_Real_Range_Specification (Def : Node_Id) is
20421 Spec : constant Node_Id := Real_Range_Specification (Def);
20422 Lo : Node_Id;
20423 Hi : Node_Id;
20424 Err : Boolean := False;
20426 procedure Analyze_Bound (N : Node_Id);
20427 -- Analyze and check one bound
20429 -------------------
20430 -- Analyze_Bound --
20431 -------------------
20433 procedure Analyze_Bound (N : Node_Id) is
20434 begin
20435 Analyze_And_Resolve (N, Any_Real);
20437 if not Is_OK_Static_Expression (N) then
20438 Flag_Non_Static_Expr
20439 ("bound in real type definition is not static!", N);
20440 Err := True;
20441 end if;
20442 end Analyze_Bound;
20444 -- Start of processing for Process_Real_Range_Specification
20446 begin
20447 if Present (Spec) then
20448 Lo := Low_Bound (Spec);
20449 Hi := High_Bound (Spec);
20450 Analyze_Bound (Lo);
20451 Analyze_Bound (Hi);
20453 -- If error, clear away junk range specification
20455 if Err then
20456 Set_Real_Range_Specification (Def, Empty);
20457 end if;
20458 end if;
20459 end Process_Real_Range_Specification;
20461 ---------------------
20462 -- Process_Subtype --
20463 ---------------------
20465 function Process_Subtype
20466 (S : Node_Id;
20467 Related_Nod : Node_Id;
20468 Related_Id : Entity_Id := Empty;
20469 Suffix : Character := ' ') return Entity_Id
20471 P : Node_Id;
20472 Def_Id : Entity_Id;
20473 Error_Node : Node_Id;
20474 Full_View_Id : Entity_Id;
20475 Subtype_Mark_Id : Entity_Id;
20477 May_Have_Null_Exclusion : Boolean;
20479 procedure Check_Incomplete (T : Entity_Id);
20480 -- Called to verify that an incomplete type is not used prematurely
20482 ----------------------
20483 -- Check_Incomplete --
20484 ----------------------
20486 procedure Check_Incomplete (T : Entity_Id) is
20487 begin
20488 -- Ada 2005 (AI-412): Incomplete subtypes are legal
20490 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
20491 and then
20492 not (Ada_Version >= Ada_2005
20493 and then
20494 (Nkind (Parent (T)) = N_Subtype_Declaration
20495 or else (Nkind (Parent (T)) = N_Subtype_Indication
20496 and then Nkind (Parent (Parent (T))) =
20497 N_Subtype_Declaration)))
20498 then
20499 Error_Msg_N ("invalid use of type before its full declaration", T);
20500 end if;
20501 end Check_Incomplete;
20503 -- Start of processing for Process_Subtype
20505 begin
20506 -- Case of no constraints present
20508 if Nkind (S) /= N_Subtype_Indication then
20509 Find_Type (S);
20510 Check_Incomplete (S);
20511 P := Parent (S);
20513 -- Ada 2005 (AI-231): Static check
20515 if Ada_Version >= Ada_2005
20516 and then Present (P)
20517 and then Null_Exclusion_Present (P)
20518 and then Nkind (P) /= N_Access_To_Object_Definition
20519 and then not Is_Access_Type (Entity (S))
20520 then
20521 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
20522 end if;
20524 -- The following is ugly, can't we have a range or even a flag???
20526 May_Have_Null_Exclusion :=
20527 Nkind_In (P, N_Access_Definition,
20528 N_Access_Function_Definition,
20529 N_Access_Procedure_Definition,
20530 N_Access_To_Object_Definition,
20531 N_Allocator,
20532 N_Component_Definition)
20533 or else
20534 Nkind_In (P, N_Derived_Type_Definition,
20535 N_Discriminant_Specification,
20536 N_Formal_Object_Declaration,
20537 N_Object_Declaration,
20538 N_Object_Renaming_Declaration,
20539 N_Parameter_Specification,
20540 N_Subtype_Declaration);
20542 -- Create an Itype that is a duplicate of Entity (S) but with the
20543 -- null-exclusion attribute.
20545 if May_Have_Null_Exclusion
20546 and then Is_Access_Type (Entity (S))
20547 and then Null_Exclusion_Present (P)
20549 -- No need to check the case of an access to object definition.
20550 -- It is correct to define double not-null pointers.
