1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
91 #include "coretypes.h"
95 #include "hard-reg-set.h"
96 #include "basic-block.h"
99 #include "insn-config.h"
102 #include "alloc-pool.h"
106 /* Type of micro operation. */
107 enum micro_operation_type
109 MO_USE
, /* Use location (REG or MEM). */
110 MO_USE_NO_VAR
,/* Use location which is not associated with a variable
111 or the variable is not trackable. */
112 MO_SET
, /* Set location. */
113 MO_CLOBBER
, /* Clobber location. */
114 MO_CALL
, /* Call insn. */
115 MO_ADJUST
/* Adjust stack pointer. */
118 /* Where shall the note be emitted? BEFORE or AFTER the instruction. */
121 EMIT_NOTE_BEFORE_INSN
,
125 /* Structure holding information about micro operation. */
126 typedef struct micro_operation_def
128 /* Type of micro operation. */
129 enum micro_operation_type type
;
135 /* Stack adjustment. */
136 HOST_WIDE_INT adjust
;
139 /* The instruction which the micro operation is in. */
143 /* Structure for passing some other parameters to function
144 emit_note_insn_var_location. */
145 typedef struct emit_note_data_def
147 /* The instruction which the note will be emitted before/after. */
150 /* Where the note will be emitted (before/after insn)? */
151 enum emit_note_where where
;
154 /* Description of location of a part of a variable. The content of a physical
155 register is described by a chain of these structures.
156 The chains are pretty short (usually 1 or 2 elements) and thus
157 chain is the best data structure. */
158 typedef struct attrs_def
160 /* Pointer to next member of the list. */
161 struct attrs_def
*next
;
163 /* The rtx of register. */
166 /* The declaration corresponding to LOC. */
169 /* Offset from start of DECL. */
170 HOST_WIDE_INT offset
;
173 /* Structure holding the IN or OUT set for a basic block. */
174 typedef struct dataflow_set_def
176 /* Adjustment of stack offset. */
177 HOST_WIDE_INT stack_adjust
;
179 /* Attributes for registers (lists of attrs). */
180 attrs regs
[FIRST_PSEUDO_REGISTER
];
182 /* Variable locations. */
186 /* The structure (one for each basic block) containing the information
187 needed for variable tracking. */
188 typedef struct variable_tracking_info_def
190 /* Number of micro operations stored in the MOS array. */
193 /* The array of micro operations. */
194 micro_operation
*mos
;
196 /* The IN and OUT set for dataflow analysis. */
200 /* Has the block been visited in DFS? */
202 } *variable_tracking_info
;
204 /* Structure for chaining the locations. */
205 typedef struct location_chain_def
207 /* Next element in the chain. */
208 struct location_chain_def
*next
;
210 /* The location (REG or MEM). */
214 /* Structure describing one part of variable. */
215 typedef struct variable_part_def
217 /* Chain of locations of the part. */
218 location_chain loc_chain
;
220 /* Location which was last emitted to location list. */
223 /* The offset in the variable. */
224 HOST_WIDE_INT offset
;
227 /* Maximum number of location parts. */
228 #define MAX_VAR_PARTS 16
230 /* Structure describing where the variable is located. */
231 typedef struct variable_def
233 /* The declaration of the variable. */
236 /* Reference count. */
239 /* Number of variable parts. */
242 /* The variable parts. */
243 variable_part var_part
[MAX_VAR_PARTS
];
246 /* Hash function for DECL for VARIABLE_HTAB. */
247 #define VARIABLE_HASH_VAL(decl) (DECL_UID (decl))
249 /* Pointer to the BB's information specific to variable tracking pass. */
250 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
252 /* Alloc pool for struct attrs_def. */
253 static alloc_pool attrs_pool
;
255 /* Alloc pool for struct variable_def. */
256 static alloc_pool var_pool
;
258 /* Alloc pool for struct location_chain_def. */
259 static alloc_pool loc_chain_pool
;
261 /* Changed variables, notes will be emitted for them. */
262 static htab_t changed_variables
;
264 /* Shall notes be emitted? */
265 static bool emit_notes
;
267 /* Fake variable for stack pointer. */
268 tree frame_base_decl
;
270 /* Stack adjust caused by function prologue. */
271 static HOST_WIDE_INT frame_stack_adjust
;
273 /* Local function prototypes. */
274 static void stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
276 static void insn_stack_adjust_offset_pre_post (rtx
, HOST_WIDE_INT
*,
278 static void bb_stack_adjust_offset (basic_block
);
279 static HOST_WIDE_INT
prologue_stack_adjust (void);
280 static bool vt_stack_adjustments (void);
281 static rtx
adjust_stack_reference (rtx
, HOST_WIDE_INT
);
282 static hashval_t
variable_htab_hash (const void *);
283 static int variable_htab_eq (const void *, const void *);
284 static void variable_htab_free (void *);
286 static void init_attrs_list_set (attrs
*);
287 static void attrs_list_clear (attrs
*);
288 static attrs
attrs_list_member (attrs
, tree
, HOST_WIDE_INT
);
289 static void attrs_list_insert (attrs
*, tree
, HOST_WIDE_INT
, rtx
);
290 static void attrs_list_copy (attrs
*, attrs
);
291 static void attrs_list_union (attrs
*, attrs
);
293 static void vars_clear (htab_t
);
294 static variable
unshare_variable (dataflow_set
*set
, variable var
);
295 static int vars_copy_1 (void **, void *);
296 static void vars_copy (htab_t
, htab_t
);
297 static void var_reg_delete_and_set (dataflow_set
*, rtx
);
298 static void var_reg_delete (dataflow_set
*, rtx
);
299 static void var_regno_delete (dataflow_set
*, int);
300 static void var_mem_delete_and_set (dataflow_set
*, rtx
);
301 static void var_mem_delete (dataflow_set
*, rtx
);
303 static void dataflow_set_init (dataflow_set
*, int);
304 static void dataflow_set_clear (dataflow_set
*);
305 static void dataflow_set_copy (dataflow_set
*, dataflow_set
*);
306 static int variable_union_info_cmp_pos (const void *, const void *);
307 static int variable_union (void **, void *);
308 static void dataflow_set_union (dataflow_set
*, dataflow_set
*);
309 static bool variable_part_different_p (variable_part
*, variable_part
*);
310 static bool variable_different_p (variable
, variable
, bool);
311 static int dataflow_set_different_1 (void **, void *);
312 static int dataflow_set_different_2 (void **, void *);
313 static bool dataflow_set_different (dataflow_set
*, dataflow_set
*);
314 static void dataflow_set_destroy (dataflow_set
*);
316 static bool contains_symbol_ref (rtx
);
317 static bool track_expr_p (tree
);
318 static int count_uses (rtx
*, void *);
319 static void count_uses_1 (rtx
*, void *);
320 static void count_stores (rtx
, rtx
, void *);
321 static int add_uses (rtx
*, void *);
322 static void add_uses_1 (rtx
*, void *);
323 static void add_stores (rtx
, rtx
, void *);
324 static bool compute_bb_dataflow (basic_block
);
325 static void vt_find_locations (void);
327 static void dump_attrs_list (attrs
);
328 static int dump_variable (void **, void *);
329 static void dump_vars (htab_t
);
330 static void dump_dataflow_set (dataflow_set
*);
331 static void dump_dataflow_sets (void);
333 static void variable_was_changed (variable
, htab_t
);
334 static void set_frame_base_location (dataflow_set
*, rtx
);
335 static void set_variable_part (dataflow_set
*, rtx
, tree
, HOST_WIDE_INT
);
336 static void delete_variable_part (dataflow_set
*, rtx
, tree
, HOST_WIDE_INT
);
337 static int emit_note_insn_var_location (void **, void *);
338 static void emit_notes_for_changes (rtx
, enum emit_note_where
);
339 static int emit_notes_for_differences_1 (void **, void *);
340 static int emit_notes_for_differences_2 (void **, void *);
341 static void emit_notes_for_differences (rtx
, dataflow_set
*, dataflow_set
*);
342 static void emit_notes_in_bb (basic_block
);
343 static void vt_emit_notes (void);
345 static bool vt_get_decl_and_offset (rtx
, tree
*, HOST_WIDE_INT
*);
346 static void vt_add_function_parameters (void);
347 static void vt_initialize (void);
348 static void vt_finalize (void);
