system.h (GCC_DIAGNOSTIC_PUSH_IGNORED, [...]): Define.
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blobdcd941c6ddbba65bff84a52472129e5287c777a0
1 /* Loop invariant motion.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "cfghooks.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "tree-ssa-loop-manip.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "cfgloop.h"
40 #include "domwalk.h"
41 #include "params.h"
42 #include "tree-affine.h"
43 #include "tree-ssa-propagate.h"
44 #include "trans-mem.h"
45 #include "gimple-fold.h"
46 #include "tree-scalar-evolution.h"
47 #include "tree-ssa-loop-niter.h"
49 /* TODO: Support for predicated code motion. I.e.
51 while (1)
53 if (cond)
55 a = inv;
56 something;
60 Where COND and INV are invariants, but evaluating INV may trap or be
61 invalid from some other reason if !COND. This may be transformed to
63 if (cond)
64 a = inv;
65 while (1)
67 if (cond)
68 something;
69 } */
71 /* The auxiliary data kept for each statement. */
73 struct lim_aux_data
75 struct loop *max_loop; /* The outermost loop in that the statement
76 is invariant. */
78 struct loop *tgt_loop; /* The loop out of that we want to move the
79 invariant. */
81 struct loop *always_executed_in;
82 /* The outermost loop for that we are sure
83 the statement is executed if the loop
84 is entered. */
86 unsigned cost; /* Cost of the computation performed by the
87 statement. */
89 vec<gimple *> depends; /* Vector of statements that must be also
90 hoisted out of the loop when this statement
91 is hoisted; i.e. those that define the
92 operands of the statement and are inside of
93 the MAX_LOOP loop. */
96 /* Maps statements to their lim_aux_data. */
98 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
100 /* Description of a memory reference location. */
102 struct mem_ref_loc
104 tree *ref; /* The reference itself. */
105 gimple *stmt; /* The statement in that it occurs. */
109 /* Description of a memory reference. */
111 struct im_mem_ref
113 unsigned id; /* ID assigned to the memory reference
114 (its index in memory_accesses.refs_list) */
115 hashval_t hash; /* Its hash value. */
117 /* The memory access itself and associated caching of alias-oracle
118 query meta-data. */
119 ao_ref mem;
121 bitmap stored; /* The set of loops in that this memory location
122 is stored to. */
123 vec<mem_ref_loc> accesses_in_loop;
124 /* The locations of the accesses. Vector
125 indexed by the loop number. */
127 /* The following sets are computed on demand. We keep both set and
128 its complement, so that we know whether the information was
129 already computed or not. */
130 bitmap_head indep_loop; /* The set of loops in that the memory
131 reference is independent, meaning:
132 If it is stored in the loop, this store
133 is independent on all other loads and
134 stores.
135 If it is only loaded, then it is independent
136 on all stores in the loop. */
137 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
140 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
141 to record (in)dependence against stores in the loop and its subloops, the
142 second to record (in)dependence against all references in the loop
143 and its subloops. */
144 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
146 /* Mem_ref hashtable helpers. */
148 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
150 typedef tree_node *compare_type;
151 static inline hashval_t hash (const im_mem_ref *);
152 static inline bool equal (const im_mem_ref *, const tree_node *);
155 /* A hash function for struct im_mem_ref object OBJ. */
157 inline hashval_t
158 mem_ref_hasher::hash (const im_mem_ref *mem)
160 return mem->hash;
163 /* An equality function for struct im_mem_ref object MEM1 with
164 memory reference OBJ2. */
166 inline bool
167 mem_ref_hasher::equal (const im_mem_ref *mem1, const tree_node *obj2)
169 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
173 /* Description of memory accesses in loops. */
175 static struct
177 /* The hash table of memory references accessed in loops. */
178 hash_table<mem_ref_hasher> *refs;
180 /* The list of memory references. */
181 vec<im_mem_ref *> refs_list;
183 /* The set of memory references accessed in each loop. */
184 vec<bitmap_head> refs_in_loop;
186 /* The set of memory references stored in each loop. */
187 vec<bitmap_head> refs_stored_in_loop;
189 /* The set of memory references stored in each loop, including subloops . */
190 vec<bitmap_head> all_refs_stored_in_loop;
192 /* Cache for expanding memory addresses. */
193 hash_map<tree, name_expansion *> *ttae_cache;
194 } memory_accesses;
196 /* Obstack for the bitmaps in the above data structures. */
197 static bitmap_obstack lim_bitmap_obstack;
198 static obstack mem_ref_obstack;
200 static bool ref_indep_loop_p (struct loop *, im_mem_ref *, struct loop *);
202 /* Minimum cost of an expensive expression. */
203 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
205 /* The outermost loop for which execution of the header guarantees that the
206 block will be executed. */
207 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
208 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
210 /* ID of the shared unanalyzable mem. */
211 #define UNANALYZABLE_MEM_ID 0
213 /* Whether the reference was analyzable. */
214 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
216 static struct lim_aux_data *
217 init_lim_data (gimple *stmt)
219 lim_aux_data *p = XCNEW (struct lim_aux_data);
220 lim_aux_data_map->put (stmt, p);
222 return p;
225 static struct lim_aux_data *
226 get_lim_data (gimple *stmt)
228 lim_aux_data **p = lim_aux_data_map->get (stmt);
229 if (!p)
230 return NULL;
232 return *p;
235 /* Releases the memory occupied by DATA. */
237 static void
238 free_lim_aux_data (struct lim_aux_data *data)
240 data->depends.release ();
241 free (data);
244 static void
245 clear_lim_data (gimple *stmt)
247 lim_aux_data **p = lim_aux_data_map->get (stmt);
248 if (!p)
249 return;
251 free_lim_aux_data (*p);
252 *p = NULL;
256 /* The possibilities of statement movement. */
257 enum move_pos
259 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
260 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
261 become executed -- memory accesses, ... */
262 MOVE_POSSIBLE /* Unlimited movement. */
266 /* If it is possible to hoist the statement STMT unconditionally,
267 returns MOVE_POSSIBLE.
268 If it is possible to hoist the statement STMT, but we must avoid making
269 it executed if it would not be executed in the original program (e.g.
270 because it may trap), return MOVE_PRESERVE_EXECUTION.
271 Otherwise return MOVE_IMPOSSIBLE. */
273 enum move_pos
274 movement_possibility (gimple *stmt)
276 tree lhs;
277 enum move_pos ret = MOVE_POSSIBLE;
279 if (flag_unswitch_loops
280 && gimple_code (stmt) == GIMPLE_COND)
282 /* If we perform unswitching, force the operands of the invariant
283 condition to be moved out of the loop. */
284 return MOVE_POSSIBLE;
287 if (gimple_code (stmt) == GIMPLE_PHI
288 && gimple_phi_num_args (stmt) <= 2
289 && !virtual_operand_p (gimple_phi_result (stmt))
290 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
291 return MOVE_POSSIBLE;
293 if (gimple_get_lhs (stmt) == NULL_TREE)
294 return MOVE_IMPOSSIBLE;
296 if (gimple_vdef (stmt))
297 return MOVE_IMPOSSIBLE;
299 if (stmt_ends_bb_p (stmt)
300 || gimple_has_volatile_ops (stmt)
301 || gimple_has_side_effects (stmt)
302 || stmt_could_throw_p (stmt))
303 return MOVE_IMPOSSIBLE;
305 if (is_gimple_call (stmt))
307 /* While pure or const call is guaranteed to have no side effects, we
308 cannot move it arbitrarily. Consider code like
310 char *s = something ();
312 while (1)
314 if (s)
315 t = strlen (s);
316 else
317 t = 0;
320 Here the strlen call cannot be moved out of the loop, even though
321 s is invariant. In addition to possibly creating a call with
322 invalid arguments, moving out a function call that is not executed
323 may cause performance regressions in case the call is costly and
324 not executed at all. */
325 ret = MOVE_PRESERVE_EXECUTION;
326 lhs = gimple_call_lhs (stmt);
328 else if (is_gimple_assign (stmt))
329 lhs = gimple_assign_lhs (stmt);
330 else
331 return MOVE_IMPOSSIBLE;
333 if (TREE_CODE (lhs) == SSA_NAME
334 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
335 return MOVE_IMPOSSIBLE;
337 if (TREE_CODE (lhs) != SSA_NAME
338 || gimple_could_trap_p (stmt))
339 return MOVE_PRESERVE_EXECUTION;
341 /* Non local loads in a transaction cannot be hoisted out. Well,
342 unless the load happens on every path out of the loop, but we
343 don't take this into account yet. */
344 if (flag_tm
345 && gimple_in_transaction (stmt)
346 && gimple_assign_single_p (stmt))
348 tree rhs = gimple_assign_rhs1 (stmt);
349 if (DECL_P (rhs) && is_global_var (rhs))
351 if (dump_file)
353 fprintf (dump_file, "Cannot hoist conditional load of ");
354 print_generic_expr (dump_file, rhs, TDF_SLIM);
355 fprintf (dump_file, " because it is in a transaction.\n");
357 return MOVE_IMPOSSIBLE;
361 return ret;
364 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
365 loop to that we could move the expression using DEF if it did not have
366 other operands, i.e. the outermost loop enclosing LOOP in that the value
367 of DEF is invariant. */
369 static struct loop *
370 outermost_invariant_loop (tree def, struct loop *loop)
372 gimple *def_stmt;
373 basic_block def_bb;
374 struct loop *max_loop;
375 struct lim_aux_data *lim_data;
377 if (!def)
378 return superloop_at_depth (loop, 1);
380 if (TREE_CODE (def) != SSA_NAME)
382 gcc_assert (is_gimple_min_invariant (def));
383 return superloop_at_depth (loop, 1);
386 def_stmt = SSA_NAME_DEF_STMT (def);
387 def_bb = gimple_bb (def_stmt);
388 if (!def_bb)
389 return superloop_at_depth (loop, 1);
391 max_loop = find_common_loop (loop, def_bb->loop_father);
393 lim_data = get_lim_data (def_stmt);
394 if (lim_data != NULL && lim_data->max_loop != NULL)
395 max_loop = find_common_loop (max_loop,
396 loop_outer (lim_data->max_loop));
397 if (max_loop == loop)
398 return NULL;
399 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
401 return max_loop;
404 /* DATA is a structure containing information associated with a statement
405 inside LOOP. DEF is one of the operands of this statement.
