1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 /* This file contains low level functions to manipulate the CFG and
24 analyze it. All other modules should not transform the data structure
25 directly and use abstraction instead. The file is supposed to be
26 ordered bottom-up and should not contain any code dependent on a
27 particular intermediate language (RTL or trees).
29 Available functionality:
30 - Initialization/deallocation
31 init_flow, clear_edges
32 - Low level basic block manipulation
33 alloc_block, expunge_block
35 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
36 - Low level edge redirection (without updating instruction chain)
37 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
38 - Dumping and debugging
39 dump_flow_info, debug_flow_info, dump_edge_info
40 - Allocation of AUX fields for basic blocks
41 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
43 - Consistency checking
45 - Dumping and debugging
46 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
51 #include "coretypes.h"
55 #include "hard-reg-set.h"
65 #include "tree-pass.h"
68 #include "alloc-pool.h"
70 /* The obstack on which the flow graph components are allocated. */
72 struct bitmap_obstack reg_obstack
;
74 void debug_flow_info (void);
75 static void free_edge (edge
);
77 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
79 /* Called once at initialization time. */
85 cfun
->cfg
= ggc_alloc_cleared (sizeof (struct control_flow_graph
));
87 ENTRY_BLOCK_PTR
= ggc_alloc_cleared (sizeof (struct basic_block_def
));
88 ENTRY_BLOCK_PTR
->index
= ENTRY_BLOCK
;
89 EXIT_BLOCK_PTR
= ggc_alloc_cleared (sizeof (struct basic_block_def
));
90 EXIT_BLOCK_PTR
->index
= EXIT_BLOCK
;
91 ENTRY_BLOCK_PTR
->next_bb
= EXIT_BLOCK_PTR
;
92 EXIT_BLOCK_PTR
->prev_bb
= ENTRY_BLOCK_PTR
;
95 /* Helper function for remove_edge and clear_edges. Frees edge structure
96 without actually unlinking it from the pred/succ lists. */
99 free_edge (edge e ATTRIBUTE_UNUSED
)
105 /* Free the memory associated with the edge structures. */
116 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
118 VEC_truncate (edge
, bb
->succs
, 0);
119 VEC_truncate (edge
, bb
->preds
, 0);
122 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
124 VEC_truncate (edge
, EXIT_BLOCK_PTR
->preds
, 0);
125 VEC_truncate (edge
, ENTRY_BLOCK_PTR
->succs
, 0);
127 gcc_assert (!n_edges
);
130 /* Allocate memory for basic_block. */
136 bb
= ggc_alloc_cleared (sizeof (*bb
));
140 /* Link block B to chain after AFTER. */
142 link_block (basic_block b
, basic_block after
)
144 b
->next_bb
= after
->next_bb
;
147 b
->next_bb
->prev_bb
= b
;
150 /* Unlink block B from chain. */
152 unlink_block (basic_block b
)
154 b
->next_bb
->prev_bb
= b
->prev_bb
;
155 b
->prev_bb
->next_bb
= b
->next_bb
;
160 /* Sequentially order blocks and compact the arrays. */
162 compact_blocks (void)
167 SET_BASIC_BLOCK (ENTRY_BLOCK
, ENTRY_BLOCK_PTR
);
168 SET_BASIC_BLOCK (EXIT_BLOCK
, EXIT_BLOCK_PTR
);
170 i
= NUM_FIXED_BLOCKS
;
173 SET_BASIC_BLOCK (i
, bb
);
178 gcc_assert (i
== n_basic_blocks
);
180 for (; i
< last_basic_block
; i
++)
181 SET_BASIC_BLOCK (i
, NULL
);
183 last_basic_block
= n_basic_blocks
;
186 /* Remove block B from the basic block array. */
189 expunge_block (basic_block b
)
192 SET_BASIC_BLOCK (b
->index
, NULL
);
194 /* We should be able to ggc_free here, but we are not.
195 The dead SSA_NAMES are left pointing to dead statements that are pointing
196 to dead basic blocks making garbage collector to die.
