class.c (check_bases): Likewise.
[official-gcc.git] / gcc / cp / class.c
blob275cbced9c9d3726dfe343c245630e01301b758c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
24 /* High-level class interface. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "rtl.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
38 #include "cgraph.h"
39 #include "tree-dump.h"
41 /* The number of nested classes being processed. If we are not in the
42 scope of any class, this is zero. */
44 int current_class_depth;
46 /* In order to deal with nested classes, we keep a stack of classes.
47 The topmost entry is the innermost class, and is the entry at index
48 CURRENT_CLASS_DEPTH */
50 typedef struct class_stack_node {
51 /* The name of the class. */
52 tree name;
54 /* The _TYPE node for the class. */
55 tree type;
57 /* The access specifier pending for new declarations in the scope of
58 this class. */
59 tree access;
61 /* If were defining TYPE, the names used in this class. */
62 splay_tree names_used;
64 /* Nonzero if this class is no longer open, because of a call to
65 push_to_top_level. */
66 size_t hidden;
67 }* class_stack_node_t;
69 typedef struct vtbl_init_data_s
71 /* The base for which we're building initializers. */
72 tree binfo;
73 /* The type of the most-derived type. */
74 tree derived;
75 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
76 unless ctor_vtbl_p is true. */
77 tree rtti_binfo;
78 /* The negative-index vtable initializers built up so far. These
79 are in order from least negative index to most negative index. */
80 tree inits;
81 /* The last (i.e., most negative) entry in INITS. */
82 tree* last_init;
83 /* The binfo for the virtual base for which we're building
84 vcall offset initializers. */
85 tree vbase;
86 /* The functions in vbase for which we have already provided vcall
87 offsets. */
88 VEC(tree,gc) *fns;
89 /* The vtable index of the next vcall or vbase offset. */
90 tree index;
91 /* Nonzero if we are building the initializer for the primary
92 vtable. */
93 int primary_vtbl_p;
94 /* Nonzero if we are building the initializer for a construction
95 vtable. */
96 int ctor_vtbl_p;
97 /* True when adding vcall offset entries to the vtable. False when
98 merely computing the indices. */
99 bool generate_vcall_entries;
100 } vtbl_init_data;
102 /* The type of a function passed to walk_subobject_offsets. */
103 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
105 /* The stack itself. This is a dynamically resized array. The
106 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
107 static int current_class_stack_size;
108 static class_stack_node_t current_class_stack;
110 /* The size of the largest empty class seen in this translation unit. */
111 static GTY (()) tree sizeof_biggest_empty_class;
113 /* An array of all local classes present in this translation unit, in
114 declaration order. */
115 VEC(tree,gc) *local_classes;
117 static tree get_vfield_name (tree);
118 static void finish_struct_anon (tree);
119 static tree get_vtable_name (tree);
120 static tree get_basefndecls (tree, tree);
121 static int build_primary_vtable (tree, tree);
122 static int build_secondary_vtable (tree);
123 static void finish_vtbls (tree);
124 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
125 static void finish_struct_bits (tree);
126 static int alter_access (tree, tree, tree);
127 static void handle_using_decl (tree, tree);
128 static tree dfs_modify_vtables (tree, void *);
129 static tree modify_all_vtables (tree, tree);
130 static void determine_primary_bases (tree);
131 static void finish_struct_methods (tree);
132 static void maybe_warn_about_overly_private_class (tree);
133 static int method_name_cmp (const void *, const void *);
134 static int resort_method_name_cmp (const void *, const void *);
135 static void add_implicitly_declared_members (tree, int, int);
136 static tree fixed_type_or_null (tree, int *, int *);
137 static tree resolve_address_of_overloaded_function (tree, tree, tsubst_flags_t,
138 bool, tree);
139 static tree build_simple_base_path (tree expr, tree binfo);
140 static tree build_vtbl_ref_1 (tree, tree);
141 static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
142 static int count_fields (tree);
143 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
144 static void check_bitfield_decl (tree);
145 static void check_field_decl (tree, tree, int *, int *, int *);
146 static void check_field_decls (tree, tree *, int *, int *);
147 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
148 static void build_base_fields (record_layout_info, splay_tree, tree *);
149 static void check_methods (tree);
150 static void remove_zero_width_bit_fields (tree);
151 static void check_bases (tree, int *, int *);
152 static void check_bases_and_members (tree);
153 static tree create_vtable_ptr (tree, tree *);
154 static void include_empty_classes (record_layout_info);
155 static void layout_class_type (tree, tree *);
156 static void fixup_pending_inline (tree);
157 static void fixup_inline_methods (tree);
158 static void propagate_binfo_offsets (tree, tree);
159 static void layout_virtual_bases (record_layout_info, splay_tree);
160 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
161 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
162 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
163 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
164 static void add_vcall_offset (tree, tree, vtbl_init_data *);
165 static void layout_vtable_decl (tree, int);
166 static tree dfs_find_final_overrider_pre (tree, void *);
167 static tree dfs_find_final_overrider_post (tree, void *);
168 static tree find_final_overrider (tree, tree, tree);
169 static int make_new_vtable (tree, tree);
170 static tree get_primary_binfo (tree);
171 static int maybe_indent_hierarchy (FILE *, int, int);
172 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
173 static void dump_class_hierarchy (tree);
174 static void dump_class_hierarchy_1 (FILE *, int, tree);
175 static void dump_array (FILE *, tree);
176 static void dump_vtable (tree, tree, tree);
177 static void dump_vtt (tree, tree);
178 static void dump_thunk (FILE *, int, tree);
179 static tree build_vtable (tree, tree, tree);
180 static void initialize_vtable (tree, tree);
181 static void layout_nonempty_base_or_field (record_layout_info,
182 tree, tree, splay_tree);
183 static tree end_of_class (tree, int);
184 static bool layout_empty_base (tree, tree, splay_tree);
185 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
186 static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
187 tree);
188 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
189 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
190 static void clone_constructors_and_destructors (tree);
191 static tree build_clone (tree, tree);
192 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
193 static void build_ctor_vtbl_group (tree, tree);
194 static void build_vtt (tree);
195 static tree binfo_ctor_vtable (tree);
196 static tree *build_vtt_inits (tree, tree, tree *, tree *);
197 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
198 static tree dfs_fixup_binfo_vtbls (tree, void *);
199 static int record_subobject_offset (tree, tree, splay_tree);
200 static int check_subobject_offset (tree, tree, splay_tree);
201 static int walk_subobject_offsets (tree, subobject_offset_fn,
202 tree, splay_tree, tree, int);
203 static void record_subobject_offsets (tree, tree, splay_tree, bool);
204 static int layout_conflict_p (tree, tree, splay_tree, int);
205 static int splay_tree_compare_integer_csts (splay_tree_key k1,
206 splay_tree_key k2);
207 static void warn_about_ambiguous_bases (tree);
208 static bool type_requires_array_cookie (tree);
209 static bool contains_empty_class_p (tree);
210 static bool base_derived_from (tree, tree);
211 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
212 static tree end_of_base (tree);
213 static tree get_vcall_index (tree, tree);
215 /* Variables shared between class.c and call.c. */
217 #ifdef GATHER_STATISTICS
218 int n_vtables = 0;
219 int n_vtable_entries = 0;
220 int n_vtable_searches = 0;
221 int n_vtable_elems = 0;
222 int n_convert_harshness = 0;
223 int n_compute_conversion_costs = 0;
224 int n_inner_fields_searched = 0;
225 #endif
227 /* Convert to or from a base subobject. EXPR is an expression of type
228 `A' or `A*', an expression of type `B' or `B*' is returned. To
229 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
230 the B base instance within A. To convert base A to derived B, CODE
231 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
232 In this latter case, A must not be a morally virtual base of B.
233 NONNULL is true if EXPR is known to be non-NULL (this is only
234 needed when EXPR is of pointer type). CV qualifiers are preserved
235 from EXPR. */
237 tree
238 build_base_path (enum tree_code code,
239 tree expr,
240 tree binfo,
241 int nonnull)
243 tree v_binfo = NULL_TREE;
244 tree d_binfo = NULL_TREE;
245 tree probe;
246 tree offset;
247 tree target_type;
248 tree null_test = NULL;
249 tree ptr_target_type;
250 int fixed_type_p;
251 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
252 bool has_empty = false;
253 bool virtual_access;
255 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
256 return error_mark_node;
258 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
260 d_binfo = probe;
261 if (is_empty_class (BINFO_TYPE (probe)))
262 has_empty = true;
263 if (!v_binfo && BINFO_VIRTUAL_P (probe))
264 v_binfo = probe;
267 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
268 if (want_pointer)
269 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
271 gcc_assert ((code == MINUS_EXPR
272 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
273 || (code == PLUS_EXPR
274 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));
276 if (binfo == d_binfo)
277 /* Nothing to do. */
278 return expr;
280 if (code == MINUS_EXPR && v_binfo)
282 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
283 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
284 return error_mark_node;
287 if (!want_pointer)
288 /* This must happen before the call to save_expr. */
289 expr = build_unary_op (ADDR_EXPR, expr, 0);
291 offset = BINFO_OFFSET (binfo);
292 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
293 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
295 /* Do we need to look in the vtable for the real offset? */
296 virtual_access = (v_binfo && fixed_type_p <= 0);
298 /* Do we need to check for a null pointer? */
299 if (want_pointer && !nonnull)
301 /* If we know the conversion will not actually change the value
302 of EXPR, then we can avoid testing the expression for NULL.
303 We have to avoid generating a COMPONENT_REF for a base class
304 field, because other parts of the compiler know that such
305 expressions are always non-NULL. */
306 if (!virtual_access && integer_zerop (offset))
307 return build_nop (build_pointer_type (target_type), expr);
308 null_test = error_mark_node;
311 /* Protect against multiple evaluation if necessary. */
312 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
313 expr = save_expr (expr);
315 /* Now that we've saved expr, build the real null test. */
316 if (null_test)
318 tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
319 null_test = fold_build2 (NE_EXPR, boolean_type_node,
320 expr, zero);
323 /* If this is a simple base reference, express it as a COMPONENT_REF. */
324 if (code == PLUS_EXPR && !virtual_access
325 /* We don't build base fields for empty bases, and they aren't very
326 interesting to the optimizers anyway. */
327 && !has_empty)
329 expr = build_indirect_ref (expr, NULL);
330 expr = build_simple_base_path (expr, binfo);
331 if (want_pointer)
332 expr = build_address (expr);
333 target_type = TREE_TYPE (expr);
334 goto out;
337 if (virtual_access)
339 /* Going via virtual base V_BINFO. We need the static offset
340 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
341 V_BINFO. That offset is an entry in D_BINFO's vtable. */
342 tree v_offset;
344 if (fixed_type_p < 0 && in_base_initializer)
346 /* In a base member initializer, we cannot rely on the
347 vtable being set up. We have to indirect via the
348 vtt_parm. */
349 tree t;
351 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
352 t = build_pointer_type (t);
353 v_offset = convert (t, current_vtt_parm);
354 v_offset = build_indirect_ref (v_offset, NULL);
356 else
357 v_offset = build_vfield_ref (build_indirect_ref (expr, NULL),
358 TREE_TYPE (TREE_TYPE (expr)));
360 v_offset = build2 (PLUS_EXPR, TREE_TYPE (v_offset),
361 v_offset, BINFO_VPTR_FIELD (v_binfo));
362 v_offset = build1 (NOP_EXPR,
363 build_pointer_type (ptrdiff_type_node),
364 v_offset);
365 v_offset = build_indirect_ref (v_offset, NULL);
366 TREE_CONSTANT (v_offset) = 1;
367 TREE_INVARIANT (v_offset) = 1;
369 offset = convert_to_integer (ptrdiff_type_node,
370 size_diffop (offset,
371 BINFO_OFFSET (v_binfo)));
373 if (!integer_zerop (offset))
374 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
376 if (fixed_type_p < 0)
377 /* Negative fixed_type_p means this is a constructor or destructor;
378 virtual base layout is fixed in in-charge [cd]tors, but not in
379 base [cd]tors. */
380 offset = build3 (COND_EXPR, ptrdiff_type_node,
381 build2 (EQ_EXPR, boolean_type_node,
382 current_in_charge_parm, integer_zero_node),
383 v_offset,
384 convert_to_integer (ptrdiff_type_node,
385 BINFO_OFFSET (binfo)));
386 else
387 offset = v_offset;
390 target_type = cp_build_qualified_type
391 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
392 ptr_target_type = build_pointer_type (target_type);
393 if (want_pointer)
394 target_type = ptr_target_type;
396 expr = build1 (NOP_EXPR, ptr_target_type, expr);
398 if (!integer_zerop (offset))
399 expr = build2 (code, ptr_target_type, expr, offset);
400 else
401 null_test = NULL;
403 if (!want_pointer)
404 expr = build_indirect_ref (expr, NULL);
406 out:
407 if (null_test)
408 expr = fold_build3 (COND_EXPR, target_type, null_test, expr,
409 fold_build1 (NOP_EXPR, target_type,
410 integer_zero_node));
412 return expr;
415 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
416 Perform a derived-to-base conversion by recursively building up a
417 sequence of COMPONENT_REFs to the appropriate base fields. */
419 static tree
420 build_simple_base_path (tree expr, tree binfo)
422 tree type = BINFO_TYPE (binfo);
423 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
424 tree field;
426 if (d_binfo == NULL_TREE)
428 tree temp;
430 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
432 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
433 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
434 an lvalue in the frontend; only _DECLs and _REFs are lvalues
435 in the backend. */
436 temp = unary_complex_lvalue (ADDR_EXPR, expr);
437 if (temp)
438 expr = build_indirect_ref (temp, NULL);
440 return expr;
443 /* Recurse. */
444 expr = build_simple_base_path (expr, d_binfo);
446 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
447 field; field = TREE_CHAIN (field))
448 /* Is this the base field created by build_base_field? */
449 if (TREE_CODE (field) == FIELD_DECL
450 && DECL_FIELD_IS_BASE (field)
451 && TREE_TYPE (field) == type)
453 /* We don't use build_class_member_access_expr here, as that
454 has unnecessary checks, and more importantly results in
455 recursive calls to dfs_walk_once. */
456 int type_quals = cp_type_quals (TREE_TYPE (expr));
458 expr = build3 (COMPONENT_REF,
459 cp_build_qualified_type (type, type_quals),
460 expr, field, NULL_TREE);
461 expr = fold_if_not_in_template (expr);
463 /* Mark the expression const or volatile, as appropriate.
464 Even though we've dealt with the type above, we still have
465 to mark the expression itself. */
466 if (type_quals & TYPE_QUAL_CONST)
467 TREE_READONLY (expr) = 1;
468 if (type_quals & TYPE_QUAL_VOLATILE)
469 TREE_THIS_VOLATILE (expr) = 1;
471 return expr;
474 /* Didn't find the base field?!? */
475 gcc_unreachable ();
478 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
479 type is a class type or a pointer to a class type. In the former
480 case, TYPE is also a class type; in the latter it is another
481 pointer type. If CHECK_ACCESS is true, an error message is emitted
482 if TYPE is inaccessible. If OBJECT has pointer type, the value is
483 assumed to be non-NULL. */
485 tree
486 convert_to_base (tree object, tree type, bool check_access, bool nonnull)
488 tree binfo;
489 tree object_type;
491 if (TYPE_PTR_P (TREE_TYPE (object)))
493 object_type = TREE_TYPE (TREE_TYPE (object));
494 type = TREE_TYPE (type);
496 else
497 object_type = TREE_TYPE (object);
499 binfo = lookup_base (object_type, type,
500 check_access ? ba_check : ba_unique,
501 NULL);
502 if (!binfo || binfo == error_mark_node)
503 return error_mark_node;
505 return build_base_path (PLUS_EXPR, object, binfo, nonnull);
508 /* EXPR is an expression with unqualified class type. BASE is a base
509 binfo of that class type. Returns EXPR, converted to the BASE
510 type. This function assumes that EXPR is the most derived class;
511 therefore virtual bases can be found at their static offsets. */
513 tree
514 convert_to_base_statically (tree expr, tree base)
516 tree expr_type;
518 expr_type = TREE_TYPE (expr);
519 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
521 tree pointer_type;
523 pointer_type = build_pointer_type (expr_type);
524 expr = build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1);
525 if (!integer_zerop (BINFO_OFFSET (base)))
526 expr = build2 (PLUS_EXPR, pointer_type, expr,
527 build_nop (pointer_type, BINFO_OFFSET (base)));
528 expr = build_nop (build_pointer_type (BINFO_TYPE (base)), expr);
529 expr = build1 (INDIRECT_REF, BINFO_TYPE (base), expr);
532 return expr;
536 tree
537 build_vfield_ref (tree datum, tree type)
539 tree vfield, vcontext;
541 if (datum == error_mark_node)
542 return error_mark_node;
544 /* First, convert to the requested type. */
545 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
546 datum = convert_to_base (datum, type, /*check_access=*/false,
547 /*nonnull=*/true);
549 /* Second, the requested type may not be the owner of its own vptr.
550 If not, convert to the base class that owns it. We cannot use
551 convert_to_base here, because VCONTEXT may appear more than once
552 in the inheritance hierarchy of TYPE, and thus direct conversion
553 between the types may be ambiguous. Following the path back up
554 one step at a time via primary bases avoids the problem. */
555 vfield = TYPE_VFIELD (type);
556 vcontext = DECL_CONTEXT (vfield);
557 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
559 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
560 type = TREE_TYPE (datum);
563 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
566 /* Given an object INSTANCE, return an expression which yields the
567 vtable element corresponding to INDEX. There are many special
568 cases for INSTANCE which we take care of here, mainly to avoid
569 creating extra tree nodes when we don't have to. */
571 static tree
572 build_vtbl_ref_1 (tree instance, tree idx)
574 tree aref;
575 tree vtbl = NULL_TREE;
577 /* Try to figure out what a reference refers to, and
578 access its virtual function table directly. */
580 int cdtorp = 0;
581 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
583 tree basetype = non_reference (TREE_TYPE (instance));
585 if (fixed_type && !cdtorp)
587 tree binfo = lookup_base (fixed_type, basetype,
588 ba_unique | ba_quiet, NULL);
589 if (binfo)
590 vtbl = unshare_expr (BINFO_VTABLE (binfo));
593 if (!vtbl)
594 vtbl = build_vfield_ref (instance, basetype);
596 assemble_external (vtbl);
598 aref = build_array_ref (vtbl, idx);
599 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
600 TREE_INVARIANT (aref) = TREE_CONSTANT (aref);
602 return aref;
605 tree
606 build_vtbl_ref (tree instance, tree idx)
608 tree aref = build_vtbl_ref_1 (instance, idx);
610 return aref;
613 /* Given a stable object pointer INSTANCE_PTR, return an expression which
614 yields a function pointer corresponding to vtable element INDEX. */
616 tree
617 build_vfn_ref (tree instance_ptr, tree idx)
619 tree aref;
621 aref = build_vtbl_ref_1 (build_indirect_ref (instance_ptr, 0), idx);
623 /* When using function descriptors, the address of the
624 vtable entry is treated as a function pointer. */
625 if (TARGET_VTABLE_USES_DESCRIPTORS)
626 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
627 build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1));
629 /* Remember this as a method reference, for later devirtualization. */
630 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
632 return aref;
635 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
636 for the given TYPE. */
638 static tree
639 get_vtable_name (tree type)
641 return mangle_vtbl_for_type (type);
644 /* DECL is an entity associated with TYPE, like a virtual table or an
645 implicitly generated constructor. Determine whether or not DECL
646 should have external or internal linkage at the object file
647 level. This routine does not deal with COMDAT linkage and other
648 similar complexities; it simply sets TREE_PUBLIC if it possible for
649 entities in other translation units to contain copies of DECL, in
650 the abstract. */
652 void
653 set_linkage_according_to_type (tree type, tree decl)
655 /* If TYPE involves a local class in a function with internal
656 linkage, then DECL should have internal linkage too. Other local
657 classes have no linkage -- but if their containing functions
658 have external linkage, it makes sense for DECL to have external
659 linkage too. That will allow template definitions to be merged,
660 for example. */
661 if (no_linkage_check (type, /*relaxed_p=*/true))
663 TREE_PUBLIC (decl) = 0;
664 DECL_INTERFACE_KNOWN (decl) = 1;
666 else
667 TREE_PUBLIC (decl) = 1;
670 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
671 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
672 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
674 static tree
675 build_vtable (tree class_type, tree name, tree vtable_type)
677 tree decl;
679 decl = build_lang_decl (VAR_DECL, name, vtable_type);
680 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
681 now to avoid confusion in mangle_decl. */
682 SET_DECL_ASSEMBLER_NAME (decl, name);
683 DECL_CONTEXT (decl) = class_type;
684 DECL_ARTIFICIAL (decl) = 1;
685 TREE_STATIC (decl) = 1;
686 TREE_READONLY (decl) = 1;
687 DECL_VIRTUAL_P (decl) = 1;
688 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
689 DECL_VTABLE_OR_VTT_P (decl) = 1;
690 /* At one time the vtable info was grabbed 2 words at a time. This
691 fails on sparc unless you have 8-byte alignment. (tiemann) */
692 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
693 DECL_ALIGN (decl));
694 set_linkage_according_to_type (class_type, decl);
695 /* The vtable has not been defined -- yet. */
696 DECL_EXTERNAL (decl) = 1;
697 DECL_NOT_REALLY_EXTERN (decl) = 1;
699 /* Mark the VAR_DECL node representing the vtable itself as a
700 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
701 is rather important that such things be ignored because any
702 effort to actually generate DWARF for them will run into
703 trouble when/if we encounter code like:
705 #pragma interface
706 struct S { virtual void member (); };
708 because the artificial declaration of the vtable itself (as
709 manufactured by the g++ front end) will say that the vtable is
710 a static member of `S' but only *after* the debug output for
711 the definition of `S' has already been output. This causes
712 grief because the DWARF entry for the definition of the vtable
713 will try to refer back to an earlier *declaration* of the
714 vtable as a static member of `S' and there won't be one. We
715 might be able to arrange to have the "vtable static member"
716 attached to the member list for `S' before the debug info for
717 `S' get written (which would solve the problem) but that would
718 require more intrusive changes to the g++ front end. */
719 DECL_IGNORED_P (decl) = 1;
721 return decl;
724 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
725 or even complete. If this does not exist, create it. If COMPLETE is
726 nonzero, then complete the definition of it -- that will render it
727 impossible to actually build the vtable, but is useful to get at those
728 which are known to exist in the runtime. */
730 tree
731 get_vtable_decl (tree type, int complete)
733 tree decl;
735 if (CLASSTYPE_VTABLES (type))
736 return CLASSTYPE_VTABLES (type);
738 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
739 CLASSTYPE_VTABLES (type) = decl;
741 if (complete)
743 DECL_EXTERNAL (decl) = 1;
744 cp_finish_decl (decl, NULL_TREE, NULL_TREE, 0);
747 return decl;
750 /* Build the primary virtual function table for TYPE. If BINFO is
751 non-NULL, build the vtable starting with the initial approximation
752 that it is the same as the one which is the head of the association
753 list. Returns a nonzero value if a new vtable is actually
754 created. */
756 static int
757 build_primary_vtable (tree binfo, tree type)
759 tree decl;
760 tree virtuals;
762 decl = get_vtable_decl (type, /*complete=*/0);
764 if (binfo)
766 if (BINFO_NEW_VTABLE_MARKED (binfo))
767 /* We have already created a vtable for this base, so there's
768 no need to do it again. */
769 return 0;
771 virtuals = copy_list (BINFO_VIRTUALS (binfo));
772 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
773 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
774 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
776 else
778 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
779 virtuals = NULL_TREE;
782 #ifdef GATHER_STATISTICS
783 n_vtables += 1;
784 n_vtable_elems += list_length (virtuals);
785 #endif
787 /* Initialize the association list for this type, based
788 on our first approximation. */
789 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
790 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
791 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
792 return 1;
795 /* Give BINFO a new virtual function table which is initialized
796 with a skeleton-copy of its original initialization. The only
797 entry that changes is the `delta' entry, so we can really
798 share a lot of structure.
800 FOR_TYPE is the most derived type which caused this table to
801 be needed.
803 Returns nonzero if we haven't met BINFO before.
805 The order in which vtables are built (by calling this function) for
806 an object must remain the same, otherwise a binary incompatibility
807 can result. */
809 static int
810 build_secondary_vtable (tree binfo)
812 if (BINFO_NEW_VTABLE_MARKED (binfo))
813 /* We already created a vtable for this base. There's no need to
814 do it again. */
815 return 0;
817 /* Remember that we've created a vtable for this BINFO, so that we
818 don't try to do so again. */
819 SET_BINFO_NEW_VTABLE_MARKED (binfo);
821 /* Make fresh virtual list, so we can smash it later. */
822 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
824 /* Secondary vtables are laid out as part of the same structure as
825 the primary vtable. */
826 BINFO_VTABLE (binfo) = NULL_TREE;
827 return 1;
830 /* Create a new vtable for BINFO which is the hierarchy dominated by
831 T. Return nonzero if we actually created a new vtable. */
833 static int
834 make_new_vtable (tree t, tree binfo)
836 if (binfo == TYPE_BINFO (t))
837 /* In this case, it is *type*'s vtable we are modifying. We start
838 with the approximation that its vtable is that of the
839 immediate base class. */
840 return build_primary_vtable (binfo, t);
841 else
842 /* This is our very own copy of `basetype' to play with. Later,
843 we will fill in all the virtual functions that override the
844 virtual functions in these base classes which are not defined
845 by the current type. */
846 return build_secondary_vtable (binfo);
849 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
850 (which is in the hierarchy dominated by T) list FNDECL as its
851 BV_FN. DELTA is the required constant adjustment from the `this'
852 pointer where the vtable entry appears to the `this' required when
853 the function is actually called. */
855 static void
856 modify_vtable_entry (tree t,
857 tree binfo,
858 tree fndecl,
859 tree delta,
860 tree *virtuals)
862 tree v;
864 v = *virtuals;
866 if (fndecl != BV_FN (v)
867 || !tree_int_cst_equal (delta, BV_DELTA (v)))
869 /* We need a new vtable for BINFO. */
870 if (make_new_vtable (t, binfo))
872 /* If we really did make a new vtable, we also made a copy
873 of the BINFO_VIRTUALS list. Now, we have to find the
874 corresponding entry in that list. */
875 *virtuals = BINFO_VIRTUALS (binfo);
876 while (BV_FN (*virtuals) != BV_FN (v))
877 *virtuals = TREE_CHAIN (*virtuals);
878 v = *virtuals;
881 BV_DELTA (v) = delta;
882 BV_VCALL_INDEX (v) = NULL_TREE;
883 BV_FN (v) = fndecl;
888 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
889 the USING_DECL naming METHOD. Returns true if the method could be
890 added to the method vec. */
892 bool
893 add_method (tree type, tree method, tree using_decl)
895 unsigned slot;
896 tree overload;
897 bool template_conv_p = false;
898 bool conv_p;
899 VEC(tree,gc) *method_vec;
900 bool complete_p;
901 bool insert_p = false;
902 tree current_fns;
904 if (method == error_mark_node)
905 return false;
907 complete_p = COMPLETE_TYPE_P (type);
908 conv_p = DECL_CONV_FN_P (method);
909 if (conv_p)
910 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
911 && DECL_TEMPLATE_CONV_FN_P (method));
913 method_vec = CLASSTYPE_METHOD_VEC (type);
914 if (!method_vec)
916 /* Make a new method vector. We start with 8 entries. We must
917 allocate at least two (for constructors and destructors), and
918 we're going to end up with an assignment operator at some
919 point as well. */
920 method_vec = VEC_alloc (tree, gc, 8);
921 /* Create slots for constructors and destructors. */
922 VEC_quick_push (tree, method_vec, NULL_TREE);
923 VEC_quick_push (tree, method_vec, NULL_TREE);
924 CLASSTYPE_METHOD_VEC (type) = method_vec;
927 /* Constructors and destructors go in special slots. */
928 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
929 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
930 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
932 slot = CLASSTYPE_DESTRUCTOR_SLOT;
934 if (TYPE_FOR_JAVA (type))
936 if (!DECL_ARTIFICIAL (method))
937 error ("Java class %qT cannot have a destructor", type);
938 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
939 error ("Java class %qT cannot have an implicit non-trivial "
940 "destructor",
941 type);
944 else
946 tree m;
948 insert_p = true;
949 /* See if we already have an entry with this name. */
950 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
951 VEC_iterate (tree, method_vec, slot, m);
952 ++slot)
954 m = OVL_CURRENT (m);
955 if (template_conv_p)
957 if (TREE_CODE (m) == TEMPLATE_DECL
958 && DECL_TEMPLATE_CONV_FN_P (m))
959 insert_p = false;
960 break;
962 if (conv_p && !DECL_CONV_FN_P (m))
963 break;
964 if (DECL_NAME (m) == DECL_NAME (method))
966 insert_p = false;
967 break;
969 if (complete_p
970 && !DECL_CONV_FN_P (m)
971 && DECL_NAME (m) > DECL_NAME (method))
972 break;
975 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
977 if (processing_template_decl)
978 /* TYPE is a template class. Don't issue any errors now; wait
979 until instantiation time to complain. */
981 else
983 tree fns;
985 /* Check to see if we've already got this method. */
986 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
988 tree fn = OVL_CURRENT (fns);
989 tree fn_type;
990 tree method_type;
991 tree parms1;
992 tree parms2;
994 if (TREE_CODE (fn) != TREE_CODE (method))
995 continue;
997 /* [over.load] Member function declarations with the
998 same name and the same parameter types cannot be
999 overloaded if any of them is a static member
1000 function declaration.