407 Find the outermost loop enclosing LOOP in that value of DEF is invariant
408 and record this in DATA->max_loop field. If DEF itself is defined inside
409 this loop as well (i.e. we need to hoist it out of the loop if we want
410 to hoist the statement represented by DATA), record the statement in that
411 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
412 add the cost of the computation of DEF to the DATA->cost.
414 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
416 static bool
417 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
418 bool add_cost)
420 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
421 basic_block def_bb = gimple_bb (def_stmt);
422 struct loop *max_loop;
423 struct lim_aux_data *def_data;
425 if (!def_bb)
426 return true;
428 max_loop = outermost_invariant_loop (def, loop);
429 if (!max_loop)
430 return false;
432 if (flow_loop_nested_p (data->max_loop, max_loop))
433 data->max_loop = max_loop;
435 def_data = get_lim_data (def_stmt);
436 if (!def_data)
437 return true;
439 if (add_cost
440 /* Only add the cost if the statement defining DEF is inside LOOP,
441 i.e. if it is likely that by moving the invariants dependent
442 on it, we will be able to avoid creating a new register for
443 it (since it will be only used in these dependent invariants). */
444 && def_bb->loop_father == loop)
445 data->cost += def_data->cost;
447 data->depends.safe_push (def_stmt);
449 return true;
452 /* Returns an estimate for a cost of statement STMT. The values here
453 are just ad-hoc constants, similar to costs for inlining. */
455 static unsigned
456 stmt_cost (gimple *stmt)
458 /* Always try to create possibilities for unswitching. */
459 if (gimple_code (stmt) == GIMPLE_COND
460 || gimple_code (stmt) == GIMPLE_PHI)
461 return LIM_EXPENSIVE;
463 /* We should be hoisting calls if possible. */
464 if (is_gimple_call (stmt))
466 tree fndecl;
468 /* Unless the call is a builtin_constant_p; this always folds to a
469 constant, so moving it is useless. */
470 fndecl = gimple_call_fndecl (stmt);
471 if (fndecl
472 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
473 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
474 return 0;
476 return LIM_EXPENSIVE;
479 /* Hoisting memory references out should almost surely be a win. */
480 if (gimple_references_memory_p (stmt))
481 return LIM_EXPENSIVE;
483 if (gimple_code (stmt) != GIMPLE_ASSIGN)
484 return 1;
486 switch (gimple_assign_rhs_code (stmt))
488 case MULT_EXPR:
489 case WIDEN_MULT_EXPR:
490 case WIDEN_MULT_PLUS_EXPR:
491 case WIDEN_MULT_MINUS_EXPR:
492 case DOT_PROD_EXPR:
493 case FMA_EXPR:
494 case TRUNC_DIV_EXPR:
495 case CEIL_DIV_EXPR:
496 case FLOOR_DIV_EXPR:
497 case ROUND_DIV_EXPR:
498 case EXACT_DIV_EXPR:
499 case CEIL_MOD_EXPR:
500 case FLOOR_MOD_EXPR:
501 case ROUND_MOD_EXPR:
502 case TRUNC_MOD_EXPR:
503 case RDIV_EXPR:
504 /* Division and multiplication are usually expensive. */
505 return LIM_EXPENSIVE;
507 case LSHIFT_EXPR:
508 case RSHIFT_EXPR:
509 case WIDEN_LSHIFT_EXPR:
510 case LROTATE_EXPR:
511 case RROTATE_EXPR:
512 /* Shifts and rotates are usually expensive. */
513 return LIM_EXPENSIVE;
515 case CONSTRUCTOR:
516 /* Make vector construction cost proportional to the number
517 of elements. */
518 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
520 case SSA_NAME:
521 case PAREN_EXPR:
522 /* Whether or not something is wrapped inside a PAREN_EXPR
523 should not change move cost. Nor should an intermediate
524 unpropagated SSA name copy. */
525 return 0;
527 default:
528 return 1;
532 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
533 REF is independent. If REF is not independent in LOOP, NULL is returned
534 instead. */
536 static struct loop *
537 outermost_indep_loop (struct loop *outer, struct loop *loop, im_mem_ref *ref)
539 struct loop *aloop;
541 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
542 return NULL;
544 for (aloop = outer;
545 aloop != loop;
546 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
547 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
548 && ref_indep_loop_p (aloop, ref, loop))
549 return aloop;
551 if (ref_indep_loop_p (loop, ref, loop))
552 return loop;
553 else
554 return NULL;
557 /* If there is a simple load or store to a memory reference in STMT, returns
558 the location of the memory reference, and sets IS_STORE according to whether
559 it is a store or load. Otherwise, returns NULL. */
561 static tree *
562 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
564 tree *lhs, *rhs;
566 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
567 if (!gimple_assign_single_p (stmt))
568 return NULL;
570 lhs = gimple_assign_lhs_ptr (stmt);
571 rhs = gimple_assign_rhs1_ptr (stmt);
573 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
575 *is_store = false;
576 return rhs;
578 else if (gimple_vdef (stmt)
579 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
581 *is_store = true;
582 return lhs;
584 else
585 return NULL;
588 /* Returns the memory reference contained in STMT. */
590 static im_mem_ref *
591 mem_ref_in_stmt (gimple *stmt)
593 bool store;
594 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
595 hashval_t hash;
596 im_mem_ref *ref;
598 if (!mem)
599 return NULL;
600 gcc_assert (!store);
602 hash = iterative_hash_expr (*mem, 0);
603 ref = memory_accesses.refs->find_with_hash (*mem, hash);
605 gcc_assert (ref != NULL);
606 return ref;
609 /* From a controlling predicate in DOM determine the arguments from
610 the PHI node PHI that are chosen if the predicate evaluates to
611 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
612 they are non-NULL. Returns true if the arguments can be determined,
613 else return false. */
615 static bool
616 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
617 tree *true_arg_p, tree *false_arg_p)
619 edge te, fe;
620 if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
621 &te, &fe))
622 return false;
624 if (true_arg_p)
625 *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
626 if (false_arg_p)
627 *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);
629 return true;
632 /* Determine the outermost loop to that it is possible to hoist a statement
633 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
634 the outermost loop in that the value computed by STMT is invariant.
635 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
636 we preserve the fact whether STMT is executed. It also fills other related
637 information to LIM_DATA (STMT).
