Concretize three gimple_return_ accessors
[official-gcc.git] / gcc / tree-ssa-uncprop.c
blobd43b7fcf14f7ae50a3ba7c3de741550e4732d83b
1 /* Routines for discovering and unpropagating edge equivalences.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "stor-layout.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "function.h"
30 #include "hash-table.h"
31 #include "hash-map.h"
32 #include "tree-ssa-alias.h"
33 #include "internal-fn.h"
34 #include "gimple-expr.h"
35 #include "is-a.h"
36 #include "gimple.h"
37 #include "gimple-iterator.h"
38 #include "gimple-ssa.h"
39 #include "tree-cfg.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "domwalk.h"
43 #include "tree-pass.h"
44 #include "tree-ssa-propagate.h"
46 /* The basic structure describing an equivalency created by traversing
47 an edge. Traversing the edge effectively means that we can assume
48 that we've seen an assignment LHS = RHS. */
49 struct edge_equivalency
51 tree rhs;
52 tree lhs;
55 /* This routine finds and records edge equivalences for every edge
56 in the CFG.
58 When complete, each edge that creates an equivalency will have an
59 EDGE_EQUIVALENCY structure hanging off the edge's AUX field.
60 The caller is responsible for freeing the AUX fields. */
62 static void
63 associate_equivalences_with_edges (void)
65 basic_block bb;
67 /* Walk over each block. If the block ends with a control statement,
68 then it might create a useful equivalence. */
69 FOR_EACH_BB_FN (bb, cfun)
71 gimple_stmt_iterator gsi = gsi_last_bb (bb);
72 gimple stmt;
74 /* If the block does not end with a COND_EXPR or SWITCH_EXPR
75 then there is nothing to do. */
76 if (gsi_end_p (gsi))
77 continue;
79 stmt = gsi_stmt (gsi);
81 if (!stmt)
82 continue;
84 /* A COND_EXPR may create an equivalency in a variety of different
85 ways. */
86 if (gimple_code (stmt) == GIMPLE_COND)
88 edge true_edge;
89 edge false_edge;
90 struct edge_equivalency *equivalency;
91 enum tree_code code = gimple_cond_code (stmt);
93 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
95 /* Equality tests may create one or two equivalences. */
96 if (code == EQ_EXPR || code == NE_EXPR)
98 tree op0 = gimple_cond_lhs (stmt);
99 tree op1 = gimple_cond_rhs (stmt);
101 /* Special case comparing booleans against a constant as we
102 know the value of OP0 on both arms of the branch. i.e., we
103 can record an equivalence for OP0 rather than COND. */
104 if (TREE_CODE (op0) == SSA_NAME
105 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
106 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
107 && is_gimple_min_invariant (op1))
109 if (code == EQ_EXPR)
111 equivalency = XNEW (struct edge_equivalency);
112 equivalency->lhs = op0;
113 equivalency->rhs = (integer_zerop (op1)
114 ? boolean_false_node
115 : boolean_true_node);
116 true_edge->aux = equivalency;
118 equivalency = XNEW (struct edge_equivalency);
119 equivalency->lhs = op0;
120 equivalency->rhs = (integer_zerop (op1)
121 ? boolean_true_node
122 : boolean_false_node);
123 false_edge->aux = equivalency;
125 else
127 equivalency = XNEW (struct edge_equivalency);
128 equivalency->lhs = op0;
129 equivalency->rhs = (integer_zerop (op1)
130 ? boolean_true_node
131 : boolean_false_node);
132 true_edge->aux = equivalency;
134 equivalency = XNEW (struct edge_equivalency);
135 equivalency->lhs = op0;
136 equivalency->rhs = (integer_zerop (op1)
137 ? boolean_false_node
138 : boolean_true_node);
139 false_edge->aux = equivalency;
143 else if (TREE_CODE (op0) == SSA_NAME
144 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0)
145 && (is_gimple_min_invariant (op1)
146 || (TREE_CODE (op1) == SSA_NAME
147 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op1))))
149 /* For IEEE, -0.0 == 0.0, so we don't necessarily know
150 the sign of a variable compared against zero. If
151 we're honoring signed zeros, then we cannot record