350 /* Given a SET, calculate the amount of stack adjustment it contains
351 PRE- and POST-modifying stack pointer.
352 This function is similar to stack_adjust_offset. */
355 stack_adjust_offset_pre_post (rtx pattern
, HOST_WIDE_INT
*pre
,
358 rtx src
= SET_SRC (pattern
);
359 rtx dest
= SET_DEST (pattern
);
362 if (dest
== stack_pointer_rtx
)
364 /* (set (reg sp) (plus (reg sp) (const_int))) */
365 code
= GET_CODE (src
);
366 if (! (code
== PLUS
|| code
== MINUS
)
367 || XEXP (src
, 0) != stack_pointer_rtx
368 || GET_CODE (XEXP (src
, 1)) != CONST_INT
)
372 *post
+= INTVAL (XEXP (src
, 1));
374 *post
-= INTVAL (XEXP (src
, 1));
376 else if (MEM_P (dest
))
378 /* (set (mem (pre_dec (reg sp))) (foo)) */
379 src
= XEXP (dest
, 0);
380 code
= GET_CODE (src
);
386 if (XEXP (src
, 0) == stack_pointer_rtx
)
388 rtx val
= XEXP (XEXP (src
, 1), 1);
389 /* We handle only adjustments by constant amount. */
390 gcc_assert (GET_CODE (XEXP (src
, 1)) == PLUS
&&
391 GET_CODE (val
) == CONST_INT
);
393 if (code
== PRE_MODIFY
)
394 *pre
-= INTVAL (val
);
396 *post
-= INTVAL (val
);
402 if (XEXP (src
, 0) == stack_pointer_rtx
)
404 *pre
+= GET_MODE_SIZE (GET_MODE (dest
));
410 if (XEXP (src
, 0) == stack_pointer_rtx
)
412 *post
+= GET_MODE_SIZE (GET_MODE (dest
));
418 if (XEXP (src
, 0) == stack_pointer_rtx
)
420 *pre
-= GET_MODE_SIZE (GET_MODE (dest
));
426 if (XEXP (src
, 0) == stack_pointer_rtx
)
428 *post
-= GET_MODE_SIZE (GET_MODE (dest
));
439 /* Given an INSN, calculate the amount of stack adjustment it contains
440 PRE- and POST-modifying stack pointer. */
443 insn_stack_adjust_offset_pre_post (rtx insn
, HOST_WIDE_INT
*pre
,
449 if (GET_CODE (PATTERN (insn
)) == SET
)
450 stack_adjust_offset_pre_post (PATTERN (insn
), pre
, post
);
451 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
452 || GET_CODE (PATTERN (insn
)) == SEQUENCE
)
456 /* There may be stack adjustments inside compound insns. Search
458 for ( i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
459 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
460 stack_adjust_offset_pre_post (XVECEXP (PATTERN (insn
), 0, i
),
465 /* Compute stack adjustment in basic block BB. */
468 bb_stack_adjust_offset (basic_block bb
)
470 HOST_WIDE_INT offset
;
473 offset
= VTI (bb
)->in
.stack_adjust
;
474 for (i
= 0; i
< VTI (bb
)->n_mos
; i
++)
476 if (VTI (bb
)->mos
[i
].type
== MO_ADJUST
)
477 offset
+= VTI (bb
)->mos
[i
].u
.adjust
;
478 else if (VTI (bb
)->mos
[i
].type
!= MO_CALL
)
480 if (MEM_P (VTI (bb
)->mos
[i
].u
.loc
))
482 VTI (bb
)->mos
[i
].u
.loc
483 = adjust_stack_reference (VTI (bb
)->mos
[i
].u
.loc
, -offset
);
487 VTI (bb
)->out
.stack_adjust
= offset
;
490 /* Compute stack adjustment caused by function prologue. */
493 prologue_stack_adjust (void)
495 HOST_WIDE_INT offset
= 0;
496 basic_block bb
= ENTRY_BLOCK_PTR
->next_bb
;
503 end
= NEXT_INSN (BB_END (bb
));
504 for (insn
= BB_HEAD (bb
); insn
!= end
; insn
= NEXT_INSN (insn
))
507 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_PROLOGUE_END
)
514 insn_stack_adjust_offset_pre_post (insn
, &tmp
, &tmp
);
522 /* Compute stack adjustments for all blocks by traversing DFS tree.
523 Return true when the adjustments on all incoming edges are consistent.
524 Heavily borrowed from flow_depth_first_order_compute. */
527 vt_stack_adjustments (void)
529 edge_iterator
*stack
;
532 /* Initialize entry block. */
533 VTI (ENTRY_BLOCK_PTR
)->visited
= true;
534 VTI (ENTRY_BLOCK_PTR
)->out
.stack_adjust
= frame_stack_adjust
;
536 /* Allocate stack for back-tracking up CFG. */
537 stack
= xmalloc ((n_basic_blocks
+ 1) * sizeof (edge_iterator
));
540 /* Push the first edge on to the stack. */
541 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
549 /* Look at the edge on the top of the stack. */
551 src
= ei_edge (ei
)->src
;
552 dest
= ei_edge (ei
)->dest
;
554 /* Check if the edge destination has been visited yet. */
555 if (!VTI (dest
)->visited
)
557 VTI (dest
)->visited
= true;
558 VTI (dest
)->in
.stack_adjust
= VTI (src
)->out
.stack_adjust
;
559 bb_stack_adjust_offset (dest
);
561 if (EDGE_COUNT (dest
->succs
) > 0)
562 /* Since the DEST node has been visited for the first
563 time, check its successors. */
564 stack
[sp
++] = ei_start (dest
->succs
);
568 /* Check whether the adjustments on the edges are the same. */
569 if (VTI (dest
)->in
.stack_adjust
!= VTI (src
)->out
.stack_adjust
)
575 if (! ei_one_before_end_p (ei
))
576 /* Go to the next edge. */
577 ei_next (&stack
[sp
- 1]);
579 /* Return to previous level if there are no more edges. */
588 /* Adjust stack reference MEM by ADJUSTMENT bytes and return the new rtx. */
591 adjust_stack_reference (rtx mem
, HOST_WIDE_INT adjustment
)
599 adjusted_mem
= copy_rtx (mem
);
600 XEXP (adjusted_mem
, 0) = replace_rtx (XEXP (adjusted_mem
, 0),
602 gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
603 GEN_INT (adjustment
)));
604 tmp
= simplify_rtx (XEXP (adjusted_mem
, 0));
606 XEXP (adjusted_mem
, 0) = tmp
;
611 /* The hash function for variable_htab, computes the hash value
612 from the declaration of variable X. */
615 variable_htab_hash (const void *x
)
617 const variable v
= (const variable
) x
;
619 return (VARIABLE_HASH_VAL (v
->decl
));
622 /* Compare the declaration of variable X with declaration Y. */
625 variable_htab_eq (const void *x
, const void *y
)
627 const variable v
= (const variable
) x
;
628 const tree decl
= (const tree
) y
;
630 return (VARIABLE_HASH_VAL (v
->decl
) == VARIABLE_HASH_VAL (decl
));
633 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
636 variable_htab_free (void *elem
)
639 variable var
= (variable
) elem
;
640 location_chain node
, next
;
642 gcc_assert (var
->refcount
> 0);
645 if (var
->refcount
> 0)
648 for (i
= 0; i
< var
->n_var_parts
; i
++)
650 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= next
)
653 pool_free (loc_chain_pool
, node
);
655 var
->var_part
[i
].loc_chain
= NULL
;
657 pool_free (var_pool
, var
);
660 /* Initialize the set (array) SET of attrs to empty lists. */
663 init_attrs_list_set (attrs
*set
)
667 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
671 /* Make the list *LISTP empty. */
674 attrs_list_clear (attrs
*listp
)
678 for (list
= *listp
; list
; list
= next
)
681 pool_free (attrs_pool
, list
);
686 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
689 attrs_list_member (attrs list
, tree decl
, HOST_WIDE_INT offset
)
691 for (; list