639 The function returns false if STMT cannot be hoisted outside of the loop it
640 is defined in, and true otherwise. */
642 static bool
643 determine_max_movement (gimple *stmt, bool must_preserve_exec)
645 basic_block bb = gimple_bb (stmt);
646 struct loop *loop = bb->loop_father;
647 struct loop *level;
648 struct lim_aux_data *lim_data = get_lim_data (stmt);
649 tree val;
650 ssa_op_iter iter;
652 if (must_preserve_exec)
653 level = ALWAYS_EXECUTED_IN (bb);
654 else
655 level = superloop_at_depth (loop, 1);
656 lim_data->max_loop = level;
658 if (gphi *phi = dyn_cast <gphi *> (stmt))
660 use_operand_p use_p;
661 unsigned min_cost = UINT_MAX;
662 unsigned total_cost = 0;
663 struct lim_aux_data *def_data;
665 /* We will end up promoting dependencies to be unconditionally
666 evaluated. For this reason the PHI cost (and thus the
667 cost we remove from the loop by doing the invariant motion)
668 is that of the cheapest PHI argument dependency chain. */
669 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
671 val = USE_FROM_PTR (use_p);
673 if (TREE_CODE (val) != SSA_NAME)
675 /* Assign const 1 to constants. */
676 min_cost = MIN (min_cost, 1);
677 total_cost += 1;
678 continue;
680 if (!add_dependency (val, lim_data, loop, false))
681 return false;
683 gimple *def_stmt = SSA_NAME_DEF_STMT (val);
684 if (gimple_bb (def_stmt)
685 && gimple_bb (def_stmt)->loop_father == loop)
687 def_data = get_lim_data (def_stmt);
688 if (def_data)
690 min_cost = MIN (min_cost, def_data->cost);
691 total_cost += def_data->cost;
696 min_cost = MIN (min_cost, total_cost);
697 lim_data->cost += min_cost;
699 if (gimple_phi_num_args (phi) > 1)
701 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
702 gimple *cond;
703 if (gsi_end_p (gsi_last_bb (dom)))
704 return false;
705 cond = gsi_stmt (gsi_last_bb (dom));
706 if (gimple_code (cond) != GIMPLE_COND)
707 return false;
708 /* Verify that this is an extended form of a diamond and
709 the PHI arguments are completely controlled by the
710 predicate in DOM. */
711 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
712 return false;
714 /* Fold in dependencies and cost of the condition. */
715 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
717 if (!add_dependency (val, lim_data, loop, false))
718 return false;
719 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
720 if (def_data)
721 lim_data->cost += def_data->cost;
724 /* We want to avoid unconditionally executing very expensive
725 operations. As costs for our dependencies cannot be
726 negative just claim we are not invariand for this case.
727 We also are not sure whether the control-flow inside the
728 loop will vanish. */
729 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
730 && !(min_cost != 0
731 && total_cost / min_cost <= 2))
732 return false;
734 /* Assume that the control-flow in the loop will vanish.
735 ??? We should verify this and not artificially increase
736 the cost if that is not the case. */
737 lim_data->cost += stmt_cost (stmt);
740 return true;
742 else
743 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
744 if (!add_dependency (val, lim_data, loop, true))
745 return false;
747 if (gimple_vuse (stmt))
749 im_mem_ref *ref = mem_ref_in_stmt (stmt);
751 if (ref)
753 lim_data->max_loop
754 = outermost_indep_loop (lim_data->max_loop, loop, ref);
755 if (!lim_data->max_loop)
756 return false;
758 else
760 if ((val = gimple_vuse (stmt)) != NULL_TREE)
762 if (!add_dependency (val, lim_data, loop, false))
763 return false;
768 lim_data->cost += stmt_cost (stmt);
770 return true;
773 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
774 and that one of the operands of this statement is computed by STMT.
775 Ensure that STMT (together with all the statements that define its
776 operands) is hoisted at least out of the loop LEVEL. */
778 static void
779 set_level (gimple *stmt, struct loop *orig_loop, struct loop *level)
781 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
782 struct lim_aux_data *lim_data;
783 gimple *dep_stmt;
784 unsigned i;
786 stmt_loop = find_common_loop (orig_loop, stmt_loop);
787 lim_data = get_lim_data (stmt);
788 if (lim_data != NULL && lim_data->tgt_loop != NULL)
789 stmt_loop = find_common_loop (stmt_loop,
790 loop_outer (lim_data->tgt_loop));
791 if (flow_loop_nested_p (stmt_loop, level))
792 return;
794 gcc_assert (level == lim_data->max_loop
795 || flow_loop_nested_p (lim_data->max_loop, level));
797 lim_data->tgt_loop = level;
798 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
799 set_level (dep_stmt, orig_loop, level);
802 /* Determines an outermost loop from that we want to hoist the statement STMT.
803 For now we chose the outermost possible loop. TODO -- use profiling
804 information to set it more sanely. */
806 static void
807 set_profitable_level (gimple *stmt)
809 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
812 /* Returns true if STMT is a call that has side effects. */
814 static bool
815 nonpure_call_p (gimple *stmt)
817 if (gimple_code (stmt) != GIMPLE_CALL)
818 return false;
820 return gimple_has_side_effects (stmt);
823 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
825 static gimple *
826 rewrite_reciprocal (gimple_stmt_iterator *bsi)
828 gassign *stmt, *stmt1, *stmt2;
829 tree name, lhs, type;
830 tree real_one;
831 gimple_stmt_iterator gsi;
833 stmt = as_a <gassign *> (gsi_stmt (*bsi));
834 lhs = gimple_assign_lhs (stmt);
835 type = TREE_TYPE (lhs);
837 real_one = build_one_cst (type);
839 name = make_temp_ssa_name (type, NULL, "reciptmp");
840 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
841 gimple_assign_rhs2 (stmt));
842 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
843 gimple_assign_rhs1 (stmt));
845 /* Replace division stmt with reciprocal and multiply stmts.
846 The multiply stmt is not invariant, so update iterator
847 and avoid rescanning. */
848 gsi = *bsi;
849 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
850 gsi_replace (&gsi, stmt2, true);
852 /* Continue processing with invariant reciprocal statement. */
853 return stmt1;
856 /* Check if the pattern at *BSI is a bittest of the form
857 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
859 static gimple *
860 rewrite_bittest (gimple_stmt_iterator *bsi)
862 gassign *stmt;
863 gimple *stmt1;
864 gassign *stmt2;
865 gimple *use_stmt;
866 gcond *cond_stmt;
867 tree lhs, name, t, a, b;
868 use_operand_p use;
870 stmt = as_a <gassign *> (gsi_stmt (*bsi));
871 lhs = gimple_assign_lhs (stmt);
873 /* Verify that the single use of lhs is a comparison against zero. */
874 if (TREE_CODE (lhs) != SSA_NAME
875 || !single_imm_use (lhs, &use, &use_stmt))
876 return stmt;
877 cond_stmt = dyn_cast <gcond *> (use_stmt);
878 if (!cond_stmt)
879 return stmt;
880 if (gimple_cond_lhs (cond_stmt) != lhs
881 || (gimple_cond_code (cond_stmt) != NE_EXPR
882 && gimple_cond_code (cond_stmt) != EQ_EXPR)
883 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
884 return stmt;
886 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
887 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
888 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
889 return stmt;
891 /* There is a conversion in between possibly inserted by fold. */
892 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
894 t = gimple_assign_rhs1 (stmt1);
895 if (TREE_CODE (t) != SSA_NAME
896 || !has_single_use (t))
897 return stmt;
898 stmt1 = SSA_NAME_DEF_STMT (t);
899 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
900 return stmt;
903 /* Verify that B is loop invariant but A is not. Verify that with
904 all the stmt walking we are still in the same loop. */
905 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
906 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
907 return stmt;
909 a = gimple_assign_rhs1 (stmt1);
910 b = gimple_assign_rhs2 (stmt1);
912 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
913 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
915 gimple_stmt_iterator rsi;
917 /* 1 << B */
918 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
919 build_int_cst (TREE_TYPE (a), 1), b);
920 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
921 stmt1 = gimple_build_assign (name, t);
923 /* A & (1 << B) */
924 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
925 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
926 stmt2 = gimple_build_assign (name, t);
928 /* Replace the SSA_NAME we compare against zero. Adjust
929 the type of zero accordingly. */
930 SET_USE (use, name);
931 gimple_cond_set_rhs (cond_stmt,
932 build_int_cst_type (TREE_TYPE (name),
933 0));
935 /* Don't use gsi_replace here, none of the new assignments sets
936 the variable originally set in stmt. Move bsi to stmt1, and
937 then remove the original stmt, so that we get a chance to
938 retain debug info for it. */
939 rsi = *bsi;
940 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
941 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
942 gimple *to_release = gsi_stmt (rsi);
943 gsi_remove (&rsi, true);
944 release_defs (to_release);
946 return stmt1;
949 return stmt;
952 /* For each statement determines the outermost loop in that it is invariant,
953 - statements on whose motion it depends and the cost of the computation.