20552 -- Example:
20553 -- type Not_Null_Int_Ptr is not null access Integer;
20554 -- type Acc is not null access Not_Null_Int_Ptr;
20556 and then Nkind (P) /= N_Access_To_Object_Definition
20557 then
20558 if Can_Never_Be_Null (Entity (S)) then
20559 case Nkind (Related_Nod) is
20560 when N_Full_Type_Declaration =>
20561 if Nkind (Type_Definition (Related_Nod))
20562 in N_Array_Type_Definition
20563 then
20564 Error_Node :=
20565 Subtype_Indication
20566 (Component_Definition
20567 (Type_Definition (Related_Nod)));
20568 else
20569 Error_Node :=
20570 Subtype_Indication (Type_Definition (Related_Nod));
20571 end if;
20573 when N_Subtype_Declaration =>
20574 Error_Node := Subtype_Indication (Related_Nod);
20576 when N_Object_Declaration =>
20577 Error_Node := Object_Definition (Related_Nod);
20579 when N_Component_Declaration =>
20580 Error_Node :=
20581 Subtype_Indication (Component_Definition (Related_Nod));
20583 when N_Allocator =>
20584 Error_Node := Expression (Related_Nod);
20586 when others =>
20587 pragma Assert (False);
20588 Error_Node := Related_Nod;
20589 end case;
20591 Error_Msg_NE
20592 ("`NOT NULL` not allowed (& already excludes null)",
20593 Error_Node,
20594 Entity (S));
20595 end if;
20597 Set_Etype (S,
20598 Create_Null_Excluding_Itype
20599 (T => Entity (S),
20600 Related_Nod => P));
20601 Set_Entity (S, Etype (S));
20602 end if;
20604 return Entity (S);
20606 -- Case of constraint present, so that we have an N_Subtype_Indication
20607 -- node (this node is created only if constraints are present).
20609 else
20610 Find_Type (Subtype_Mark (S));
20612 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
20613 and then not
20614 (Nkind (Parent (S)) = N_Subtype_Declaration
20615 and then Is_Itype (Defining_Identifier (Parent (S))))
20616 then
20617 Check_Incomplete (Subtype_Mark (S));
20618 end if;
20620 P := Parent (S);
20621 Subtype_Mark_Id := Entity (Subtype_Mark (S));
20623 -- Explicit subtype declaration case
20625 if Nkind (P) = N_Subtype_Declaration then
20626 Def_Id := Defining_Identifier (P);
20628 -- Explicit derived type definition case
20630 elsif Nkind (P) = N_Derived_Type_Definition then
20631 Def_Id := Defining_Identifier (Parent (P));
20633 -- Implicit case, the Def_Id must be created as an implicit type.
20634 -- The one exception arises in the case of concurrent types, array
20635 -- and access types, where other subsidiary implicit types may be
20636 -- created and must appear before the main implicit type. In these
20637 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
20638 -- has not yet been called to create Def_Id.
20640 else
20641 if Is_Array_Type (Subtype_Mark_Id)
20642 or else Is_Concurrent_Type (Subtype_Mark_Id)
20643 or else Is_Access_Type (Subtype_Mark_Id)
20644 then
20645 Def_Id := Empty;
20647 -- For the other cases, we create a new unattached Itype,
20648 -- and set the indication to ensure it gets attached later.
20650 else
20651 Def_Id :=
20652 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20653 end if;
20654 end if;
20656 -- If the kind of constraint is invalid for this kind of type,
20657 -- then give an error, and then pretend no constraint was given.
20659 if not Is_Valid_Constraint_Kind
20660 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
20661 then
20662 Error_Msg_N
20663 ("incorrect constraint for this kind of type", Constraint (S));
20665 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
20667 -- Set Ekind of orphan itype, to prevent cascaded errors
20669 if Present (Def_Id) then
20670 Set_Ekind (Def_Id, Ekind (Any_Type));
20671 end if;
20673 -- Make recursive call, having got rid of the bogus constraint
20675 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
20676 end if;
20678 -- Remaining processing depends on type. Select on Base_Type kind to
20679 -- ensure getting to the concrete type kind in the case of a private
20680 -- subtype (needed when only doing semantic analysis).
20682 case Ekind (Base_Type (Subtype_Mark_Id)) is
20683 when Access_Kind =>
20685 -- If this is a constraint on a class-wide type, discard it.
20686 -- There is currently no way to express a partial discriminant
20687 -- constraint on a type with unknown discriminants. This is
20688 -- a pathology that the ACATS wisely decides not to test.
