1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2017 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
38 o some heuristics to choose insn alternative to improve the
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
47 There is special code for preventing all LRA and this pass cycling
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
90 ... r <- s (new insn -- restore)
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
111 #include "coretypes.h"
118 #include "memmodel.h"
126 #include "addresses.h"
129 #include "rtl-error.h"
133 #include "print-rtl.h"
135 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
136 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
138 static int bb_reload_num
;
140 /* The current insn being processed and corresponding its single set
141 (NULL otherwise), its data (basic block, the insn data, the insn
142 static data, and the mode of each operand). */
143 static rtx_insn
*curr_insn
;
144 static rtx curr_insn_set
;
145 static basic_block curr_bb
;
146 static lra_insn_recog_data_t curr_id
;
147 static struct lra_static_insn_data
*curr_static_id
;
148 static machine_mode curr_operand_mode
[MAX_RECOG_OPERANDS
];
149 /* Mode of the register substituted by its equivalence with VOIDmode
150 (e.g. constant) and whose subreg is given operand of the current
151 insn. VOIDmode in all other cases. */
152 static machine_mode original_subreg_reg_mode
[MAX_RECOG_OPERANDS
];
156 /* Start numbers for new registers and insns at the current constraints
158 static int new_regno_start
;
159 static int new_insn_uid_start
;
161 /* If LOC is nonnull, strip any outer subreg from it. */
163 strip_subreg (rtx
*loc
)
165 return loc
&& GET_CODE (*loc
) == SUBREG
? &SUBREG_REG (*loc
) : loc
;
168 /* Return hard regno of REGNO or if it is was not assigned to a hard
169 register, use a hard register from its allocno class. */
171 get_try_hard_regno (int regno
)
174 enum reg_class rclass
;
176 if ((hard_regno
= regno
) >= FIRST_PSEUDO_REGISTER
)
177 hard_regno
= lra_get_regno_hard_regno (regno
);
180 rclass
= lra_get_allocno_class (regno
);
181 if (rclass
== NO_REGS
)
183 return ira_class_hard_regs
[rclass
][0];
186 /* Return the hard regno of X after removing its subreg. If X is not
187 a register or a subreg of a register, return -1. If X is a pseudo,
188 use its assignment. If FINAL_P return the final hard regno which will
189 be after elimination. */
191 get_hard_regno (rtx x
, bool final_p
)
198 reg
= SUBREG_REG (x
);
201 if (! HARD_REGISTER_NUM_P (hard_regno
= REGNO (reg
)))
202 hard_regno
= lra_get_regno_hard_regno (hard_regno
);
206 hard_regno
= lra_get_elimination_hard_regno (hard_regno
);
208 hard_regno
+= subreg_regno_offset (hard_regno
, GET_MODE (reg
),
209 SUBREG_BYTE (x
), GET_MODE (x
));
213 /* If REGNO is a hard register or has been allocated a hard register,
214 return the class of that register. If REGNO is a reload pseudo
215 created by the current constraints pass, return its allocno class.
216 Return NO_REGS otherwise. */
217 static enum reg_class
218 get_reg_class (int regno
)
222 if (! HARD_REGISTER_NUM_P (hard_regno
= regno
))
223 hard_regno
= lra_get_regno_hard_regno (regno
);
226 hard_regno
= lra_get_elimination_hard_regno (hard_regno
);
227 return REGNO_REG_CLASS (hard_regno
);
229 if (regno
>= new_regno_start
)
230 return lra_get_allocno_class (regno
);
234 /* Return true if REG satisfies (or will satisfy) reg class constraint
235 CL. Use elimination first if REG is a hard register. If REG is a
236 reload pseudo created by this constraints pass, assume that it will
237 be allocated a hard register from its allocno class, but allow that
238 class to be narrowed to CL if it is currently a superset of CL.
240 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
241 REGNO (reg), or NO_REGS if no change in its class was needed. */
243 in_class_p (rtx reg
, enum reg_class cl
, enum reg_class
*new_class
)
245 enum reg_class rclass
, common_class
;
246 machine_mode reg_mode
;
247 int class_size
, hard_regno
, nregs
, i
, j
;
248 int regno
= REGNO (reg
);
250 if (new_class
!= NULL
)
251 *new_class
= NO_REGS
;
252 if (regno
< FIRST_PSEUDO_REGISTER
)
255 rtx
*final_loc
= &final_reg
;
257 lra_eliminate_reg_if_possible (final_loc
);
258 return TEST_HARD_REG_BIT (reg_class_contents
[cl
], REGNO (*final_loc
));
260 reg_mode
= GET_MODE (reg
);
261 rclass
= get_reg_class (regno
);
262 if (regno
< new_regno_start
263 /* Do not allow the constraints for reload instructions to
264 influence the classes of new pseudos. These reloads are
265 typically moves that have many alternatives, and restricting
266 reload pseudos for one alternative may lead to situations
267 where other reload pseudos are no longer allocatable. */
268 || (INSN_UID (curr_insn
) >= new_insn_uid_start
269 && curr_insn_set
!= NULL
270 && ((OBJECT_P (SET_SRC (curr_insn_set
))
271 && ! CONSTANT_P (SET_SRC (curr_insn_set
)))
272 || (GET_CODE (SET_SRC (curr_insn_set
)) == SUBREG
273 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set
)))
274 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set
)))))))
275 /* When we don't know what class will be used finally for reload
276 pseudos, we use ALL_REGS. */
277 return ((regno
>= new_regno_start
&& rclass
== ALL_REGS
)
278 || (rclass
!= NO_REGS
&& ira_class_subset_p
[rclass
][cl
]
279 && ! hard_reg_set_subset_p (reg_class_contents
[cl
],
280 lra_no_alloc_regs
)));
283 common_class
= ira_reg_class_subset
[rclass
][cl
];
284 if (new_class
!= NULL
)
285 *new_class
= common_class
;
286 if (hard_reg_set_subset_p (reg_class_contents
[common_class
],
289 /* Check that there are enough allocatable regs. */
290 class_size
= ira_class_hard_regs_num
[common_class
];
291 for (i
= 0; i
< class_size
; i
++)
293 hard_regno
= ira_class_hard_regs
[common_class
][i
];
294 nregs
= hard_regno_nregs
[hard_regno
][reg_mode
];
297 for (j
= 0; j
< nregs
; j
++)
298 if (TEST_HARD_REG_BIT (lra_no_alloc_regs
, hard_regno
+ j
)
299 || ! TEST_HARD_REG_BIT (reg_class_contents
[common_class
],
309 /* Return true if REGNO satisfies a memory constraint. */
313 return get_reg_class (regno
) == NO_REGS
;
316 /* Return 1 if ADDR is a valid memory address for mode MODE in address
317 space AS, and check that each pseudo has the proper kind of hard
320 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED
,
321 rtx addr
, addr_space_t as
)
323 #ifdef GO_IF_LEGITIMATE_ADDRESS
324 lra_assert (ADDR_SPACE_GENERIC_P (as
));
325 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
331 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 0, as
);
336 /* Temporarily eliminates registers in an address (for the lifetime of
338 class address_eliminator
{
340 address_eliminator (struct address_info
*ad
);
341 ~address_eliminator ();
344 struct address_info
*m_ad
;
352 address_eliminator::address_eliminator (struct address_info
*ad
)
354 m_base_loc (strip_subreg (ad
->base_term
)),
355 m_base_reg (NULL_RTX
),
356 m_index_loc (strip_subreg (ad
->index_term
)),
357 m_index_reg (NULL_RTX
)
359 if (m_base_loc
!= NULL
)
361 m_base_reg
= *m_base_loc
;
362 lra_eliminate_reg_if_possible (m_base_loc
);
363 if (m_ad
->base_term2
!= NULL
)
364 *m_ad
->base_term2
= *m_ad
->base_term
;
366 if (m_index_loc
!= NULL
)
368 m_index_reg
= *m_index_loc
;
369 lra_eliminate_reg_if_possible (m_index_loc
);
373 address_eliminator::~address_eliminator ()
375 if (m_base_loc
&& *m_base_loc
!= m_base_reg
)
377 *m_base_loc
= m_base_reg
;
378 if (m_ad
->base_term2
!= NULL
)
379 *m_ad
->base_term2
= *m_ad
->base_term
;
381 if (m_index_loc
&& *m_index_loc
!= m_index_reg
)
382 *m_index_loc
= m_index_reg
;
385 /* Return true if the eliminated form of AD is a legitimate target address. */
387 valid_address_p (struct address_info
*ad
)
389 address_eliminator
eliminator (ad
);
390 return valid_address_p (ad
->mode
, *ad
->outer
, ad
->as
);
393 /* Return true if the eliminated form of memory reference OP satisfies
394 extra (special) memory constraint CONSTRAINT. */
396 satisfies_memory_constraint_p (rtx op
, enum constraint_num constraint
)
398 struct address_info ad
;
400 decompose_mem_address (&ad
, op
);
401 address_eliminator
eliminator (&ad
);
402 return constraint_satisfied_p (op
, constraint
);
405 /* Return true if the eliminated form of address AD satisfies extra
406 address constraint CONSTRAINT. */
408 satisfies_address_constraint_p (struct address_info
*ad
,
409 enum constraint_num constraint
)
411 address_eliminator
eliminator (ad
);
412 return constraint_satisfied_p (*ad
->outer
, constraint
);
415 /* Return true if the eliminated form of address OP satisfies extra
416 address constraint CONSTRAINT. */
418 satisfies_address_constraint_p (rtx op
, enum constraint_num constraint
)
420 struct address_info ad
;
422 decompose_lea_address (&ad
, &op
);
423 return satisfies_address_constraint_p (&ad
, constraint
);
426 /* Initiate equivalences for LRA. As we keep original equivalences
427 before any elimination, we need to make copies otherwise any change
428 in insns might change the equivalences. */
430 lra_init_equiv (void)
432 ira_expand_reg_equiv ();
433 for (int i
= FIRST_PSEUDO_REGISTER
; i
< max_reg_num (); i
++)
437 if ((res
= ira_reg_equiv
[i
].memory
) != NULL_RTX
)
438 ira_reg_equiv
[i
].memory
= copy_rtx (res
);
439 if ((res
= ira_reg_equiv
[i
].invariant
) != NULL_RTX
)
440 ira_reg_equiv
[i
].invariant
= copy_rtx (res
);
444 static rtx
loc_equivalence_callback (rtx
, const_rtx
, void *);
446 /* Update equivalence for REGNO. We need to this as the equivalence
447 might contain other pseudos which are changed by their
450 update_equiv (int regno
)
454 if ((x
= ira_reg_equiv
[regno
].memory
) != NULL_RTX
)
455 ira_reg_equiv
[regno
].memory
456 = simplify_replace_fn_rtx (x
, NULL_RTX
, loc_equivalence_callback
,
458 if ((x
= ira_reg_equiv
[regno
].invariant
) != NULL_RTX
)
459 ira_reg_equiv
[regno
].invariant
460 = simplify_replace_fn_rtx (x
, NULL_RTX
, loc_equivalence_callback
,
464 /* If we have decided to substitute X with another value, return that
465 value, otherwise return X. */
472 if (! REG_P (x
) || (regno
= REGNO (x
)) < FIRST_PSEUDO_REGISTER
473 || ! ira_reg_equiv
[regno
].defined_p
474 || ! ira_reg_equiv
[regno
].profitable_p
475 || lra_get_regno_hard_regno (regno
) >= 0)
477 if ((res
= ira_reg_equiv
[regno
].memory
) != NULL_RTX
)
479 if (targetm
.cannot_substitute_mem_equiv_p (res
))
483 if ((res
= ira_reg_equiv
[regno
].constant
) != NULL_RTX
)
485 if ((res
= ira_reg_equiv
[regno
].invariant
) != NULL_RTX
)
490 /* If we have decided to substitute X with the equivalent value,
491 return that value after elimination for INSN, otherwise return
494 get_equiv_with_elimination (rtx x
, rtx_insn
*insn
)
496 rtx res
= get_equiv (x
);
498 if (x
== res
|| CONSTANT_P (res
))
500 return lra_eliminate_regs_1 (insn
, res
, GET_MODE (res
),
501 false, false, 0, true);
504 /* Set up curr_operand_mode. */
506 init_curr_operand_mode (void)
508 int nop
= curr_static_id
->n_operands
;
509 for (int i
= 0; i
< nop
; i
++)
511 machine_mode mode
= GET_MODE (*curr_id
->operand_loc
[i
]);
512 if (mode
== VOIDmode
)
514 /* The .md mode for address operands is the mode of the
515 addressed value rather than the mode of the address itself. */
516 if (curr_id
->icode
>= 0 && curr_static_id
->operand
[i
].is_address
)
519 mode
= curr_static_id
->operand
[i
].mode
;
521 curr_operand_mode
[i
] = mode
;
527 /* The page contains code to reuse input reloads. */
529 /* Structure describes input reload of the current insns. */
532 /* True for input reload of matched operands. */
534 /* Reloaded value. */
536 /* Reload pseudo used. */
540 /* The number of elements in the following array. */
541 static int curr_insn_input_reloads_num
;
542 /* Array containing info about input reloads. It is used to find the
543 same input reload and reuse the reload pseudo in this case. */
544 static struct input_reload curr_insn_input_reloads
[LRA_MAX_INSN_RELOADS
];
546 /* Initiate data concerning reuse of input reloads for the current
549 init_curr_insn_input_reloads (void)
551 curr_insn_input_reloads_num
= 0;
554 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
555 created input reload pseudo (only if TYPE is not OP_OUT). Don't
556 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
557 wrapped up in SUBREG. The result pseudo is returned through
558 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
559 reused the already created input reload pseudo. Use TITLE to
560 describe new registers for debug purposes. */
562 get_reload_reg (enum op_type type
, machine_mode mode
, rtx original
,
563 enum reg_class rclass
, bool in_subreg_p
,
564 const char *title
, rtx
*result_reg
)
567 enum reg_class new_class
;
568 bool unique_p
= false;
573 = lra_create_new_reg_with_unique_value (mode
, original
, rclass
, title
);
576 /* Prevent reuse value of expression with side effects,
577 e.g. volatile memory. */
578 if (! side_effects_p (original
))
579 for (i
= 0; i
< curr_insn_input_reloads_num
; i
++)
581 if (! curr_insn_input_reloads
[i
].match_p
582 && rtx_equal_p (curr_insn_input_reloads
[i
].input
, original
)
583 && in_class_p (curr_insn_input_reloads
[i
].reg
, rclass
, &new_class
))
585 rtx reg
= curr_insn_input_reloads
[i
].reg
;
587 /* If input is equal to original and both are VOIDmode,
588 GET_MODE (reg) might be still different from mode.
589 Ensure we don't return *result_reg with wrong mode. */
590 if (GET_MODE (reg
) != mode
)
594 if (GET_MODE_SIZE (GET_MODE (reg
)) < GET_MODE_SIZE (mode
))
596 reg
= lowpart_subreg (mode
, reg
, GET_MODE (reg
));
597 if (reg
== NULL_RTX
|| GET_CODE (reg
) != SUBREG
)
601 if (lra_dump_file
!= NULL
)
603 fprintf (lra_dump_file
, " Reuse r%d for reload ", regno
);
604 dump_value_slim (lra_dump_file
, original
, 1);
606 if (new_class
!= lra_get_allocno_class (regno
))
607 lra_change_class (regno
, new_class
, ", change to", false);
608 if (lra_dump_file
!= NULL
)
609 fprintf (lra_dump_file
, "\n");
612 /* If we have an input reload with a different mode, make sure it
613 will get a different hard reg. */
614 else if (REG_P (original
)
615 && REG_P (curr_insn_input_reloads
[i
].input
)
616 && REGNO (original
) == REGNO (curr_insn_input_reloads
[i
].input
)
617 && (GET_MODE (original
)
618 != GET_MODE (curr_insn_input_reloads
[i
].input
)))
621 *result_reg
= (unique_p
622 ? lra_create_new_reg_with_unique_value
623 : lra_create_new_reg
) (mode
, original
, rclass
, title
);
624 lra_assert (curr_insn_input_reloads_num
< LRA_MAX_INSN_RELOADS
);
625 curr_insn_input_reloads
[curr_insn_input_reloads_num
].input
= original
;
626 curr_insn_input_reloads
[curr_insn_input_reloads_num
].match_p
= false;
627 curr_insn_input_reloads
[curr_insn_input_reloads_num
++].reg
= *result_reg
;
633 /* The page contains code to extract memory address parts. */
635 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudos. */
637 ok_for_index_p_nonstrict (rtx reg
)
639 unsigned regno
= REGNO (reg
);
641 return regno
>= FIRST_PSEUDO_REGISTER
|| REGNO_OK_FOR_INDEX_P (regno
);
644 /* A version of regno_ok_for_base_p for use here, when all pseudos
645 should count as OK. Arguments as for regno_ok_for_base_p. */
647 ok_for_base_p_nonstrict (rtx reg
, machine_mode mode
, addr_space_t as
,
648 enum rtx_code outer_code
, enum rtx_code index_code
)
650 unsigned regno
= REGNO (reg
);
652 if (regno
>= FIRST_PSEUDO_REGISTER
)
654 return ok_for_base_p_1 (regno
, mode
, as
, outer_code
, index_code
);
659 /* The page contains major code to choose the current insn alternative
660 and generate reloads for it. */
662 /* Return the offset from REGNO of the least significant register
665 This function is used to tell whether two registers satisfy
666 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
668 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
669 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
671 lra_constraint_offset (int regno
, machine_mode mode
)
673 lra_assert (regno
< FIRST_PSEUDO_REGISTER
);
674 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (mode
) > UNITS_PER_WORD
675 && SCALAR_INT_MODE_P (mode
))
676 return hard_regno_nregs
[regno
][mode
] - 1;
680 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
681 if they are the same hard reg, and has special hacks for
682 auto-increment and auto-decrement. This is specifically intended for
683 process_alt_operands to use in determining whether two operands
684 match. X is the operand whose number is the lower of the two.
686 It is supposed that X is the output operand and Y is the input
687 operand. Y_HARD_REGNO is the final hard regno of register Y or
688 register in subreg Y as we know it now. Otherwise, it is a
691 operands_match_p (rtx x
, rtx y
, int y_hard_regno
)
694 RTX_CODE code
= GET_CODE (x
);
699 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
700 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
&& REG_P (SUBREG_REG (y
)))))
704 i
= get_hard_regno (x
, false);
708 if ((j
= y_hard_regno
) < 0)
711 i
+= lra_constraint_offset (i
, GET_MODE (x
));
712 j
+= lra_constraint_offset (j
, GET_MODE (y
));
717 /* If two operands must match, because they are really a single
718 operand of an assembler insn, then two post-increments are invalid
719 because the assembler insn would increment only once. On the
720 other hand, a post-increment matches ordinary indexing if the
721 post-increment is the output operand. */
722 if (code
== POST_DEC
|| code
== POST_INC
|| code
== POST_MODIFY
)
723 return operands_match_p (XEXP (x
, 0), y
, y_hard_regno
);
725 /* Two pre-increments are invalid because the assembler insn would
726 increment only once. On the other hand, a pre-increment matches
727 ordinary indexing if the pre-increment is the input operand. */
728 if (GET_CODE (y
) == PRE_DEC
|| GET_CODE (y
) == PRE_INC
729 || GET_CODE (y
) == PRE_MODIFY
)
730 return operands_match_p (x
, XEXP (y
, 0), -1);
734 if (code
== REG
&& REG_P (y
))
735 return REGNO (x
) == REGNO (y
);
737 if (code
== REG
&& GET_CODE (y
) == SUBREG
&& REG_P (SUBREG_REG (y
))
738 && x
== SUBREG_REG (y
))
740 if (GET_CODE (y
) == REG
&& code
== SUBREG
&& REG_P (SUBREG_REG (x
))
741 && SUBREG_REG (x
) == y
)
744 /* Now we have disposed of all the cases in which different rtx
746 if (code
!= GET_CODE (y
))
749 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
750 if (GET_MODE (x
) != GET_MODE (y
))
759 return label_ref_label (x
) == label_ref_label (y
);
761 return XSTR (x
, 0) == XSTR (y
, 0);
767 /* Compare the elements. If any pair of corresponding elements fail
768 to match, return false for the whole things. */
770 fmt
= GET_RTX_FORMAT (code
);
771 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
777 if (XWINT (x
, i
) != XWINT (y
, i
))
782 if (XINT (x
, i
) != XINT (y
, i
))
787 val
= operands_match_p (XEXP (x
, i
), XEXP (y
, i
), -1);
796 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
798 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; --j
)
800 val
= operands_match_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
), -1);
806 /* It is believed that rtx's at this level will never
807 contain anything but integers and other rtx's, except for
808 within LABEL_REFs and SYMBOL_REFs. */
816 /* True if X is a constant that can be forced into the constant pool.
817 MODE is the mode of the operand, or VOIDmode if not known. */
818 #define CONST_POOL_OK_P(MODE, X) \
819 ((MODE) != VOIDmode \
821 && GET_CODE (X) != HIGH \
822 && !targetm.cannot_force_const_mem (MODE, X))
824 /* True if C is a non-empty register class that has too few registers
825 to be safely used as a reload target class. */
826 #define SMALL_REGISTER_CLASS_P(C) \
827 (ira_class_hard_regs_num [(C)] == 1 \
828 || (ira_class_hard_regs_num [(C)] >= 1 \
829 && targetm.class_likely_spilled_p (C)))
831 /* If REG is a reload pseudo, try to make its class satisfying CL. */
833 narrow_reload_pseudo_class (rtx reg
, enum reg_class cl
)
835 enum reg_class rclass
;
837 /* Do not make more accurate class from reloads generated. They are
838 mostly moves with a lot of constraints. Making more accurate
839 class may results in very narrow class and impossibility of find
840 registers for several reloads of one insn. */
841 if (INSN_UID (curr_insn
) >= new_insn_uid_start
)
843 if (GET_CODE (reg
) == SUBREG
)
844 reg
= SUBREG_REG (reg
);
845 if (! REG_P (reg
) || (int) REGNO (reg
) < new_regno_start
)
847 if (in_class_p (reg
, cl
, &rclass
) && rclass
!= cl
)
848 lra_change_class (REGNO (reg
), rclass
, " Change to", true);
851 /* Searches X for any reference to a reg with the same value as REGNO,
852 returning the rtx of the reference found if any. Otherwise,
855 regno_val_use_in (unsigned int regno
, rtx x
)
861 if (REG_P (x
) && lra_reg_info
[REGNO (x
)].val
== lra_reg_info
[regno
].val
)
864 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
865 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
869 if ((tem
= regno_val_use_in (regno
, XEXP (x
, i
))))
872 else if (fmt
[i
] == 'E')
873 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
874 if ((tem
= regno_val_use_in (regno
, XVECEXP (x
, i
, j
))))
881 /* Generate reloads for matching OUT and INS (array of input operand
882 numbers with end marker -1) with reg class GOAL_CLASS, considering
883 output operands OUTS (similar array to INS) needing to be in different
884 registers. Add input and output reloads correspondingly to the lists
885 *BEFORE and *AFTER. OUT might be negative. In this case we generate
886 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
887 that the output operand is early clobbered for chosen alternative. */
889 match_reload (signed char out
, signed char *ins
, signed char *outs
,
890 enum reg_class goal_class
, rtx_insn
**before
,
891 rtx_insn
**after
, bool early_clobber_p
)
895 rtx new_in_reg
, new_out_reg
, reg
;
896 machine_mode inmode
, outmode
;
897 rtx in_rtx
= *curr_id
->operand_loc
[ins
[0]];
898 rtx out_rtx
= out
< 0 ? in_rtx
: *curr_id
->operand_loc
[out
];
900 inmode
= curr_operand_mode
[ins
[0]];
901 outmode
= out
< 0 ? inmode
: curr_operand_mode
[out
];
902 push_to_sequence (*before
);
903 if (inmode
!= outmode
)
905 if (GET_MODE_SIZE (inmode
) > GET_MODE_SIZE (outmode
))
908 = lra_create_new_reg_with_unique_value (inmode
, in_rtx
,
910 if (SCALAR_INT_MODE_P (inmode
))
911 new_out_reg
= gen_lowpart_SUBREG (outmode
, reg
);
913 new_out_reg
= gen_rtx_SUBREG (outmode
, reg
, 0);
914 LRA_SUBREG_P (new_out_reg
) = 1;
915 /* If the input reg is dying here, we can use the same hard
916 register for REG and IN_RTX. We do it only for original
917 pseudos as reload pseudos can die although original
918 pseudos still live where reload pseudos dies. */
919 if (REG_P (in_rtx
) && (int) REGNO (in_rtx
) < lra_new_regno_start
920 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (in_rtx
)))
921 lra_assign_reg_val (REGNO (in_rtx
), REGNO (reg
));
926 = lra_create_new_reg_with_unique_value (outmode
, out_rtx
,
928 if (SCALAR_INT_MODE_P (outmode
))
929 new_in_reg
= gen_lowpart_SUBREG (inmode
, reg
);
931 new_in_reg
= gen_rtx_SUBREG (inmode
, reg
, 0);
932 /* NEW_IN_REG is non-paradoxical subreg. We don't want
933 NEW_OUT_REG living above. We add clobber clause for
934 this. This is just a temporary clobber. We can remove
935 it at the end of LRA work. */
936 rtx_insn
*clobber
= emit_clobber (new_out_reg
);
937 LRA_TEMP_CLOBBER_P (PATTERN (clobber
)) = 1;
938 LRA_SUBREG_P (new_in_reg
) = 1;
939 if (GET_CODE (in_rtx
) == SUBREG
)
941 rtx subreg_reg
= SUBREG_REG (in_rtx
);
943 /* If SUBREG_REG is dying here and sub-registers IN_RTX
944 and NEW_IN_REG are similar, we can use the same hard
945 register for REG and SUBREG_REG. */
946 if (REG_P (subreg_reg
)
947 && (int) REGNO (subreg_reg
) < lra_new_regno_start
948 && GET_MODE (subreg_reg
) == outmode
949 && SUBREG_BYTE (in_rtx
) == SUBREG_BYTE (new_in_reg
)
950 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (subreg_reg
)))
951 lra_assign_reg_val (REGNO (subreg_reg
), REGNO (reg
));
957 /* Pseudos have values -- see comments for lra_reg_info.
958 Different pseudos with the same value do not conflict even if
959 they live in the same place. When we create a pseudo we
960 assign value of original pseudo (if any) from which we
961 created the new pseudo. If we create the pseudo from the
962 input pseudo, the new pseudo will have no conflict with the
963 input pseudo which is wrong when the input pseudo lives after
964 the insn and as the new pseudo value is changed by the insn
965 output. Therefore we create the new pseudo from the output
966 except the case when we have single matched dying input
969 We cannot reuse the current output register because we might
970 have a situation like "a <- a op b", where the constraints
971 force the second input operand ("b") to match the output
972 operand ("a"). "b" must then be copied into a new register
973 so that it doesn't clobber the current value of "a".
975 We can not use the same value if the output pseudo is
976 early clobbered or the input pseudo is mentioned in the
977 output, e.g. as an address part in memory, because
978 output reload will actually extend the pseudo liveness.
