class.c (check_bases): Likewise.
[official-gcc.git] / gcc / cfg.c
blobfeac79bc71ccb6d4f5134d5ced93878e83167da7
1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file contains low level functions to manipulate the CFG and
24 analyze it. All other modules should not transform the data structure
25 directly and use abstraction instead. The file is supposed to be
26 ordered bottom-up and should not contain any code dependent on a
27 particular intermediate language (RTL or trees).
29 Available functionality:
30 - Initialization/deallocation
31 init_flow, clear_edges
32 - Low level basic block manipulation
33 alloc_block, expunge_block
34 - Edge manipulation
35 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
36 - Low level edge redirection (without updating instruction chain)
37 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
38 - Dumping and debugging
39 dump_flow_info, debug_flow_info, dump_edge_info
40 - Allocation of AUX fields for basic blocks
41 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
42 - clear_bb_flags
43 - Consistency checking
44 verify_flow_info
45 - Dumping and debugging
46 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "obstack.h"
64 #include "timevar.h"
65 #include "tree-pass.h"
66 #include "ggc.h"
67 #include "hashtab.h"
68 #include "alloc-pool.h"
70 /* The obstack on which the flow graph components are allocated. */
72 struct bitmap_obstack reg_obstack;
74 void debug_flow_info (void);
75 static void free_edge (edge);
77 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
79 /* Called once at initialization time. */
81 void
82 init_flow (void)
84 if (!cfun->cfg)
85 cfun->cfg = ggc_alloc_cleared (sizeof (struct control_flow_graph));
86 n_edges = 0;
87 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
88 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
89 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
90 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
91 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
92 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
95 /* Helper function for remove_edge and clear_edges. Frees edge structure
96 without actually unlinking it from the pred/succ lists. */
98 static void
99 free_edge (edge e ATTRIBUTE_UNUSED)
101 n_edges--;
102 ggc_free (e);
105 /* Free the memory associated with the edge structures. */
107 void
108 clear_edges (void)
110 basic_block bb;
111 edge e;
112 edge_iterator ei;
114 FOR_EACH_BB (bb)
116 FOR_EACH_EDGE (e, ei, bb->succs)
117 free_edge (e);
118 VEC_truncate (edge, bb->succs, 0);
119 VEC_truncate (edge, bb->preds, 0);
122 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
123 free_edge (e);
124 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
125 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
127 gcc_assert (!n_edges);
130 /* Allocate memory for basic_block. */
132 basic_block
133 alloc_block (void)
135 basic_block bb;
136 bb = ggc_alloc_cleared (sizeof (*bb));
137 return bb;
140 /* Link block B to chain after AFTER. */
141 void
142 link_block (basic_block b, basic_block after)
144 b->next_bb = after->next_bb;
145 b->prev_bb = after;
146 after->next_bb = b;
147 b->next_bb->prev_bb = b;
150 /* Unlink block B from chain. */
151 void
152 unlink_block (basic_block b)
154 b->next_bb->prev_bb = b->prev_bb;
155 b->prev_bb->next_bb = b->next_bb;
156 b->prev_bb = NULL;
157 b->next_bb = NULL;
160 /* Sequentially order blocks and compact the arrays. */
161 void
162 compact_blocks (void)
164 int i;
165 basic_block bb;
167 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
168 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
170 i = NUM_FIXED_BLOCKS;
171 FOR_EACH_BB (bb)
173 SET_BASIC_BLOCK (i, bb);
174 bb->index = i;
175 i++;
178 gcc_assert (i == n_basic_blocks);
180 for (; i < last_basic_block; i++)
181 SET_BASIC_BLOCK (i, NULL);
183 last_basic_block = n_basic_blocks;
186 /* Remove block B from the basic block array. */
188 void
189 expunge_block (basic_block b)
191 unlink_block (b);
192 SET_BASIC_BLOCK (b->index, NULL);
193 n_basic_blocks--;
194 /* We should be able to ggc_free here, but we are not.
195 The dead SSA_NAMES are left pointing to dead statements that are pointing
196 to dead basic blocks making garbage collector to die.