20690 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
20691 if Comes_From_Source (S) then
20692 Error_Msg_N
20693 ("constraint on class-wide type ignored??",
20694 Constraint (S));
20695 end if;
20697 if Nkind (P) = N_Subtype_Declaration then
20698 Set_Subtype_Indication (P,
20699 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
20700 end if;
20702 return Subtype_Mark_Id;
20703 end if;
20705 Constrain_Access (Def_Id, S, Related_Nod);
20707 if Expander_Active
20708 and then Is_Itype (Designated_Type (Def_Id))
20709 and then Nkind (Related_Nod) = N_Subtype_Declaration
20710 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
20711 then
20712 Build_Itype_Reference
20713 (Designated_Type (Def_Id), Related_Nod);
20714 end if;
20716 when Array_Kind =>
20717 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
20719 when Decimal_Fixed_Point_Kind =>
20720 Constrain_Decimal (Def_Id, S);
20722 when Enumeration_Kind =>
20723 Constrain_Enumeration (Def_Id, S);
20724 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20726 when Ordinary_Fixed_Point_Kind =>
20727 Constrain_Ordinary_Fixed (Def_Id, S);
20729 when Float_Kind =>
20730 Constrain_Float (Def_Id, S);
20732 when Integer_Kind =>
20733 Constrain_Integer (Def_Id, S);
20734 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
20736 when E_Record_Type |
20737 E_Record_Subtype |
20738 Class_Wide_Kind |
20739 E_Incomplete_Type =>
20740 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20742 if Ekind (Def_Id) = E_Incomplete_Type then
20743 Set_Private_Dependents (Def_Id, New_Elmt_List);
20744 end if;
20746 when Private_Kind =>
20747 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
20748 Set_Private_Dependents (Def_Id, New_Elmt_List);
20750 -- In case of an invalid constraint prevent further processing
20751 -- since the type constructed is missing expected fields.
20753 if Etype (Def_Id) = Any_Type then
20754 return Def_Id;
20755 end if;
20757 -- If the full view is that of a task with discriminants,
20758 -- we must constrain both the concurrent type and its
20759 -- corresponding record type. Otherwise we will just propagate
20760 -- the constraint to the full view, if available.
20762 if Present (Full_View (Subtype_Mark_Id))
20763 and then Has_Discriminants (Subtype_Mark_Id)
20764 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
20765 then
20766 Full_View_Id :=
20767 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
20769 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
20770 Constrain_Concurrent (Full_View_Id, S,
20771 Related_Nod, Related_Id, Suffix);
20772 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
20773 Set_Full_View (Def_Id, Full_View_Id);
20775 -- Introduce an explicit reference to the private subtype,
20776 -- to prevent scope anomalies in gigi if first use appears
20777 -- in a nested context, e.g. a later function body.
20778 -- Should this be generated in other contexts than a full
20779 -- type declaration?
20781 if Is_Itype (Def_Id)
20782 and then
20783 Nkind (Parent (P)) = N_Full_Type_Declaration
20784 then
20785 Build_Itype_Reference (Def_Id, Parent (P));
20786 end if;
20788 else
20789 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
20790 end if;
20792 when Concurrent_Kind =>
20793 Constrain_Concurrent (Def_Id, S,
20794 Related_Nod, Related_Id, Suffix);
20796 when others =>
20797 Error_Msg_N ("invalid subtype mark in subtype indication", S);
20798 end case;
20800 -- Size and Convention are always inherited from the base type
20802 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
20803 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
20805 return Def_Id;
20806 end if;
20807 end Process_Subtype;
20809 --------------------------------------------
20810 -- Propagate_Default_Init_Cond_Attributes --
20811 --------------------------------------------
20813 procedure Propagate_Default_Init_Cond_Attributes
20814 (From_Typ : Entity_Id;
20815 To_Typ : Entity_Id;
20816 Parent_To_Derivation : Boolean := False;
20817 Private_To_Full_View : Boolean := False)
20819 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id);
20820 -- Remove the default initial procedure (if any) from the rep chain of
20821 -- type Typ.
20823 ----------------------------------------
20824 -- Remove_Default_Init_Cond_Procedure --
20825 ----------------------------------------
20827 procedure Remove_Default_Init_Cond_Procedure (Typ : Entity_Id) is
20828 Found : Boolean := False;
20829 Prev : Entity_Id;
20830 Subp : Entity_Id;
20832 begin
20833 Prev := Typ;
20834 Subp := Subprograms_For_Type (Typ);
20835 while Present (Subp) loop
20836 if Is_Default_Init_Cond_Procedure (Subp) then
20837 Found := True;
20838 exit;
20839 end if;
20841 Prev := Subp;
20842 Subp := Subprograms_For_Type (Subp);
20843 end loop;
20845 if Found then
20846 Set_Subprograms_For_Type (Prev, Subprograms_For_Type (Subp));
20847 Set_Subprograms_For_Type (Subp, Empty);
20848 end if;
20849 end Remove_Default_Init_Cond_Procedure;
20851 -- Local variables
20853 Inherit_Procedure : Boolean := False;
20855 -- Start of processing for Propagate_Default_Init_Cond_Attributes
20857 begin
20858 if Has_Default_Init_Cond (From_Typ) then
20860 -- A derived type inherits the attributes from its parent type
20862 if Parent_To_Derivation then
20863 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20865 -- A full view shares the attributes with its private view
20867 else
20868 Set_Has_Default_Init_Cond (To_Typ);
20869 end if;
20871 Inherit_Procedure := True;
20873 -- Due to the order of expansion, a derived private type is processed
20874 -- by two routines which both attempt to set the attributes related
20875 -- to pragma Default_Initial_Condition - Build_Derived_Type and then
20876 -- Process_Full_View.