979 We don't care about eliminable hard regs here as we are
980 interesting only in pseudos. */
982 /* Matching input's register value is the same as one of the other
983 output operand. Output operands in a parallel insn must be in
984 different registers. */
985 out_conflict
= false;
988 for (i
= 0; outs
[i
] >= 0; i
++)
990 rtx other_out_rtx
= *curr_id
->operand_loc
[outs
[i
]];
991 if (REG_P (other_out_rtx
)
992 && (regno_val_use_in (REGNO (in_rtx
), other_out_rtx
)
1001 new_in_reg
= new_out_reg
1002 = (! early_clobber_p
&& ins
[1] < 0 && REG_P (in_rtx
)
1003 && (int) REGNO (in_rtx
) < lra_new_regno_start
1004 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (in_rtx
))
1006 || regno_val_use_in (REGNO (in_rtx
), out_rtx
) == NULL_RTX
)
1008 ? lra_create_new_reg (inmode
, in_rtx
, goal_class
, "")
1009 : lra_create_new_reg_with_unique_value (outmode
, out_rtx
,
1012 /* In operand can be got from transformations before processing insn
1013 constraints. One example of such transformations is subreg
1014 reloading (see function simplify_operand_subreg). The new
1015 pseudos created by the transformations might have inaccurate
1016 class (ALL_REGS) and we should make their classes more
1018 narrow_reload_pseudo_class (in_rtx
, goal_class
);
1019 lra_emit_move (copy_rtx (new_in_reg
), in_rtx
);
1020 *before
= get_insns ();
1022 /* Add the new pseudo to consider values of subsequent input reload
1024 lra_assert (curr_insn_input_reloads_num
< LRA_MAX_INSN_RELOADS
);
1025 curr_insn_input_reloads
[curr_insn_input_reloads_num
].input
= in_rtx
;
1026 curr_insn_input_reloads
[curr_insn_input_reloads_num
].match_p
= true;
1027 curr_insn_input_reloads
[curr_insn_input_reloads_num
++].reg
= new_in_reg
;
1028 for (i
= 0; (in
= ins
[i
]) >= 0; i
++)
1031 (GET_MODE (*curr_id
->operand_loc
[in
]) == VOIDmode
1032 || GET_MODE (new_in_reg
) == GET_MODE (*curr_id
->operand_loc
[in
]));
1033 *curr_id
->operand_loc
[in
] = new_in_reg
;
1035 lra_update_dups (curr_id
, ins
);
1038 /* See a comment for the input operand above. */
1039 narrow_reload_pseudo_class (out_rtx
, goal_class
);
1040 if (find_reg_note (curr_insn
, REG_UNUSED
, out_rtx
) == NULL_RTX
)
1043 lra_emit_move (out_rtx
, copy_rtx (new_out_reg
));
1045 *after
= get_insns ();
1048 *curr_id
->operand_loc
[out
] = new_out_reg
;
1049 lra_update_dup (curr_id
, out
);
1052 /* Return register class which is union of all reg classes in insn
1053 constraint alternative string starting with P. */
1054 static enum reg_class
1055 reg_class_from_constraints (const char *p
)
1058 enum reg_class op_class
= NO_REGS
;
1061 switch ((c
= *p
, len
= CONSTRAINT_LEN (c
, p
)), c
)
1068 op_class
= reg_class_subunion
[op_class
][GENERAL_REGS
];
1072 enum constraint_num cn
= lookup_constraint (p
);
1073 enum reg_class cl
= reg_class_for_constraint (cn
);
1076 if (insn_extra_address_constraint (cn
))
1078 = (reg_class_subunion
1079 [op_class
][base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
1080 ADDRESS
, SCRATCH
)]);
1084 op_class
= reg_class_subunion
[op_class
][cl
];
1087 while ((p
+= len
), c
);
1091 /* If OP is a register, return the class of the register as per
1092 get_reg_class, otherwise return NO_REGS. */
1093 static inline enum reg_class
1094 get_op_class (rtx op
)
1096 return REG_P (op
) ? get_reg_class (REGNO (op
)) : NO_REGS
;
1099 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1100 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1101 SUBREG for VAL to make them equal. */
1103 emit_spill_move (bool to_p
, rtx mem_pseudo
, rtx val
)
1105 if (GET_MODE (mem_pseudo
) != GET_MODE (val
))
1107 /* Usually size of mem_pseudo is greater than val size but in
1108 rare cases it can be less as it can be defined by target
1109 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1112 val
= gen_lowpart_SUBREG (GET_MODE (mem_pseudo
),
1113 GET_CODE (val
) == SUBREG
1114 ? SUBREG_REG (val
) : val
);
1115 LRA_SUBREG_P (val
) = 1;
1119 mem_pseudo
= gen_lowpart_SUBREG (GET_MODE (val
), mem_pseudo
);
1120 LRA_SUBREG_P (mem_pseudo
) = 1;
1123 return to_p
? gen_move_insn (mem_pseudo
, val
)
1124 : gen_move_insn (val
, mem_pseudo
);
1127 /* Process a special case insn (register move), return true if we
1128 don't need to process it anymore. INSN should be a single set
1129 insn. Set up that RTL was changed through CHANGE_P and macro
1130 SECONDARY_MEMORY_NEEDED says to use secondary memory through
1133 check_and_process_move (bool *change_p
, bool *sec_mem_p ATTRIBUTE_UNUSED
)
1136 rtx dest
, src
, dreg
, sreg
, new_reg
, scratch_reg
;
1138 enum reg_class dclass
, sclass
, secondary_class
;
1139 secondary_reload_info sri
;
1141 lra_assert (curr_insn_set
!= NULL_RTX
);
1142 dreg
= dest
= SET_DEST (curr_insn_set
);
1143 sreg
= src
= SET_SRC (curr_insn_set
);
1144 if (GET_CODE (dest
) == SUBREG
)
1145 dreg
= SUBREG_REG (dest
);
1146 if (GET_CODE (src
) == SUBREG
)
1147 sreg
= SUBREG_REG (src
);
1148 if (! (REG_P (dreg
) || MEM_P (dreg
)) || ! (REG_P (sreg
) || MEM_P (sreg
)))
1150 sclass
= dclass
= NO_REGS
;
1152 dclass
= get_reg_class (REGNO (dreg
));
1153 gcc_assert (dclass
< LIM_REG_CLASSES
);
1154 if (dclass
== ALL_REGS
)
1155 /* ALL_REGS is used for new pseudos created by transformations
1156 like reload of SUBREG_REG (see function
1157 simplify_operand_subreg). We don't know their class yet. We
1158 should figure out the class from processing the insn
1159 constraints not in this fast path function. Even if ALL_REGS
1160 were a right class for the pseudo, secondary_... hooks usually
1161 are not define for ALL_REGS. */
1164 sclass
= get_reg_class (REGNO (sreg
));
1165 gcc_assert (sclass
< LIM_REG_CLASSES
);
1166 if (sclass
== ALL_REGS
)
1167 /* See comments above. */
1169 if (sclass
== NO_REGS
&& dclass
== NO_REGS
)
1171 #ifdef SECONDARY_MEMORY_NEEDED
1172 if (SECONDARY_MEMORY_NEEDED (sclass
, dclass
, GET_MODE (src
))
1173 #ifdef SECONDARY_MEMORY_NEEDED_MODE
1174 && ((sclass
!= NO_REGS
&& dclass
!= NO_REGS
)
1175 || GET_MODE (src
) != SECONDARY_MEMORY_NEEDED_MODE (GET_MODE (src
)))
1183 if (! REG_P (dreg
) || ! REG_P (sreg
))
1185 sri
.prev_sri
= NULL
;
1186 sri
.icode
= CODE_FOR_nothing
;
1188 secondary_class
= NO_REGS
;
1189 /* Set up hard register for a reload pseudo for hook
1190 secondary_reload because some targets just ignore unassigned
1191 pseudos in the hook. */
1192 if (dclass
!= NO_REGS
&& lra_get_regno_hard_regno (REGNO (dreg
)) < 0)
1194 dregno
= REGNO (dreg
);
1195 reg_renumber
[dregno
] = ira_class_hard_regs
[dclass
][0];
1199 if (sclass
!= NO_REGS
&& lra_get_regno_hard_regno (REGNO (sreg
)) < 0)
1201 sregno
= REGNO (sreg
);
1202 reg_renumber
[sregno
] = ira_class_hard_regs
[sclass
][0];
1206 if (sclass
!= NO_REGS
)
1208 = (enum reg_class
) targetm
.secondary_reload (false, dest
,
1209 (reg_class_t
) sclass
,
1210 GET_MODE (src
), &sri
);
1211 if (sclass
== NO_REGS
1212 || ((secondary_class
!= NO_REGS
|| sri
.icode
!= CODE_FOR_nothing
)
1213 && dclass
!= NO_REGS
))
1215 enum reg_class old_sclass
= secondary_class
;
1216 secondary_reload_info old_sri
= sri
;
1218 sri
.prev_sri
= NULL
;
1219 sri
.icode
= CODE_FOR_nothing
;
1222 = (enum reg_class
) targetm
.secondary_reload (true, src
,
1223 (reg_class_t
) dclass
,
1224 GET_MODE (src
), &sri
);
1225 /* Check the target hook consistency. */
1227 ((secondary_class
== NO_REGS
&& sri
.icode
== CODE_FOR_nothing
)
1228 || (old_sclass
== NO_REGS
&& old_sri
.icode
== CODE_FOR_nothing
)
1229 || (secondary_class
== old_sclass
&& sri
.icode
== old_sri
.icode
));
1232 reg_renumber
[sregno
] = -1;
1234 reg_renumber
[dregno
] = -1;
1235 if (secondary_class
== NO_REGS
&& sri
.icode
== CODE_FOR_nothing
)
1239 if (secondary_class
!= NO_REGS
)
1240 new_reg
= lra_create_new_reg_with_unique_value (GET_MODE (src
), NULL_RTX
,
1244 if (sri
.icode
== CODE_FOR_nothing
)
1245 lra_emit_move (new_reg
, src
);
1248 enum reg_class scratch_class
;
1250 scratch_class
= (reg_class_from_constraints
1251 (insn_data
[sri
.icode
].operand
[2].constraint
));
1252 scratch_reg
= (lra_create_new_reg_with_unique_value
1253 (insn_data
[sri
.icode
].operand
[2].mode
, NULL_RTX
,
1254 scratch_class
, "scratch"));
1255 emit_insn (GEN_FCN (sri
.icode
) (new_reg
!= NULL_RTX
? new_reg
: dest
,
1258 before
= get_insns ();
1260 lra_process_new_insns (curr_insn
, before
, NULL
, "Inserting the move");
1261 if (new_reg
!= NULL_RTX
)
1262 SET_SRC (curr_insn_set
) = new_reg
;
1265 if (lra_dump_file
!= NULL
)
1267 fprintf (lra_dump_file
, "Deleting move %u\n", INSN_UID (curr_insn
));
1268 dump_insn_slim (lra_dump_file
, curr_insn
);
1270 lra_set_insn_deleted (curr_insn
);
1276 /* The following data describe the result of process_alt_operands.
1277 The data are used in curr_insn_transform to generate reloads. */
1279 /* The chosen reg classes which should be used for the corresponding
1281 static enum reg_class goal_alt
[MAX_RECOG_OPERANDS
];
1282 /* True if the operand should be the same as another operand and that
1283 other operand does not need a reload. */
1284 static bool goal_alt_match_win
[MAX_RECOG_OPERANDS
];
1285 /* True if the operand does not need a reload. */
1286 static bool goal_alt_win
[MAX_RECOG_OPERANDS
];
1287 /* True if the operand can be offsetable memory. */
1288 static bool goal_alt_offmemok
[MAX_RECOG_OPERANDS
];
1289 /* The number of an operand to which given operand can be matched to. */
1290 static int goal_alt_matches
[MAX_RECOG_OPERANDS
];
1291 /* The number of elements in the following array. */
1292 static int goal_alt_dont_inherit_ops_num
;
1293 /* Numbers of operands whose reload pseudos should not be inherited. */
1294 static int goal_alt_dont_inherit_ops
[MAX_RECOG_OPERANDS
];
1295 /* True if the insn commutative operands should be swapped. */
1296 static bool goal_alt_swapped
;
1297 /* The chosen insn alternative. */
1298 static int goal_alt_number
;
1300 /* True if the corresponding operand is the result of an equivalence
1302 static bool equiv_substition_p
[MAX_RECOG_OPERANDS
];
1304 /* The following five variables are used to choose the best insn
1305 alternative. They reflect final characteristics of the best
1308 /* Number of necessary reloads and overall cost reflecting the
1309 previous value and other unpleasantness of the best alternative. */
1310 static int best_losers
, best_overall
;
1311 /* Overall number hard registers used for reloads. For example, on
1312 some targets we need 2 general registers to reload DFmode and only
1313 one floating point register. */
1314 static int best_reload_nregs
;
1315 /* Overall number reflecting distances of previous reloading the same
1316 value. The distances are counted from the current BB start. It is
1317 used to improve inheritance chances. */
1318 static int best_reload_sum
;
1320 /* True if the current insn should have no correspondingly input or
1322 static bool no_input_reloads_p
, no_output_reloads_p
;
1324 /* True if we swapped the commutative operands in the current
1326 static int curr_swapped
;
1328 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1329 register of class CL. Add any input reloads to list BEFORE. AFTER
1330 is nonnull if *LOC is an automodified value; handle that case by
1331 adding the required output reloads to list AFTER. Return true if
1332 the RTL was changed.
1334 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1335 register. Return false if the address register is correct. */
1337 process_addr_reg (rtx
*loc
, bool check_only_p
, rtx_insn
**before
, rtx_insn
**after
,
1341 enum reg_class rclass
, new_class
;
1345 bool subreg_p
, before_p
= false;
1347 subreg_p
= GET_CODE (*loc
) == SUBREG
;
1350 reg
= SUBREG_REG (*loc
);
1351 mode
= GET_MODE (reg
);
1353 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1354 between two registers with different classes, but there normally will
1355 be "mov" which transfers element of vector register into the general
1356 register, and this normally will be a subreg which should be reloaded
1357 as a whole. This is particularly likely to be triggered when
1358 -fno-split-wide-types specified. */
1360 || in_class_p (reg
, cl
, &new_class
)
1361 || GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (ptr_mode
))
1362 loc
= &SUBREG_REG (*loc
);
1366 mode
= GET_MODE (reg
);
1371 /* Always reload memory in an address even if the target supports
1373 new_reg
= lra_create_new_reg_with_unique_value (mode
, reg
, cl
, "address");
1378 regno
= REGNO (reg
);
1379 rclass
= get_reg_class (regno
);
1381 && (*loc
= get_equiv_with_elimination (reg
, curr_insn
)) != reg
)
1383 if (lra_dump_file
!= NULL
)
1385 fprintf (lra_dump_file
,
1386 "Changing pseudo %d in address of insn %u on equiv ",
1387 REGNO (reg
), INSN_UID (curr_insn
));
1388 dump_value_slim (lra_dump_file
, *loc
, 1);
1389 fprintf (lra_dump_file
, "\n");
1391 *loc
= copy_rtx (*loc
);
1393 if (*loc
!= reg
|| ! in_class_p (reg
, cl
, &new_class
))
1398 if (get_reload_reg (after
== NULL
? OP_IN
: OP_INOUT
,
1399 mode
, reg
, cl
, subreg_p
, "address", &new_reg
))
1402 else if (new_class
!= NO_REGS
&& rclass
!= new_class
)
1406 lra_change_class (regno
, new_class
, " Change to", true);
1414 push_to_sequence (*before
);
1415 lra_emit_move (new_reg
, reg
);
1416 *before
= get_insns ();
1423 lra_emit_move (before_p
? copy_rtx (reg
) : reg
, new_reg
);
1425 *after
= get_insns ();
1431 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1432 the insn to be inserted before curr insn. AFTER returns the
1433 the insn to be inserted after curr insn. ORIGREG and NEWREG
1434 are the original reg and new reg for reload. */
1436 insert_move_for_subreg (rtx_insn
**before
, rtx_insn
**after
, rtx origreg
,
1441 push_to_sequence (*before
);
1442 lra_emit_move (newreg
, origreg
);
1443 *before
= get_insns ();
1449 lra_emit_move (origreg
, newreg
);
1451 *after
= get_insns ();
1456 static int valid_address_p (machine_mode mode
, rtx addr
, addr_space_t as
);
1457 static bool process_address (int, bool, rtx_insn
**, rtx_insn
**);
1459 /* Make reloads for subreg in operand NOP with internal subreg mode
1460 REG_MODE, add new reloads for further processing. Return true if
1461 any change was done. */
1463 simplify_operand_subreg (int nop
, machine_mode reg_mode
)
1466 rtx_insn
*before
, *after
;
1467 machine_mode mode
, innermode
;
1469 rtx operand
= *curr_id
->operand_loc
[nop
];
1470 enum reg_class regclass
;
1473 before
= after
= NULL
;
1475 if (GET_CODE (operand
) != SUBREG
)
1478 mode
= GET_MODE (operand
);
1479 reg
= SUBREG_REG (operand
);
1480 innermode
= GET_MODE (reg
);
1481 type
= curr_static_id
->operand
[nop
].type
;
1484 const bool addr_was_valid
1485 = valid_address_p (innermode
, XEXP (reg
, 0), MEM_ADDR_SPACE (reg
));
1486 alter_subreg (curr_id
->operand_loc
[nop
], false);
1487 rtx subst
= *curr_id
->operand_loc
[nop
];
1488 lra_assert (MEM_P (subst
));
1491 || valid_address_p (GET_MODE (subst
), XEXP (subst
, 0),
1492 MEM_ADDR_SPACE (subst
))
1493 || ((get_constraint_type (lookup_constraint
1494 (curr_static_id
->operand
[nop
].constraint
))
1495 != CT_SPECIAL_MEMORY
)
1496 /* We still can reload address and if the address is
1497 valid, we can remove subreg without reloading its
1499 && valid_address_p (GET_MODE (subst
),
1501 [ira_class_hard_regs
1502 [base_reg_class (GET_MODE (subst
),
1503 MEM_ADDR_SPACE (subst
),
1504 ADDRESS
, SCRATCH
)][0]],
1505 MEM_ADDR_SPACE (subst
))))
1507 /* If we change the address for a paradoxical subreg of memory, the
1508 address might violate the necessary alignment or the access might
1509 be slow. So take this into consideration. We need not worry
1510 about accesses beyond allocated memory for paradoxical memory
1511 subregs as we don't substitute such equiv memory (see processing
1512 equivalences in function lra_constraints) and because for spilled
1513 pseudos we allocate stack memory enough for the biggest
1514 corresponding paradoxical subreg. */
1515 if (!(MEM_ALIGN (reg
) < GET_MODE_ALIGNMENT (mode
)
1516 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (reg
)))
1517 || (MEM_ALIGN (reg
) < GET_MODE_ALIGNMENT (innermode
)
1518 && SLOW_UNALIGNED_ACCESS (innermode
, MEM_ALIGN (reg
))))
1521 *curr_id
->operand_loc
[nop
] = operand
;
1523 /* But if the address was not valid, we cannot reload the MEM without
1524 reloading the address first. */
1525 if (!addr_was_valid
)
1526 process_address (nop
, false, &before
, &after
);
1528 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1529 enum reg_class rclass
1530 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1531 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, innermode
,
1532 reg
, rclass
, TRUE
, "slow mem", &new_reg
))
1534 bool insert_before
, insert_after
;
1535 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1537 insert_before
= (type
!= OP_OUT
1538 || GET_MODE_SIZE (innermode
)
1539 > GET_MODE_SIZE (mode
));
1540 insert_after
= type
!= OP_IN
;
1541 insert_move_for_subreg (insert_before
? &before
: NULL
,
1542 insert_after
? &after
: NULL
,
1545 SUBREG_REG (operand
) = new_reg
;
1547 /* Convert to MODE. */
1550 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1551 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, mode
, reg
,
1552 rclass
, TRUE
, "slow mem", &new_reg
))
1554 bool insert_before
, insert_after
;
1555 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1557 insert_before
= type
!= OP_OUT
;
1558 insert_after
= type
!= OP_IN
;
1559 insert_move_for_subreg (insert_before
? &before
: NULL
,
1560 insert_after
? &after
: NULL
,
1563 *curr_id
->operand_loc
[nop
] = new_reg
;
1564 lra_process_new_insns (curr_insn
, before
, after
,
1565 "Inserting slow mem reload");
1569 /* If the address was valid and became invalid, prefer to reload
1570 the memory. Typical case is when the index scale should
1571 correspond the memory. */
1572 *curr_id
->operand_loc
[nop
] = operand
;
1575 else if (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1577 alter_subreg (curr_id
->operand_loc
[nop
], false);
1580 else if (CONSTANT_P (reg
))
1582 /* Try to simplify subreg of constant. It is usually result of
1583 equivalence substitution. */
1584 if (innermode
== VOIDmode
1585 && (innermode
= original_subreg_reg_mode
[nop
]) == VOIDmode
)
1586 innermode
= curr_static_id
->operand
[nop
].mode
;
1587 if ((new_reg
= simplify_subreg (mode
, reg
, innermode
,
1588 SUBREG_BYTE (operand
))) != NULL_RTX
)
1590 *curr_id
->operand_loc
[nop
] = new_reg
;
1594 /* Put constant into memory when we have mixed modes. It generates
1595 a better code in most cases as it does not need a secondary
1596 reload memory. It also prevents LRA looping when LRA is using
1597 secondary reload memory again and again. */
1598 if (CONSTANT_P (reg
) && CONST_POOL_OK_P (reg_mode
, reg
)
1599 && SCALAR_INT_MODE_P (reg_mode
) != SCALAR_INT_MODE_P (mode
))
1601 SUBREG_REG (operand
) = force_const_mem (reg_mode
, reg
);
1602 alter_subreg (curr_id
->operand_loc
[nop
], false);
1605 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1606 if there may be a problem accessing OPERAND in the outer
1609 && REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1610 && (hard_regno
= lra_get_regno_hard_regno (REGNO (reg
))) >= 0
1611 /* Don't reload paradoxical subregs because we could be looping
1612 having repeatedly final regno out of hard regs range. */
1613 && (hard_regno_nregs
[hard_regno
][innermode
]
1614 >= hard_regno_nregs
[hard_regno
][mode
])
1615 && simplify_subreg_regno (hard_regno
, innermode
,
1616 SUBREG_BYTE (operand
), mode
) < 0
1617 /* Don't reload subreg for matching reload. It is actually
1618 valid subreg in LRA. */
1619 && ! LRA_SUBREG_P (operand
))
1620 || CONSTANT_P (reg
) || GET_CODE (reg
) == PLUS
|| MEM_P (reg
))
1622 enum reg_class rclass
;
1625 /* There is a big probability that we will get the same class
1626 for the new pseudo and we will get the same insn which
1627 means infinite looping. So spill the new pseudo. */
1630 /* The class will be defined later in curr_insn_transform. */
1632 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1634 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, reg_mode
, reg
,
1635 rclass
, TRUE
, "subreg reg", &new_reg
))
1637 bool insert_before
, insert_after
;
1638 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1640 insert_before
= (type
!= OP_OUT
1641 || GET_MODE_SIZE (innermode
) > GET_MODE_SIZE (mode
));
1642 insert_after
= (type
!= OP_IN
);
1643 insert_move_for_subreg (insert_before
? &before
: NULL
,
1644 insert_after
? &after
: NULL
,
1647 SUBREG_REG (operand
) = new_reg
;
1648 lra_process_new_insns (curr_insn
, before
, after
,
1649 "Inserting subreg reload");
1652 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1653 IRA allocates hardreg to the inner pseudo reg according to its mode
1654 instead of the outermode, so the size of the hardreg may not be enough
1655 to contain the outermode operand, in that case we may need to insert
1656 reload for the reg. For the following two types of paradoxical subreg,
1657 we need to insert reload:
1658 1. If the op_type is OP_IN, and the hardreg could not be paired with
1659 other hardreg to contain the outermode operand
1660 (checked by in_hard_reg_set_p), we need to insert the reload.
1661 2. If the op_type is OP_OUT or OP_INOUT.
1663 Here is a paradoxical subreg example showing how the reload is generated:
1665 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1666 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1668 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1669 here, if reg107 is assigned to hardreg R15, because R15 is the last
1670 hardreg, compiler cannot find another hardreg to pair with R15 to
1671 contain TImode data. So we insert a TImode reload reg180 for it.
1672 After reload is inserted:
1674 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1675 (reg:DI 107 [ __comp ])) -1
1676 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1677 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1679 Two reload hard registers will be allocated to reg180 to save TImode data
1681 else if (REG_P (reg
)
1682 && REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1683 && (hard_regno
= lra_get_regno_hard_regno (REGNO (reg
))) >= 0
1684 && (hard_regno_nregs
[hard_regno
][innermode
]
1685 < hard_regno_nregs
[hard_regno
][mode
])
1686 && (regclass
= lra_get_allocno_class (REGNO (reg
)))
1688 || !in_hard_reg_set_p (reg_class_contents
[regclass
],
1691 /* The class will be defined later in curr_insn_transform. */
1692 enum reg_class rclass
1693 = (enum reg_class
) targetm
.preferred_reload_class (reg
, ALL_REGS
);
1695 if (get_reload_reg (curr_static_id
->operand
[nop
].type
, mode
, reg
,
1696 rclass
, TRUE
, "paradoxical subreg", &new_reg
))
1699 bool insert_before
, insert_after
;
1701 PUT_MODE (new_reg
, mode
);
1702 subreg
= gen_lowpart_SUBREG (innermode
, new_reg
);
1703 bitmap_set_bit (&lra_subreg_reload_pseudos
, REGNO (new_reg
));
1705 insert_before
= (type
!= OP_OUT
);
1706 insert_after
= (type
!= OP_IN
);
1707 insert_move_for_subreg (insert_before
? &before
: NULL
,
1708 insert_after
? &after
: NULL
,
1711 SUBREG_REG (operand
) = new_reg
;
1712 lra_process_new_insns (curr_insn
, before
, after
,
1713 "Inserting paradoxical subreg reload");
1719 /* Return TRUE if X refers for a hard register from SET. */
1721 uses_hard_regs_p (rtx x
, HARD_REG_SET set
)
1723 int i
, j
, x_hard_regno
;
1730 code
= GET_CODE (x
);
1731 mode
= GET_MODE (x
);
1735 code
= GET_CODE (x
);
1736 if (GET_MODE_SIZE (GET_MODE (x
)) > GET_MODE_SIZE (mode
))
1737 mode
= GET_MODE (x
);
1742 x_hard_regno
= get_hard_regno (x
, true);
1743 return (x_hard_regno
>= 0
1744 && overlaps_hard_reg_set_p (set
, mode
, x_hard_regno
));
1748 struct address_info ad
;
1750 decompose_mem_address (&ad
, x
);
1751 if (ad
.base_term
!= NULL
&& uses_hard_regs_p (*ad
.base_term
, set
))
1753 if (ad
.index_term
!= NULL
&& uses_hard_regs_p (*ad
.index_term
, set
))
1756 fmt
= GET_RTX_FORMAT (code
);
1757 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1761 if (uses_hard_regs_p (XEXP (x
, i
), set
))
1764 else if (fmt
[i
] == 'E')
1766 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1767 if (uses_hard_regs_p (XVECEXP (x
, i
, j
), set
))
1774 /* Return true if OP is a spilled pseudo. */
1776 spilled_pseudo_p (rtx op
)
1779 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
&& in_mem_p (REGNO (op
)));
1782 /* Return true if X is a general constant. */
1784 general_constant_p (rtx x
)
1786 return CONSTANT_P (x
) && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (x
));
1790 reg_in_class_p (rtx reg
, enum reg_class cl
)
1793 return get_reg_class (REGNO (reg
)) == NO_REGS
;
1794 return in_class_p (reg
, cl
, NULL
);
1797 /* Return true if SET of RCLASS contains no hard regs which can be
1800 prohibited_class_reg_set_mode_p (enum reg_class rclass
,
1802 enum machine_mode mode
)
1806 lra_assert (hard_reg_set_subset_p (reg_class_contents
[rclass
], set
));
1807 COPY_HARD_REG_SET (temp
, set
);
1808 AND_COMPL_HARD_REG_SET (temp
, lra_no_alloc_regs
);
1809 return (hard_reg_set_subset_p
1810 (temp
, ira_prohibited_class_mode_regs
[rclass
][mode
]));
1813 /* Major function to choose the current insn alternative and what
1814 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1815 negative we should consider only this alternative. Return false if
1816 we can not choose the alternative or find how to reload the
1819 process_alt_operands (int only_alternative
)
1822 int nop
, overall
, nalt
;
1823 int n_alternatives
= curr_static_id
->n_alternatives
;
1824 int n_operands
= curr_static_id
->n_operands
;
1825 /* LOSERS counts the operands that don't fit this alternative and
1826 would require loading. */
1828 /* REJECT is a count of how undesirable this alternative says it is
1829 if any reloading is required. If the alternative matches exactly
1830 then REJECT is ignored, but otherwise it gets this much counted
1831 against it in addition to the reloading needed. */
1834 /* The number of elements in the following array. */
1835 int early_clobbered_regs_num
;
1836 /* Numbers of operands which are early clobber registers. */
1837 int early_clobbered_nops
[MAX_RECOG_OPERANDS
];
1838 enum reg_class curr_alt
[MAX_RECOG_OPERANDS
];
1839 HARD_REG_SET curr_alt_set
[MAX_RECOG_OPERANDS
];
1840 bool curr_alt_match_win
[MAX_RECOG_OPERANDS
];
1841 bool curr_alt_win
[MAX_RECOG_OPERANDS
];
1842 bool curr_alt_offmemok
[MAX_RECOG_OPERANDS
];
1843 int curr_alt_matches
[MAX_RECOG_OPERANDS
];
1844 /* The number of elements in the following array. */
1845 int curr_alt_dont_inherit_ops_num
;
1846 /* Numbers of operands whose reload pseudos should not be inherited. */
1847 int curr_alt_dont_inherit_ops
[MAX_RECOG_OPERANDS
];
1849 /* The register when the operand is a subreg of register, otherwise the
1851 rtx no_subreg_reg_operand
[MAX_RECOG_OPERANDS
];
1852 /* The register if the operand is a register or subreg of register,
1854 rtx operand_reg
[MAX_RECOG_OPERANDS
];
1855 int hard_regno
[MAX_RECOG_OPERANDS
];
1856 machine_mode biggest_mode
[MAX_RECOG_OPERANDS
];
1857 int reload_nregs
, reload_sum
;
1861 /* Calculate some data common for all alternatives to speed up the
1863 for (nop
= 0; nop
< n_operands
; nop
++)
1867 op
= no_subreg_reg_operand
[nop
] = *curr_id
->operand_loc
[nop
];
1868 /* The real hard regno of the operand after the allocation. */
1869 hard_regno
[nop
] = get_hard_regno (op
, true);
1871 operand_reg
[nop
] = reg
= op
;
1872 biggest_mode
[nop
] = GET_MODE (op
);
1873 if (GET_CODE (op
) == SUBREG
)
1875 operand_reg
[nop
] = reg
= SUBREG_REG (op
);
1876 if (GET_MODE_SIZE (biggest_mode
[nop
])
1877 < GET_MODE_SIZE (GET_MODE (reg
)))
1878 biggest_mode
[nop
] = GET_MODE (reg
);
1881 operand_reg
[nop
] = NULL_RTX
;
1882 else if (REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1883 || ((int) REGNO (reg
)
1884 == lra_get_elimination_hard_regno (REGNO (reg
))))
1885 no_subreg_reg_operand
[nop
] = reg
;
1887 operand_reg
[nop
] = no_subreg_reg_operand
[nop
]
1888 /* Just use natural mode for elimination result. It should
1889 be enough for extra constraints hooks. */
1890 = regno_reg_rtx
[hard_regno
[nop
]];
1893 /* The constraints are made of several alternatives. Each operand's
1894 constraint looks like foo,bar,... with commas separating the
1895 alternatives. The first alternatives for all operands go
1896 together, the second alternatives go together, etc.