197 We should be able to release all dead SSA_NAMES and at the same time we should
198 clear out BB pointer of dead statements consistently. */
201 /* Connect E to E->src. */
206 VEC_safe_push (edge
, gc
, e
->src
->succs
, e
);
209 /* Connect E to E->dest. */
212 connect_dest (edge e
)
214 basic_block dest
= e
->dest
;
215 VEC_safe_push (edge
, gc
, dest
->preds
, e
);
216 e
->dest_idx
= EDGE_COUNT (dest
->preds
) - 1;
219 /* Disconnect edge E from E->src. */
222 disconnect_src (edge e
)
224 basic_block src
= e
->src
;
228 for (ei
= ei_start (src
->succs
); (tmp
= ei_safe_edge (ei
)); )
232 VEC_unordered_remove (edge
, src
->succs
, ei
.index
);
242 /* Disconnect edge E from E->dest. */
245 disconnect_dest (edge e
)
247 basic_block dest
= e
->dest
;
248 unsigned int dest_idx
= e
->dest_idx
;
250 VEC_unordered_remove (edge
, dest
->preds
, dest_idx
);
252 /* If we removed an edge in the middle of the edge vector, we need
253 to update dest_idx of the edge that moved into the "hole". */
254 if (dest_idx
< EDGE_COUNT (dest
->preds
))
255 EDGE_PRED (dest
, dest_idx
)->dest_idx
= dest_idx
;
258 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
259 created edge. Use this only if you are sure that this edge can't
260 possibly already exist. */
263 unchecked_make_edge (basic_block src
, basic_block dst
, int flags
)
266 e
= ggc_alloc_cleared (sizeof (*e
));
276 execute_on_growing_pred (e
);
281 /* Create an edge connecting SRC and DST with FLAGS optionally using
282 edge cache CACHE. Return the new edge, NULL if already exist. */
285 cached_make_edge (sbitmap edge_cache
, basic_block src
, basic_block dst
, int flags
)
287 if (edge_cache
== NULL
288 || src
== ENTRY_BLOCK_PTR
289 || dst
== EXIT_BLOCK_PTR
)
290 return make_edge (src
, dst
, flags
);
292 /* Does the requested edge already exist? */
293 if (! TEST_BIT (edge_cache
, dst
->index
))
295 /* The edge does not exist. Create one and update the
297 SET_BIT (edge_cache
, dst
->index
);
298 return unchecked_make_edge (src
, dst
, flags
);
301 /* At this point, we know that the requested edge exists. Adjust
302 flags if necessary. */
305 edge e
= find_edge (src
, dst
);
312 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
313 created edge or NULL if already exist. */
316 make_edge (basic_block src
, basic_block dest
, int flags
)
318 edge e
= find_edge (src
, dest
);
320 /* Make sure we don't add duplicate edges. */
327 return unchecked_make_edge (src
, dest
, flags
);
330 /* Create an edge connecting SRC to DEST and set probability by knowing
331 that it is the single edge leaving SRC. */
334 make_single_succ_edge (basic_block src
, basic_block dest
, int flags
)
336 edge e
= make_edge (src
, dest
, flags
);
338 e
->probability
= REG_BR_PROB_BASE
;
339 e
->count
= src
->count
;
343 /* This function will remove an edge from the flow graph. */
348 remove_predictions_associated_with_edge (e
);
349 execute_on_shrinking_pred (e
);
357 /* Redirect an edge's successor from one block to another. */
360 redirect_edge_succ (edge e
, basic_block new_succ
)
362 execute_on_shrinking_pred (e
);
368 /* Reconnect the edge to the new successor block. */
371 execute_on_growing_pred (e
);
374 /* Like previous but avoid possible duplicate edge. */
377 redirect_edge_succ_nodup (edge e
, basic_block new_succ
)
381 s
= find_edge (e
->src
, new_succ
);
384 s
->flags
|= e
->flags
;
385 s
->probability
+= e
->probability
;
386 if (s
->probability
> REG_BR_PROB_BASE
)
387 s
->probability
= REG_BR_PROB_BASE
;
388 s
->count
+= e
->count
;
393 redirect_edge_succ (e
, new_succ
);
398 /* Redirect an edge's predecessor from one block to another. */
401 redirect_edge_pred (edge e
, basic_block new_pred
)
407 /* Reconnect the edge to the new predecessor block. */
411 /* Clear all basic block flags, with the exception of partitioning. */
413 clear_bb_flags (void)
417 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
418 bb
->flags
= (BB_PARTITION (bb
) | (bb
->flags
& BB_DISABLE_SCHEDULE
)
419 | (bb
->flags
& BB_RTL
));
422 /* Check the consistency of profile information. We can't do that
423 in verify_flow_info, as the counts may get invalid for incompletely
424 solved graphs, later eliminating of conditionals or roundoff errors.