20878 -- package Pack is
20879 -- type Parent_Typ is private
20880 -- with Default_Initial_Condition ...;
20881 -- private
20882 -- type Parent_Typ is ...;
20883 -- end Pack;
20885 -- with Pack; use Pack;
20886 -- package Pack_2 is
20887 -- type Deriv_Typ is private
20888 -- with Default_Initial_Condition ...;
20889 -- private
20890 -- type Deriv_Typ is new Parent_Typ;
20891 -- end Pack_2;
20893 -- When Build_Derived_Type operates, it sets the attributes on the
20894 -- full view without taking into account that the private view may
20895 -- define its own default initial condition procedure. This becomes
20896 -- apparent in Process_Full_View which must undo some of the work by
20897 -- Build_Derived_Type and propagate the attributes from the private
20898 -- to the full view.
20900 if Private_To_Full_View then
20901 Set_Has_Inherited_Default_Init_Cond (To_Typ, False);
20902 Remove_Default_Init_Cond_Procedure (To_Typ);
20903 end if;
20905 -- A type must inherit the default initial condition procedure from a
20906 -- parent type when the parent itself is inheriting the procedure or
20907 -- when it is defining one. This circuitry is also used when dealing
20908 -- with the private / full view of a type.
20910 elsif Has_Inherited_Default_Init_Cond (From_Typ)
20911 or (Parent_To_Derivation
20912 and Present (Get_Pragma
20913 (From_Typ, Pragma_Default_Initial_Condition)))
20914 then
20915 Set_Has_Inherited_Default_Init_Cond (To_Typ);
20916 Inherit_Procedure := True;
20917 end if;
20919 if Inherit_Procedure
20920 and then No (Default_Init_Cond_Procedure (To_Typ))
20921 then
20922 Set_Default_Init_Cond_Procedure
20923 (To_Typ, Default_Init_Cond_Procedure (From_Typ));
20924 end if;
20925 end Propagate_Default_Init_Cond_Attributes;
20927 -----------------------------
20928 -- Record_Type_Declaration --
20929 -----------------------------
20931 procedure Record_Type_Declaration
20932 (T : Entity_Id;
20933 N : Node_Id;
20934 Prev : Entity_Id)
20936 Def : constant Node_Id := Type_Definition (N);
20937 Is_Tagged : Boolean;
20938 Tag_Comp : Entity_Id;
20940 begin
20941 -- These flags must be initialized before calling Process_Discriminants
20942 -- because this routine makes use of them.
20944 Set_Ekind (T, E_Record_Type);
20945 Set_Etype (T, T);
20946 Init_Size_Align (T);
20947 Set_Interfaces (T, No_Elist);
20948 Set_Stored_Constraint (T, No_Elist);
20949 Set_Default_SSO (T);
20951 -- Normal case
20953 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
20954 if Limited_Present (Def) then
20955 Check_SPARK_05_Restriction ("limited is not allowed", N);
20956 end if;
20958 if Abstract_Present (Def) then
20959 Check_SPARK_05_Restriction ("abstract is not allowed", N);
20960 end if;
20962 -- The flag Is_Tagged_Type might have already been set by
20963 -- Find_Type_Name if it detected an error for declaration T. This
20964 -- arises in the case of private tagged types where the full view
20965 -- omits the word tagged.
20967 Is_Tagged :=
20968 Tagged_Present (Def)
20969 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
20971 Set_Is_Limited_Record (T, Limited_Present (Def));
20973 if Is_Tagged then
20974 Set_Is_Tagged_Type (T, True);
20975 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
20976 end if;
20978 -- Type is abstract if full declaration carries keyword, or if
20979 -- previous partial view did.
20981 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
20982 or else Abstract_Present (Def));
20984 else
20985 Check_SPARK_05_Restriction ("interface is not allowed", N);
20987 Is_Tagged := True;
20988 Analyze_Interface_Declaration (T, Def);
20990 if Present (Discriminant_Specifications (N)) then
20991 Error_Msg_N
20992 ("interface types cannot have discriminants",
20993 Defining_Identifier
20994 (First (Discriminant_Specifications (N))));
20995 end if;
20996 end if;
20998 -- First pass: if there are self-referential access components,
20999 -- create the required anonymous access type declarations, and if
21000 -- need be an incomplete type declaration for T itself.