954 - This information is stored to the LIM_DATA structure associated with
955 - each statement. */
956 class invariantness_dom_walker : public dom_walker
958 public:
959 invariantness_dom_walker (cdi_direction direction)
960 : dom_walker (direction) {}
962 virtual edge before_dom_children (basic_block);
965 /* Determine the outermost loops in that statements in basic block BB are
966 invariant, and record them to the LIM_DATA associated with the statements.
967 Callback for dom_walker. */
969 edge
970 invariantness_dom_walker::before_dom_children (basic_block bb)
972 enum move_pos pos;
973 gimple_stmt_iterator bsi;
974 gimple *stmt;
975 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
976 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
977 struct lim_aux_data *lim_data;
979 if (!loop_outer (bb->loop_father))
980 return NULL;
982 if (dump_file && (dump_flags & TDF_DETAILS))
983 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
984 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
986 /* Look at PHI nodes, but only if there is at most two.
987 ??? We could relax this further by post-processing the inserted
988 code and transforming adjacent cond-exprs with the same predicate
989 to control flow again. */
990 bsi = gsi_start_phis (bb);
991 if (!gsi_end_p (bsi)
992 && ((gsi_next (&bsi), gsi_end_p (bsi))
993 || (gsi_next (&bsi), gsi_end_p (bsi))))
994 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
996 stmt = gsi_stmt (bsi);
998 pos = movement_possibility (stmt);
999 if (pos == MOVE_IMPOSSIBLE)
1000 continue;
1002 lim_data = init_lim_data (stmt);
1003 lim_data->always_executed_in = outermost;
1005 if (!determine_max_movement (stmt, false))
1007 lim_data->max_loop = NULL;
1008 continue;
1011 if (dump_file && (dump_flags & TDF_DETAILS))
1013 print_gimple_stmt (dump_file, stmt, 2, 0);
1014 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1015 loop_depth (lim_data->max_loop),
1016 lim_data->cost);
1019 if (lim_data->cost >= LIM_EXPENSIVE)
1020 set_profitable_level (stmt);
1023 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1025 stmt = gsi_stmt (bsi);
1027 pos = movement_possibility (stmt);
1028 if (pos == MOVE_IMPOSSIBLE)
1030 if (nonpure_call_p (stmt))
1032 maybe_never = true;
1033 outermost = NULL;
1035 /* Make sure to note always_executed_in for stores to make
1036 store-motion work. */
1037 else if (stmt_makes_single_store (stmt))
1039 struct lim_aux_data *lim_data = init_lim_data (stmt);
1040 lim_data->always_executed_in = outermost;
1042 continue;
1045 if (is_gimple_assign (stmt)
1046 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1047 == GIMPLE_BINARY_RHS))
1049 tree op0 = gimple_assign_rhs1 (stmt);
1050 tree op1 = gimple_assign_rhs2 (stmt);
1051 struct loop *ol1 = outermost_invariant_loop (op1,
1052 loop_containing_stmt (stmt));
1054 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1055 to be hoisted out of loop, saving expensive divide. */
1056 if (pos == MOVE_POSSIBLE
1057 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1058 && flag_unsafe_math_optimizations
1059 && !flag_trapping_math
1060 && ol1 != NULL
1061 && outermost_invariant_loop (op0, ol1) == NULL)
1062 stmt = rewrite_reciprocal (&bsi);
1064 /* If the shift count is invariant, convert (A >> B) & 1 to
1065 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1066 saving an expensive shift. */
1067 if (pos == MOVE_POSSIBLE
1068 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1069 && integer_onep (op1)
1070 && TREE_CODE (op0) == SSA_NAME
1071 && has_single_use (op0))
1072 stmt = rewrite_bittest (&bsi);
1075 lim_data = init_lim_data (stmt);
1076 lim_data->always_executed_in = outermost;
1078 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1079 continue;
1081 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1083 lim_data->max_loop = NULL;
1084 continue;
1087 if (dump_file && (dump_flags & TDF_DETAILS))
1089 print_gimple_stmt (dump_file, stmt, 2, 0);
1090 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1091 loop_depth (lim_data->max_loop),
1092 lim_data->cost);
1095 if (lim_data->cost >= LIM_EXPENSIVE)
1096 set_profitable_level (stmt);
1098 return NULL;
1101 class move_computations_dom_walker : public dom_walker
1103 public:
1104 move_computations_dom_walker (cdi_direction direction)
1105 : dom_walker (direction), todo_ (0) {}
1107 virtual edge before_dom_children (basic_block);
1109 unsigned int todo_;
1112 /* Hoist the statements in basic block BB out of the loops prescribed by
1113 data stored in LIM_DATA structures associated with each statement. Callback
1114 for walk_dominator_tree. */
1116 unsigned int
1117 move_computations_worker (basic_block bb)
1119 struct loop *level;
1120 unsigned cost = 0;
1121 struct lim_aux_data *lim_data;
1122 unsigned int todo = 0;
1124 if (!loop_outer (bb->loop_father))
1125 return todo;
1127 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1129 gassign *new_stmt;
1130 gphi *stmt = bsi.phi ();
1132 lim_data = get_lim_data (stmt);
1133 if (lim_data == NULL)
1135 gsi_next (&bsi);
1136 continue;
1139 cost = lim_data->cost;
1140 level = lim_data->tgt_loop;
1141 clear_lim_data (stmt);
1143 if (!level)
1145 gsi_next (&bsi);
1146 continue;
1149 if (dump_file && (dump_flags & TDF_DETAILS))
1151 fprintf (dump_file, "Moving PHI node\n");
1152 print_gimple_stmt (dump_file, stmt, 0, 0);
1153 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1154 cost, level->num);
1157 if (gimple_phi_num_args (stmt) == 1)
1159 tree arg = PHI_ARG_DEF (stmt, 0);
1160 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1161 TREE_CODE (arg), arg);
1163 else
1165 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1166 gimple *cond = gsi_stmt (gsi_last_bb (dom));
1167 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1168 /* Get the PHI arguments corresponding to the true and false
1169 edges of COND. */
1170 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1171 gcc_assert (arg0 && arg1);
1172 t = build2 (gimple_cond_code (cond), boolean_type_node,
1173 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1174 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1175 COND_EXPR, t, arg0, arg1);
1176 todo |= TODO_cleanup_cfg;
1178 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (new_stmt)))
1179 && (!ALWAYS_EXECUTED_IN (bb)
1180 || (ALWAYS_EXECUTED_IN (bb) != level
1181 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1183 tree lhs = gimple_assign_lhs (new_stmt);
1184 SSA_NAME_RANGE_INFO (lhs) = NULL;
1186 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1187 remove_phi_node (&bsi, false);
1190 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1192 edge e;
1194 gimple *stmt = gsi_stmt (bsi);
1196 lim_data = get_lim_data (stmt);
1197 if (lim_data == NULL)
1199 gsi_next (&bsi);
1200 continue;
1203 cost = lim_data->cost;
1204 level = lim_data->tgt_loop;
1205 clear_lim_data (stmt);
1207 if (!level)
1209 gsi_next (&bsi);
1210 continue;
1213 /* We do not really want to move conditionals out of the loop; we just
1214 placed it here to force its operands to be moved if necessary. */
1215 if (gimple_code (stmt) == GIMPLE_COND)
1216 continue;
1218 if (dump_file && (dump_flags & TDF_DETAILS))
1220 fprintf (dump_file, "Moving statement\n");
1221 print_gimple_stmt (dump_file, stmt, 0, 0);
1222 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1223 cost, level->num);
1226 e = loop_preheader_edge (level);
1227 gcc_assert (!gimple_vdef (stmt));
1228 if (gimple_vuse (stmt))
1230 /* The new VUSE is the one from the virtual PHI in the loop
1231 header or the one already present. */
1232 gphi_iterator gsi2;
1233 for (gsi2 = gsi_start_phis (e->dest);
1234 !gsi_end_p (gsi2); gsi_next (&gsi2))
1236 gphi *phi = gsi2.phi ();
1237 if (virtual_operand_p (gimple_phi_result (phi)))
1239 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1240 break;
1244 gsi_remove (&bsi, false);
1245 if (gimple_has_lhs (stmt)
1246 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1247 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_get_lhs (stmt)))
1248 && (!ALWAYS_EXECUTED_IN (bb)
1249 || !(ALWAYS_EXECUTED_IN (bb) == level
1250 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1252 tree lhs = gimple_get_lhs (stmt);
1253 SSA_NAME_RANGE_INFO (lhs) = NULL;
1255 /* In case this is a stmt that is not unconditionally executed
1256 when the target loop header is executed and the stmt may
1257 invoke undefined integer or pointer overflow rewrite it to
1258 unsigned arithmetic. */
1259 if (is_gimple_assign (stmt)
1260 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1261 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1262 && arith_code_with_undefined_signed_overflow
1263 (gimple_assign_rhs_code (stmt))
1264 && (!ALWAYS_EXECUTED_IN (bb)
1265 || !(ALWAYS_EXECUTED_IN (bb) == level
1266 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1267 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1268 else
1269 gsi_insert_on_edge (e, stmt);
1272 return todo;
1275 /* Hoist the statements out of the loops prescribed by data stored in
1276 LIM_DATA structures associated with each statement.*/
1278 static unsigned int
1279 move_computations (void)
1281 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1282 int n = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, false);
1283 unsigned todo = 0;
1285 for (int i = 0; i < n; ++i)
1286 todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (cfun, rpo[i]));
1288 free (rpo);
1290 gsi_commit_edge_inserts ();
1291 if (need_ssa_update_p (cfun))
1292 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1294 return todo;
1297 /* Checks whether the statement defining variable *INDEX can be hoisted
1298 out of the loop passed in DATA. Callback for for_each_index. */