1002 [namespace.udecl] When a using-declaration brings names
1003 from a base class into a derived class scope, member
1004 functions in the derived class override and/or hide member
1005 functions with the same name and parameter types in a base
1006 class (rather than conflicting). */
1007 fn_type = TREE_TYPE (fn);
1008 method_type = TREE_TYPE (method);
1009 parms1 = TYPE_ARG_TYPES (fn_type);
1010 parms2 = TYPE_ARG_TYPES (method_type);
1012 /* Compare the quals on the 'this' parm. Don't compare
1013 the whole types, as used functions are treated as
1014 coming from the using class in overload resolution. */
1015 if (! DECL_STATIC_FUNCTION_P (fn)
1016 && ! DECL_STATIC_FUNCTION_P (method)
1017 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
1018 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
1019 continue;
1021 /* For templates, the return type and template parameters
1022 must be identical. */
1023 if (TREE_CODE (fn) == TEMPLATE_DECL
1024 && (!same_type_p (TREE_TYPE (fn_type),
1025 TREE_TYPE (method_type))
1026 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1027 DECL_TEMPLATE_PARMS (method))))
1028 continue;
1030 if (! DECL_STATIC_FUNCTION_P (fn))
1031 parms1 = TREE_CHAIN (parms1);
1032 if (! DECL_STATIC_FUNCTION_P (method))
1033 parms2 = TREE_CHAIN (parms2);
1035 if (compparms (parms1, parms2)
1036 && (!DECL_CONV_FN_P (fn)
1037 || same_type_p (TREE_TYPE (fn_type),
1038 TREE_TYPE (method_type))))
1040 if (using_decl)
1042 if (DECL_CONTEXT (fn) == type)
1043 /* Defer to the local function. */
1044 return false;
1045 if (DECL_CONTEXT (fn) == DECL_CONTEXT (method))
1046 error ("repeated using declaration %q+D", using_decl);
1047 else
1048 error ("using declaration %q+D conflicts with a previous using declaration",
1049 using_decl);
1051 else
1053 error ("%q+#D cannot be overloaded", method);
1054 error ("with %q+#D", fn);
1057 /* We don't call duplicate_decls here to merge the
1058 declarations because that will confuse things if the
1059 methods have inline definitions. In particular, we
1060 will crash while processing the definitions. */
1061 return false;
1066 /* A class should never have more than one destructor. */
1067 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1068 return false;
1070 /* Add the new binding. */
1071 overload = build_overload (method, current_fns);
1073 if (conv_p)
1074 TYPE_HAS_CONVERSION (type) = 1;
1075 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1076 push_class_level_binding (DECL_NAME (method), overload);
1078 if (insert_p)
1080 /* We only expect to add few methods in the COMPLETE_P case, so
1081 just make room for one more method in that case. */
1082 if (VEC_reserve (tree, gc, method_vec, complete_p ? -1 : 1))
1083 CLASSTYPE_METHOD_VEC (type) = method_vec;
1084 if (slot == VEC_length (tree, method_vec))
1085 VEC_quick_push (tree, method_vec, overload);
1086 else
1087 VEC_quick_insert (tree, method_vec, slot, overload);
1089 else
1090 /* Replace the current slot. */
1091 VEC_replace (tree, method_vec, slot, overload);
1092 return true;
1095 /* Subroutines of finish_struct. */
1097 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1098 legit, otherwise return 0. */
1100 static int
1101 alter_access (tree t, tree fdecl, tree access)
1103 tree elem;
1105 if (!DECL_LANG_SPECIFIC (fdecl))
1106 retrofit_lang_decl (fdecl);
1108 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1110 elem = purpose_member (t, DECL_ACCESS (fdecl));
1111 if (elem)
1113 if (TREE_VALUE (elem) != access)
1115 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1116 error ("conflicting access specifications for method"
1117 " %q+D, ignored", TREE_TYPE (fdecl));
1118 else
1119 error ("conflicting access specifications for field %qE, ignored",
1120 DECL_NAME (fdecl));
1122 else
1124 /* They're changing the access to the same thing they changed
1125 it to before. That's OK. */
1129 else
1131 perform_or_defer_access_check (TYPE_BINFO (t), fdecl);
1132 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1133 return 1;
1135 return 0;
1138 /* Process the USING_DECL, which is a member of T. */
1140 static void
1141 handle_using_decl (tree using_decl, tree t)
1143 tree decl = USING_DECL_DECLS (using_decl);
1144 tree name = DECL_NAME (using_decl);
1145 tree access
1146 = TREE_PRIVATE (using_decl) ? access_private_node
1147 : TREE_PROTECTED (using_decl) ? access_protected_node
1148 : access_public_node;
1149 tree flist = NULL_TREE;
1150 tree old_value;
1152 gcc_assert (!processing_template_decl && decl);
1154 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
1155 if (old_value)
1157 if (is_overloaded_fn (old_value))
1158 old_value = OVL_CURRENT (old_value);
1160 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1161 /* OK */;
1162 else
1163 old_value = NULL_TREE;
1166 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1168 if (is_overloaded_fn (decl))
1169 flist = decl;
1171 if (! old_value)
1173 else if (is_overloaded_fn (old_value))
1175 if (flist)
1176 /* It's OK to use functions from a base when there are functions with
1177 the same name already present in the current class. */;
1178 else
1180 error ("%q+D invalid in %q#T", using_decl, t);
1181 error (" because of local method %q+#D with same name",
1182 OVL_CURRENT (old_value));
1183 return;
1186 else if (!DECL_ARTIFICIAL (old_value))
1188 error ("%q+D invalid in %q#T", using_decl, t);
1189 error (" because of local member %q+#D with same name", old_value);
1190 return;
1193 /* Make type T see field decl FDECL with access ACCESS. */
1194 if (flist)
1195 for (; flist; flist = OVL_NEXT (flist))
1197 add_method (t, OVL_CURRENT (flist), using_decl);
1198 alter_access (t, OVL_CURRENT (flist), access);
1200 else
1201 alter_access (t, decl, access);
1204 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1205 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1206 properties of the bases. */
1208 static void
1209 check_bases (tree t,
1210 int* cant_have_const_ctor_p,
1211 int* no_const_asn_ref_p)
1213 int i;
1214 int seen_non_virtual_nearly_empty_base_p;
1215 tree base_binfo;
1216 tree binfo;
1218 seen_non_virtual_nearly_empty_base_p = 0;
1220 for (binfo = TYPE_BINFO (t), i = 0;
1221 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1223 tree basetype = TREE_TYPE (base_binfo);
1225 gcc_assert (COMPLETE_TYPE_P (basetype));
1227 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1228 here because the case of virtual functions but non-virtual
1229 dtor is handled in finish_struct_1. */
1230 if (!TYPE_POLYMORPHIC_P (basetype))
1231 warning (OPT_Weffc__,
1232 "base class %q#T has a non-virtual destructor", basetype);
1234 /* If the base class doesn't have copy constructors or
1235 assignment operators that take const references, then the
1236 derived class cannot have such a member automatically
1237 generated. */
1238 if (! TYPE_HAS_CONST_INIT_REF (basetype))
1239 *cant_have_const_ctor_p = 1;
1240 if (TYPE_HAS_ASSIGN_REF (basetype)
1241 && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
1242 *no_const_asn_ref_p = 1;
1244 if (BINFO_VIRTUAL_P (base_binfo))
1245 /* A virtual base does not effect nearly emptiness. */
1247 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1249 if (seen_non_virtual_nearly_empty_base_p)
1250 /* And if there is more than one nearly empty base, then the
1251 derived class is not nearly empty either. */
1252 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1253 else
1254 /* Remember we've seen one. */
1255 seen_non_virtual_nearly_empty_base_p = 1;
1257 else if (!is_empty_class (basetype))
1258 /* If the base class is not empty or nearly empty, then this
1259 class cannot be nearly empty. */
1260 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1262 /* A lot of properties from the bases also apply to the derived
1263 class. */
1264 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1265 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1266 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1267 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
1268 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
1269 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
1270 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1271 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1272 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1276 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1277 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1278 that have had a nearly-empty virtual primary base stolen by some
1279 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1280 T. */
1282 static void
1283 determine_primary_bases (tree t)
1285 unsigned i;
1286 tree primary = NULL_TREE;
1287 tree type_binfo = TYPE_BINFO (t);
1288 tree base_binfo;
1290 /* Determine the primary bases of our bases. */
1291 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1292 base_binfo = TREE_CHAIN (base_binfo))
1294 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1296 /* See if we're the non-virtual primary of our inheritance
1297 chain. */
1298 if (!BINFO_VIRTUAL_P (base_binfo))
1300 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1301 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1303 if (parent_primary
1304 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1305 BINFO_TYPE (parent_primary)))
1306 /* We are the primary binfo. */
1307 BINFO_PRIMARY_P (base_binfo) = 1;
1309 /* Determine if we have a virtual primary base, and mark it so.
1311 if (primary && BINFO_VIRTUAL_P (primary))
1313 tree this_primary = copied_binfo (primary, base_binfo);
1315 if (BINFO_PRIMARY_P (this_primary))
1316 /* Someone already claimed this base. */
1317 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1318 else
1320 tree delta;
1322 BINFO_PRIMARY_P (this_primary) = 1;
1323 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1325 /* A virtual binfo might have been copied from within
1326 another hierarchy. As we're about to use it as a
1327 primary base, make sure the offsets match. */
1328 delta = size_diffop (convert (ssizetype,
1329 BINFO_OFFSET (base_binfo)),
1330 convert (ssizetype,
1331 BINFO_OFFSET (this_primary)));
1333 propagate_binfo_offsets (this_primary, delta);
1338 /* First look for a dynamic direct non-virtual base. */
1339 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1341 tree basetype = BINFO_TYPE (base_binfo);
1343 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1345 primary = base_binfo;
1346 goto found;
1350 /* A "nearly-empty" virtual base class can be the primary base
1351 class, if no non-virtual polymorphic base can be found. Look for
1352 a nearly-empty virtual dynamic base that is not already a primary
1353 base of something in the hierarchy. If there is no such base,
1354 just pick the first nearly-empty virtual base. */
1356 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1357 base_binfo = TREE_CHAIN (base_binfo))
1358 if (BINFO_VIRTUAL_P (base_binfo)
1359 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1361 if (!BINFO_PRIMARY_P (base_binfo))
1363 /* Found one that is not primary. */
1364 primary = base_binfo;
1365 goto found;
1367 else if (!primary)
1368 /* Remember the first candidate. */
1369 primary = base_binfo;
1372 found:
1373 /* If we've got a primary base, use it. */
1374 if (primary)
1376 tree basetype = BINFO_TYPE (primary);
1378 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1379 if (BINFO_PRIMARY_P (primary))
1380 /* We are stealing a primary base. */
1381 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1382 BINFO_PRIMARY_P (primary) = 1;
1383 if (BINFO_VIRTUAL_P (primary))
1385 tree delta;
1387 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1388 /* A virtual binfo might have been copied from within
1389 another hierarchy. As we're about to use it as a primary
1390 base, make sure the offsets match. */
1391 delta = size_diffop (ssize_int (0),
1392 convert (ssizetype, BINFO_OFFSET (primary)));
1394 propagate_binfo_offsets (primary, delta);
1397 primary = TYPE_BINFO (basetype);
1399 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1400 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1401 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1405 /* Set memoizing fields and bits of T (and its variants) for later
1406 use. */
1408 static void
1409 finish_struct_bits (tree t)
1411 tree variants;
1413 /* Fix up variants (if any). */
1414 for (variants = TYPE_NEXT_VARIANT (t);
1415 variants;
1416 variants = TYPE_NEXT_VARIANT (variants))
1418 /* These fields are in the _TYPE part of the node, not in
1419 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1420 TYPE_HAS_CONSTRUCTOR (variants) = TYPE_HAS_CONSTRUCTOR (t);
1421 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1422 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1423 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1425 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1427 TYPE_BINFO (variants) = TYPE_BINFO (t);
1429 /* Copy whatever these are holding today. */
1430 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1431 TYPE_METHODS (variants) = TYPE_METHODS (t);
1432 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1433 TYPE_SIZE (variants) = TYPE_SIZE (t);
1434 TYPE_SIZE_UNIT (variants) = TYPE_SIZE_UNIT (t);
1437 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1438 /* For a class w/o baseclasses, 'finish_struct' has set
1439 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1440 Similarly for a class whose base classes do not have vtables.
1441 When neither of these is true, we might have removed abstract
1442 virtuals (by providing a definition), added some (by declaring
1443 new ones), or redeclared ones from a base class. We need to
1444 recalculate what's really an abstract virtual at this point (by
1445 looking in the vtables). */
1446 get_pure_virtuals (t);
1448 /* If this type has a copy constructor or a destructor, force its
1449 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1450 nonzero. This will cause it to be passed by invisible reference
1451 and prevent it from being returned in a register. */
1452 if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1454 tree variants;
1455 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1456 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1458 TYPE_MODE (variants) = BLKmode;
1459 TREE_ADDRESSABLE (variants) = 1;
1464 /* Issue warnings about T having private constructors, but no friends,
1465 and so forth.
1467 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1468 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1469 non-private static member functions. */
1471 static void
1472 maybe_warn_about_overly_private_class (tree t)
1474 int has_member_fn = 0;
1475 int has_nonprivate_method = 0;
1476 tree fn;
1478 if (!warn_ctor_dtor_privacy
1479 /* If the class has friends, those entities might create and
1480 access instances, so we should not warn. */
1481 || (CLASSTYPE_FRIEND_CLASSES (t)
1482 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1483 /* We will have warned when the template was declared; there's
1484 no need to warn on every instantiation. */
1485 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1486 /* There's no reason to even consider warning about this
1487 class. */
1488 return;
1490 /* We only issue one warning, if more than one applies, because
1491 otherwise, on code like:
1493 class A {
1494 // Oops - forgot `public:'
1495 A();
1496 A(const A&);
1497 ~A();
1500 we warn several times about essentially the same problem. */
1502 /* Check to see if all (non-constructor, non-destructor) member
1503 functions are private. (Since there are no friends or
1504 non-private statics, we can't ever call any of the private member
1505 functions.) */
1506 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1507 /* We're not interested in compiler-generated methods; they don't
1508 provide any way to call private members. */
1509 if (!DECL_ARTIFICIAL (fn))
1511 if (!TREE_PRIVATE (fn))
1513 if (DECL_STATIC_FUNCTION_P (fn))
1514 /* A non-private static member function is just like a
1515 friend; it can create and invoke private member
1516 functions, and be accessed without a class
1517 instance. */
1518 return;
1520 has_nonprivate_method = 1;
1521 /* Keep searching for a static member function. */
1523 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1524 has_member_fn = 1;
1527 if (!has_nonprivate_method && has_member_fn)
1529 /* There are no non-private methods, and there's at least one
1530 private member function that isn't a constructor or
1531 destructor. (If all the private members are
1532 constructors/destructors we want to use the code below that
1533 issues error messages specifically referring to
1534 constructors/destructors.) */
1535 unsigned i;
1536 tree binfo = TYPE_BINFO (t);
1538 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1539 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1541 has_nonprivate_method = 1;
1542 break;
1544 if (!has_nonprivate_method)
1546 warning (OPT_Wctor_dtor_privacy,
1547 "all member functions in class %qT are private", t);
1548 return;
1552 /* Even if some of the member functions are non-private, the class
1553 won't be useful for much if all the constructors or destructors
1554 are private: such an object can never be created or destroyed. */
1555 fn = CLASSTYPE_DESTRUCTORS (t);
1556 if (fn && TREE_PRIVATE (fn))
1558 warning (OPT_Wctor_dtor_privacy,
1559 "%q#T only defines a private destructor and has no friends",
1561 return;
1564 if (TYPE_HAS_CONSTRUCTOR (t)
1565 /* Implicitly generated constructors are always public. */
1566 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1567 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1569 int nonprivate_ctor = 0;
1571 /* If a non-template class does not define a copy
1572 constructor, one is defined for it, enabling it to avoid
1573 this warning. For a template class, this does not
1574 happen, and so we would normally get a warning on:
1576 template <class T> class C { private: C(); };
1578 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1579 complete non-template or fully instantiated classes have this
1580 flag set. */
1581 if (!TYPE_HAS_INIT_REF (t))
1582 nonprivate_ctor = 1;
1583 else
1584 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1586 tree ctor = OVL_CURRENT (fn);
1587 /* Ideally, we wouldn't count copy constructors (or, in
1588 fact, any constructor that takes an argument of the
1589 class type as a parameter) because such things cannot
1590 be used to construct an instance of the class unless
1591 you already have one. But, for now at least, we're
1592 more generous. */
1593 if (! TREE_PRIVATE (ctor))
1595 nonprivate_ctor = 1;
1596 break;
1600 if (nonprivate_ctor == 0)
1602 warning (OPT_Wctor_dtor_privacy,
1603 "%q#T only defines private constructors and has no friends",
1605 return;
1610 static struct {
1611 gt_pointer_operator new_value;
1612 void *cookie;
1613 } resort_data;
1615 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1617 static int
1618 method_name_cmp (const void* m1_p, const void* m2_p)
1620 const tree *const m1 = m1_p;
1621 const tree *const m2 = m2_p;
1623 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1624 return 0;
1625 if (*m1 == NULL_TREE)
1626 return -1;
1627 if (*m2 == NULL_TREE)
1628 return 1;
1629 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1630 return -1;
1631 return 1;
1634 /* This routine compares two fields like method_name_cmp but using the
1635 pointer operator in resort_field_decl_data. */
1637 static int
1638 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1640 const tree *const m1 = m1_p;
1641 const tree *const m2 = m2_p;
1642 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1643 return 0;
1644 if (*m1 == NULL_TREE)
1645 return -1;
1646 if (*m2 == NULL_TREE)
1647 return 1;
1649 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1650 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1651 resort_data.new_value (&d1, resort_data.cookie);
1652 resort_data.new_value (&d2, resort_data.cookie);
1653 if (d1 < d2)
1654 return -1;
1656 return 1;
1659 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1661 void
1662 resort_type_method_vec (void* obj,
1663 void* orig_obj ATTRIBUTE_UNUSED ,
1664 gt_pointer_operator new_value,
1665 void* cookie)
1667 VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
1668 int len = VEC_length (tree, method_vec);
1669 size_t slot;
1670 tree fn;
1672 /* The type conversion ops have to live at the front of the vec, so we
1673 can't sort them. */
1674 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1675 VEC_iterate (tree, method_vec, slot, fn);
1676 ++slot)
1677 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1678 break;
1680 if (len - slot > 1)
1682 resort_data.new_value = new_value;
1683 resort_data.cookie = cookie;
1684 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1685 resort_method_name_cmp);
1689 /* Warn about duplicate methods in fn_fields.
1691 Sort methods that are not special (i.e., constructors, destructors,
1692 and type conversion operators) so that we can find them faster in
1693 search. */
1695 static void
1696 finish_struct_methods (tree t)
1698 tree fn_fields;
1699 VEC(tree,gc) *method_vec;
1700 int slot, len;
1702 method_vec = CLASSTYPE_METHOD_VEC (t);
1703 if (!method_vec)
1704 return;
1706 len = VEC_length (tree, method_vec);
1708 /* Clear DECL_IN_AGGR_P for all functions. */
1709 for (fn_fields = TYPE_METHODS (t); fn_fields;
1710 fn_fields = TREE_CHAIN (fn_fields))
1711 DECL_IN_AGGR_P (fn_fields) = 0;
1713 /* Issue warnings about private constructors and such. If there are
1714 no methods, then some public defaults are generated. */
1715 maybe_warn_about_overly_private_class (t);
1717 /* The type conversion ops have to live at the front of the vec, so we
1718 can't sort them. */
1719 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1720 VEC_iterate (tree, method_vec, slot, fn_fields);
1721 ++slot)
1722 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1723 break;
1724 if (len - slot > 1)
1725 qsort (VEC_address (tree, method_vec) + slot,
1726 len-slot, sizeof (tree), method_name_cmp);
1729 /* Make BINFO's vtable have N entries, including RTTI entries,
1730 vbase and vcall offsets, etc. Set its type and call the backend
1731 to lay it out. */
1733 static void
1734 layout_vtable_decl (tree binfo, int n)
1736 tree atype;
1737 tree vtable;
1739 atype = build_cplus_array_type (vtable_entry_type,
1740 build_index_type (size_int (n - 1)));
1741 layout_type (atype);
1743 /* We may have to grow the vtable. */
1744 vtable = get_vtbl_decl_for_binfo (binfo);
1745 if (!same_type_p (TREE_TYPE (vtable), atype))
1747 TREE_TYPE (vtable) = atype;
1748 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1749 layout_decl (vtable, 0);
1753 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1754 have the same signature. */
1757 same_signature_p (tree fndecl, tree base_fndecl)
1759 /* One destructor overrides another if they are the same kind of
1760 destructor. */
1761 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1762 && special_function_p (base_fndecl) == special_function_p (fndecl))
1763 return 1;
1764 /* But a non-destructor never overrides a destructor, nor vice
1765 versa, nor do different kinds of destructors override
1766 one-another. For example, a complete object destructor does not
1767 override a deleting destructor. */
1768 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1769 return 0;
1771 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1772 || (DECL_CONV_FN_P (fndecl)
1773 && DECL_CONV_FN_P (base_fndecl)
1774 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1775 DECL_CONV_FN_TYPE (base_fndecl))))
1777 tree types, base_types;
1778 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1779 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1780 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
1781 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
1782 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1783 return 1;
1785 return 0;
1788 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1789 subobject. */
1791 static bool
1792 base_derived_from (tree derived, tree base)
1794 tree probe;
1796 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1798 if (probe == derived)
1799 return true;
1800 else if (BINFO_VIRTUAL_P (probe))
1801 /* If we meet a virtual base, we can't follow the inheritance
1802 any more. See if the complete type of DERIVED contains
1803 such a virtual base. */
1804 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1805 != NULL_TREE);
1807 return false;
1810 typedef struct find_final_overrider_data_s {
1811 /* The function for which we are trying to find a final overrider. */
1812 tree fn;
1813 /* The base class in which the function was declared. */
1814 tree declaring_base;
1815 /* The candidate overriders. */
1816 tree candidates;
1817 /* Path to most derived. */
1818 VEC(tree,heap) *path;
1819 } find_final_overrider_data;
1821 /* Add the overrider along the current path to FFOD->CANDIDATES.
1822 Returns true if an overrider was found; false otherwise. */
1824 static bool
1825 dfs_find_final_overrider_1 (tree binfo,
1826 find_final_overrider_data *ffod,
1827 unsigned depth)
1829 tree method;
1831 /* If BINFO is not the most derived type, try a more derived class.
1832 A definition there will overrider a definition here. */
1833 if (depth)
1835 depth--;
1836 if (dfs_find_final_overrider_1
1837 (VEC_index (tree, ffod->path, depth), ffod, depth))
1838 return true;
1841 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
1842 if (method)
1844 tree *candidate = &ffod->candidates;
1846 /* Remove any candidates overridden by this new function. */
1847 while (*candidate)
1849 /* If *CANDIDATE overrides METHOD, then METHOD
1850 cannot override anything else on the list. */
1851 if (base_derived_from (TREE_VALUE (*candidate), binfo))
1852 return true;
1853 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1854 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
1855 *candidate = TREE_CHAIN (*candidate);
1856 else
1857 candidate = &TREE_CHAIN (*candidate);
1860 /* Add the new function. */
1861 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
1862 return true;
1865 return false;
1868 /* Called from find_final_overrider via dfs_walk. */
1870 static tree
1871 dfs_find_final_overrider_pre (tree binfo, void *data)
1873 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1875 if (binfo == ffod->declaring_base)
1876 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
1877 VEC_safe_push (tree, heap, ffod->path, binfo);
1879 return NULL_TREE;
1882 static tree
1883 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
1885 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1886 VEC_pop (tree, ffod->path);
1888 return NULL_TREE;
1891 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1892 FN and whose TREE_VALUE is the binfo for the base where the
1893 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1894 DERIVED) is the base object in which FN is declared. */
1896 static tree
1897 find_final_overrider (tree derived, tree binfo, tree fn)
1899 find_final_overrider_data ffod;
1901 /* Getting this right is a little tricky. This is valid:
1903 struct S { virtual void f (); };
1904 struct T { virtual void f (); };
1905 struct U : public S, public T { };
1907 even though calling `f' in `U' is ambiguous. But,
1909 struct R { virtual void f(); };
1910 struct S : virtual public R { virtual void f (); };
1911 struct T : virtual public R { virtual void f (); };
1912 struct U : public S, public T { };
1914 is not -- there's no way to decide whether to put `S::f' or
1915 `T::f' in the vtable for `R'.
1917 The solution is to look at all paths to BINFO. If we find
1918 different overriders along any two, then there is a problem. */
1919 if (DECL_THUNK_P (fn))
1920 fn = THUNK_TARGET (fn);
1922 /* Determine the depth of the hierarchy. */
1923 ffod.fn = fn;
1924 ffod.declaring_base = binfo;
1925 ffod.candidates = NULL_TREE;
1926 ffod.path = VEC_alloc (tree, heap, 30);
1928 dfs_walk_all (derived, dfs_find_final_overrider_pre,
1929 dfs_find_final_overrider_post, &ffod);
1931 VEC_free (tree, heap, ffod.path);
1933 /* If there was no winner, issue an error message. */
1934 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
1935 return error_mark_node;
1937 return ffod.candidates;
1940 /* Return the index of the vcall offset for FN when TYPE is used as a
1941 virtual base. */
1943 static tree
1944 get_vcall_index (tree fn, tree type)
1946 VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
1947 tree_pair_p p;
1948 unsigned ix;
1950 for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
1951 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
1952 || same_signature_p (fn, p->purpose))
1953 return p->value;
1955 /* There should always be an appropriate index. */
1956 gcc_unreachable ();
1959 /* Update an entry in the vtable for BINFO, which is in the hierarchy
1960 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
1961 corresponding position in the BINFO_VIRTUALS list. */
1963 static void
1964 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
1965 unsigned ix)
1967 tree b;
1968 tree overrider;
1969 tree delta;
1970 tree virtual_base;
1971 tree first_defn;
1972 tree overrider_fn, overrider_target;
1973 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
1974 tree over_return, base_return;
1975 bool lost = false;
1977 /* Find the nearest primary base (possibly binfo itself) which defines
1978 this function; this is the class the caller will convert to when
1979 calling FN through BINFO. */
1980 for (b = binfo; ; b = get_primary_binfo (b))
1982 gcc_assert (b);
1983 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
1984 break;
1986 /* The nearest definition is from a lost primary. */
1987 if (BINFO_LOST_PRIMARY_P (b))
1988 lost = true;
1990 first_defn = b;
1992 /* Find the final overrider. */
1993 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
1994 if (overrider == error_mark_node)
1996 error ("no unique final overrider for %qD in %qT", target_fn, t);
1997 return;
1999 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2001 /* Check for adjusting covariant return types. */
2002 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2003 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2005 if (POINTER_TYPE_P (over_return)
2006 && TREE_CODE (over_return) == TREE_CODE (base_return)
2007 && CLASS_TYPE_P (TREE_TYPE (over_return))
2008 && CLASS_TYPE_P (TREE_TYPE (base_return))
2009 /* If the overrider is invalid, don't even try. */
2010 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2012 /* If FN is a covariant thunk, we must figure out the adjustment
2013 to the final base FN was converting to. As OVERRIDER_TARGET might
2014 also be converting to the return type of FN, we have to
2015 combine the two conversions here. */
2016 tree fixed_offset, virtual_offset;
2018 over_return = TREE_TYPE (over_return);
2019 base_return = TREE_TYPE (base_return);
2021 if (DECL_THUNK_P (fn))
2023 gcc_assert (DECL_RESULT_THUNK_P (fn));
2024 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2025 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2027 else
2028 fixed_offset = virtual_offset = NULL_TREE;
2030 if (virtual_offset)
2031 /* Find the equivalent binfo within the return type of the
2032 overriding function. We will want the vbase offset from
2033 there. */
2034 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2035 over_return);
2036 else if (!same_type_ignoring_top_level_qualifiers_p
2037 (over_return, base_return))
2039 /* There was no existing virtual thunk (which takes
2040 precedence). So find the binfo of the base function's
2041 return type within the overriding function's return type.