152 this value unless we know that the value is nonzero. */
153 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
154 && (TREE_CODE (op1) != REAL_CST
155 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (op1))))
156 continue;
158 equivalency = XNEW (struct edge_equivalency);
159 equivalency->lhs = op0;
160 equivalency->rhs = op1;
161 if (code == EQ_EXPR)
162 true_edge->aux = equivalency;
163 else
164 false_edge->aux = equivalency;
169 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
172 /* For a SWITCH_EXPR, a case label which represents a single
173 value and which is the only case label which reaches the
174 target block creates an equivalence. */
175 else if (gimple_code (stmt) == GIMPLE_SWITCH)
177 gimple_switch switch_stmt = as_a <gimple_switch> (stmt);
178 tree cond = gimple_switch_index (switch_stmt);
180 if (TREE_CODE (cond) == SSA_NAME
181 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (cond))
183 int i, n_labels = gimple_switch_num_labels (switch_stmt);
184 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
186 /* Walk over the case label vector. Record blocks
187 which are reached by a single case label which represents
188 a single value. */
189 for (i = 0; i < n_labels; i++)
191 tree label = gimple_switch_label (switch_stmt, i);
192 basic_block bb = label_to_block (CASE_LABEL (label));
194 if (CASE_HIGH (label)
195 || !CASE_LOW (label)
196 || info[bb->index])
197 info[bb->index] = error_mark_node;
198 else
199 info[bb->index] = label;
202 /* Now walk over the blocks to determine which ones were
203 marked as being reached by a useful case label. */
204 for (i = 0; i < n_basic_blocks_for_fn (cfun); i++)
206 tree node = info[i];
208 if (node != NULL
209 && node != error_mark_node)
211 tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
212 struct edge_equivalency *equivalency;
214 /* Record an equivalency on the edge from BB to basic
215 block I. */
216 equivalency = XNEW (struct edge_equivalency);
217 equivalency->rhs = x;
218 equivalency->lhs = cond;
219 find_edge (bb, BASIC_BLOCK_FOR_FN (cfun, i))->aux =
220 equivalency;
223 free (info);
231 /* Translating out of SSA sometimes requires inserting copies and
232 constant initializations on edges to eliminate PHI nodes.
234 In some cases those copies and constant initializations are
235 redundant because the target already has the value on the
236 RHS of the assignment.
238 We previously tried to catch these cases after translating
239 out of SSA form. However, that code often missed cases. Worse
240 yet, the cases it missed were also often missed by the RTL
241 optimizers. Thus the resulting code had redundant instructions.
243 This pass attempts to detect these situations before translating
244 out of SSA form.
246 The key concept that this pass is built upon is that these
247 redundant copies and constant initializations often occur
248 due to constant/copy propagating equivalences resulting from
249 COND_EXPRs and SWITCH_EXPRs.
251 We want to do those propagations as they can sometimes allow
252 the SSA optimizers to do a better job. However, in the cases
253 where such propagations do not result in further optimization,
254 we would like to "undo" the propagation to avoid the redundant
255 copies and constant initializations.
257 This pass works by first associating equivalences with edges in
258 the CFG. For example, the edge leading from a SWITCH_EXPR to
259 its associated CASE_LABEL will have an equivalency between
260 SWITCH_COND and the value in the case label.
262 Once we have found the edge equivalences, we proceed to walk
263 the CFG in dominator order. As we traverse edges we record
264 equivalences associated with those edges we traverse.
266 When we encounter a PHI node, we walk its arguments to see if we
267 have an equivalence for the PHI argument. If so, then we replace
268 the argument.