425 It is still practical to have them reported for debugging of simple
428 check_bb_profile (basic_block bb
, FILE * file
)
435 if (profile_status
== PROFILE_ABSENT
)
438 if (bb
!= EXIT_BLOCK_PTR
)
440 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
441 sum
+= e
->probability
;
442 if (EDGE_COUNT (bb
->succs
) && abs (sum
- REG_BR_PROB_BASE
) > 100)
443 fprintf (file
, "Invalid sum of outgoing probabilities %.1f%%\n",
444 sum
* 100.0 / REG_BR_PROB_BASE
);
446 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
448 if (EDGE_COUNT (bb
->succs
)
449 && (lsum
- bb
->count
> 100 || lsum
- bb
->count
< -100))
450 fprintf (file
, "Invalid sum of outgoing counts %i, should be %i\n",
451 (int) lsum
, (int) bb
->count
);
453 if (bb
!= ENTRY_BLOCK_PTR
)
456 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
457 sum
+= EDGE_FREQUENCY (e
);
458 if (abs (sum
- bb
->frequency
) > 100)
460 "Invalid sum of incoming frequencies %i, should be %i\n",
463 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
465 if (lsum
- bb
->count
> 100 || lsum
- bb
->count
< -100)
466 fprintf (file
, "Invalid sum of incoming counts %i, should be %i\n",
467 (int) lsum
, (int) bb
->count
);
471 /* Emit basic block information for BB. HEADER is true if the user wants
472 the generic information and the predecessors, FOOTER is true if they want
473 the successors. FLAGS is the dump flags of interest; TDF_DETAILS emit
474 global register liveness information. PREFIX is put in front of every
475 line. The output is emitted to FILE. */
477 dump_bb_info (basic_block bb
, bool header
, bool footer
, int flags
,
478 const char *prefix
, FILE *file
)
485 fprintf (file
, "\n%sBasic block %d ", prefix
, bb
->index
);
487 fprintf (file
, ", prev %d", bb
->prev_bb
->index
);
489 fprintf (file
, ", next %d", bb
->next_bb
->index
);
490 fprintf (file
, ", loop_depth %d, count ", bb
->loop_depth
);
491 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, bb
->count
);
492 fprintf (file
, ", freq %i", bb
->frequency
);
493 if (maybe_hot_bb_p (bb
))
494 fprintf (file
, ", maybe hot");
495 if (probably_never_executed_bb_p (bb
))
496 fprintf (file
, ", probably never executed");
497 fprintf (file
, ".\n");
499 fprintf (file
, "%sPredecessors: ", prefix
);
500 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
501 dump_edge_info (file
, e
, 0);
506 fprintf (file
, "\n%sSuccessors: ", prefix
);
507 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
508 dump_edge_info (file
, e
, 1);
511 if ((flags
& TDF_DETAILS
)
512 && (bb
->flags
& BB_RTL
))
514 if (bb
->il
.rtl
->global_live_at_start
&& header
)
516 fprintf (file
, "\n%sRegisters live at start:", prefix
);
517 dump_regset (bb
->il
.rtl
->global_live_at_start
, file
);
520 if (bb
->il
.rtl
->global_live_at_end
&& footer
)
522 fprintf (file
, "\n%sRegisters live at end:", prefix
);
523 dump_regset (bb
->il
.rtl
->global_live_at_end
, file
);
531 dump_flow_info (FILE *file
)
535 if (file
== dump_file
536 && (dump_flags
& TDF_SLIM
)
537 && !(dump_flags
& TDF_DETAILS
))
540 /* There are no pseudo registers after reload. Don't dump them. */
541 if (reg_n_info
&& !reload_completed
)
543 unsigned int i
, max
= max_reg_num ();
544 fprintf (file
, "%d registers.\n", max
);
545 for (i
= FIRST_PSEUDO_REGISTER
; i
< max
; i
++)
548 enum reg_class