; list
= list
->next
)
692 if (list
->decl
== decl
&& list
->offset
== offset
)
697 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
700 attrs_list_insert (attrs
*listp
, tree decl
, HOST_WIDE_INT offset
, rtx loc
)
704 list
= pool_alloc (attrs_pool
);
707 list
->offset
= offset
;
712 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
715 attrs_list_copy (attrs
*dstp
, attrs src
)
719 attrs_list_clear (dstp
);
720 for (; src
; src
= src
->next
)
722 n
= pool_alloc (attrs_pool
);
725 n
->offset
= src
->offset
;
731 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
734 attrs_list_union (attrs
*dstp
, attrs src
)
736 for (; src
; src
= src
->next
)
738 if (!attrs_list_member (*dstp
, src
->decl
, src
->offset
))
739 attrs_list_insert (dstp
, src
->decl
, src
->offset
, src
->loc
);
743 /* Delete all variables from hash table VARS. */
746 vars_clear (htab_t vars
)
751 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
754 unshare_variable (dataflow_set
*set
, variable var
)
760 new_var
= pool_alloc (var_pool
);
761 new_var
->decl
= var
->decl
;
762 new_var
->refcount
= 1;
764 new_var
->n_var_parts
= var
->n_var_parts
;
766 for (i
= 0; i
< var
->n_var_parts
; i
++)
769 location_chain
*nextp
;
771 new_var
->var_part
[i
].offset
= var
->var_part
[i
].offset
;
772 nextp
= &new_var
->var_part
[i
].loc_chain
;
773 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
775 location_chain new_lc
;
777 new_lc
= pool_alloc (loc_chain_pool
);
779 new_lc
->loc
= node
->loc
;
782 nextp
= &new_lc
->next
;
785 /* We are at the basic block boundary when copying variable description
786 so set the CUR_LOC to be the first element of the chain. */
787 if (new_var
->var_part
[i
].loc_chain
)
788 new_var
->var_part
[i
].cur_loc
= new_var
->var_part
[i
].loc_chain
->loc
;
790 new_var
->var_part
[i
].cur_loc
= NULL
;
793 slot
= htab_find_slot_with_hash (set
->vars
, new_var
->decl
,
794 VARIABLE_HASH_VAL (new_var
->decl
),
800 /* Add a variable from *SLOT to hash table DATA and increase its reference
804 vars_copy_1 (void **slot
, void *data
)
806 htab_t dst
= (htab_t
) data
;
809 src
= *(variable
*) slot
;
812 dstp
= (variable
*) htab_find_slot_with_hash (dst
, src
->decl
,
813 VARIABLE_HASH_VAL (src
->decl
),
817 /* Continue traversing the hash table. */
821 /* Copy all variables from hash table SRC to hash table DST. */
824 vars_copy (htab_t dst
, htab_t src
)
827 htab_traverse (src
, vars_copy_1
, dst
);
830 /* Delete current content of register LOC in dataflow set SET
831 and set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
834 var_reg_delete_and_set (dataflow_set
*set
, rtx loc
)
836 tree decl
= REG_EXPR (loc
);
837 HOST_WIDE_INT offset
= REG_OFFSET (loc
);
841 nextp
= &set
->regs
[REGNO (loc
)];
842 for (node
= *nextp
; node
; node
= next
)
845 if (node
->decl
!= decl
|| node
->offset
!= offset
)
847 delete_variable_part (set
, node
->loc
, node
->decl
, node
->offset
);
848 pool_free (attrs_pool
, node
);
857 if (set
->regs
[REGNO (loc
)] == NULL
)
858 attrs_list_insert (&set
->regs
[REGNO (loc
)], decl
, offset
, loc
);
859 set_variable_part (set
, loc
, decl
, offset
);
862 /* Delete current content of register LOC in dataflow set SET. */
865 var_reg_delete (dataflow_set
*set
, rtx loc
)
867 attrs
*reg
= &set
->regs
[REGNO (loc
)];
870 for (node
= *reg
; node
; node
= next
)
873 delete_variable_part (set
, node
->loc
, node
->decl
, node
->offset
);
874 pool_free (attrs_pool
, node
);
879 /* Delete content of register with number REGNO in dataflow set SET. */
882 var_regno_delete (dataflow_set
*set
, int regno
)
884 attrs
*reg
= &set
->regs
[regno
];
887 for (node
= *reg
; node
; node
= next
)
890 delete_variable_part (set
, node
->loc
, node
->decl
, node
->offset
);
891 pool_free (attrs_pool
, node
);
896 /* Delete and set the location part of variable MEM_EXPR (LOC)
897 in dataflow set SET to LOC.
898 Adjust the address first if it is stack pointer based. */
901 var_mem_delete_and_set (dataflow_set
*set
, rtx loc
)
903 tree decl
= MEM_EXPR (loc
);
904 HOST_WIDE_INT offset
= MEM_OFFSET (loc
) ? INTVAL (MEM_OFFSET (loc
)) : 0;
906 set_variable_part (set
, loc
, decl
, offset
);
909 /* Delete the location part LOC from dataflow set SET.
910 Adjust the address first if it is stack pointer based. */
913 var_mem_delete (dataflow_set
*set
, rtx loc
)
915 tree decl
= MEM_EXPR (loc
);
916 HOST_WIDE_INT offset
= MEM_OFFSET (loc
) ? INTVAL (MEM_OFFSET (loc
)) : 0;
918 delete_variable_part (set
, loc
, decl
, offset
);
921 /* Initialize dataflow set SET to be empty.
922 VARS_SIZE is the initial size of hash table VARS. */
925 dataflow_set_init (dataflow_set
*set
, int vars_size
)
927 init_attrs_list_set (set
->regs
);
928 set
->vars
= htab_create (vars_size
, variable_htab_hash
, variable_htab_eq
,
930 set
->stack_adjust
= 0;
933 /* Delete the contents of dataflow set SET. */
936 dataflow_set_clear (dataflow_set
*set
)
940 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
941 attrs_list_clear (&set
->regs
[i
]);
943 vars_clear (set
->vars
);
946 /* Copy the contents of dataflow set SRC to DST. */
949 dataflow_set_copy (dataflow_set
*dst
, dataflow_set
*src
)
953 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
954 attrs_list_copy (&dst
->regs
[i
], src
->regs
[i
]);
956 vars_copy (dst
->vars
, src
->vars
);
957 dst
->stack_adjust
= src
->stack_adjust
;
960 /* Information for merging lists of locations for a given offset of variable.
962 struct variable_union_info
964 /* Node of the location chain. */
967 /* The sum of positions in the input chains. */
970 /* The position in the chains of SRC and DST dataflow sets. */
975 /* Compare function for qsort, order the structures by POS element. */
978 variable_union_info_cmp_pos (const void *n1
, const void *n2
)
980 const struct variable_union_info
*i1
= n1
;
981 const struct variable_union_info
*i2
= n2
;
983 if (i1
->pos
!= i2
->pos
)
984 return i1
->pos
- i2
->pos
;
986 return (i1
->pos_dst
- i2
->pos_dst
);
989 /* Compute union of location parts of variable *SLOT and the same variable
990 from hash table DATA. Compute "sorted" union of the location chains
991 for common offsets, i.e. the locations of a variable part are sorted by
992 a priority where the priority is the sum of the positions in the 2 chains
993 (if a location is only in one list the position in the second list is
994 defined to be larger than the length of the chains).