21002 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21004 if Ada_Version >= Ada_2005
21005 and then Present (Interface_List (Def))
21006 then
21007 Check_Interfaces (N, Def);
21009 declare
21010 Ifaces_List : Elist_Id;
21012 begin
21013 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21014 -- already in the parents.
21016 Collect_Interfaces
21017 (T => T,
21018 Ifaces_List => Ifaces_List,
21019 Exclude_Parents => True);
21021 Set_Interfaces (T, Ifaces_List);
21022 end;
21023 end if;
21025 -- Records constitute a scope for the component declarations within.
21026 -- The scope is created prior to the processing of these declarations.
21027 -- Discriminants are processed first, so that they are visible when
21028 -- processing the other components. The Ekind of the record type itself
21029 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21031 -- Enter record scope
21033 Push_Scope (T);
21035 -- If an incomplete or private type declaration was already given for
21036 -- the type, then this scope already exists, and the discriminants have
21037 -- been declared within. We must verify that the full declaration
21038 -- matches the incomplete one.
21040 Check_Or_Process_Discriminants (N, T, Prev);
21042 Set_Is_Constrained (T, not Has_Discriminants (T));
21043 Set_Has_Delayed_Freeze (T, True);
21045 -- For tagged types add a manually analyzed component corresponding
21046 -- to the component _tag, the corresponding piece of tree will be
21047 -- expanded as part of the freezing actions if it is not a CPP_Class.
21049 if Is_Tagged then
21051 -- Do not add the tag unless we are in expansion mode
21053 if Expander_Active then
21054 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21055 Enter_Name (Tag_Comp);
21057 Set_Ekind (Tag_Comp, E_Component);
21058 Set_Is_Tag (Tag_Comp);
21059 Set_Is_Aliased (Tag_Comp);
21060 Set_Etype (Tag_Comp, RTE (RE_Tag));
21061 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21062 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21063 Init_Component_Location (Tag_Comp);
21065 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21066 -- implemented interfaces.
21068 if Has_Interfaces (T) then
21069 Add_Interface_Tag_Components (N, T);
21070 end if;
21071 end if;
21073 Make_Class_Wide_Type (T);
21074 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21075 end if;
21077 -- We must suppress range checks when processing record components in
21078 -- the presence of discriminants, since we don't want spurious checks to
21079 -- be generated during their analysis, but Suppress_Range_Checks flags
21080 -- must be reset the after processing the record definition.
21082 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21083 -- couldn't we just use the normal range check suppression method here.
21084 -- That would seem cleaner ???
21086 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21087 Set_Kill_Range_Checks (T, True);
21088 Record_Type_Definition (Def, Prev);
21089 Set_Kill_Range_Checks (T, False);
21090 else
21091 Record_Type_Definition (Def, Prev);
21092 end if;
21094 -- Exit from record scope
21096 End_Scope;
21098 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21099 -- the implemented interfaces and associate them an aliased entity.
21101 if Is_Tagged
21102 and then not Is_Empty_List (Interface_List (Def))
21103 then
21104 Derive_Progenitor_Subprograms (T, T);
21105 end if;
21107 Check_Function_Writable_Actuals (N);
21108 end Record_Type_Declaration;
21110 ----------------------------
21111 -- Record_Type_Definition --
21112 ----------------------------
21114 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21115 Component : Entity_Id;
21116 Ctrl_Components : Boolean := False;
21117 Final_Storage_Only : Boolean;
21118 T : Entity_Id;
21120 begin
21121 if Ekind (Prev_T) = E_Incomplete_Type then
21122 T := Full_View (Prev_T);
21123 else
21124 T := Prev_T;
21125 end if;
21127 -- In SPARK, tagged types and type extensions may only be declared in
21128 -- the specification of library unit packages.
21130 if Present (Def) and then Is_Tagged_Type (T) then
21131 declare
21132 Typ : Node_Id;
21133 Ctxt : Node_Id;
21135 begin
21136 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21137 Typ := Parent (Def);
21138 else
21139 pragma Assert
21140 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21141 Typ := Parent (Parent (Def));
21142 end if;
21144 Ctxt := Parent (Typ);
21146 if Nkind (Ctxt) = N_Package_Body
21147 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21148 then
21149 Check_SPARK_05_Restriction
21150 ("type should be defined in package specification", Typ);
21152 elsif Nkind (Ctxt) /= N_Package_Specification
21153 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21154 then
21155 Check_SPARK_05_Restriction
21156 ("type should be defined in library unit package", Typ);
21157 end if;
21158 end;
21159 end if;
21161 Final_Storage_Only := not Is_Controlled_Active (T);
21163 -- Ada 2005: Check whether an explicit Limited is present in a derived
21164 -- type declaration.