197 We should be able to release all dead SSA_NAMES and at the same time we should
198 clear out BB pointer of dead statements consistently. */
201 /* Connect E to E->src. */
203 static inline void
204 connect_src (edge e)
206 VEC_safe_push (edge, gc, e->src->succs, e);
209 /* Connect E to E->dest. */
211 static inline void
212 connect_dest (edge e)
214 basic_block dest = e->dest;
215 VEC_safe_push (edge, gc, dest->preds, e);
216 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
219 /* Disconnect edge E from E->src. */
221 static inline void
222 disconnect_src (edge e)
224 basic_block src = e->src;
225 edge_iterator ei;
226 edge tmp;
228 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
230 if (tmp == e)
232 VEC_unordered_remove (edge, src->succs, ei.index);
233 return;
235 else
236 ei_next (&ei);
239 gcc_unreachable ();
242 /* Disconnect edge E from E->dest. */
244 static inline void
245 disconnect_dest (edge e)
247 basic_block dest = e->dest;
248 unsigned int dest_idx = e->dest_idx;
250 VEC_unordered_remove (edge, dest->preds, dest_idx);
252 /* If we removed an edge in the middle of the edge vector, we need
253 to update dest_idx of the edge that moved into the "hole". */
254 if (dest_idx < EDGE_COUNT (dest->preds))
255 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
258 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
259 created edge. Use this only if you are sure that this edge can't
260 possibly already exist. */
262 edge
263 unchecked_make_edge (basic_block src, basic_block dst, int flags)
265 edge e;
266 e = ggc_alloc_cleared (sizeof (*e));
267 n_edges++;
269 e->src = src;
270 e->dest = dst;
271 e->flags = flags;
273 connect_src (e);
274 connect_dest (e);
276 execute_on_growing_pred (e);
278 return e;
281 /* Create an edge connecting SRC and DST with FLAGS optionally using
282 edge cache CACHE. Return the new edge, NULL if already exist. */
284 edge
285 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
287 if (edge_cache == NULL
288 || src == ENTRY_BLOCK_PTR
289 || dst == EXIT_BLOCK_PTR)
290 return make_edge (src, dst, flags);
292 /* Does the requested edge already exist? */
293 if (! TEST_BIT (edge_cache, dst->index))
295 /* The edge does not exist. Create one and update the
296 cache. */
297 SET_BIT (edge_cache, dst->index);
298 return unchecked_make_edge (src, dst, flags);
301 /* At this point, we know that the requested edge exists. Adjust
302 flags if necessary. */
303 if (flags)
305 edge e = find_edge (src, dst);
306 e->flags |= flags;
309 return NULL;
312 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
313 created edge or NULL if already exist. */
315 edge
316 make_edge (basic_block src, basic_block dest, int flags)
318 edge e = find_edge (src, dest);
320 /* Make sure we don't add duplicate edges. */
321 if (e)
323 e->flags |= flags;
324 return NULL;
327 return unchecked_make_edge (src, dest, flags);
330 /* Create an edge connecting SRC to DEST and set probability by knowing
331 that it is the single edge leaving SRC. */
333 edge
334 make_single_succ_edge (basic_block src, basic_block dest, int flags)
336 edge e = make_edge (src, dest, flags);
338 e->probability = REG_BR_PROB_BASE;
339 e->count = src->count;
340 return e;
343 /* This function will remove an edge from the flow graph. */
345 void
346 remove_edge (edge e)
348 remove_predictions_associated_with_edge (e);
349 execute_on_shrinking_pred (e);
351 disconnect_src (e);
352 disconnect_dest (e);
354 free_edge (e);
357 /* Redirect an edge's successor from one block to another. */
359 void
360 redirect_edge_succ (edge e, basic_block new_succ)
362 execute_on_shrinking_pred (e);
364 disconnect_dest (e);
366 e->dest = new_succ;
368 /* Reconnect the edge to the new successor block. */
369 connect_dest (e);
371 execute_on_growing_pred (e);
374 /* Like previous but avoid possible duplicate edge. */
376 edge
377 redirect_edge_succ_nodup (edge e, basic_block new_succ)
379 edge s;
381 s = find_edge (e->src, new_succ);
382 if (s && s != e)
384 s->flags |= e->flags;
385 s->probability += e->probability;
386 if (s->probability > REG_BR_PROB_BASE)
387 s->probability = REG_BR_PROB_BASE;
388 s->count += e->count;
389 remove_edge (e);
390 e = s;
392 else
393 redirect_edge_succ (e, new_succ);
395 return e;
398 /* Redirect an edge's predecessor from one block to another. */
400 void
401 redirect_edge_pred (edge e, basic_block new_pred)
403 disconnect_src (e);
405 e->src = new_pred;
407 /* Reconnect the edge to the new predecessor block. */
408 connect_src (e);
411 /* Clear all basic block flags, with the exception of partitioning. */
412 void
413 clear_bb_flags (void)
415 basic_block bb;
417 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
418 bb->flags = (BB_PARTITION (bb) | (bb->flags & BB_DISABLE_SCHEDULE)
419 | (bb->flags & BB_RTL));
422 /* Check the consistency of profile information. We can't do that
423 in verify_flow_info, as the counts may get invalid for incompletely
424 solved graphs, later eliminating of conditionals or roundoff errors.