995 When we are updating the location parts the newest location is in the
996 beginning of the chain, so when we do the described "sorted" union
997 we keep the newest locations in the beginning. */
1000 variable_union (void **slot
, void *data
)
1002 variable src
, dst
, *dstp
;
1003 dataflow_set
*set
= (dataflow_set
*) data
;
1006 src
= *(variable
*) slot
;
1007 dstp
= (variable
*) htab_find_slot_with_hash (set
->vars
, src
->decl
,
1008 VARIABLE_HASH_VAL (src
->decl
),
1014 /* If CUR_LOC of some variable part is not the first element of
1015 the location chain we are going to change it so we have to make
1016 a copy of the variable. */
1017 for (k
= 0; k
< src
->n_var_parts
; k
++)
1019 gcc_assert (!src
->var_part
[k
].loc_chain
1020 == !src
->var_part
[k
].cur_loc
);
1021 if (src
->var_part
[k
].loc_chain
)
1023 gcc_assert (src
->var_part
[k
].cur_loc
);
1024 if (src
->var_part
[k
].cur_loc
!= src
->var_part
[k
].loc_chain
->loc
)
1028 if (k
< src
->n_var_parts
)
1029 unshare_variable (set
, src
);
1033 /* Continue traversing the hash table. */
1039 gcc_assert (src
->n_var_parts
);
1041 /* Count the number of location parts, result is K. */
1042 for (i
= 0, j
= 0, k
= 0;
1043 i
< src
->n_var_parts
&& j
< dst
->n_var_parts
; k
++)
1045 if (src
->var_part
[i
].offset
== dst
->var_part
[j
].offset
)
1050 else if (src
->var_part
[i
].offset
< dst
->var_part
[j
].offset
)
1055 k
+= src
->n_var_parts
- i
;
1056 k
+= dst
->n_var_parts
- j
;
1058 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
1059 thus there are at most MAX_VAR_PARTS different offsets. */
1060 gcc_assert (k
<= MAX_VAR_PARTS
);
1062 if (dst
->refcount
> 1 && dst
->n_var_parts
!= k
)
1063 dst
= unshare_variable (set
, dst
);
1065 i
= src
->n_var_parts
- 1;
1066 j
= dst
->n_var_parts
- 1;
1067 dst
->n_var_parts
= k
;
1069 for (k
--; k
>= 0; k
--)
1071 location_chain node
, node2
;
1073 if (i
>= 0 && j
>= 0
1074 && src
->var_part
[i
].offset
== dst
->var_part
[j
].offset
)
1076 /* Compute the "sorted" union of the chains, i.e. the locations which
1077 are in both chains go first, they are sorted by the sum of
1078 positions in the chains. */
1081 struct variable_union_info
*vui
;
1083 /* If DST is shared compare the location chains.
1084 If they are different we will modify the chain in DST with
1085 high probability so make a copy of DST. */
1086 if (dst
->refcount
> 1)
1088 for (node
= src
->var_part
[i
].loc_chain
,
1089 node2
= dst
->var_part
[j
].loc_chain
; node
&& node2
;
1090 node
= node
->next
, node2
= node2
->next
)
1092 if (!((REG_P (node2
->loc
)
1093 && REG_P (node
->loc
)
1094 && REGNO (node2
->loc
) == REGNO (node
->loc
))
1095 || rtx_equal_p (node2
->loc
, node
->loc
)))
1099 dst
= unshare_variable (set
, dst
);
1103 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1106 for (node
= dst
->var_part
[j
].loc_chain
; node
; node
= node
->next
)
1108 vui
= xcalloc (src_l
+ dst_l
, sizeof (struct variable_union_info
));
1110 /* Fill in the locations from DST. */
1111 for (node
= dst
->var_part
[j
].loc_chain
, jj
= 0; node
;
1112 node
= node
->next
, jj
++)
1115 vui
[jj
].pos_dst
= jj
;
1117 /* Value larger than a sum of 2 valid positions. */
1118 vui
[jj
].pos_src
= src_l
+ dst_l
;
1121 /* Fill in the locations from SRC. */
1123 for (node
= src
->var_part
[i
].loc_chain
, ii
= 0; node
;
1124 node
= node
->next
, ii
++)
1126 /* Find location from NODE. */
1127 for (jj
= 0; jj
< dst_l
; jj
++)
1129 if ((REG_P (vui
[jj
].lc
->loc
)
1130 && REG_P (node
->loc
)
1131 && REGNO (vui
[jj
].lc
->loc
) == REGNO (node
->loc
))
1132 || rtx_equal_p (vui
[jj
].lc
->loc
, node
->loc
))
1134 vui
[jj
].pos_src
= ii
;
1138 if (jj
>= dst_l
) /* The location has not been found. */
1140 location_chain new_node
;
1142 /* Copy the location from SRC. */
1143 new_node
= pool_alloc (loc_chain_pool
);
1144 new_node
->loc
= node
->loc
;
1145 vui
[n
].lc
= new_node
;
1146 vui
[n
].pos_src
= ii
;
1147 vui
[n
].pos_dst
= src_l
+ dst_l
;
1152 for (ii
= 0; ii
< src_l
+ dst_l
; ii
++)
1153 vui
[ii
].pos
= vui
[ii
].pos_src
+ vui
[ii
].pos_dst
;
1155 qsort (vui
, n
, sizeof (struct variable_union_info
),
1156 variable_union_info_cmp_pos
);
1158 /* Reconnect the nodes in sorted order. */
1159 for (ii
= 1; ii
< n
; ii
++)
1160 vui
[ii
- 1].lc
->next
= vui
[ii
].lc
;
1161 vui
[n
- 1].lc
->next
= NULL
;
1163 dst
->var_part
[k
].loc_chain
= vui
[0].lc
;
1164 dst
->var_part
[k
].offset
= dst
->var_part
[j
].offset
;
1170 else if ((i
>= 0 && j
>= 0
1171 && src
->var_part
[i
].offset
< dst
->var_part
[j
].offset
)
1174 dst
->var_part
[k
] = dst
->var_part
[j
];
1177 else if ((i
>= 0 && j
>= 0
1178 && src
->var_part
[i
].offset
> dst
->var_part
[j
].offset
)
1181 location_chain
*nextp
;
1183 /* Copy the chain from SRC. */
1184 nextp
= &dst
->var_part
[k
].loc_chain
;
1185 for (node
= src
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1187 location_chain new_lc
;
1189 new_lc
= pool_alloc (loc_chain_pool
);
1190 new_lc
->next
= NULL
;
1191 new_lc
->loc
= node
->loc
;
1194 nextp
= &new_lc
->next
;
1197 dst
->var_part
[k
].offset
= src
->var_part
[i
].offset
;
1201 /* We are at the basic block boundary when computing union
1202 so set the CUR_LOC to be the first element of the chain. */
1203 if (dst
->var_part
[k
].loc_chain
)
1204 dst
->var_part
[k
].cur_loc
= dst
->var_part
[k
].loc_chain
->loc
;
1206 dst
->var_part
[k
].cur_loc
= NULL
;
1209 /* Continue traversing the hash table. */
1213 /* Compute union of dataflow sets SRC and DST and store it to DST. */
1216 dataflow_set_union (dataflow_set
*dst
, dataflow_set
*src
)
1220 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1221 attrs_list_union (&dst
->regs
[i
], src
->regs
[i
]);
1223 htab_traverse (src
->vars
, variable_union
, dst
);
1226 /* Flag whether two dataflow sets being compared contain different data. */
1228 dataflow_set_different_value
;
1231 variable_part_different_p (variable_part
*vp1
, variable_part
*vp2
)
1233 location_chain lc1
, lc2
;
1235 for (lc1
= vp1
->loc_chain
; lc1
; lc1
= lc1
->next
)
1237 for (lc2
= vp2
->loc_chain
; lc2
; lc2
= lc2
->next
)
1239 if (REG_P (lc1
->loc
) && REG_P (lc2
->loc
))
1241 if (REGNO (lc1
->loc
) == REGNO (lc2
->loc
))
1244 if (rtx_equal_p (lc1
->loc
, lc2
->loc
))
1253 /* Return true if variables VAR1 and VAR2 are different.