class, altclass
;
550 fprintf (file
, "\nRegister %d used %d times across %d insns",
551 i
, REG_N_REFS (i
), REG_LIVE_LENGTH (i
));
552 if (REG_BASIC_BLOCK (i
) >= 0)
553 fprintf (file
, " in block %d", REG_BASIC_BLOCK (i
));
555 fprintf (file
, "; set %d time%s", REG_N_SETS (i
),
556 (REG_N_SETS (i
) == 1) ? "" : "s");
557 if (regno_reg_rtx
[i
] != NULL
&& REG_USERVAR_P (regno_reg_rtx
[i
]))
558 fprintf (file
, "; user var");
559 if (REG_N_DEATHS (i
) != 1)
560 fprintf (file
, "; dies in %d places", REG_N_DEATHS (i
));
561 if (REG_N_CALLS_CROSSED (i
) == 1)
562 fprintf (file
, "; crosses 1 call");
563 else if (REG_N_CALLS_CROSSED (i
))
564 fprintf (file
, "; crosses %d calls", REG_N_CALLS_CROSSED (i
));
565 if (regno_reg_rtx
[i
] != NULL
566 && PSEUDO_REGNO_BYTES (i
) != UNITS_PER_WORD
)
567 fprintf (file
, "; %d bytes", PSEUDO_REGNO_BYTES (i
));
569 class = reg_preferred_class (i
);
570 altclass
= reg_alternate_class (i
);
571 if (class != GENERAL_REGS
|| altclass
!= ALL_REGS
)
573 if (altclass
== ALL_REGS
|| class == ALL_REGS
)
574 fprintf (file
, "; pref %s", reg_class_names
[(int) class]);
575 else if (altclass
== NO_REGS
)
576 fprintf (file
, "; %s or none", reg_class_names
[(int) class]);
578 fprintf (file
, "; pref %s, else %s",
579 reg_class_names
[(int) class],
580 reg_class_names
[(int) altclass
]);
583 if (regno_reg_rtx
[i
] != NULL
&& REG_POINTER (regno_reg_rtx
[i
]))
584 fprintf (file
, "; pointer");
585 fprintf (file
, ".\n");
589 fprintf (file
, "\n%d basic blocks, %d edges.\n", n_basic_blocks
, n_edges
);
592 dump_bb_info (bb
, true, true, TDF_DETAILS
, "", file
);
593 check_bb_profile (bb
, file
);
600 debug_flow_info (void)
602 dump_flow_info (stderr
);
606 dump_edge_info (FILE *file
, edge e
, int do_succ
)
608 basic_block side
= (do_succ
? e
->dest
: e
->src
);
610 if (side
== ENTRY_BLOCK_PTR
)
611 fputs (" ENTRY", file
);
612 else if (side
== EXIT_BLOCK_PTR
)
613 fputs (" EXIT", file
);
615 fprintf (file
, " %d", side
->index
);
618 fprintf (file
, " [%.1f%%] ", e
->probability
* 100.0 / REG_BR_PROB_BASE
);
622 fprintf (file
, " count:");
623 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, e
->count
);
628 static const char * const bitnames
[] = {
629 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
630 "can_fallthru", "irreducible", "sibcall", "loop_exit",
631 "true", "false", "exec"
634 int i
, flags
= e
->flags
;
637 for (i
= 0; flags
; i
++)
638 if (flags
& (1 << i
))
644 if (i
< (int) ARRAY_SIZE (bitnames
))
645 fputs (bitnames
[i
], file
);
647 fprintf (file
, "%d", i
);
655 /* Simple routines to easily allocate AUX fields of basic blocks. */
657 static struct obstack block_aux_obstack
;
658 static void *first_block_aux_obj
= 0;
659 static struct obstack edge_aux_obstack
;
660 static void *first_edge_aux_obj
= 0;
662 /* Allocate a memory block of SIZE as BB->aux. The obstack must
663 be first initialized by alloc_aux_for_blocks. */
666 alloc_aux_for_block (basic_block bb
, int size
)
668 /* Verify that aux field is clear. */
669 gcc_assert (!bb
->aux
&& first_block_aux_obj
);
670 bb
->aux
= obstack_alloc (&block_aux_obstack
, size
);
671 memset (bb
->aux
, 0, size
);
674 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
675 alloc_aux_for_block for each basic block. */
678 alloc_aux_for_blocks (int size