2042 We cannot call lookup base here, because we're inside a
2043 dfs_walk, and will therefore clobber the BINFO_MARKED
2044 flags. Fortunately we know the covariancy is valid (it
2045 has already been checked), so we can just iterate along
2046 the binfos, which have been chained in inheritance graph
2047 order. Of course it is lame that we have to repeat the
2048 search here anyway -- we should really be caching pieces
2049 of the vtable and avoiding this repeated work. */
2050 tree thunk_binfo, base_binfo;
2052 /* Find the base binfo within the overriding function's
2053 return type. We will always find a thunk_binfo, except
2054 when the covariancy is invalid (which we will have
2055 already diagnosed). */
2056 for (base_binfo = TYPE_BINFO (base_return),
2057 thunk_binfo = TYPE_BINFO (over_return);
2058 thunk_binfo;
2059 thunk_binfo = TREE_CHAIN (thunk_binfo))
2060 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2061 BINFO_TYPE (base_binfo)))
2062 break;
2064 /* See if virtual inheritance is involved. */
2065 for (virtual_offset = thunk_binfo;
2066 virtual_offset;
2067 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2068 if (BINFO_VIRTUAL_P (virtual_offset))
2069 break;
2071 if (virtual_offset
2072 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2074 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2076 if (virtual_offset)
2078 /* We convert via virtual base. Adjust the fixed
2079 offset to be from there. */
2080 offset = size_diffop
2081 (offset, convert
2082 (ssizetype, BINFO_OFFSET (virtual_offset)));
2084 if (fixed_offset)
2085 /* There was an existing fixed offset, this must be
2086 from the base just converted to, and the base the
2087 FN was thunking to. */
2088 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2089 else
2090 fixed_offset = offset;
2094 if (fixed_offset || virtual_offset)
2095 /* Replace the overriding function with a covariant thunk. We
2096 will emit the overriding function in its own slot as
2097 well. */
2098 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2099 fixed_offset, virtual_offset);
2101 else
2102 gcc_assert (!DECL_THUNK_P (fn));
2104 /* Assume that we will produce a thunk that convert all the way to
2105 the final overrider, and not to an intermediate virtual base. */
2106 virtual_base = NULL_TREE;
2108 /* See if we can convert to an intermediate virtual base first, and then
2109 use the vcall offset located there to finish the conversion. */
2110 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2112 /* If we find the final overrider, then we can stop
2113 walking. */
2114 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2115 BINFO_TYPE (TREE_VALUE (overrider))))
2116 break;
2118 /* If we find a virtual base, and we haven't yet found the
2119 overrider, then there is a virtual base between the
2120 declaring base (first_defn) and the final overrider. */
2121 if (BINFO_VIRTUAL_P (b))
2123 virtual_base = b;
2124 break;
2128 if (overrider_fn != overrider_target && !virtual_base)
2130 /* The ABI specifies that a covariant thunk includes a mangling
2131 for a this pointer adjustment. This-adjusting thunks that
2132 override a function from a virtual base have a vcall
2133 adjustment. When the virtual base in question is a primary
2134 virtual base, we know the adjustments are zero, (and in the
2135 non-covariant case, we would not use the thunk).
2136 Unfortunately we didn't notice this could happen, when
2137 designing the ABI and so never mandated that such a covariant
2138 thunk should be emitted. Because we must use the ABI mandated
2139 name, we must continue searching from the binfo where we
2140 found the most recent definition of the function, towards the
2141 primary binfo which first introduced the function into the
2142 vtable. If that enters a virtual base, we must use a vcall
2143 this-adjusting thunk. Bleah! */
2144 tree probe = first_defn;
2146 while ((probe = get_primary_binfo (probe))
2147 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2148 if (BINFO_VIRTUAL_P (probe))
2149 virtual_base = probe;
2151 if (virtual_base)
2152 /* Even if we find a virtual base, the correct delta is
2153 between the overrider and the binfo we're building a vtable
2154 for. */
2155 goto virtual_covariant;
2158 /* Compute the constant adjustment to the `this' pointer. The
2159 `this' pointer, when this function is called, will point at BINFO
2160 (or one of its primary bases, which are at the same offset). */
2161 if (virtual_base)
2162 /* The `this' pointer needs to be adjusted from the declaration to
2163 the nearest virtual base. */
2164 delta = size_diffop (convert (ssizetype, BINFO_OFFSET (virtual_base)),
2165 convert (ssizetype, BINFO_OFFSET (first_defn)));
2166 else if (lost)
2167 /* If the nearest definition is in a lost primary, we don't need an
2168 entry in our vtable. Except possibly in a constructor vtable,
2169 if we happen to get our primary back. In that case, the offset
2170 will be zero, as it will be a primary base. */
2171 delta = size_zero_node;
2172 else
2173 /* The `this' pointer needs to be adjusted from pointing to
2174 BINFO to pointing at the base where the final overrider
2175 appears. */
2176 virtual_covariant:
2177 delta = size_diffop (convert (ssizetype,
2178 BINFO_OFFSET (TREE_VALUE (overrider))),
2179 convert (ssizetype, BINFO_OFFSET (binfo)));
2181 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2183 if (virtual_base)
2184 BV_VCALL_INDEX (*virtuals)
2185 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2186 else
2187 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2190 /* Called from modify_all_vtables via dfs_walk. */
2192 static tree
2193 dfs_modify_vtables (tree binfo, void* data)
2195 tree t = (tree) data;
2196 tree virtuals;
2197 tree old_virtuals;
2198 unsigned ix;
2200 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2201 /* A base without a vtable needs no modification, and its bases
2202 are uninteresting. */
2203 return dfs_skip_bases;
2205 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2206 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2207 /* Don't do the primary vtable, if it's new. */
2208 return NULL_TREE;
2210 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2211 /* There's no need to modify the vtable for a non-virtual primary
2212 base; we're not going to use that vtable anyhow. We do still
2213 need to do this for virtual primary bases, as they could become
2214 non-primary in a construction vtable. */
2215 return NULL_TREE;
2217 make_new_vtable (t, binfo);
2219 /* Now, go through each of the virtual functions in the virtual
2220 function table for BINFO. Find the final overrider, and update
2221 the BINFO_VIRTUALS list appropriately. */
2222 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2223 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2224 virtuals;
2225 ix++, virtuals = TREE_CHAIN (virtuals),
2226 old_virtuals = TREE_CHAIN (old_virtuals))
2227 update_vtable_entry_for_fn (t,
2228 binfo,
2229 BV_FN (old_virtuals),
2230 &virtuals, ix);
2232 return NULL_TREE;
2235 /* Update all of the primary and secondary vtables for T. Create new
2236 vtables as required, and initialize their RTTI information. Each
2237 of the functions in VIRTUALS is declared in T and may override a
2238 virtual function from a base class; find and modify the appropriate
2239 entries to point to the overriding functions. Returns a list, in
2240 declaration order, of the virtual functions that are declared in T,
2241 but do not appear in the primary base class vtable, and which
2242 should therefore be appended to the end of the vtable for T. */
2244 static tree
2245 modify_all_vtables (tree t, tree virtuals)
2247 tree binfo = TYPE_BINFO (t);
2248 tree *fnsp;
2250 /* Update all of the vtables. */
2251 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2253 /* Add virtual functions not already in our primary vtable. These
2254 will be both those introduced by this class, and those overridden
2255 from secondary bases. It does not include virtuals merely
2256 inherited from secondary bases. */
2257 for (fnsp = &virtuals; *fnsp; )
2259 tree fn = TREE_VALUE (*fnsp);
2261 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2262 || DECL_VINDEX (fn) == error_mark_node)
2264 /* We don't need to adjust the `this' pointer when
2265 calling this function. */
2266 BV_DELTA (*fnsp) = integer_zero_node;
2267 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2269 /* This is a function not already in our vtable. Keep it. */
2270 fnsp = &TREE_CHAIN (*fnsp);
2272 else
2273 /* We've already got an entry for this function. Skip it. */
2274 *fnsp = TREE_CHAIN (*fnsp);
2277 return virtuals;
2280 /* Get the base virtual function declarations in T that have the
2281 indicated NAME. */
2283 static tree
2284 get_basefndecls (tree name, tree t)
2286 tree methods;
2287 tree base_fndecls = NULL_TREE;
2288 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2289 int i;
2291 /* Find virtual functions in T with the indicated NAME. */
2292 i = lookup_fnfields_1 (t, name);
2293 if (i != -1)
2294 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2295 methods;
2296 methods = OVL_NEXT (methods))
2298 tree method = OVL_CURRENT (methods);
2300 if (TREE_CODE (method) == FUNCTION_DECL
2301 && DECL_VINDEX (method))
2302 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2305 if (base_fndecls)
2306 return base_fndecls;
2308 for (i = 0; i < n_baseclasses; i++)
2310 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2311 base_fndecls = chainon (get_basefndecls (name, basetype),
2312 base_fndecls);
2315 return base_fndecls;
2318 /* If this declaration supersedes the declaration of
2319 a method declared virtual in the base class, then
2320 mark this field as being virtual as well. */
2322 void
2323 check_for_override (tree decl, tree ctype)
2325 if (TREE_CODE (decl) == TEMPLATE_DECL)
2326 /* In [temp.mem] we have:
2328 A specialization of a member function template does not
2329 override a virtual function from a base class. */
2330 return;
2331 if ((DECL_DESTRUCTOR_P (decl)
2332 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2333 || DECL_CONV_FN_P (decl))
2334 && look_for_overrides (ctype, decl)
2335 && !DECL_STATIC_FUNCTION_P (decl))
2336 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2337 the error_mark_node so that we know it is an overriding
2338 function. */
2339 DECL_VINDEX (decl) = decl;
2341 if (DECL_VIRTUAL_P (decl))
2343 if (!DECL_VINDEX (decl))
2344 DECL_VINDEX (decl) = error_mark_node;
2345 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2349 /* Warn about hidden virtual functions that are not overridden in t.
2350 We know that constructors and destructors don't apply. */
2352 void
2353 warn_hidden (tree t)
2355 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
2356 tree fns;
2357 size_t i;
2359 /* We go through each separately named virtual function. */
2360 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2361 VEC_iterate (tree, method_vec, i, fns);
2362 ++i)
2364 tree fn;
2365 tree name;
2366 tree fndecl;
2367 tree base_fndecls;
2368 tree base_binfo;
2369 tree binfo;
2370 int j;
2372 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2373 have the same name. Figure out what name that is. */
2374 name = DECL_NAME (OVL_CURRENT (fns));
2375 /* There are no possibly hidden functions yet. */
2376 base_fndecls = NULL_TREE;
2377 /* Iterate through all of the base classes looking for possibly
2378 hidden functions. */
2379 for (binfo = TYPE_BINFO (t), j = 0;
2380 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2382 tree basetype = BINFO_TYPE (base_binfo);
2383 base_fndecls = chainon (get_basefndecls (name, basetype),
2384 base_fndecls);
2387 /* If there are no functions to hide, continue. */
2388 if (!base_fndecls)
2389 continue;
2391 /* Remove any overridden functions. */
2392 for (fn = fns; fn; fn = OVL_NEXT (fn))
2394 fndecl = OVL_CURRENT (fn);
2395 if (DECL_VINDEX (fndecl))
2397 tree *prev = &base_fndecls;
2399 while (*prev)
2400 /* If the method from the base class has the same
2401 signature as the method from the derived class, it
2402 has been overridden. */
2403 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2404 *prev = TREE_CHAIN (*prev);
2405 else
2406 prev = &TREE_CHAIN (*prev);
2410 /* Now give a warning for all base functions without overriders,
2411 as they are hidden. */
2412 while (base_fndecls)
2414 /* Here we know it is a hider, and no overrider exists. */
2415 warning (0, "%q+D was hidden", TREE_VALUE (base_fndecls));
2416 warning (0, " by %q+D", fns);
2417 base_fndecls = TREE_CHAIN (base_fndecls);
2422 /* Check for things that are invalid. There are probably plenty of other
2423 things we should check for also. */
2425 static void
2426 finish_struct_anon (tree t)
2428 tree field;
2430 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2432 if (TREE_STATIC (field))
2433 continue;
2434 if (TREE_CODE (field) != FIELD_DECL)
2435 continue;
2437 if (DECL_NAME (field) == NULL_TREE
2438 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2440 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2441 for (; elt; elt = TREE_CHAIN (elt))
2443 /* We're generally only interested in entities the user
2444 declared, but we also find nested classes by noticing
2445 the TYPE_DECL that we create implicitly. You're
2446 allowed to put one anonymous union inside another,
2447 though, so we explicitly tolerate that. We use
2448 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2449 we also allow unnamed types used for defining fields. */
2450 if (DECL_ARTIFICIAL (elt)
2451 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2452 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2453 continue;
2455 if (TREE_CODE (elt) != FIELD_DECL)
2457 pedwarn ("%q+#D invalid; an anonymous union can "
2458 "only have non-static data members", elt);
2459 continue;
2462 if (TREE_PRIVATE (elt))
2463 pedwarn ("private member %q+#D in anonymous union", elt);
2464 else if (TREE_PROTECTED (elt))
2465 pedwarn ("protected member %q+#D in anonymous union", elt);
2467 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2468 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2474 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2475 will be used later during class template instantiation.
2476 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2477 a non-static member data (FIELD_DECL), a member function
2478 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2479 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2480 When FRIEND_P is nonzero, T is either a friend class
2481 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2482 (FUNCTION_DECL, TEMPLATE_DECL). */
2484 void
2485 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2487 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2488 if (CLASSTYPE_TEMPLATE_INFO (type))
2489 CLASSTYPE_DECL_LIST (type)
2490 = tree_cons (friend_p ? NULL_TREE : type,
2491 t, CLASSTYPE_DECL_LIST (type));
2494 /* Create default constructors, assignment operators, and so forth for
2495 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2496 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2497 the class cannot have a default constructor, copy constructor
2498 taking a const reference argument, or an assignment operator taking
2499 a const reference, respectively. */
2501 static void
2502 add_implicitly_declared_members (tree t,
2503 int cant_have_const_cctor,
2504 int cant_have_const_assignment)
2506 /* Destructor. */
2507 if (!CLASSTYPE_DESTRUCTORS (t))
2509 /* In general, we create destructors lazily. */
2510 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2511 /* However, if the implicit destructor is non-trivial
2512 destructor, we sometimes have to create it at this point. */
2513 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2515 bool lazy_p = true;
2517 if (TYPE_FOR_JAVA (t))
2518 /* If this a Java class, any non-trivial destructor is
2519 invalid, even if compiler-generated. Therefore, if the
2520 destructor is non-trivial we create it now. */
2521 lazy_p = false;
2522 else
2524 tree binfo;
2525 tree base_binfo;
2526 int ix;
2528 /* If the implicit destructor will be virtual, then we must
2529 generate it now because (unfortunately) we do not
2530 generate virtual tables lazily. */
2531 binfo = TYPE_BINFO (t);
2532 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2534 tree base_type;
2535 tree dtor;
2537 base_type = BINFO_TYPE (base_binfo);
2538 dtor = CLASSTYPE_DESTRUCTORS (base_type);
2539 if (dtor && DECL_VIRTUAL_P (dtor))
2541 lazy_p = false;
2542 break;
2547 /* If we can't get away with being lazy, generate the destructor
2548 now. */
2549 if (!lazy_p)
2550 lazily_declare_fn (sfk_destructor, t);
2554 /* Default constructor. */
2555 if (! TYPE_HAS_CONSTRUCTOR (t))
2557 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2558 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2561 /* Copy constructor. */
2562 if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
2564 TYPE_HAS_INIT_REF (t) = 1;
2565 TYPE_HAS_CONST_INIT_REF (t) = !cant_have_const_cctor;
2566 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2567 TYPE_HAS_CONSTRUCTOR (t) = 1;
2570 /* If there is no assignment operator, one will be created if and
2571 when it is needed. For now, just record whether or not the type
2572 of the parameter to the assignment operator will be a const or
2573 non-const reference. */
2574 if (!TYPE_HAS_ASSIGN_REF (t) && !TYPE_FOR_JAVA (t))
2576 TYPE_HAS_ASSIGN_REF (t) = 1;
2577 TYPE_HAS_CONST_ASSIGN_REF (t) = !cant_have_const_assignment;
2578 CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 1;
2582 /* Subroutine of finish_struct_1. Recursively count the number of fields
2583 in TYPE, including anonymous union members. */
2585 static int
2586 count_fields (tree fields)
2588 tree x;
2589 int n_fields = 0;
2590 for (x = fields; x; x = TREE_CHAIN (x))
2592 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2593 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2594 else
2595 n_fields += 1;
2597 return n_fields;
2600 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2601 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2603 static int
2604 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2606 tree x;
2607 for (x = fields; x; x = TREE_CHAIN (x))
2609 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2610 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2611 else
2612 field_vec->elts[idx++] = x;
2614 return idx;
2617 /* FIELD is a bit-field. We are finishing the processing for its
2618 enclosing type. Issue any appropriate messages and set appropriate
2619 flags. */
2621 static void
2622 check_bitfield_decl (tree field)
2624 tree type = TREE_TYPE (field);
2625 tree w = NULL_TREE;
2627 /* Detect invalid bit-field type. */
2628 if (DECL_INITIAL (field)
2629 && ! INTEGRAL_TYPE_P (TREE_TYPE (field)))
2631 error ("bit-field %q+#D with non-integral type", field);
2632 w = error_mark_node;
2635 /* Detect and ignore out of range field width. */
2636 if (DECL_INITIAL (field))
2638 w = DECL_INITIAL (field);
2640 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2641 STRIP_NOPS (w);
2643 /* detect invalid field size. */
2644 w = integral_constant_value (w);
2646 if (TREE_CODE (w) != INTEGER_CST)
2648 error ("bit-field %q+D width not an integer constant", field);
2649 w = error_mark_node;
2651 else if (tree_int_cst_sgn (w) < 0)
2653 error ("negative width in bit-field %q+D", field);
2654 w = error_mark_node;
2656 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2658 error ("zero width for bit-field %q+D", field);
2659 w = error_mark_node;
2661 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2662 && TREE_CODE (type) != ENUMERAL_TYPE
2663 && TREE_CODE (type) != BOOLEAN_TYPE)
2664 warning (0, "width of %q+D exceeds its type", field);
2665 else if (TREE_CODE (type) == ENUMERAL_TYPE
2666 && (0 > compare_tree_int (w,
2667 min_precision (TYPE_MIN_VALUE (type),
2668 TYPE_UNSIGNED (type)))
2669 || 0 > compare_tree_int (w,
2670 min_precision
2671 (TYPE_MAX_VALUE (type),
2672 TYPE_UNSIGNED (type)))))
2673 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
2676 /* Remove the bit-field width indicator so that the rest of the
2677 compiler does not treat that value as an initializer. */
2678 DECL_INITIAL (field) = NULL_TREE;
2680 if (w != error_mark_node)
2682 DECL_SIZE (field) = convert (bitsizetype, w);
2683 DECL_BIT_FIELD (field) = 1;
2685 else
2687 /* Non-bit-fields are aligned for their type. */
2688 DECL_BIT_FIELD (field) = 0;
2689 CLEAR_DECL_C_BIT_FIELD (field);
2693 /* FIELD is a non bit-field. We are finishing the processing for its
2694 enclosing type T. Issue any appropriate messages and set appropriate
2695 flags. */
2697 static void
2698 check_field_decl (tree field,
2699 tree t,
2700 int* cant_have_const_ctor,
2701 int* no_const_asn_ref,
2702 int* any_default_members)
2704 tree type = strip_array_types (TREE_TYPE (field));
2706 /* An anonymous union cannot contain any fields which would change
2707 the settings of CANT_HAVE_CONST_CTOR and friends. */
2708 if (ANON_UNION_TYPE_P (type))
2710 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2711 structs. So, we recurse through their fields here. */
2712 else if (ANON_AGGR_TYPE_P (type))
2714 tree fields;
2716 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2717 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2718 check_field_decl (fields, t, cant_have_const_ctor,
2719 no_const_asn_ref, any_default_members);
2721 /* Check members with class type for constructors, destructors,
2722 etc. */
2723 else if (CLASS_TYPE_P (type))
2725 /* Never let anything with uninheritable virtuals
2726 make it through without complaint. */
2727 abstract_virtuals_error (field, type);
2729 if (TREE_CODE (t) == UNION_TYPE)
2731 if (TYPE_NEEDS_CONSTRUCTING (type))
2732 error ("member %q+#D with constructor not allowed in union",
2733 field);
2734 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2735 error ("member %q+#D with destructor not allowed in union", field);
2736 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2737 error ("member %q+#D with copy assignment operator not allowed in union",
2738 field);
2740 else
2742 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2743 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2744 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2745 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
2746 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
2749 if (!TYPE_HAS_CONST_INIT_REF (type))
2750 *cant_have_const_ctor = 1;
2752 if (!TYPE_HAS_CONST_ASSIGN_REF (type))
2753 *no_const_asn_ref = 1;
2755 if (DECL_INITIAL (field) != NULL_TREE)
2757 /* `build_class_init_list' does not recognize
2758 non-FIELD_DECLs. */
2759 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2760 error ("multiple fields in union %qT initialized", t);
2761 *any_default_members = 1;
2765 /* Check the data members (both static and non-static), class-scoped
2766 typedefs, etc., appearing in the declaration of T. Issue
2767 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2768 declaration order) of access declarations; each TREE_VALUE in this
2769 list is a USING_DECL.
2771 In addition, set the following flags:
2773 EMPTY_P
2774 The class is empty, i.e., contains no non-static data members.
2776 CANT_HAVE_CONST_CTOR_P
2777 This class cannot have an implicitly generated copy constructor
2778 taking a const reference.
2780 CANT_HAVE_CONST_ASN_REF
2781 This class cannot have an implicitly generated assignment
2782 operator taking a const reference.
2784 All of these flags should be initialized before calling this
2785 function.
2787 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2788 fields can be added by adding to this chain. */
2790 static void
2791 check_field_decls (tree t, tree *access_decls,
2792 int *cant_have_const_ctor_p,
2793 int *no_const_asn_ref_p)
2795 tree *field;
2796 tree *next;
2797 bool has_pointers;
2798 int any_default_members;
2800 /* Assume there are no access declarations. */
2801 *access_decls = NULL_TREE;
2802 /* Assume this class has no pointer members. */
2803 has_pointers = false;
2804 /* Assume none of the members of this class have default
2805 initializations. */
2806 any_default_members = 0;
2808 for (field = &TYPE_FIELDS (t); *field; field = next)
2810 tree x = *field;
2811 tree type = TREE_TYPE (x);
2813 next = &TREE_CHAIN (x);
2815 if (TREE_CODE (x) == FIELD_DECL)
2817 if (TYPE_PACKED (t))
2819 if (!pod_type_p (TREE_TYPE (x)) && !TYPE_PACKED (TREE_TYPE (x)))
2820 warning
2822 "ignoring packed attribute on unpacked non-POD field %q+#D",
2824 else if (TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
2825 DECL_PACKED (x) = 1;
2828 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
2829 /* We don't treat zero-width bitfields as making a class
2830 non-empty. */
2832 else
2834 tree element_type;
2836 /* The class is non-empty. */
2837 CLASSTYPE_EMPTY_P (t) = 0;
2838 /* The class is not even nearly empty. */
2839 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
2840 /* If one of the data members contains an empty class,
2841 so does T. */
2842 element_type = strip_array_types (type);
2843 if (CLASS_TYPE_P (element_type)
2844 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
2845 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
2849 if (TREE_CODE (x) == USING_DECL)
2851 /* Prune the access declaration from the list of fields. */
2852 *field = TREE_CHAIN (x);
2854 /* Save the access declarations for our caller. */
2855 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2857 /* Since we've reset *FIELD there's no reason to skip to the
2858 next field. */
2859 next = field;
2860 continue;
2863 if (TREE_CODE (x) == TYPE_DECL
2864 || TREE_CODE (x) == TEMPLATE_DECL)
2865 continue;
2867 /* If we've gotten this far, it's a data member, possibly static,
2868 or an enumerator. */
2869 DECL_CONTEXT (x) = t;
2871 /* When this goes into scope, it will be a non-local reference. */
2872 DECL_NONLOCAL (x) = 1;
2874 if (TREE_CODE (t) == UNION_TYPE)
2876 /* [class.union]
2878 If a union contains a static data member, or a member of
2879 reference type, the program is ill-formed. */
2880 if (TREE_CODE (x) == VAR_DECL)
2882 error ("%q+D may not be static because it is a member of a union", x);
2883 continue;
2885 if (TREE_CODE (type) == REFERENCE_TYPE)
2887 error ("%q+D may not have reference type %qT because"
2888 " it is a member of a union",
2889 x, type);
2890 continue;
2894 /* ``A local class cannot have static data members.'' ARM 9.4 */
2895 if (current_function_decl && TREE_STATIC (x))
2896 error ("field %q+D in local class cannot be static", x);
2898 /* Perform error checking that did not get done in
2899 grokdeclarator. */
2900 if (TREE_CODE (type) == FUNCTION_TYPE)
2902 error ("field %q+D invalidly declared function type", x);
2903 type = build_pointer_type (type);
2904 TREE_TYPE (x) = type;
2906 else if (TREE_CODE (type) == METHOD_TYPE)
2908 error ("field %q+D invalidly declared method type", x);
2909 type = build_pointer_type (type);
2910 TREE_TYPE (x) = type;
2913 if (type == error_mark_node)
2914 continue;
2916 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
2917 continue;
2919 /* Now it can only be a FIELD_DECL. */
2921 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
2922 CLASSTYPE_NON_AGGREGATE (t) = 1;
2924 /* If this is of reference type, check if it needs an init.