1254 If COMPARE_CURRENT_LOCATION is true compare also the cur_loc of each
1258 variable_different_p (variable var1
, variable var2
,
1259 bool compare_current_location
)
1266 if (var1
->n_var_parts
!= var2
->n_var_parts
)
1269 for (i
= 0; i
< var1
->n_var_parts
; i
++)
1271 if (var1
->var_part
[i
].offset
!= var2
->var_part
[i
].offset
)
1273 if (compare_current_location
)
1275 if (!((REG_P (var1
->var_part
[i
].cur_loc
)
1276 && REG_P (var2
->var_part
[i
].cur_loc
)
1277 && (REGNO (var1
->var_part
[i
].cur_loc
)
1278 == REGNO (var2
->var_part
[i
].cur_loc
)))
1279 || rtx_equal_p (var1
->var_part
[i
].cur_loc
,
1280 var2
->var_part
[i
].cur_loc
)))
1283 if (variable_part_different_p (&var1
->var_part
[i
], &var2
->var_part
[i
]))
1285 if (variable_part_different_p (&var2
->var_part
[i
], &var1
->var_part
[i
]))
1291 /* Compare variable *SLOT with the same variable in hash table DATA
1292 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1295 dataflow_set_different_1 (void **slot
, void *data
)
1297 htab_t htab
= (htab_t
) data
;
1298 variable var1
, var2
;
1300 var1
= *(variable
*) slot
;
1301 var2
= htab_find_with_hash (htab
, var1
->decl
,
1302 VARIABLE_HASH_VAL (var1
->decl
));
1305 dataflow_set_different_value
= true;
1307 /* Stop traversing the hash table. */
1311 if (variable_different_p (var1
, var2
, false))
1313 dataflow_set_different_value
= true;
1315 /* Stop traversing the hash table. */
1319 /* Continue traversing the hash table. */
1323 /* Compare variable *SLOT with the same variable in hash table DATA
1324 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1327 dataflow_set_different_2 (void **slot
, void *data
)
1329 htab_t htab
= (htab_t
) data
;
1330 variable var1
, var2
;
1332 var1
= *(variable
*) slot
;
1333 var2
= htab_find_with_hash (htab
, var1
->decl
,
1334 VARIABLE_HASH_VAL (var1
->decl
));
1337 dataflow_set_different_value
= true;
1339 /* Stop traversing the hash table. */
1343 /* If both variables are defined they have been already checked for
1345 gcc_assert (!variable_different_p (var1
, var2
, false));
1347 /* Continue traversing the hash table. */
1351 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
1354 dataflow_set_different (dataflow_set
*old_set
, dataflow_set
*new_set
)
1356 dataflow_set_different_value
= false;
1358 htab_traverse (old_set
->vars
, dataflow_set_different_1
, new_set
->vars
);
1359 if (!dataflow_set_different_value
)
1361 /* We have compared the variables which are in both hash tables
1362 so now only check whether there are some variables in NEW_SET->VARS
1363 which are not in OLD_SET->VARS. */
1364 htab_traverse (new_set
->vars
, dataflow_set_different_2
, old_set
->vars
);
1366 return dataflow_set_different_value
;
1369 /* Free the contents of dataflow set SET. */
1372 dataflow_set_destroy (dataflow_set
*set
)
1376 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1377 attrs_list_clear (&set
->regs
[i
]);
1379 htab_delete (set
->vars
);
1383 /* Return true if RTL X contains a SYMBOL_REF. */
1386 contains_symbol_ref (rtx x
)
1395 code
= GET_CODE (x
);
1396 if (code
== SYMBOL_REF
)
1399 fmt
= GET_RTX_FORMAT (code
);
1400 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1404 if (contains_symbol_ref (XEXP (x
, i
)))
1407 else if (fmt
[i
] == 'E')
1410 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1411 if (contains_symbol_ref (XVECEXP (x
, i
, j
)))
1419 /* Shall EXPR be tracked? */
1422 track_expr_p (tree expr
)
1427 /* If EXPR is not a parameter or a variable do not track it. */
1428 if (TREE_CODE (expr
) != VAR_DECL
&& TREE_CODE (expr
) != PARM_DECL
)
1431 /* It also must have a name... */
1432 if (!DECL_NAME (expr
))
1435 /* ... and a RTL assigned to it. */
1436 decl_rtl
= DECL_RTL_IF_SET (expr
);
1440 /* If this expression is really a debug alias of some other declaration, we
1441 don't need to track this expression if the ultimate declaration is
1444 if (DECL_DEBUG_EXPR (realdecl
)
1445 && DECL_DEBUG_EXPR_IS_FROM (realdecl
))
1447 realdecl
= DECL_DEBUG_EXPR (realdecl
);
1448 /* ??? We don't yet know how to emit DW_OP_piece for variable
1449 that has been SRA'ed. */
1450 if (!DECL_P (realdecl
))
1454 /* Do not track EXPR if REALDECL it should be ignored for debugging
1456 if (DECL_IGNORED_P (realdecl
))
1459 /* Do not track global variables until we are able to emit correct location
1461 if (TREE_STATIC (realdecl
))
1464 /* When the EXPR is a DECL for alias of some variable (see example)
1465 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
1466 DECL_RTL contains SYMBOL_REF.
1469 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
1472 if (MEM_P (decl_rtl
)
1473 && contains_symbol_ref (XEXP (decl_rtl
, 0)))
1476 /* If RTX is a memory it should not be very large (because it would be
1477 an array or struct). */
1478 if (MEM_P (decl_rtl
))
1480 /* Do not track structures and arrays. */
1481 if (GET_MODE (decl_rtl
) == BLKmode
)
1483 if (MEM_SIZE (decl_rtl
)
1484 && INTVAL (MEM_SIZE (decl_rtl
)) > MAX_VAR_PARTS
)
1491 /* Count uses (register and memory references) LOC which will be tracked.
1492 INSN is instruction which the LOC is part of. */
1495 count_uses (rtx
*loc
, void *insn
)
1497 basic_block bb
= BLOCK_FOR_INSN ((rtx
) insn
);
1501 gcc_assert (REGNO (*loc
) < FIRST_PSEUDO_REGISTER
);
1504 else if (MEM_P (*loc
)
1506 && track_expr_p (MEM_EXPR (*loc
)))
1514 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1517 count_uses_1 (rtx
*x
, void *insn
)
1519 for_each_rtx (x
, count_uses
, insn
);
1522 /* Count stores (register and memory references) LOC which will be tracked.
1523 INSN is instruction which the LOC is part of. */
1526 count_stores (rtx loc
, rtx expr ATTRIBUTE_UNUSED
, void *insn
)
1528 count_uses (&loc
, insn
);
1531 /* Add uses (register and memory references) LOC which will be tracked
1532 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
1535 add_uses (rtx
*loc
, void *insn
)
1539 basic_block bb
= BLOCK_FOR_INSN ((rtx
) insn
);
1540 micro_operation
*mo
= VTI (bb
)->mos
+ VTI (bb
)->n_mos
++;
1542 mo
->type
= ((REG_EXPR (*loc
) && track_expr_p (REG_EXPR (*loc
)))
1543 ? MO_USE
: MO_USE_NO_VAR
);
1545 mo
->insn
= (rtx
) insn
;
1547 else if (MEM_P (*loc
)
1549 && track_expr_p (MEM_EXPR (*loc
)))
1551 basic_block bb
= BLOCK_FOR_INSN ((rtx
) insn
);
1552 micro_operation
*mo
= VTI (bb
)->mos
+ VTI (bb
)->n_mos
++;
1556 mo
->insn
= (rtx
) insn
;
1562 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1565 add_uses_1 (rtx
*x
, void *insn
)
1567 for_each_rtx (x
, add_uses
, insn
);
1570 /* Add stores (register and memory references) LOC which will be tracked
1571 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
1572 INSN is instruction which the LOC is part of. */
1575 add_stores (rtx loc
, rtx expr
, void *insn
)
1579 basic_block bb
= BLOCK_FOR_INSN ((rtx
) insn
);
1580 micro_operation
*mo
= VTI (bb
)->mos
+ VTI (bb
)->n_mos
++;
1582 mo
->type
= ((GET_CODE (expr
) != CLOBBER
&& REG_EXPR (loc
)
1583 && track_expr_p (REG_EXPR (loc
)))
1584 ? MO_SET
: MO_CLOBBER
);
1586 mo
->insn
= (rtx
) insn
;
1588 else if (MEM_P (loc