)
680 static int initialized
;
684 gcc_obstack_init (&block_aux_obstack
);
688 /* Check whether AUX data are still allocated. */
689 gcc_assert (!first_block_aux_obj
);
691 first_block_aux_obj
= obstack_alloc (&block_aux_obstack
, 0);
696 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
697 alloc_aux_for_block (bb
, size
);
701 /* Clear AUX pointers of all blocks. */
704 clear_aux_for_blocks (void)
708 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
712 /* Free data allocated in block_aux_obstack and clear AUX pointers
716 free_aux_for_blocks (void)
718 gcc_assert (first_block_aux_obj
);
719 obstack_free (&block_aux_obstack
, first_block_aux_obj
);
720 first_block_aux_obj
= NULL
;
722 clear_aux_for_blocks ();
725 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
726 be first initialized by alloc_aux_for_edges. */
729 alloc_aux_for_edge (edge e
, int size
)
731 /* Verify that aux field is clear. */
732 gcc_assert (!e
->aux
&& first_edge_aux_obj
);
733 e
->aux
= obstack_alloc (&edge_aux_obstack
, size
);
734 memset (e
->aux
, 0, size
);
737 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
738 alloc_aux_for_edge for each basic edge. */
741 alloc_aux_for_edges (int size
)
743 static int initialized
;
747 gcc_obstack_init (&edge_aux_obstack
);
751 /* Check whether AUX data are still allocated. */
752 gcc_assert (!first_edge_aux_obj
);
754 first_edge_aux_obj
= obstack_alloc (&edge_aux_obstack
, 0);
759 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
764 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
765 alloc_aux_for_edge (e
, size
);
770 /* Clear AUX pointers of all edges. */
773 clear_aux_for_edges (void)
778 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
781 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
786 /* Free data allocated in edge_aux_obstack and clear AUX pointers
790 free_aux_for_edges (void)
792 gcc_assert (first_edge_aux_obj
);
793 obstack_free (&edge_aux_obstack
, first_edge_aux_obj
);
794 first_edge_aux_obj
= NULL
;
796 clear_aux_for_edges ();
800 debug_bb (basic_block bb
)
802 dump_bb (bb
, stderr
, 0);
808 basic_block bb
= BASIC_BLOCK (n
);
809 dump_bb (bb
, stderr
, 0);
813 /* Dumps cfg related information about basic block BB to FILE. */
816 dump_cfg_bb_info (FILE *file
, basic_block bb
)
821 static const char * const bb_bitnames
[] =
823 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
825 const unsigned n_bitnames
= sizeof (bb_bitnames
) / sizeof (char *);
828 fprintf (file
, "Basic block %d", bb
->index
);
829 for (i
= 0; i
< n_bitnames
; i
++)
830 if (bb
->flags
& (1 << i
))
833 fprintf (file
, " (");
835 fprintf (file
, ", ");
837 fprintf (file
, bb_bitnames
[i
]);
841 fprintf (file
, "\n");
843 fprintf (file
, "Predecessors: ");
844 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
845 dump_edge_info (file
, e
, 0);
847 fprintf (file
, "\nSuccessors: ");
848 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
849 dump_edge_info (file
, e
, 1);
850 fprintf (file
, "\n\n");
853 /* Dumps a brief description of cfg to FILE. */
856 brief_dump_cfg (FILE *file
)
862 dump_cfg_bb_info (file
, bb
);
866 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
867 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
868 redirected to destination of TAKEN_EDGE.