425 It is still practical to have them reported for debugging of simple
426 testcases. */
427 void
428 check_bb_profile (basic_block bb, FILE * file)
430 edge e;
431 int sum = 0;
432 gcov_type lsum;
433 edge_iterator ei;
435 if (profile_status == PROFILE_ABSENT)
436 return;
438 if (bb != EXIT_BLOCK_PTR)
440 FOR_EACH_EDGE (e, ei, bb->succs)
441 sum += e->probability;
442 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
443 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
444 sum * 100.0 / REG_BR_PROB_BASE);
445 lsum = 0;
446 FOR_EACH_EDGE (e, ei, bb->succs)
447 lsum += e->count;
448 if (EDGE_COUNT (bb->succs)
449 && (lsum - bb->count > 100 || lsum - bb->count < -100))
450 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
451 (int) lsum, (int) bb->count);
453 if (bb != ENTRY_BLOCK_PTR)
455 sum = 0;
456 FOR_EACH_EDGE (e, ei, bb->preds)
457 sum += EDGE_FREQUENCY (e);
458 if (abs (sum - bb->frequency) > 100)
459 fprintf (file,
460 "Invalid sum of incoming frequencies %i, should be %i\n",
461 sum, bb->frequency);
462 lsum = 0;
463 FOR_EACH_EDGE (e, ei, bb->preds)
464 lsum += e->count;
465 if (lsum - bb->count > 100 || lsum - bb->count < -100)
466 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
467 (int) lsum, (int) bb->count);
471 /* Emit basic block information for BB. HEADER is true if the user wants
472 the generic information and the predecessors, FOOTER is true if they want
473 the successors. FLAGS is the dump flags of interest; TDF_DETAILS emit
474 global register liveness information. PREFIX is put in front of every
475 line. The output is emitted to FILE. */
476 void
477 dump_bb_info (basic_block bb, bool header, bool footer, int flags,
478 const char *prefix, FILE *file)
480 edge e;
481 edge_iterator ei;
483 if (header)
485 fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
486 if (bb->prev_bb)
487 fprintf (file, ", prev %d", bb->prev_bb->index);
488 if (bb->next_bb)
489 fprintf (file, ", next %d", bb->next_bb->index);
490 fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
491 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
492 fprintf (file, ", freq %i", bb->frequency);
493 if (maybe_hot_bb_p (bb))
494 fprintf (file, ", maybe hot");
495 if (probably_never_executed_bb_p (bb))
496 fprintf (file, ", probably never executed");
497 fprintf (file, ".\n");
499 fprintf (file, "%sPredecessors: ", prefix);
500 FOR_EACH_EDGE (e, ei, bb->preds)
501 dump_edge_info (file, e, 0);
504 if (footer)
506 fprintf (file, "\n%sSuccessors: ", prefix);
507 FOR_EACH_EDGE (e, ei, bb->succs)
508 dump_edge_info (file, e, 1);
511 if ((flags & TDF_DETAILS)
512 && (bb->flags & BB_RTL))
514 if (bb->il.rtl->global_live_at_start && header)
516 fprintf (file, "\n%sRegisters live at start:", prefix);
517 dump_regset (bb->il.rtl->global_live_at_start, file);
520 if (bb->il.rtl->global_live_at_end && footer)
522 fprintf (file, "\n%sRegisters live at end:", prefix);
523 dump_regset (bb->il.rtl->global_live_at_end, file);
527 putc ('\n', file);
530 void
531 dump_flow_info (FILE *file)
533 basic_block bb;
535 if (file == dump_file
536 && (dump_flags & TDF_SLIM)
537 && !(dump_flags & TDF_DETAILS))
538 return;
540 /* There are no pseudo registers after reload. Don't dump them. */
541 if (reg_n_info && !reload_completed)
543 unsigned int i, max = max_reg_num ();
544 fprintf (file, "%d registers.\n", max);
545 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
546 if (REG_N_REFS (i))
548 enum reg_class class, altclass;
550 fprintf (file, "\nRegister %d used %d times across %d insns",
551 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