)
1590 && track_expr_p (MEM_EXPR (loc
)))
1592 basic_block bb
= BLOCK_FOR_INSN ((rtx
) insn
);
1593 micro_operation
*mo
= VTI (bb
)->mos
+ VTI (bb
)->n_mos
++;
1595 mo
->type
= GET_CODE (expr
) == CLOBBER
? MO_CLOBBER
: MO_SET
;
1597 mo
->insn
= (rtx
) insn
;
1601 /* Compute the changes of variable locations in the basic block BB. */
1604 compute_bb_dataflow (basic_block bb
)
1608 dataflow_set old_out
;
1609 dataflow_set
*in
= &VTI (bb
)->in
;
1610 dataflow_set
*out
= &VTI (bb
)->out
;
1612 dataflow_set_init (&old_out
, htab_elements (VTI (bb
)->out
.vars
) + 3);
1613 dataflow_set_copy (&old_out
, out
);
1614 dataflow_set_copy (out
, in
);
1616 n
= VTI (bb
)->n_mos
;
1617 for (i
= 0; i
< n
; i
++)
1619 switch (VTI (bb
)->mos
[i
].type
)
1622 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
1623 if (TEST_HARD_REG_BIT (call_used_reg_set
, r
))
1624 var_regno_delete (out
, r
);
1630 rtx loc
= VTI (bb
)->mos
[i
].u
.loc
;
1633 var_reg_delete_and_set (out
, loc
);
1634 else if (MEM_P (loc
))
1635 var_mem_delete_and_set (out
, loc
);
1642 rtx loc
= VTI (bb
)->mos
[i
].u
.loc
;
1645 var_reg_delete (out
, loc
);
1646 else if (MEM_P (loc
))
1647 var_mem_delete (out
, loc
);
1655 out
->stack_adjust
+= VTI (bb
)->mos
[i
].u
.adjust
;
1656 base
= gen_rtx_MEM (Pmode
, plus_constant (stack_pointer_rtx
,
1657 out
->stack_adjust
));
1658 set_frame_base_location (out
, base
);
1664 changed
= dataflow_set_different (&old_out
, out
);
1665 dataflow_set_destroy (&old_out
);
1669 /* Find the locations of variables in the whole function. */
1672 vt_find_locations (void)
1674 fibheap_t worklist
, pending
, fibheap_swap
;
1675 sbitmap visited
, in_worklist
, in_pending
, sbitmap_swap
;
1682 /* Compute reverse completion order of depth first search of the CFG
1683 so that the data-flow runs faster. */
1684 rc_order
= xmalloc (n_basic_blocks
* sizeof (int));
1685 bb_order
= xmalloc (last_basic_block
* sizeof (int));
1686 flow_depth_first_order_compute (NULL
, rc_order
);
1687 for (i
= 0; i
< n_basic_blocks
; i
++)
1688 bb_order
[rc_order
[i
]] = i
;
1691 worklist
= fibheap_new ();
1692 pending
= fibheap_new ();
1693 visited
= sbitmap_alloc (last_basic_block
);
1694 in_worklist
= sbitmap_alloc (last_basic_block
);
1695 in_pending
= sbitmap_alloc (last_basic_block
);
1696 sbitmap_zero (in_worklist
);
1699 fibheap_insert (pending
, bb_order
[bb
->index
], bb
);
1700 sbitmap_ones (in_pending
);
1702 while (!fibheap_empty (pending
))
1704 fibheap_swap
= pending
;
1706 worklist
= fibheap_swap
;
1707 sbitmap_swap
= in_pending
;
1708 in_pending
= in_worklist
;
1709 in_worklist
= sbitmap_swap
;
1711 sbitmap_zero (visited
);
1713 while (!fibheap_empty (worklist
))
1715 bb
= fibheap_extract_min (worklist
);
1716 RESET_BIT (in_worklist
, bb
->index
);
1717 if (!TEST_BIT (visited
, bb
->index
))
1722 SET_BIT (visited
, bb
->index
);
1724 /* Calculate the IN set as union of predecessor OUT sets. */
1725 dataflow_set_clear (&VTI (bb
)->in
);
1726 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1728 dataflow_set_union (&VTI (bb
)->in
, &VTI (e
->src
)->out
);
1731 changed
= compute_bb_dataflow (bb
);
1734 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1736 if (e
->dest
== EXIT_BLOCK_PTR
)
1742 if (TEST_BIT (visited
, e
->dest
->index
))
1744 if (!TEST_BIT (in_pending
, e
->dest
->index
))
1746 /* Send E->DEST to next round. */
1747 SET_BIT (in_pending
, e
->dest
->index
);
1748 fibheap_insert (pending
,
1749 bb_order
[e
->dest
->index
],
1753 else if (!TEST_BIT (in_worklist
, e
->dest
->index
))
1755 /* Add E->DEST to current round. */
1756 SET_BIT (in_worklist
, e
->dest
->index
);
1757 fibheap_insert (worklist
, bb_order
[e
->dest
->index
],
1767 fibheap_delete (worklist
);
1768 fibheap_delete (pending
);
1769 sbitmap_free (visited
);
1770 sbitmap_free (in_worklist
);
1771 sbitmap_free (in_pending
);
1774 /* Print the content of the LIST to dump file. */
1777 dump_attrs_list (attrs list
)
1779 for (; list
; list
= list
->next
)
1781 print_mem_expr (dump_file
, list
->decl
);
1782 fprintf (dump_file
, "+");
1783 fprintf (dump_file
, HOST_WIDE_INT_PRINT_DEC
, list
->offset
);
1785 fprintf (dump_file
, "\n");
1788 /* Print the information about variable *SLOT to dump file. */
1791 dump_variable (void **slot
, void *data ATTRIBUTE_UNUSED
)
1793 variable var
= *(variable
*) slot
;
1795 location_chain node
;
1797 fprintf (dump_file
, " name: %s\n",
1798 IDENTIFIER_POINTER (DECL_NAME (var
->decl
)));
1799 for (i
= 0; i
< var
->n_var_parts
; i
++)
1801 fprintf (dump_file
, " offset %ld\n",
1802 (long) var
->var_part
[i
].offset
);
1803 for (node
= var
->var_part
[i
].loc_chain
; node
; node
= node
->next
)
1805 fprintf (dump_file
, " ");
1806 print_rtl_single (dump_file
, node
->loc
);
1810 /* Continue traversing the hash table. */
1814 /* Print the information about variables from hash table VARS to dump file. */
1817 dump_vars (htab_t vars
)
1819 if (htab_elements (vars
) > 0)
1821 fprintf (dump_file
, "Variables:\n");
1822 htab_traverse (vars
, dump_variable
, NULL
);
1826 /* Print the dataflow set SET to dump file. */
1829 dump_dataflow_set (dataflow_set
*set
)
1833 fprintf (dump_file
, "Stack adjustment: ");
1834 fprintf (dump_file
, HOST_WIDE_INT_PRINT_DEC
, set
->stack_adjust
);
1835 fprintf (dump_file
, "\n");
1836 for (i
= 1; i
< FIRST_PSEUDO_REGISTER
; i
++)
1840 fprintf (dump_file
, "Reg %d:", i
);
1841 dump_attrs_list (set
->regs
[i
]);
1844 dump_vars (set
->vars
);
1845 fprintf (dump_file
, "\n");
1848 /* Print the IN and OUT sets for each basic block to dump file. */
1851 dump_dataflow_sets (void)
1857 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
1858 fprintf (dump_file
, "IN:\n");
1859 dump_dataflow_set (&VTI (bb
)->in
);
1860 fprintf (dump_file
, "OUT:\n");
1861 dump_dataflow_set (&VTI (bb
)->out
);
1865 /* Add variable VAR to the hash table of changed variables and
1866 if it has no locations delete it from hash table HTAB. */
1869 variable_was_changed (variable var
, htab_t htab
)
1871 hashval_t hash
= VARIABLE_HASH_VAL (var
->decl
);
1877 slot
= (variable
*) htab_find_slot_with_hash (changed_variables
,
1878 var
->decl
, hash
, INSERT
);
1880 if (htab
&& var
->n_var_parts
== 0)
1885 empty_var
= pool_alloc (var_pool
);
1886 empty_var
->decl
= var
->decl
;
1887 empty_var
->refcount
= 1;
1888 empty_var
->n_var_parts
= 0;
1891 old
= htab_find_slot_with_hash (htab
, var
->decl
, hash
,
1894 htab_clear_slot (htab
, old
);
1904 if (var
->n_var_parts
== 0)
1906 void **slot
= htab_find_slot_with_hash (htab
, var
->decl
, hash
,
1909 htab_clear_slot (htab
, slot
);
1914 /* Set the location of frame_base_decl to LOC in dataflow set SET. This
1915 function expects that frame_base_decl has already one location for offset 0
1916 in the variable table. */
1919 set_frame_base_location (dataflow_set
*set
, rtx loc
)
1923 var
= htab_find_with_hash (set
->vars
, frame_base_decl
,
1924 VARIABLE_HASH_VAL (frame_base_decl
));
1926 gcc_assert (var
->n_var_parts
== 1);
1927 gcc_assert (!var
->var_part
[0].offset
);
1928 gcc_assert (var