1898 First loop over alternatives. */
1899 alternative_mask preferred
= curr_id
->preferred_alternatives
;
1900 if (only_alternative
>= 0)
1901 preferred
&= ALTERNATIVE_BIT (only_alternative
);
1903 for (nalt
= 0; nalt
< n_alternatives
; nalt
++)
1905 /* Loop over operands for one constraint alternative. */
1906 if (!TEST_BIT (preferred
, nalt
))
1909 overall
= losers
= reject
= reload_nregs
= reload_sum
= 0;
1910 for (nop
= 0; nop
< n_operands
; nop
++)
1912 int inc
= (curr_static_id
1913 ->operand_alternative
[nalt
* n_operands
+ nop
].reject
);
1914 if (lra_dump_file
!= NULL
&& inc
!= 0)
1915 fprintf (lra_dump_file
,
1916 " Staticly defined alt reject+=%d\n", inc
);
1919 early_clobbered_regs_num
= 0;
1921 for (nop
= 0; nop
< n_operands
; nop
++)
1925 int len
, c
, m
, i
, opalt_num
, this_alternative_matches
;
1926 bool win
, did_match
, offmemok
, early_clobber_p
;
1927 /* false => this operand can be reloaded somehow for this
1930 /* true => this operand can be reloaded if the alternative
1933 /* True if a constant forced into memory would be OK for
1936 enum reg_class this_alternative
, this_costly_alternative
;
1937 HARD_REG_SET this_alternative_set
, this_costly_alternative_set
;
1938 bool this_alternative_match_win
, this_alternative_win
;
1939 bool this_alternative_offmemok
;
1942 enum constraint_num cn
;
1944 opalt_num
= nalt
* n_operands
+ nop
;
1945 if (curr_static_id
->operand_alternative
[opalt_num
].anything_ok
)
1947 /* Fast track for no constraints at all. */
1948 curr_alt
[nop
] = NO_REGS
;
1949 CLEAR_HARD_REG_SET (curr_alt_set
[nop
]);
1950 curr_alt_win
[nop
] = true;
1951 curr_alt_match_win
[nop
] = false;
1952 curr_alt_offmemok
[nop
] = false;
1953 curr_alt_matches
[nop
] = -1;
1957 op
= no_subreg_reg_operand
[nop
];
1958 mode
= curr_operand_mode
[nop
];
1960 win
= did_match
= winreg
= offmemok
= constmemok
= false;
1963 early_clobber_p
= false;
1964 p
= curr_static_id
->operand_alternative
[opalt_num
].constraint
;
1966 this_costly_alternative
= this_alternative
= NO_REGS
;
1967 /* We update set of possible hard regs besides its class
1968 because reg class might be inaccurate. For example,
1969 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
1970 is translated in HI_REGS because classes are merged by
1971 pairs and there is no accurate intermediate class. */
1972 CLEAR_HARD_REG_SET (this_alternative_set
);
1973 CLEAR_HARD_REG_SET (this_costly_alternative_set
);
1974 this_alternative_win
= false;
1975 this_alternative_match_win
= false;
1976 this_alternative_offmemok
= false;
1977 this_alternative_matches
= -1;
1979 /* An empty constraint should be excluded by the fast
1981 lra_assert (*p
!= 0 && *p
!= ',');
1984 /* Scan this alternative's specs for this operand; set WIN
1985 if the operand fits any letter in this alternative.
1986 Otherwise, clear BADOP if this operand could fit some
1987 letter after reloads, or set WINREG if this operand could
1988 fit after reloads provided the constraint allows some
1993 switch ((c
= *p
, len
= CONSTRAINT_LEN (c
, p
)), c
)
2003 early_clobber_p
= true;
2007 op_reject
+= LRA_MAX_REJECT
;
2010 op_reject
+= LRA_LOSER_COST_FACTOR
;
2014 /* Ignore rest of this alternative. */
2018 case '0': case '1': case '2': case '3': case '4':
2019 case '5': case '6': case '7': case '8': case '9':
2024 m
= strtoul (p
, &end
, 10);
2027 lra_assert (nop
> m
);
2029 this_alternative_matches
= m
;
2030 m_hregno
= get_hard_regno (*curr_id
->operand_loc
[m
], false);
2031 /* We are supposed to match a previous operand.
2032 If we do, we win if that one did. If we do
2033 not, count both of the operands as losers.
2034 (This is too conservative, since most of the
2035 time only a single reload insn will be needed
2036 to make the two operands win. As a result,
2037 this alternative may be rejected when it is
2038 actually desirable.) */
2040 if (operands_match_p (*curr_id
->operand_loc
[nop
],
2041 *curr_id
->operand_loc
[m
], m_hregno
))
2043 /* We should reject matching of an early
2044 clobber operand if the matching operand is
2045 not dying in the insn. */
2046 if (! curr_static_id
->operand
[m
].early_clobber
2047 || operand_reg
[nop
] == NULL_RTX
2048 || (find_regno_note (curr_insn
, REG_DEAD
,
2050 || REGNO (op
) == REGNO (operand_reg
[m
])))
2055 /* If we are matching a non-offsettable
2056 address where an offsettable address was
2057 expected, then we must reject this
2058 combination, because we can't reload
2060 if (curr_alt_offmemok
[m
]
2061 && MEM_P (*curr_id
->operand_loc
[m
])
2062 && curr_alt
[m
] == NO_REGS
&& ! curr_alt_win
[m
])
2067 /* Operands don't match. Both operands must
2068 allow a reload register, otherwise we
2069 cannot make them match. */
2070 if (curr_alt
[m
] == NO_REGS
)
2072 /* Retroactively mark the operand we had to
2073 match as a loser, if it wasn't already and
2074 it wasn't matched to a register constraint
2075 (e.g it might be matched by memory). */
2077 && (operand_reg
[m
] == NULL_RTX
2078 || hard_regno
[m
] < 0))
2082 += (ira_reg_class_max_nregs
[curr_alt
[m
]]
2083 [GET_MODE (*curr_id
->operand_loc
[m
])]);
2086 /* Prefer matching earlyclobber alternative as
2087 it results in less hard regs required for
2088 the insn than a non-matching earlyclobber
2090 if (curr_static_id
->operand
[m
].early_clobber
)
2092 if (lra_dump_file
!= NULL
)
2095 " %d Matching earlyclobber alt:"
2100 /* Otherwise we prefer no matching
2101 alternatives because it gives more freedom
2103 else if (operand_reg
[nop
] == NULL_RTX
2104 || (find_regno_note (curr_insn
, REG_DEAD
,
2105 REGNO (operand_reg
[nop
]))
2108 if (lra_dump_file
!= NULL
)
2111 " %d Matching alt: reject+=2\n",
2116 /* If we have to reload this operand and some
2117 previous operand also had to match the same
2118 thing as this operand, we don't know how to do
2120 if (!match_p
|| !curr_alt_win
[m
])
2122 for (i
= 0; i
< nop
; i
++)
2123 if (curr_alt_matches
[i
] == m
)
2131 /* This can be fixed with reloads if the operand
2132 we are supposed to match can be fixed with
2135 this_alternative
= curr_alt
[m
];
2136 COPY_HARD_REG_SET (this_alternative_set
, curr_alt_set
[m
]);
2137 winreg
= this_alternative
!= NO_REGS
;
2143 || general_constant_p (op
)
2144 || spilled_pseudo_p (op
))
2150 cn
= lookup_constraint (p
);
2151 switch (get_constraint_type (cn
))
2154 cl
= reg_class_for_constraint (cn
);
2160 if (CONST_INT_P (op
)
2161 && insn_const_int_ok_for_constraint (INTVAL (op
), cn
))
2167 && satisfies_memory_constraint_p (op
, cn
))
2169 else if (spilled_pseudo_p (op
))
2172 /* If we didn't already win, we can reload constants
2173 via force_const_mem or put the pseudo value into
2174 memory, or make other memory by reloading the
2175 address like for 'o'. */
2176 if (CONST_POOL_OK_P (mode
, op
)
2177 || MEM_P (op
) || REG_P (op
)
2178 /* We can restore the equiv insn by a
2180 || equiv_substition_p
[nop
])
2187 /* If we didn't already win, we can reload the address
2188 into a base register. */
2189 if (satisfies_address_constraint_p (op
, cn
))
2191 cl
= base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2197 if (constraint_satisfied_p (op
, cn
))
2201 case CT_SPECIAL_MEMORY
:
2203 && satisfies_memory_constraint_p (op
, cn
))
2205 else if (spilled_pseudo_p (op
))
2212 this_alternative
= reg_class_subunion
[this_alternative
][cl
];
2213 IOR_HARD_REG_SET (this_alternative_set
,
2214 reg_class_contents
[cl
]);
2217 this_costly_alternative
2218 = reg_class_subunion
[this_costly_alternative
][cl
];
2219 IOR_HARD_REG_SET (this_costly_alternative_set
,
2220 reg_class_contents
[cl
]);
2222 if (mode
== BLKmode
)
2227 if (hard_regno
[nop
] >= 0
2228 && in_hard_reg_set_p (this_alternative_set
,
2229 mode
, hard_regno
[nop
]))
2231 else if (hard_regno
[nop
] < 0
2232 && in_class_p (op
, this_alternative
, NULL
))
2237 if (c
!= ' ' && c
!= '\t')
2238 costly_p
= c
== '*';
2240 while ((p
+= len
), c
);
2242 scratch_p
= (operand_reg
[nop
] != NULL_RTX
2243 && lra_former_scratch_p (REGNO (operand_reg
[nop
])));
2244 /* Record which operands fit this alternative. */
2247 this_alternative_win
= true;
2248 if (operand_reg
[nop
] != NULL_RTX
)
2250 if (hard_regno
[nop
] >= 0)
2252 if (in_hard_reg_set_p (this_costly_alternative_set
,
2253 mode
, hard_regno
[nop
]))
2255 if (lra_dump_file
!= NULL
)
2256 fprintf (lra_dump_file
,
2257 " %d Costly set: reject++\n",
2264 /* Prefer won reg to spilled pseudo under other
2265 equal conditions for possibe inheritance. */
2268 if (lra_dump_file
!= NULL
)
2271 " %d Non pseudo reload: reject++\n",
2275 if (in_class_p (operand_reg
[nop
],
2276 this_costly_alternative
, NULL
))
2278 if (lra_dump_file
!= NULL
)
2281 " %d Non pseudo costly reload:"
2287 /* We simulate the behavior of old reload here.
2288 Although scratches need hard registers and it
2289 might result in spilling other pseudos, no reload
2290 insns are generated for the scratches. So it
2291 might cost something but probably less than old
2292 reload pass believes. */
2295 if (lra_dump_file
!= NULL
)
2296 fprintf (lra_dump_file
,
2297 " %d Scratch win: reject+=2\n",
2304 this_alternative_match_win
= true;
2307 int const_to_mem
= 0;
2310 reject
+= op_reject
;
2311 /* Never do output reload of stack pointer. It makes
2312 impossible to do elimination when SP is changed in
2314 if (op
== stack_pointer_rtx
&& ! frame_pointer_needed
2315 && curr_static_id
->operand
[nop
].type
!= OP_IN
)
2318 /* If this alternative asks for a specific reg class, see if there
2319 is at least one allocatable register in that class. */
2321 = (this_alternative
== NO_REGS
2322 || (hard_reg_set_subset_p
2323 (reg_class_contents
[this_alternative
],
2324 lra_no_alloc_regs
)));
2326 /* For asms, verify that the class for this alternative is possible
2327 for the mode that is specified. */
2328 if (!no_regs_p
&& INSN_CODE (curr_insn
) < 0)
2331 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2332 if (HARD_REGNO_MODE_OK (i
, mode
)
2333 && in_hard_reg_set_p (reg_class_contents
[this_alternative
],
2336 if (i
== FIRST_PSEUDO_REGISTER
)
2340 /* If this operand accepts a register, and if the
2341 register class has at least one allocatable register,
2342 then this operand can be reloaded. */
2343 if (winreg
&& !no_regs_p
)
2348 if (lra_dump_file
!= NULL
)
2349 fprintf (lra_dump_file
,
2350 " alt=%d: Bad operand -- refuse\n",
2355 if (this_alternative
!= NO_REGS
)
2357 HARD_REG_SET available_regs
;
2359 COPY_HARD_REG_SET (available_regs
,
2360 reg_class_contents
[this_alternative
]);
2361 AND_COMPL_HARD_REG_SET
2363 ira_prohibited_class_mode_regs
[this_alternative
][mode
]);
2364 AND_COMPL_HARD_REG_SET (available_regs
, lra_no_alloc_regs
);
2365 if (hard_reg_set_empty_p (available_regs
))
2367 /* There are no hard regs holding a value of given
2371 this_alternative
= NO_REGS
;
2372 if (lra_dump_file
!= NULL
)
2373 fprintf (lra_dump_file
,
2374 " %d Using memory because of"
2375 " a bad mode: reject+=2\n",
2381 if (lra_dump_file
!= NULL
)
2382 fprintf (lra_dump_file
,
2383 " alt=%d: Wrong mode -- refuse\n",
2390 /* If not assigned pseudo has a class which a subset of
2391 required reg class, it is a less costly alternative
2392 as the pseudo still can get a hard reg of necessary
2394 if (! no_regs_p
&& REG_P (op
) && hard_regno
[nop
] < 0
2395 && (cl
= get_reg_class (REGNO (op
))) != NO_REGS
2396 && ira_class_subset_p
[this_alternative
][cl
])
2398 if (lra_dump_file
!= NULL
)
2401 " %d Super set class reg: reject-=3\n", nop
);
2405 this_alternative_offmemok
= offmemok
;
2406 if (this_costly_alternative
!= NO_REGS
)
2408 if (lra_dump_file
!= NULL
)
2409 fprintf (lra_dump_file
,
2410 " %d Costly loser: reject++\n", nop
);
2413 /* If the operand is dying, has a matching constraint,
2414 and satisfies constraints of the matched operand
2415 which failed to satisfy the own constraints, most probably
2416 the reload for this operand will be gone. */
2417 if (this_alternative_matches
>= 0
2418 && !curr_alt_win
[this_alternative_matches
]
2420 && find_regno_note (curr_insn
, REG_DEAD
, REGNO (op
))
2421 && (hard_regno
[nop
] >= 0
2422 ? in_hard_reg_set_p (this_alternative_set
,
2423 mode
, hard_regno
[nop
])
2424 : in_class_p (op
, this_alternative
, NULL
)))
2426 if (lra_dump_file
!= NULL
)
2429 " %d Dying matched operand reload: reject++\n",
2435 /* Strict_low_part requires to reload the register
2436 not the sub-register. In this case we should
2437 check that a final reload hard reg can hold the
2439 if (curr_static_id
->operand
[nop
].strict_low
2441 && hard_regno
[nop
] < 0
2442 && GET_CODE (*curr_id
->operand_loc
[nop
]) == SUBREG
2443 && ira_class_hard_regs_num
[this_alternative
] > 0
2444 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2445 [this_alternative
][0],
2447 (*curr_id
->operand_loc
[nop
])))
2449 if (lra_dump_file
!= NULL
)
2452 " alt=%d: Strict low subreg reload -- refuse\n",
2458 if (operand_reg
[nop
] != NULL_RTX
2459 /* Output operands and matched input operands are
2460 not inherited. The following conditions do not
2461 exactly describe the previous statement but they
2462 are pretty close. */
2463 && curr_static_id
->operand
[nop
].type
!= OP_OUT
2464 && (this_alternative_matches
< 0
2465 || curr_static_id
->operand
[nop
].type
!= OP_IN
))
2467 int last_reload
= (lra_reg_info
[ORIGINAL_REGNO
2471 /* The value of reload_sum has sense only if we
2472 process insns in their order. It happens only on
2473 the first constraints sub-pass when we do most of
2475 if (lra_constraint_iter
== 1 && last_reload
> bb_reload_num
)
2476 reload_sum
+= last_reload
- bb_reload_num
;
2478 /* If this is a constant that is reloaded into the
2479 desired class by copying it to memory first, count
2480 that as another reload. This is consistent with
2481 other code and is required to avoid choosing another
2482 alternative when the constant is moved into memory.
2483 Note that the test here is precisely the same as in
2484 the code below that calls force_const_mem. */
2485 if (CONST_POOL_OK_P (mode
, op
)
2486 && ((targetm
.preferred_reload_class
2487 (op
, this_alternative
) == NO_REGS
)
2488 || no_input_reloads_p
))
2495 /* Alternative loses if it requires a type of reload not
2496 permitted for this insn. We can always reload
2497 objects with a REG_UNUSED note. */
2498 if ((curr_static_id
->operand
[nop
].type
!= OP_IN
2499 && no_output_reloads_p
2500 && ! find_reg_note (curr_insn
, REG_UNUSED
, op
))
2501 || (curr_static_id
->operand
[nop
].type
!= OP_OUT
2502 && no_input_reloads_p
&& ! const_to_mem
)
2503 || (this_alternative_matches
>= 0
2504 && (no_input_reloads_p
2505 || (no_output_reloads_p
2506 && (curr_static_id
->operand
2507 [this_alternative_matches
].type
!= OP_IN
)
2508 && ! find_reg_note (curr_insn
, REG_UNUSED
,
2509 no_subreg_reg_operand
2510 [this_alternative_matches
])))))
2512 if (lra_dump_file
!= NULL
)
2515 " alt=%d: No input/otput reload -- refuse\n",
2520 /* Alternative loses if it required class pseudo can not
2521 hold value of required mode. Such insns can be
2522 described by insn definitions with mode iterators. */
2523 if (GET_MODE (*curr_id
->operand_loc
[nop
]) != VOIDmode
2524 && ! hard_reg_set_empty_p (this_alternative_set
)
2525 /* It is common practice for constraints to use a
2526 class which does not have actually enough regs to
2527 hold the value (e.g. x86 AREG for mode requiring
2528 more one general reg). Therefore we have 2
2529 conditions to check that the reload pseudo can
2530 not hold the mode value. */
2531 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2532 [this_alternative
][0],
2533 GET_MODE (*curr_id
->operand_loc
[nop
]))
2534 /* The above condition is not enough as the first
2535 reg in ira_class_hard_regs can be not aligned for
2536 multi-words mode values. */
2537 && (prohibited_class_reg_set_mode_p
2538 (this_alternative
, this_alternative_set
,
2539 GET_MODE (*curr_id
->operand_loc
[nop
]))))
2541 if (lra_dump_file
!= NULL
)
2542 fprintf (lra_dump_file
,
2543 " alt=%d: reload pseudo for op %d "
2544 " can not hold the mode value -- refuse\n",
2549 /* Check strong discouragement of reload of non-constant
2550 into class THIS_ALTERNATIVE. */
2551 if (! CONSTANT_P (op
) && ! no_regs_p
2552 && (targetm
.preferred_reload_class
2553 (op
, this_alternative
) == NO_REGS
2554 || (curr_static_id
->operand
[nop
].type
== OP_OUT
2555 && (targetm
.preferred_output_reload_class
2556 (op
, this_alternative
) == NO_REGS
))))
2558 if (lra_dump_file
!= NULL
)
2559 fprintf (lra_dump_file
,
2560 " %d Non-prefered reload: reject+=%d\n",
2561 nop
, LRA_MAX_REJECT
);
2562 reject
+= LRA_MAX_REJECT
;
2565 if (! (MEM_P (op
) && offmemok
)
2566 && ! (const_to_mem
&& constmemok
))
2568 /* We prefer to reload pseudos over reloading other
2569 things, since such reloads may be able to be
2570 eliminated later. So bump REJECT in other cases.
2571 Don't do this in the case where we are forcing a
2572 constant into memory and it will then win since
2573 we don't want to have a different alternative
2575 if (! (REG_P (op
) && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2577 if (lra_dump_file
!= NULL
)
2580 " %d Non-pseudo reload: reject+=2\n",
2587 += ira_reg_class_max_nregs
[this_alternative
][mode
];
2589 if (SMALL_REGISTER_CLASS_P (this_alternative
))
2591 if (lra_dump_file
!= NULL
)
2594 " %d Small class reload: reject+=%d\n",
2595 nop
, LRA_LOSER_COST_FACTOR
/ 2);
2596 reject
+= LRA_LOSER_COST_FACTOR
/ 2;
2600 /* We are trying to spill pseudo into memory. It is
2601 usually more costly than moving to a hard register
2602 although it might takes the same number of
2605 Non-pseudo spill may happen also. Suppose a target allows both
2606 register and memory in the operand constraint alternatives,
2607 then it's typical that an eliminable register has a substition
2608 of "base + offset" which can either be reloaded by a simple
2609 "new_reg <= base + offset" which will match the register
2610 constraint, or a similar reg addition followed by further spill
2611 to and reload from memory which will match the memory
2612 constraint, but this memory spill will be much more costly
2615 Code below increases the reject for both pseudo and non-pseudo
2618 && !(MEM_P (op
) && offmemok
)
2619 && !(REG_P (op
) && hard_regno
[nop
] < 0))
2621 if (lra_dump_file
!= NULL
)
2624 " %d Spill %spseudo into memory: reject+=3\n",
2625 nop
, REG_P (op
) ? "" : "Non-");
2627 if (VECTOR_MODE_P (mode
))
2629 /* Spilling vectors into memory is usually more
2630 costly as they contain big values. */
2631 if (lra_dump_file
!= NULL
)
2634 " %d Spill vector pseudo: reject+=2\n",
2640 #ifdef SECONDARY_MEMORY_NEEDED
2641 /* If reload requires moving value through secondary
2642 memory, it will need one more insn at least. */
2643 if (this_alternative
!= NO_REGS
2644 && REG_P (op
) && (cl
= get_reg_class (REGNO (op
))) != NO_REGS
2645 && ((curr_static_id
->operand
[nop
].type
!= OP_OUT
2646 && SECONDARY_MEMORY_NEEDED (cl
, this_alternative
,
2648 || (curr_static_id
->operand
[nop
].type
!= OP_IN
2649 && SECONDARY_MEMORY_NEEDED (this_alternative
, cl
,
2653 /* Input reloads can be inherited more often than output
2654 reloads can be removed, so penalize output
2656 if (!REG_P (op
) || curr_static_id
->operand
[nop
].type
!= OP_IN
)
2658 if (lra_dump_file
!= NULL
)
2661 " %d Non input pseudo reload: reject++\n",
2667 if (early_clobber_p
&& ! scratch_p
)
2669 if (lra_dump_file
!= NULL
)
2670 fprintf (lra_dump_file
,
2671 " %d Early clobber: reject++\n", nop
);
2674 /* ??? We check early clobbers after processing all operands
2675 (see loop below) and there we update the costs more.