2925 Also do a little ANSI jig if necessary. */
2926 if (TREE_CODE (type) == REFERENCE_TYPE)
2928 CLASSTYPE_NON_POD_P (t) = 1;
2929 if (DECL_INITIAL (x) == NULL_TREE)
2930 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2932 /* ARM $12.6.2: [A member initializer list] (or, for an
2933 aggregate, initialization by a brace-enclosed list) is the
2934 only way to initialize nonstatic const and reference
2935 members. */
2936 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2938 if (! TYPE_HAS_CONSTRUCTOR (t) && CLASSTYPE_NON_AGGREGATE (t)
2939 && extra_warnings)
2940 warning (0, "non-static reference %q+#D in class without a constructor", x);
2943 type = strip_array_types (type);
2945 /* This is used by -Weffc++ (see below). Warn only for pointers
2946 to members which might hold dynamic memory. So do not warn
2947 for pointers to functions or pointers to members. */
2948 if (TYPE_PTR_P (type)
2949 && !TYPE_PTRFN_P (type)
2950 && !TYPE_PTR_TO_MEMBER_P (type))
2951 has_pointers = true;
2953 if (CLASS_TYPE_P (type))
2955 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
2956 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2957 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
2958 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
2961 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
2962 CLASSTYPE_HAS_MUTABLE (t) = 1;
2964 if (! pod_type_p (type))
2965 /* DR 148 now allows pointers to members (which are POD themselves),
2966 to be allowed in POD structs. */
2967 CLASSTYPE_NON_POD_P (t) = 1;
2969 if (! zero_init_p (type))
2970 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
2972 /* If any field is const, the structure type is pseudo-const. */
2973 if (CP_TYPE_CONST_P (type))
2975 C_TYPE_FIELDS_READONLY (t) = 1;
2976 if (DECL_INITIAL (x) == NULL_TREE)
2977 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
2979 /* ARM $12.6.2: [A member initializer list] (or, for an
2980 aggregate, initialization by a brace-enclosed list) is the
2981 only way to initialize nonstatic const and reference
2982 members. */
2983 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2985 if (! TYPE_HAS_CONSTRUCTOR (t) && CLASSTYPE_NON_AGGREGATE (t)
2986 && extra_warnings)
2987 warning (0, "non-static const member %q+#D in class without a constructor", x);
2989 /* A field that is pseudo-const makes the structure likewise. */
2990 else if (CLASS_TYPE_P (type))
2992 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
2993 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
2994 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
2995 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
2998 /* Core issue 80: A nonstatic data member is required to have a
2999 different name from the class iff the class has a
3000 user-defined constructor. */
3001 if (constructor_name_p (DECL_NAME (x), t) && TYPE_HAS_CONSTRUCTOR (t))
3002 pedwarn ("field %q+#D with same name as class", x);
3004 /* We set DECL_C_BIT_FIELD in grokbitfield.
3005 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3006 if (DECL_C_BIT_FIELD (x))
3007 check_bitfield_decl (x);
3008 else
3009 check_field_decl (x, t,
3010 cant_have_const_ctor_p,
3011 no_const_asn_ref_p,
3012 &any_default_members);
3015 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3016 it should also define a copy constructor and an assignment operator to
3017 implement the correct copy semantic (deep vs shallow, etc.). As it is
3018 not feasible to check whether the constructors do allocate dynamic memory
3019 and store it within members, we approximate the warning like this:
3021 -- Warn only if there are members which are pointers
3022 -- Warn only if there is a non-trivial constructor (otherwise,
3023 there cannot be memory allocated).
3024 -- Warn only if there is a non-trivial destructor. We assume that the
3025 user at least implemented the cleanup correctly, and a destructor
3026 is needed to free dynamic memory.
3028 This seems enough for practical purposes. */
3029 if (warn_ecpp
3030 && has_pointers
3031 && TYPE_HAS_CONSTRUCTOR (t)
3032 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3033 && !(TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
3035 warning (0, "%q#T has pointer data members", t);
3037 if (! TYPE_HAS_INIT_REF (t))
3039 warning (OPT_Weffc__,
3040 " but does not override %<%T(const %T&)%>", t, t);
3041 if (!TYPE_HAS_ASSIGN_REF (t))
3042 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3044 else if (! TYPE_HAS_ASSIGN_REF (t))
3045 warning (OPT_Weffc__,
3046 " but does not override %<operator=(const %T&)%>", t);
3050 /* Check anonymous struct/anonymous union fields. */
3051 finish_struct_anon (t);
3053 /* We've built up the list of access declarations in reverse order.
3054 Fix that now. */
3055 *access_decls = nreverse (*access_decls);
3058 /* If TYPE is an empty class type, records its OFFSET in the table of
3059 OFFSETS. */
3061 static int
3062 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3064 splay_tree_node n;
3066 if (!is_empty_class (type))
3067 return 0;
3069 /* Record the location of this empty object in OFFSETS. */
3070 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3071 if (!n)
3072 n = splay_tree_insert (offsets,
3073 (splay_tree_key) offset,
3074 (splay_tree_value) NULL_TREE);
3075 n->value = ((splay_tree_value)
3076 tree_cons (NULL_TREE,
3077 type,
3078 (tree) n->value));
3080 return 0;
3083 /* Returns nonzero if TYPE is an empty class type and there is
3084 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3086 static int
3087 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3089 splay_tree_node n;
3090 tree t;
3092 if (!is_empty_class (type))
3093 return 0;
3095 /* Record the location of this empty object in OFFSETS. */
3096 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3097 if (!n)
3098 return 0;
3100 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3101 if (same_type_p (TREE_VALUE (t), type))
3102 return 1;
3104 return 0;
3107 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3108 F for every subobject, passing it the type, offset, and table of
3109 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3110 be traversed.
3112 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3113 than MAX_OFFSET will not be walked.
3115 If F returns a nonzero value, the traversal ceases, and that value
3116 is returned. Otherwise, returns zero. */
3118 static int
3119 walk_subobject_offsets (tree type,
3120 subobject_offset_fn f,
3121 tree offset,
3122 splay_tree offsets,
3123 tree max_offset,
3124 int vbases_p)
3126 int r = 0;
3127 tree type_binfo = NULL_TREE;
3129 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3130 stop. */
3131 if (max_offset && INT_CST_LT (max_offset, offset))
3132 return 0;
3134 if (type == error_mark_node)
3135 return 0;
3137 if (!TYPE_P (type))
3139 if (abi_version_at_least (2))
3140 type_binfo = type;
3141 type = BINFO_TYPE (type);
3144 if (CLASS_TYPE_P (type))
3146 tree field;
3147 tree binfo;
3148 int i;
3150 /* Avoid recursing into objects that are not interesting. */
3151 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3152 return 0;
3154 /* Record the location of TYPE. */
3155 r = (*f) (type, offset, offsets);
3156 if (r)
3157 return r;
3159 /* Iterate through the direct base classes of TYPE. */
3160 if (!type_binfo)
3161 type_binfo = TYPE_BINFO (type);
3162 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3164 tree binfo_offset;
3166 if (abi_version_at_least (2)
3167 && BINFO_VIRTUAL_P (binfo))
3168 continue;
3170 if (!vbases_p
3171 && BINFO_VIRTUAL_P (binfo)
3172 && !BINFO_PRIMARY_P (binfo))
3173 continue;
3175 if (!abi_version_at_least (2))
3176 binfo_offset = size_binop (PLUS_EXPR,
3177 offset,
3178 BINFO_OFFSET (binfo));
3179 else
3181 tree orig_binfo;
3182 /* We cannot rely on BINFO_OFFSET being set for the base
3183 class yet, but the offsets for direct non-virtual
3184 bases can be calculated by going back to the TYPE. */
3185 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3186 binfo_offset = size_binop (PLUS_EXPR,
3187 offset,
3188 BINFO_OFFSET (orig_binfo));
3191 r = walk_subobject_offsets (binfo,
3193 binfo_offset,
3194 offsets,
3195 max_offset,
3196 (abi_version_at_least (2)
3197 ? /*vbases_p=*/0 : vbases_p));
3198 if (r)
3199 return r;
3202 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3204 unsigned ix;
3205 VEC(tree,gc) *vbases;
3207 /* Iterate through the virtual base classes of TYPE. In G++
3208 3.2, we included virtual bases in the direct base class
3209 loop above, which results in incorrect results; the
3210 correct offsets for virtual bases are only known when
3211 working with the most derived type. */
3212 if (vbases_p)
3213 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3214 VEC_iterate (tree, vbases, ix, binfo); ix++)
3216 r = walk_subobject_offsets (binfo,
3218 size_binop (PLUS_EXPR,
3219 offset,
3220 BINFO_OFFSET (binfo)),
3221 offsets,
3222 max_offset,
3223 /*vbases_p=*/0);
3224 if (r)
3225 return r;
3227 else
3229 /* We still have to walk the primary base, if it is
3230 virtual. (If it is non-virtual, then it was walked
3231 above.) */
3232 tree vbase = get_primary_binfo (type_binfo);
3234 if (vbase && BINFO_VIRTUAL_P (vbase)
3235 && BINFO_PRIMARY_P (vbase)
3236 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3238 r = (walk_subobject_offsets
3239 (vbase, f, offset,
3240 offsets, max_offset, /*vbases_p=*/0));
3241 if (r)
3242 return r;
3247 /* Iterate through the fields of TYPE. */
3248 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3249 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3251 tree field_offset;
3253 if (abi_version_at_least (2))
3254 field_offset = byte_position (field);
3255 else
3256 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3257 field_offset = DECL_FIELD_OFFSET (field);
3259 r = walk_subobject_offsets (TREE_TYPE (field),
3261 size_binop (PLUS_EXPR,
3262 offset,
3263 field_offset),
3264 offsets,
3265 max_offset,
3266 /*vbases_p=*/1);
3267 if (r)
3268 return r;
3271 else if (TREE_CODE (type) == ARRAY_TYPE)
3273 tree element_type = strip_array_types (type);
3274 tree domain = TYPE_DOMAIN (type);
3275 tree index;
3277 /* Avoid recursing into objects that are not interesting. */
3278 if (!CLASS_TYPE_P (element_type)
3279 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3280 return 0;
3282 /* Step through each of the elements in the array. */
3283 for (index = size_zero_node;
3284 /* G++ 3.2 had an off-by-one error here. */
3285 (abi_version_at_least (2)
3286 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3287 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3288 index = size_binop (PLUS_EXPR, index, size_one_node))
3290 r = walk_subobject_offsets (TREE_TYPE (type),
3292 offset,
3293 offsets,
3294 max_offset,
3295 /*vbases_p=*/1);
3296 if (r)
3297 return r;
3298 offset = size_binop (PLUS_EXPR, offset,
3299 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3300 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3301 there's no point in iterating through the remaining
3302 elements of the array. */
3303 if (max_offset && INT_CST_LT (max_offset, offset))
3304 break;
3308 return 0;
3311 /* Record all of the empty subobjects of TYPE (either a type or a
3312 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3313 is being placed at OFFSET; otherwise, it is a base class that is
3314 being placed at OFFSET. */
3316 static void
3317 record_subobject_offsets (tree type,
3318 tree offset,
3319 splay_tree offsets,
3320 bool is_data_member)
3322 tree max_offset;
3323 /* If recording subobjects for a non-static data member or a
3324 non-empty base class , we do not need to record offsets beyond
3325 the size of the biggest empty class. Additional data members
3326 will go at the end of the class. Additional base classes will go
3327 either at offset zero (if empty, in which case they cannot
3328 overlap with offsets past the size of the biggest empty class) or
3329 at the end of the class.
3331 However, if we are placing an empty base class, then we must record
3332 all offsets, as either the empty class is at offset zero (where
3333 other empty classes might later be placed) or at the end of the
3334 class (where other objects might then be placed, so other empty
3335 subobjects might later overlap). */
3336 if (is_data_member
3337 || !is_empty_class (BINFO_TYPE (type)))
3338 max_offset = sizeof_biggest_empty_class;
3339 else
3340 max_offset = NULL_TREE;
3341 walk_subobject_offsets (type, record_subobject_offset, offset,
3342 offsets, max_offset, is_data_member);
3345 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3346 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3347 virtual bases of TYPE are examined. */
3349 static int
3350 layout_conflict_p (tree type,
3351 tree offset,
3352 splay_tree offsets,
3353 int vbases_p)
3355 splay_tree_node max_node;
3357 /* Get the node in OFFSETS that indicates the maximum offset where
3358 an empty subobject is located. */
3359 max_node = splay_tree_max (offsets);
3360 /* If there aren't any empty subobjects, then there's no point in
3361 performing this check. */
3362 if (!max_node)
3363 return 0;
3365 return walk_subobject_offsets (type, check_subobject_offset, offset,
3366 offsets, (tree) (max_node->key),
3367 vbases_p);
3370 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3371 non-static data member of the type indicated by RLI. BINFO is the
3372 binfo corresponding to the base subobject, OFFSETS maps offsets to
3373 types already located at those offsets. This function determines
3374 the position of the DECL. */
3376 static void
3377 layout_nonempty_base_or_field (record_layout_info rli,
3378 tree decl,
3379 tree binfo,
3380 splay_tree offsets)
3382 tree offset = NULL_TREE;
3383 bool field_p;
3384 tree type;
3386 if (binfo)
3388 /* For the purposes of determining layout conflicts, we want to
3389 use the class type of BINFO; TREE_TYPE (DECL) will be the
3390 CLASSTYPE_AS_BASE version, which does not contain entries for
3391 zero-sized bases. */
3392 type = TREE_TYPE (binfo);
3393 field_p = false;
3395 else
3397 type = TREE_TYPE (decl);
3398 field_p = true;
3401 /* Try to place the field. It may take more than one try if we have
3402 a hard time placing the field without putting two objects of the
3403 same type at the same address. */
3404 while (1)
3406 struct record_layout_info_s old_rli = *rli;
3408 /* Place this field. */
3409 place_field (rli, decl);
3410 offset = byte_position (decl);
3412 /* We have to check to see whether or not there is already
3413 something of the same type at the offset we're about to use.
3414 For example, consider:
3416 struct S {};
3417 struct T : public S { int i; };
3418 struct U : public S, public T {};
3420 Here, we put S at offset zero in U. Then, we can't put T at
3421 offset zero -- its S component would be at the same address
3422 as the S we already allocated. So, we have to skip ahead.
3423 Since all data members, including those whose type is an
3424 empty class, have nonzero size, any overlap can happen only
3425 with a direct or indirect base-class -- it can't happen with
3426 a data member. */
3427 /* In a union, overlap is permitted; all members are placed at
3428 offset zero. */
3429 if (TREE_CODE (rli->t) == UNION_TYPE)
3430 break;
3431 /* G++ 3.2 did not check for overlaps when placing a non-empty
3432 virtual base. */
3433 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3434 break;
3435 if (layout_conflict_p (field_p ? type : binfo, offset,
3436 offsets, field_p))
3438 /* Strip off the size allocated to this field. That puts us
3439 at the first place we could have put the field with
3440 proper alignment. */
3441 *rli = old_rli;
3443 /* Bump up by the alignment required for the type. */
3444 rli->bitpos
3445 = size_binop (PLUS_EXPR, rli->bitpos,
3446 bitsize_int (binfo
3447 ? CLASSTYPE_ALIGN (type)
3448 : TYPE_ALIGN (type)));
3449 normalize_rli (rli);
3451 else
3452 /* There was no conflict. We're done laying out this field. */
3453 break;
3456 /* Now that we know where it will be placed, update its
3457 BINFO_OFFSET. */
3458 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3459 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3460 this point because their BINFO_OFFSET is copied from another
3461 hierarchy. Therefore, we may not need to add the entire
3462 OFFSET. */
3463 propagate_binfo_offsets (binfo,
3464 size_diffop (convert (ssizetype, offset),
3465 convert (ssizetype,
3466 BINFO_OFFSET (binfo))));
3469 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3471 static int
3472 empty_base_at_nonzero_offset_p (tree type,
3473 tree offset,
3474 splay_tree offsets ATTRIBUTE_UNUSED)
3476 return is_empty_class (type) && !integer_zerop (offset);
3479 /* Layout the empty base BINFO. EOC indicates the byte currently just
3480 past the end of the class, and should be correctly aligned for a
3481 class of the type indicated by BINFO; OFFSETS gives the offsets of
3482 the empty bases allocated so far. T is the most derived
3483 type. Return nonzero iff we added it at the end. */
3485 static bool
3486 layout_empty_base (tree binfo, tree eoc, splay_tree offsets)
3488 tree alignment;
3489 tree basetype = BINFO_TYPE (binfo);
3490 bool atend = false;
3492 /* This routine should only be used for empty classes. */
3493 gcc_assert (is_empty_class (basetype));
3494 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3496 if (!integer_zerop (BINFO_OFFSET (binfo)))
3498 if (abi_version_at_least (2))
3499 propagate_binfo_offsets
3500 (binfo, size_diffop (size_zero_node, BINFO_OFFSET (binfo)));
3501 else
3502 warning (OPT_Wabi,
3503 "offset of empty base %qT may not be ABI-compliant and may"
3504 "change in a future version of GCC",
3505 BINFO_TYPE (binfo));
3508 /* This is an empty base class. We first try to put it at offset
3509 zero. */
3510 if (layout_conflict_p (binfo,
3511 BINFO_OFFSET (binfo),
3512 offsets,
3513 /*vbases_p=*/0))
3515 /* That didn't work. Now, we move forward from the next
3516 available spot in the class. */
3517 atend = true;
3518 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3519 while (1)
3521 if (!layout_conflict_p (binfo,
3522 BINFO_OFFSET (binfo),
3523 offsets,
3524 /*vbases_p=*/0))
3525 /* We finally found a spot where there's no overlap. */
3526 break;
3528 /* There's overlap here, too. Bump along to the next spot. */
3529 propagate_binfo_offsets (binfo, alignment);
3532 return atend;
3535 /* Layout the base given by BINFO in the class indicated by RLI.
3536 *BASE_ALIGN is a running maximum of the alignments of
3537 any base class. OFFSETS gives the location of empty base
3538 subobjects. T is the most derived type. Return nonzero if the new
3539 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3540 *NEXT_FIELD, unless BINFO is for an empty base class.
3542 Returns the location at which the next field should be inserted. */
3544 static tree *
3545 build_base_field (record_layout_info rli, tree binfo,
3546 splay_tree offsets, tree *next_field)
3548 tree t = rli->t;
3549 tree basetype = BINFO_TYPE (binfo);
3551 if (!COMPLETE_TYPE_P (basetype))
3552 /* This error is now reported in xref_tag, thus giving better
3553 location information. */
3554 return next_field;
3556 /* Place the base class. */
3557 if (!is_empty_class (basetype))
3559 tree decl;
3561 /* The containing class is non-empty because it has a non-empty
3562 base class. */
3563 CLASSTYPE_EMPTY_P (t) = 0;
3565 /* Create the FIELD_DECL. */
3566 decl = build_decl (FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3567 DECL_ARTIFICIAL (decl) = 1;
3568 DECL_IGNORED_P (decl) = 1;
3569 DECL_FIELD_CONTEXT (decl) = t;
3570 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3571 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3572 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3573 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3574 DECL_MODE (decl) = TYPE_MODE (basetype);
3575 DECL_FIELD_IS_BASE (decl) = 1;
3577 /* Try to place the field. It may take more than one try if we
3578 have a hard time placing the field without putting two
3579 objects of the same type at the same address. */
3580 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3581 /* Add the new FIELD_DECL to the list of fields for T. */
3582 TREE_CHAIN (decl) = *next_field;
3583 *next_field = decl;
3584 next_field = &TREE_CHAIN (decl);
3586 else
3588 tree eoc;
3589 bool atend;
3591 /* On some platforms (ARM), even empty classes will not be
3592 byte-aligned. */
3593 eoc = round_up (rli_size_unit_so_far (rli),
3594 CLASSTYPE_ALIGN_UNIT (basetype));
3595 atend = layout_empty_base (binfo, eoc, offsets);
3596 /* A nearly-empty class "has no proper base class that is empty,
3597 not morally virtual, and at an offset other than zero." */
3598 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3600 if (atend)
3601 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3602 /* The check above (used in G++ 3.2) is insufficient because
3603 an empty class placed at offset zero might itself have an
3604 empty base at a nonzero offset. */
3605 else if (walk_subobject_offsets (basetype,
3606 empty_base_at_nonzero_offset_p,
3607 size_zero_node,
3608 /*offsets=*/NULL,
3609 /*max_offset=*/NULL_TREE,
3610 /*vbases_p=*/true))
3612 if (abi_version_at_least (2))
3613 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3614 else
3615 warning (OPT_Wabi,
3616 "class %qT will be considered nearly empty in a "
3617 "future version of GCC", t);
3621 /* We do not create a FIELD_DECL for empty base classes because
3622 it might overlap some other field. We want to be able to
3623 create CONSTRUCTORs for the class by iterating over the
3624 FIELD_DECLs, and the back end does not handle overlapping
3625 FIELD_DECLs. */
3627 /* An empty virtual base causes a class to be non-empty
3628 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3629 here because that was already done when the virtual table
3630 pointer was created. */
3633 /* Record the offsets of BINFO and its base subobjects. */
3634 record_subobject_offsets (binfo,
3635 BINFO_OFFSET (binfo),
3636 offsets,
3637 /*is_data_member=*/false);
3639 return next_field;
3642 /* Layout all of the non-virtual base classes. Record empty
3643 subobjects in OFFSETS. T is the most derived type. Return nonzero
3644 if the type cannot be nearly empty. The fields created
3645 corresponding to the base classes will be inserted at
3646 *NEXT_FIELD. */
3648 static void
3649 build_base_fields (record_layout_info rli,
3650 splay_tree offsets, tree *next_field)
3652 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3653 subobjects. */
3654 tree t = rli->t;
3655 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3656 int i;
3658 /* The primary base class is always allocated first. */
3659 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3660 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3661 offsets, next_field);
3663 /* Now allocate the rest of the bases. */
3664 for (i = 0; i < n_baseclasses; ++i)
3666 tree base_binfo;
3668 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3670 /* The primary base was already allocated above, so we don't
3671 need to allocate it again here. */
3672 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3673 continue;
3675 /* Virtual bases are added at the end (a primary virtual base
3676 will have already been added). */
3677 if (BINFO_VIRTUAL_P (base_binfo))
3678 continue;
3680 next_field = build_base_field (rli, base_binfo,
3681 offsets, next_field);
3685 /* Go through the TYPE_METHODS of T issuing any appropriate
3686 diagnostics, figuring out which methods override which other
3687 methods, and so forth. */
3689 static void
3690 check_methods (tree t)
3692 tree x;
3694 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3696 check_for_override (x, t);
3697 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3698 error ("initializer specified for non-virtual method %q+D", x);
3699 /* The name of the field is the original field name
3700 Save this in auxiliary field for later overloading. */
3701 if (DECL_VINDEX (x))
3703 TYPE_POLYMORPHIC_P (t) = 1;
3704 if (DECL_PURE_VIRTUAL_P (x))
3705 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
3707 /* All user-declared destructors are non-trivial. */
3708 if (DECL_DESTRUCTOR_P (x))
3709 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
3713 /* FN is a constructor or destructor. Clone the declaration to create
3714 a specialized in-charge or not-in-charge version, as indicated by
3715 NAME. */
3717 static tree
3718 build_clone (tree fn, tree name)
3720 tree parms;
3721 tree clone;
3723 /* Copy the function. */
3724 clone = copy_decl (fn);
3725 /* Remember where this function came from. */
3726 DECL_CLONED_FUNCTION (clone) = fn;
3727 DECL_ABSTRACT_ORIGIN (clone) = fn;
3728 /* Reset the function name. */
3729 DECL_NAME (clone) = name;
3730 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3731 /* There's no pending inline data for this function. */
3732 DECL_PENDING_INLINE_INFO (clone) = NULL;
3733 DECL_PENDING_INLINE_P (clone) = 0;
3734 /* And it hasn't yet been deferred. */
3735 DECL_DEFERRED_FN (clone) = 0;
3737 /* The base-class destructor is not virtual. */
3738 if (name == base_dtor_identifier)
3740 DECL_VIRTUAL_P (clone) = 0;
3741 if (TREE_CODE (clone) != TEMPLATE_DECL)
3742 DECL_VINDEX (clone) = NULL_TREE;
3745 /* If there was an in-charge parameter, drop it from the function
3746 type. */
3747 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3749 tree basetype;
3750 tree parmtypes;
3751 tree exceptions;
3753 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3754 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3755 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3756 /* Skip the `this' parameter. */
3757 parmtypes = TREE_CHAIN (parmtypes);
3758 /* Skip the in-charge parameter. */
3759 parmtypes = TREE_CHAIN (parmtypes);
3760 /* And the VTT parm, in a complete [cd]tor. */
3761 if (DECL_HAS_VTT_PARM_P (fn)
3762 && ! DECL_NEEDS_VTT_PARM_P (clone))
3763 parmtypes = TREE_CHAIN (parmtypes);
3764 /* If this is subobject constructor or destructor, add the vtt
3765 parameter. */
3766 TREE_TYPE (clone)
3767 = build_method_type_directly (basetype,
3768 TREE_TYPE (TREE_TYPE (clone)),
3769 parmtypes);
3770 if (exceptions)
3771 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3772 exceptions);
3773 TREE_TYPE (clone)
3774 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3775 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3778 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3779 aren't function parameters; those are the template parameters. */
3780 if (TREE_CODE (clone) != TEMPLATE_DECL)
3782 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3783 /* Remove the in-charge parameter. */
3784 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3786 TREE_CHAIN (DECL_ARGUMENTS (clone))
3787 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3788 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3790 /* And the VTT parm, in a complete [cd]tor. */
3791 if (DECL_HAS_VTT_PARM_P (fn))
3793 if (DECL_NEEDS_VTT_PARM_P (clone))
3794 DECL_HAS_VTT_PARM_P (clone) = 1;
3795 else
3797 TREE_CHAIN (DECL_ARGUMENTS (clone))
3798 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3799 DECL_HAS_VTT_PARM_P (clone) = 0;
3803 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3805 DECL_CONTEXT (parms) = clone;
3806 cxx_dup_lang_specific_decl (parms);
3810 /* Create the RTL for this function. */
3811 SET_DECL_RTL (clone, NULL_RTX);
3812 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
3814 /* Make it easy to find the CLONE given the FN. */
3815 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3816 TREE_CHAIN (fn) = clone;
3818 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3819 if (TREE_CODE (clone) == TEMPLATE_DECL)
3821 tree result;
3823 DECL_TEMPLATE_RESULT (clone)
3824 = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3825 result = DECL_TEMPLATE_RESULT (clone);
3826 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3827 DECL_TI_TEMPLATE (result) = clone;
3829 else if (pch_file)
3830 note_decl_for_pch (clone);
3832 return clone;
3835 /* Produce declarations for all appropriate clones of FN. If
3836 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3837 CLASTYPE_METHOD_VEC as well. */
3839 void
3840 clone_function_decl (tree fn, int update_method_vec_p)
3842 tree clone;
3844 /* Avoid inappropriate cloning. */
3845 if (TREE_CHAIN (fn)
3846 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn)))
3847 return;
3849 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
3851 /* For each constructor, we need two variants: an in-charge version
3852 and a not-in-charge version. */
3853 clone = build_clone (fn, complete_ctor_identifier);
3854 if (update_method_vec_p)
3855 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3856 clone = build_clone (fn, base_ctor_identifier);
3857 if (update_method_vec_p)
3858 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3860 else
3862 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
3864 /* For each destructor, we need three variants: an in-charge
3865 version, a not-in-charge version, and an in-charge deleting
3866 version. We clone the deleting version first because that
3867 means it will go second on the TYPE_METHODS list -- and that
3868 corresponds to the correct layout order in the virtual
3869 function table.