->var_part
[0].loc_chain
);
1930 /* If frame_base_decl is shared unshare it first. */
1931 if (var
->refcount
> 1)
1932 var
= unshare_variable (set
, var
);
1934 var
->var_part
[0].loc_chain
->loc
= loc
;
1935 var
->var_part
[0].cur_loc
= loc
;
1936 variable_was_changed (var
, set
->vars
);
1939 /* Set the part of variable's location in the dataflow set SET. The variable
1940 part is specified by variable's declaration DECL and offset OFFSET and the
1941 part's location by LOC. */
1944 set_variable_part (dataflow_set
*set
, rtx loc
, tree decl
, HOST_WIDE_INT offset
)
1947 location_chain node
, next
;
1948 location_chain
*nextp
;
1952 slot
= htab_find_slot_with_hash (set
->vars
, decl
,
1953 VARIABLE_HASH_VAL (decl
), INSERT
);
1956 /* Create new variable information. */
1957 var
= pool_alloc (var_pool
);
1960 var
->n_var_parts
= 1;
1961 var
->var_part
[0].offset
= offset
;
1962 var
->var_part
[0].loc_chain
= NULL
;
1963 var
->var_part
[0].cur_loc
= NULL
;
1969 var
= (variable
) *slot
;
1971 /* Find the location part. */
1973 high
= var
->n_var_parts
;
1976 pos
= (low
+ high
) / 2;
1977 if (var
->var_part
[pos
].offset
< offset
)
1984 if (pos
< var
->n_var_parts
&& var
->var_part
[pos
].offset
== offset
)
1986 node
= var
->var_part
[pos
].loc_chain
;
1989 && ((REG_P (node
->loc
) && REG_P (loc
)
1990 && REGNO (node
->loc
) == REGNO (loc
))
1991 || rtx_equal_p (node
->loc
, loc
)))
1993 /* LOC is in the beginning of the chain so we have nothing
1999 /* We have to make a copy of a shared variable. */
2000 if (var
->refcount
> 1)
2001 var
= unshare_variable (set
, var
);
2006 /* We have not found the location part, new one will be created. */
2008 /* We have to make a copy of the shared variable. */
2009 if (var
->refcount
> 1)
2010 var
= unshare_variable (set
, var
);
2012 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2013 thus there are at most MAX_VAR_PARTS different offsets. */
2014 gcc_assert (var
->n_var_parts
< MAX_VAR_PARTS
);
2016 /* We have to move the elements of array starting at index low to the
2018 for (high
= var
->n_var_parts
; high
> low
; high
--)
2019 var
->var_part
[high
] = var
->var_part
[high
- 1];
2022 var
->var_part
[pos
].offset
= offset
;
2023 var
->var_part
[pos
].loc_chain
= NULL
;
2024 var
->var_part
[pos
].cur_loc
= NULL
;
2028 /* Delete the location from the list. */
2029 nextp
= &var
->var_part
[pos
].loc_chain
;
2030 for (node
= var
->var_part
[pos
].loc_chain
; node
; node
= next
)
2033 if ((REG_P (node
->loc
) && REG_P (loc
)
2034 && REGNO (node
->loc
) == REGNO (loc
))
2035 || rtx_equal_p (node
->loc
, loc
))
2037 pool_free (loc_chain_pool
, node
);
2042 nextp
= &node
->next
;
2045 /* Add the location to the beginning. */
2046 node
= pool_alloc (loc_chain_pool
);
2048 node
->next
= var
->var_part
[pos
].loc_chain
;
2049 var
->var_part
[pos
].loc_chain
= node
;
2051 /* If no location was emitted do so. */
2052 if (var
->var_part
[pos
].cur_loc
== NULL
)
2054 var
->var_part
[pos
].cur_loc
= loc
;
2055 variable_was_changed (var
, set
->vars
);
2059 /* Delete the part of variable's location from dataflow set SET. The variable
2060 part is specified by variable's declaration DECL and offset OFFSET and the
2061 part's location by LOC. */
2064 delete_variable_part (dataflow_set
*set
, rtx loc
, tree decl
,
2065 HOST_WIDE_INT offset
)
2070 slot
= htab_find_slot_with_hash (set
->vars
, decl
, VARIABLE_HASH_VAL (decl
),
2074 variable var
= (variable
) *slot
;
2076 /* Find the location part. */
2078 high
= var
->n_var_parts
;
2081 pos
= (low
+ high
) / 2;
2082 if (var
->var_part
[pos
].offset
< offset
)
2089 if (pos
< var
->n_var_parts
&& var
->var_part
[pos
].offset
== offset
)
2091 location_chain node
, next
;
2092 location_chain
*nextp
;
2095 if (var
->refcount
> 1)
2097 /* If the variable contains the location part we have to
2098 make a copy of the variable. */
2099 for (node
= var
->var_part
[pos
].loc_chain
; node
;
2102 if ((REG_P (node
->loc
) && REG_P (loc
)
2103 && REGNO (node
->loc
) == REGNO (loc
))
2104 || rtx_equal_p (node
->loc
, loc
))
2106 var
= unshare_variable (set
, var
);
2112 /* Delete the location part. */
2113 nextp
= &var
->var_part
[pos
].loc_chain
;
2114 for (node
= *nextp
; node
; node
= next
)
2117 if ((REG_P (node
->loc
) && REG_P (loc
)
2118 && REGNO (node
->loc
) == REGNO (loc
))
2119 || rtx_equal_p (node
->loc
, loc
))
2121 pool_free (loc_chain_pool
, node
);
2126 nextp
= &node
->next
;
2129 /* If we have deleted the location which was last emitted
2130 we have to emit new location so add the variable to set
2131 of changed variables. */
2132 if (var
->var_part
[pos
].cur_loc
2134 && REG_P (var
->var_part
[pos
].cur_loc
)
2135 && REGNO (loc
) == REGNO (var
->var_part
[pos
].cur_loc
))
2136 || rtx_equal_p (loc
, var
->var_part
[pos
].cur_loc
)))
2139 if (var
->var_part
[pos
].loc_chain
)
2140 var
->var_part
[pos
].cur_loc
= var
->var_part
[pos
].loc_chain
->loc
;
2145 if (var
->var_part
[pos
].loc_chain
== NULL
)
2148 while (pos
< var
->n_var_parts
)
2150 var
->var_part
[pos
] = var
->var_part
[pos
+ 1];
2155 variable_was_changed (var
, set
->vars
);
2160 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
2161 additional parameters: WHERE specifies whether the note shall be emitted
2162 before of after instruction INSN. */
2165 emit_note_insn_var_location (void **varp
, void *data
)
2167 variable var
= *(variable
*) varp
;
2168 rtx insn
= ((emit_note_data
*)data
)->insn
;
2169 enum emit_note_where where
= ((emit_note_data
*)data
)->where
;
2173 HOST_WIDE_INT last_limit
;
2174 tree type_size_unit
;
2176 gcc_assert (var
->decl
);
2180 for (i
= 0; i
< var
->n_var_parts
; i
++)
2182 if (last_limit
< var
->var_part
[i
].offset
)
2188 = (var
->var_part
[i
].offset
2189 + GET_MODE_SIZE (GET_MODE (var
->var_part
[i
].loc_chain
->loc
)));
2191 type_size_unit
= TYPE_SIZE_UNIT (TREE_TYPE (var
->decl
));
2192 if ((unsigned HOST_WIDE_INT
) last_limit
< TREE_INT_CST_LOW (type_size_unit
))
2195 if (where
== EMIT_NOTE_AFTER_INSN
)
2196 note
= emit_note_after (NOTE_INSN_VAR_LOCATION
, insn
);
2198 note
= emit_note_before (NOTE_INSN_VAR_LOCATION
, insn
);
2202 NOTE_VAR_LOCATION (note
) = gen_rtx_VAR_LOCATION (VOIDmode
, var
->decl
,
2205 else if (var
->n_var_parts
== 1)
2208 = gen_rtx_EXPR_LIST (VOIDmode
,
2209 var
->var_part
[0].loc_chain
->loc
,
2210 GEN_INT (var
->var_part
[0].offset
));
2212 NOTE_VAR_LOCATION (note
) = gen_rtx_VAR_LOCATION (VOIDmode
, var
->decl
,
2215 else if (var
->n_var_parts
)
2217 rtx argp
[MAX_VAR_PARTS
];
2220 for (i
= 0; i
< var
->n_var_parts
; i
++)
2221 argp
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, var
->var_part
[i
].loc_chain
->loc
,
2222 GEN_INT (var
->var_part
[i
].offset
));
2223 parallel
= gen_rtx_PARALLEL (VOIDmode
,
2224 gen_rtvec_v (var
->n_var_parts
, argp
));
2225 NOTE_VAR_LOCATION (note
) = gen_rtx_VAR_LOCATION (VOIDmode
, var
->decl
,
2229 htab_clear_slot (changed_variables
, varp
);
2231 /* When there are no location parts the variable has been already
2232 removed from hash table and a new empty variable was created.