2676 Should we update the cost (may be approximately) here
2677 because of early clobber register reloads or it is a rare
2678 or non-important thing to be worth to do it. */
2679 overall
= losers
* LRA_LOSER_COST_FACTOR
+ reject
;
2680 if ((best_losers
== 0 || losers
!= 0) && best_overall
< overall
)
2682 if (lra_dump_file
!= NULL
)
2683 fprintf (lra_dump_file
,
2684 " alt=%d,overall=%d,losers=%d -- refuse\n",
2685 nalt
, overall
, losers
);
2689 curr_alt
[nop
] = this_alternative
;
2690 COPY_HARD_REG_SET (curr_alt_set
[nop
], this_alternative_set
);
2691 curr_alt_win
[nop
] = this_alternative_win
;
2692 curr_alt_match_win
[nop
] = this_alternative_match_win
;
2693 curr_alt_offmemok
[nop
] = this_alternative_offmemok
;
2694 curr_alt_matches
[nop
] = this_alternative_matches
;
2696 if (this_alternative_matches
>= 0
2697 && !did_match
&& !this_alternative_win
)
2698 curr_alt_win
[this_alternative_matches
] = false;
2700 if (early_clobber_p
&& operand_reg
[nop
] != NULL_RTX
)
2701 early_clobbered_nops
[early_clobbered_regs_num
++] = nop
;
2703 if (curr_insn_set
!= NULL_RTX
&& n_operands
== 2
2704 /* Prevent processing non-move insns. */
2705 && (GET_CODE (SET_SRC (curr_insn_set
)) == SUBREG
2706 || SET_SRC (curr_insn_set
) == no_subreg_reg_operand
[1])
2707 && ((! curr_alt_win
[0] && ! curr_alt_win
[1]
2708 && REG_P (no_subreg_reg_operand
[0])
2709 && REG_P (no_subreg_reg_operand
[1])
2710 && (reg_in_class_p (no_subreg_reg_operand
[0], curr_alt
[1])
2711 || reg_in_class_p (no_subreg_reg_operand
[1], curr_alt
[0])))
2712 || (! curr_alt_win
[0] && curr_alt_win
[1]
2713 && REG_P (no_subreg_reg_operand
[1])
2714 && reg_in_class_p (no_subreg_reg_operand
[1], curr_alt
[0]))
2715 || (curr_alt_win
[0] && ! curr_alt_win
[1]
2716 && REG_P (no_subreg_reg_operand
[0])
2717 && reg_in_class_p (no_subreg_reg_operand
[0], curr_alt
[1])
2718 && (! CONST_POOL_OK_P (curr_operand_mode
[1],
2719 no_subreg_reg_operand
[1])
2720 || (targetm
.preferred_reload_class
2721 (no_subreg_reg_operand
[1],
2722 (enum reg_class
) curr_alt
[1]) != NO_REGS
))
2723 /* If it is a result of recent elimination in move
2724 insn we can transform it into an add still by
2725 using this alternative. */
2726 && GET_CODE (no_subreg_reg_operand
[1]) != PLUS
)))
2728 /* We have a move insn and a new reload insn will be similar
2729 to the current insn. We should avoid such situation as it
2730 results in LRA cycling. */
2731 overall
+= LRA_MAX_REJECT
;
2734 curr_alt_dont_inherit_ops_num
= 0;
2735 for (nop
= 0; nop
< early_clobbered_regs_num
; nop
++)
2737 int i
, j
, clobbered_hard_regno
, first_conflict_j
, last_conflict_j
;
2738 HARD_REG_SET temp_set
;
2740 i
= early_clobbered_nops
[nop
];
2741 if ((! curr_alt_win
[i
] && ! curr_alt_match_win
[i
])
2742 || hard_regno
[i
] < 0)
2744 lra_assert (operand_reg
[i
] != NULL_RTX
);
2745 clobbered_hard_regno
= hard_regno
[i
];
2746 CLEAR_HARD_REG_SET (temp_set
);
2747 add_to_hard_reg_set (&temp_set
, biggest_mode
[i
], clobbered_hard_regno
);
2748 first_conflict_j
= last_conflict_j
= -1;
2749 for (j
= 0; j
< n_operands
; j
++)
2751 /* We don't want process insides of match_operator and
2752 match_parallel because otherwise we would process
2753 their operands once again generating a wrong
2755 || curr_static_id
->operand
[j
].is_operator
)
2757 else if ((curr_alt_matches
[j
] == i
&& curr_alt_match_win
[j
])
2758 || (curr_alt_matches
[i
] == j
&& curr_alt_match_win
[i
]))
2760 /* If we don't reload j-th operand, check conflicts. */
2761 else if ((curr_alt_win
[j
] || curr_alt_match_win
[j
])
2762 && uses_hard_regs_p (*curr_id
->operand_loc
[j
], temp_set
))
2764 if (first_conflict_j
< 0)
2765 first_conflict_j
= j
;
2766 last_conflict_j
= j
;
2768 if (last_conflict_j
< 0)
2770 /* If earlyclobber operand conflicts with another
2771 non-matching operand which is actually the same register
2772 as the earlyclobber operand, it is better to reload the
2773 another operand as an operand matching the earlyclobber
2774 operand can be also the same. */
2775 if (first_conflict_j
== last_conflict_j
2776 && operand_reg
[last_conflict_j
] != NULL_RTX
2777 && ! curr_alt_match_win
[last_conflict_j
]
2778 && REGNO (operand_reg
[i
]) == REGNO (operand_reg
[last_conflict_j
]))
2780 curr_alt_win
[last_conflict_j
] = false;
2781 curr_alt_dont_inherit_ops
[curr_alt_dont_inherit_ops_num
++]
2784 /* Early clobber was already reflected in REJECT. */
2785 lra_assert (reject
> 0);
2786 if (lra_dump_file
!= NULL
)
2789 " %d Conflict early clobber reload: reject--\n",
2792 overall
+= LRA_LOSER_COST_FACTOR
- 1;
2796 /* We need to reload early clobbered register and the
2797 matched registers. */
2798 for (j
= 0; j
< n_operands
; j
++)
2799 if (curr_alt_matches
[j
] == i
)
2801 curr_alt_match_win
[j
] = false;
2803 overall
+= LRA_LOSER_COST_FACTOR
;
2805 if (! curr_alt_match_win
[i
])
2806 curr_alt_dont_inherit_ops
[curr_alt_dont_inherit_ops_num
++] = i
;
2809 /* Remember pseudos used for match reloads are never
2811 lra_assert (curr_alt_matches
[i
] >= 0);
2812 curr_alt_win
[curr_alt_matches
[i
]] = false;
2814 curr_alt_win
[i
] = curr_alt_match_win
[i
] = false;
2816 /* Early clobber was already reflected in REJECT. */
2817 lra_assert (reject
> 0);
2818 if (lra_dump_file
!= NULL
)
2821 " %d Matched conflict early clobber reloads:"
2825 overall
+= LRA_LOSER_COST_FACTOR
- 1;
2828 if (lra_dump_file
!= NULL
)
2829 fprintf (lra_dump_file
, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
2830 nalt
, overall
, losers
, reload_nregs
);
2832 /* If this alternative can be made to work by reloading, and it
2833 needs less reloading than the others checked so far, record
2834 it as the chosen goal for reloading. */
2835 if ((best_losers
!= 0 && losers
== 0)
2836 || (((best_losers
== 0 && losers
== 0)
2837 || (best_losers
!= 0 && losers
!= 0))
2838 && (best_overall
> overall
2839 || (best_overall
== overall
2840 /* If the cost of the reloads is the same,
2841 prefer alternative which requires minimal
2842 number of reload regs. */
2843 && (reload_nregs
< best_reload_nregs
2844 || (reload_nregs
== best_reload_nregs
2845 && (best_reload_sum
< reload_sum
2846 || (best_reload_sum
== reload_sum
2847 && nalt
< goal_alt_number
))))))))
2849 for (nop
= 0; nop
< n_operands
; nop
++)
2851 goal_alt_win
[nop
] = curr_alt_win
[nop
];
2852 goal_alt_match_win
[nop
] = curr_alt_match_win
[nop
];
2853 goal_alt_matches
[nop
] = curr_alt_matches
[nop
];
2854 goal_alt
[nop
] = curr_alt
[nop
];
2855 goal_alt_offmemok
[nop
] = curr_alt_offmemok
[nop
];
2857 goal_alt_dont_inherit_ops_num
= curr_alt_dont_inherit_ops_num
;
2858 for (nop
= 0; nop
< curr_alt_dont_inherit_ops_num
; nop
++)
2859 goal_alt_dont_inherit_ops
[nop
] = curr_alt_dont_inherit_ops
[nop
];
2860 goal_alt_swapped
= curr_swapped
;
2861 best_overall
= overall
;
2862 best_losers
= losers
;
2863 best_reload_nregs
= reload_nregs
;
2864 best_reload_sum
= reload_sum
;
2865 goal_alt_number
= nalt
;
2868 /* Everything is satisfied. Do not process alternatives
2877 /* Make reload base reg from address AD. */
2879 base_to_reg (struct address_info
*ad
)
2883 rtx new_inner
= NULL_RTX
;
2884 rtx new_reg
= NULL_RTX
;
2886 rtx_insn
*last_insn
= get_last_insn();
2888 lra_assert (ad
->base
== ad
->base_term
&& ad
->disp
== ad
->disp_term
);
2889 cl
= base_reg_class (ad
->mode
, ad
->as
, ad
->base_outer_code
,
2890 get_index_code (ad
));
2891 new_reg
= lra_create_new_reg (GET_MODE (*ad
->base_term
), NULL_RTX
,
2893 new_inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
), new_reg
,
2894 ad
->disp_term
== NULL
2895 ? gen_int_mode (0, ad
->mode
)
2897 if (!valid_address_p (ad
->mode
, new_inner
, ad
->as
))
2899 insn
= emit_insn (gen_rtx_SET (new_reg
, *ad
->base_term
));
2900 code
= recog_memoized (insn
);
2903 delete_insns_since (last_insn
);
2910 /* Make reload base reg + disp from address AD. Return the new pseudo. */
2912 base_plus_disp_to_reg (struct address_info
*ad
)
2917 lra_assert (ad
->base
== ad
->base_term
&& ad
->disp
== ad
->disp_term
);
2918 cl
= base_reg_class (ad
->mode
, ad
->as
, ad
->base_outer_code
,
2919 get_index_code (ad
));
2920 new_reg
= lra_create_new_reg (GET_MODE (*ad
->base_term
), NULL_RTX
,
2922 lra_emit_add (new_reg
, *ad
->base_term
, *ad
->disp_term
);
2926 /* Make reload of index part of address AD. Return the new
2929 index_part_to_reg (struct address_info
*ad
)
2933 new_reg
= lra_create_new_reg (GET_MODE (*ad
->index
), NULL_RTX
,
2934 INDEX_REG_CLASS
, "index term");
2935 expand_mult (GET_MODE (*ad
->index
), *ad
->index_term
,
2936 GEN_INT (get_index_scale (ad
)), new_reg
, 1);
2940 /* Return true if we can add a displacement to address AD, even if that
2941 makes the address invalid. The fix-up code requires any new address
2942 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
2944 can_add_disp_p (struct address_info
*ad
)
2946 return (!ad
->autoinc_p
2947 && ad
->segment
== NULL
2948 && ad
->base
== ad
->base_term
2949 && ad
->disp
== ad
->disp_term
);
2952 /* Make equiv substitution in address AD. Return true if a substitution
2955 equiv_address_substitution (struct address_info
*ad
)
2957 rtx base_reg
, new_base_reg
, index_reg
, new_index_reg
, *base_term
, *index_term
;
2958 HOST_WIDE_INT disp
, scale
;
2961 base_term
= strip_subreg (ad
->base_term
);
2962 if (base_term
== NULL
)
2963 base_reg
= new_base_reg
= NULL_RTX
;
2966 base_reg
= *base_term
;
2967 new_base_reg
= get_equiv_with_elimination (base_reg
, curr_insn
);
2969 index_term
= strip_subreg (ad
->index_term
);
2970 if (index_term
== NULL
)
2971 index_reg
= new_index_reg
= NULL_RTX
;
2974 index_reg
= *index_term
;
2975 new_index_reg
= get_equiv_with_elimination (index_reg
, curr_insn
);
2977 if (base_reg
== new_base_reg
&& index_reg
== new_index_reg
)
2981 if (lra_dump_file
!= NULL
)
2983 fprintf (lra_dump_file
, "Changing address in insn %d ",
2984 INSN_UID (curr_insn
));
2985 dump_value_slim (lra_dump_file
, *ad
->outer
, 1);
2987 if (base_reg
!= new_base_reg
)
2989 if (REG_P (new_base_reg
))
2991 *base_term
= new_base_reg
;
2994 else if (GET_CODE (new_base_reg
) == PLUS
2995 && REG_P (XEXP (new_base_reg
, 0))
2996 && CONST_INT_P (XEXP (new_base_reg
, 1))
2997 && can_add_disp_p (ad
))
2999 disp
+= INTVAL (XEXP (new_base_reg
, 1));
3000 *base_term
= XEXP (new_base_reg
, 0);
3003 if (ad
->base_term2
!= NULL
)
3004 *ad
->base_term2
= *ad
->base_term
;
3006 if (index_reg
!= new_index_reg
)
3008 if (REG_P (new_index_reg
))
3010 *index_term
= new_index_reg
;
3013 else if (GET_CODE (new_index_reg
) == PLUS
3014 && REG_P (XEXP (new_index_reg
, 0))
3015 && CONST_INT_P (XEXP (new_index_reg
, 1))
3016 && can_add_disp_p (ad
)
3017 && (scale
= get_index_scale (ad
)))
3019 disp
+= INTVAL (XEXP (new_index_reg
, 1)) * scale
;
3020 *index_term
= XEXP (new_index_reg
, 0);
3026 if (ad
->disp
!= NULL
)
3027 *ad
->disp
= plus_constant (GET_MODE (*ad
->inner
), *ad
->disp
, disp
);
3030 *ad
->inner
= plus_constant (GET_MODE (*ad
->inner
), *ad
->inner
, disp
);
3031 update_address (ad
);
3035 if (lra_dump_file
!= NULL
)
3038 fprintf (lra_dump_file
, " -- no change\n");
3041 fprintf (lra_dump_file
, " on equiv ");
3042 dump_value_slim (lra_dump_file
, *ad
->outer
, 1);
3043 fprintf (lra_dump_file
, "\n");
3049 /* Major function to make reloads for an address in operand NOP or
3050 check its correctness (If CHECK_ONLY_P is true). The supported
3053 1) an address that existed before LRA started, at which point it
3054 must have been valid. These addresses are subject to elimination
3055 and may have become invalid due to the elimination offset being out
3058 2) an address created by forcing a constant to memory
3059 (force_const_to_mem). The initial form of these addresses might
3060 not be valid, and it is this function's job to make them valid.
3062 3) a frame address formed from a register and a (possibly zero)
3063 constant offset. As above, these addresses might not be valid and
3064 this function must make them so.
3066 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3067 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3068 address. Return true for any RTL change.
3070 The function is a helper function which does not produce all
3071 transformations (when CHECK_ONLY_P is false) which can be
3072 necessary. It does just basic steps. To do all necessary
3073 transformations use function process_address. */
3075 process_address_1 (int nop
, bool check_only_p
,
3076 rtx_insn
**before
, rtx_insn
**after
)
3078 struct address_info ad
;
3080 HOST_WIDE_INT scale
;
3081 rtx op
= *curr_id
->operand_loc
[nop
];
3082 const char *constraint
= curr_static_id
->operand
[nop
].constraint
;
3083 enum constraint_num cn
= lookup_constraint (constraint
);
3084 bool change_p
= false;
3087 && GET_MODE (op
) == BLKmode
3088 && GET_CODE (XEXP (op
, 0)) == SCRATCH
)
3091 if (insn_extra_address_constraint (cn
))
3092 decompose_lea_address (&ad
, curr_id
->operand_loc
[nop
]);
3093 /* Do not attempt to decompose arbitrary addresses generated by combine
3094 for asm operands with loose constraints, e.g 'X'. */
3096 && !(get_constraint_type (cn
) == CT_FIXED_FORM
3097 && constraint_satisfied_p (op
, cn
)))
3098 decompose_mem_address (&ad
, op
);
3099 else if (GET_CODE (op
) == SUBREG
3100 && MEM_P (SUBREG_REG (op
)))
3101 decompose_mem_address (&ad
, SUBREG_REG (op
));
3104 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3105 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3106 when INDEX_REG_CLASS is a single register class. */
3107 if (ad
.base_term
!= NULL
3108 && ad
.index_term
!= NULL
3109 && ira_class_hard_regs_num
[INDEX_REG_CLASS
] == 1
3110 && REG_P (*ad
.base_term
)
3111 && REG_P (*ad
.index_term
)
3112 && in_class_p (*ad
.base_term
, INDEX_REG_CLASS
, NULL
)
3113 && ! in_class_p (*ad
.index_term
, INDEX_REG_CLASS
, NULL
))
3115 std::swap (ad
.base
, ad
.index
);
3116 std::swap (ad
.base_term
, ad
.index_term
);
3119 change_p
= equiv_address_substitution (&ad
);
3120 if (ad
.base_term
!= NULL
3121 && (process_addr_reg
3122 (ad
.base_term
, check_only_p
, before
,
3124 && !(REG_P (*ad
.base_term
)
3125 && find_regno_note (curr_insn
, REG_DEAD
,
3126 REGNO (*ad
.base_term
)) != NULL_RTX
)
3128 base_reg_class (ad
.mode
, ad
.as
, ad
.base_outer_code
,
3129 get_index_code (&ad
)))))
3132 if (ad
.base_term2
!= NULL
)
3133 *ad
.base_term2
= *ad
.base_term
;
3135 if (ad
.index_term
!= NULL
3136 && process_addr_reg (ad
.index_term
, check_only_p
,
3137 before
, NULL
, INDEX_REG_CLASS
))
3140 /* Target hooks sometimes don't treat extra-constraint addresses as
3141 legitimate address_operands, so handle them specially. */
3142 if (insn_extra_address_constraint (cn
)
3143 && satisfies_address_constraint_p (&ad
, cn
))
3149 /* There are three cases where the shape of *AD.INNER may now be invalid:
3151 1) the original address was valid, but either elimination or
3152 equiv_address_substitution was applied and that made
3153 the address invalid.
3155 2) the address is an invalid symbolic address created by
3158 3) the address is a frame address with an invalid offset.
3160 4) the address is a frame address with an invalid base.
3162 All these cases involve a non-autoinc address, so there is no
3163 point revalidating other types. */
3164 if (ad
.autoinc_p
|| valid_address_p (&ad
))
3167 /* Any index existed before LRA started, so we can assume that the
3168 presence and shape of the index is valid. */
3169 push_to_sequence (*before
);
3170 lra_assert (ad
.disp
== ad
.disp_term
);
3171 if (ad
.base
== NULL
)
3173 if (ad
.index
== NULL
)
3176 rtx_insn
*last
= get_last_insn ();
3178 enum reg_class cl
= base_reg_class (ad
.mode
, ad
.as
,
3180 rtx addr
= *ad
.inner
;
3182 new_reg
= lra_create_new_reg (Pmode
, NULL_RTX
, cl
, "addr");
3185 /* addr => lo_sum (new_base, addr), case (2) above. */
3186 insn
= emit_insn (gen_rtx_SET
3188 gen_rtx_HIGH (Pmode
, copy_rtx (addr
))));
3189 code
= recog_memoized (insn
);
3192 *ad
.inner
= gen_rtx_LO_SUM (Pmode
, new_reg
, addr
);
3193 if (! valid_address_p (ad
.mode
, *ad
.outer
, ad
.as
))
3195 /* Try to put lo_sum into register. */
3196 insn
= emit_insn (gen_rtx_SET
3198 gen_rtx_LO_SUM (Pmode
, new_reg
, addr
)));
3199 code
= recog_memoized (insn
);
3202 *ad
.inner
= new_reg
;
3203 if (! valid_address_p (ad
.mode
, *ad
.outer
, ad
.as
))
3213 delete_insns_since (last
);
3218 /* addr => new_base, case (2) above. */
3219 lra_emit_move (new_reg
, addr
);
3221 for (insn
= last
== NULL_RTX
? get_insns () : NEXT_INSN (last
);
3223 insn
= NEXT_INSN (insn
))
3224 if (recog_memoized (insn
) < 0)
3226 if (insn
!= NULL_RTX
)
3228 /* Do nothing if we cannot generate right insns.
3229 This is analogous to reload pass behavior. */
3230 delete_insns_since (last
);
3234 *ad
.inner
= new_reg
;
3239 /* index * scale + disp => new base + index * scale,
3241 enum reg_class cl
= base_reg_class (ad
.mode
, ad
.as
, PLUS
,
3242 GET_CODE (*ad
.index
));
3244 lra_assert (INDEX_REG_CLASS
!= NO_REGS
);
3245 new_reg
= lra_create_new_reg (Pmode
, NULL_RTX
, cl
, "disp");
3246 lra_emit_move (new_reg
, *ad
.disp
);
3247 *ad
.inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
),
3248 new_reg
, *ad
.index
);
3251 else if (ad
.index
== NULL
)
3256 rtx_insn
*insns
, *last_insn
;
3257 /* Try to reload base into register only if the base is invalid
3258 for the address but with valid offset, case (4) above. */
3260 new_reg
= base_to_reg (&ad
);
3262 /* base + disp => new base, cases (1) and (3) above. */
3263 /* Another option would be to reload the displacement into an
3264 index register. However, postreload has code to optimize
3265 address reloads that have the same base and different
3266 displacements, so reloading into an index register would
3267 not necessarily be a win. */
3268 if (new_reg
== NULL_RTX
)
3269 new_reg
= base_plus_disp_to_reg (&ad
);
3270 insns
= get_insns ();
3271 last_insn
= get_last_insn ();
3272 /* If we generated at least two insns, try last insn source as
3273 an address. If we succeed, we generate one less insn. */
3274 if (last_insn
!= insns
&& (set
= single_set (last_insn
)) != NULL_RTX
3275 && GET_CODE (SET_SRC (set
)) == PLUS
3276 && REG_P (XEXP (SET_SRC (set
), 0))
3277 && CONSTANT_P (XEXP (SET_SRC (set
), 1)))
3279 *ad
.inner
= SET_SRC (set
);
3280 if (valid_address_p (ad
.mode
, *ad
.outer
, ad
.as
))
3282 *ad
.base_term
= XEXP (SET_SRC (set
), 0);
3283 *ad
.disp_term
= XEXP (SET_SRC (set
), 1);
3284 cl
= base_reg_class (ad
.mode
, ad
.as
, ad
.base_outer_code
,
3285 get_index_code (&ad
));
3286 regno
= REGNO (*ad
.base_term
);
3287 if (regno
>= FIRST_PSEUDO_REGISTER
3288 && cl
!= lra_get_allocno_class (regno
))
3289 lra_change_class (regno
, cl
, " Change to", true);
3290 new_reg
= SET_SRC (set
);
3291 delete_insns_since (PREV_INSN (last_insn
));
3294 /* Try if target can split displacement into legitimite new disp
3295 and offset. If it's the case, we replace the last insn with
3296 insns for base + offset => new_reg and set new_reg + new disp
3298 last_insn
= get_last_insn ();
3299 if ((set
= single_set (last_insn
)) != NULL_RTX
3300 && GET_CODE (SET_SRC (set
)) == PLUS
3301 && REG_P (XEXP (SET_SRC (set
), 0))
3302 && REGNO (XEXP (SET_SRC (set
), 0)) < FIRST_PSEUDO_REGISTER
3303 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3305 rtx addend
, disp
= XEXP (SET_SRC (set
), 1);
3306 if (targetm
.legitimize_address_displacement (&disp
, &addend
,
3309 rtx_insn
*new_insns
;
3311 lra_emit_add (new_reg
, XEXP (SET_SRC (set
), 0), addend
);
3312 new_insns
= get_insns ();
3314 new_reg
= gen_rtx_PLUS (Pmode
, new_reg
, disp
);
3315 delete_insns_since (PREV_INSN (last_insn
));
3316 add_insn (new_insns
);
3317 insns
= get_insns ();
3322 *ad
.inner
= new_reg
;
3324 else if (ad
.disp_term
!= NULL
)
3326 /* base + scale * index + disp => new base + scale * index,
3328 new_reg
= base_plus_disp_to_reg (&ad
);
3329 *ad
.inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
),
3330 new_reg
, *ad
.index
);
3332 else if ((scale
= get_index_scale (&ad
)) == 1)
3334 /* The last transformation to one reg will be made in
3335 curr_insn_transform function. */
3339 else if (scale
!= 0)
3341 /* base + scale * index => base + new_reg,
3343 Index part of address may become invalid. For example, we
3344 changed pseudo on the equivalent memory and a subreg of the
3345 pseudo onto the memory of different mode for which the scale is
3347 new_reg
= index_part_to_reg (&ad
);
3348 *ad
.inner
= simplify_gen_binary (PLUS
, GET_MODE (new_reg
),
3349 *ad
.base_term
, new_reg
);
3353 enum reg_class cl
= base_reg_class (ad
.mode
, ad
.as
,
3355 rtx addr
= *ad
.inner
;
3357 new_reg
= lra_create_new_reg (Pmode
, NULL_RTX
, cl
, "addr");
3358 /* addr => new_base. */
3359 lra_emit_move (new_reg
, addr
);
3360 *ad
.inner
= new_reg
;
3362 *before
= get_insns ();
3367 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3368 Use process_address_1 as a helper function. Return true for any
3371 If CHECK_ONLY_P is true, just check address correctness. Return
3372 false if the address correct. */
3374 process_address (int nop
, bool check_only_p
,
3375 rtx_insn
**before
, rtx_insn
**after
)
3379 while (process_address_1 (nop
, check_only_p
, before
, after
))
3388 /* Emit insns to reload VALUE into a new register. VALUE is an
3389 auto-increment or auto-decrement RTX whose operand is a register or
3390 memory location; so reloading involves incrementing that location.
3391 IN is either identical to VALUE, or some cheaper place to reload
3392 value being incremented/decremented from.
3394 INC_AMOUNT is the number to increment or decrement by (always
3395 positive and ignored for POST_MODIFY/PRE_MODIFY).
3397 Return pseudo containing the result. */
3399 emit_inc (enum reg_class new_rclass
, rtx in
, rtx value
, int inc_amount
)
3401 /* REG or MEM to be copied and incremented. */
3402 rtx incloc
= XEXP (value
, 0);
3403 /* Nonzero if increment after copying. */
3404 int post
= (GET_CODE (value
) == POST_DEC
|| GET_CODE (value
) == POST_INC
3405 || GET_CODE (value
) == POST_MODIFY
);
3410 rtx real_in
= in
== value
? incloc
: in
;
3414 if (GET_CODE (value
) == PRE_MODIFY
|| GET_CODE (value
) == POST_MODIFY
)
3416 lra_assert (GET_CODE (XEXP (value
, 1)) == PLUS
3417 || GET_CODE (XEXP (value
, 1)) == MINUS
);
3418 lra_assert (rtx_equal_p (XEXP (XEXP (value
, 1), 0), XEXP (value
, 0)));
3419 plus_p
= GET_CODE (XEXP (value
, 1)) == PLUS
;
3420 inc
= XEXP (XEXP (value
, 1), 1);
3424 if (GET_CODE (value
) == PRE_DEC
|| GET_CODE (value
) == POST_DEC
)
3425 inc_amount
= -inc_amount
;
3427 inc
= GEN_INT (inc_amount
);
3430 if (! post
&& REG_P (incloc
))
3433 result
= lra_create_new_reg (GET_MODE (value
), value
, new_rclass
,
3436 if (real_in
!= result
)
3438 /* First copy the location to the result register. */
3439 lra_assert (REG_P (result
));
3440 emit_insn (gen_move_insn (result
, real_in
));
3443 /* We suppose that there are insns to add/sub with the constant
3444 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3445 old reload worked with this assumption. If the assumption
3446 becomes wrong, we should use approach in function
3447 base_plus_disp_to_reg. */
3450 /* See if we can directly increment INCLOC. */
3451 last
= get_last_insn ();
3452 add_insn
= emit_insn (plus_p
3453 ? gen_add2_insn (incloc
, inc
)
3454 : gen_sub2_insn (incloc
, inc
));
3456 code
= recog_memoized (add_insn
);
3459 if (! post
&& result
!= incloc
)
3460 emit_insn (gen_move_insn (result
, incloc
));
3463 delete_insns_since (last
);
3466 /* If couldn't do the increment directly, must increment in RESULT.
3467 The way we do this depends on whether this is pre- or
3468 post-increment. For pre-increment, copy INCLOC to the reload
3469 register, increment it there, then save back. */
3472 if (real_in
!= result
)
3473 emit_insn (gen_move_insn (result
, real_in
));
3475 emit_insn (gen_add2_insn (result
, inc
));
3477 emit_insn (gen_sub2_insn (result
, inc
));
3478 if (result
!= incloc
)
3479 emit_insn (gen_move_insn (incloc
, result
));
3485 Because this might be a jump insn or a compare, and because
3486 RESULT may not be available after the insn in an input
3487 reload, we must do the incrementing before the insn being
3490 We have already copied IN to RESULT. Increment the copy in
3491 RESULT, save that back, then decrement RESULT so it has
3492 the original value. */
3494 emit_insn (gen_add2_insn (result
, inc
));
3496 emit_insn (gen_sub2_insn (result
, inc
));
3497 emit_insn (gen_move_insn (incloc
, result
));
3498 /* Restore non-modified value for the result. We prefer this
3499 way because it does not require an additional hard
3503 if (CONST_INT_P (inc
))
3504 emit_insn (gen_add2_insn (result
,
3505 gen_int_mode (-INTVAL (inc
),
3506 GET_MODE (result
))));
3508 emit_insn (gen_sub2_insn (result
, inc
));
3511 emit_insn (gen_add2_insn (result
, inc
));
3516 /* Return true if the current move insn does not need processing as we
3517 already know that it satisfies its constraints. */
3519 simple_move_p (void)
3522 enum reg_class dclass
, sclass
;
3524 lra_assert (curr_insn_set
!= NULL_RTX
);
3525 dest
= SET_DEST (curr_insn_set
);
3526 src
= SET_SRC (curr_insn_set
);
3528 /* If the instruction has multiple sets we need to process it even if it
3529 is single_set. This can happen if one or more of the SETs are dead.
3531 if (multiple_sets (curr_insn
))
3534 return ((dclass
= get_op_class (dest
)) != NO_REGS
3535 && (sclass
= get_op_class (src
)) != NO_REGS
3536 /* The backend guarantees that register moves of cost 2
3537 never need reloads. */
3538 && targetm
.register_move_cost (GET_MODE (src
), sclass
, dclass
) == 2);
3541 /* Swap operands NOP and NOP + 1. */
3543 swap_operands (int nop
)
3545 std::swap (curr_operand_mode
[nop
], curr_operand_mode
[nop
+ 1]);
3546 std::swap (original_subreg_reg_mode
[nop
], original_subreg_reg_mode
[nop
+ 1]);
3547 std::swap (*curr_id
->operand_loc
[nop
], *curr_id
->operand_loc
[nop
+ 1]);
3548 std::swap (equiv_substition_p
[nop
], equiv_substition_p
[nop
+ 1]);
3549 /* Swap the duplicates too. */
3550 lra_update_dup (curr_id
, nop
);
3551 lra_update_dup (curr_id
, nop
+ 1);
3554 /* Main entry point of the constraint code: search the body of the
3555 current insn to choose the best alternative. It is mimicking insn
3556 alternative cost calculation model of former reload pass. That is
3557 because machine descriptions were written to use this model. This
3558 model can be changed in future. Make commutative operand exchange
3561 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3562 constraints. Return true if any change happened during function
3565 If CHECK_ONLY_P is true then don't do any transformation. Just
3566 check that the insn satisfies all constraints. If the insn does
3567 not satisfy any constraint, return true. */
3569 curr_insn_transform (bool check_only_p
)
3576 signed char goal_alt_matched
[MAX_RECOG_OPERANDS
][MAX_RECOG_OPERANDS
];
3577 signed char match_inputs
[MAX_RECOG_OPERANDS
+ 1];
3578 signed char outputs
[MAX_RECOG_OPERANDS
+ 1];
3579 rtx_insn
*before
, *after
;
3581 /* Flag that the insn has been changed through a transformation. */
3584 #ifdef SECONDARY_MEMORY_NEEDED
3587 int max_regno_before
;
3588 int reused_alternative_num
;
3590 curr_insn_set
= single_set (curr_insn
);
3591 if (curr_insn_set
!= NULL_RTX
&& simple_move_p ())
3594 no_input_reloads_p
= no_output_reloads_p
= false;
3595 goal_alt_number
= -1;
3596 change_p
= sec_mem_p
= false;
3597 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3598 reloads; neither are insns that SET cc0. Insns that use CC0 are
3599 not allowed to have any input reloads. */
3600 if (JUMP_P (curr_insn
) || CALL_P (curr_insn
))
3601 no_output_reloads_p
= true;
3603 if (HAVE_cc0
&& reg_referenced_p (cc0_rtx
, PATTERN (curr_insn
)))
3604 no_input_reloads_p
= true;
3605 if (HAVE_cc0
&& reg_set_p (cc0_rtx
, PATTERN (curr_insn
)))
3606 no_output_reloads_p
= true;
3608 n_operands
= curr_static_id
->n_operands
;
3609 n_alternatives
= curr_static_id
->n_alternatives
;
3611 /* Just return "no reloads" if insn has no operands with
3613 if (n_operands
== 0 || n_alternatives
== 0)
3616 max_regno_before
= max_reg_num ();
3618 for (i
= 0; i
< n_operands
; i
++)
3620 goal_alt_matched
[i
][0] = -1;
3621 goal_alt_matches
[i
] = -1;
3624 commutative
= curr_static_id
->commutative
;
3626 /* Now see what we need for pseudos that didn't get hard regs or got
3627 the wrong kind of hard reg. For this, we must consider all the
3628 operands together against the register constraints. */
3630 best_losers
= best_overall
= INT_MAX
;
3631 best_reload_sum
= 0;
3633 curr_swapped
= false;
3634 goal_alt_swapped
= false;
3637 /* Make equivalence substitution and memory subreg elimination
3638 before address processing because an address legitimacy can
3639 depend on memory mode. */
3640 for (i
= 0; i
< n_operands
; i
++)
3643 bool op_change_p
= false;
3645 if (curr_static_id
->operand
[i
].is_operator
)
3648 old
= op
= *curr_id
->operand_loc
[i
];
3649 if (GET_CODE (old
) == SUBREG
)
3650 old
= SUBREG_REG (old
);
3651 subst
= get_equiv_with_elimination (old
, curr_insn
);
3652 original_subreg_reg_mode
[i
] = VOIDmode
;
3653 equiv_substition_p
[i
] = false;
3656 equiv_substition_p
[i
] = true;
3657 subst
= copy_rtx (subst
);
3658 lra_assert (REG_P (old
));
3659 if (GET_CODE (op
) != SUBREG
)
3660 *curr_id
->operand_loc
[i
] = subst
;
3663 SUBREG_REG (op
) = subst
;
3664 if (GET_MODE (subst
) == VOIDmode
)
3665 original_subreg_reg_mode
[i
] = GET_MODE (old
);
3667 if (lra_dump_file
!= NULL
)
3669 fprintf (lra_dump_file
,
3670 "Changing pseudo %d in operand %i of insn %u on equiv ",
3671 REGNO (old
), i
, INSN_UID (curr_insn
));
3672 dump_value_slim (lra_dump_file
, subst
, 1);
3673 fprintf (lra_dump_file
, "\n");
3675 op_change_p
= change_p
= true;
3677 if (simplify_operand_subreg (i
, GET_MODE (old
)) || op_change_p
)
3680 lra_update_dup (curr_id
, i
);
3684 /* Reload address registers and displacements. We do it before
3685 finding an alternative because of memory constraints. */
3686 before
= after
= NULL
;
3687 for (i
= 0; i
< n_operands
; i
++)
3688 if (! curr_static_id
->operand
[i
].is_operator
3689 && process_address (i
, check_only_p
, &before
, &after
))
3694 lra_update_dup (curr_id
, i
);
3698 /* If we've changed the instruction then any alternative that
3699 we chose previously may no longer be valid. */
3700 lra_set_used_insn_alternative (curr_insn
, -1);
3702 if (! check_only_p
&& curr_insn_set
!= NULL_RTX
3703 && check_and_process_move (&change_p
, &sec_mem_p
))
3708 reused_alternative_num
= check_only_p
? -1 : curr_id
->used_insn_alternative
;
3709 if (lra_dump_file
!= NULL
&& reused_alternative_num
>= 0)
3710 fprintf (lra_dump_file
, "Reusing alternative %d for insn #%u\n",
3711 reused_alternative_num
, INSN_UID (curr_insn
));
3713 if (process_alt_operands (reused_alternative_num
))
3717 return ! alt_p
|| best_losers
!= 0;
3719 /* If insn is commutative (it's safe to exchange a certain pair of
3720 operands) then we need to try each alternative twice, the second
3721 time matching those two operands as if we had exchanged them. To
3722 do this, really exchange them in operands.