3871 For a non-virtual destructor, we do not build a deleting
3872 destructor. */
3873 if (DECL_VIRTUAL_P (fn))
3875 clone = build_clone (fn, deleting_dtor_identifier);
3876 if (update_method_vec_p)
3877 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3879 clone = build_clone (fn, complete_dtor_identifier);
3880 if (update_method_vec_p)
3881 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3882 clone = build_clone (fn, base_dtor_identifier);
3883 if (update_method_vec_p)
3884 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3887 /* Note that this is an abstract function that is never emitted. */
3888 DECL_ABSTRACT (fn) = 1;
3891 /* DECL is an in charge constructor, which is being defined. This will
3892 have had an in class declaration, from whence clones were
3893 declared. An out-of-class definition can specify additional default
3894 arguments. As it is the clones that are involved in overload
3895 resolution, we must propagate the information from the DECL to its
3896 clones. */
3898 void
3899 adjust_clone_args (tree decl)
3901 tree clone;
3903 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION (clone);
3904 clone = TREE_CHAIN (clone))
3906 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
3907 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
3908 tree decl_parms, clone_parms;
3910 clone_parms = orig_clone_parms;
3912 /* Skip the 'this' parameter. */
3913 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
3914 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3916 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
3917 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3918 if (DECL_HAS_VTT_PARM_P (decl))
3919 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3921 clone_parms = orig_clone_parms;
3922 if (DECL_HAS_VTT_PARM_P (clone))
3923 clone_parms = TREE_CHAIN (clone_parms);
3925 for (decl_parms = orig_decl_parms; decl_parms;
3926 decl_parms = TREE_CHAIN (decl_parms),
3927 clone_parms = TREE_CHAIN (clone_parms))
3929 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
3930 TREE_TYPE (clone_parms)));
3932 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
3934 /* A default parameter has been added. Adjust the
3935 clone's parameters. */
3936 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3937 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3938 tree type;
3940 clone_parms = orig_decl_parms;
3942 if (DECL_HAS_VTT_PARM_P (clone))
3944 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
3945 TREE_VALUE (orig_clone_parms),
3946 clone_parms);
3947 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
3949 type = build_method_type_directly (basetype,
3950 TREE_TYPE (TREE_TYPE (clone)),
3951 clone_parms);
3952 if (exceptions)
3953 type = build_exception_variant (type, exceptions);
3954 TREE_TYPE (clone) = type;
3956 clone_parms = NULL_TREE;
3957 break;
3960 gcc_assert (!clone_parms);
3964 /* For each of the constructors and destructors in T, create an
3965 in-charge and not-in-charge variant. */
3967 static void
3968 clone_constructors_and_destructors (tree t)
3970 tree fns;
3972 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
3973 out now. */
3974 if (!CLASSTYPE_METHOD_VEC (t))
3975 return;
3977 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
3978 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
3979 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
3980 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
3983 /* Remove all zero-width bit-fields from T. */
3985 static void
3986 remove_zero_width_bit_fields (tree t)
3988 tree *fieldsp;
3990 fieldsp = &TYPE_FIELDS (t);
3991 while (*fieldsp)
3993 if (TREE_CODE (*fieldsp) == FIELD_DECL
3994 && DECL_C_BIT_FIELD (*fieldsp)
3995 && DECL_INITIAL (*fieldsp))
3996 *fieldsp = TREE_CHAIN (*fieldsp);
3997 else
3998 fieldsp = &TREE_CHAIN (*fieldsp);
4002 /* Returns TRUE iff we need a cookie when dynamically allocating an
4003 array whose elements have the indicated class TYPE. */
4005 static bool
4006 type_requires_array_cookie (tree type)
4008 tree fns;
4009 bool has_two_argument_delete_p = false;
4011 gcc_assert (CLASS_TYPE_P (type));
4013 /* If there's a non-trivial destructor, we need a cookie. In order
4014 to iterate through the array calling the destructor for each
4015 element, we'll have to know how many elements there are. */
4016 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
4017 return true;
4019 /* If the usual deallocation function is a two-argument whose second
4020 argument is of type `size_t', then we have to pass the size of
4021 the array to the deallocation function, so we will need to store
4022 a cookie. */
4023 fns = lookup_fnfields (TYPE_BINFO (type),
4024 ansi_opname (VEC_DELETE_EXPR),
4025 /*protect=*/0);
4026 /* If there are no `operator []' members, or the lookup is
4027 ambiguous, then we don't need a cookie. */
4028 if (!fns || fns == error_mark_node)
4029 return false;
4030 /* Loop through all of the functions. */
4031 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4033 tree fn;
4034 tree second_parm;
4036 /* Select the current function. */
4037 fn = OVL_CURRENT (fns);
4038 /* See if this function is a one-argument delete function. If
4039 it is, then it will be the usual deallocation function. */
4040 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4041 if (second_parm == void_list_node)
4042 return false;
4043 /* Otherwise, if we have a two-argument function and the second
4044 argument is `size_t', it will be the usual deallocation
4045 function -- unless there is one-argument function, too. */
4046 if (TREE_CHAIN (second_parm) == void_list_node
4047 && same_type_p (TREE_VALUE (second_parm), sizetype))
4048 has_two_argument_delete_p = true;
4051 return has_two_argument_delete_p;
4054 /* Check the validity of the bases and members declared in T. Add any
4055 implicitly-generated functions (like copy-constructors and
4056 assignment operators). Compute various flag bits (like
4057 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4058 level: i.e., independently of the ABI in use. */
4060 static void
4061 check_bases_and_members (tree t)
4063 /* Nonzero if the implicitly generated copy constructor should take
4064 a non-const reference argument. */
4065 int cant_have_const_ctor;
4066 /* Nonzero if the implicitly generated assignment operator
4067 should take a non-const reference argument. */
4068 int no_const_asn_ref;
4069 tree access_decls;
4071 /* By default, we use const reference arguments and generate default
4072 constructors. */
4073 cant_have_const_ctor = 0;
4074 no_const_asn_ref = 0;
4076 /* Check all the base-classes. */
4077 check_bases (t, &cant_have_const_ctor,
4078 &no_const_asn_ref);
4080 /* Check all the method declarations. */
4081 check_methods (t);
4083 /* Check all the data member declarations. We cannot call
4084 check_field_decls until we have called check_bases check_methods,
4085 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4086 being set appropriately. */
4087 check_field_decls (t, &access_decls,
4088 &cant_have_const_ctor,
4089 &no_const_asn_ref);
4091 /* A nearly-empty class has to be vptr-containing; a nearly empty
4092 class contains just a vptr. */
4093 if (!TYPE_CONTAINS_VPTR_P (t))
4094 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4096 /* Do some bookkeeping that will guide the generation of implicitly
4097 declared member functions. */
4098 TYPE_HAS_COMPLEX_INIT_REF (t)
4099 |= (TYPE_HAS_INIT_REF (t) || TYPE_CONTAINS_VPTR_P (t));
4100 TYPE_NEEDS_CONSTRUCTING (t)
4101 |= (TYPE_HAS_CONSTRUCTOR (t) || TYPE_CONTAINS_VPTR_P (t));
4102 CLASSTYPE_NON_AGGREGATE (t)
4103 |= (TYPE_HAS_CONSTRUCTOR (t) || TYPE_POLYMORPHIC_P (t));
4104 CLASSTYPE_NON_POD_P (t)
4105 |= (CLASSTYPE_NON_AGGREGATE (t)
4106 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
4107 || TYPE_HAS_ASSIGN_REF (t));
4108 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
4109 |= TYPE_HAS_ASSIGN_REF (t) || TYPE_CONTAINS_VPTR_P (t);
4111 /* Synthesize any needed methods. */
4112 add_implicitly_declared_members (t,
4113 cant_have_const_ctor,
4114 no_const_asn_ref);
4116 /* Create the in-charge and not-in-charge variants of constructors
4117 and destructors. */
4118 clone_constructors_and_destructors (t);
4120 /* Process the using-declarations. */
4121 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4122 handle_using_decl (TREE_VALUE (access_decls), t);
4124 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4125 finish_struct_methods (t);
4127 /* Figure out whether or not we will need a cookie when dynamically
4128 allocating an array of this type. */
4129 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4130 = type_requires_array_cookie (t);
4133 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4134 accordingly. If a new vfield was created (because T doesn't have a
4135 primary base class), then the newly created field is returned. It
4136 is not added to the TYPE_FIELDS list; it is the caller's
4137 responsibility to do that. Accumulate declared virtual functions
4138 on VIRTUALS_P. */
4140 static tree
4141 create_vtable_ptr (tree t, tree* virtuals_p)
4143 tree fn;
4145 /* Collect the virtual functions declared in T. */
4146 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4147 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4148 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4150 tree new_virtual = make_node (TREE_LIST);
4152 BV_FN (new_virtual) = fn;
4153 BV_DELTA (new_virtual) = integer_zero_node;
4154 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
4156 TREE_CHAIN (new_virtual) = *virtuals_p;
4157 *virtuals_p = new_virtual;
4160 /* If we couldn't find an appropriate base class, create a new field
4161 here. Even if there weren't any new virtual functions, we might need a
4162 new virtual function table if we're supposed to include vptrs in
4163 all classes that need them. */
4164 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4166 /* We build this decl with vtbl_ptr_type_node, which is a
4167 `vtable_entry_type*'. It might seem more precise to use
4168 `vtable_entry_type (*)[N]' where N is the number of virtual
4169 functions. However, that would require the vtable pointer in
4170 base classes to have a different type than the vtable pointer
4171 in derived classes. We could make that happen, but that
4172 still wouldn't solve all the problems. In particular, the
4173 type-based alias analysis code would decide that assignments
4174 to the base class vtable pointer can't alias assignments to
4175 the derived class vtable pointer, since they have different
4176 types. Thus, in a derived class destructor, where the base
4177 class constructor was inlined, we could generate bad code for
4178 setting up the vtable pointer.
4180 Therefore, we use one type for all vtable pointers. We still
4181 use a type-correct type; it's just doesn't indicate the array
4182 bounds. That's better than using `void*' or some such; it's
4183 cleaner, and it let's the alias analysis code know that these
4184 stores cannot alias stores to void*! */
4185 tree field;
4187 field = build_decl (FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4188 DECL_VIRTUAL_P (field) = 1;
4189 DECL_ARTIFICIAL (field) = 1;
4190 DECL_FIELD_CONTEXT (field) = t;
4191 DECL_FCONTEXT (field) = t;
4193 TYPE_VFIELD (t) = field;
4195 /* This class is non-empty. */
4196 CLASSTYPE_EMPTY_P (t) = 0;
4198 return field;
4201 return NULL_TREE;
4204 /* Fixup the inline function given by INFO now that the class is
4205 complete. */
4207 static void
4208 fixup_pending_inline (tree fn)
4210 if (DECL_PENDING_INLINE_INFO (fn))
4212 tree args = DECL_ARGUMENTS (fn);
4213 while (args)
4215 DECL_CONTEXT (args) = fn;
4216 args = TREE_CHAIN (args);
4221 /* Fixup the inline methods and friends in TYPE now that TYPE is
4222 complete. */
4224 static void
4225 fixup_inline_methods (tree type)
4227 tree method = TYPE_METHODS (type);
4228 VEC(tree,gc) *friends;
4229 unsigned ix;
4231 if (method && TREE_CODE (method) == TREE_VEC)
4233 if (TREE_VEC_ELT (method, 1))
4234 method = TREE_VEC_ELT (method, 1);
4235 else if (TREE_VEC_ELT (method, 0))
4236 method = TREE_VEC_ELT (method, 0);
4237 else
4238 method = TREE_VEC_ELT (method, 2);
4241 /* Do inline member functions. */
4242 for (; method; method = TREE_CHAIN (method))
4243 fixup_pending_inline (method);
4245 /* Do friends. */
4246 for (friends = CLASSTYPE_INLINE_FRIENDS (type), ix = 0;
4247 VEC_iterate (tree, friends, ix, method); ix++)
4248 fixup_pending_inline (method);
4249 CLASSTYPE_INLINE_FRIENDS (type) = NULL;
4252 /* Add OFFSET to all base types of BINFO which is a base in the
4253 hierarchy dominated by T.
4255 OFFSET, which is a type offset, is number of bytes. */
4257 static void
4258 propagate_binfo_offsets (tree binfo, tree offset)
4260 int i;
4261 tree primary_binfo;
4262 tree base_binfo;
4264 /* Update BINFO's offset. */
4265 BINFO_OFFSET (binfo)
4266 = convert (sizetype,
4267 size_binop (PLUS_EXPR,
4268 convert (ssizetype, BINFO_OFFSET (binfo)),
4269 offset));
4271 /* Find the primary base class. */
4272 primary_binfo = get_primary_binfo (binfo);
4274 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
4275 propagate_binfo_offsets (primary_binfo, offset);
4277 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4278 downwards. */
4279 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4281 /* Don't do the primary base twice. */
4282 if (base_binfo == primary_binfo)
4283 continue;
4285 if (BINFO_VIRTUAL_P (base_binfo))
4286 continue;
4288 propagate_binfo_offsets (base_binfo, offset);
4292 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4293 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4294 empty subobjects of T. */
4296 static void
4297 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4299 tree vbase;
4300 tree t = rli->t;
4301 bool first_vbase = true;
4302 tree *next_field;
4304 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
4305 return;
4307 if (!abi_version_at_least(2))
4309 /* In G++ 3.2, we incorrectly rounded the size before laying out
4310 the virtual bases. */
4311 finish_record_layout (rli, /*free_p=*/false);
4312 #ifdef STRUCTURE_SIZE_BOUNDARY
4313 /* Packed structures don't need to have minimum size. */
4314 if (! TYPE_PACKED (t))
4315 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4316 #endif
4317 rli->offset = TYPE_SIZE_UNIT (t);
4318 rli->bitpos = bitsize_zero_node;
4319 rli->record_align = TYPE_ALIGN (t);
4322 /* Find the last field. The artificial fields created for virtual
4323 bases will go after the last extant field to date. */
4324 next_field = &TYPE_FIELDS (t);
4325 while (*next_field)
4326 next_field = &TREE_CHAIN (*next_field);
4328 /* Go through the virtual bases, allocating space for each virtual
4329 base that is not already a primary base class. These are
4330 allocated in inheritance graph order. */
4331 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4333 if (!BINFO_VIRTUAL_P (vbase))
4334 continue;
4336 if (!BINFO_PRIMARY_P (vbase))
4338 tree basetype = TREE_TYPE (vbase);
4340 /* This virtual base is not a primary base of any class in the
4341 hierarchy, so we have to add space for it. */
4342 next_field = build_base_field (rli, vbase,
4343 offsets, next_field);
4345 /* If the first virtual base might have been placed at a
4346 lower address, had we started from CLASSTYPE_SIZE, rather
4347 than TYPE_SIZE, issue a warning. There can be both false
4348 positives and false negatives from this warning in rare
4349 cases; to deal with all the possibilities would probably
4350 require performing both layout algorithms and comparing
4351 the results which is not particularly tractable. */
4352 if (warn_abi
4353 && first_vbase
4354 && (tree_int_cst_lt
4355 (size_binop (CEIL_DIV_EXPR,
4356 round_up (CLASSTYPE_SIZE (t),
4357 CLASSTYPE_ALIGN (basetype)),
4358 bitsize_unit_node),
4359 BINFO_OFFSET (vbase))))
4360 warning (OPT_Wabi,
4361 "offset of virtual base %qT is not ABI-compliant and "
4362 "may change in a future version of GCC",
4363 basetype);
4365 first_vbase = false;
4370 /* Returns the offset of the byte just past the end of the base class
4371 BINFO. */
4373 static tree
4374 end_of_base (tree binfo)
4376 tree size;
4378 if (is_empty_class (BINFO_TYPE (binfo)))
4379 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4380 allocate some space for it. It cannot have virtual bases, so
4381 TYPE_SIZE_UNIT is fine. */
4382 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4383 else
4384 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4386 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4389 /* Returns the offset of the byte just past the end of the base class
4390 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4391 only non-virtual bases are included. */
4393 static tree
4394 end_of_class (tree t, int include_virtuals_p)
4396 tree result = size_zero_node;
4397 VEC(tree,gc) *vbases;
4398 tree binfo;
4399 tree base_binfo;
4400 tree offset;
4401 int i;
4403 for (binfo = TYPE_BINFO (t), i = 0;
4404 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4406 if (!include_virtuals_p
4407 && BINFO_VIRTUAL_P (base_binfo)
4408 && (!BINFO_PRIMARY_P (base_binfo)
4409 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
4410 continue;
4412 offset = end_of_base (base_binfo);
4413 if (INT_CST_LT_UNSIGNED (result, offset))
4414 result = offset;
4417 /* G++ 3.2 did not check indirect virtual bases. */
4418 if (abi_version_at_least (2) && include_virtuals_p)
4419 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4420 VEC_iterate (tree, vbases, i, base_binfo); i++)
4422 offset = end_of_base (base_binfo);
4423 if (INT_CST_LT_UNSIGNED (result, offset))
4424 result = offset;
4427 return result;
4430 /* Warn about bases of T that are inaccessible because they are
4431 ambiguous. For example:
4433 struct S {};
4434 struct T : public S {};
4435 struct U : public S, public T {};
4437 Here, `(S*) new U' is not allowed because there are two `S'
4438 subobjects of U. */
4440 static void
4441 warn_about_ambiguous_bases (tree t)
4443 int i;
4444 VEC(tree,gc) *vbases;
4445 tree basetype;
4446 tree binfo;
4447 tree base_binfo;
4449 /* If there are no repeated bases, nothing can be ambiguous. */
4450 if (!CLASSTYPE_REPEATED_BASE_P (t))
4451 return;
4453 /* Check direct bases. */
4454 for (binfo = TYPE_BINFO (t), i = 0;
4455 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4457 basetype = BINFO_TYPE (base_binfo);
4459 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4460 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
4461 basetype, t);
4464 /* Check for ambiguous virtual bases. */
4465 if (extra_warnings)
4466 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4467 VEC_iterate (tree, vbases, i, binfo); i++)
4469 basetype = BINFO_TYPE (binfo);
4471 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4472 warning (0, "virtual base %qT inaccessible in %qT due to ambiguity",
4473 basetype, t);
4477 /* Compare two INTEGER_CSTs K1 and K2. */
4479 static int
4480 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4482 return tree_int_cst_compare ((tree) k1, (tree) k2);
4485 /* Increase the size indicated in RLI to account for empty classes
4486 that are "off the end" of the class. */
4488 static void
4489 include_empty_classes (record_layout_info rli)
4491 tree eoc;
4492 tree rli_size;
4494 /* It might be the case that we grew the class to allocate a
4495 zero-sized base class. That won't be reflected in RLI, yet,
4496 because we are willing to overlay multiple bases at the same
4497 offset. However, now we need to make sure that RLI is big enough
4498 to reflect the entire class. */
4499 eoc = end_of_class (rli->t,
4500 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4501 rli_size = rli_size_unit_so_far (rli);
4502 if (TREE_CODE (rli_size) == INTEGER_CST
4503 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4505 if (!abi_version_at_least (2))
4506 /* In version 1 of the ABI, the size of a class that ends with
4507 a bitfield was not rounded up to a whole multiple of a
4508 byte. Because rli_size_unit_so_far returns only the number
4509 of fully allocated bytes, any extra bits were not included
4510 in the size. */
4511 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4512 else
4513 /* The size should have been rounded to a whole byte. */
4514 gcc_assert (tree_int_cst_equal
4515 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
4516 rli->bitpos
4517 = size_binop (PLUS_EXPR,
4518 rli->bitpos,
4519 size_binop (MULT_EXPR,
4520 convert (bitsizetype,
4521 size_binop (MINUS_EXPR,
4522 eoc, rli_size)),
4523 bitsize_int (BITS_PER_UNIT)));
4524 normalize_rli (rli);
4528 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4529 BINFO_OFFSETs for all of the base-classes. Position the vtable
4530 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4532 static void
4533 layout_class_type (tree t, tree *virtuals_p)
4535 tree non_static_data_members;
4536 tree field;
4537 tree vptr;
4538 record_layout_info rli;
4539 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4540 types that appear at that offset. */
4541 splay_tree empty_base_offsets;
4542 /* True if the last field layed out was a bit-field. */
4543 bool last_field_was_bitfield = false;
4544 /* The location at which the next field should be inserted. */
4545 tree *next_field;
4546 /* T, as a base class. */
4547 tree base_t;
4549 /* Keep track of the first non-static data member. */
4550 non_static_data_members = TYPE_FIELDS (t);
4552 /* Start laying out the record. */
4553 rli = start_record_layout (t);
4555 /* Mark all the primary bases in the hierarchy. */
4556 determine_primary_bases (t);
4558 /* Create a pointer to our virtual function table. */
4559 vptr = create_vtable_ptr (t, virtuals_p);
4561 /* The vptr is always the first thing in the class. */
4562 if (vptr)
4564 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4565 TYPE_FIELDS (t) = vptr;
4566 next_field = &TREE_CHAIN (vptr);
4567 place_field (rli, vptr);
4569 else
4570 next_field = &TYPE_FIELDS (t);
4572 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4573 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
4574 NULL, NULL);
4575 build_base_fields (rli, empty_base_offsets, next_field);
4577 /* Layout the non-static data members. */
4578 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
4580 tree type;
4581 tree padding;
4583 /* We still pass things that aren't non-static data members to
4584 the back-end, in case it wants to do something with them. */
4585 if (TREE_CODE (field) != FIELD_DECL)
4587 place_field (rli, field);
4588 /* If the static data member has incomplete type, keep track
4589 of it so that it can be completed later. (The handling
4590 of pending statics in finish_record_layout is
4591 insufficient; consider:
4593 struct S1;
4594 struct S2 { static S1 s1; };
4596 At this point, finish_record_layout will be called, but
4597 S1 is still incomplete.) */
4598 if (TREE_CODE (field) == VAR_DECL)
4600 maybe_register_incomplete_var (field);
4601 /* The visibility of static data members is determined
4602 at their point of declaration, not their point of
4603 definition. */
4604 determine_visibility (field);
4606 continue;
4609 type = TREE_TYPE (field);
4611 padding = NULL_TREE;
4613 /* If this field is a bit-field whose width is greater than its
4614 type, then there are some special rules for allocating
4615 it. */
4616 if (DECL_C_BIT_FIELD (field)
4617 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
4619 integer_type_kind itk;
4620 tree integer_type;
4621 bool was_unnamed_p = false;
4622 /* We must allocate the bits as if suitably aligned for the
4623 longest integer type that fits in this many bits. type
4624 of the field. Then, we are supposed to use the left over
4625 bits as additional padding. */
4626 for (itk = itk_char; itk != itk_none; ++itk)
4627 if (INT_CST_LT (DECL_SIZE (field),
4628 TYPE_SIZE (integer_types[itk])))
4629 break;
4631 /* ITK now indicates a type that is too large for the
4632 field. We have to back up by one to find the largest
4633 type that fits. */
4634 integer_type = integer_types[itk - 1];
4636 /* Figure out how much additional padding is required. GCC
4637 3.2 always created a padding field, even if it had zero
4638 width. */
4639 if (!abi_version_at_least (2)
4640 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
4642 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
4643 /* In a union, the padding field must have the full width
4644 of the bit-field; all fields start at offset zero. */
4645 padding = DECL_SIZE (field);
4646 else
4648 if (TREE_CODE (t) == UNION_TYPE)
4649 warning (OPT_Wabi, "size assigned to %qT may not be "
4650 "ABI-compliant and may change in a future "
4651 "version of GCC",
4653 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
4654 TYPE_SIZE (integer_type));
4657 #ifdef PCC_BITFIELD_TYPE_MATTERS
4658 /* An unnamed bitfield does not normally affect the
4659 alignment of the containing class on a target where
4660 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4661 make any exceptions for unnamed bitfields when the
4662 bitfields are longer than their types. Therefore, we
4663 temporarily give the field a name. */
4664 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
4666 was_unnamed_p = true;
4667 DECL_NAME (field) = make_anon_name ();
4669 #endif
4670 DECL_SIZE (field) = TYPE_SIZE (integer_type);
4671 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
4672 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
4673 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4674 empty_base_offsets);
4675 if (was_unnamed_p)
4676 DECL_NAME (field) = NULL_TREE;
4677 /* Now that layout has been performed, set the size of the
4678 field to the size of its declared type; the rest of the
4679 field is effectively invisible. */
4680 DECL_SIZE (field) = TYPE_SIZE (type);
4681 /* We must also reset the DECL_MODE of the field. */
4682 if (abi_version_at_least (2))
4683 DECL_MODE (field) = TYPE_MODE (type);
4684 else if (warn_abi
4685 && DECL_MODE (field) != TYPE_MODE (type))
4686 /* Versions of G++ before G++ 3.4 did not reset the
4687 DECL_MODE. */
4688 warning (OPT_Wabi,
4689 "the offset of %qD may not be ABI-compliant and may "
4690 "change in a future version of GCC", field);
4692 else
4693 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4694 empty_base_offsets);
4696 /* Remember the location of any empty classes in FIELD. */
4697 if (abi_version_at_least (2))
4698 record_subobject_offsets (TREE_TYPE (field),
4699 byte_position(field),
4700 empty_base_offsets,
4701 /*is_data_member=*/true);
4703 /* If a bit-field does not immediately follow another bit-field,
4704 and yet it starts in the middle of a byte, we have failed to
4705 comply with the ABI. */
4706 if (warn_abi
4707 && DECL_C_BIT_FIELD (field)
4708 /* The TREE_NO_WARNING flag gets set by Objective-C when
4709 laying out an Objective-C class. The ObjC ABI differs
4710 from the C++ ABI, and so we do not want a warning
4711 here. */
4712 && !TREE_NO_WARNING (field)
4713 && !last_field_was_bitfield
4714 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
4715 DECL_FIELD_BIT_OFFSET (field),
4716 bitsize_unit_node)))
4717 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
4718 "change in a future version of GCC", field);
4720 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4721 offset of the field. */
4722 if (warn_abi
4723 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
4724 byte_position (field))
4725 && contains_empty_class_p (TREE_TYPE (field)))
4726 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
4727 "classes to be placed at different locations in a "
4728 "future version of GCC", field);
4730 /* If we needed additional padding after this field, add it
4731 now. */
4732 if (padding)
4734 tree padding_field;
4736 padding_field = build_decl (FIELD_DECL,
4737 NULL_TREE,
4738 char_type_node);
4739 DECL_BIT_FIELD (padding_field) = 1;
4740 DECL_SIZE (padding_field) = padding;
4741 DECL_CONTEXT (padding_field) = t;
4742 DECL_ARTIFICIAL (padding_field) = 1;
4743 DECL_IGNORED_P (padding_field) = 1;
4744 layout_nonempty_base_or_field (rli, padding_field,
4745 NULL_TREE,
4746 empty_base_offsets);
4749 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
4752 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
4754 /* Make sure that we are on a byte boundary so that the size of
4755 the class without virtual bases will always be a round number
4756 of bytes. */
4757 rli->bitpos = round_up (rli->bitpos, BITS_PER_UNIT);
4758 normalize_rli (rli);
4761 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
4762 padding. */
4763 if (!abi_version_at_least (2))
4764 include_empty_classes(rli);
4766 /* Delete all zero-width bit-fields from the list of fields. Now
4767 that the type is laid out they are no longer important. */
4768 remove_zero_width_bit_fields (t);
4770 /* Create the version of T used for virtual bases. We do not use
4771 make_aggr_type for this version; this is an artificial type. For
4772 a POD type, we just reuse T. */
4773 if (CLASSTYPE_NON_POD_P (t) || CLASSTYPE_EMPTY_P (t))
4775 base_t = make_node (TREE_CODE (t));
4777 /* Set the size and alignment for the new type. In G++ 3.2, all
4778 empty classes were considered to have size zero when used as
4779 base classes. */
4780 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
4782 TYPE_SIZE (base_t) = bitsize_zero_node;
4783 TYPE_SIZE_UNIT (base_t) = size_zero_node;
4784 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
4785 warning (OPT_Wabi,
4786 "layout of classes derived from empty class %qT "
4787 "may change in a future version of GCC",
4790 else
4792 tree eoc;
4794 /* If the ABI version is not at least two, and the last
4795 field was a bit-field, RLI may not be on a byte
4796 boundary. In particular, rli_size_unit_so_far might
4797 indicate the last complete byte, while rli_size_so_far
4798 indicates the total number of bits used. Therefore,
4799 rli_size_so_far, rather than rli_size_unit_so_far, is
4800 used to compute TYPE_SIZE_UNIT. */
4801 eoc = end_of_class (t, /*include_virtuals_p=*/0);
4802 TYPE_SIZE_UNIT (base_t)
4803 = size_binop (MAX_EXPR,
4804 convert (sizetype,
4805 size_binop (CEIL_DIV_EXPR,
4806 rli_size_so_far (rli),
4807 bitsize_int (BITS_PER_UNIT))),
4808 eoc);
4809 TYPE_SIZE (base_t)
4810 = size_binop (MAX_EXPR,
4811 rli_size_so_far (rli),
4812 size_binop (MULT_EXPR,
4813 convert (bitsizetype, eoc),
4814 bitsize_int (BITS_PER_UNIT)));
4816 TYPE_ALIGN (base_t) = rli->record_align;
4817 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
4819 /* Copy the fields from T. */
4820 next_field = &TYPE_FIELDS (base_t);
4821 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4822 if (TREE_CODE (field) == FIELD_DECL)
4824 *next_field = build_decl (FIELD_DECL,
4825 DECL_NAME (field),
4826 TREE_TYPE (field));
4827 DECL_CONTEXT (*next_field) = base_t;
4828 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
4829 DECL_FIELD_BIT_OFFSET (*next_field)
4830 = DECL_FIELD_BIT_OFFSET (field);
4831 DECL_SIZE (*next_field) = DECL_SIZE (field);
4832 DECL_MODE (*next_field) = DECL_MODE (field);
4833 next_field = &TREE_CHAIN (*next_field);
4836 /* Record the base version of the type. */
4837 CLASSTYPE_AS_BASE (t) = base_t;
4838 TYPE_CONTEXT (base_t) = t;
4840 else
4841 CLASSTYPE_AS_BASE (t) = t;
4843 /* Every empty class contains an empty class. */
4844 if (CLASSTYPE_EMPTY_P (t))
4845 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
4847 /* Set the TYPE_DECL for this type to contain the right
4848 value for DECL_OFFSET, so that we can use it as part
4849 of a COMPONENT_REF for multiple inheritance. */
4850 layout_decl (TYPE_MAIN_DECL (t), 0);
4852 /* Now fix up any virtual base class types that we left lying
4853 around. We must get these done before we try to lay out the
4854 virtual function table. As a side-effect, this will remove the
4855 base subobject fields. */
4856 layout_virtual_bases (rli, empty_base_offsets);
4858 /* Make sure that empty classes are reflected in RLI at this
4859 point. */
4860 include_empty_classes(rli);
4862 /* Make sure not to create any structures with zero size. */
4863 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
4864 place_field (rli,
4865 build_decl (FIELD_DECL, NULL_TREE, char_type_node));
4867 /* Let the back-end lay out the type. */
4868 finish_record_layout (rli, /*free_p=*/true);
4870 /* Warn about bases that can't be talked about due to ambiguity. */
4871 warn_about_ambiguous_bases (t);
4873 /* Now that we're done with layout, give the base fields the real types. */
4874 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4875 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
4876 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
4878 /* Clean up. */
4879 splay_tree_delete (empty_base_offsets);
4881 if (CLASSTYPE_EMPTY_P (t)
4882 && tree_int_cst_lt (sizeof_biggest_empty_class,
4883 TYPE_SIZE_UNIT (t)))
4884 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
4887 /* Determine the "key method" for the class type indicated by TYPE,
4888 and set CLASSTYPE_KEY_METHOD accordingly. */
4890 void
4891 determine_key_method (tree type)
4893 tree method;
4895 if (TYPE_FOR_JAVA (type)
4896 || processing_template_decl
4897 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
4898 || CLASSTYPE_INTERFACE_KNOWN (type))
4899 return;
4901 /* The key method is the first non-pure virtual function that is not
4902 inline at the point of class definition. On some targets the
4903 key function may not be inline; those targets should not call
4904 this function until the end of the translation unit. */
4905 for (method = TYPE_METHODS (type); method != NULL_TREE;
4906 method = TREE_CHAIN (method))
4907 if (DECL_VINDEX (method) != NULL_TREE
4908 && ! DECL_DECLARED_INLINE_P (method)
4909 && ! DECL_PURE_VIRTUAL_P (method))
4911 CLASSTYPE_KEY_METHOD (type) = method;
4912 break;
4915 return;
4918 /* Perform processing required when the definition of T (a class type)
4919 is complete. */
4921 void
4922 finish_struct_1 (tree t)
4924 tree x;
4925 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
4926 tree virtuals = NULL_TREE;
4927 int n_fields = 0;
4929 if (COMPLETE_TYPE_P (t))
4931 gcc_assert (IS_AGGR_TYPE (t));
4932 error ("redefinition of %q#T", t);
4933 popclass ();
4934 return;
4937 /* If this type was previously laid out as a forward reference,
4938 make sure we lay it out again. */
4939 TYPE_SIZE (t) = NULL_TREE;
4940 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
4942 fixup_inline_methods (t);
4944 /* Make assumptions about the class; we'll reset the flags if
4945 necessary. */
4946 CLASSTYPE_EMPTY_P (t) = 1;
4947 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
4948 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
4950 /* Do end-of-class semantic processing: checking the validity of the
4951 bases and members and add implicitly generated methods. */
4952 check_bases_and_members (t);
4954 /* Find the key method. */
4955 if (TYPE_CONTAINS_VPTR_P (t))
4957 /* The Itanium C++ ABI permits the key method to be chosen when
4958 the class is defined -- even though the key method so
4959 selected may later turn out to be an inline function. On
4960 some systems (such as ARM Symbian OS) the key method cannot
4961 be determined until the end of the translation unit. On such
4962 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
4963 will cause the class to be added to KEYED_CLASSES. Then, in
4964 finish_file we will determine the key method. */
4965 if (targetm.cxx.key_method_may_be_inline ())
4966 determine_key_method (t);
4968 /* If a polymorphic class has no key method, we may emit the vtable
4969 in every translation unit where the class definition appears. */
4970 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
4971 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
4974 /* Layout the class itself. */
4975 layout_class_type (t, &virtuals);
4976 if (CLASSTYPE_AS_BASE (t) != t)
4977 /* We use the base type for trivial assignments, and hence it
4978 needs a mode. */
4979 compute_record_mode (CLASSTYPE_AS_BASE (t));
4981 virtuals = modify_all_vtables (t, nreverse (virtuals));
4983 /* If necessary, create the primary vtable for this class. */
4984 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
4986 /* We must enter these virtuals into the table. */
4987 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4988 build_primary_vtable (NULL_TREE, t);
4989 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
4990 /* Here we know enough to change the type of our virtual
4991 function table, but we will wait until later this function. */
4992 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
4995 if (TYPE_CONTAINS_VPTR_P (t))
4997 int vindex;
4998 tree fn;
5000 if (BINFO_VTABLE (TYPE_BINFO (t)))
5001 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
5002 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5003 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
5005 /* Add entries for virtual functions introduced by this class. */
5006 BINFO_VIRTUALS (TYPE_BINFO (t))
5007 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
5009 /* Set DECL_VINDEX for all functions declared in this class. */
5010 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
5012 fn = TREE_CHAIN (fn),
5013 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
5014 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
5016 tree fndecl = BV_FN (fn);
5018 if (DECL_THUNK_P (fndecl))
5019 /* A thunk. We should never be calling this entry directly
5020 from this vtable -- we'd use the entry for the non
5021 thunk base function. */
5022 DECL_VINDEX (fndecl) = NULL_TREE;
5023 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
5024 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
5028 finish_struct_bits (t);
5030 /* Complete the rtl for any static member objects of the type we're
5031 working on. */
5032 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
5033 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
5034 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
5035 DECL_MODE (x) = TYPE_MODE (t);
5037 /* Done with FIELDS...now decide whether to sort these for
5038 faster lookups later.