21166 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21167 and then Limited_Present (Parent (Def))
21168 then
21169 Set_Is_Limited_Record (T);
21170 end if;
21172 -- If the component list of a record type is defined by the reserved
21173 -- word null and there is no discriminant part, then the record type has
21174 -- no components and all records of the type are null records (RM 3.7)
21175 -- This procedure is also called to process the extension part of a
21176 -- record extension, in which case the current scope may have inherited
21177 -- components.
21179 if No (Def)
21180 or else No (Component_List (Def))
21181 or else Null_Present (Component_List (Def))
21182 then
21183 if not Is_Tagged_Type (T) then
21184 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21185 end if;
21187 else
21188 Analyze_Declarations (Component_Items (Component_List (Def)));
21190 if Present (Variant_Part (Component_List (Def))) then
21191 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21192 Analyze (Variant_Part (Component_List (Def)));
21193 end if;
21194 end if;
21196 -- After completing the semantic analysis of the record definition,
21197 -- record components, both new and inherited, are accessible. Set their
21198 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21199 -- whose Ekind may be void.
21201 Component := First_Entity (Current_Scope);
21202 while Present (Component) loop
21203 if Ekind (Component) = E_Void
21204 and then not Is_Itype (Component)
21205 then
21206 Set_Ekind (Component, E_Component);
21207 Init_Component_Location (Component);
21208 end if;
21210 if Has_Task (Etype (Component)) then
21211 Set_Has_Task (T);
21212 end if;
21214 if Has_Protected (Etype (Component)) then
21215 Set_Has_Protected (T);
21216 end if;
21218 if Ekind (Component) /= E_Component then
21219 null;
21221 -- Do not set Has_Controlled_Component on a class-wide equivalent
21222 -- type. See Make_CW_Equivalent_Type.
21224 elsif not Is_Class_Wide_Equivalent_Type (T)
21225 and then (Has_Controlled_Component (Etype (Component))
21226 or else (Chars (Component) /= Name_uParent
21227 and then Is_Controlled_Active
21228 (Etype (Component))))
21229 then
21230 Set_Has_Controlled_Component (T, True);
21231 Final_Storage_Only :=
21232 Final_Storage_Only
21233 and then Finalize_Storage_Only (Etype (Component));
21234 Ctrl_Components := True;
21235 end if;
21237 Next_Entity (Component);
21238 end loop;
21240 -- A Type is Finalize_Storage_Only only if all its controlled components
21241 -- are also.
21243 if Ctrl_Components then
21244 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21245 end if;
21247 -- Place reference to end record on the proper entity, which may
21248 -- be a partial view.
21250 if Present (Def) then
21251 Process_End_Label (Def, 'e', Prev_T);
21252 end if;
21253 end Record_Type_Definition;
21255 ------------------------
21256 -- Replace_Components --
21257 ------------------------
21259 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21260 function Process (N : Node_Id) return Traverse_Result;
21262 -------------
21263 -- Process --
21264 -------------
21266 function Process (N : Node_Id) return Traverse_Result is
21267 Comp : Entity_Id;
21269 begin
21270 if Nkind (N) = N_Discriminant_Specification then
21271 Comp := First_Discriminant (Typ);
21272 while Present (Comp) loop
21273 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21274 Set_Defining_Identifier (N, Comp);
21275 exit;
21276 end if;
21278 Next_Discriminant (Comp);
21279 end loop;
21281 elsif Nkind (N) = N_Component_Declaration then
21282 Comp := First_Component (Typ);
21283 while Present (Comp) loop
21284 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21285 Set_Defining_Identifier (N, Comp);
21286 exit;
21287 end if;
21289 Next_Component (Comp);
21290 end loop;
21291 end if;
21293 return OK;
21294 end Process;
21296 procedure Replace is new Traverse_Proc (Process);
21298 -- Start of processing for Replace_Components
21300 begin
21301 Replace (Decl);
21302 end Replace_Components;
21304 -------------------------------
21305 -- Set_Completion_Referenced --
21306 -------------------------------
21308 procedure Set_Completion_Referenced (E : Entity_Id) is
21309 begin
21310 -- If in main unit, mark entity that is a completion as referenced,
21311 -- warnings go on the partial view when needed.