552 if (REG_BASIC_BLOCK (i) >= 0)
553 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
554 if (REG_N_SETS (i))
555 fprintf (file, "; set %d time%s", REG_N_SETS (i),
556 (REG_N_SETS (i) == 1) ? "" : "s");
557 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
558 fprintf (file, "; user var");
559 if (REG_N_DEATHS (i) != 1)
560 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
561 if (REG_N_CALLS_CROSSED (i) == 1)
562 fprintf (file, "; crosses 1 call");
563 else if (REG_N_CALLS_CROSSED (i))
564 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
565 if (regno_reg_rtx[i] != NULL
566 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
567 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
569 class = reg_preferred_class (i);
570 altclass = reg_alternate_class (i);
571 if (class != GENERAL_REGS || altclass != ALL_REGS)
573 if (altclass == ALL_REGS || class == ALL_REGS)
574 fprintf (file, "; pref %s", reg_class_names[(int) class]);
575 else if (altclass == NO_REGS)
576 fprintf (file, "; %s or none", reg_class_names[(int) class]);
577 else
578 fprintf (file, "; pref %s, else %s",
579 reg_class_names[(int) class],
580 reg_class_names[(int) altclass]);
583 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
584 fprintf (file, "; pointer");
585 fprintf (file, ".\n");
589 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
590 FOR_EACH_BB (bb)
592 dump_bb_info (bb, true, true, TDF_DETAILS, "", file);
593 check_bb_profile (bb, file);
596 putc ('\n', file);
599 void
600 debug_flow_info (void)
602 dump_flow_info (stderr);
605 void
606 dump_edge_info (FILE *file, edge e, int do_succ)
608 basic_block side = (do_succ ? e->dest : e->src);
610 if (side == ENTRY_BLOCK_PTR)
611 fputs (" ENTRY", file);
612 else if (side == EXIT_BLOCK_PTR)
613 fputs (" EXIT", file);
614 else
615 fprintf (file, " %d", side->index);
617 if (e->probability)
618 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
620 if (e->count)
622 fprintf (file, " count:");
623 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
626 if (e->flags)
628 static const char * const bitnames[] = {
629 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
630 "can_fallthru", "irreducible", "sibcall", "loop_exit",
631 "true", "false", "exec"
633 int comma = 0;
634 int i, flags = e->flags;
636 fputs (" (", file);
637 for (i = 0; flags; i++)
638 if (flags & (1 << i))
640 flags &= ~(1 << i);
642 if (comma)
643 fputc (',', file);
644 if (i < (int) ARRAY_SIZE (bitnames))
645 fputs (bitnames[i], file);
646 else
647 fprintf (file, "%d", i);
648 comma = 1;
651 fputc (')', file);
655 /* Simple routines to easily allocate AUX fields of basic blocks. */
657 static struct obstack block_aux_obstack;
658 static void *first_block_aux_obj = 0;
659 static struct obstack edge_aux_obstack;
660 static void *first_edge_aux_obj = 0;
662 /* Allocate a memory block of SIZE as BB->aux. The obstack must
663 be first initialized by alloc_aux_for_blocks. */
665 inline void
666 alloc_aux_for_block (basic_block bb, int size)
668 /* Verify that aux field is clear. */
669 gcc_assert (!bb->aux && first_block_aux_obj);
670 bb->aux = obstack_alloc (&block_aux_obstack, size);
671 memset (bb->aux, 0, size);
674 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
675 alloc_aux_for_block for each basic block. */
677 void
678 alloc_aux_for_blocks (int size)
680 static int initialized;
682 if (!initialized)
684 gcc_obstack_init (&block_aux_obstack);
685 initialized = 1;
687 else
688 /* Check whether AUX data are still allocated. */
689 gcc_assert (!first_block_aux_obj);