5040 We use a small number because most searches fail (succeeding
5041 ultimately as the search bores through the inheritance
5042 hierarchy), and we want this failure to occur quickly. */
5044 n_fields = count_fields (TYPE_FIELDS (t));
5045 if (n_fields > 7)
5047 struct sorted_fields_type *field_vec = GGC_NEWVAR
5048 (struct sorted_fields_type,
5049 sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
5050 field_vec->len = n_fields;
5051 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5052 qsort (field_vec->elts, n_fields, sizeof (tree),
5053 field_decl_cmp);
5054 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t)))
5055 retrofit_lang_decl (TYPE_MAIN_DECL (t));
5056 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t)) = field_vec;
5059 /* Make the rtl for any new vtables we have created, and unmark
5060 the base types we marked. */
5061 finish_vtbls (t);
5063 /* Build the VTT for T. */
5064 build_vtt (t);
5066 /* This warning does not make sense for Java classes, since they
5067 cannot have destructors. */
5068 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
5070 tree dtor;
5072 dtor = CLASSTYPE_DESTRUCTORS (t);
5073 /* Warn only if the dtor is non-private or the class has
5074 friends. */
5075 if (/* An implicitly declared destructor is always public. And,
5076 if it were virtual, we would have created it by now. */
5077 !dtor
5078 || (!DECL_VINDEX (dtor)
5079 && (!TREE_PRIVATE (dtor)
5080 || CLASSTYPE_FRIEND_CLASSES (t)
5081 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))
5082 warning (0, "%q#T has virtual functions but non-virtual destructor",
5086 complete_vars (t);
5088 if (warn_overloaded_virtual)
5089 warn_hidden (t);
5091 /* Class layout, assignment of virtual table slots, etc., is now
5092 complete. Give the back end a chance to tweak the visibility of
5093 the class or perform any other required target modifications. */
5094 targetm.cxx.adjust_class_at_definition (t);
5096 maybe_suppress_debug_info (t);
5098 dump_class_hierarchy (t);
5100 /* Finish debugging output for this type. */
5101 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5104 /* When T was built up, the member declarations were added in reverse
5105 order. Rearrange them to declaration order. */
5107 void
5108 unreverse_member_declarations (tree t)
5110 tree next;
5111 tree prev;
5112 tree x;
5114 /* The following lists are all in reverse order. Put them in
5115 declaration order now. */
5116 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5117 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5119 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5120 reverse order, so we can't just use nreverse. */
5121 prev = NULL_TREE;
5122 for (x = TYPE_FIELDS (t);
5123 x && TREE_CODE (x) != TYPE_DECL;
5124 x = next)
5126 next = TREE_CHAIN (x);
5127 TREE_CHAIN (x) = prev;
5128 prev = x;
5130 if (prev)
5132 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5133 if (prev)
5134 TYPE_FIELDS (t) = prev;
5138 tree
5139 finish_struct (tree t, tree attributes)
5141 location_t saved_loc = input_location;
5143 /* Now that we've got all the field declarations, reverse everything
5144 as necessary. */
5145 unreverse_member_declarations (t);
5147 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5149 /* Nadger the current location so that diagnostics point to the start of
5150 the struct, not the end. */
5151 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5153 if (processing_template_decl)
5155 tree x;
5157 finish_struct_methods (t);
5158 TYPE_SIZE (t) = bitsize_zero_node;
5159 TYPE_SIZE_UNIT (t) = size_zero_node;
5161 /* We need to emit an error message if this type was used as a parameter
5162 and it is an abstract type, even if it is a template. We construct
5163 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5164 account and we call complete_vars with this type, which will check
5165 the PARM_DECLS. Note that while the type is being defined,
5166 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5167 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5168 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
5169 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
5170 if (DECL_PURE_VIRTUAL_P (x))
5171 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
5172 complete_vars (t);
5174 else
5175 finish_struct_1 (t);
5177 input_location = saved_loc;
5179 TYPE_BEING_DEFINED (t) = 0;
5181 if (current_class_type)
5182 popclass ();
5183 else
5184 error ("trying to finish struct, but kicked out due to previous parse errors");
5186 if (processing_template_decl && at_function_scope_p ())
5187 add_stmt (build_min (TAG_DEFN, t));
5189 return t;
5192 /* Return the dynamic type of INSTANCE, if known.
5193 Used to determine whether the virtual function table is needed
5194 or not.
5196 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5197 of our knowledge of its type. *NONNULL should be initialized
5198 before this function is called. */
5200 static tree
5201 fixed_type_or_null (tree instance, int* nonnull, int* cdtorp)
5203 switch (TREE_CODE (instance))
5205 case INDIRECT_REF:
5206 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5207 return NULL_TREE;
5208 else
5209 return fixed_type_or_null (TREE_OPERAND (instance, 0),
5210 nonnull, cdtorp);
5212 case CALL_EXPR:
5213 /* This is a call to a constructor, hence it's never zero. */
5214 if (TREE_HAS_CONSTRUCTOR (instance))
5216 if (nonnull)
5217 *nonnull = 1;
5218 return TREE_TYPE (instance);
5220 return NULL_TREE;
5222 case SAVE_EXPR:
5223 /* This is a call to a constructor, hence it's never zero. */
5224 if (TREE_HAS_CONSTRUCTOR (instance))
5226 if (nonnull)
5227 *nonnull = 1;
5228 return TREE_TYPE (instance);
5230 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5232 case PLUS_EXPR:
5233 case MINUS_EXPR:
5234 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5235 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5236 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5237 /* Propagate nonnull. */
5238 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5239 return NULL_TREE;
5241 case NOP_EXPR:
5242 case CONVERT_EXPR:
5243 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5245 case ADDR_EXPR:
5246 instance = TREE_OPERAND (instance, 0);
5247 if (nonnull)
5249 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5250 with a real object -- given &p->f, p can still be null. */
5251 tree t = get_base_address (instance);
5252 /* ??? Probably should check DECL_WEAK here. */
5253 if (t && DECL_P (t))
5254 *nonnull = 1;
5256 return fixed_type_or_null (instance, nonnull, cdtorp);
5258 case COMPONENT_REF:
5259 /* If this component is really a base class reference, then the field
5260 itself isn't definitive. */
5261 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
5262 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5263 return fixed_type_or_null (TREE_OPERAND (instance, 1), nonnull, cdtorp);
5265 case VAR_DECL:
5266 case FIELD_DECL:
5267 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5268 && IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (instance))))
5270 if (nonnull)
5271 *nonnull = 1;
5272 return TREE_TYPE (TREE_TYPE (instance));
5274 /* fall through... */
5275 case TARGET_EXPR:
5276 case PARM_DECL:
5277 case RESULT_DECL:
5278 if (IS_AGGR_TYPE (TREE_TYPE (instance)))
5280 if (nonnull)
5281 *nonnull = 1;
5282 return TREE_TYPE (instance);
5284 else if (instance == current_class_ptr)
5286 if (nonnull)
5287 *nonnull = 1;
5289 /* if we're in a ctor or dtor, we know our type. */
5290 if (DECL_LANG_SPECIFIC (current_function_decl)
5291 && (DECL_CONSTRUCTOR_P (current_function_decl)
5292 || DECL_DESTRUCTOR_P (current_function_decl)))
5294 if (cdtorp)
5295 *cdtorp = 1;
5296 return TREE_TYPE (TREE_TYPE (instance));
5299 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5301 /* Reference variables should be references to objects. */
5302 if (nonnull)
5303 *nonnull = 1;
5305 /* DECL_VAR_MARKED_P is used to prevent recursion; a
5306 variable's initializer may refer to the variable
5307 itself. */
5308 if (TREE_CODE (instance) == VAR_DECL
5309 && DECL_INITIAL (instance)
5310 && !DECL_VAR_MARKED_P (instance))
5312 tree type;
5313 DECL_VAR_MARKED_P (instance) = 1;
5314 type = fixed_type_or_null (DECL_INITIAL (instance),
5315 nonnull, cdtorp);
5316 DECL_VAR_MARKED_P (instance) = 0;
5317 return type;
5320 return NULL_TREE;
5322 default:
5323 return NULL_TREE;
5327 /* Return nonzero if the dynamic type of INSTANCE is known, and
5328 equivalent to the static type. We also handle the case where
5329 INSTANCE is really a pointer. Return negative if this is a
5330 ctor/dtor. There the dynamic type is known, but this might not be
5331 the most derived base of the original object, and hence virtual
5332 bases may not be layed out according to this type.
5334 Used to determine whether the virtual function table is needed
5335 or not.
5337 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5338 of our knowledge of its type. *NONNULL should be initialized
5339 before this function is called. */
5342 resolves_to_fixed_type_p (tree instance, int* nonnull)
5344 tree t = TREE_TYPE (instance);
5345 int cdtorp = 0;
5347 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5348 if (fixed == NULL_TREE)
5349 return 0;
5350 if (POINTER_TYPE_P (t))
5351 t = TREE_TYPE (t);
5352 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5353 return 0;
5354 return cdtorp ? -1 : 1;
5358 void
5359 init_class_processing (void)
5361 current_class_depth = 0;
5362 current_class_stack_size = 10;
5363 current_class_stack
5364 = XNEWVEC (struct class_stack_node, current_class_stack_size);
5365 local_classes = VEC_alloc (tree, gc, 8);
5366 sizeof_biggest_empty_class = size_zero_node;
5368 ridpointers[(int) RID_PUBLIC] = access_public_node;
5369 ridpointers[(int) RID_PRIVATE] = access_private_node;
5370 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5373 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5375 static void
5376 restore_class_cache (void)
5378 tree type;
5380 /* We are re-entering the same class we just left, so we don't
5381 have to search the whole inheritance matrix to find all the
5382 decls to bind again. Instead, we install the cached
5383 class_shadowed list and walk through it binding names. */
5384 push_binding_level (previous_class_level);
5385 class_binding_level = previous_class_level;
5386 /* Restore IDENTIFIER_TYPE_VALUE. */
5387 for (type = class_binding_level->type_shadowed;
5388 type;
5389 type = TREE_CHAIN (type))
5390 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
5393 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5394 appropriate for TYPE.
5396 So that we may avoid calls to lookup_name, we cache the _TYPE
5397 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5399 For multiple inheritance, we perform a two-pass depth-first search
5400 of the type lattice. */
5402 void
5403 pushclass (tree type)
5405 class_stack_node_t csn;
5407 type = TYPE_MAIN_VARIANT (type);
5409 /* Make sure there is enough room for the new entry on the stack. */
5410 if (current_class_depth + 1 >= current_class_stack_size)
5412 current_class_stack_size *= 2;
5413 current_class_stack
5414 = XRESIZEVEC (struct class_stack_node, current_class_stack,
5415 current_class_stack_size);
5418 /* Insert a new entry on the class stack. */
5419 csn = current_class_stack + current_class_depth;
5420 csn->name = current_class_name;
5421 csn->type = current_class_type;
5422 csn->access = current_access_specifier;
5423 csn->names_used = 0;
5424 csn->hidden = 0;
5425 current_class_depth++;
5427 /* Now set up the new type. */
5428 current_class_name = TYPE_NAME (type);
5429 if (TREE_CODE (current_class_name) == TYPE_DECL)
5430 current_class_name = DECL_NAME (current_class_name);
5431 current_class_type = type;
5433 /* By default, things in classes are private, while things in
5434 structures or unions are public. */
5435 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5436 ? access_private_node
5437 : access_public_node);
5439 if (previous_class_level
5440 && type != previous_class_level->this_entity
5441 && current_class_depth == 1)
5443 /* Forcibly remove any old class remnants. */
5444 invalidate_class_lookup_cache ();
5447 if (!previous_class_level
5448 || type != previous_class_level->this_entity
5449 || current_class_depth > 1)
5450 pushlevel_class ();
5451 else
5452 restore_class_cache ();
5455 /* When we exit a toplevel class scope, we save its binding level so
5456 that we can restore it quickly. Here, we've entered some other
5457 class, so we must invalidate our cache. */
5459 void
5460 invalidate_class_lookup_cache (void)
5462 previous_class_level = NULL;
5465 /* Get out of the current class scope. If we were in a class scope
5466 previously, that is the one popped to. */
5468 void
5469 popclass (void)
5471 poplevel_class ();
5473 current_class_depth--;
5474 current_class_name = current_class_stack[current_class_depth].name;
5475 current_class_type = current_class_stack[current_class_depth].type;
5476 current_access_specifier = current_class_stack[current_class_depth].access;
5477 if (current_class_stack[current_class_depth].names_used)
5478 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5481 /* Mark the top of the class stack as hidden. */
5483 void
5484 push_class_stack (void)
5486 if (current_class_depth)
5487 ++current_class_stack[current_class_depth - 1].hidden;
5490 /* Mark the top of the class stack as un-hidden. */
5492 void
5493 pop_class_stack (void)
5495 if (current_class_depth)
5496 --current_class_stack[current_class_depth - 1].hidden;
5499 /* Returns 1 if current_class_type is either T or a nested type of T.
5500 We start looking from 1 because entry 0 is from global scope, and has
5501 no type. */
5504 currently_open_class (tree t)
5506 int i;
5507 if (current_class_type && same_type_p (t, current_class_type))
5508 return 1;
5509 for (i = current_class_depth - 1; i > 0; --i)
5511 if (current_class_stack[i].hidden)
5512 break;
5513 if (current_class_stack[i].type
5514 && same_type_p (current_class_stack [i].type, t))
5515 return 1;
5517 return 0;
5520 /* If either current_class_type or one of its enclosing classes are derived
5521 from T, return the appropriate type. Used to determine how we found
5522 something via unqualified lookup. */
5524 tree
5525 currently_open_derived_class (tree t)
5527 int i;
5529 /* The bases of a dependent type are unknown. */
5530 if (dependent_type_p (t))
5531 return NULL_TREE;
5533 if (!current_class_type)
5534 return NULL_TREE;
5536 if (DERIVED_FROM_P (t, current_class_type))
5537 return current_class_type;
5539 for (i = current_class_depth - 1; i > 0; --i)
5541 if (current_class_stack[i].hidden)
5542 break;
5543 if (DERIVED_FROM_P (t, current_class_stack[i].type))
5544 return current_class_stack[i].type;
5547 return NULL_TREE;
5550 /* When entering a class scope, all enclosing class scopes' names with
5551 static meaning (static variables, static functions, types and
5552 enumerators) have to be visible. This recursive function calls
5553 pushclass for all enclosing class contexts until global or a local
5554 scope is reached. TYPE is the enclosed class. */
5556 void
5557 push_nested_class (tree type)
5559 tree context;
5561 /* A namespace might be passed in error cases, like A::B:C. */
5562 if (type == NULL_TREE
5563 || type == error_mark_node
5564 || TREE_CODE (type) == NAMESPACE_DECL
5565 || ! IS_AGGR_TYPE (type)
5566 || TREE_CODE (type) == TEMPLATE_TYPE_PARM
5567 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM)
5568 return;
5570 context = DECL_CONTEXT (TYPE_MAIN_DECL (type));
5572 if (context && CLASS_TYPE_P (context))
5573 push_nested_class (context);
5574 pushclass (type);
5577 /* Undoes a push_nested_class call. */
5579 void
5580 pop_nested_class (void)
5582 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
5584 popclass ();
5585 if (context && CLASS_TYPE_P (context))
5586 pop_nested_class ();
5589 /* Returns the number of extern "LANG" blocks we are nested within. */
5592 current_lang_depth (void)
5594 return VEC_length (tree, current_lang_base);
5597 /* Set global variables CURRENT_LANG_NAME to appropriate value
5598 so that behavior of name-mangling machinery is correct. */
5600 void
5601 push_lang_context (tree name)
5603 VEC_safe_push (tree, gc, current_lang_base, current_lang_name);
5605 if (name == lang_name_cplusplus)
5607 current_lang_name = name;
5609 else if (name == lang_name_java)
5611 current_lang_name = name;
5612 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5613 (See record_builtin_java_type in decl.c.) However, that causes
5614 incorrect debug entries if these types are actually used.
5615 So we re-enable debug output after extern "Java". */
5616 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
5617 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
5618 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
5619 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
5620 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
5621 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
5622 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
5623 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
5625 else if (name == lang_name_c)
5627 current_lang_name = name;
5629 else
5630 error ("language string %<\"%E\"%> not recognized", name);
5633 /* Get out of the current language scope. */
5635 void
5636 pop_lang_context (void)
5638 current_lang_name = VEC_pop (tree, current_lang_base);
5641 /* Type instantiation routines. */
5643 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5644 matches the TARGET_TYPE. If there is no satisfactory match, return
5645 error_mark_node, and issue an error & warning messages under control
5646 of FLAGS. Permit pointers to member function if FLAGS permits. If
5647 TEMPLATE_ONLY, the name of the overloaded function was a
5648 template-id, and EXPLICIT_TARGS are the explicitly provided
5649 template arguments. */
5651 static tree
5652 resolve_address_of_overloaded_function (tree target_type,
5653 tree overload,
5654 tsubst_flags_t flags,
5655 bool template_only,
5656 tree explicit_targs)
5658 /* Here's what the standard says:
5660 [over.over]
5662 If the name is a function template, template argument deduction
5663 is done, and if the argument deduction succeeds, the deduced
5664 arguments are used to generate a single template function, which
5665 is added to the set of overloaded functions considered.
5667 Non-member functions and static member functions match targets of
5668 type "pointer-to-function" or "reference-to-function." Nonstatic
5669 member functions match targets of type "pointer-to-member
5670 function;" the function type of the pointer to member is used to
5671 select the member function from the set of overloaded member
5672 functions. If a nonstatic member function is selected, the
5673 reference to the overloaded function name is required to have the
5674 form of a pointer to member as described in 5.3.1.
5676 If more than one function is selected, any template functions in
5677 the set are eliminated if the set also contains a non-template
5678 function, and any given template function is eliminated if the
5679 set contains a second template function that is more specialized
5680 than the first according to the partial ordering rules 14.5.5.2.
5681 After such eliminations, if any, there shall remain exactly one
5682 selected function. */
5684 int is_ptrmem = 0;
5685 int is_reference = 0;
5686 /* We store the matches in a TREE_LIST rooted here. The functions
5687 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5688 interoperability with most_specialized_instantiation. */
5689 tree matches = NULL_TREE;
5690 tree fn;
5692 /* By the time we get here, we should be seeing only real
5693 pointer-to-member types, not the internal POINTER_TYPE to
5694 METHOD_TYPE representation. */
5695 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
5696 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
5698 gcc_assert (is_overloaded_fn (overload));
5700 /* Check that the TARGET_TYPE is reasonable. */
5701 if (TYPE_PTRFN_P (target_type))
5702 /* This is OK. */;
5703 else if (TYPE_PTRMEMFUNC_P (target_type))
5704 /* This is OK, too. */
5705 is_ptrmem = 1;
5706 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
5708 /* This is OK, too. This comes from a conversion to reference
5709 type. */
5710 target_type = build_reference_type (target_type);
5711 is_reference = 1;
5713 else
5715 if (flags & tf_error)
5716 error ("cannot resolve overloaded function %qD based on"
5717 " conversion to type %qT",
5718 DECL_NAME (OVL_FUNCTION (overload)), target_type);
5719 return error_mark_node;
5722 /* If we can find a non-template function that matches, we can just
5723 use it. There's no point in generating template instantiations
5724 if we're just going to throw them out anyhow. But, of course, we
5725 can only do this when we don't *need* a template function. */
5726 if (!template_only)
5728 tree fns;
5730 for (fns = overload; fns; fns = OVL_NEXT (fns))
5732 tree fn = OVL_CURRENT (fns);
5733 tree fntype;
5735 if (TREE_CODE (fn) == TEMPLATE_DECL)
5736 /* We're not looking for templates just yet. */
5737 continue;
5739 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5740 != is_ptrmem)
5741 /* We're looking for a non-static member, and this isn't
5742 one, or vice versa. */
5743 continue;
5745 /* Ignore functions which haven't been explicitly
5746 declared. */
5747 if (DECL_ANTICIPATED (fn))
5748 continue;
5750 /* See if there's a match. */
5751 fntype = TREE_TYPE (fn);
5752 if (is_ptrmem)
5753 fntype = build_ptrmemfunc_type (build_pointer_type (fntype));
5754 else if (!is_reference)
5755 fntype = build_pointer_type (fntype);
5757 if (can_convert_arg (target_type, fntype, fn, LOOKUP_NORMAL))
5758 matches = tree_cons (fn, NULL_TREE, matches);
5762 /* Now, if we've already got a match (or matches), there's no need
5763 to proceed to the template functions. But, if we don't have a
5764 match we need to look at them, too. */
5765 if (!matches)
5767 tree target_fn_type;
5768 tree target_arg_types;
5769 tree target_ret_type;
5770 tree fns;
5772 if (is_ptrmem)
5773 target_fn_type
5774 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type));
5775 else
5776 target_fn_type = TREE_TYPE (target_type);
5777 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
5778 target_ret_type = TREE_TYPE (target_fn_type);
5780 /* Never do unification on the 'this' parameter. */
5781 if (TREE_CODE (target_fn_type) == METHOD_TYPE)
5782 target_arg_types = TREE_CHAIN (target_arg_types);
5784 for (fns = overload; fns; fns = OVL_NEXT (fns))
5786 tree fn = OVL_CURRENT (fns);
5787 tree instantiation;
5788 tree instantiation_type;
5789 tree targs;
5791 if (TREE_CODE (fn) != TEMPLATE_DECL)
5792 /* We're only looking for templates. */
5793 continue;
5795 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5796 != is_ptrmem)
5797 /* We're not looking for a non-static member, and this is
5798 one, or vice versa. */
5799 continue;
5801 /* Try to do argument deduction. */
5802 targs = make_tree_vec (DECL_NTPARMS (fn));
5803 if (fn_type_unification (fn, explicit_targs, targs,
5804 target_arg_types, target_ret_type,
5805 DEDUCE_EXACT, LOOKUP_NORMAL))
5806 /* Argument deduction failed. */
5807 continue;
5809 /* Instantiate the template. */
5810 instantiation = instantiate_template (fn, targs, flags);
5811 if (instantiation == error_mark_node)
5812 /* Instantiation failed. */
5813 continue;
5815 /* See if there's a match. */
5816 instantiation_type = TREE_TYPE (instantiation);
5817 if (is_ptrmem)
5818 instantiation_type =
5819 build_ptrmemfunc_type (build_pointer_type (instantiation_type));
5820 else if (!is_reference)
5821 instantiation_type = build_pointer_type (instantiation_type);
5822 if (can_convert_arg (target_type, instantiation_type, instantiation,
5823 LOOKUP_NORMAL))
5824 matches = tree_cons (instantiation, fn, matches);
5827 /* Now, remove all but the most specialized of the matches. */
5828 if (matches)
5830 tree match = most_specialized_instantiation (matches);
5832 if (match != error_mark_node)
5833 matches = tree_cons (TREE_PURPOSE (match),
5834 NULL_TREE,
5835 NULL_TREE);
5839 /* Now we should have exactly one function in MATCHES. */
5840 if (matches == NULL_TREE)
5842 /* There were *no* matches. */
5843 if (flags & tf_error)
5845 error ("no matches converting function %qD to type %q#T",
5846 DECL_NAME (OVL_FUNCTION (overload)),
5847 target_type);
5849 /* print_candidates expects a chain with the functions in
5850 TREE_VALUE slots, so we cons one up here (we're losing anyway,
5851 so why be clever?). */
5852 for (; overload; overload = OVL_NEXT (overload))
5853 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
5854 matches);
5856 print_candidates (matches);
5858 return error_mark_node;
5860 else if (TREE_CHAIN (matches))
5862 /* There were too many matches. */
5864 if (flags & tf_error)
5866 tree match;
5868 error ("converting overloaded function %qD to type %q#T is ambiguous",
5869 DECL_NAME (OVL_FUNCTION (overload)),
5870 target_type);
5872 /* Since print_candidates expects the functions in the
5873 TREE_VALUE slot, we flip them here. */
5874 for (match = matches; match; match = TREE_CHAIN (match))
5875 TREE_VALUE (match) = TREE_PURPOSE (match);
5877 print_candidates (matches);
5880 return error_mark_node;
5883 /* Good, exactly one match. Now, convert it to the correct type. */
5884 fn = TREE_PURPOSE (matches);
5886 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5887 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
5889 static int explained;
5891 if (!(flags & tf_error))
5892 return error_mark_node;
5894 pedwarn ("assuming pointer to member %qD", fn);
5895 if (!explained)
5897 pedwarn ("(a pointer to member can only be formed with %<&%E%>)", fn);
5898 explained = 1;
5902 /* If we're doing overload resolution purely for the purpose of
5903 determining conversion sequences, we should not consider the
5904 function used. If this conversion sequence is selected, the
5905 function will be marked as used at this point. */
5906 if (!(flags & tf_conv))
5907 mark_used (fn);
5909 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
5910 return build_unary_op (ADDR_EXPR, fn, 0);
5911 else
5913 /* The target must be a REFERENCE_TYPE. Above, build_unary_op
5914 will mark the function as addressed, but here we must do it
5915 explicitly. */
5916 cxx_mark_addressable (fn);
5918 return fn;
5922 /* This function will instantiate the type of the expression given in
5923 RHS to match the type of LHSTYPE. If errors exist, then return
5924 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
5925 we complain on errors. If we are not complaining, never modify rhs,
5926 as overload resolution wants to try many possible instantiations, in
5927 the hope that at least one will work.