21313 if In_Extended_Main_Source_Unit (E) then
21314 Set_Referenced (E);
21315 end if;
21316 end Set_Completion_Referenced;
21318 ---------------------
21319 -- Set_Default_SSO --
21320 ---------------------
21322 procedure Set_Default_SSO (T : Entity_Id) is
21323 begin
21324 case Opt.Default_SSO is
21325 when ' ' =>
21326 null;
21327 when 'L' =>
21328 Set_SSO_Set_Low_By_Default (T, True);
21329 when 'H' =>
21330 Set_SSO_Set_High_By_Default (T, True);
21331 when others =>
21332 raise Program_Error;
21333 end case;
21334 end Set_Default_SSO;
21336 ---------------------
21337 -- Set_Fixed_Range --
21338 ---------------------
21340 -- The range for fixed-point types is complicated by the fact that we
21341 -- do not know the exact end points at the time of the declaration. This
21342 -- is true for three reasons:
21344 -- A size clause may affect the fudging of the end-points.
21345 -- A small clause may affect the values of the end-points.
21346 -- We try to include the end-points if it does not affect the size.
21348 -- This means that the actual end-points must be established at the
21349 -- point when the type is frozen. Meanwhile, we first narrow the range
21350 -- as permitted (so that it will fit if necessary in a small specified
21351 -- size), and then build a range subtree with these narrowed bounds.
21352 -- Set_Fixed_Range constructs the range from real literal values, and
21353 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21355 -- The parent of this range is set to point to the entity so that it is
21356 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21357 -- other scalar types, which are just pointers to the range in the
21358 -- original tree, this would otherwise be an orphan).
21360 -- The tree is left unanalyzed. When the type is frozen, the processing
21361 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21362 -- analyzed, and uses this as an indication that it should complete
21363 -- work on the range (it will know the final small and size values).
21365 procedure Set_Fixed_Range
21366 (E : Entity_Id;
21367 Loc : Source_Ptr;
21368 Lo : Ureal;
21369 Hi : Ureal)
21371 S : constant Node_Id :=
21372 Make_Range (Loc,
21373 Low_Bound => Make_Real_Literal (Loc, Lo),
21374 High_Bound => Make_Real_Literal (Loc, Hi));
21375 begin
21376 Set_Scalar_Range (E, S);
21377 Set_Parent (S, E);
21379 -- Before the freeze point, the bounds of a fixed point are universal
21380 -- and carry the corresponding type.
21382 Set_Etype (Low_Bound (S), Universal_Real);
21383 Set_Etype (High_Bound (S), Universal_Real);
21384 end Set_Fixed_Range;
21386 ----------------------------------
21387 -- Set_Scalar_Range_For_Subtype --
21388 ----------------------------------
21390 procedure Set_Scalar_Range_For_Subtype
21391 (Def_Id : Entity_Id;
21392 R : Node_Id;
21393 Subt : Entity_Id)
21395 Kind : constant Entity_Kind := Ekind (Def_Id);
21397 begin
21398 -- Defend against previous error
21400 if Nkind (R) = N_Error then
21401 return;
21402 end if;
21404 Set_Scalar_Range (Def_Id, R);
21406 -- We need to link the range into the tree before resolving it so
21407 -- that types that are referenced, including importantly the subtype
21408 -- itself, are properly frozen (Freeze_Expression requires that the
21409 -- expression be properly linked into the tree). Of course if it is
21410 -- already linked in, then we do not disturb the current link.
21412 if No (Parent (R)) then
21413 Set_Parent (R, Def_Id);
21414 end if;
21416 -- Reset the kind of the subtype during analysis of the range, to
21417 -- catch possible premature use in the bounds themselves.
21419 Set_Ekind (Def_Id, E_Void);
21420 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
21421 Set_Ekind (Def_Id, Kind);
21422 end Set_Scalar_Range_For_Subtype;
21424 --------------------------------------------------------
21425 -- Set_Stored_Constraint_From_Discriminant_Constraint --
21426 --------------------------------------------------------
21428 procedure Set_Stored_Constraint_From_Discriminant_Constraint
21429 (E : Entity_Id)
21431 begin
21432 -- Make sure set if encountered during Expand_To_Stored_Constraint
21434 Set_Stored_Constraint (E, No_Elist);
21436 -- Give it the right value
21438 if Is_Constrained (E) and then Has_Discriminants (E) then
21439 Set_Stored_Constraint (E,
21440 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
21441 end if;
21442 end Set_Stored_Constraint_From_Discriminant_Constraint;
21444 -------------------------------------
21445 -- Signed_Integer_Type_Declaration --
21446 -------------------------------------
21448 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
21449 Implicit_Base : Entity_Id;
21450 Base_Typ : Entity_Id;
21451 Lo_Val : Uint;
21452 Hi_Val : Uint;
21453 Errs : Boolean := False;
21454 Lo : Node_Id;
21455 Hi : Node_Id;
21457 function Can_Derive_From (E : Entity_Id) return Boolean;
21458 -- Determine whether given bounds allow derivation from specified type
21460 procedure Check_Bound (Expr : Node_Id);
21461 -- Check bound to make sure it is integral and static. If not, post
21462 -- appropriate error message and set Errs flag
21464 ---------------------
21465 -- Can_Derive_From --
21466 ---------------------
21468 -- Note we check both bounds against both end values, to deal with
21469 -- strange types like ones with a range of 0 .. -12341234.