3724 If we have just tried the alternatives the second time, return
3725 operands to normal and drop through. */
3727 if (reused_alternative_num
< 0 && commutative
>= 0)
3729 curr_swapped
= !curr_swapped
;
3732 swap_operands (commutative
);
3736 swap_operands (commutative
);
3739 if (! alt_p
&& ! sec_mem_p
)
3741 /* No alternative works with reloads?? */
3742 if (INSN_CODE (curr_insn
) >= 0)
3743 fatal_insn ("unable to generate reloads for:", curr_insn
);
3744 error_for_asm (curr_insn
,
3745 "inconsistent operand constraints in an %<asm%>");
3746 /* Avoid further trouble with this insn. */
3747 PATTERN (curr_insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
3748 lra_invalidate_insn_data (curr_insn
);
3752 /* If the best alternative is with operands 1 and 2 swapped, swap
3753 them. Update the operand numbers of any reloads already
3756 if (goal_alt_swapped
)
3758 if (lra_dump_file
!= NULL
)
3759 fprintf (lra_dump_file
, " Commutative operand exchange in insn %u\n",
3760 INSN_UID (curr_insn
));
3762 /* Swap the duplicates too. */
3763 swap_operands (commutative
);
3767 #ifdef SECONDARY_MEMORY_NEEDED
3768 /* Some target macros SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3769 too conservatively. So we use the secondary memory only if there
3770 is no any alternative without reloads. */
3771 use_sec_mem_p
= false;
3773 use_sec_mem_p
= true;
3776 for (i
= 0; i
< n_operands
; i
++)
3777 if (! goal_alt_win
[i
] && ! goal_alt_match_win
[i
])
3779 use_sec_mem_p
= i
< n_operands
;
3784 int in
= -1, out
= -1;
3785 rtx new_reg
, src
, dest
, rld
;
3786 machine_mode sec_mode
, rld_mode
;
3788 lra_assert (curr_insn_set
!= NULL_RTX
&& sec_mem_p
);
3789 dest
= SET_DEST (curr_insn_set
);
3790 src
= SET_SRC (curr_insn_set
);
3791 for (i
= 0; i
< n_operands
; i
++)
3792 if (*curr_id
->operand_loc
[i
] == dest
)
3794 else if (*curr_id
->operand_loc
[i
] == src
)
3796 for (i
= 0; i
< curr_static_id
->n_dups
; i
++)
3797 if (out
< 0 && *curr_id
->dup_loc
[i
] == dest
)
3798 out
= curr_static_id
->dup_num
[i
];
3799 else if (in
< 0 && *curr_id
->dup_loc
[i
] == src
)
3800 in
= curr_static_id
->dup_num
[i
];
3801 lra_assert (out
>= 0 && in
>= 0
3802 && curr_static_id
->operand
[out
].type
== OP_OUT
3803 && curr_static_id
->operand
[in
].type
== OP_IN
);
3804 rld
= (GET_MODE_SIZE (GET_MODE (dest
)) <= GET_MODE_SIZE (GET_MODE (src
))
3806 rld_mode
= GET_MODE (rld
);
3807 #ifdef SECONDARY_MEMORY_NEEDED_MODE
3808 sec_mode
= SECONDARY_MEMORY_NEEDED_MODE (rld_mode
);
3810 sec_mode
= rld_mode
;
3812 new_reg
= lra_create_new_reg (sec_mode
, NULL_RTX
,
3813 NO_REGS
, "secondary");
3814 /* If the mode is changed, it should be wider. */
3815 lra_assert (GET_MODE_SIZE (sec_mode
) >= GET_MODE_SIZE (rld_mode
));
3816 if (sec_mode
!= rld_mode
)
3818 /* If the target says specifically to use another mode for
3819 secondary memory moves we can not reuse the original
3821 after
= emit_spill_move (false, new_reg
, dest
);
3822 lra_process_new_insns (curr_insn
, NULL
, after
,
3823 "Inserting the sec. move");
3824 /* We may have non null BEFORE here (e.g. after address
3826 push_to_sequence (before
);
3827 before
= emit_spill_move (true, new_reg
, src
);
3829 before
= get_insns ();
3831 lra_process_new_insns (curr_insn
, before
, NULL
, "Changing on");
3832 lra_set_insn_deleted (curr_insn
);
3834 else if (dest
== rld
)
3836 *curr_id
->operand_loc
[out
] = new_reg
;
3837 lra_update_dup (curr_id
, out
);
3838 after
= emit_spill_move (false, new_reg
, dest
);
3839 lra_process_new_insns (curr_insn
, NULL
, after
,
3840 "Inserting the sec. move");
3844 *curr_id
->operand_loc
[in
] = new_reg
;
3845 lra_update_dup (curr_id
, in
);
3846 /* See comments above. */
3847 push_to_sequence (before
);
3848 before
= emit_spill_move (true, new_reg
, src
);
3850 before
= get_insns ();
3852 lra_process_new_insns (curr_insn
, before
, NULL
,
3853 "Inserting the sec. move");
3855 lra_update_insn_regno_info (curr_insn
);
3860 lra_assert (goal_alt_number
>= 0);
3861 lra_set_used_insn_alternative (curr_insn
, goal_alt_number
);
3863 if (lra_dump_file
!= NULL
)
3867 fprintf (lra_dump_file
, " Choosing alt %d in insn %u:",
3868 goal_alt_number
, INSN_UID (curr_insn
));
3869 for (i
= 0; i
< n_operands
; i
++)
3871 p
= (curr_static_id
->operand_alternative
3872 [goal_alt_number
* n_operands
+ i
].constraint
);
3875 fprintf (lra_dump_file
, " (%d) ", i
);
3876 for (; *p
!= '\0' && *p
!= ',' && *p
!= '#'; p
++)
3877 fputc (*p
, lra_dump_file
);
3879 if (INSN_CODE (curr_insn
) >= 0
3880 && (p
= get_insn_name (INSN_CODE (curr_insn
))) != NULL
)
3881 fprintf (lra_dump_file
, " {%s}", p
);
3882 if (curr_id
->sp_offset
!= 0)
3883 fprintf (lra_dump_file
, " (sp_off=%" HOST_WIDE_INT_PRINT
"d)",
3884 curr_id
->sp_offset
);
3885 fprintf (lra_dump_file
, "\n");
3888 /* Right now, for any pair of operands I and J that are required to
3889 match, with J < I, goal_alt_matches[I] is J. Add I to
3890 goal_alt_matched[J]. */
3892 for (i
= 0; i
< n_operands
; i
++)
3893 if ((j
= goal_alt_matches
[i
]) >= 0)
3895 for (k
= 0; goal_alt_matched
[j
][k
] >= 0; k
++)
3897 /* We allow matching one output operand and several input
3900 || (curr_static_id
->operand
[j
].type
== OP_OUT
3901 && curr_static_id
->operand
[i
].type
== OP_IN
3902 && (curr_static_id
->operand
3903 [goal_alt_matched
[j
][0]].type
== OP_IN
)));
3904 goal_alt_matched
[j
][k
] = i
;
3905 goal_alt_matched
[j
][k
+ 1] = -1;
3908 for (i
= 0; i
< n_operands
; i
++)
3909 goal_alt_win
[i
] |= goal_alt_match_win
[i
];
3911 /* Any constants that aren't allowed and can't be reloaded into
3912 registers are here changed into memory references. */
3913 for (i
= 0; i
< n_operands
; i
++)
3914 if (goal_alt_win
[i
])
3917 enum reg_class new_class
;
3918 rtx reg
= *curr_id
->operand_loc
[i
];
3920 if (GET_CODE (reg
) == SUBREG
)
3921 reg
= SUBREG_REG (reg
);
3923 if (REG_P (reg
) && (regno
= REGNO (reg
)) >= FIRST_PSEUDO_REGISTER
)
3925 bool ok_p
= in_class_p (reg
, goal_alt
[i
], &new_class
);
3927 if (new_class
!= NO_REGS
&& get_reg_class (regno
) != new_class
)
3930 lra_change_class (regno
, new_class
, " Change to", true);
3936 const char *constraint
;
3938 rtx op
= *curr_id
->operand_loc
[i
];
3939 rtx subreg
= NULL_RTX
;
3940 machine_mode mode
= curr_operand_mode
[i
];
3942 if (GET_CODE (op
) == SUBREG
)
3945 op
= SUBREG_REG (op
);
3946 mode
= GET_MODE (op
);
3949 if (CONST_POOL_OK_P (mode
, op
)
3950 && ((targetm
.preferred_reload_class
3951 (op
, (enum reg_class
) goal_alt
[i
]) == NO_REGS
)
3952 || no_input_reloads_p
))
3954 rtx tem
= force_const_mem (mode
, op
);
3957 if (subreg
!= NULL_RTX
)
3958 tem
= gen_rtx_SUBREG (mode
, tem
, SUBREG_BYTE (subreg
));
3960 *curr_id
->operand_loc
[i
] = tem
;
3961 lra_update_dup (curr_id
, i
);
3962 process_address (i
, false, &before
, &after
);
3964 /* If the alternative accepts constant pool refs directly
3965 there will be no reload needed at all. */
3966 if (subreg
!= NULL_RTX
)
3968 /* Skip alternatives before the one requested. */
3969 constraint
= (curr_static_id
->operand_alternative
3970 [goal_alt_number
* n_operands
+ i
].constraint
);
3972 (c
= *constraint
) && c
!= ',' && c
!= '#';
3973 constraint
+= CONSTRAINT_LEN (c
, constraint
))
3975 enum constraint_num cn
= lookup_constraint (constraint
);
3976 if ((insn_extra_memory_constraint (cn
)
3977 || insn_extra_special_memory_constraint (cn
))
3978 && satisfies_memory_constraint_p (tem
, cn
))
3981 if (c
== '\0' || c
== ',' || c
== '#')
3984 goal_alt_win
[i
] = true;
3990 for (i
= 0; i
< n_operands
; i
++)
3993 bool optional_p
= false;
3995 rtx op
= *curr_id
->operand_loc
[i
];
3997 if (goal_alt_win
[i
])
3999 if (goal_alt
[i
] == NO_REGS
4001 /* When we assign NO_REGS it means that we will not
4002 assign a hard register to the scratch pseudo by
4003 assigment pass and the scratch pseudo will be
4004 spilled. Spilled scratch pseudos are transformed
4005 back to scratches at the LRA end. */
4006 && lra_former_scratch_operand_p (curr_insn
, i
)
4007 && lra_former_scratch_p (REGNO (op
)))
4009 int regno
= REGNO (op
);
4010 lra_change_class (regno
, NO_REGS
, " Change to", true);
4011 if (lra_get_regno_hard_regno (regno
) >= 0)
4012 /* We don't have to mark all insn affected by the
4013 spilled pseudo as there is only one such insn, the
4015 reg_renumber
[regno
] = -1;
4016 lra_assert (bitmap_single_bit_set_p
4017 (&lra_reg_info
[REGNO (op
)].insn_bitmap
));
4019 /* We can do an optional reload. If the pseudo got a hard
4020 reg, we might improve the code through inheritance. If
4021 it does not get a hard register we coalesce memory/memory
4022 moves later. Ignore move insns to avoid cycling. */
4024 && lra_undo_inheritance_iter
< LRA_MAX_INHERITANCE_PASSES
4025 && goal_alt
[i
] != NO_REGS
&& REG_P (op
)
4026 && (regno
= REGNO (op
)) >= FIRST_PSEUDO_REGISTER
4027 && regno
< new_regno_start
4028 && ! lra_former_scratch_p (regno
)
4029 && reg_renumber
[regno
] < 0
4030 /* Check that the optional reload pseudo will be able to
4031 hold given mode value. */
4032 && ! (prohibited_class_reg_set_mode_p
4033 (goal_alt
[i
], reg_class_contents
[goal_alt
[i
]],
4034 PSEUDO_REGNO_MODE (regno
)))
4035 && (curr_insn_set
== NULL_RTX
4036 || !((REG_P (SET_SRC (curr_insn_set
))
4037 || MEM_P (SET_SRC (curr_insn_set
))
4038 || GET_CODE (SET_SRC (curr_insn_set
)) == SUBREG
)
4039 && (REG_P (SET_DEST (curr_insn_set
))
4040 || MEM_P (SET_DEST (curr_insn_set
))
4041 || GET_CODE (SET_DEST (curr_insn_set
)) == SUBREG
))))
4047 /* Operands that match previous ones have already been handled. */
4048 if (goal_alt_matches
[i
] >= 0)
4051 /* We should not have an operand with a non-offsettable address
4052 appearing where an offsettable address will do. It also may
4053 be a case when the address should be special in other words
4054 not a general one (e.g. it needs no index reg). */
4055 if (goal_alt_matched
[i
][0] == -1 && goal_alt_offmemok
[i
] && MEM_P (op
))
4057 enum reg_class rclass
;
4058 rtx
*loc
= &XEXP (op
, 0);
4059 enum rtx_code code
= GET_CODE (*loc
);
4061 push_to_sequence (before
);
4062 rclass
= base_reg_class (GET_MODE (op
), MEM_ADDR_SPACE (op
),
4064 if (GET_RTX_CLASS (code
) == RTX_AUTOINC
)
4065 new_reg
= emit_inc (rclass
, *loc
, *loc
,
4066 /* This value does not matter for MODIFY. */
4067 GET_MODE_SIZE (GET_MODE (op
)));
4068 else if (get_reload_reg (OP_IN
, Pmode
, *loc
, rclass
, FALSE
,
4069 "offsetable address", &new_reg
))
4070 lra_emit_move (new_reg
, *loc
);
4071 before
= get_insns ();
4074 lra_update_dup (curr_id
, i
);
4076 else if (goal_alt_matched
[i
][0] == -1)
4080 int hard_regno
, byte
;
4081 enum op_type type
= curr_static_id
->operand
[i
].type
;
4083 loc
= curr_id
->operand_loc
[i
];
4084 mode
= curr_operand_mode
[i
];
4085 if (GET_CODE (*loc
) == SUBREG
)
4087 reg
= SUBREG_REG (*loc
);
4088 byte
= SUBREG_BYTE (*loc
);
4090 /* Strict_low_part requires reload the register not
4091 the sub-register. */
4092 && (curr_static_id
->operand
[i
].strict_low
4093 || (GET_MODE_SIZE (mode
)
4094 <= GET_MODE_SIZE (GET_MODE (reg
))
4096 = get_try_hard_regno (REGNO (reg
))) >= 0
4097 && (simplify_subreg_regno
4099 GET_MODE (reg
), byte
, mode
) < 0)
4100 && (goal_alt
[i
] == NO_REGS
4101 || (simplify_subreg_regno
4102 (ira_class_hard_regs
[goal_alt
[i
]][0],
4103 GET_MODE (reg
), byte
, mode
) >= 0)))))
4107 loc
= &SUBREG_REG (*loc
);
4108 mode
= GET_MODE (*loc
);
4112 if (get_reload_reg (type
, mode
, old
, goal_alt
[i
],
4113 loc
!= curr_id
->operand_loc
[i
], "", &new_reg
)
4116 push_to_sequence (before
);
4117 lra_emit_move (new_reg
, old
);
4118 before
= get_insns ();
4123 && find_reg_note (curr_insn
, REG_UNUSED
, old
) == NULL_RTX
)
4126 lra_emit_move (type
== OP_INOUT
? copy_rtx (old
) : old
, new_reg
);
4128 after
= get_insns ();
4132 for (j
= 0; j
< goal_alt_dont_inherit_ops_num
; j
++)
4133 if (goal_alt_dont_inherit_ops
[j
] == i
)
4135 lra_set_regno_unique_value (REGNO (new_reg
));
4138 lra_update_dup (curr_id
, i
);
4140 else if (curr_static_id
->operand
[i
].type
== OP_IN
4141 && (curr_static_id
->operand
[goal_alt_matched
[i
][0]].type
4144 /* generate reloads for input and matched outputs. */
4145 match_inputs
[0] = i
;
4146 match_inputs
[1] = -1;
4147 match_reload (goal_alt_matched
[i
][0], match_inputs
, outputs
,
4148 goal_alt
[i
], &before
, &after
,
4149 curr_static_id
->operand_alternative
4150 [goal_alt_number
* n_operands
+ goal_alt_matched
[i
][0]]
4153 else if (curr_static_id
->operand
[i
].type
== OP_OUT
4154 && (curr_static_id
->operand
[goal_alt_matched
[i
][0]].type
4156 /* Generate reloads for output and matched inputs. */
4157 match_reload (i
, goal_alt_matched
[i
], outputs
, goal_alt
[i
], &before
,
4158 &after
, curr_static_id
->operand_alternative
4159 [goal_alt_number
* n_operands
+ i
].earlyclobber
);
4160 else if (curr_static_id
->operand
[i
].type
== OP_IN
4161 && (curr_static_id
->operand
[goal_alt_matched
[i
][0]].type
4164 /* Generate reloads for matched inputs. */
4165 match_inputs
[0] = i
;
4166 for (j
= 0; (k
= goal_alt_matched
[i
][j
]) >= 0; j
++)
4167 match_inputs
[j
+ 1] = k
;
4168 match_inputs
[j
+ 1] = -1;
4169 match_reload (-1, match_inputs
, outputs
, goal_alt
[i
], &before
,
4173 /* We must generate code in any case when function
4174 process_alt_operands decides that it is possible. */
4177 /* Memorise processed outputs so that output remaining to be processed
4178 can avoid using the same register value (see match_reload). */
4179 if (curr_static_id
->operand
[i
].type
== OP_OUT
)
4181 outputs
[n_outputs
++] = i
;
4182 outputs
[n_outputs
] = -1;
4189 lra_assert (REG_P (reg
));
4190 regno
= REGNO (reg
);
4191 op
= *curr_id
->operand_loc
[i
]; /* Substitution. */
4192 if (GET_CODE (op
) == SUBREG
)
4193 op
= SUBREG_REG (op
);
4194 gcc_assert (REG_P (op
) && (int) REGNO (op
) >= new_regno_start
);
4195 bitmap_set_bit (&lra_optional_reload_pseudos
, REGNO (op
));
4196 lra_reg_info
[REGNO (op
)].restore_rtx
= reg
;
4197 if (lra_dump_file
!= NULL
)
4198 fprintf (lra_dump_file
,
4199 " Making reload reg %d for reg %d optional\n",
4203 if (before
!= NULL_RTX
|| after
!= NULL_RTX
4204 || max_regno_before
!= max_reg_num ())
4208 lra_update_operator_dups (curr_id
);
4209 /* Something changes -- process the insn. */
4210 lra_update_insn_regno_info (curr_insn
);
4212 lra_process_new_insns (curr_insn
, before
, after
, "Inserting insn reload");
4216 /* Return true if INSN satisfies all constraints. In other words, no
4217 reload insns are needed. */
4219 lra_constrain_insn (rtx_insn
*insn
)
4221 int saved_new_regno_start
= new_regno_start
;
4222 int saved_new_insn_uid_start
= new_insn_uid_start
;
4226 curr_id
= lra_get_insn_recog_data (curr_insn
);
4227 curr_static_id
= curr_id
->insn_static_data
;
4228 new_insn_uid_start
= get_max_uid ();
4229 new_regno_start
= max_reg_num ();
4230 change_p
= curr_insn_transform (true);
4231 new_regno_start
= saved_new_regno_start
;
4232 new_insn_uid_start
= saved_new_insn_uid_start
;
4236 /* Return true if X is in LIST. */
4238 in_list_p (rtx x
, rtx list
)
4240 for (; list
!= NULL_RTX
; list
= XEXP (list
, 1))
4241 if (XEXP (list
, 0) == x
)
4246 /* Return true if X contains an allocatable hard register (if
4247 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4249 contains_reg_p (rtx x
, bool hard_reg_p
, bool spilled_p
)
4255 code
= GET_CODE (x
);
4258 int regno
= REGNO (x
);
4259 HARD_REG_SET alloc_regs
;
4263 if (regno
>= FIRST_PSEUDO_REGISTER
)
4264 regno
= lra_get_regno_hard_regno (regno
);
4267 COMPL_HARD_REG_SET (alloc_regs
, lra_no_alloc_regs
);
4268 return overlaps_hard_reg_set_p (alloc_regs
, GET_MODE (x
), regno
);
4272 if (regno
< FIRST_PSEUDO_REGISTER
)
4276 return lra_get_regno_hard_regno (regno
) < 0;
4279 fmt
= GET_RTX_FORMAT (code
);
4280 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4284 if (contains_reg_p (XEXP (x
, i
), hard_reg_p
, spilled_p
))
4287 else if (fmt
[i
] == 'E')
4289 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4290 if (contains_reg_p (XVECEXP (x
, i
, j
), hard_reg_p
, spilled_p
))
4297 /* Process all regs in location *LOC and change them on equivalent
4298 substitution. Return true if any change was done. */
4300 loc_equivalence_change_p (rtx
*loc
)
4302 rtx subst
, reg
, x
= *loc
;
4303 bool result
= false;
4304 enum rtx_code code
= GET_CODE (x
);
4310 reg
= SUBREG_REG (x
);
4311 if ((subst
= get_equiv_with_elimination (reg
, curr_insn
)) != reg
4312 && GET_MODE (subst
) == VOIDmode
)
4314 /* We cannot reload debug location. Simplify subreg here
4315 while we know the inner mode. */
4316 *loc
= simplify_gen_subreg (GET_MODE (x
), subst
,
4317 GET_MODE (reg
), SUBREG_BYTE (x
));
4321 if (code
== REG
&& (subst
= get_equiv_with_elimination (x
, curr_insn
)) != x
)
4327 /* Scan all the operand sub-expressions. */
4328 fmt
= GET_RTX_FORMAT (code
);
4329 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4332 result
= loc_equivalence_change_p (&XEXP (x
, i
)) || result
;
4333 else if (fmt
[i
] == 'E')
4334 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4336 = loc_equivalence_change_p (&XVECEXP (x
, i
, j
)) || result
;
4341 /* Similar to loc_equivalence_change_p, but for use as
4342 simplify_replace_fn_rtx callback. DATA is insn for which the
4343 elimination is done. If it null we don't do the elimination. */
4345 loc_equivalence_callback (rtx loc
, const_rtx
, void *data
)
4350 rtx subst
= (data
== NULL
4351 ? get_equiv (loc
) : get_equiv_with_elimination (loc
, (rtx_insn
*) data
));
4358 /* Maximum number of generated reload insns per an insn. It is for
4359 preventing this pass cycling in a bug case. */
4360 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4362 /* The current iteration number of this LRA pass. */
4363 int lra_constraint_iter
;
4365 /* True if we substituted equiv which needs checking register
4366 allocation correctness because the equivalent value contains
4367 allocatable hard registers or when we restore multi-register
4369 bool lra_risky_transformations_p
;
4371 /* Return true if REGNO is referenced in more than one block. */
4373 multi_block_pseudo_p (int regno
)
4375 basic_block bb
= NULL
;
4379 if (regno
< FIRST_PSEUDO_REGISTER
)
4382 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info
[regno
].insn_bitmap
, 0, uid
, bi
)
4384 bb
= BLOCK_FOR_INSN (lra_insn_recog_data
[uid
]->insn
);
4385 else if (BLOCK_FOR_INSN (lra_insn_recog_data
[uid
]->insn
) != bb
)
4390 /* Return true if LIST contains a deleted insn. */
4392 contains_deleted_insn_p (rtx_insn_list
*list
)
4394 for (; list
!= NULL_RTX
; list
= list
->next ())
4395 if (NOTE_P (list
->insn ())
4396 && NOTE_KIND (list
->insn ()) == NOTE_INSN_DELETED
)
4401 /* Return true if X contains a pseudo dying in INSN. */
4403 dead_pseudo_p (rtx x
, rtx_insn
*insn
)
4410 return (insn
!= NULL_RTX
4411 && find_regno_note (insn
, REG_DEAD
, REGNO (x
)) != NULL_RTX
);
4412 code
= GET_CODE (x
);
4413 fmt
= GET_RTX_FORMAT (code
);
4414 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4418 if (dead_pseudo_p (XEXP (x
, i
), insn
))
4421 else if (fmt
[i
] == 'E')
4423 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4424 if (dead_pseudo_p (XVECEXP (x
, i
, j
), insn
))
4431 /* Return true if INSN contains a dying pseudo in INSN right hand
4434 insn_rhs_dead_pseudo_p (rtx_insn
*insn
)
4436 rtx set
= single_set (insn
);
4438 gcc_assert (set
!= NULL
);
4439 return dead_pseudo_p (SET_SRC (set
), insn
);
4442 /* Return true if any init insn of REGNO contains a dying pseudo in
4443 insn right hand side. */
4445 init_insn_rhs_dead_pseudo_p (int regno
)
4447 rtx_insn_list
*insns
= ira_reg_equiv
[regno
].init_insns
;
4451 for (; insns
!= NULL_RTX
; insns
= insns
->next ())
4452 if (insn_rhs_dead_pseudo_p (insns
->insn ()))
4457 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4458 reverse only if we have one init insn with given REGNO as a
4461 reverse_equiv_p (int regno
)
4463 rtx_insn_list
*insns
= ira_reg_equiv
[regno
].init_insns
;
4468 if (! INSN_P (insns
->insn ())
4469 || insns
->next () != NULL
)
4471 if ((set
= single_set (insns
->insn ())) == NULL_RTX
)
4473 return REG_P (SET_SRC (set
)) && (int) REGNO (SET_SRC (set
)) == regno
;
4476 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4477 call this function only for non-reverse equivalence. */
4479 contains_reloaded_insn_p (int regno
)
4482 rtx_insn_list
*list
= ira_reg_equiv
[regno
].init_insns
;
4484 for (; list
!= NULL
; list
= list
->next ())
4485 if ((set
= single_set (list
->insn ())) == NULL_RTX
4486 || ! REG_P (SET_DEST (set
))
4487 || (int) REGNO (SET_DEST (set
)) != regno
)
4492 /* Entry function of LRA constraint pass. Return true if the
4493 constraint pass did change the code. */
4495 lra_constraints (bool first_p
)
4498 int i
, hard_regno
, new_insns_num
;
4499 unsigned int min_len
, new_min_len
, uid
;
4500 rtx set
, x
, reg
, dest_reg
;
4501 basic_block last_bb
;
4502 bitmap_head equiv_insn_bitmap
;
4505 lra_constraint_iter
++;
4506 if (lra_dump_file
!= NULL
)
4507 fprintf (lra_dump_file
, "\n********** Local #%d: **********\n\n",
4508 lra_constraint_iter
);
4510 if (pic_offset_table_rtx
4511 && REGNO (pic_offset_table_rtx
) >= FIRST_PSEUDO_REGISTER
)
4512 lra_risky_transformations_p
= true;
4514 lra_risky_transformations_p
= false;
4515 new_insn_uid_start
= get_max_uid ();
4516 new_regno_start
= first_p
? lra_constraint_new_regno_start
: max_reg_num ();
4517 /* Mark used hard regs for target stack size calulations. */
4518 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4519 if (lra_reg_info
[i
].nrefs
!= 0
4520 && (hard_regno
= lra_get_regno_hard_regno (i
)) >= 0)
4524 nregs
= hard_regno_nregs
[hard_regno
][lra_reg_info
[i
].biggest_mode
];
4525 for (j
= 0; j
< nregs
; j
++)
4526 df_set_regs_ever_live (hard_regno
+ j
, true);
4528 /* Do elimination before the equivalence processing as we can spill
4529 some pseudos during elimination. */
4530 lra_eliminate (false, first_p
);
4531 bitmap_initialize (&equiv_insn_bitmap
, ®_obstack
);
4532 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4533 if (lra_reg_info
[i
].nrefs
!= 0)
4535 ira_reg_equiv
[i
].profitable_p
= true;
4536 reg
= regno_reg_rtx
[i
];
4537 if (lra_get_regno_hard_regno (i
) < 0 && (x
= get_equiv (reg
)) != reg
)
4539 bool pseudo_p
= contains_reg_p (x
, false, false);
4541 /* After RTL transformation, we can not guarantee that
4542 pseudo in the substitution was not reloaded which might
4543 make equivalence invalid. For example, in reverse
4550 the memory address register was reloaded before the 2nd
4552 if ((! first_p
&& pseudo_p
)
4553 /* We don't use DF for compilation speed sake. So it
4554 is problematic to update live info when we use an
4555 equivalence containing pseudos in more than one
4557 || (pseudo_p
&& multi_block_pseudo_p (i
))
4558 /* If an init insn was deleted for some reason, cancel
4559 the equiv. We could update the equiv insns after
4560 transformations including an equiv insn deletion
4561 but it is not worthy as such cases are extremely
4563 || contains_deleted_insn_p (ira_reg_equiv
[i
].init_insns
)
4564 /* If it is not a reverse equivalence, we check that a
4565 pseudo in rhs of the init insn is not dying in the
4566 insn. Otherwise, the live info at the beginning of
4567 the corresponding BB might be wrong after we
4568 removed the insn. When the equiv can be a
4569 constant, the right hand side of the init insn can
4571 || (! reverse_equiv_p (i
)
4572 && (init_insn_rhs_dead_pseudo_p (i
)
4573 /* If we reloaded the pseudo in an equivalence
4574 init insn, we can not remove the equiv init
4575 insns and the init insns might write into
4576 const memory in this case. */
4577 || contains_reloaded_insn_p (i
)))
4578 /* Prevent access beyond equivalent memory for
4579 paradoxical subregs. */
4581 && (GET_MODE_SIZE (lra_reg_info
[i
].biggest_mode
)
4582 > GET_MODE_SIZE (GET_MODE (x
))))
4583 || (pic_offset_table_rtx
4584 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i
), x
)
4585 && (targetm
.preferred_reload_class
4586 (x
, lra_get_allocno_class (i
)) == NO_REGS
))
4587 || contains_symbol_ref_p (x
))))
4588 ira_reg_equiv
[i
].defined_p
= false;
4589 if (contains_reg_p (x
, false, true))
4590 ira_reg_equiv
[i
].profitable_p
= false;
4591 if (get_equiv (reg
) != reg
)
4592 bitmap_ior_into (&equiv_insn_bitmap
, &lra_reg_info
[i
].insn_bitmap
);
4595 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4597 /* We should add all insns containing pseudos which should be
4598 substituted by their equivalences. */
4599 EXECUTE_IF_SET_IN_BITMAP (&equiv_insn_bitmap
, 0, uid
, bi
)
4600 lra_push_insn_by_uid (uid
);
4601 min_len
= lra_insn_stack_length ();
4605 while ((new_min_len
= lra_insn_stack_length ()) != 0)
4607 curr_insn
= lra_pop_insn ();
4609 curr_bb
= BLOCK_FOR_INSN (curr_insn
);
4610 if (curr_bb
!= last_bb
)
4613 bb_reload_num
= lra_curr_reload_num
;
4615 if (min_len
> new_min_len
)
4617 min_len
= new_min_len
;
4620 if (new_insns_num
> MAX_RELOAD_INSNS_NUMBER
)
4622 ("Max. number of generated reload insns per insn is achieved (%d)\n",
4623 MAX_RELOAD_INSNS_NUMBER
);
4625 if (DEBUG_INSN_P (curr_insn
))
4627 /* We need to check equivalence in debug insn and change
4628 pseudo to the equivalent value if necessary. */
4629 curr_id
= lra_get_insn_recog_data (curr_insn
);
4630 if (bitmap_bit_p (&equiv_insn_bitmap
, INSN_UID (curr_insn
)))
4632 rtx old
= *curr_id
->operand_loc
[0];
4633 *curr_id
->operand_loc
[0]
4634 = simplify_replace_fn_rtx (old
, NULL_RTX
,
4635 loc_equivalence_callback
, curr_insn
);
4636 if (old
!= *curr_id
->operand_loc
[0])
4638 lra_update_insn_regno_info (curr_insn
);
4643 else if (INSN_P (curr_insn
))
4645 if ((set
= single_set (curr_insn
)) != NULL_RTX
)
4647 dest_reg
= SET_DEST (set
);
4648 /* The equivalence pseudo could be set up as SUBREG in a
4649 case when it is a call restore insn in a mode
4650 different from the pseudo mode. */
4651 if (GET_CODE (dest_reg
) == SUBREG
)
4652 dest_reg
= SUBREG_REG (dest_reg
);
4653 if ((REG_P (dest_reg
)
4654 && (x
= get_equiv (dest_reg
)) != dest_reg
4655 /* Remove insns which set up a pseudo whose value
4656 can not be changed. Such insns might be not in
4657 init_insns because we don't update equiv data
4658 during insn transformations.