5929 For non-recursive calls, LHSTYPE should be a function, pointer to
5930 function, or a pointer to member function. */
5932 tree
5933 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
5935 tsubst_flags_t flags_in = flags;
5937 flags &= ~tf_ptrmem_ok;
5939 if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
5941 if (flags & tf_error)
5942 error ("not enough type information");
5943 return error_mark_node;
5946 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
5948 if (same_type_p (lhstype, TREE_TYPE (rhs)))
5949 return rhs;
5950 if (flag_ms_extensions
5951 && TYPE_PTRMEMFUNC_P (lhstype)
5952 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
5953 /* Microsoft allows `A::f' to be resolved to a
5954 pointer-to-member. */
5956 else
5958 if (flags & tf_error)
5959 error ("argument of type %qT does not match %qT",
5960 TREE_TYPE (rhs), lhstype);
5961 return error_mark_node;
5965 if (TREE_CODE (rhs) == BASELINK)
5966 rhs = BASELINK_FUNCTIONS (rhs);
5968 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
5969 deduce any type information. */
5970 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
5972 if (flags & tf_error)
5973 error ("not enough type information");
5974 return error_mark_node;
5977 /* We don't overwrite rhs if it is an overloaded function.
5978 Copying it would destroy the tree link. */
5979 if (TREE_CODE (rhs) != OVERLOAD)
5980 rhs = copy_node (rhs);
5982 /* This should really only be used when attempting to distinguish
5983 what sort of a pointer to function we have. For now, any
5984 arithmetic operation which is not supported on pointers
5985 is rejected as an error. */
5987 switch (TREE_CODE (rhs))
5989 case TYPE_EXPR:
5990 case CONVERT_EXPR:
5991 case SAVE_EXPR:
5992 case CONSTRUCTOR:
5993 gcc_unreachable ();
5995 case INDIRECT_REF:
5996 case ARRAY_REF:
5998 tree new_rhs;
6000 new_rhs = instantiate_type (build_pointer_type (lhstype),
6001 TREE_OPERAND (rhs, 0), flags);
6002 if (new_rhs == error_mark_node)
6003 return error_mark_node;
6005 TREE_TYPE (rhs) = lhstype;
6006 TREE_OPERAND (rhs, 0) = new_rhs;
6007 return rhs;
6010 case NOP_EXPR:
6011 rhs = copy_node (TREE_OPERAND (rhs, 0));
6012 TREE_TYPE (rhs) = unknown_type_node;
6013 return instantiate_type (lhstype, rhs, flags);
6015 case COMPONENT_REF:
6017 tree member = TREE_OPERAND (rhs, 1);
6019 member = instantiate_type (lhstype, member, flags);
6020 if (member != error_mark_node
6021 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
6022 /* Do not lose object's side effects. */
6023 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
6024 TREE_OPERAND (rhs, 0), member);
6025 return member;
6028 case OFFSET_REF:
6029 rhs = TREE_OPERAND (rhs, 1);
6030 if (BASELINK_P (rhs))
6031 return instantiate_type (lhstype, BASELINK_FUNCTIONS (rhs), flags_in);
6033 /* This can happen if we are forming a pointer-to-member for a
6034 member template. */
6035 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
6037 /* Fall through. */
6039 case TEMPLATE_ID_EXPR:
6041 tree fns = TREE_OPERAND (rhs, 0);
6042 tree args = TREE_OPERAND (rhs, 1);
6044 return
6045 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
6046 /*template_only=*/true,
6047 args);
6050 case OVERLOAD:
6051 case FUNCTION_DECL:
6052 return
6053 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
6054 /*template_only=*/false,
6055 /*explicit_targs=*/NULL_TREE);
6057 case CALL_EXPR:
6058 /* This is too hard for now. */
6059 gcc_unreachable ();
6061 case PLUS_EXPR:
6062 case MINUS_EXPR:
6063 case COMPOUND_EXPR:
6064 TREE_OPERAND (rhs, 0)
6065 = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6066 if (TREE_OPERAND (rhs, 0) == error_mark_node)
6067 return error_mark_node;
6068 TREE_OPERAND (rhs, 1)
6069 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6070 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6071 return error_mark_node;
6073 TREE_TYPE (rhs) = lhstype;
6074 return rhs;
6076 case MULT_EXPR:
6077 case TRUNC_DIV_EXPR:
6078 case FLOOR_DIV_EXPR:
6079 case CEIL_DIV_EXPR:
6080 case ROUND_DIV_EXPR:
6081 case RDIV_EXPR:
6082 case TRUNC_MOD_EXPR:
6083 case FLOOR_MOD_EXPR:
6084 case CEIL_MOD_EXPR:
6085 case ROUND_MOD_EXPR:
6086 case FIX_ROUND_EXPR:
6087 case FIX_FLOOR_EXPR:
6088 case FIX_CEIL_EXPR:
6089 case FIX_TRUNC_EXPR:
6090 case FLOAT_EXPR:
6091 case NEGATE_EXPR:
6092 case ABS_EXPR:
6093 case MAX_EXPR:
6094 case MIN_EXPR:
6096 case BIT_AND_EXPR:
6097 case BIT_IOR_EXPR:
6098 case BIT_XOR_EXPR:
6099 case LSHIFT_EXPR:
6100 case RSHIFT_EXPR:
6101 case LROTATE_EXPR:
6102 case RROTATE_EXPR:
6104 case PREINCREMENT_EXPR:
6105 case PREDECREMENT_EXPR:
6106 case POSTINCREMENT_EXPR:
6107 case POSTDECREMENT_EXPR:
6108 if (flags & tf_error)
6109 error ("invalid operation on uninstantiated type");
6110 return error_mark_node;
6112 case TRUTH_AND_EXPR:
6113 case TRUTH_OR_EXPR:
6114 case TRUTH_XOR_EXPR:
6115 case LT_EXPR:
6116 case LE_EXPR:
6117 case GT_EXPR:
6118 case GE_EXPR:
6119 case EQ_EXPR:
6120 case NE_EXPR:
6121 case TRUTH_ANDIF_EXPR:
6122 case TRUTH_ORIF_EXPR:
6123 case TRUTH_NOT_EXPR:
6124 if (flags & tf_error)
6125 error ("not enough type information");
6126 return error_mark_node;
6128 case COND_EXPR:
6129 if (type_unknown_p (TREE_OPERAND (rhs, 0)))
6131 if (flags & tf_error)
6132 error ("not enough type information");
6133 return error_mark_node;
6135 TREE_OPERAND (rhs, 1)
6136 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6137 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6138 return error_mark_node;
6139 TREE_OPERAND (rhs, 2)
6140 = instantiate_type (lhstype, TREE_OPERAND (rhs, 2), flags);
6141 if (TREE_OPERAND (rhs, 2) == error_mark_node)
6142 return error_mark_node;
6144 TREE_TYPE (rhs) = lhstype;
6145 return rhs;
6147 case MODIFY_EXPR:
6148 TREE_OPERAND (rhs, 1)
6149 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6150 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6151 return error_mark_node;
6153 TREE_TYPE (rhs) = lhstype;
6154 return rhs;
6156 case ADDR_EXPR:
6158 if (PTRMEM_OK_P (rhs))
6159 flags |= tf_ptrmem_ok;
6161 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6164 case ERROR_MARK:
6165 return error_mark_node;
6167 default:
6168 gcc_unreachable ();
6170 return error_mark_node;
6173 /* Return the name of the virtual function pointer field
6174 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6175 this may have to look back through base types to find the
6176 ultimate field name. (For single inheritance, these could
6177 all be the same name. Who knows for multiple inheritance). */
6179 static tree
6180 get_vfield_name (tree type)
6182 tree binfo, base_binfo;
6183 char *buf;
6185 for (binfo = TYPE_BINFO (type);
6186 BINFO_N_BASE_BINFOS (binfo);
6187 binfo = base_binfo)
6189 base_binfo = BINFO_BASE_BINFO (binfo, 0);
6191 if (BINFO_VIRTUAL_P (base_binfo)
6192 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
6193 break;
6196 type = BINFO_TYPE (binfo);
6197 buf = alloca (sizeof (VFIELD_NAME_FORMAT) + TYPE_NAME_LENGTH (type) + 2);
6198 sprintf (buf, VFIELD_NAME_FORMAT,
6199 IDENTIFIER_POINTER (constructor_name (type)));
6200 return get_identifier (buf);
6203 void
6204 print_class_statistics (void)
6206 #ifdef GATHER_STATISTICS
6207 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6208 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6209 if (n_vtables)
6211 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6212 n_vtables, n_vtable_searches);
6213 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6214 n_vtable_entries, n_vtable_elems);
6216 #endif
6219 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6220 according to [class]:
6221 The class-name is also inserted
6222 into the scope of the class itself. For purposes of access checking,
6223 the inserted class name is treated as if it were a public member name. */
6225 void
6226 build_self_reference (void)
6228 tree name = constructor_name (current_class_type);
6229 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6230 tree saved_cas;
6232 DECL_NONLOCAL (value) = 1;
6233 DECL_CONTEXT (value) = current_class_type;
6234 DECL_ARTIFICIAL (value) = 1;
6235 SET_DECL_SELF_REFERENCE_P (value);
6237 if (processing_template_decl)
6238 value = push_template_decl (value);
6240 saved_cas = current_access_specifier;
6241 current_access_specifier = access_public_node;
6242 finish_member_declaration (value);
6243 current_access_specifier = saved_cas;
6246 /* Returns 1 if TYPE contains only padding bytes. */
6249 is_empty_class (tree type)
6251 if (type == error_mark_node)
6252 return 0;
6254 if (! IS_AGGR_TYPE (type))
6255 return 0;
6257 /* In G++ 3.2, whether or not a class was empty was determined by
6258 looking at its size. */
6259 if (abi_version_at_least (2))
6260 return CLASSTYPE_EMPTY_P (type);
6261 else
6262 return integer_zerop (CLASSTYPE_SIZE (type));
6265 /* Returns true if TYPE contains an empty class. */
6267 static bool
6268 contains_empty_class_p (tree type)
6270 if (is_empty_class (type))
6271 return true;
6272 if (CLASS_TYPE_P (type))
6274 tree field;
6275 tree binfo;
6276 tree base_binfo;
6277 int i;
6279 for (binfo = TYPE_BINFO (type), i = 0;
6280 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6281 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
6282 return true;
6283 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6284 if (TREE_CODE (field) == FIELD_DECL
6285 && !DECL_ARTIFICIAL (field)
6286 && is_empty_class (TREE_TYPE (field)))
6287 return true;
6289 else if (TREE_CODE (type) == ARRAY_TYPE)
6290 return contains_empty_class_p (TREE_TYPE (type));
6291 return false;
6294 /* Note that NAME was looked up while the current class was being
6295 defined and that the result of that lookup was DECL. */
6297 void
6298 maybe_note_name_used_in_class (tree name, tree decl)
6300 splay_tree names_used;
6302 /* If we're not defining a class, there's nothing to do. */
6303 if (!(innermost_scope_kind() == sk_class
6304 && TYPE_BEING_DEFINED (current_class_type)))
6305 return;
6307 /* If there's already a binding for this NAME, then we don't have
6308 anything to worry about. */
6309 if (lookup_member (current_class_type, name,
6310 /*protect=*/0, /*want_type=*/false))
6311 return;
6313 if (!current_class_stack[current_class_depth - 1].names_used)
6314 current_class_stack[current_class_depth - 1].names_used
6315 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6316 names_used = current_class_stack[current_class_depth - 1].names_used;
6318 splay_tree_insert (names_used,
6319 (splay_tree_key) name,
6320 (splay_tree_value) decl);
6323 /* Note that NAME was declared (as DECL) in the current class. Check
6324 to see that the declaration is valid. */
6326 void
6327 note_name_declared_in_class (tree name, tree decl)
6329 splay_tree names_used;
6330 splay_tree_node n;
6332 /* Look to see if we ever used this name. */
6333 names_used
6334 = current_class_stack[current_class_depth - 1].names_used;
6335 if (!names_used)
6336 return;
6338 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6339 if (n)
6341 /* [basic.scope.class]
6343 A name N used in a class S shall refer to the same declaration
6344 in its context and when re-evaluated in the completed scope of
6345 S. */
6346 error ("declaration of %q#D", decl);
6347 error ("changes meaning of %qD from %q+#D",
6348 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
6352 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6353 Secondary vtables are merged with primary vtables; this function
6354 will return the VAR_DECL for the primary vtable. */
6356 tree
6357 get_vtbl_decl_for_binfo (tree binfo)
6359 tree decl;
6361 decl = BINFO_VTABLE (binfo);
6362 if (decl && TREE_CODE (decl) == PLUS_EXPR)
6364 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
6365 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6367 if (decl)
6368 gcc_assert (TREE_CODE (decl) == VAR_DECL);
6369 return decl;
6373 /* Returns the binfo for the primary base of BINFO. If the resulting
6374 BINFO is a virtual base, and it is inherited elsewhere in the
6375 hierarchy, then the returned binfo might not be the primary base of
6376 BINFO in the complete object. Check BINFO_PRIMARY_P or
6377 BINFO_LOST_PRIMARY_P to be sure. */
6379 static tree
6380 get_primary_binfo (tree binfo)
6382 tree primary_base;
6384 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6385 if (!primary_base)
6386 return NULL_TREE;
6388 return copied_binfo (primary_base, binfo);
6391 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6393 static int
6394 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6396 if (!indented_p)
6397 fprintf (stream, "%*s", indent, "");
6398 return 1;
6401 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6402 INDENT should be zero when called from the top level; it is
6403 incremented recursively. IGO indicates the next expected BINFO in
6404 inheritance graph ordering. */
6406 static tree
6407 dump_class_hierarchy_r (FILE *stream,
6408 int flags,
6409 tree binfo,
6410 tree igo,
6411 int indent)
6413 int indented = 0;
6414 tree base_binfo;
6415 int i;
6417 indented = maybe_indent_hierarchy (stream, indent, 0);
6418 fprintf (stream, "%s (0x%lx) ",
6419 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
6420 (unsigned long) binfo);
6421 if (binfo != igo)
6423 fprintf (stream, "alternative-path\n");
6424 return igo;
6426 igo = TREE_CHAIN (binfo);
6428 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6429 tree_low_cst (BINFO_OFFSET (binfo), 0));
6430 if (is_empty_class (BINFO_TYPE (binfo)))
6431 fprintf (stream, " empty");
6432 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6433 fprintf (stream, " nearly-empty");
6434 if (BINFO_VIRTUAL_P (binfo))
6435 fprintf (stream, " virtual");
6436 fprintf (stream, "\n");
6438 indented = 0;
6439 if (BINFO_PRIMARY_P (binfo))
6441 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6442 fprintf (stream, " primary-for %s (0x%lx)",
6443 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
6444 TFF_PLAIN_IDENTIFIER),
6445 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
6447 if (BINFO_LOST_PRIMARY_P (binfo))
6449 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6450 fprintf (stream, " lost-primary");
6452 if (indented)
6453 fprintf (stream, "\n");
6455 if (!(flags & TDF_SLIM))
6457 int indented = 0;
6459 if (BINFO_SUBVTT_INDEX (binfo))
6461 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6462 fprintf (stream, " subvttidx=%s",
6463 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6464 TFF_PLAIN_IDENTIFIER));
6466 if (BINFO_VPTR_INDEX (binfo))
6468 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6469 fprintf (stream, " vptridx=%s",
6470 expr_as_string (BINFO_VPTR_INDEX (binfo),
6471 TFF_PLAIN_IDENTIFIER));
6473 if (BINFO_VPTR_FIELD (binfo))
6475 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6476 fprintf (stream, " vbaseoffset=%s",
6477 expr_as_string (BINFO_VPTR_FIELD (binfo),
6478 TFF_PLAIN_IDENTIFIER));
6480 if (BINFO_VTABLE (binfo))
6482 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6483 fprintf (stream, " vptr=%s",
6484 expr_as_string (BINFO_VTABLE (binfo),
6485 TFF_PLAIN_IDENTIFIER));
6488 if (indented)
6489 fprintf (stream, "\n");
6492 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
6493 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
6495 return igo;
6498 /* Dump the BINFO hierarchy for T. */
6500 static void
6501 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6503 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6504 fprintf (stream, " size=%lu align=%lu\n",
6505 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6506 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6507 fprintf (stream, " base size=%lu base align=%lu\n",
6508 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6509 / BITS_PER_UNIT),
6510 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6511 / BITS_PER_UNIT));
6512 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6513 fprintf (stream, "\n");
6516 /* Debug interface to hierarchy dumping. */
6518 extern void
6519 debug_class (tree t)
6521 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6524 static void
6525 dump_class_hierarchy (tree t)
6527 int flags;
6528 FILE *stream = dump_begin (TDI_class, &flags);
6530 if (stream)
6532 dump_class_hierarchy_1 (stream, flags, t);
6533 dump_end (TDI_class, stream);
6537 static void
6538 dump_array (FILE * stream, tree decl)
6540 tree value;
6541 unsigned HOST_WIDE_INT ix;
6542 HOST_WIDE_INT elt;
6543 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
6545 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
6546 / BITS_PER_UNIT);
6547 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
6548 fprintf (stream, " %s entries",
6549 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
6550 TFF_PLAIN_IDENTIFIER));
6551 fprintf (stream, "\n");
6553 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
6554 ix, value)
6555 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
6556 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
6559 static void
6560 dump_vtable (tree t, tree binfo, tree vtable)
6562 int flags;
6563 FILE *stream = dump_begin (TDI_class, &flags);
6565 if (!stream)
6566 return;
6568 if (!(flags & TDF_SLIM))
6570 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
6572 fprintf (stream, "%s for %s",
6573 ctor_vtbl_p ? "Construction vtable" : "Vtable",
6574 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
6575 if (ctor_vtbl_p)
6577 if (!BINFO_VIRTUAL_P (binfo))
6578 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
6579 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6581 fprintf (stream, "\n");
6582 dump_array (stream, vtable);
6583 fprintf (stream, "\n");
6586 dump_end (TDI_class, stream);
6589 static void
6590 dump_vtt (tree t, tree vtt)
6592 int flags;
6593 FILE *stream = dump_begin (TDI_class, &flags);
6595 if (!stream)
6596 return;
6598 if (!(flags & TDF_SLIM))
6600 fprintf (stream, "VTT for %s\n",
6601 type_as_string (t, TFF_PLAIN_IDENTIFIER));
6602 dump_array (stream, vtt);
6603 fprintf (stream, "\n");
6606 dump_end (TDI_class, stream);
6609 /* Dump a function or thunk and its thunkees. */
6611 static void
6612 dump_thunk (FILE *stream, int indent, tree thunk)
6614 static const char spaces[] = " ";
6615 tree name = DECL_NAME (thunk);
6616 tree thunks;
6618 fprintf (stream, "%.*s%p %s %s", indent, spaces,
6619 (void *)thunk,
6620 !DECL_THUNK_P (thunk) ? "function"
6621 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
6622 name ? IDENTIFIER_POINTER (name) : "<unset>");
6623 if (DECL_THUNK_P (thunk))
6625 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
6626 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
6628 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
6629 if (!virtual_adjust)
6630 /*NOP*/;
6631 else if (DECL_THIS_THUNK_P (thunk))
6632 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
6633 tree_low_cst (virtual_adjust, 0));
6634 else
6635 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
6636 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
6637 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
6638 if (THUNK_ALIAS (thunk))
6639 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
6641 fprintf (stream, "\n");
6642 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
6643 dump_thunk (stream, indent + 2, thunks);
6646 /* Dump the thunks for FN. */
6648 extern void
6649 debug_thunks (tree fn)
6651 dump_thunk (stderr, 0, fn);
6654 /* Virtual function table initialization. */
6656 /* Create all the necessary vtables for T and its base classes. */
6658 static void
6659 finish_vtbls (tree t)
6661 tree list;
6662 tree vbase;
6664 /* We lay out the primary and secondary vtables in one contiguous
6665 vtable. The primary vtable is first, followed by the non-virtual
6666 secondary vtables in inheritance graph order. */
6667 list = build_tree_list (BINFO_VTABLE (TYPE_BINFO (t)), NULL_TREE);
6668 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
6669 TYPE_BINFO (t), t, list);
6671 /* Then come the virtual bases, also in inheritance graph order. */
6672 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6674 if (!BINFO_VIRTUAL_P (vbase))
6675 continue;
6676 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
6679 if (BINFO_VTABLE (TYPE_BINFO (t)))
6680 initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
6683 /* Initialize the vtable for BINFO with the INITS. */
6685 static void
6686 initialize_vtable (tree binfo, tree inits)
6688 tree decl;
6690 layout_vtable_decl (binfo, list_length (inits));
6691 decl = get_vtbl_decl_for_binfo (binfo);
6692 initialize_artificial_var (decl, inits);
6693 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
6696 /* Build the VTT (virtual table table) for T.
6697 A class requires a VTT if it has virtual bases.
6699 This holds
6700 1 - primary virtual pointer for complete object T
6701 2 - secondary VTTs for each direct non-virtual base of T which requires a
6703 3 - secondary virtual pointers for each direct or indirect base of T which
6704 has virtual bases or is reachable via a virtual path from T.
6705 4 - secondary VTTs for each direct or indirect virtual base of T.