1300 static bool
1301 may_move_till (tree ref, tree *index, void *data)
1303 struct loop *loop = (struct loop *) data, *max_loop;
1305 /* If REF is an array reference, check also that the step and the lower
1306 bound is invariant in LOOP. */
1307 if (TREE_CODE (ref) == ARRAY_REF)
1309 tree step = TREE_OPERAND (ref, 3);
1310 tree lbound = TREE_OPERAND (ref, 2);
1312 max_loop = outermost_invariant_loop (step, loop);
1313 if (!max_loop)
1314 return false;
1316 max_loop = outermost_invariant_loop (lbound, loop);
1317 if (!max_loop)
1318 return false;
1321 max_loop = outermost_invariant_loop (*index, loop);
1322 if (!max_loop)
1323 return false;
1325 return true;
1328 /* If OP is SSA NAME, force the statement that defines it to be
1329 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1331 static void
1332 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1334 gimple *stmt;
1336 if (!op
1337 || is_gimple_min_invariant (op))
1338 return;
1340 gcc_assert (TREE_CODE (op) == SSA_NAME);
1342 stmt = SSA_NAME_DEF_STMT (op);
1343 if (gimple_nop_p (stmt))
1344 return;
1346 set_level (stmt, orig_loop, loop);
1349 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1350 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1351 for_each_index. */
1353 struct fmt_data
1355 struct loop *loop;
1356 struct loop *orig_loop;
1359 static bool
1360 force_move_till (tree ref, tree *index, void *data)
1362 struct fmt_data *fmt_data = (struct fmt_data *) data;
1364 if (TREE_CODE (ref) == ARRAY_REF)
1366 tree step = TREE_OPERAND (ref, 3);
1367 tree lbound = TREE_OPERAND (ref, 2);
1369 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1370 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1373 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1375 return true;
1378 /* A function to free the mem_ref object OBJ. */
1380 static void
1381 memref_free (struct im_mem_ref *mem)
1383 mem->accesses_in_loop.release ();
1386 /* Allocates and returns a memory reference description for MEM whose hash
1387 value is HASH and id is ID. */
1389 static im_mem_ref *
1390 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1392 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, struct im_mem_ref);
1393 ao_ref_init (&ref->mem, mem);
1394 ref->id = id;
1395 ref->hash = hash;
1396 ref->stored = NULL;
1397 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1398 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1399 ref->accesses_in_loop.create (1);
1401 return ref;
1404 /* Records memory reference location *LOC in LOOP to the memory reference
1405 description REF. The reference occurs in statement STMT. */
1407 static void
1408 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
1410 mem_ref_loc aref;
1411 aref.stmt = stmt;
1412 aref.ref = loc;
1413 ref->accesses_in_loop.safe_push (aref);
1416 /* Set the LOOP bit in REF stored bitmap and allocate that if
1417 necessary. Return whether a bit was changed. */
1419 static bool
1420 set_ref_stored_in_loop (im_mem_ref *ref, struct loop *loop)
1422 if (!ref->stored)
1423 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1424 return bitmap_set_bit (ref->stored, loop->num);
1427 /* Marks reference REF as stored in LOOP. */
1429 static void
1430 mark_ref_stored (im_mem_ref *ref, struct loop *loop)
1432 while (loop != current_loops->tree_root
1433 && set_ref_stored_in_loop (ref, loop))
1434 loop = loop_outer (loop);
1437 /* Gathers memory references in statement STMT in LOOP, storing the
1438 information about them in the memory_accesses structure. Marks
1439 the vops accessed through unrecognized statements there as
1440 well. */
1442 static void
1443 gather_mem_refs_stmt (struct loop *loop, gimple *stmt)
1445 tree *mem = NULL;
1446 hashval_t hash;
1447 im_mem_ref **slot;
1448 im_mem_ref *ref;
1449 bool is_stored;
1450 unsigned id;
1452 if (!gimple_vuse (stmt))
1453 return;
1455 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1456 if (!mem)
1458 /* We use the shared mem_ref for all unanalyzable refs. */
1459 id = UNANALYZABLE_MEM_ID;
1460 ref = memory_accesses.refs_list[id];
1461 if (dump_file && (dump_flags & TDF_DETAILS))
1463 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1464 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1466 is_stored = gimple_vdef (stmt);
1468 else
1470 hash = iterative_hash_expr (*mem, 0);
1471 slot = memory_accesses.refs->find_slot_with_hash (*mem, hash, INSERT);
1472 if (*slot)
1474 ref = *slot;
1475 id = ref->id;
1477 else
1479 id = memory_accesses.refs_list.length ();
1480 ref = mem_ref_alloc (*mem, hash, id);
1481 memory_accesses.refs_list.safe_push (ref);
1482 *slot = ref;
1484 if (dump_file && (dump_flags & TDF_DETAILS))
1486 fprintf (dump_file, "Memory reference %u: ", id);
1487 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1488 fprintf (dump_file, "\n");
1492 record_mem_ref_loc (ref, stmt, mem);
1494 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1495 if (is_stored)
1497 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1498 mark_ref_stored (ref, loop);
1500 return;
1503 static unsigned *bb_loop_postorder;
1505 /* qsort sort function to sort blocks after their loop fathers postorder. */
1507 static int
1508 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1510 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1511 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1512 struct loop *loop1 = bb1->loop_father;
1513 struct loop *loop2 = bb2->loop_father;
1514 if (loop1->num == loop2->num)
1515 return 0;
1516 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1519 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1521 static int
1522 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1524 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1525 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1526 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1527 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1528 if (loop1->num == loop2->num)
1529 return 0;
1530 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1533 /* Gathers memory references in loops. */
1535 static void
1536 analyze_memory_references (void)
1538 gimple_stmt_iterator bsi;
1539 basic_block bb, *bbs;
1540 struct loop *loop, *outer;
1541 unsigned i, n;
1543 /* Collect all basic-blocks in loops and sort them after their
1544 loops postorder. */
1545 i = 0;
1546 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1547 FOR_EACH_BB_FN (bb, cfun)
1548 if (bb->loop_father != current_loops->tree_root)
1549 bbs[i++] = bb;
1550 n = i;
1551 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1553 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1554 That results in better locality for all the bitmaps. */
1555 for (i = 0; i < n; ++i)
1557 basic_block bb = bbs[i];
1558 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1559 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1562 /* Sort the location list of gathered memory references after their
1563 loop postorder number. */
1564 im_mem_ref *ref;
1565 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1566 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1568 free (bbs);
1569 // free (bb_loop_postorder);
1571 /* Propagate the information about accessed memory references up
1572 the loop hierarchy. */
1573 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1575 /* Finalize the overall touched references (including subloops). */
1576 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1577 &memory_accesses.refs_stored_in_loop[loop->num]);
1579 /* Propagate the information about accessed memory references up
1580 the loop hierarchy. */
1581 outer = loop_outer (loop);
1582 if (outer == current_loops->tree_root)
1583 continue;
1585 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1586 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1590 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1591 tree_to_aff_combination_expand. */
1593 static bool
1594 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
1595 hash_map<tree, name_expansion *> **ttae_cache)
1597 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1598 object and their offset differ in such a way that the locations cannot
1599 overlap, then they cannot alias. */
1600 widest_int size1, size2;
1601 aff_tree off1, off2;
1603 /* Perform basic offset and type-based disambiguation. */
1604 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1605 return false;
1607 /* The expansion of addresses may be a bit expensive, thus we only do
1608 the check at -O2 and higher optimization levels. */
1609 if (optimize < 2)
1610 return true;
1612 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1613 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1614 aff_combination_expand (&off1, ttae_cache);
1615 aff_combination_expand (&off2, ttae_cache);
1616 aff_combination_scale (&off1, -1);
1617 aff_combination_add (&off2, &off1);
1619 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1620 return false;
1622 return true;
1625 /* Compare function for bsearch searching for reference locations
1626 in a loop. */
1628 static int
1629 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1631 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1632 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1633 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1634 if (loop->num == loc_loop->num
1635 || flow_loop_nested_p (loop, loc_loop))
1636 return 0;
1637 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1638 ? -1 : 1);
1641 /* Iterates over all locations of REF in LOOP and its subloops calling
1642 fn.operator() with the location as argument. When that operator
1643 returns true the iteration is stopped and true is returned.