270 Equivalences are looked up based on their value (think of it as
271 the RHS of an assignment). A value may be an SSA_NAME or an
272 invariant. We may have several SSA_NAMEs with the same value,
273 so with each value we have a list of SSA_NAMEs that have the
274 same value. */
277 /* Main structure for recording equivalences into our hash table. */
278 struct equiv_hash_elt
280 /* The value/key of this entry. */
281 tree value;
283 /* List of SSA_NAMEs which have the same value/key. */
284 vec<tree> equivalences;
287 /* Value to ssa name equivalence hashtable helpers. */
289 struct val_ssa_equiv_hash_traits : default_hashmap_traits
291 static inline hashval_t hash (tree);
292 static inline bool equal_keys (tree, tree);
293 template<typename T> static inline void remove (T &);
296 inline hashval_t
297 val_ssa_equiv_hash_traits::hash (tree value)
299 return iterative_hash_expr (value, 0);
302 inline bool
303 val_ssa_equiv_hash_traits::equal_keys (tree value1, tree value2)
305 return operand_equal_p (value1, value2, 0);
308 /* Free an instance of equiv_hash_elt. */
310 template<typename T>
311 inline void
312 val_ssa_equiv_hash_traits::remove (T &elt)
314 elt.m_value.release ();
317 /* Global hash table implementing a mapping from invariant values
318 to a list of SSA_NAMEs which have the same value. We might be
319 able to reuse tree-vn for this code. */
320 static hash_map<tree, vec<tree>, val_ssa_equiv_hash_traits> *val_ssa_equiv;
322 static void uncprop_into_successor_phis (basic_block);
324 /* Remove the most recently recorded equivalency for VALUE. */
326 static void
327 remove_equivalence (tree value)
329 val_ssa_equiv->get (value)->pop ();
332 /* Record EQUIVALENCE = VALUE into our hash table. */
334 static void
335 record_equiv (tree value, tree equivalence)
337 val_ssa_equiv->get_or_insert (value).safe_push (equivalence);
340 class uncprop_dom_walker : public dom_walker
342 public:
343 uncprop_dom_walker (cdi_direction direction) : dom_walker (direction) {}
345 virtual void before_dom_children (basic_block);
346 virtual void after_dom_children (basic_block);
348 private:
350 /* As we enter each block we record the value for any edge equivalency
351 leading to this block. If no such edge equivalency exists, then we
352 record NULL. These equivalences are live until we leave the dominator
353 subtree rooted at the block where we record the equivalency. */
354 auto_vec<tree, 2> m_equiv_stack;
357 /* We have finished processing the dominator children of BB, perform
358 any finalization actions in preparation for leaving this node in
359 the dominator tree. */
361 void
362 uncprop_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
364 /* Pop the topmost value off the equiv stack. */
365 tree value = m_equiv_stack.pop ();
367 /* If that value was non-null, then pop the topmost equivalency off
368 its equivalency stack. */
369 if (value != NULL)
370 remove_equivalence (value);
373 /* Unpropagate values from PHI nodes in successor blocks of BB. */
375 static void
376 uncprop_into_successor_phis (basic_block bb)
378 edge e;
379 edge_iterator ei;
381 /* For each successor edge, first temporarily record any equivalence
382 on that edge. Then unpropagate values in any PHI nodes at the
383 destination of the edge. Then remove the temporary equivalence. */
384 FOR_EACH_EDGE (e, ei, bb->succs)
386 gimple_seq phis = phi_nodes (e->dest);
387 gimple_stmt_iterator gsi;
389 /* If there are no PHI nodes in this destination, then there is
390 no sense in recording any equivalences. */
391 if (gimple_seq_empty_p (phis))
392 continue;
394 /* Record any equivalency associated with E. */
395 if (e->aux)
397 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
398 record_equiv (equiv->rhs, equiv->lhs);
401 /* Walk over the PHI nodes, unpropagating values. */
402 for (gsi = gsi_start (phis) ; !gsi_end_p (gsi); gsi_next (&gsi))
404 gimple phi = gsi_stmt (gsi);
405 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
406 tree res = PHI_RESULT (phi);
408 /* If the argument is not an invariant and can be potentially
409 coalesced with the result, then there's no point in
410 un-propagating the argument. */
411 if (!is_gimple_min_invariant (arg)