691 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
692 if (size)
694 basic_block bb;
696 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
697 alloc_aux_for_block (bb, size);
701 /* Clear AUX pointers of all blocks. */
703 void
704 clear_aux_for_blocks (void)
706 basic_block bb;
708 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
709 bb->aux = NULL;
712 /* Free data allocated in block_aux_obstack and clear AUX pointers
713 of all blocks. */
715 void
716 free_aux_for_blocks (void)
718 gcc_assert (first_block_aux_obj);
719 obstack_free (&block_aux_obstack, first_block_aux_obj);
720 first_block_aux_obj = NULL;
722 clear_aux_for_blocks ();
725 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
726 be first initialized by alloc_aux_for_edges. */
728 inline void
729 alloc_aux_for_edge (edge e, int size)
731 /* Verify that aux field is clear. */
732 gcc_assert (!e->aux && first_edge_aux_obj);
733 e->aux = obstack_alloc (&edge_aux_obstack, size);
734 memset (e->aux, 0, size);
737 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
738 alloc_aux_for_edge for each basic edge. */
740 void
741 alloc_aux_for_edges (int size)
743 static int initialized;
745 if (!initialized)
747 gcc_obstack_init (&edge_aux_obstack);
748 initialized = 1;
750 else
751 /* Check whether AUX data are still allocated. */
752 gcc_assert (!first_edge_aux_obj);
754 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
755 if (size)
757 basic_block bb;
759 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
761 edge e;
762 edge_iterator ei;
764 FOR_EACH_EDGE (e, ei, bb->succs)
765 alloc_aux_for_edge (e, size);
770 /* Clear AUX pointers of all edges. */
772 void
773 clear_aux_for_edges (void)
775 basic_block bb;
776 edge e;
778 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
780 edge_iterator ei;
781 FOR_EACH_EDGE (e, ei, bb->succs)
782 e->aux = NULL;
786 /* Free data allocated in edge_aux_obstack and clear AUX pointers
787 of all edges. */
789 void
790 free_aux_for_edges (void)
792 gcc_assert (first_edge_aux_obj);
793 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
794 first_edge_aux_obj = NULL;
796 clear_aux_for_edges ();
799 void
800 debug_bb (basic_block bb)
802 dump_bb (bb, stderr, 0);
805 basic_block
806 debug_bb_n (int n)
808 basic_block bb = BASIC_BLOCK (n);
809 dump_bb (bb, stderr, 0);
810 return bb;
813 /* Dumps cfg related information about basic block BB to FILE. */
815 static void
816 dump_cfg_bb_info (FILE *file, basic_block bb)
818 unsigned i;
819 edge_iterator ei;
820 bool first = true;
821 static const char * const bb_bitnames[] =
823 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
825 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
826 edge e;
828 fprintf (file, "Basic block %d", bb->index);
829 for (i = 0; i < n_bitnames; i++)
830 if (bb->flags & (1 << i))
832 if (first)
833 fprintf (file, " (");
834 else
835 fprintf (file, ", ");
836 first = false;
837 fprintf (file, bb_bitnames[i]);
839 if (!first)
840 fprintf (file, ")");
841 fprintf (file, "\n");
843 fprintf (file, "Predecessors: ");
844 FOR_EACH_EDGE (e, ei, bb->preds)
845 dump_edge_info (file, e, 0);
847 fprintf (file, "\nSuccessors: ");
848 FOR_EACH_EDGE (e, ei, bb->succs)
849 dump_edge_info (file, e, 1);
850 fprintf (file, "\n\n");
853 /* Dumps a brief description of cfg to FILE. */
855 void
856 brief_dump_cfg (FILE *file)
858 basic_block bb;
860 FOR_EACH_BB (bb)
862 dump_cfg_bb_info (file, bb);
866 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
867 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
868 redirected to destination of TAKEN_EDGE.