4660 As an example, let suppose that a pseudo got
4661 hard register and on the 1st pass was not
4662 changed to equivalent constant. We generate an
4663 additional insn setting up the pseudo because of
4664 secondary memory movement. Then the pseudo is
4665 spilled and we use the equiv constant. In this
4666 case we should remove the additional insn and
4667 this insn is not init_insns list. */
4668 && (! MEM_P (x
) || MEM_READONLY_P (x
)
4669 /* Check that this is actually an insn setting
4670 up the equivalence. */
4671 || in_list_p (curr_insn
,
4673 [REGNO (dest_reg
)].init_insns
)))
4674 || (((x
= get_equiv (SET_SRC (set
))) != SET_SRC (set
))
4675 && in_list_p (curr_insn
,
4677 [REGNO (SET_SRC (set
))].init_insns
)))
4679 /* This is equiv init insn of pseudo which did not get a
4680 hard register -- remove the insn. */
4681 if (lra_dump_file
!= NULL
)
4683 fprintf (lra_dump_file
,
4684 " Removing equiv init insn %i (freq=%d)\n",
4685 INSN_UID (curr_insn
),
4686 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn
)));
4687 dump_insn_slim (lra_dump_file
, curr_insn
);
4689 if (contains_reg_p (x
, true, false))
4690 lra_risky_transformations_p
= true;
4691 lra_set_insn_deleted (curr_insn
);
4695 curr_id
= lra_get_insn_recog_data (curr_insn
);
4696 curr_static_id
= curr_id
->insn_static_data
;
4697 init_curr_insn_input_reloads ();
4698 init_curr_operand_mode ();
4699 if (curr_insn_transform (false))
4701 /* Check non-transformed insns too for equiv change as USE
4702 or CLOBBER don't need reloads but can contain pseudos
4703 being changed on their equivalences. */
4704 else if (bitmap_bit_p (&equiv_insn_bitmap
, INSN_UID (curr_insn
))
4705 && loc_equivalence_change_p (&PATTERN (curr_insn
)))
4707 lra_update_insn_regno_info (curr_insn
);
4712 bitmap_clear (&equiv_insn_bitmap
);
4713 /* If we used a new hard regno, changed_p should be true because the
4714 hard reg is assigned to a new pseudo. */
4715 if (flag_checking
&& !changed_p
)
4717 for (i
= FIRST_PSEUDO_REGISTER
; i
< new_regno_start
; i
++)
4718 if (lra_reg_info
[i
].nrefs
!= 0
4719 && (hard_regno
= lra_get_regno_hard_regno (i
)) >= 0)
4721 int j
, nregs
= hard_regno_nregs
[hard_regno
][PSEUDO_REGNO_MODE (i
)];
4723 for (j
= 0; j
< nregs
; j
++)
4724 lra_assert (df_regs_ever_live_p (hard_regno
+ j
));
4730 static void initiate_invariants (void);
4731 static void finish_invariants (void);
4733 /* Initiate the LRA constraint pass. It is done once per
4736 lra_constraints_init (void)
4738 initiate_invariants ();
4741 /* Finalize the LRA constraint pass. It is done once per
4744 lra_constraints_finish (void)
4746 finish_invariants ();
4751 /* Structure describes invariants for ineheritance. */
4752 struct lra_invariant
4754 /* The order number of the invariant. */
4756 /* The invariant RTX. */
4758 /* The origin insn of the invariant. */
4762 typedef lra_invariant invariant_t
;
4763 typedef invariant_t
*invariant_ptr_t
;
4764 typedef const invariant_t
*const_invariant_ptr_t
;
4766 /* Pointer to the inheritance invariants. */
4767 static vec
<invariant_ptr_t
> invariants
;
4769 /* Allocation pool for the invariants. */
4770 static object_allocator
<lra_invariant
> *invariants_pool
;
4772 /* Hash table for the invariants. */
4773 static htab_t invariant_table
;
4775 /* Hash function for INVARIANT. */
4777 invariant_hash (const void *invariant
)
4779 rtx inv
= ((const_invariant_ptr_t
) invariant
)->invariant_rtx
;
4780 return lra_rtx_hash (inv
);
4783 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
4785 invariant_eq_p (const void *invariant1
, const void *invariant2
)
4787 rtx inv1
= ((const_invariant_ptr_t
) invariant1
)->invariant_rtx
;
4788 rtx inv2
= ((const_invariant_ptr_t
) invariant2
)->invariant_rtx
;
4790 return rtx_equal_p (inv1
, inv2
);
4793 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
4794 invariant which is in the table. */
4795 static invariant_ptr_t
4796 insert_invariant (rtx invariant_rtx
)
4799 invariant_t invariant
;
4800 invariant_ptr_t invariant_ptr
;
4802 invariant
.invariant_rtx
= invariant_rtx
;
4803 entry_ptr
= htab_find_slot (invariant_table
, &invariant
, INSERT
);
4804 if (*entry_ptr
== NULL
)
4806 invariant_ptr
= invariants_pool
->allocate ();
4807 invariant_ptr
->invariant_rtx
= invariant_rtx
;
4808 invariant_ptr
->insn
= NULL
;
4809 invariants
.safe_push (invariant_ptr
);
4810 *entry_ptr
= (void *) invariant_ptr
;
4812 return (invariant_ptr_t
) *entry_ptr
;
4815 /* Initiate the invariant table. */
4817 initiate_invariants (void)
4819 invariants
.create (100);
4821 = new object_allocator
<lra_invariant
> ("Inheritance invariants");
4822 invariant_table
= htab_create (100, invariant_hash
, invariant_eq_p
, NULL
);
4825 /* Finish the invariant table. */
4827 finish_invariants (void)
4829 htab_delete (invariant_table
);
4830 delete invariants_pool
;
4831 invariants
.release ();
4834 /* Make the invariant table empty. */
4836 clear_invariants (void)
4838 htab_empty (invariant_table
);
4839 invariants_pool
->release ();
4840 invariants
.truncate (0);
4845 /* This page contains code to do inheritance/split
4848 /* Number of reloads passed so far in current EBB. */
4849 static int reloads_num
;
4851 /* Number of calls passed so far in current EBB. */
4852 static int calls_num
;
4854 /* Current reload pseudo check for validity of elements in
4856 static int curr_usage_insns_check
;
4858 /* Info about last usage of registers in EBB to do inheritance/split
4859 transformation. Inheritance transformation is done from a spilled
4860 pseudo and split transformations from a hard register or a pseudo
4861 assigned to a hard register. */
4864 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
4865 value INSNS is valid. The insns is chain of optional debug insns
4866 and a finishing non-debug insn using the corresponding reg. The
4867 value is also used to mark the registers which are set up in the
4868 current insn. The negated insn uid is used for this. */
4870 /* Value of global reloads_num at the last insn in INSNS. */
4872 /* Value of global reloads_nums at the last insn in INSNS. */
4874 /* It can be true only for splitting. And it means that the restore
4875 insn should be put after insn given by the following member. */
4877 /* Next insns in the current EBB which use the original reg and the
4878 original reg value is not changed between the current insn and
4879 the next insns. In order words, e.g. for inheritance, if we need
4880 to use the original reg value again in the next insns we can try
4881 to use the value in a hard register from a reload insn of the
4886 /* Map: regno -> corresponding pseudo usage insns. */
4887 static struct usage_insns
*usage_insns
;
4890 setup_next_usage_insn (int regno
, rtx insn
, int reloads_num
, bool after_p
)
4892 usage_insns
[regno
].check
= curr_usage_insns_check
;
4893 usage_insns
[regno
].insns
= insn
;
4894 usage_insns
[regno
].reloads_num
= reloads_num
;
4895 usage_insns
[regno
].calls_num
= calls_num
;
4896 usage_insns
[regno
].after_p
= after_p
;
4899 /* The function is used to form list REGNO usages which consists of
4900 optional debug insns finished by a non-debug insn using REGNO.
4901 RELOADS_NUM is current number of reload insns processed so far. */
4903 add_next_usage_insn (int regno
, rtx_insn
*insn
, int reloads_num
)
4905 rtx next_usage_insns
;
4907 if (usage_insns
[regno
].check
== curr_usage_insns_check
4908 && (next_usage_insns
= usage_insns
[regno
].insns
) != NULL_RTX
4909 && DEBUG_INSN_P (insn
))
4911 /* Check that we did not add the debug insn yet. */
4912 if (next_usage_insns
!= insn
4913 && (GET_CODE (next_usage_insns
) != INSN_LIST
4914 || XEXP (next_usage_insns
, 0) != insn
))
4915 usage_insns
[regno
].insns
= gen_rtx_INSN_LIST (VOIDmode
, insn
,
4918 else if (NONDEBUG_INSN_P (insn
))
4919 setup_next_usage_insn (regno
, insn
, reloads_num
, false);
4921 usage_insns
[regno
].check
= 0;
4924 /* Return first non-debug insn in list USAGE_INSNS. */
4926 skip_usage_debug_insns (rtx usage_insns
)
4930 /* Skip debug insns. */
4931 for (insn
= usage_insns
;
4932 insn
!= NULL_RTX
&& GET_CODE (insn
) == INSN_LIST
;
4933 insn
= XEXP (insn
, 1))
4935 return safe_as_a
<rtx_insn
*> (insn
);
4938 /* Return true if we need secondary memory moves for insn in
4939 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
4942 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED
,
4943 rtx usage_insns ATTRIBUTE_UNUSED
)
4945 #ifndef SECONDARY_MEMORY_NEEDED
4952 if (inher_cl
== ALL_REGS
4953 || (insn
= skip_usage_debug_insns (usage_insns
)) == NULL_RTX
)
4955 lra_assert (INSN_P (insn
));
4956 if ((set
= single_set (insn
)) == NULL_RTX
|| ! REG_P (SET_DEST (set
)))
4958 dest
= SET_DEST (set
);
4961 lra_assert (inher_cl
!= NO_REGS
);
4962 cl
= get_reg_class (REGNO (dest
));
4963 return (cl
!= NO_REGS
&& cl
!= ALL_REGS
4964 && SECONDARY_MEMORY_NEEDED (inher_cl
, cl
, GET_MODE (dest
)));
4968 /* Registers involved in inheritance/split in the current EBB
4969 (inheritance/split pseudos and original registers). */
4970 static bitmap_head check_only_regs
;
4972 /* Reload pseudos can not be involded in invariant inheritance in the
4974 static bitmap_head invalid_invariant_regs
;
4976 /* Do inheritance transformations for insn INSN, which defines (if
4977 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
4978 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
4979 form as the "insns" field of usage_insns. Return true if we
4980 succeed in such transformation.
4982 The transformations look like:
4985 ... p <- i (new insn)
4987 <- ... p ... <- ... i ...
4989 ... i <- p (new insn)
4990 <- ... p ... <- ... i ...
4992 <- ... p ... <- ... i ...
4993 where p is a spilled original pseudo and i is a new inheritance pseudo.
4996 The inheritance pseudo has the smallest class of two classes CL and
4997 class of ORIGINAL REGNO. */
4999 inherit_reload_reg (bool def_p
, int original_regno
,
5000 enum reg_class cl
, rtx_insn
*insn
, rtx next_usage_insns
)
5002 if (optimize_function_for_size_p (cfun
))
5005 enum reg_class rclass
= lra_get_allocno_class (original_regno
);
5006 rtx original_reg
= regno_reg_rtx
[original_regno
];
5007 rtx new_reg
, usage_insn
;
5008 rtx_insn
*new_insns
;
5010 lra_assert (! usage_insns
[original_regno
].after_p
);
5011 if (lra_dump_file
!= NULL
)
5012 fprintf (lra_dump_file
,
5013 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5014 if (! ira_reg_classes_intersect_p
[cl
][rclass
])
5016 if (lra_dump_file
!= NULL
)
5018 fprintf (lra_dump_file
,
5019 " Rejecting inheritance for %d "
5020 "because of disjoint classes %s and %s\n",
5021 original_regno
, reg_class_names
[cl
],
5022 reg_class_names
[rclass
]);
5023 fprintf (lra_dump_file
,
5024 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5028 if ((ira_class_subset_p
[cl
][rclass
] && cl
!= rclass
)
5029 /* We don't use a subset of two classes because it can be
5030 NO_REGS. This transformation is still profitable in most
5031 cases even if the classes are not intersected as register
5032 move is probably cheaper than a memory load. */
5033 || ira_class_hard_regs_num
[cl
] < ira_class_hard_regs_num
[rclass
])
5035 if (lra_dump_file
!= NULL
)
5036 fprintf (lra_dump_file
, " Use smallest class of %s and %s\n",
5037 reg_class_names
[cl
], reg_class_names
[rclass
]);
5041 if (check_secondary_memory_needed_p (rclass
, next_usage_insns
))
5043 /* Reject inheritance resulting in secondary memory moves.
5044 Otherwise, there is a danger in LRA cycling. Also such
5045 transformation will be unprofitable. */
5046 if (lra_dump_file
!= NULL
)
5048 rtx_insn
*insn
= skip_usage_debug_insns (next_usage_insns
);
5049 rtx set
= single_set (insn
);
5051 lra_assert (set
!= NULL_RTX
);
5053 rtx dest
= SET_DEST (set
);
5055 lra_assert (REG_P (dest
));
5056 fprintf (lra_dump_file
,
5057 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5058 "as secondary mem is needed\n",
5059 REGNO (dest
), reg_class_names
[get_reg_class (REGNO (dest
))],
5060 original_regno
, reg_class_names
[rclass
]);
5061 fprintf (lra_dump_file
,
5062 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5066 new_reg
= lra_create_new_reg (GET_MODE (original_reg
), original_reg
,
5067 rclass
, "inheritance");
5070 lra_emit_move (original_reg
, new_reg
);
5072 lra_emit_move (new_reg
, original_reg
);
5073 new_insns
= get_insns ();
5075 if (NEXT_INSN (new_insns
) != NULL_RTX
)
5077 if (lra_dump_file
!= NULL
)
5079 fprintf (lra_dump_file
,
5080 " Rejecting inheritance %d->%d "
5081 "as it results in 2 or more insns:\n",
5082 original_regno
, REGNO (new_reg
));
5083 dump_rtl_slim (lra_dump_file
, new_insns
, NULL
, -1, 0);
5084 fprintf (lra_dump_file
,
5085 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5089 lra_substitute_pseudo_within_insn (insn
, original_regno
, new_reg
, false);
5090 lra_update_insn_regno_info (insn
);
5092 /* We now have a new usage insn for original regno. */
5093 setup_next_usage_insn (original_regno
, new_insns
, reloads_num
, false);
5094 if (lra_dump_file
!= NULL
)
5095 fprintf (lra_dump_file
, " Original reg change %d->%d (bb%d):\n",
5096 original_regno
, REGNO (new_reg
), BLOCK_FOR_INSN (insn
)->index
);
5097 lra_reg_info
[REGNO (new_reg
)].restore_rtx
= regno_reg_rtx
[original_regno
];
5098 bitmap_set_bit (&check_only_regs
, REGNO (new_reg
));
5099 bitmap_set_bit (&check_only_regs
, original_regno
);
5100 bitmap_set_bit (&lra_inheritance_pseudos
, REGNO (new_reg
));
5102 lra_process_new_insns (insn
, NULL
, new_insns
,
5103 "Add original<-inheritance");
5105 lra_process_new_insns (insn
, new_insns
, NULL
,
5106 "Add inheritance<-original");
5107 while (next_usage_insns
!= NULL_RTX
)
5109 if (GET_CODE (next_usage_insns
) != INSN_LIST
)
5111 usage_insn
= next_usage_insns
;
5112 lra_assert (NONDEBUG_INSN_P (usage_insn
));
5113 next_usage_insns
= NULL
;
5117 usage_insn
= XEXP (next_usage_insns
, 0);
5118 lra_assert (DEBUG_INSN_P (usage_insn
));
5119 next_usage_insns
= XEXP (next_usage_insns
, 1);
5121 lra_substitute_pseudo (&usage_insn
, original_regno
, new_reg
, false);
5122 lra_update_insn_regno_info (as_a
<rtx_insn
*> (usage_insn
));
5123 if (lra_dump_file
!= NULL
)
5125 fprintf (lra_dump_file
,
5126 " Inheritance reuse change %d->%d (bb%d):\n",
5127 original_regno
, REGNO (new_reg
),
5128 BLOCK_FOR_INSN (usage_insn
)->index
);
5129 dump_insn_slim (lra_dump_file
, as_a
<rtx_insn
*> (usage_insn
));
5132 if (lra_dump_file
!= NULL
)
5133 fprintf (lra_dump_file
,
5134 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5138 /* Return true if we need a caller save/restore for pseudo REGNO which
5139 was assigned to a hard register. */
5141 need_for_call_save_p (int regno
)
5143 lra_assert (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] >= 0);
5144 return (usage_insns
[regno
].calls_num
< calls_num
5145 && (overlaps_hard_reg_set_p
5147 ! hard_reg_set_empty_p (lra_reg_info
[regno
].actual_call_used_reg_set
))
5148 ? lra_reg_info
[regno
].actual_call_used_reg_set
5149 : call_used_reg_set
,
5150 PSEUDO_REGNO_MODE (regno
), reg_renumber
[regno
])
5151 || HARD_REGNO_CALL_PART_CLOBBERED (reg_renumber
[regno
],
5152 PSEUDO_REGNO_MODE (regno
))));
5155 /* Global registers occurring in the current EBB. */
5156 static bitmap_head ebb_global_regs
;
5158 /* Return true if we need a split for hard register REGNO or pseudo
5159 REGNO which was assigned to a hard register.
5160 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5161 used for reloads since the EBB end. It is an approximation of the
5162 used hard registers in the split range. The exact value would
5163 require expensive calculations. If we were aggressive with
5164 splitting because of the approximation, the split pseudo will save
5165 the same hard register assignment and will be removed in the undo
5166 pass. We still need the approximation because too aggressive
5167 splitting would result in too inaccurate cost calculation in the
5168 assignment pass because of too many generated moves which will be
5169 probably removed in the undo pass. */
5171 need_for_split_p (HARD_REG_SET potential_reload_hard_regs
, int regno
)
5173 int hard_regno
= regno
< FIRST_PSEUDO_REGISTER
? regno
: reg_renumber
[regno
];
5175 lra_assert (hard_regno
>= 0);
5176 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs
, hard_regno
)
5177 /* Don't split eliminable hard registers, otherwise we can
5178 split hard registers like hard frame pointer, which
5179 lives on BB start/end according to DF-infrastructure,
5180 when there is a pseudo assigned to the register and
5181 living in the same BB. */
5182 && (regno
>= FIRST_PSEUDO_REGISTER
5183 || ! TEST_HARD_REG_BIT (eliminable_regset
, hard_regno
))
5184 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs
, hard_regno
)
5185 /* Don't split call clobbered hard regs living through
5186 calls, otherwise we might have a check problem in the
5187 assign sub-pass as in the most cases (exception is a
5188 situation when lra_risky_transformations_p value is
5189 true) the assign pass assumes that all pseudos living
5190 through calls are assigned to call saved hard regs. */
5191 && (regno
>= FIRST_PSEUDO_REGISTER
5192 || ! TEST_HARD_REG_BIT (call_used_reg_set
, regno
)
5193 || usage_insns
[regno
].calls_num
== calls_num
)
5194 /* We need at least 2 reloads to make pseudo splitting
5195 profitable. We should provide hard regno splitting in
5196 any case to solve 1st insn scheduling problem when
5197 moving hard register definition up might result in
5198 impossibility to find hard register for reload pseudo of
5199 small register class. */
5200 && (usage_insns
[regno
].reloads_num
5201 + (regno
< FIRST_PSEUDO_REGISTER
? 0 : 3) < reloads_num
)
5202 && (regno
< FIRST_PSEUDO_REGISTER
5203 /* For short living pseudos, spilling + inheritance can
5204 be considered a substitution for splitting.
5205 Therefore we do not splitting for local pseudos. It
5206 decreases also aggressiveness of splitting. The
5207 minimal number of references is chosen taking into
5208 account that for 2 references splitting has no sense
5209 as we can just spill the pseudo. */
5210 || (regno
>= FIRST_PSEUDO_REGISTER
5211 && lra_reg_info
[regno
].nrefs
> 3
5212 && bitmap_bit_p (&ebb_global_regs
, regno
))))
5213 || (regno
>= FIRST_PSEUDO_REGISTER
&& need_for_call_save_p (regno
)));
5216 /* Return class for the split pseudo created from original pseudo with
5217 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
5218 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5219 results in no secondary memory movements. */
5220 static enum reg_class
5221 choose_split_class (enum reg_class allocno_class
,
5222 int hard_regno ATTRIBUTE_UNUSED
,
5223 machine_mode mode ATTRIBUTE_UNUSED
)
5225 #ifndef SECONDARY_MEMORY_NEEDED
5226 return allocno_class
;
5229 enum reg_class cl
, best_cl
= NO_REGS
;
5230 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5231 = REGNO_REG_CLASS (hard_regno
);
5233 if (! SECONDARY_MEMORY_NEEDED (allocno_class
, allocno_class
, mode
)
5234 && TEST_HARD_REG_BIT (reg_class_contents
[allocno_class
], hard_regno
))
5235 return allocno_class
;
5237 (cl
= reg_class_subclasses
[allocno_class
][i
]) != LIM_REG_CLASSES
;
5239 if (! SECONDARY_MEMORY_NEEDED (cl
, hard_reg_class
, mode
)
5240 && ! SECONDARY_MEMORY_NEEDED (hard_reg_class
, cl
, mode
)
5241 && TEST_HARD_REG_BIT (reg_class_contents
[cl
], hard_regno
)
5242 && (best_cl
== NO_REGS
5243 || ira_class_hard_regs_num
[best_cl
] < ira_class_hard_regs_num
[cl
]))
5249 /* Do split transformations for insn INSN, which defines or uses
5250 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
5251 the EBB next uses ORIGINAL_REGNO; it has the same form as the
5252 "insns" field of usage_insns.
5254 The transformations look like:
5257 ... s <- p (new insn -- save)
5259 ... p <- s (new insn -- restore)
5260 <- ... p ... <- ... p ...
5262 <- ... p ... <- ... p ...
5263 ... s <- p (new insn -- save)
5265 ... p <- s (new insn -- restore)
5266 <- ... p ... <- ... p ...