870 This function may leave the profile inconsistent in the case TAKEN_EDGE
871 frequency or count is believed to be lower than FREQUENCY or COUNT
874 update_bb_profile_for_threading (basic_block bb
, int edge_frequency
,
875 gcov_type count
, edge taken_edge
)
885 fprintf (dump_file
, "bb %i count became negative after threading",
890 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
891 Watch for overflows. */
893 prob
= edge_frequency
* REG_BR_PROB_BASE
/ bb
->frequency
;
896 if (prob
> taken_edge
->probability
)
899 fprintf (dump_file
, "Jump threading proved probability of edge "
900 "%i->%i too small (it is %i, should be %i).\n",
901 taken_edge
->src
->index
, taken_edge
->dest
->index
,
902 taken_edge
->probability
, prob
);
903 prob
= taken_edge
->probability
;
906 /* Now rescale the probabilities. */
907 taken_edge
->probability
-= prob
;
908 prob
= REG_BR_PROB_BASE
- prob
;
909 bb
->frequency
-= edge_frequency
;
910 if (bb
->frequency
< 0)
915 fprintf (dump_file
, "Edge frequencies of bb %i has been reset, "
916 "frequency of block should end up being 0, it is %i\n",
917 bb
->index
, bb
->frequency
);
918 EDGE_SUCC (bb
, 0)->probability
= REG_BR_PROB_BASE
;
919 ei
= ei_start (bb
->succs
);
921 for (; (c
= ei_safe_edge (ei
)); ei_next (&ei
))
924 else if (prob
!= REG_BR_PROB_BASE
)
926 int scale
= RDIV (65536 * REG_BR_PROB_BASE
, prob
);
928 FOR_EACH_EDGE (c
, ei
, bb
->succs
)
930 c
->probability
= RDIV (c
->probability
* scale
, 65536);
931 if (c
->probability
> REG_BR_PROB_BASE
)
932 c
->probability
= REG_BR_PROB_BASE
;
936 gcc_assert (bb
== taken_edge
->src
);
937 taken_edge
->count
-= count
;
938 if (taken_edge
->count
< 0)
941 fprintf (dump_file
, "edge %i->%i count became negative after threading",
942 taken_edge
->src
->index
, taken_edge
->dest
->index
);
943 taken_edge
->count
= 0;
947 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
948 by NUM/DEN, in int arithmetic. May lose some accuracy. */
950 scale_bbs_frequencies_int (basic_block
*bbs
, int nbbs
, int num
, int den
)
958 /* Assume that the users are producing the fraction from frequencies
959 that never grow far enough to risk arithmetic overflow. */
960 gcc_assert (num
< 65536);
961 for (i
= 0; i
< nbbs
; i
++)
964 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* num
, den
);
965 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* num
, den
);
966 FOR_EACH_EDGE (e
, ei
, bbs
[i
]->succs
)
967 e
->count
= RDIV (e
->count
* num
, den
);
971 /* numbers smaller than this value are safe to multiply without getting
973 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
975 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
976 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
977 function but considerably slower. */
979 scale_bbs_frequencies_gcov_type (basic_block
*bbs
, int nbbs
, gcov_type num
,
984 gcov_type fraction
= RDIV (num
* 65536, den
);
986 gcc_assert (fraction
>= 0);
988 if (num
< MAX_SAFE_MULTIPLIER
)
989 for (i
= 0; i
< nbbs
; i
++)
992 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* num
, den
);
993 if (bbs
[i
]->count
<= MAX_SAFE_MULTIPLIER
)
994 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* num
, den
);
996 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* fraction
, 65536);
997 FOR_EACH_EDGE (e
, ei
, bbs
[i
]->succs
)
998 if (bbs
[i
]->count
<= MAX_SAFE_MULTIPLIER
)
999 e
->count
= RDIV (e
->count
* num
, den
);
1001 e
->count
= RDIV (e
->count
* fraction
, 65536);
1004 for (i
= 0; i
< nbbs
; i
++)
1007 if (sizeof (gcov_type
) > sizeof (int))
1008 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* num
, den
);
1010 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* fraction
, 65536);