412 && gimple_can_coalesce_p (arg, res))
413 continue;
415 /* Lookup this argument's value in the hash table. */
416 vec<tree> *equivalences = val_ssa_equiv->get (arg);
417 if (equivalences)
419 /* Walk every equivalence with the same value. If we find
420 one that can potentially coalesce with the PHI rsult,
421 then replace the value in the argument with its equivalent
422 SSA_NAME. Use the most recent equivalence as hopefully
423 that results in shortest lifetimes. */
424 for (int j = equivalences->length () - 1; j >= 0; j--)
426 tree equiv = (*equivalences)[j];
428 if (gimple_can_coalesce_p (equiv, res))
430 SET_PHI_ARG_DEF (phi, e->dest_idx, equiv);
431 break;
437 /* If we had an equivalence associated with this edge, remove it. */
438 if (e->aux)
440 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
441 remove_equivalence (equiv->rhs);
446 /* Ignoring loop backedges, if BB has precisely one incoming edge then
447 return that edge. Otherwise return NULL. */
448 static edge
449 single_incoming_edge_ignoring_loop_edges (basic_block bb)
451 edge retval = NULL;
452 edge e;
453 edge_iterator ei;
455 FOR_EACH_EDGE (e, ei, bb->preds)
457 /* A loop back edge can be identified by the destination of
458 the edge dominating the source of the edge. */
459 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
460 continue;
462 /* If we have already seen a non-loop edge, then we must have
463 multiple incoming non-loop edges and thus we return NULL. */
464 if (retval)
465 return NULL;
467 /* This is the first non-loop incoming edge we have found. Record
468 it. */
469 retval = e;
472 return retval;
475 void
476 uncprop_dom_walker::before_dom_children (basic_block bb)
478 basic_block parent;
479 edge e;
480 bool recorded = false;
482 /* If this block is dominated by a single incoming edge and that edge
483 has an equivalency, then record the equivalency and push the
484 VALUE onto EQUIV_STACK. Else push a NULL entry on EQUIV_STACK. */
485 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
486 if (parent)
488 e = single_incoming_edge_ignoring_loop_edges (bb);
490 if (e && e->src == parent && e->aux)
492 struct edge_equivalency *equiv = (struct edge_equivalency *) e->aux;
494 record_equiv (equiv->rhs, equiv->lhs);
495 m_equiv_stack.safe_push (equiv->rhs);
496 recorded = true;
500 if (!recorded)
501 m_equiv_stack.safe_push (NULL_TREE);
503 uncprop_into_successor_phis (bb);
506 namespace {
508 const pass_data pass_data_uncprop =
510 GIMPLE_PASS, /* type */
511 "uncprop", /* name */
512 OPTGROUP_NONE, /* optinfo_flags */
513 TV_TREE_SSA_UNCPROP, /* tv_id */
514 ( PROP_cfg | PROP_ssa ), /* properties_required */
515 0, /* properties_provided */
516 0, /* properties_destroyed */
517 0, /* todo_flags_start */
518 0, /* todo_flags_finish */
521 class pass_uncprop : public gimple_opt_pass
523 public:
524 pass_uncprop (gcc::context *ctxt)
525 : gimple_opt_pass (pass_data_uncprop, ctxt)
528 /* opt_pass methods: */
529 opt_pass * clone () { return new pass_uncprop (m_ctxt); }
530 virtual bool gate (function *) { return flag_tree_dom != 0; }
531 virtual unsigned int execute (function *);
533 }; // class pass_uncprop
535 unsigned int
536 pass_uncprop::execute (function *fun)
538 basic_block bb;
540 associate_equivalences_with_edges ();
542 /* Create our global data structures. */
543 val_ssa_equiv
544 = new hash_map<tree, vec<tree>, val_ssa_equiv_hash_traits> (1024);
546 /* We're going to do a dominator walk, so ensure that we have
547 dominance information. */
548 calculate_dominance_info (CDI_DOMINATORS);
550 /* Recursively walk the dominator tree undoing unprofitable
551 constant/copy propagations. */
552 uncprop_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
554 /* we just need to empty elements out of the hash table, and cleanup the
555 AUX field on the edges. */
556 delete val_ssa_equiv;
557 val_ssa_equiv = NULL;
558 FOR_EACH_BB_FN (bb, fun)
560 edge e;
561 edge_iterator ei;
563 FOR_EACH_EDGE (e, ei, bb->succs)
565 if (e->aux)
567 free (e->aux);
568 e->aux = NULL;
572 return 0;
575 } // anon namespace
577 gimple_opt_pass *
578 make_pass_uncprop (gcc::context *ctxt)
580 return new pass_uncprop (ctxt);