5268 where p is an original pseudo got a hard register or a hard
5269 register and s is a new split pseudo. The save is put before INSN
5270 if BEFORE_P is true. Return true if we succeed in such
5273 split_reg (bool before_p
, int original_regno
, rtx_insn
*insn
,
5274 rtx next_usage_insns
)
5276 enum reg_class rclass
;
5278 int hard_regno
, nregs
;
5279 rtx new_reg
, usage_insn
;
5280 rtx_insn
*restore
, *save
;
5285 if (original_regno
< FIRST_PSEUDO_REGISTER
)
5287 rclass
= ira_allocno_class_translate
[REGNO_REG_CLASS (original_regno
)];
5288 hard_regno
= original_regno
;
5289 call_save_p
= false;
5291 mode
= lra_reg_info
[hard_regno
].biggest_mode
;
5292 machine_mode reg_rtx_mode
= GET_MODE (regno_reg_rtx
[hard_regno
]);
5293 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5294 as part of a multi-word register. In that case, or if the biggest
5295 mode was larger than a register, just use the reg_rtx. Otherwise,
5296 limit the size to that of the biggest access in the function. */
5297 if (mode
== VOIDmode
5298 || GET_MODE_SIZE (mode
) > GET_MODE_SIZE (reg_rtx_mode
))
5300 original_reg
= regno_reg_rtx
[hard_regno
];
5301 mode
= reg_rtx_mode
;
5304 original_reg
= gen_rtx_REG (mode
, hard_regno
);
5308 mode
= PSEUDO_REGNO_MODE (original_regno
);
5309 hard_regno
= reg_renumber
[original_regno
];
5310 nregs
= hard_regno_nregs
[hard_regno
][mode
];
5311 rclass
= lra_get_allocno_class (original_regno
);
5312 original_reg
= regno_reg_rtx
[original_regno
];
5313 call_save_p
= need_for_call_save_p (original_regno
);
5315 lra_assert (hard_regno
>= 0);
5316 if (lra_dump_file
!= NULL
)
5317 fprintf (lra_dump_file
,
5318 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5322 mode
= HARD_REGNO_CALLER_SAVE_MODE (hard_regno
,
5323 hard_regno_nregs
[hard_regno
][mode
],
5325 new_reg
= lra_create_new_reg (mode
, NULL_RTX
, NO_REGS
, "save");
5329 rclass
= choose_split_class (rclass
, hard_regno
, mode
);
5330 if (rclass
== NO_REGS
)
5332 if (lra_dump_file
!= NULL
)
5334 fprintf (lra_dump_file
,
5335 " Rejecting split of %d(%s): "
5336 "no good reg class for %d(%s)\n",
5338 reg_class_names
[lra_get_allocno_class (original_regno
)],
5340 reg_class_names
[REGNO_REG_CLASS (hard_regno
)]);
5343 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5347 new_reg
= lra_create_new_reg (mode
, original_reg
, rclass
, "split");
5348 reg_renumber
[REGNO (new_reg
)] = hard_regno
;
5350 save
= emit_spill_move (true, new_reg
, original_reg
);
5351 if (NEXT_INSN (save
) != NULL_RTX
&& !call_save_p
)
5353 if (lra_dump_file
!= NULL
)
5357 " Rejecting split %d->%d resulting in > 2 save insns:\n",
5358 original_regno
, REGNO (new_reg
));
5359 dump_rtl_slim (lra_dump_file
, save
, NULL
, -1, 0);
5360 fprintf (lra_dump_file
,
5361 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5365 restore
= emit_spill_move (false, new_reg
, original_reg
);
5366 if (NEXT_INSN (restore
) != NULL_RTX
&& !call_save_p
)
5368 if (lra_dump_file
!= NULL
)
5370 fprintf (lra_dump_file
,
5371 " Rejecting split %d->%d "
5372 "resulting in > 2 restore insns:\n",
5373 original_regno
, REGNO (new_reg
));
5374 dump_rtl_slim (lra_dump_file
, restore
, NULL
, -1, 0);
5375 fprintf (lra_dump_file
,
5376 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5380 after_p
= usage_insns
[original_regno
].after_p
;
5381 lra_reg_info
[REGNO (new_reg
)].restore_rtx
= regno_reg_rtx
[original_regno
];
5382 bitmap_set_bit (&check_only_regs
, REGNO (new_reg
));
5383 bitmap_set_bit (&check_only_regs
, original_regno
);
5384 bitmap_set_bit (&lra_split_regs
, REGNO (new_reg
));
5387 if (GET_CODE (next_usage_insns
) != INSN_LIST
)
5389 usage_insn
= next_usage_insns
;
5392 usage_insn
= XEXP (next_usage_insns
, 0);
5393 lra_assert (DEBUG_INSN_P (usage_insn
));
5394 next_usage_insns
= XEXP (next_usage_insns
, 1);
5395 lra_substitute_pseudo (&usage_insn
, original_regno
, new_reg
, false);
5396 lra_update_insn_regno_info (as_a
<rtx_insn
*> (usage_insn
));
5397 if (lra_dump_file
!= NULL
)
5399 fprintf (lra_dump_file
, " Split reuse change %d->%d:\n",
5400 original_regno
, REGNO (new_reg
));
5401 dump_insn_slim (lra_dump_file
, as_a
<rtx_insn
*> (usage_insn
));
5404 lra_assert (NOTE_P (usage_insn
) || NONDEBUG_INSN_P (usage_insn
));
5405 lra_assert (usage_insn
!= insn
|| (after_p
&& before_p
));
5406 lra_process_new_insns (as_a
<rtx_insn
*> (usage_insn
),
5407 after_p
? NULL
: restore
,
5408 after_p
? restore
: NULL
,
5410 ? "Add reg<-save" : "Add reg<-split");
5411 lra_process_new_insns (insn
, before_p
? save
: NULL
,
5412 before_p
? NULL
: save
,
5414 ? "Add save<-reg" : "Add split<-reg");
5416 /* If we are trying to split multi-register. We should check
5417 conflicts on the next assignment sub-pass. IRA can allocate on
5418 sub-register levels, LRA do this on pseudos level right now and
5419 this discrepancy may create allocation conflicts after
5421 lra_risky_transformations_p
= true;
5422 if (lra_dump_file
!= NULL
)
5423 fprintf (lra_dump_file
,
5424 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5428 /* Recognize that we need a split transformation for insn INSN, which
5429 defines or uses REGNO in its insn biggest MODE (we use it only if
5430 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
5431 hard registers which might be used for reloads since the EBB end.
5432 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
5433 uid before starting INSN processing. Return true if we succeed in
5434 such transformation. */
5436 split_if_necessary (int regno
, machine_mode mode
,
5437 HARD_REG_SET potential_reload_hard_regs
,
5438 bool before_p
, rtx_insn
*insn
, int max_uid
)
5442 rtx next_usage_insns
;
5444 if (regno
< FIRST_PSEUDO_REGISTER
)
5445 nregs
= hard_regno_nregs
[regno
][mode
];
5446 for (i
= 0; i
< nregs
; i
++)
5447 if (usage_insns
[regno
+ i
].check
== curr_usage_insns_check
5448 && (next_usage_insns
= usage_insns
[regno
+ i
].insns
) != NULL_RTX
5449 /* To avoid processing the register twice or more. */
5450 && ((GET_CODE (next_usage_insns
) != INSN_LIST
5451 && INSN_UID (next_usage_insns
) < max_uid
)
5452 || (GET_CODE (next_usage_insns
) == INSN_LIST
5453 && (INSN_UID (XEXP (next_usage_insns
, 0)) < max_uid
)))
5454 && need_for_split_p (potential_reload_hard_regs
, regno
+ i
)
5455 && split_reg (before_p
, regno
+ i
, insn
, next_usage_insns
))
5460 /* Return TRUE if rtx X is considered as an invariant for
5463 invariant_p (const_rtx x
)
5470 code
= GET_CODE (x
);
5471 mode
= GET_MODE (x
);
5475 code
= GET_CODE (x
);
5476 if (GET_MODE_SIZE (GET_MODE (x
)) > GET_MODE_SIZE (mode
))
5477 mode
= GET_MODE (x
);
5485 int i
, nregs
, regno
= REGNO (x
);
5487 if (regno
>= FIRST_PSEUDO_REGISTER
|| regno
== STACK_POINTER_REGNUM
5488 || TEST_HARD_REG_BIT (eliminable_regset
, regno
)
5489 || GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
)
5491 nregs
= hard_regno_nregs
[regno
][mode
];
5492 for (i
= 0; i
< nregs
; i
++)
5493 if (! fixed_regs
[regno
+ i
]
5494 /* A hard register may be clobbered in the current insn
5495 but we can ignore this case because if the hard
5496 register is used it should be set somewhere after the
5498 || bitmap_bit_p (&invalid_invariant_regs
, regno
+ i
))
5501 fmt
= GET_RTX_FORMAT (code
);
5502 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5506 if (! invariant_p (XEXP (x
, i
)))
5509 else if (fmt
[i
] == 'E')
5511 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5512 if (! invariant_p (XVECEXP (x
, i
, j
)))
5519 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
5520 inheritance transformation (using dest_reg instead invariant in a
5521 subsequent insn). */
5523 process_invariant_for_inheritance (rtx dst_reg
, rtx invariant_rtx
)
5525 invariant_ptr_t invariant_ptr
;
5526 rtx_insn
*insn
, *new_insns
;
5527 rtx insn_set
, insn_reg
, new_reg
;
5529 bool succ_p
= false;
5530 int dst_regno
= REGNO (dst_reg
);
5531 enum machine_mode dst_mode
= GET_MODE (dst_reg
);
5532 enum reg_class cl
= lra_get_allocno_class (dst_regno
), insn_reg_cl
;
5534 invariant_ptr
= insert_invariant (invariant_rtx
);
5535 if ((insn
= invariant_ptr
->insn
) != NULL_RTX
)
5537 /* We have a subsequent insn using the invariant. */
5538 insn_set
= single_set (insn
);
5539 lra_assert (insn_set
!= NULL
);
5540 insn_reg
= SET_DEST (insn_set
);
5541 lra_assert (REG_P (insn_reg
));
5542 insn_regno
= REGNO (insn_reg
);
5543 insn_reg_cl
= lra_get_allocno_class (insn_regno
);
5545 if (dst_mode
== GET_MODE (insn_reg
)
5546 /* We should consider only result move reg insns which are
5548 && targetm
.register_move_cost (dst_mode
, cl
, insn_reg_cl
) == 2
5549 && targetm
.register_move_cost (dst_mode
, cl
, cl
) == 2)
5551 if (lra_dump_file
!= NULL
)
5552 fprintf (lra_dump_file
,
5553 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
5554 new_reg
= lra_create_new_reg (dst_mode
, dst_reg
,
5555 cl
, "invariant inheritance");
5556 bitmap_set_bit (&lra_inheritance_pseudos
, REGNO (new_reg
));
5557 bitmap_set_bit (&check_only_regs
, REGNO (new_reg
));
5558 lra_reg_info
[REGNO (new_reg
)].restore_rtx
= PATTERN (insn
);
5560 lra_emit_move (new_reg
, dst_reg
);
5561 new_insns
= get_insns ();
5563 lra_process_new_insns (curr_insn
, NULL
, new_insns
,
5564 "Add invariant inheritance<-original");
5566 lra_emit_move (SET_DEST (insn_set
), new_reg
);
5567 new_insns
= get_insns ();
5569 lra_process_new_insns (insn
, NULL
, new_insns
,
5570 "Changing reload<-inheritance");
5571 lra_set_insn_deleted (insn
);
5573 if (lra_dump_file
!= NULL
)
5575 fprintf (lra_dump_file
,
5576 " Invariant inheritance reuse change %d (bb%d):\n",
5577 REGNO (new_reg
), BLOCK_FOR_INSN (insn
)->index
);
5578 dump_insn_slim (lra_dump_file
, insn
);
5579 fprintf (lra_dump_file
,
5580 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
5584 invariant_ptr
->insn
= curr_insn
;
5588 /* Check only registers living at the current program point in the
5590 static bitmap_head live_regs
;
5592 /* Update live info in EBB given by its HEAD and TAIL insns after
5593 inheritance/split transformation. The function removes dead moves
5596 update_ebb_live_info (rtx_insn
*head
, rtx_insn
*tail
)
5601 rtx_insn
*prev_insn
;
5604 basic_block last_bb
, prev_bb
, curr_bb
;
5606 struct lra_insn_reg
*reg
;
5610 last_bb
= BLOCK_FOR_INSN (tail
);
5612 for (curr_insn
= tail
;
5613 curr_insn
!= PREV_INSN (head
);
5614 curr_insn
= prev_insn
)
5616 prev_insn
= PREV_INSN (curr_insn
);
5617 /* We need to process empty blocks too. They contain
5618 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
5619 if (NOTE_P (curr_insn
) && NOTE_KIND (curr_insn
) != NOTE_INSN_BASIC_BLOCK
)
5621 curr_bb
= BLOCK_FOR_INSN (curr_insn
);
5622 if (curr_bb
!= prev_bb
)
5624 if (prev_bb
!= NULL
)
5626 /* Update df_get_live_in (prev_bb): */
5627 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs
, 0, j
, bi
)
5628 if (bitmap_bit_p (&live_regs
, j
))
5629 bitmap_set_bit (df_get_live_in (prev_bb
), j
);
5631 bitmap_clear_bit (df_get_live_in (prev_bb
), j
);
5633 if (curr_bb
!= last_bb
)
5635 /* Update df_get_live_out (curr_bb): */
5636 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs
, 0, j
, bi
)
5638 live_p
= bitmap_bit_p (&live_regs
, j
);
5640 FOR_EACH_EDGE (e
, ei
, curr_bb
->succs
)
5641 if (bitmap_bit_p (df_get_live_in (e
->dest
), j
))
5647 bitmap_set_bit (df_get_live_out (curr_bb
), j
);
5649 bitmap_clear_bit (df_get_live_out (curr_bb
), j
);
5653 bitmap_and (&live_regs
, &check_only_regs
, df_get_live_out (curr_bb
));
5655 if (! NONDEBUG_INSN_P (curr_insn
))
5657 curr_id
= lra_get_insn_recog_data (curr_insn
);
5658 curr_static_id
= curr_id
->insn_static_data
;
5660 if ((set
= single_set (curr_insn
)) != NULL_RTX
5661 && REG_P (SET_DEST (set
))
5662 && (regno
= REGNO (SET_DEST (set
))) >= FIRST_PSEUDO_REGISTER
5663 && SET_DEST (set
) != pic_offset_table_rtx
5664 && bitmap_bit_p (&check_only_regs
, regno
)
5665 && ! bitmap_bit_p (&live_regs
, regno
))
5667 /* See which defined values die here. */
5668 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
5669 if (reg
->type
== OP_OUT
&& ! reg
->subreg_p
)
5670 bitmap_clear_bit (&live_regs
, reg
->regno
);
5671 for (reg
= curr_static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
5672 if (reg
->type
== OP_OUT
&& ! reg
->subreg_p
)
5673 bitmap_clear_bit (&live_regs
, reg
->regno
);
5674 if (curr_id
->arg_hard_regs
!= NULL
)
5675 /* Make clobbered argument hard registers die. */
5676 for (i
= 0; (regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
5677 if (regno
>= FIRST_PSEUDO_REGISTER
)
5678 bitmap_clear_bit (&live_regs
, regno
- FIRST_PSEUDO_REGISTER
);
5679 /* Mark each used value as live. */
5680 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
5681 if (reg
->type
!= OP_OUT
5682 && bitmap_bit_p (&check_only_regs
, reg
->regno
))
5683 bitmap_set_bit (&live_regs
, reg
->regno
);
5684 for (reg
= curr_static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
5685 if (reg
->type
!= OP_OUT
5686 && bitmap_bit_p (&check_only_regs
, reg
->regno
))
5687 bitmap_set_bit (&live_regs
, reg
->regno
);
5688 if (curr_id
->arg_hard_regs
!= NULL
)
5689 /* Make used argument hard registers live. */
5690 for (i
= 0; (regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
5691 if (regno
< FIRST_PSEUDO_REGISTER
5692 && bitmap_bit_p (&check_only_regs
, regno
))
5693 bitmap_set_bit (&live_regs
, regno
);
5694 /* It is quite important to remove dead move insns because it
5695 means removing dead store. We don't need to process them for
5699 if (lra_dump_file
!= NULL
)
5701 fprintf (lra_dump_file
, " Removing dead insn:\n ");
5702 dump_insn_slim (lra_dump_file
, curr_insn
);
5704 lra_set_insn_deleted (curr_insn
);
5709 /* The structure describes info to do an inheritance for the current
5710 insn. We need to collect such info first before doing the
5711 transformations because the transformations change the insn
5712 internal representation. */
5715 /* Original regno. */
5717 /* Subsequent insns which can inherit original reg value. */
5721 /* Array containing all info for doing inheritance from the current
5723 static struct to_inherit to_inherit
[LRA_MAX_INSN_RELOADS
];
5725 /* Number elements in the previous array. */
5726 static int to_inherit_num
;
5728 /* Add inheritance info REGNO and INSNS. Their meaning is described in
5729 structure to_inherit. */
5731 add_to_inherit (int regno
, rtx insns
)
5735 for (i
= 0; i
< to_inherit_num
; i
++)
5736 if (to_inherit
[i
].regno
== regno
)
5738 lra_assert (to_inherit_num
< LRA_MAX_INSN_RELOADS
);
5739 to_inherit
[to_inherit_num
].regno
= regno
;
5740 to_inherit
[to_inherit_num
++].insns
= insns
;
5743 /* Return the last non-debug insn in basic block BB, or the block begin
5746 get_last_insertion_point (basic_block bb
)
5750 FOR_BB_INSNS_REVERSE (bb
, insn
)
5751 if (NONDEBUG_INSN_P (insn
) || NOTE_INSN_BASIC_BLOCK_P (insn
))
5756 /* Set up RES by registers living on edges FROM except the edge (FROM,
5757 TO) or by registers set up in a jump insn in BB FROM. */
5759 get_live_on_other_edges (basic_block from
, basic_block to
, bitmap res
)
5762 struct lra_insn_reg
*reg
;
5766 lra_assert (to
!= NULL
);
5768 FOR_EACH_EDGE (e
, ei
, from
->succs
)
5770 bitmap_ior_into (res
, df_get_live_in (e
->dest
));
5771 last
= get_last_insertion_point (from
);
5772 if (! JUMP_P (last
))
5774 curr_id
= lra_get_insn_recog_data (last
);
5775 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
5776 if (reg
->type
!= OP_IN
)
5777 bitmap_set_bit (res
, reg
->regno
);
5780 /* Used as a temporary results of some bitmap calculations. */
5781 static bitmap_head temp_bitmap
;
5783 /* We split for reloads of small class of hard regs. The following
5784 defines how many hard regs the class should have to be qualified as
5785 small. The code is mostly oriented to x86/x86-64 architecture
5786 where some insns need to use only specific register or pair of
5787 registers and these register can live in RTL explicitly, e.g. for
5788 parameter passing. */
5789 static const int max_small_class_regs_num
= 2;
5791 /* Do inheritance/split transformations in EBB starting with HEAD and
5792 finishing on TAIL. We process EBB insns in the reverse order.
5793 Return true if we did any inheritance/split transformation in the
5796 We should avoid excessive splitting which results in worse code
5797 because of inaccurate cost calculations for spilling new split
5798 pseudos in such case. To achieve this we do splitting only if
5799 register pressure is high in given basic block and there are reload
5800 pseudos requiring hard registers. We could do more register
5801 pressure calculations at any given program point to avoid necessary
5802 splitting even more but it is to expensive and the current approach
5803 works well enough. */
5805 inherit_in_ebb (rtx_insn
*head
, rtx_insn
*tail
)
5807 int i
, src_regno
, dst_regno
, nregs
;
5808 bool change_p
, succ_p
, update_reloads_num_p
;
5809 rtx_insn
*prev_insn
, *last_insn
;
5810 rtx next_usage_insns
, curr_set
;
5812 struct lra_insn_reg
*reg
;
5813 basic_block last_processed_bb
, curr_bb
= NULL
;
5814 HARD_REG_SET potential_reload_hard_regs
, live_hard_regs
;
5818 bool head_p
, after_p
;
5821 curr_usage_insns_check
++;
5822 clear_invariants ();
5823 reloads_num
= calls_num
= 0;
5824 bitmap_clear (&check_only_regs
);
5825 bitmap_clear (&invalid_invariant_regs
);
5826 last_processed_bb
= NULL
;
5827 CLEAR_HARD_REG_SET (potential_reload_hard_regs
);
5828 COPY_HARD_REG_SET (live_hard_regs
, eliminable_regset
);
5829 IOR_HARD_REG_SET (live_hard_regs
, lra_no_alloc_regs
);
5830 /* We don't process new insns generated in the loop. */
5831 for (curr_insn
= tail
; curr_insn
!= PREV_INSN (head
); curr_insn
= prev_insn
)
5833 prev_insn
= PREV_INSN (curr_insn
);
5834 if (BLOCK_FOR_INSN (curr_insn
) != NULL
)
5835 curr_bb
= BLOCK_FOR_INSN (curr_insn
);
5836 if (last_processed_bb
!= curr_bb
)
5838 /* We are at the end of BB. Add qualified living
5839 pseudos for potential splitting. */
5840 to_process
= df_get_live_out (curr_bb
);
5841 if (last_processed_bb
!= NULL
)
5843 /* We are somewhere in the middle of EBB. */
5844 get_live_on_other_edges (curr_bb
, last_processed_bb
,
5846 to_process
= &temp_bitmap
;
5848 last_processed_bb
= curr_bb
;
5849 last_insn
= get_last_insertion_point (curr_bb
);
5850 after_p
= (! JUMP_P (last_insn
)
5851 && (! CALL_P (last_insn
)
5852 || (find_reg_note (last_insn
,
5853 REG_NORETURN
, NULL_RTX
) == NULL_RTX
5854 && ! SIBLING_CALL_P (last_insn
))));
5855 CLEAR_HARD_REG_SET (potential_reload_hard_regs
);
5856 EXECUTE_IF_SET_IN_BITMAP (to_process
, 0, j
, bi
)
5858 if ((int) j
>= lra_constraint_new_regno_start
)
5860 if (j
< FIRST_PSEUDO_REGISTER
|| reg_renumber
[j
] >= 0)
5862 if (j
< FIRST_PSEUDO_REGISTER
)
5863 SET_HARD_REG_BIT (live_hard_regs
, j
);
5865 add_to_hard_reg_set (&live_hard_regs
,
5866 PSEUDO_REGNO_MODE (j
),
5868 setup_next_usage_insn (j
, last_insn
, reloads_num
, after_p
);
5872 src_regno
= dst_regno
= -1;
5873 curr_set
= single_set (curr_insn
);
5874 if (curr_set
!= NULL_RTX
&& REG_P (SET_DEST (curr_set
)))
5875 dst_regno
= REGNO (SET_DEST (curr_set
));
5876 if (curr_set
!= NULL_RTX
&& REG_P (SET_SRC (curr_set
)))
5877 src_regno
= REGNO (SET_SRC (curr_set
));
5878 update_reloads_num_p
= true;
5879 if (src_regno
< lra_constraint_new_regno_start
5880 && src_regno
>= FIRST_PSEUDO_REGISTER
5881 && reg_renumber
[src_regno
] < 0
5882 && dst_regno
>= lra_constraint_new_regno_start
5883 && (cl
= lra_get_allocno_class (dst_regno
)) != NO_REGS
)
5885 /* 'reload_pseudo <- original_pseudo'. */
5886 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
5888 update_reloads_num_p
= false;
5890 if (usage_insns
[src_regno
].check
== curr_usage_insns_check
5891 && (next_usage_insns
= usage_insns
[src_regno
].insns
) != NULL_RTX
)
5892 succ_p
= inherit_reload_reg (false, src_regno
, cl
,
5893 curr_insn
, next_usage_insns
);
5897 setup_next_usage_insn (src_regno
, curr_insn
, reloads_num
, false);
5898 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
5899 IOR_HARD_REG_SET (potential_reload_hard_regs
,
5900 reg_class_contents
[cl
]);
5902 else if (src_regno
< 0
5903 && dst_regno
>= lra_constraint_new_regno_start
5904 && invariant_p (SET_SRC (curr_set
))
5905 && (cl
= lra_get_allocno_class (dst_regno
)) != NO_REGS
5906 && ! bitmap_bit_p (&invalid_invariant_regs
, dst_regno
)
5907 && ! bitmap_bit_p (&invalid_invariant_regs
,
5908 ORIGINAL_REGNO(regno_reg_rtx
[dst_regno
])))
5910 /* 'reload_pseudo <- invariant'. */
5911 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
5913 update_reloads_num_p
= false;
5914 if (process_invariant_for_inheritance (SET_DEST (curr_set
), SET_SRC (curr_set
)))
5916 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
5917 IOR_HARD_REG_SET (potential_reload_hard_regs
,
5918 reg_class_contents
[cl
]);
5920 else if (src_regno
>= lra_constraint_new_regno_start
5921 && dst_regno
< lra_constraint_new_regno_start
5922 && dst_regno
>= FIRST_PSEUDO_REGISTER
5923 && reg_renumber
[dst_regno
] < 0
5924 && (cl
= lra_get_allocno_class (src_regno
)) != NO_REGS
5925 && usage_insns
[dst_regno
].check
== curr_usage_insns_check
5926 && (next_usage_insns
5927 = usage_insns
[dst_regno
].insns
) != NULL_RTX
)
5929 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
5931 update_reloads_num_p
= false;
5932 /* 'original_pseudo <- reload_pseudo'. */
5933 if (! JUMP_P (curr_insn
)
5934 && inherit_reload_reg (true, dst_regno
, cl
,
5935 curr_insn
, next_usage_insns
))
5938 usage_insns
[dst_regno
].check
= 0;
5939 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
5940 IOR_HARD_REG_SET (potential_reload_hard_regs
,
5941 reg_class_contents
[cl
]);
5943 else if (INSN_P (curr_insn
))
5946 int max_uid
= get_max_uid ();
5948 curr_id
= lra_get_insn_recog_data (curr_insn
);
5949 curr_static_id
= curr_id
->insn_static_data
;
5951 /* Process insn definitions. */
5952 for (iter
= 0; iter
< 2; iter
++)
5953 for (reg
= iter
== 0 ? curr_id
->regs
: curr_static_id
->hard_regs
;
5956 if (reg
->type
!= OP_IN
5957 && (dst_regno
= reg
->regno
) < lra_constraint_new_regno_start
)
5959 if (dst_regno
>= FIRST_PSEUDO_REGISTER
&& reg
->type
== OP_OUT
5960 && reg_renumber
[dst_regno
] < 0 && ! reg
->subreg_p
5961 && usage_insns
[dst_regno
].check
== curr_usage_insns_check
5962 && (next_usage_insns
5963 = usage_insns
[dst_regno
].insns
) != NULL_RTX
)
5965 struct lra_insn_reg
*r
;
5967 for (r
= curr_id
->regs
; r
!= NULL
; r
= r
->next
)
5968 if (r
->type
!= OP_OUT
&& r
->regno
== dst_regno
)
5970 /* Don't do inheritance if the pseudo is also
5971 used in the insn. */
5973 /* We can not do inheritance right now
5974 because the current insn reg info (chain
5975 regs) can change after that. */
5976 add_to_inherit (dst_regno
, next_usage_insns
);
5978 /* We can not process one reg twice here because of
5979 usage_insns invalidation. */
5980 if ((dst_regno
< FIRST_PSEUDO_REGISTER
5981 || reg_renumber
[dst_regno
] >= 0)
5982 && ! reg
->subreg_p
&& reg
->type
!= OP_IN
)
5986 if (split_if_necessary (dst_regno
, reg
->biggest_mode
,
5987 potential_reload_hard_regs
,
5988 false, curr_insn
, max_uid
))
5990 CLEAR_HARD_REG_SET (s
);
5991 if (dst_regno
< FIRST_PSEUDO_REGISTER
)
5992 add_to_hard_reg_set (&s
, reg
->biggest_mode
, dst_regno
);
5994 add_to_hard_reg_set (&s
, PSEUDO_REGNO_MODE (dst_regno
),
5995 reg_renumber
[dst_regno
]);
5996 AND_COMPL_HARD_REG_SET (live_hard_regs
, s
);
5998 /* We should invalidate potential inheritance or
5999 splitting for the current insn usages to the next
6000 usage insns (see code below) as the output pseudo
6002 if ((dst_regno
>= FIRST_PSEUDO_REGISTER
6003 && reg_renumber
[dst_regno
] < 0)
6004 || (reg
->type
== OP_OUT
&& ! reg
->subreg_p
6005 && (dst_regno
< FIRST_PSEUDO_REGISTER
6006 || reg_renumber
[dst_regno
] >= 0)))
6008 /* Invalidate and mark definitions. */
6009 if (dst_regno
>= FIRST_PSEUDO_REGISTER
)
6010 usage_insns
[dst_regno
].check
= -(int) INSN_UID (curr_insn
);
6013 nregs
= hard_regno_nregs
[dst_regno
][reg
->biggest_mode
];
6014 for (i
= 0; i
< nregs
; i
++)
6015 usage_insns
[dst_regno
+ i
].check
6016 = -(int) INSN_UID (curr_insn
);
6020 /* Process clobbered call regs. */
6021 if (curr_id
->arg_hard_regs
!= NULL
)
6022 for (i
= 0; (dst_regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
6023 if (dst_regno
>= FIRST_PSEUDO_REGISTER
)
6024 usage_insns
[dst_regno
- FIRST_PSEUDO_REGISTER
].check
6025 = -(int) INSN_UID (curr_insn
);
6026 if (! JUMP_P (curr_insn
))
6027 for (i
= 0; i
< to_inherit_num
; i
++)
6028 if (inherit_reload_reg (true, to_inherit
[i
].regno
,
6029 ALL_REGS
, curr_insn
,
6030 to_inherit
[i
].insns
))
6032 if (CALL_P (curr_insn
))
6034 rtx cheap
, pat
, dest
;
6036 int regno
, hard_regno
;
6039 if ((cheap
= find_reg_note (curr_insn
,
6040 REG_RETURNED
, NULL_RTX
)) != NULL_RTX
6041 && ((cheap
= XEXP (cheap
, 0)), true)
6042 && (regno
= REGNO (cheap
)) >= FIRST_PSEUDO_REGISTER
6043 && (hard_regno
= reg_renumber
[regno
]) >= 0
6044 /* If there are pending saves/restores, the
6045 optimization is not worth. */
6046 && usage_insns
[regno
].calls_num
== calls_num
- 1
6047 && TEST_HARD_REG_BIT (call_used_reg_set
, hard_regno
))
6049 /* Restore the pseudo from the call result as
6050 REG_RETURNED note says that the pseudo value is
6051 in the call result and the pseudo is an argument
6053 pat
= PATTERN (curr_insn
);
6054 if (GET_CODE (pat
) == PARALLEL
)
6055 pat
= XVECEXP (pat
, 0, 0);
6056 dest
= SET_DEST (pat
);
6057 /* For multiple return values dest is PARALLEL.