1644 Otherwise false is returned. */
1646 template <typename FN>
1647 static bool
1648 for_all_locs_in_loop (struct loop *loop, im_mem_ref *ref, FN fn)
1650 unsigned i;
1651 mem_ref_loc *loc;
1653 /* Search for the cluster of locs in the accesses_in_loop vector
1654 which is sorted after postorder index of the loop father. */
1655 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1656 if (!loc)
1657 return false;
1659 /* We have found one location inside loop or its sub-loops. Iterate
1660 both forward and backward to cover the whole cluster. */
1661 i = loc - ref->accesses_in_loop.address ();
1662 while (i > 0)
1664 --i;
1665 mem_ref_loc *l = &ref->accesses_in_loop[i];
1666 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1667 break;
1668 if (fn (l))
1669 return true;
1671 for (i = loc - ref->accesses_in_loop.address ();
1672 i < ref->accesses_in_loop.length (); ++i)
1674 mem_ref_loc *l = &ref->accesses_in_loop[i];
1675 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1676 break;
1677 if (fn (l))
1678 return true;
1681 return false;
1684 /* Rewrites location LOC by TMP_VAR. */
1686 struct rewrite_mem_ref_loc
1688 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1689 bool operator () (mem_ref_loc *loc);
1690 tree tmp_var;
1693 bool
1694 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
1696 *loc->ref = tmp_var;
1697 update_stmt (loc->stmt);
1698 return false;
1701 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1703 static void
1704 rewrite_mem_refs (struct loop *loop, im_mem_ref *ref, tree tmp_var)
1706 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1709 /* Stores the first reference location in LOCP. */
1711 struct first_mem_ref_loc_1
1713 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
1714 bool operator () (mem_ref_loc *loc);
1715 mem_ref_loc **locp;
1718 bool
1719 first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
1721 *locp = loc;
1722 return true;
1725 /* Returns the first reference location to REF in LOOP. */
1727 static mem_ref_loc *
1728 first_mem_ref_loc (struct loop *loop, im_mem_ref *ref)
1730 mem_ref_loc *locp = NULL;
1731 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1732 return locp;
1735 struct prev_flag_edges {
1736 /* Edge to insert new flag comparison code. */
1737 edge append_cond_position;
1739 /* Edge for fall through from previous flag comparison. */
1740 edge last_cond_fallthru;
1743 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1744 MEM along edge EX.
1746 The store is only done if MEM has changed. We do this so no
1747 changes to MEM occur on code paths that did not originally store
1748 into it.
1750 The common case for execute_sm will transform:
1752 for (...) {
1753 if (foo)
1754 stuff;
1755 else
1756 MEM = TMP_VAR;
1759 into:
1761 lsm = MEM;
1762 for (...) {
1763 if (foo)
1764 stuff;
1765 else
1766 lsm = TMP_VAR;
1768 MEM = lsm;
1770 This function will generate:
1772 lsm = MEM;
1774 lsm_flag = false;
1776 for (...) {
1777 if (foo)
1778 stuff;
1779 else {
1780 lsm = TMP_VAR;
1781 lsm_flag = true;
1784 if (lsm_flag) <--
1785 MEM = lsm; <--
1788 static void
1789 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1791 basic_block new_bb, then_bb, old_dest;
1792 bool loop_has_only_one_exit;
1793 edge then_old_edge, orig_ex = ex;
1794 gimple_stmt_iterator gsi;
1795 gimple *stmt;
1796 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1797 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1799 /* ?? Insert store after previous store if applicable. See note
1800 below. */
1801 if (prev_edges)
1802 ex = prev_edges->append_cond_position;
1804 loop_has_only_one_exit = single_pred_p (ex->dest);
1806 if (loop_has_only_one_exit)
1807 ex = split_block_after_labels (ex->dest);
1808 else
1810 for (gphi_iterator gpi = gsi_start_phis (ex->dest);
1811 !gsi_end_p (gpi); gsi_next (&gpi))
1813 gphi *phi = gpi.phi ();
1814 if (virtual_operand_p (gimple_phi_result (phi)))
1815 continue;
1817 /* When the destination has a non-virtual PHI node with multiple
1818 predecessors make sure we preserve the PHI structure by
1819 forcing a forwarder block so that hoisting of that PHI will
1820 still work. */
1821 split_edge (ex);
1822 break;
1826 old_dest = ex->dest;
1827 new_bb = split_edge (ex);
1828 then_bb = create_empty_bb (new_bb);
1829 if (irr)
1830 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1831 add_bb_to_loop (then_bb, new_bb->loop_father);
1833 gsi = gsi_start_bb (new_bb);
1834 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1835 NULL_TREE, NULL_TREE);
1836 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1838 gsi = gsi_start_bb (then_bb);
1839 /* Insert actual store. */
1840 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1841 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1843 make_edge (new_bb, then_bb,
1844 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1845 make_edge (new_bb, old_dest,
1846 EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1847 then_old_edge = make_edge (then_bb, old_dest,
1848 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1850 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1852 if (prev_edges)
1854 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1855 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1856 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1857 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1858 recompute_dominator (CDI_DOMINATORS, old_dest));
1861 /* ?? Because stores may alias, they must happen in the exact
1862 sequence they originally happened. Save the position right after
1863 the (_lsm) store we just created so we can continue appending after
1864 it and maintain the original order. */
1866 struct prev_flag_edges *p;
1868 if (orig_ex->aux)
1869 orig_ex->aux = NULL;
1870 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1871 p = (struct prev_flag_edges *) orig_ex->aux;
1872 p->append_cond_position = then_old_edge;
1873 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1874 orig_ex->aux = (void *) p;
1877 if (!loop_has_only_one_exit)
1878 for (gphi_iterator gpi = gsi_start_phis (old_dest);
1879 !gsi_end_p (gpi); gsi_next (&gpi))
1881 gphi *phi = gpi.phi ();
1882 unsigned i;
1884 for (i = 0; i < gimple_phi_num_args (phi); i++)
1885 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1887 tree arg = gimple_phi_arg_def (phi, i);
1888 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1889 update_stmt (phi);
1892 /* Remove the original fall through edge. This was the
1893 single_succ_edge (new_bb). */
1894 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
1897 /* When REF is set on the location, set flag indicating the store. */
1899 struct sm_set_flag_if_changed
1901 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
1902 bool operator () (mem_ref_loc *loc);
1903 tree flag;
1906 bool
1907 sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
1909 /* Only set the flag for writes. */
1910 if (is_gimple_assign (loc->stmt)
1911 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1913 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1914 gimple *stmt = gimple_build_assign (flag, boolean_true_node);
1915 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1917 return false;
1920 /* Helper function for execute_sm. On every location where REF is
1921 set, set an appropriate flag indicating the store. */
1923 static tree
1924 execute_sm_if_changed_flag_set (struct loop *loop, im_mem_ref *ref)
1926 tree flag;
1927 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1928 flag = create_tmp_reg (boolean_type_node, str);
1929 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
1930 return flag;
1933 /* Executes store motion of memory reference REF from LOOP.