21471 function Can_Derive_From (E : Entity_Id) return Boolean is
21472 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
21473 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
21474 begin
21475 return Lo <= Lo_Val and then Lo_Val <= Hi
21476 and then
21477 Lo <= Hi_Val and then Hi_Val <= Hi;
21478 end Can_Derive_From;
21480 -----------------
21481 -- Check_Bound --
21482 -----------------
21484 procedure Check_Bound (Expr : Node_Id) is
21485 begin
21486 -- If a range constraint is used as an integer type definition, each
21487 -- bound of the range must be defined by a static expression of some
21488 -- integer type, but the two bounds need not have the same integer
21489 -- type (Negative bounds are allowed.) (RM 3.5.4)
21491 if not Is_Integer_Type (Etype (Expr)) then
21492 Error_Msg_N
21493 ("integer type definition bounds must be of integer type", Expr);
21494 Errs := True;
21496 elsif not Is_OK_Static_Expression (Expr) then
21497 Flag_Non_Static_Expr
21498 ("non-static expression used for integer type bound!", Expr);
21499 Errs := True;
21501 -- The bounds are folded into literals, and we set their type to be
21502 -- universal, to avoid typing difficulties: we cannot set the type
21503 -- of the literal to the new type, because this would be a forward
21504 -- reference for the back end, and if the original type is user-
21505 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
21507 else
21508 if Is_Entity_Name (Expr) then
21509 Fold_Uint (Expr, Expr_Value (Expr), True);
21510 end if;
21512 Set_Etype (Expr, Universal_Integer);
21513 end if;
21514 end Check_Bound;
21516 -- Start of processing for Signed_Integer_Type_Declaration
21518 begin
21519 -- Create an anonymous base type
21521 Implicit_Base :=
21522 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
21524 -- Analyze and check the bounds, they can be of any integer type
21526 Lo := Low_Bound (Def);
21527 Hi := High_Bound (Def);
21529 -- Arbitrarily use Integer as the type if either bound had an error
21531 if Hi = Error or else Lo = Error then
21532 Base_Typ := Any_Integer;
21533 Set_Error_Posted (T, True);
21535 -- Here both bounds are OK expressions
21537 else
21538 Analyze_And_Resolve (Lo, Any_Integer);
21539 Analyze_And_Resolve (Hi, Any_Integer);
21541 Check_Bound (Lo);
21542 Check_Bound (Hi);
21544 if Errs then
21545 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21546 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21547 end if;
21549 -- Find type to derive from
21551 Lo_Val := Expr_Value (Lo);
21552 Hi_Val := Expr_Value (Hi);
21554 if Can_Derive_From (Standard_Short_Short_Integer) then
21555 Base_Typ := Base_Type (Standard_Short_Short_Integer);
21557 elsif Can_Derive_From (Standard_Short_Integer) then
21558 Base_Typ := Base_Type (Standard_Short_Integer);
21560 elsif Can_Derive_From (Standard_Integer) then
21561 Base_Typ := Base_Type (Standard_Integer);
21563 elsif Can_Derive_From (Standard_Long_Integer) then
21564 Base_Typ := Base_Type (Standard_Long_Integer);
21566 elsif Can_Derive_From (Standard_Long_Long_Integer) then
21567 Check_Restriction (No_Long_Long_Integers, Def);
21568 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21570 else
21571 Base_Typ := Base_Type (Standard_Long_Long_Integer);
21572 Error_Msg_N ("integer type definition bounds out of range", Def);
21573 Hi := Type_High_Bound (Standard_Long_Long_Integer);
21574 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
21575 end if;
21576 end if;
21578 -- Complete both implicit base and declared first subtype entities. The
21579 -- inheritance of the rep item chain ensures that SPARK-related pragmas
21580 -- are not clobbered when the signed integer type acts as a full view of
21581 -- a private type.
21583 Set_Etype (Implicit_Base, Base_Typ);
21584 Set_Size_Info (Implicit_Base, Base_Typ);
21585 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
21586 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
21587 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
21589 Set_Ekind (T, E_Signed_Integer_Subtype);
21590 Set_Etype (T, Implicit_Base);
21591 Set_Size_Info (T, Implicit_Base);
21592 Inherit_Rep_Item_Chain (T, Implicit_Base);
21593 Set_Scalar_Range (T, Def);
21594 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
21595 Set_Is_Constrained (T);
21596 end Signed_Integer_Type_Declaration;
21598 end Sem_Ch3;