6058 Currently we handle only single return value case. */
6062 emit_move_insn (cheap
, copy_rtx (dest
));
6063 restore
= get_insns ();
6065 lra_process_new_insns (curr_insn
, NULL
, restore
,
6066 "Inserting call parameter restore");
6067 /* We don't need to save/restore of the pseudo from
6069 usage_insns
[regno
].calls_num
= calls_num
;
6070 bitmap_set_bit (&check_only_regs
, regno
);
6075 /* Process insn usages. */
6076 for (iter
= 0; iter
< 2; iter
++)
6077 for (reg
= iter
== 0 ? curr_id
->regs
: curr_static_id
->hard_regs
;
6080 if ((reg
->type
!= OP_OUT
6081 || (reg
->type
== OP_OUT
&& reg
->subreg_p
))
6082 && (src_regno
= reg
->regno
) < lra_constraint_new_regno_start
)
6084 if (src_regno
>= FIRST_PSEUDO_REGISTER
6085 && reg_renumber
[src_regno
] < 0 && reg
->type
== OP_IN
)
6087 if (usage_insns
[src_regno
].check
== curr_usage_insns_check
6088 && (next_usage_insns
6089 = usage_insns
[src_regno
].insns
) != NULL_RTX
6090 && NONDEBUG_INSN_P (curr_insn
))
6091 add_to_inherit (src_regno
, next_usage_insns
);
6092 else if (usage_insns
[src_regno
].check
6093 != -(int) INSN_UID (curr_insn
))
6094 /* Add usages but only if the reg is not set up
6095 in the same insn. */
6096 add_next_usage_insn (src_regno
, curr_insn
, reloads_num
);
6098 else if (src_regno
< FIRST_PSEUDO_REGISTER
6099 || reg_renumber
[src_regno
] >= 0)
6102 rtx_insn
*use_insn
= curr_insn
;
6104 before_p
= (JUMP_P (curr_insn
)
6105 || (CALL_P (curr_insn
) && reg
->type
== OP_IN
));
6106 if (NONDEBUG_INSN_P (curr_insn
)
6107 && (! JUMP_P (curr_insn
) || reg
->type
== OP_IN
)
6108 && split_if_necessary (src_regno
, reg
->biggest_mode
,
6109 potential_reload_hard_regs
,
6110 before_p
, curr_insn
, max_uid
))
6113 lra_risky_transformations_p
= true;
6116 usage_insns
[src_regno
].check
= 0;
6118 use_insn
= PREV_INSN (curr_insn
);
6120 if (NONDEBUG_INSN_P (curr_insn
))
6122 if (src_regno
< FIRST_PSEUDO_REGISTER
)
6123 add_to_hard_reg_set (&live_hard_regs
,
6124 reg
->biggest_mode
, src_regno
);
6126 add_to_hard_reg_set (&live_hard_regs
,
6127 PSEUDO_REGNO_MODE (src_regno
),
6128 reg_renumber
[src_regno
]);
6130 add_next_usage_insn (src_regno
, use_insn
, reloads_num
);
6133 /* Process used call regs. */
6134 if (curr_id
->arg_hard_regs
!= NULL
)
6135 for (i
= 0; (src_regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
6136 if (src_regno
< FIRST_PSEUDO_REGISTER
)
6138 SET_HARD_REG_BIT (live_hard_regs
, src_regno
);
6139 add_next_usage_insn (src_regno
, curr_insn
, reloads_num
);
6141 for (i
= 0; i
< to_inherit_num
; i
++)
6143 src_regno
= to_inherit
[i
].regno
;
6144 if (inherit_reload_reg (false, src_regno
, ALL_REGS
,
6145 curr_insn
, to_inherit
[i
].insns
))
6148 setup_next_usage_insn (src_regno
, curr_insn
, reloads_num
, false);
6151 if (update_reloads_num_p
6152 && NONDEBUG_INSN_P (curr_insn
) && curr_set
!= NULL_RTX
)
6155 if ((REG_P (SET_DEST (curr_set
))
6156 && (regno
= REGNO (SET_DEST (curr_set
))) >= lra_constraint_new_regno_start
6157 && reg_renumber
[regno
] < 0
6158 && (cl
= lra_get_allocno_class (regno
)) != NO_REGS
)
6159 || (REG_P (SET_SRC (curr_set
))
6160 && (regno
= REGNO (SET_SRC (curr_set
))) >= lra_constraint_new_regno_start
6161 && reg_renumber
[regno
] < 0
6162 && (cl
= lra_get_allocno_class (regno
)) != NO_REGS
))
6164 if (ira_class_hard_regs_num
[cl
] <= max_small_class_regs_num
)
6166 if (hard_reg_set_subset_p (reg_class_contents
[cl
], live_hard_regs
))
6167 IOR_HARD_REG_SET (potential_reload_hard_regs
,
6168 reg_class_contents
[cl
]);
6171 if (NONDEBUG_INSN_P (curr_insn
))
6175 /* Invalidate invariants with changed regs. */
6176 curr_id
= lra_get_insn_recog_data (curr_insn
);
6177 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
6178 if (reg
->type
!= OP_IN
)
6180 bitmap_set_bit (&invalid_invariant_regs
, reg
->regno
);
6181 bitmap_set_bit (&invalid_invariant_regs
,
6182 ORIGINAL_REGNO (regno_reg_rtx
[reg
->regno
]));
6184 curr_static_id
= curr_id
->insn_static_data
;
6185 for (reg
= curr_static_id
->hard_regs
; reg
!= NULL
; reg
= reg
->next
)
6186 if (reg
->type
!= OP_IN
)
6187 bitmap_set_bit (&invalid_invariant_regs
, reg
->regno
);
6188 if (curr_id
->arg_hard_regs
!= NULL
)
6189 for (i
= 0; (regno
= curr_id
->arg_hard_regs
[i
]) >= 0; i
++)
6190 if (regno
>= FIRST_PSEUDO_REGISTER
)
6191 bitmap_set_bit (&invalid_invariant_regs
,
6192 regno
- FIRST_PSEUDO_REGISTER
);
6194 /* We reached the start of the current basic block. */
6195 if (prev_insn
== NULL_RTX
|| prev_insn
== PREV_INSN (head
)
6196 || BLOCK_FOR_INSN (prev_insn
) != curr_bb
)
6198 /* We reached the beginning of the current block -- do
6199 rest of spliting in the current BB. */
6200 to_process
= df_get_live_in (curr_bb
);
6201 if (BLOCK_FOR_INSN (head
) != curr_bb
)
6203 /* We are somewhere in the middle of EBB. */
6204 get_live_on_other_edges (EDGE_PRED (curr_bb
, 0)->src
,
6205 curr_bb
, &temp_bitmap
);
6206 to_process
= &temp_bitmap
;
6209 EXECUTE_IF_SET_IN_BITMAP (to_process
, 0, j
, bi
)
6211 if ((int) j
>= lra_constraint_new_regno_start
)
6213 if (((int) j
< FIRST_PSEUDO_REGISTER
|| reg_renumber
[j
] >= 0)
6214 && usage_insns
[j
].check
== curr_usage_insns_check
6215 && (next_usage_insns
= usage_insns
[j
].insns
) != NULL_RTX
)
6217 if (need_for_split_p (potential_reload_hard_regs
, j
))
6219 if (lra_dump_file
!= NULL
&& head_p
)
6221 fprintf (lra_dump_file
,
6222 " ----------------------------------\n");
6225 if (split_reg (false, j
, bb_note (curr_bb
),
6229 usage_insns
[j
].check
= 0;
6237 /* This value affects EBB forming. If probability of edge from EBB to
6238 a BB is not greater than the following value, we don't add the BB
6240 #define EBB_PROBABILITY_CUTOFF \
6241 ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
6243 /* Current number of inheritance/split iteration. */
6244 int lra_inheritance_iter
;
6246 /* Entry function for inheritance/split pass. */
6248 lra_inheritance (void)
6251 basic_block bb
, start_bb
;
6254 lra_inheritance_iter
++;
6255 if (lra_inheritance_iter
> LRA_MAX_INHERITANCE_PASSES
)
6257 timevar_push (TV_LRA_INHERITANCE
);
6258 if (lra_dump_file
!= NULL
)
6259 fprintf (lra_dump_file
, "\n********** Inheritance #%d: **********\n\n",
6260 lra_inheritance_iter
);
6261 curr_usage_insns_check
= 0;
6262 usage_insns
= XNEWVEC (struct usage_insns
, lra_constraint_new_regno_start
);
6263 for (i
= 0; i
< lra_constraint_new_regno_start
; i
++)
6264 usage_insns
[i
].check
= 0;
6265 bitmap_initialize (&check_only_regs
, ®_obstack
);
6266 bitmap_initialize (&invalid_invariant_regs
, ®_obstack
);
6267 bitmap_initialize (&live_regs
, ®_obstack
);
6268 bitmap_initialize (&temp_bitmap
, ®_obstack
);
6269 bitmap_initialize (&ebb_global_regs
, ®_obstack
);
6270 FOR_EACH_BB_FN (bb
, cfun
)
6273 if (lra_dump_file
!= NULL
)
6274 fprintf (lra_dump_file
, "EBB");
6275 /* Form a EBB starting with BB. */
6276 bitmap_clear (&ebb_global_regs
);
6277 bitmap_ior_into (&ebb_global_regs
, df_get_live_in (bb
));
6280 if (lra_dump_file
!= NULL
)
6281 fprintf (lra_dump_file
, " %d", bb
->index
);
6282 if (bb
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
6283 || LABEL_P (BB_HEAD (bb
->next_bb
)))
6285 e
= find_fallthru_edge (bb
->succs
);
6288 if (e
->probability
< EBB_PROBABILITY_CUTOFF
)
6292 bitmap_ior_into (&ebb_global_regs
, df_get_live_out (bb
));
6293 if (lra_dump_file
!= NULL
)
6294 fprintf (lra_dump_file
, "\n");
6295 if (inherit_in_ebb (BB_HEAD (start_bb
), BB_END (bb
)))
6296 /* Remember that the EBB head and tail can change in
6298 update_ebb_live_info (BB_HEAD (start_bb
), BB_END (bb
));
6300 bitmap_clear (&ebb_global_regs
);
6301 bitmap_clear (&temp_bitmap
);
6302 bitmap_clear (&live_regs
);
6303 bitmap_clear (&invalid_invariant_regs
);
6304 bitmap_clear (&check_only_regs
);
6307 timevar_pop (TV_LRA_INHERITANCE
);
6312 /* This page contains code to undo failed inheritance/split
6315 /* Current number of iteration undoing inheritance/split. */
6316 int lra_undo_inheritance_iter
;
6318 /* Fix BB live info LIVE after removing pseudos created on pass doing
6319 inheritance/split which are REMOVED_PSEUDOS. */
6321 fix_bb_live_info (bitmap live
, bitmap removed_pseudos
)
6326 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos
, 0, regno
, bi
)
6327 if (bitmap_clear_bit (live
, regno
)
6328 && REG_P (lra_reg_info
[regno
].restore_rtx
))
6329 bitmap_set_bit (live
, REGNO (lra_reg_info
[regno
].restore_rtx
));
6332 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6337 if (GET_CODE (reg
) == SUBREG
)
6338 reg
= SUBREG_REG (reg
);
6344 /* Delete a move INSN with destination reg DREGNO and a previous
6345 clobber insn with the same regno. The inheritance/split code can
6346 generate moves with preceding clobber and when we delete such moves
6347 we should delete the clobber insn too to keep the correct life
6350 delete_move_and_clobber (rtx_insn
*insn
, int dregno
)
6352 rtx_insn
*prev_insn
= PREV_INSN (insn
);
6354 lra_set_insn_deleted (insn
);
6355 lra_assert (dregno
>= 0);
6356 if (prev_insn
!= NULL
&& NONDEBUG_INSN_P (prev_insn
)
6357 && GET_CODE (PATTERN (prev_insn
)) == CLOBBER
6358 && dregno
== get_regno (XEXP (PATTERN (prev_insn
), 0)))
6359 lra_set_insn_deleted (prev_insn
);
6362 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6363 return true if we did any change. The undo transformations for
6364 inheritance looks like
6368 p <- i, i <- p, and i <- i3
6369 where p is original pseudo from which inheritance pseudo i was
6370 created, i and i3 are removed inheritance pseudos, i2 is another
6371 not removed inheritance pseudo. All split pseudos or other
6372 occurrences of removed inheritance pseudos are changed on the
6373 corresponding original pseudos.
6375 The function also schedules insns changed and created during
6376 inheritance/split pass for processing by the subsequent constraint
6379 remove_inheritance_pseudos (bitmap remove_pseudos
)
6382 int regno
, sregno
, prev_sregno
, dregno
;
6385 rtx_insn
*prev_insn
;
6386 bool change_p
, done_p
;
6388 change_p
= ! bitmap_empty_p (remove_pseudos
);
6389 /* We can not finish the function right away if CHANGE_P is true
6390 because we need to marks insns affected by previous
6391 inheritance/split pass for processing by the subsequent
6393 FOR_EACH_BB_FN (bb
, cfun
)
6395 fix_bb_live_info (df_get_live_in (bb
), remove_pseudos
);
6396 fix_bb_live_info (df_get_live_out (bb
), remove_pseudos
);
6397 FOR_BB_INSNS_REVERSE (bb
, curr_insn
)
6399 if (! INSN_P (curr_insn
))
6402 sregno
= dregno
= -1;
6403 if (change_p
&& NONDEBUG_INSN_P (curr_insn
)
6404 && (set
= single_set (curr_insn
)) != NULL_RTX
)
6406 dregno
= get_regno (SET_DEST (set
));
6407 sregno
= get_regno (SET_SRC (set
));
6410 if (sregno
>= 0 && dregno
>= 0)
6412 if (bitmap_bit_p (remove_pseudos
, dregno
)
6413 && ! REG_P (lra_reg_info
[dregno
].restore_rtx
))
6415 /* invariant inheritance pseudo <- original pseudo */
6416 if (lra_dump_file
!= NULL
)
6418 fprintf (lra_dump_file
, " Removing invariant inheritance:\n");
6419 dump_insn_slim (lra_dump_file
, curr_insn
);
6420 fprintf (lra_dump_file
, "\n");
6422 delete_move_and_clobber (curr_insn
, dregno
);
6425 else if (bitmap_bit_p (remove_pseudos
, sregno
)
6426 && ! REG_P (lra_reg_info
[sregno
].restore_rtx
))
6428 /* reload pseudo <- invariant inheritance pseudo */
6430 /* We can not just change the source. It might be
6431 an insn different from the move. */
6432 emit_insn (lra_reg_info
[sregno
].restore_rtx
);
6433 rtx_insn
*new_insns
= get_insns ();
6435 lra_assert (single_set (new_insns
) != NULL
6436 && SET_DEST (set
) == SET_DEST (single_set (new_insns
)));
6437 lra_process_new_insns (curr_insn
, NULL
, new_insns
,
6438 "Changing reload<-invariant inheritance");
6439 delete_move_and_clobber (curr_insn
, dregno
);
6442 else if ((bitmap_bit_p (remove_pseudos
, sregno
)
6443 && (get_regno (lra_reg_info
[sregno
].restore_rtx
) == dregno
6444 || (bitmap_bit_p (remove_pseudos
, dregno
)
6445 && get_regno (lra_reg_info
[sregno
].restore_rtx
) >= 0
6446 && (get_regno (lra_reg_info
[sregno
].restore_rtx
)
6447 == get_regno (lra_reg_info
[dregno
].restore_rtx
)))))
6448 || (bitmap_bit_p (remove_pseudos
, dregno
)
6449 && get_regno (lra_reg_info
[dregno
].restore_rtx
) == sregno
))
6450 /* One of the following cases:
6451 original <- removed inheritance pseudo
6452 removed inherit pseudo <- another removed inherit pseudo
6453 removed inherit pseudo <- original pseudo
6455 removed_split_pseudo <- original_reg
6456 original_reg <- removed_split_pseudo */
6458 if (lra_dump_file
!= NULL
)
6460 fprintf (lra_dump_file
, " Removing %s:\n",
6461 bitmap_bit_p (&lra_split_regs
, sregno
)
6462 || bitmap_bit_p (&lra_split_regs
, dregno
)
6463 ? "split" : "inheritance");
6464 dump_insn_slim (lra_dump_file
, curr_insn
);
6466 delete_move_and_clobber (curr_insn
, dregno
);
6469 else if (bitmap_bit_p (remove_pseudos
, sregno
)
6470 && bitmap_bit_p (&lra_inheritance_pseudos
, sregno
))
6472 /* Search the following pattern:
6473 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6474 original_pseudo <- inherit_or_split_pseudo1
6475 where the 2nd insn is the current insn and
6476 inherit_or_split_pseudo2 is not removed. If it is found,
6477 change the current insn onto:
6478 original_pseudo <- inherit_or_split_pseudo2. */
6479 for (prev_insn
= PREV_INSN (curr_insn
);
6480 prev_insn
!= NULL_RTX
&& ! NONDEBUG_INSN_P (prev_insn
);
6481 prev_insn
= PREV_INSN (prev_insn
))
6483 if (prev_insn
!= NULL_RTX
&& BLOCK_FOR_INSN (prev_insn
) == bb
6484 && (prev_set
= single_set (prev_insn
)) != NULL_RTX
6485 /* There should be no subregs in insn we are
6486 searching because only the original reg might
6487 be in subreg when we changed the mode of
6488 load/store for splitting. */
6489 && REG_P (SET_DEST (prev_set
))
6490 && REG_P (SET_SRC (prev_set
))
6491 && (int) REGNO (SET_DEST (prev_set
)) == sregno
6492 && ((prev_sregno
= REGNO (SET_SRC (prev_set
)))
6493 >= FIRST_PSEUDO_REGISTER
)
6494 && (lra_reg_info
[prev_sregno
].restore_rtx
== NULL_RTX
6496 /* As we consider chain of inheritance or
6497 splitting described in above comment we should
6498 check that sregno and prev_sregno were
6499 inheritance/split pseudos created from the
6500 same original regno. */
6501 (get_regno (lra_reg_info
[sregno
].restore_rtx
) >= 0
6502 && (get_regno (lra_reg_info
[sregno
].restore_rtx
)
6503 == get_regno (lra_reg_info
[prev_sregno
].restore_rtx
))))
6504 && ! bitmap_bit_p (remove_pseudos
, prev_sregno
))
6506 lra_assert (GET_MODE (SET_SRC (prev_set
))
6507 == GET_MODE (regno_reg_rtx
[sregno
]));
6508 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
6509 SUBREG_REG (SET_SRC (set
)) = SET_SRC (prev_set
);
6511 SET_SRC (set
) = SET_SRC (prev_set
);
6512 /* As we are finishing with processing the insn
6513 here, check the destination too as it might
6514 inheritance pseudo for another pseudo. */
6515 if (bitmap_bit_p (remove_pseudos
, dregno
)
6516 && bitmap_bit_p (&lra_inheritance_pseudos
, dregno
)
6518 = lra_reg_info
[dregno
].restore_rtx
) != NULL_RTX
)
6520 if (GET_CODE (SET_DEST (set
)) == SUBREG
)
6521 SUBREG_REG (SET_DEST (set
)) = restore_rtx
;
6523 SET_DEST (set
) = restore_rtx
;
6525 lra_push_insn_and_update_insn_regno_info (curr_insn
);
6526 lra_set_used_insn_alternative_by_uid
6527 (INSN_UID (curr_insn
), -1);
6529 if (lra_dump_file
!= NULL
)
6531 fprintf (lra_dump_file
, " Change reload insn:\n");
6532 dump_insn_slim (lra_dump_file
, curr_insn
);
6539 struct lra_insn_reg
*reg
;
6540 bool restored_regs_p
= false;
6541 bool kept_regs_p
= false;
6543 curr_id
= lra_get_insn_recog_data (curr_insn
);
6544 for (reg
= curr_id
->regs
; reg
!= NULL
; reg
= reg
->next
)
6547 restore_rtx
= lra_reg_info
[regno
].restore_rtx
;
6548 if (restore_rtx
!= NULL_RTX
)
6550 if (change_p
&& bitmap_bit_p (remove_pseudos
, regno
))
6552 lra_substitute_pseudo_within_insn
6553 (curr_insn
, regno
, restore_rtx
, false);
6554 restored_regs_p
= true;
6560 if (NONDEBUG_INSN_P (curr_insn
) && kept_regs_p
)
6562 /* The instruction has changed since the previous
6563 constraints pass. */
6564 lra_push_insn_and_update_insn_regno_info (curr_insn
);
6565 lra_set_used_insn_alternative_by_uid
6566 (INSN_UID (curr_insn
), -1);
6568 else if (restored_regs_p
)
6569 /* The instruction has been restored to the form that
6570 it had during the previous constraints pass. */
6571 lra_update_insn_regno_info (curr_insn
);
6572 if (restored_regs_p
&& lra_dump_file
!= NULL
)
6574 fprintf (lra_dump_file
, " Insn after restoring regs:\n");
6575 dump_insn_slim (lra_dump_file
, curr_insn
);
6583 /* If optional reload pseudos failed to get a hard register or was not
6584 inherited, it is better to remove optional reloads. We do this
6585 transformation after undoing inheritance to figure out necessity to
6586 remove optional reloads easier. Return true if we do any
6589 undo_optional_reloads (void)
6591 bool change_p
, keep_p
;
6592 unsigned int regno
, uid
;
6593 bitmap_iterator bi
, bi2
;
6596 bitmap_head removed_optional_reload_pseudos
, insn_bitmap
;
6598 bitmap_initialize (&removed_optional_reload_pseudos
, ®_obstack
);
6599 bitmap_copy (&removed_optional_reload_pseudos
, &lra_optional_reload_pseudos
);
6600 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos
, 0, regno
, bi
)
6603 /* Keep optional reloads from previous subpasses. */
6604 if (lra_reg_info
[regno
].restore_rtx
== NULL_RTX
6605 /* If the original pseudo changed its allocation, just
6606 removing the optional pseudo is dangerous as the original
6607 pseudo will have longer live range. */
6608 || reg_renumber
[REGNO (lra_reg_info
[regno
].restore_rtx
)] >= 0)
6610 else if (reg_renumber
[regno
] >= 0)
6611 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info
[regno
].insn_bitmap
, 0, uid
, bi2
)
6613 insn
= lra_insn_recog_data
[uid
]->insn
;
6614 if ((set
= single_set (insn
)) == NULL_RTX
)
6616 src
= SET_SRC (set
);
6617 dest
= SET_DEST (set
);
6618 if (! REG_P (src
) || ! REG_P (dest
))
6620 if (REGNO (dest
) == regno
6621 /* Ignore insn for optional reloads itself. */
6622 && REGNO (lra_reg_info
[regno
].restore_rtx
) != REGNO (src
)
6623 /* Check only inheritance on last inheritance pass. */
6624 && (int) REGNO (src
) >= new_regno_start
6625 /* Check that the optional reload was inherited. */
6626 && bitmap_bit_p (&lra_inheritance_pseudos
, REGNO (src
)))
6634 bitmap_clear_bit (&removed_optional_reload_pseudos
, regno
);
6635 if (lra_dump_file
!= NULL
)
6636 fprintf (lra_dump_file
, "Keep optional reload reg %d\n", regno
);
6639 change_p
= ! bitmap_empty_p (&removed_optional_reload_pseudos
);
6640 bitmap_initialize (&insn_bitmap
, ®_obstack
);
6641 EXECUTE_IF_SET_IN_BITMAP (&removed_optional_reload_pseudos
, 0, regno
, bi
)
6643 if (lra_dump_file
!= NULL
)
6644 fprintf (lra_dump_file
, "Remove optional reload reg %d\n", regno
);
6645 bitmap_copy (&insn_bitmap
, &lra_reg_info
[regno
].insn_bitmap
);
6646 EXECUTE_IF_SET_IN_BITMAP (&insn_bitmap
, 0, uid
, bi2
)
6648 insn
= lra_insn_recog_data
[uid
]->insn
;
6649 if ((set
= single_set (insn
)) != NULL_RTX
)
6651 src
= SET_SRC (set
);
6652 dest
= SET_DEST (set
);
6653 if (REG_P (src
) && REG_P (dest
)
6654 && ((REGNO (src
) == regno
6655 && (REGNO (lra_reg_info
[regno
].restore_rtx
)
6657 || (REGNO (dest
) == regno
6658 && (REGNO (lra_reg_info
[regno
].restore_rtx
)
6661 if (lra_dump_file
!= NULL
)
6663 fprintf (lra_dump_file
, " Deleting move %u\n",
6665 dump_insn_slim (lra_dump_file
, insn
);
6667 delete_move_and_clobber (insn
, REGNO (dest
));
6670 /* We should not worry about generation memory-memory
6671 moves here as if the corresponding inheritance did
6672 not work (inheritance pseudo did not get a hard reg),
6673 we remove the inheritance pseudo and the optional
6676 lra_substitute_pseudo_within_insn
6677 (insn
, regno
, lra_reg_info
[regno
].restore_rtx
, false);
6678 lra_update_insn_regno_info (insn
);
6679 if (lra_dump_file
!= NULL
)
6681 fprintf (lra_dump_file
,
6682 " Restoring original insn:\n");
6683 dump_insn_slim (lra_dump_file
, insn
);
6687 /* Clear restore_regnos. */
6688 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos
, 0, regno
, bi
)
6689 lra_reg_info
[regno
].restore_rtx
= NULL_RTX
;
6690 bitmap_clear (&insn_bitmap
);
6691 bitmap_clear (&removed_optional_reload_pseudos
);
6695 /* Entry function for undoing inheritance/split transformation. Return true
6696 if we did any RTL change in this pass. */
6698 lra_undo_inheritance (void)
6702 int n_all_inherit
, n_inherit
, n_all_split
, n_split
;
6704 bitmap_head remove_pseudos
;
6708 lra_undo_inheritance_iter
++;
6709 if (lra_undo_inheritance_iter
> LRA_MAX_INHERITANCE_PASSES
)
6711 if (lra_dump_file
!= NULL
)
6712 fprintf (lra_dump_file
,
6713 "\n********** Undoing inheritance #%d: **********\n\n",
6714 lra_undo_inheritance_iter
);
6715 bitmap_initialize (&remove_pseudos
, ®_obstack
);
6716 n_inherit
= n_all_inherit
= 0;
6717 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos
, 0, regno
, bi
)
6718 if (lra_reg_info
[regno
].restore_rtx
!= NULL_RTX
)
6721 if (reg_renumber
[regno
] < 0
6722 /* If the original pseudo changed its allocation, just
6723 removing inheritance is dangerous as for changing
6724 allocation we used shorter live-ranges. */
6725 && (! REG_P (lra_reg_info
[regno
].restore_rtx
)
6726 || reg_renumber
[REGNO (lra_reg_info
[regno
].restore_rtx
)] < 0))
6727 bitmap_set_bit (&remove_pseudos
, regno
);
6731 if (lra_dump_file
!= NULL
&& n_all_inherit
!= 0)
6732 fprintf (lra_dump_file
, "Inherit %d out of %d (%.2f%%)\n",
6733 n_inherit
, n_all_inherit
,
6734 (double) n_inherit
/ n_all_inherit
* 100);
6735 n_split
= n_all_split
= 0;
6736 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs
, 0, regno
, bi
)
6737 if ((restore_rtx
= lra_reg_info
[regno
].restore_rtx
) != NULL_RTX
)
6739 int restore_regno
= REGNO (restore_rtx
);
6742 hard_regno
= (restore_regno
>= FIRST_PSEUDO_REGISTER
6743 ? reg_renumber
[restore_regno
] : restore_regno
);
6744 if (hard_regno
< 0 || reg_renumber
[regno
] == hard_regno
)
6745 bitmap_set_bit (&remove_pseudos
, regno
);
6749 if (lra_dump_file
!= NULL
)
6750 fprintf (lra_dump_file
, " Keep split r%d (orig=r%d)\n",
6751 regno
, restore_regno
);
6754 if (lra_dump_file
!= NULL
&& n_all_split
!= 0)
6755 fprintf (lra_dump_file
, "Split %d out of %d (%.2f%%)\n",
6756 n_split
, n_all_split
,
6757 (double) n_split
/ n_all_split
* 100);
6758 change_p
= remove_inheritance_pseudos (&remove_pseudos
);
6759 bitmap_clear (&remove_pseudos
);
6760 /* Clear restore_regnos. */
6761 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos
, 0, regno
, bi
)
6762 lra_reg_info
[regno
].restore_rtx
= NULL_RTX
;
6763 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs
, 0, regno
, bi
)
6764 lra_reg_info
[regno
].restore_rtx
= NULL_RTX
;
6765 change_p
= undo_optional_reloads () || change_p
;