870 This function may leave the profile inconsistent in the case TAKEN_EDGE
871 frequency or count is believed to be lower than FREQUENCY or COUNT
872 respectively. */
873 void
874 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
875 gcov_type count, edge taken_edge)
877 edge c;
878 int prob;
879 edge_iterator ei;
881 bb->count -= count;
882 if (bb->count < 0)
884 if (dump_file)
885 fprintf (dump_file, "bb %i count became negative after threading",
886 bb->index);
887 bb->count = 0;
890 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
891 Watch for overflows. */
892 if (bb->frequency)
893 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
894 else
895 prob = 0;
896 if (prob > taken_edge->probability)
898 if (dump_file)
899 fprintf (dump_file, "Jump threading proved probability of edge "
900 "%i->%i too small (it is %i, should be %i).\n",
901 taken_edge->src->index, taken_edge->dest->index,
902 taken_edge->probability, prob);
903 prob = taken_edge->probability;
906 /* Now rescale the probabilities. */
907 taken_edge->probability -= prob;
908 prob = REG_BR_PROB_BASE - prob;
909 bb->frequency -= edge_frequency;
910 if (bb->frequency < 0)
911 bb->frequency = 0;
912 if (prob <= 0)
914 if (dump_file)
915 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
916 "frequency of block should end up being 0, it is %i\n",
917 bb->index, bb->frequency);
918 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
919 ei = ei_start (bb->succs);
920 ei_next (&ei);
921 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
922 c->probability = 0;
924 else if (prob != REG_BR_PROB_BASE)
926 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
928 FOR_EACH_EDGE (c, ei, bb->succs)
930 c->probability = RDIV (c->probability * scale, 65536);
931 if (c->probability > REG_BR_PROB_BASE)
932 c->probability = REG_BR_PROB_BASE;
936 gcc_assert (bb == taken_edge->src);
937 taken_edge->count -= count;
938 if (taken_edge->count < 0)
940 if (dump_file)
941 fprintf (dump_file, "edge %i->%i count became negative after threading",
942 taken_edge->src->index, taken_edge->dest->index);
943 taken_edge->count = 0;
947 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
948 by NUM/DEN, in int arithmetic. May lose some accuracy. */
949 void
950 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
952 int i;
953 edge e;
954 if (num < 0)
955 num = 0;
956 if (num > den)
957 return;
958 /* Assume that the users are producing the fraction from frequencies
959 that never grow far enough to risk arithmetic overflow. */
960 gcc_assert (num < 65536);
961 for (i = 0; i < nbbs; i++)
963 edge_iterator ei;
964 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
965 bbs[i]->count = RDIV (bbs[i]->count * num, den);
966 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
967 e->count = RDIV (e->count * num, den);
971 /* numbers smaller than this value are safe to multiply without getting
972 64bit overflow. */
973 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
975 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
976 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
977 function but considerably slower. */
978 void
979 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
980 gcov_type den)
982 int i;
983 edge e;
984 gcov_type fraction = RDIV (num * 65536, den);
986 gcc_assert (fraction >= 0);
988 if (num < MAX_SAFE_MULTIPLIER)
989 for (i = 0; i < nbbs; i++)
991 edge_iterator ei;
992 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
993 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
994 bbs[i]->count = RDIV (bbs[i]->count * num, den);
995 else
996 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
997 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
998 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
999 e->count = RDIV (e->count * num, den);
1000 else
1001 e->count = RDIV (e->count * fraction, 65536);
1003 else
1004 for (i = 0; i < nbbs; i++)
1006 edge_iterator ei;
1007 if (sizeof (gcov_type) > sizeof (int))
1008 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1009 else