1934 Exits from the LOOP are stored in EXITS. The initialization of the
1935 temporary variable is put to the preheader of the loop, and assignments
1936 to the reference from the temporary variable are emitted to exits. */
1938 static void
1939 execute_sm (struct loop *loop, vec<edge> exits, im_mem_ref *ref)
1941 tree tmp_var, store_flag = NULL_TREE;
1942 unsigned i;
1943 gassign *load;
1944 struct fmt_data fmt_data;
1945 edge ex;
1946 struct lim_aux_data *lim_data;
1947 bool multi_threaded_model_p = false;
1948 gimple_stmt_iterator gsi;
1950 if (dump_file && (dump_flags & TDF_DETAILS))
1952 fprintf (dump_file, "Executing store motion of ");
1953 print_generic_expr (dump_file, ref->mem.ref, 0);
1954 fprintf (dump_file, " from loop %d\n", loop->num);
1957 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1958 get_lsm_tmp_name (ref->mem.ref, ~0));
1960 fmt_data.loop = loop;
1961 fmt_data.orig_loop = loop;
1962 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
1964 if (bb_in_transaction (loop_preheader_edge (loop)->src)
1965 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
1966 multi_threaded_model_p = true;
1968 if (multi_threaded_model_p)
1969 store_flag = execute_sm_if_changed_flag_set (loop, ref);
1971 rewrite_mem_refs (loop, ref, tmp_var);
1973 /* Emit the load code on a random exit edge or into the latch if
1974 the loop does not exit, so that we are sure it will be processed
1975 by move_computations after all dependencies. */
1976 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
1978 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
1979 load altogether, since the store is predicated by a flag. We
1980 could, do the load only if it was originally in the loop. */
1981 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
1982 lim_data = init_lim_data (load);
1983 lim_data->max_loop = loop;
1984 lim_data->tgt_loop = loop;
1985 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1987 if (multi_threaded_model_p)
1989 load = gimple_build_assign (store_flag, boolean_false_node);
1990 lim_data = init_lim_data (load);
1991 lim_data->max_loop = loop;
1992 lim_data->tgt_loop = loop;
1993 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1996 /* Sink the store to every exit from the loop. */
1997 FOR_EACH_VEC_ELT (exits, i, ex)
1998 if (!multi_threaded_model_p)
2000 gassign *store;
2001 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2002 gsi_insert_on_edge (ex, store);
2004 else
2005 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
2008 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2009 edges of the LOOP. */
2011 static void
2012 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2013 vec<edge> exits)
2015 im_mem_ref *ref;
2016 unsigned i;
2017 bitmap_iterator bi;
2019 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2021 ref = memory_accesses.refs_list[i];
2022 execute_sm (loop, exits, ref);
2026 struct ref_always_accessed
2028 ref_always_accessed (struct loop *loop_, bool stored_p_)
2029 : loop (loop_), stored_p (stored_p_) {}
2030 bool operator () (mem_ref_loc *loc);
2031 struct loop *loop;
2032 bool stored_p;
2035 bool
2036 ref_always_accessed::operator () (mem_ref_loc *loc)
2038 struct loop *must_exec;
2040 if (!get_lim_data (loc->stmt))
2041 return false;
2043 /* If we require an always executed store make sure the statement
2044 stores to the reference. */
2045 if (stored_p)
2047 tree lhs = gimple_get_lhs (loc->stmt);
2048 if (!lhs
2049 || lhs != *loc->ref)
2050 return false;
2053 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2054 if (!must_exec)
2055 return false;
2057 if (must_exec == loop
2058 || flow_loop_nested_p (must_exec, loop))
2059 return true;
2061 return false;
2064 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2065 make sure REF is always stored to in LOOP. */
2067 static bool
2068 ref_always_accessed_p (struct loop *loop, im_mem_ref *ref, bool stored_p)
2070 return for_all_locs_in_loop (loop, ref,
2071 ref_always_accessed (loop, stored_p));
2074 /* Returns true if REF1 and REF2 are independent. */
2076 static bool
2077 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2)
2079 if (ref1 == ref2)
2080 return true;
2082 if (dump_file && (dump_flags & TDF_DETAILS))
2083 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2084 ref1->id, ref2->id);
2086 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2088 if (dump_file && (dump_flags & TDF_DETAILS))
2089 fprintf (dump_file, "dependent.\n");
2090 return false;
2092 else
2094 if (dump_file && (dump_flags & TDF_DETAILS))
2095 fprintf (dump_file, "independent.\n");
2096 return true;
2100 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2101 and its super-loops. */
2103 static void
2104 record_dep_loop (struct loop *loop, im_mem_ref *ref, bool stored_p)
2106 /* We can propagate dependent-in-loop bits up the loop
2107 hierarchy to all outer loops. */
2108 while (loop != current_loops->tree_root
2109 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2110 loop = loop_outer (loop);
2113 /* Returns true if REF is independent on all other memory
2114 references in LOOP. REF_LOOP is where REF is accessed, SAFELEN is the
2115 safelen to apply. */
2117 static bool
2118 ref_indep_loop_p_1 (int safelen, struct loop *loop, im_mem_ref *ref,
2119 bool stored_p, struct loop *ref_loop)
2121 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2123 if (loop->safelen > safelen
2124 /* Check that REF is accessed inside LOOP. */
2125 && (loop == ref_loop || flow_loop_nested_p (loop, ref_loop)))
2126 safelen = loop->safelen;
2128 bool indep_p = true;
2129 bitmap refs_to_check;
2131 if (stored_p)
2132 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2133 else
2134 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2136 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2137 indep_p = false;
2138 else if (safelen > 1)
2140 if (dump_file && (dump_flags & TDF_DETAILS))
2142 fprintf (dump_file,"REF is independent due to safelen %d\n",
2143 safelen);
2144 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
2145 fprintf (dump_file, "\n");
2148 /* Avoid caching here as safelen depends on context and refs
2149 are shared between different contexts. */
2150 return true;
2152 else
2154 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2155 return true;
2156 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2157 return false;
2159 struct loop *inner = loop->inner;
2160 while (inner)
2162 if (!ref_indep_loop_p_1 (safelen, inner, ref, stored_p, ref_loop))
2164 indep_p = false;
2165 break;
2167 inner = inner->next;
2170 if (indep_p)
2172 unsigned i;
2173 bitmap_iterator bi;
2174 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2176 im_mem_ref *aref = memory_accesses.refs_list[i];
2177 if (!refs_independent_p (ref, aref))
2179 indep_p = false;
2180 break;
2186 if (dump_file && (dump_flags & TDF_DETAILS))
2187 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2188 ref->id, loop->num, indep_p ? "independent" : "dependent");
2190 /* Record the computed result in the cache. */
2191 if (indep_p)
2193 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2194 && stored_p)
2196 /* If it's independend against all refs then it's independent
2197 against stores, too. */
2198 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2201 else
2203 record_dep_loop (loop, ref, stored_p);
2204 if (!stored_p)
2206 /* If it's dependent against stores it's dependent against
2207 all refs, too. */
2208 record_dep_loop (loop, ref, true);
2212 return indep_p;
2215 /* Returns true if REF is independent on all other memory references in
2216 LOOP. REF_LOOP is the loop where REF is accessed. */
2218 static bool
2219 ref_indep_loop_p (struct loop *loop, im_mem_ref *ref, struct loop *ref_loop)
2221 gcc_checking_assert (MEM_ANALYZABLE (ref));
2223 return ref_indep_loop_p_1 (0, loop, ref, false, ref_loop);
2226 /* Returns true if we can perform store motion of REF from LOOP. */
2228 static bool
2229 can_sm_ref_p (struct loop *loop, im_mem_ref *ref)
2231 tree base;
2233 /* Can't hoist unanalyzable refs. */
2234 if (!MEM_ANALYZABLE (ref))
2235 return false;
2237 /* It should be movable. */
2238 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2239 || TREE_THIS_VOLATILE (ref->mem.ref)
2240 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2241 return false;
2243 /* If it can throw fail, we do not properly update EH info. */
2244 if (tree_could_throw_p (ref->mem.ref))
2245 return false;
2247 /* If it can trap, it must be always executed in LOOP.