6707 Secondary VTTs look like complete object VTTs without part 4. */
6709 static void
6710 build_vtt (tree t)
6712 tree inits;
6713 tree type;
6714 tree vtt;
6715 tree index;
6717 /* Build up the initializers for the VTT. */
6718 inits = NULL_TREE;
6719 index = size_zero_node;
6720 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
6722 /* If we didn't need a VTT, we're done. */
6723 if (!inits)
6724 return;
6726 /* Figure out the type of the VTT. */
6727 type = build_index_type (size_int (list_length (inits) - 1));
6728 type = build_cplus_array_type (const_ptr_type_node, type);
6730 /* Now, build the VTT object itself. */
6731 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
6732 initialize_artificial_var (vtt, inits);
6733 /* Add the VTT to the vtables list. */
6734 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
6735 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
6737 dump_vtt (t, vtt);
6740 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6741 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6742 and CHAIN the vtable pointer for this binfo after construction is
6743 complete. VALUE can also be another BINFO, in which case we recurse. */
6745 static tree
6746 binfo_ctor_vtable (tree binfo)
6748 tree vt;
6750 while (1)
6752 vt = BINFO_VTABLE (binfo);
6753 if (TREE_CODE (vt) == TREE_LIST)
6754 vt = TREE_VALUE (vt);
6755 if (TREE_CODE (vt) == TREE_BINFO)
6756 binfo = vt;
6757 else
6758 break;
6761 return vt;
6764 /* Data for secondary VTT initialization. */
6765 typedef struct secondary_vptr_vtt_init_data_s
6767 /* Is this the primary VTT? */
6768 bool top_level_p;
6770 /* Current index into the VTT. */
6771 tree index;
6773 /* TREE_LIST of initializers built up. */
6774 tree inits;
6776 /* The type being constructed by this secondary VTT. */
6777 tree type_being_constructed;
6778 } secondary_vptr_vtt_init_data;
6780 /* Recursively build the VTT-initializer for BINFO (which is in the
6781 hierarchy dominated by T). INITS points to the end of the initializer
6782 list to date. INDEX is the VTT index where the next element will be
6783 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
6784 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
6785 for virtual bases of T. When it is not so, we build the constructor
6786 vtables for the BINFO-in-T variant. */
6788 static tree *
6789 build_vtt_inits (tree binfo, tree t, tree *inits, tree *index)
6791 int i;
6792 tree b;
6793 tree init;
6794 tree secondary_vptrs;
6795 secondary_vptr_vtt_init_data data;
6796 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
6798 /* We only need VTTs for subobjects with virtual bases. */
6799 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
6800 return inits;
6802 /* We need to use a construction vtable if this is not the primary
6803 VTT. */
6804 if (!top_level_p)
6806 build_ctor_vtbl_group (binfo, t);
6808 /* Record the offset in the VTT where this sub-VTT can be found. */
6809 BINFO_SUBVTT_INDEX (binfo) = *index;
6812 /* Add the address of the primary vtable for the complete object. */
6813 init = binfo_ctor_vtable (binfo);
6814 *inits = build_tree_list (NULL_TREE, init);
6815 inits = &TREE_CHAIN (*inits);
6816 if (top_level_p)
6818 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6819 BINFO_VPTR_INDEX (binfo) = *index;
6821 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
6823 /* Recursively add the secondary VTTs for non-virtual bases. */
6824 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
6825 if (!BINFO_VIRTUAL_P (b))
6826 inits = build_vtt_inits (b, t, inits, index);
6828 /* Add secondary virtual pointers for all subobjects of BINFO with
6829 either virtual bases or reachable along a virtual path, except
6830 subobjects that are non-virtual primary bases. */
6831 data.top_level_p = top_level_p;
6832 data.index = *index;
6833 data.inits = NULL;
6834 data.type_being_constructed = BINFO_TYPE (binfo);
6836 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
6838 *index = data.index;
6840 /* The secondary vptrs come back in reverse order. After we reverse
6841 them, and add the INITS, the last init will be the first element
6842 of the chain. */
6843 secondary_vptrs = data.inits;
6844 if (secondary_vptrs)
6846 *inits = nreverse (secondary_vptrs);
6847 inits = &TREE_CHAIN (secondary_vptrs);
6848 gcc_assert (*inits == NULL_TREE);
6851 if (top_level_p)
6852 /* Add the secondary VTTs for virtual bases in inheritance graph
6853 order. */
6854 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
6856 if (!BINFO_VIRTUAL_P (b))
6857 continue;
6859 inits = build_vtt_inits (b, t, inits, index);
6861 else
6862 /* Remove the ctor vtables we created. */
6863 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
6865 return inits;
6868 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
6869 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
6871 static tree
6872 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
6874 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
6876 /* We don't care about bases that don't have vtables. */
6877 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
6878 return dfs_skip_bases;
6880 /* We're only interested in proper subobjects of the type being
6881 constructed. */
6882 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
6883 return NULL_TREE;
6885 /* We're only interested in bases with virtual bases or reachable
6886 via a virtual path from the type being constructed. */
6887 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
6888 || binfo_via_virtual (binfo, data->type_being_constructed)))
6889 return dfs_skip_bases;
6891 /* We're not interested in non-virtual primary bases. */
6892 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
6893 return NULL_TREE;
6895 /* Record the index where this secondary vptr can be found. */
6896 if (data->top_level_p)
6898 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6899 BINFO_VPTR_INDEX (binfo) = data->index;
6901 if (BINFO_VIRTUAL_P (binfo))
6903 /* It's a primary virtual base, and this is not a
6904 construction vtable. Find the base this is primary of in
6905 the inheritance graph, and use that base's vtable
6906 now. */
6907 while (BINFO_PRIMARY_P (binfo))
6908 binfo = BINFO_INHERITANCE_CHAIN (binfo);
6912 /* Add the initializer for the secondary vptr itself. */
6913 data->inits = tree_cons (NULL_TREE, binfo_ctor_vtable (binfo), data->inits);
6915 /* Advance the vtt index. */
6916 data->index = size_binop (PLUS_EXPR, data->index,
6917 TYPE_SIZE_UNIT (ptr_type_node));
6919 return NULL_TREE;
6922 /* Called from build_vtt_inits via dfs_walk. After building
6923 constructor vtables and generating the sub-vtt from them, we need
6924 to restore the BINFO_VTABLES that were scribbled on. DATA is the
6925 binfo of the base whose sub vtt was generated. */
6927 static tree
6928 dfs_fixup_binfo_vtbls (tree binfo, void* data)
6930 tree vtable = BINFO_VTABLE (binfo);
6932 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
6933 /* If this class has no vtable, none of its bases do. */
6934 return dfs_skip_bases;
6936 if (!vtable)
6937 /* This might be a primary base, so have no vtable in this
6938 hierarchy. */
6939 return NULL_TREE;
6941 /* If we scribbled the construction vtable vptr into BINFO, clear it
6942 out now. */
6943 if (TREE_CODE (vtable) == TREE_LIST
6944 && (TREE_PURPOSE (vtable) == (tree) data))
6945 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
6947 return NULL_TREE;
6950 /* Build the construction vtable group for BINFO which is in the
6951 hierarchy dominated by T. */
6953 static void
6954 build_ctor_vtbl_group (tree binfo, tree t)
6956 tree list;
6957 tree type;
6958 tree vtbl;
6959 tree inits;
6960 tree id;
6961 tree vbase;
6963 /* See if we've already created this construction vtable group. */
6964 id = mangle_ctor_vtbl_for_type (t, binfo);
6965 if (IDENTIFIER_GLOBAL_VALUE (id))
6966 return;
6968 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
6969 /* Build a version of VTBL (with the wrong type) for use in
6970 constructing the addresses of secondary vtables in the
6971 construction vtable group. */
6972 vtbl = build_vtable (t, id, ptr_type_node);
6973 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
6974 list = build_tree_list (vtbl, NULL_TREE);
6975 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
6976 binfo, t, list);
6978 /* Add the vtables for each of our virtual bases using the vbase in T
6979 binfo. */
6980 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
6981 vbase;
6982 vbase = TREE_CHAIN (vbase))
6984 tree b;
6986 if (!BINFO_VIRTUAL_P (vbase))
6987 continue;
6988 b = copied_binfo (vbase, binfo);
6990 accumulate_vtbl_inits (b, vbase, binfo, t, list);
6992 inits = TREE_VALUE (list);
6994 /* Figure out the type of the construction vtable. */
6995 type = build_index_type (size_int (list_length (inits) - 1));
6996 type = build_cplus_array_type (vtable_entry_type, type);
6997 TREE_TYPE (vtbl) = type;
6999 /* Initialize the construction vtable. */
7000 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
7001 initialize_artificial_var (vtbl, inits);
7002 dump_vtable (t, binfo, vtbl);
7005 /* Add the vtbl initializers for BINFO (and its bases other than
7006 non-virtual primaries) to the list of INITS. BINFO is in the
7007 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
7008 the constructor the vtbl inits should be accumulated for. (If this
7009 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
7010 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
7011 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
7012 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
7013 but are not necessarily the same in terms of layout. */
7015 static void
7016 accumulate_vtbl_inits (tree binfo,
7017 tree orig_binfo,
7018 tree rtti_binfo,
7019 tree t,
7020 tree inits)
7022 int i;
7023 tree base_binfo;
7024 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7026 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
7028 /* If it doesn't have a vptr, we don't do anything. */
7029 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7030 return;
7032 /* If we're building a construction vtable, we're not interested in
7033 subobjects that don't require construction vtables. */
7034 if (ctor_vtbl_p
7035 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7036 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
7037 return;
7039 /* Build the initializers for the BINFO-in-T vtable. */
7040 TREE_VALUE (inits)
7041 = chainon (TREE_VALUE (inits),
7042 dfs_accumulate_vtbl_inits (binfo, orig_binfo,
7043 rtti_binfo, t, inits));
7045 /* Walk the BINFO and its bases. We walk in preorder so that as we
7046 initialize each vtable we can figure out at what offset the
7047 secondary vtable lies from the primary vtable. We can't use
7048 dfs_walk here because we need to iterate through bases of BINFO
7049 and RTTI_BINFO simultaneously. */
7050 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7052 /* Skip virtual bases. */
7053 if (BINFO_VIRTUAL_P (base_binfo))
7054 continue;
7055 accumulate_vtbl_inits (base_binfo,
7056 BINFO_BASE_BINFO (orig_binfo, i),
7057 rtti_binfo, t,
7058 inits);
7062 /* Called from accumulate_vtbl_inits. Returns the initializers for
7063 the BINFO vtable. */
7065 static tree
7066 dfs_accumulate_vtbl_inits (tree binfo,
7067 tree orig_binfo,
7068 tree rtti_binfo,
7069 tree t,
7070 tree l)
7072 tree inits = NULL_TREE;
7073 tree vtbl = NULL_TREE;
7074 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7076 if (ctor_vtbl_p
7077 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7079 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7080 primary virtual base. If it is not the same primary in
7081 the hierarchy of T, we'll need to generate a ctor vtable
7082 for it, to place at its location in T. If it is the same
7083 primary, we still need a VTT entry for the vtable, but it
7084 should point to the ctor vtable for the base it is a
7085 primary for within the sub-hierarchy of RTTI_BINFO.
7087 There are three possible cases:
7089 1) We are in the same place.
7090 2) We are a primary base within a lost primary virtual base of
7091 RTTI_BINFO.
7092 3) We are primary to something not a base of RTTI_BINFO. */
7094 tree b;
7095 tree last = NULL_TREE;
7097 /* First, look through the bases we are primary to for RTTI_BINFO
7098 or a virtual base. */
7099 b = binfo;
7100 while (BINFO_PRIMARY_P (b))
7102 b = BINFO_INHERITANCE_CHAIN (b);
7103 last = b;
7104 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7105 goto found;
7107 /* If we run out of primary links, keep looking down our
7108 inheritance chain; we might be an indirect primary. */
7109 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7110 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7111 break;
7112 found:
7114 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7115 base B and it is a base of RTTI_BINFO, this is case 2. In
7116 either case, we share our vtable with LAST, i.e. the
7117 derived-most base within B of which we are a primary. */
7118 if (b == rtti_binfo
7119 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
7120 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7121 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7122 binfo_ctor_vtable after everything's been set up. */
7123 vtbl = last;
7125 /* Otherwise, this is case 3 and we get our own. */
7127 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7128 return inits;
7130 if (!vtbl)
7132 tree index;
7133 int non_fn_entries;
7135 /* Compute the initializer for this vtable. */
7136 inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7137 &non_fn_entries);
7139 /* Figure out the position to which the VPTR should point. */
7140 vtbl = TREE_PURPOSE (l);
7141 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
7142 index = size_binop (PLUS_EXPR,
7143 size_int (non_fn_entries),
7144 size_int (list_length (TREE_VALUE (l))));
7145 index = size_binop (MULT_EXPR,
7146 TYPE_SIZE_UNIT (vtable_entry_type),
7147 index);
7148 vtbl = build2 (PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7151 if (ctor_vtbl_p)
7152 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7153 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7154 straighten this out. */
7155 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7156 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
7157 inits = NULL_TREE;
7158 else
7159 /* For an ordinary vtable, set BINFO_VTABLE. */
7160 BINFO_VTABLE (binfo) = vtbl;
7162 return inits;
7165 static GTY(()) tree abort_fndecl_addr;
7167 /* Construct the initializer for BINFO's virtual function table. BINFO
7168 is part of the hierarchy dominated by T. If we're building a
7169 construction vtable, the ORIG_BINFO is the binfo we should use to
7170 find the actual function pointers to put in the vtable - but they
7171 can be overridden on the path to most-derived in the graph that
7172 ORIG_BINFO belongs. Otherwise,
7173 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7174 BINFO that should be indicated by the RTTI information in the
7175 vtable; it will be a base class of T, rather than T itself, if we
7176 are building a construction vtable.
7178 The value returned is a TREE_LIST suitable for wrapping in a
7179 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7180 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7181 number of non-function entries in the vtable.
7183 It might seem that this function should never be called with a
7184 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7185 base is always subsumed by a derived class vtable. However, when
7186 we are building construction vtables, we do build vtables for
7187 primary bases; we need these while the primary base is being
7188 constructed. */
7190 static tree
7191 build_vtbl_initializer (tree binfo,
7192 tree orig_binfo,
7193 tree t,
7194 tree rtti_binfo,
7195 int* non_fn_entries_p)
7197 tree v, b;
7198 tree vfun_inits;
7199 vtbl_init_data vid;
7200 unsigned ix;
7201 tree vbinfo;
7202 VEC(tree,gc) *vbases;
7204 /* Initialize VID. */
7205 memset (&vid, 0, sizeof (vid));
7206 vid.binfo = binfo;
7207 vid.derived = t;
7208 vid.rtti_binfo = rtti_binfo;
7209 vid.last_init = &vid.inits;
7210 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7211 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7212 vid.generate_vcall_entries = true;
7213 /* The first vbase or vcall offset is at index -3 in the vtable. */
7214 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7216 /* Add entries to the vtable for RTTI. */
7217 build_rtti_vtbl_entries (binfo, &vid);
7219 /* Create an array for keeping track of the functions we've
7220 processed. When we see multiple functions with the same
7221 signature, we share the vcall offsets. */
7222 vid.fns = VEC_alloc (tree, gc, 32);
7223 /* Add the vcall and vbase offset entries. */
7224 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7226 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7227 build_vbase_offset_vtbl_entries. */
7228 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
7229 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
7230 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
7232 /* If the target requires padding between data entries, add that now. */
7233 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7235 tree cur, *prev;
7237 for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
7239 tree add = cur;
7240 int i;
7242 for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
7243 add = tree_cons (NULL_TREE,
7244 build1 (NOP_EXPR, vtable_entry_type,
7245 null_pointer_node),
7246 add);
7247 *prev = add;
7251 if (non_fn_entries_p)
7252 *non_fn_entries_p = list_length (vid.inits);
7254 /* Go through all the ordinary virtual functions, building up
7255 initializers. */
7256 vfun_inits = NULL_TREE;
7257 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7259 tree delta;
7260 tree vcall_index;
7261 tree fn, fn_original;
7262 tree init = NULL_TREE;
7264 fn = BV_FN (v);
7265 fn_original = fn;
7266 if (DECL_THUNK_P (fn))
7268 if (!DECL_NAME (fn))
7269 finish_thunk (fn);
7270 if (THUNK_ALIAS (fn))
7272 fn = THUNK_ALIAS (fn);
7273 BV_FN (v) = fn;
7275 fn_original = THUNK_TARGET (fn);
7278 /* If the only definition of this function signature along our
7279 primary base chain is from a lost primary, this vtable slot will
7280 never be used, so just zero it out. This is important to avoid
7281 requiring extra thunks which cannot be generated with the function.
7283 We first check this in update_vtable_entry_for_fn, so we handle
7284 restored primary bases properly; we also need to do it here so we
7285 zero out unused slots in ctor vtables, rather than filling themff
7286 with erroneous values (though harmless, apart from relocation
7287 costs). */
7288 for (b = binfo; ; b = get_primary_binfo (b))
7290 /* We found a defn before a lost primary; go ahead as normal. */
7291 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7292 break;
7294 /* The nearest definition is from a lost primary; clear the
7295 slot. */
7296 if (BINFO_LOST_PRIMARY_P (b))
7298 init = size_zero_node;
7299 break;
7303 if (! init)
7305 /* Pull the offset for `this', and the function to call, out of
7306 the list. */
7307 delta = BV_DELTA (v);
7308 vcall_index = BV_VCALL_INDEX (v);
7310 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
7311 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
7313 /* You can't call an abstract virtual function; it's abstract.
7314 So, we replace these functions with __pure_virtual. */
7315 if (DECL_PURE_VIRTUAL_P (fn_original))
7317 fn = abort_fndecl;
7318 if (abort_fndecl_addr == NULL)
7319 abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7320 init = abort_fndecl_addr;
7322 else
7324 if (!integer_zerop (delta) || vcall_index)
7326 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7327 if (!DECL_NAME (fn))
7328 finish_thunk (fn);
7330 /* Take the address of the function, considering it to be of an
7331 appropriate generic type. */
7332 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7336 /* And add it to the chain of initializers. */
7337 if (TARGET_VTABLE_USES_DESCRIPTORS)
7339 int i;
7340 if (init == size_zero_node)
7341 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7342 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7343 else
7344 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7346 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
7347 TREE_OPERAND (init, 0),
7348 build_int_cst (NULL_TREE, i));
7349 TREE_CONSTANT (fdesc) = 1;
7350 TREE_INVARIANT (fdesc) = 1;
7352 vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
7355 else
7356 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7359 /* The initializers for virtual functions were built up in reverse
7360 order; straighten them out now. */
7361 vfun_inits = nreverse (vfun_inits);
7363 /* The negative offset initializers are also in reverse order. */
7364 vid.inits = nreverse (vid.inits);
7366 /* Chain the two together. */
7367 return chainon (vid.inits, vfun_inits);
7370 /* Adds to vid->inits the initializers for the vbase and vcall
7371 offsets in BINFO, which is in the hierarchy dominated by T. */
7373 static void
7374 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7376 tree b;
7378 /* If this is a derived class, we must first create entries
7379 corresponding to the primary base class. */
7380 b = get_primary_binfo (binfo);
7381 if (b)
7382 build_vcall_and_vbase_vtbl_entries (b, vid);
7384 /* Add the vbase entries for this base. */
7385 build_vbase_offset_vtbl_entries (binfo, vid);
7386 /* Add the vcall entries for this base. */
7387 build_vcall_offset_vtbl_entries (binfo, vid);
7390 /* Returns the initializers for the vbase offset entries in the vtable
7391 for BINFO (which is part of the class hierarchy dominated by T), in
7392 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7393 where the next vbase offset will go. */
7395 static void
7396 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7398 tree vbase;
7399 tree t;
7400 tree non_primary_binfo;
7402 /* If there are no virtual baseclasses, then there is nothing to
7403 do. */
7404 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7405 return;
7407 t = vid->derived;
7409 /* We might be a primary base class. Go up the inheritance hierarchy
7410 until we find the most derived class of which we are a primary base:
7411 it is the offset of that which we need to use. */
7412 non_primary_binfo = binfo;
7413 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7415 tree b;
7417 /* If we have reached a virtual base, then it must be a primary
7418 base (possibly multi-level) of vid->binfo, or we wouldn't
7419 have called build_vcall_and_vbase_vtbl_entries for it. But it
7420 might be a lost primary, so just skip down to vid->binfo. */
7421 if (BINFO_VIRTUAL_P (non_primary_binfo))
7423 non_primary_binfo = vid->binfo;
7424 break;
7427 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7428 if (get_primary_binfo (b) != non_primary_binfo)
7429 break;
7430 non_primary_binfo = b;
7433 /* Go through the virtual bases, adding the offsets. */
7434 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7435 vbase;
7436 vbase = TREE_CHAIN (vbase))
7438 tree b;
7439 tree delta;
7441 if (!BINFO_VIRTUAL_P (vbase))
7442 continue;
7444 /* Find the instance of this virtual base in the complete
7445 object. */
7446 b = copied_binfo (vbase, binfo);
7448 /* If we've already got an offset for this virtual base, we
7449 don't need another one. */
7450 if (BINFO_VTABLE_PATH_MARKED (b))
7451 continue;
7452 BINFO_VTABLE_PATH_MARKED (b) = 1;
7454 /* Figure out where we can find this vbase offset. */
7455 delta = size_binop (MULT_EXPR,
7456 vid->index,
7457 convert (ssizetype,
7458 TYPE_SIZE_UNIT (vtable_entry_type)));
7459 if (vid->primary_vtbl_p)
7460 BINFO_VPTR_FIELD (b) = delta;
7462 if (binfo != TYPE_BINFO (t))
7463 /* The vbase offset had better be the same. */
7464 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
7466 /* The next vbase will come at a more negative offset. */
7467 vid->index = size_binop (MINUS_EXPR, vid->index,
7468 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7470 /* The initializer is the delta from BINFO to this virtual base.
7471 The vbase offsets go in reverse inheritance-graph order, and
7472 we are walking in inheritance graph order so these end up in
7473 the right order. */
7474 delta = size_diffop (BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7476 *vid->last_init
7477 = build_tree_list (NULL_TREE,
7478 fold_build1 (NOP_EXPR,
7479 vtable_entry_type,
7480 delta));
7481 vid->last_init = &TREE_CHAIN (*vid->last_init);
7485 /* Adds the initializers for the vcall offset entries in the vtable
7486 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7487 to VID->INITS. */
7489 static void
7490 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7492 /* We only need these entries if this base is a virtual base. We
7493 compute the indices -- but do not add to the vtable -- when
7494 building the main vtable for a class. */
7495 if (BINFO_VIRTUAL_P (binfo) || binfo == TYPE_BINFO (vid->derived))
7497 /* We need a vcall offset for each of the virtual functions in this
7498 vtable. For example:
7500 class A { virtual void f (); };
7501 class B1 : virtual public A { virtual void f (); };
7502 class B2 : virtual public A { virtual void f (); };
7503 class C: public B1, public B2 { virtual void f (); };
7505 A C object has a primary base of B1, which has a primary base of A. A
7506 C also has a secondary base of B2, which no longer has a primary base
7507 of A. So the B2-in-C construction vtable needs a secondary vtable for
7508 A, which will adjust the A* to a B2* to call f. We have no way of
7509 knowing what (or even whether) this offset will be when we define B2,
7510 so we store this "vcall offset" in the A sub-vtable and look it up in
7511 a "virtual thunk" for B2::f.
7513 We need entries for all the functions in our primary vtable and
7514 in our non-virtual bases' secondary vtables. */
7515 vid->vbase = binfo;
7516 /* If we are just computing the vcall indices -- but do not need
7517 the actual entries -- not that. */
7518 if (!BINFO_VIRTUAL_P (binfo))
7519 vid->generate_vcall_entries = false;
7520 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7521 add_vcall_offset_vtbl_entries_r (binfo, vid);
7525 /* Build vcall offsets, starting with those for BINFO. */
7527 static void
7528 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7530 int i;
7531 tree primary_binfo;
7532 tree base_binfo;
7534 /* Don't walk into virtual bases -- except, of course, for the
7535 virtual base for which we are building vcall offsets. Any
7536 primary virtual base will have already had its offsets generated
7537 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7538 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
7539 return;
7541 /* If BINFO has a primary base, process it first. */
7542 primary_binfo = get_primary_binfo (binfo);
7543 if (primary_binfo)
7544 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
7546 /* Add BINFO itself to the list. */
7547 add_vcall_offset_vtbl_entries_1 (binfo, vid);
7549 /* Scan the non-primary bases of BINFO. */
7550 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7551 if (base_binfo != primary_binfo)
7552 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
7555 /* Called from build_vcall_offset_vtbl_entries_r. */
7557 static void
7558 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
7560 /* Make entries for the rest of the virtuals. */
7561 if (abi_version_at_least (2))
7563 tree orig_fn;
7565 /* The ABI requires that the methods be processed in declaration
7566 order. G++ 3.2 used the order in the vtable. */
7567 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
7568 orig_fn;
7569 orig_fn = TREE_CHAIN (orig_fn))
7570 if (DECL_VINDEX (orig_fn))
7571 add_vcall_offset (orig_fn, binfo, vid);
7573 else
7575 tree derived_virtuals;
7576 tree base_virtuals;
7577 tree orig_virtuals;
7578 /* If BINFO is a primary base, the most derived class which has
7579 BINFO as a primary base; otherwise, just BINFO. */
7580 tree non_primary_binfo;
7582 /* We might be a primary base class. Go up the inheritance hierarchy
7583 until we find the most derived class of which we are a primary base:
7584 it is the BINFO_VIRTUALS there that we need to consider. */
7585 non_primary_binfo = binfo;
7586 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7588 tree b;
7590 /* If we have reached a virtual base, then it must be vid->vbase,
7591 because we ignore other virtual bases in
7592 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7593 base (possibly multi-level) of vid->binfo, or we wouldn't
7594 have called build_vcall_and_vbase_vtbl_entries for it. But it
7595 might be a lost primary, so just skip down to vid->binfo. */
7596 if (BINFO_VIRTUAL_P (non_primary_binfo))
7598 gcc_assert (non_primary_binfo == vid->vbase);
7599 non_primary_binfo = vid->binfo;
7600 break;
7603 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7604 if (get_primary_binfo (b) != non_primary_binfo)
7605 break;
7606 non_primary_binfo = b;
7609 if (vid->ctor_vtbl_p)
7610 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7611 where rtti_binfo is the most derived type. */
7612 non_primary_binfo
7613 = original_binfo (non_primary_binfo, vid->rtti_binfo);
7615 for (base_virtuals = BINFO_VIRTUALS (binfo),
7616 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
7617 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
7618 base_virtuals;
7619 base_virtuals = TREE_CHAIN (base_virtuals),
7620 derived_virtuals = TREE_CHAIN (derived_virtuals),
7621 orig_virtuals = TREE_CHAIN (orig_virtuals))
7623 tree orig_fn;
7625 /* Find the declaration that originally caused this function to
7626 be present in BINFO_TYPE (binfo). */
7627 orig_fn = BV_FN (orig_virtuals);
7629 /* When processing BINFO, we only want to generate vcall slots for
7630 function slots introduced in BINFO. So don't try to generate
7631 one if the function isn't even defined in BINFO. */
7632 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
7633 continue;
7635 add_vcall_offset (orig_fn, binfo, vid);
7640 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7642 static void
7643 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
7645 size_t i;
7646 tree vcall_offset;
7647 tree derived_entry;
7649 /* If there is already an entry for a function with the same
7650 signature as FN, then we do not need a second vcall offset.
7651 Check the list of functions already present in the derived
7652 class vtable. */
7653 for (i = 0; VEC_iterate (tree, vid->fns, i, derived_entry); ++i)
7655 if (same_signature_p (derived_entry, orig_fn)
7656 /* We only use one vcall offset for virtual destructors,
7657 even though there are two virtual table entries. */
7658 || (DECL_DESTRUCTOR_P (derived_entry)
7659 && DECL_DESTRUCTOR_P (orig_fn)))
7660 return;
7663 /* If we are building these vcall offsets as part of building
7664 the vtable for the most derived class, remember the vcall
7665 offset. */
7666 if (vid->binfo == TYPE_BINFO (vid->derived))
7668 tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
7669 CLASSTYPE_VCALL_INDICES (vid->derived),
7670 NULL);
7671 elt->purpose = orig_fn;
7672 elt->value = vid->index;
7675 /* The next vcall offset will be found at a more negative
7676 offset. */
7677 vid->index = size_binop (MINUS_EXPR, vid->index,
7678 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7680 /* Keep track of this function. */
7681 VEC_safe_push (tree, gc, vid->fns, orig_fn);
7683 if (vid->generate_vcall_entries)
7685 tree base;
7686 tree fn;
7688 /* Find the overriding function. */
7689 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
7690 if (fn == error_mark_node)
7691 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
7692 integer_zero_node);
7693 else
7695 base = TREE_VALUE (fn);
7697 /* The vbase we're working on is a primary base of
7698 vid->binfo. But it might be a lost primary, so its
7699 BINFO_OFFSET might be wrong, so we just use the
7700 BINFO_OFFSET from vid->binfo. */
7701 vcall_offset = size_diffop (BINFO_OFFSET (base),
7702 BINFO_OFFSET (vid->binfo));
7703 vcall_offset = fold_build1 (NOP_EXPR, vtable_entry_type,
7704 vcall_offset);
7706 /* Add the initializer to the vtable. */
7707 *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
7708 vid->last_init = &TREE_CHAIN (*vid->last_init);
7712 /* Return vtbl initializers for the RTTI entries corresponding to the
7713 BINFO's vtable. The RTTI entries should indicate the object given
7714 by VID->rtti_binfo. */
7716 static void
7717 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
7719 tree b;
7720 tree t;
7721 tree basetype;
7722 tree offset;
7723 tree decl;
7724 tree init;
7726 basetype = BINFO_TYPE (binfo);
7727 t = BINFO_TYPE (vid->rtti_binfo);
7729 /* To find the complete object, we will first convert to our most
7730 primary base, and then add the offset in the vtbl to that value. */
7731 b = binfo;
7732 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
7733 && !BINFO_LOST_PRIMARY_P (b))
7735 tree primary_base;
7737 primary_base = get_primary_binfo (b);
7738 gcc_assert (BINFO_PRIMARY_P (primary_base)
7739 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
7740 b = primary_base;
7742 offset = size_diffop (BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
7744 /* The second entry is the address of the typeinfo object. */
7745 if (flag_rtti)
7746 decl = build_address (get_tinfo_decl (t));
7747 else
7748 decl = integer_zero_node;
7750 /* Convert the declaration to a type that can be stored in the
7751 vtable. */
7752 init = build_nop (vfunc_ptr_type_node, decl);
7753 *vid->last_init = build_tree_list (NULL_TREE, init);
7754 vid->last_init = &TREE_CHAIN (*vid->last_init);
7756 /* Add the offset-to-top entry. It comes earlier in the vtable than
7757 the typeinfo entry. Convert the offset to look like a
7758 function pointer, so that we can put it in the vtable. */
7759 init = build_nop (vfunc_ptr_type_node, offset);
7760 *vid->last_init = build_tree_list (NULL_TREE, init);
7761 vid->last_init = &TREE_CHAIN (*vid->last_init);
7764 /* Fold a OBJ_TYPE_REF expression to the address of a function.
7765 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
7767 tree
7768 cp_fold_obj_type_ref (tree ref, tree known_type)
7770 HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
7771 HOST_WIDE_INT i = 0;
7772 tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
7773 tree fndecl;
7775 while (i != index)
7777 i += (TARGET_VTABLE_USES_DESCRIPTORS
7778 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
7779 v = TREE_CHAIN (v);
7782 fndecl = BV_FN (v);
7784 #ifdef ENABLE_CHECKING
7785 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
7786 DECL_VINDEX (fndecl)));
7787 #endif
7789 cgraph_node (fndecl)->local.vtable_method = true;
7791 return build_address (fndecl);
7794 #include "gt-cp-class.h"