1010 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
1011 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1012 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1013 e->count = RDIV (e->count * fraction, 65536);
1017 /* Data structures used to maintain mapping between basic blocks and
1018 copies. */
1019 static htab_t bb_original;
1020 static htab_t bb_copy;
1021 static alloc_pool original_copy_bb_pool;
1023 struct htab_bb_copy_original_entry
1025 /* Block we are attaching info to. */
1026 int index1;
1027 /* Index of original or copy (depending on the hashtable) */
1028 int index2;
1031 static hashval_t
1032 bb_copy_original_hash (const void *p)
1034 struct htab_bb_copy_original_entry *data
1035 = ((struct htab_bb_copy_original_entry *)p);
1037 return data->index1;
1039 static int
1040 bb_copy_original_eq (const void *p, const void *q)
1042 struct htab_bb_copy_original_entry *data
1043 = ((struct htab_bb_copy_original_entry *)p);
1044 struct htab_bb_copy_original_entry *data2
1045 = ((struct htab_bb_copy_original_entry *)q);
1047 return data->index1 == data2->index1;
1050 /* Initialize the data structures to maintain mapping between blocks
1051 and its copies. */
1052 void
1053 initialize_original_copy_tables (void)
1055 gcc_assert (!original_copy_bb_pool);
1056 original_copy_bb_pool
1057 = create_alloc_pool ("original_copy",
1058 sizeof (struct htab_bb_copy_original_entry), 10);
1059 bb_original = htab_create (10, bb_copy_original_hash,
1060 bb_copy_original_eq, NULL);
1061 bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1064 /* Free the data structures to maintain mapping between blocks and
1065 its copies. */
1066 void
1067 free_original_copy_tables (void)
1069 gcc_assert (original_copy_bb_pool);
1070 htab_delete (bb_copy);
1071 htab_delete (bb_original);
1072 free_alloc_pool (original_copy_bb_pool);
1073 bb_copy = NULL;
1074 bb_original = NULL;
1075 original_copy_bb_pool = NULL;
1078 /* Set original for basic block. Do nothing when data structures are not
1079 initialized so passes not needing this don't need to care. */
1080 void
1081 set_bb_original (basic_block bb, basic_block original)
1083 if (original_copy_bb_pool)
1085 struct htab_bb_copy_original_entry **slot;
1086 struct htab_bb_copy_original_entry key;
1088 key.index1 = bb->index;
1089 slot =
1090 (struct htab_bb_copy_original_entry **) htab_find_slot (bb_original,
1091 &key, INSERT);
1092 if (*slot)
1093 (*slot)->index2 = original->index;
1094 else
1096 *slot = pool_alloc (original_copy_bb_pool);
1097 (*slot)->index1 = bb->index;
1098 (*slot)->index2 = original->index;
1103 /* Get the original basic block. */
1104 basic_block
1105 get_bb_original (basic_block bb)
1107 struct htab_bb_copy_original_entry *entry;
1108 struct htab_bb_copy_original_entry key;
1110 gcc_assert (original_copy_bb_pool);
1112 key.index1 = bb->index;
1113 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
1114 if (entry)
1115 return BASIC_BLOCK (entry->index2);
1116 else
1117 return NULL;
1120 /* Set copy for basic block. Do nothing when data structures are not
1121 initialized so passes not needing this don't need to care. */
1122 void
1123 set_bb_copy (basic_block bb, basic_block copy)
1125 if (original_copy_bb_pool)
1127 struct htab_bb_copy_original_entry **slot;
1128 struct htab_bb_copy_original_entry key;
1130 key.index1 = bb->index;
1131 slot =
1132 (struct htab_bb_copy_original_entry **) htab_find_slot (bb_copy,
1133 &key, INSERT);
1134 if (*slot)
1135 (*slot)->index2 = copy->index;
1136 else
1138 *slot = pool_alloc (original_copy_bb_pool);
1139 (*slot)->index1 = bb->index;
1140 (*slot)->index2 = copy->index;
1145 /* Get the copy of basic block. */
1146 basic_block
1147 get_bb_copy (basic_block bb)
1149 struct htab_bb_copy_original_entry *entry;
1150 struct htab_bb_copy_original_entry key;
1152 gcc_assert (original_copy_bb_pool);
1154 key.index1 = bb->index;
1155 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
1156 if (entry)
1157 return BASIC_BLOCK (entry->index2);
1158 else
1159 return NULL;