1011 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* fraction
, 65536);
1012 FOR_EACH_EDGE (e
, ei
, bbs
[i
]->succs
)
1013 e
->count
= RDIV (e
->count
* fraction
, 65536);
1017 /* Data structures used to maintain mapping between basic blocks and
1019 static htab_t bb_original
;
1020 static htab_t bb_copy
;
1021 static alloc_pool original_copy_bb_pool
;
1023 struct htab_bb_copy_original_entry
1025 /* Block we are attaching info to. */
1027 /* Index of original or copy (depending on the hashtable) */
1032 bb_copy_original_hash (const void *p
)
1034 struct htab_bb_copy_original_entry
*data
1035 = ((struct htab_bb_copy_original_entry
*)p
);
1037 return data
->index1
;
1040 bb_copy_original_eq (const void *p
, const void *q
)
1042 struct htab_bb_copy_original_entry
*data
1043 = ((struct htab_bb_copy_original_entry
*)p
);
1044 struct htab_bb_copy_original_entry
*data2
1045 = ((struct htab_bb_copy_original_entry
*)q
);
1047 return data
->index1
== data2
->index1
;
1050 /* Initialize the data structures to maintain mapping between blocks
1053 initialize_original_copy_tables (void)
1055 gcc_assert (!original_copy_bb_pool
);
1056 original_copy_bb_pool
1057 = create_alloc_pool ("original_copy",
1058 sizeof (struct htab_bb_copy_original_entry
), 10);
1059 bb_original
= htab_create (10, bb_copy_original_hash
,
1060 bb_copy_original_eq
, NULL
);
1061 bb_copy
= htab_create (10, bb_copy_original_hash
, bb_copy_original_eq
, NULL
);
1064 /* Free the data structures to maintain mapping between blocks and
1067 free_original_copy_tables (void)
1069 gcc_assert (original_copy_bb_pool
);
1070 htab_delete (bb_copy
);
1071 htab_delete (bb_original
);
1072 free_alloc_pool (original_copy_bb_pool
);
1075 original_copy_bb_pool
= NULL
;
1078 /* Set original for basic block. Do nothing when data structures are not
1079 initialized so passes not needing this don't need to care. */
1081 set_bb_original (basic_block bb
, basic_block original
)
1083 if (original_copy_bb_pool
)
1085 struct htab_bb_copy_original_entry
**slot
;
1086 struct htab_bb_copy_original_entry key
;
1088 key
.index1
= bb
->index
;
1090 (struct htab_bb_copy_original_entry
**) htab_find_slot (bb_original
,
1093 (*slot
)->index2
= original
->index
;
1096 *slot
= pool_alloc (original_copy_bb_pool
);
1097 (*slot
)->index1
= bb
->index
;
1098 (*slot
)->index2
= original
->index
;
1103 /* Get the original basic block. */
1105 get_bb_original (basic_block bb
)
1107 struct htab_bb_copy_original_entry
*entry
;
1108 struct htab_bb_copy_original_entry key
;
1110 gcc_assert (original_copy_bb_pool
);
1112 key
.index1
= bb
->index
;
1113 entry
= (struct htab_bb_copy_original_entry
*) htab_find (bb_original
, &key
);
1115 return BASIC_BLOCK (entry
->index2
);
1120 /* Set copy for basic block. Do nothing when data structures are not
1121 initialized so passes not needing this don't need to care. */
1123 set_bb_copy (basic_block bb
, basic_block copy
)
1125 if (original_copy_bb_pool
)
1127 struct htab_bb_copy_original_entry
**slot
;
1128 struct htab_bb_copy_original_entry key
;
1130 key
.index1
= bb
->index
;
1132 (struct htab_bb_copy_original_entry
**) htab_find_slot (bb_copy
,
1135 (*slot
)->index2
= copy
->index
;
1138 *slot
= pool_alloc (original_copy_bb_pool
);
1139 (*slot
)->index1
= bb
->index
;
1140 (*slot
)->index2
= copy
->index
;
1145 /* Get the copy of basic block. */
1147 get_bb_copy (basic_block bb
)
1149 struct htab_bb_copy_original_entry
*entry
;
1150 struct htab_bb_copy_original_entry key
;
1152 gcc_assert (original_copy_bb_pool
);
1154 key
.index1
= bb
->index
;
1155 entry
= (struct htab_bb_copy_original_entry
*) htab_find (bb_copy
, &key
);
1157 return BASIC_BLOCK (entry
->index2
);