2248 Readonly memory locations may trap when storing to them, but
2249 tree_could_trap_p is a predicate for rvalues, so check that
2250 explicitly. */
2251 base = get_base_address (ref->mem.ref);
2252 if ((tree_could_trap_p (ref->mem.ref)
2253 || (DECL_P (base) && TREE_READONLY (base)))
2254 && !ref_always_accessed_p (loop, ref, true))
2255 return false;
2257 /* And it must be independent on all other memory references
2258 in LOOP. */
2259 if (!ref_indep_loop_p (loop, ref, loop))
2260 return false;
2262 return true;
2265 /* Marks the references in LOOP for that store motion should be performed
2266 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2267 motion was performed in one of the outer loops. */
2269 static void
2270 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2272 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2273 unsigned i;
2274 bitmap_iterator bi;
2275 im_mem_ref *ref;
2277 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2279 ref = memory_accesses.refs_list[i];
2280 if (can_sm_ref_p (loop, ref))
2281 bitmap_set_bit (refs_to_sm, i);
2285 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2286 for a store motion optimization (i.e. whether we can insert statement
2287 on its exits). */
2289 static bool
2290 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2291 vec<edge> exits)
2293 unsigned i;
2294 edge ex;
2296 FOR_EACH_VEC_ELT (exits, i, ex)
2297 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2298 return false;
2300 return true;
2303 /* Try to perform store motion for all memory references modified inside
2304 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2305 store motion was executed in one of the outer loops. */
2307 static void
2308 store_motion_loop (struct loop *loop, bitmap sm_executed)
2310 vec<edge> exits = get_loop_exit_edges (loop);
2311 struct loop *subloop;
2312 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2314 if (loop_suitable_for_sm (loop, exits))
2316 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2317 hoist_memory_references (loop, sm_in_loop, exits);
2319 exits.release ();
2321 bitmap_ior_into (sm_executed, sm_in_loop);
2322 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2323 store_motion_loop (subloop, sm_executed);
2324 bitmap_and_compl_into (sm_executed, sm_in_loop);
2325 BITMAP_FREE (sm_in_loop);
2328 /* Try to perform store motion for all memory references modified inside
2329 loops. */
2331 static void
2332 store_motion (void)
2334 struct loop *loop;
2335 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2337 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2338 store_motion_loop (loop, sm_executed);
2340 BITMAP_FREE (sm_executed);
2341 gsi_commit_edge_inserts ();
2344 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2345 for each such basic block bb records the outermost loop for that execution
2346 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2347 blocks that contain a nonpure call. */
2349 static void
2350 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2352 basic_block bb = NULL, *bbs, last = NULL;
2353 unsigned i;
2354 edge e;
2355 struct loop *inn_loop = loop;
2357 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2359 bbs = get_loop_body_in_dom_order (loop);
2361 for (i = 0; i < loop->num_nodes; i++)
2363 edge_iterator ei;
2364 bb = bbs[i];
2366 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2367 last = bb;
2369 if (bitmap_bit_p (contains_call, bb->index))
2370 break;
2372 FOR_EACH_EDGE (e, ei, bb->succs)
2374 /* If there is an exit from this BB. */
2375 if (!flow_bb_inside_loop_p (loop, e->dest))
2376 break;
2377 /* Or we enter a possibly non-finite loop. */
2378 if (flow_loop_nested_p (bb->loop_father,
2379 e->dest->loop_father)
2380 && ! finite_loop_p (e->dest->loop_father))
2381 break;
2383 if (e)
2384 break;
2386 /* A loop might be infinite (TODO use simple loop analysis
2387 to disprove this if possible). */
2388 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2389 break;
2391 if (!flow_bb_inside_loop_p (inn_loop, bb))
2392 break;
2394 if (bb->loop_father->header == bb)
2396 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2397 break;
2399 /* In a loop that is always entered we may proceed anyway.
2400 But record that we entered it and stop once we leave it. */
2401 inn_loop = bb->loop_father;
2405 while (1)
2407 SET_ALWAYS_EXECUTED_IN (last, loop);
2408 if (last == loop->header)
2409 break;
2410 last = get_immediate_dominator (CDI_DOMINATORS, last);
2413 free (bbs);
2416 for (loop = loop->inner; loop; loop = loop->next)
2417 fill_always_executed_in_1 (loop, contains_call);
2420 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2421 for each such basic block bb records the outermost loop for that execution
2422 of its header implies execution of bb. */
2424 static void
2425 fill_always_executed_in (void)
2427 basic_block bb;
2428 struct loop *loop;
2430 auto_sbitmap contains_call (last_basic_block_for_fn (cfun));
2431 bitmap_clear (contains_call);
2432 FOR_EACH_BB_FN (bb, cfun)
2434 gimple_stmt_iterator gsi;
2435 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2437 if (nonpure_call_p (gsi_stmt (gsi)))
2438 break;
2441 if (!gsi_end_p (gsi))
2442 bitmap_set_bit (contains_call, bb->index);
2445 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2446 fill_always_executed_in_1 (loop, contains_call);
2450 /* Compute the global information needed by the loop invariant motion pass. */
2452 static void
2453 tree_ssa_lim_initialize (void)
2455 struct loop *loop;
2456 unsigned i;
2458 bitmap_obstack_initialize (&lim_bitmap_obstack);
2459 gcc_obstack_init (&mem_ref_obstack);
2460 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
2462 if (flag_tm)
2463 compute_transaction_bits ();
2465 alloc_aux_for_edges (0);
2467 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
2468 memory_accesses.refs_list.create (100);
2469 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2470 memory_accesses.refs_list.quick_push
2471 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2473 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2474 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2475 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2476 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2477 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2478 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2480 for (i = 0; i < number_of_loops (cfun); i++)
2482 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2483 &lim_bitmap_obstack);
2484 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2485 &lim_bitmap_obstack);
2486 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2487 &lim_bitmap_obstack);
2490 memory_accesses.ttae_cache = NULL;
2492 /* Initialize bb_loop_postorder with a mapping from loop->num to
2493 its postorder index. */
2494 i = 0;
2495 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2496 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2497 bb_loop_postorder[loop->num] = i++;
2500 /* Cleans up after the invariant motion pass. */
2502 static void
2503 tree_ssa_lim_finalize (void)
2505 basic_block bb;
2506 unsigned i;
2507 im_mem_ref *ref;
2509 free_aux_for_edges ();
2511 FOR_EACH_BB_FN (bb, cfun)
2512 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2514 bitmap_obstack_release (&lim_bitmap_obstack);
2515 delete lim_aux_data_map;
2517 delete memory_accesses.refs;
2518 memory_accesses.refs = NULL;
2520 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2521 memref_free (ref);
2522 memory_accesses.refs_list.release ();
2523 obstack_free (&mem_ref_obstack, NULL);
2525 memory_accesses.refs_in_loop.release ();
2526 memory_accesses.refs_stored_in_loop.release ();
2527 memory_accesses.all_refs_stored_in_loop.release ();
2529 if (memory_accesses.ttae_cache)
2530 free_affine_expand_cache (&memory_accesses.ttae_cache);
2532 free (bb_loop_postorder);
2535 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2536 i.e. those that are likely to be win regardless of the register pressure. */
2538 static unsigned int
2539 tree_ssa_lim (void)
2541 unsigned int todo;
2543 tree_ssa_lim_initialize ();
2545 /* Gathers information about memory accesses in the loops. */
2546 analyze_memory_references ();
2548 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2549 fill_always_executed_in ();
2551 /* For each statement determine the outermost loop in that it is
2552 invariant and cost for computing the invariant. */
2553 invariantness_dom_walker (CDI_DOMINATORS)
2554 .walk (cfun->cfg->x_entry_block_ptr);
2556 /* Execute store motion. Force the necessary invariants to be moved
2557 out of the loops as well. */
2558 store_motion ();
2560 /* Move the expressions that are expensive enough. */
2561 todo = move_computations ();
2563 tree_ssa_lim_finalize ();
2565 return todo;
2568 /* Loop invariant motion pass. */
2570 namespace {
2572 const pass_data pass_data_lim =
2574 GIMPLE_PASS, /* type */
2575 "lim", /* name */
2576 OPTGROUP_LOOP, /* optinfo_flags */
2577 TV_LIM, /* tv_id */
2578 PROP_cfg, /* properties_required */
2579 0, /* properties_provided */
2580 0, /* properties_destroyed */
2581 0, /* todo_flags_start */
2582 0, /* todo_flags_finish */
2585 class pass_lim : public gimple_opt_pass
2587 public:
2588 pass_lim (gcc::context *ctxt)
2589 : gimple_opt_pass (pass_data_lim, ctxt)
2592 /* opt_pass methods: */
2593 opt_pass * clone () { return new pass_lim (m_ctxt); }
2594 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2595 virtual unsigned int execute (function *);
2597 }; // class pass_lim
2599 unsigned int
2600 pass_lim::execute (function *fun)
2602 bool in_loop_pipeline = scev_initialized_p ();
2603 if (!in_loop_pipeline)
2604 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2606 if (number_of_loops (fun) <= 1)
2607 return 0;
2608 unsigned int todo = tree_ssa_lim ();
2610 if (!in_loop_pipeline)
2611 loop_optimizer_finalize ();
2612 return todo;
2615 } // anon namespace
2617 gimple_opt_pass *
2618 make_pass_lim (gcc::context *ctxt)
2620 return new pass_lim (ctxt);