2233 Free the empty variable. */
2234 if (var
->n_var_parts
== 0)
2236 pool_free (var_pool
, var
);
2239 /* Continue traversing the hash table. */
2243 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
2244 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
2245 shall be emitted before of after instruction INSN. */
2248 emit_notes_for_changes (rtx insn
, enum emit_note_where where
)
2250 emit_note_data data
;
2254 htab_traverse (changed_variables
, emit_note_insn_var_location
, &data
);
2257 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
2258 same variable in hash table DATA or is not there at all. */
2261 emit_notes_for_differences_1 (void **slot
, void *data
)
2263 htab_t new_vars
= (htab_t
) data
;
2264 variable old_var
, new_var
;
2266 old_var
= *(variable
*) slot
;
2267 new_var
= htab_find_with_hash (new_vars
, old_var
->decl
,
2268 VARIABLE_HASH_VAL (old_var
->decl
));
2272 /* Variable has disappeared. */
2275 empty_var
= pool_alloc (var_pool
);
2276 empty_var
->decl
= old_var
->decl
;
2277 empty_var
->refcount
= 1;
2278 empty_var
->n_var_parts
= 0;
2279 variable_was_changed (empty_var
, NULL
);
2281 else if (variable_different_p (old_var
, new_var
, true))
2283 variable_was_changed (new_var
, NULL
);
2286 /* Continue traversing the hash table. */
2290 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
2294 emit_notes_for_differences_2 (void **slot
, void *data
)
2296 htab_t old_vars
= (htab_t
) data
;
2297 variable old_var
, new_var
;
2299 new_var
= *(variable
*) slot
;
2300 old_var
= htab_find_with_hash (old_vars
, new_var
->decl
,
2301 VARIABLE_HASH_VAL (new_var
->decl
));
2304 /* Variable has appeared. */
2305 variable_was_changed (new_var
, NULL
);
2308 /* Continue traversing the hash table. */
2312 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
2316 emit_notes_for_differences (rtx insn
, dataflow_set
*old_set
,
2317 dataflow_set
*new_set
)
2319 htab_traverse (old_set
->vars
, emit_notes_for_differences_1
, new_set
->vars
);
2320 htab_traverse (new_set
->vars
, emit_notes_for_differences_2
, old_set
->vars
);
2321 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
);
2324 /* Emit the notes for changes of location parts in the basic block BB. */
2327 emit_notes_in_bb (basic_block bb
)
2332 dataflow_set_init (&set
, htab_elements (VTI (bb
)->in
.vars
) + 3);
2333 dataflow_set_copy (&set
, &VTI (bb
)->in
);
2335 for (i
= 0; i
< VTI (bb
)->n_mos
; i
++)
2337 rtx insn
= VTI (bb
)->mos
[i
].insn
;
2339 switch (VTI (bb
)->mos
[i
].type
)
2345 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
2346 if (TEST_HARD_REG_BIT (call_used_reg_set
, r
))
2348 var_regno_delete (&set
, r
);
2350 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
);
2357 rtx loc
= VTI (bb
)->mos
[i
].u
.loc
;
2360 var_reg_delete_and_set (&set
, loc
);
2362 var_mem_delete_and_set (&set
, loc
);
2364 if (VTI (bb
)->mos
[i
].type
== MO_USE
)
2365 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
);
2367 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
);
2374 rtx loc
= VTI (bb
)->mos
[i
].u
.loc
;
2377 var_reg_delete (&set
, loc
);
2379 var_mem_delete (&set
, loc
);
2381 if (VTI (bb
)->mos
[i
].type
== MO_USE_NO_VAR
)
2382 emit_notes_for_changes (insn
, EMIT_NOTE_BEFORE_INSN
);
2384 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
);
2392 set
.stack_adjust
+= VTI (bb
)->mos
[i
].u
.adjust
;
2393 base
= gen_rtx_MEM (Pmode
, plus_constant (stack_pointer_rtx
,
2395 set_frame_base_location (&set
, base
);
2396 emit_notes_for_changes (insn
, EMIT_NOTE_AFTER_INSN
);
2401 dataflow_set_destroy (&set
);
2404 /* Emit notes for the whole function. */
2407 vt_emit_notes (void)
2410 dataflow_set
*last_out
;
2413 gcc_assert (!htab_elements (changed_variables
));
2415 /* Enable emitting notes by functions (mainly by set_variable_part and
2416 delete_variable_part). */
2419 dataflow_set_init (&empty
, 7);
2424 /* Emit the notes for changes of variable locations between two
2425 subsequent basic blocks. */
2426 emit_notes_for_differences (BB_HEAD (bb
), last_out
, &VTI (bb
)->in
);
2428 /* Emit the notes for the changes in the basic block itself. */
2429 emit_notes_in_bb (bb
);
2431 last_out
= &VTI (bb
)->out
;
2433 dataflow_set_destroy (&empty
);
2437 /* If there is a declaration and offset associated with register/memory RTL
2438 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
2441 vt_get_decl_and_offset (rtx rtl
, tree
*declp
, HOST_WIDE_INT
*offsetp
)
2445 if (REG_ATTRS (rtl
))
2447 *declp
= REG_EXPR (rtl
);
2448 *offsetp
= REG_OFFSET (rtl
);
2452 else if (MEM_P (rtl
))
2454 if (MEM_ATTRS (rtl
))
2456 *declp
= MEM_EXPR (rtl
);
2457 *offsetp
= MEM_OFFSET (rtl
) ? INTVAL (MEM_OFFSET (rtl
)) : 0;
2464 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
2467 vt_add_function_parameters (void)
2471 for (parm
= DECL_ARGUMENTS (current_function_decl
);
2472 parm
; parm
= TREE_CHAIN (parm
))
2474 rtx decl_rtl
= DECL_RTL_IF_SET (parm
);
2475 rtx incoming
= DECL_INCOMING_RTL (parm
);
2477 HOST_WIDE_INT offset
;
2480 if (TREE_CODE (parm
) != PARM_DECL
)
2483 if (!DECL_NAME (parm
))
2486 if (!decl_rtl
|| !incoming
)
2489 if (GET_MODE (decl_rtl
) == BLKmode
|| GET_MODE (incoming
) == BLKmode
)
2492 if (!vt_get_decl_and_offset (incoming
, &decl
, &offset
))
2493 if (!vt_get_decl_and_offset (decl_rtl
, &decl
, &offset
))
2499 gcc_assert (parm
== decl
);
2501 incoming
= eliminate_regs (incoming
, 0, NULL_RTX
);
2502 out
= &VTI (ENTRY_BLOCK_PTR
)->out
;
2504 if (REG_P (incoming
))
2506 gcc_assert (REGNO (incoming
) < FIRST_PSEUDO_REGISTER
);
2507 attrs_list_insert (&out
->regs
[REGNO (incoming
)],
2508 parm
, offset
, incoming
);
2509 set_variable_part (out
, incoming
, parm
, offset
);
2511 else if (MEM_P (incoming
))
2513 set_variable_part (out
, incoming
, parm
, offset
);
2518 /* Allocate and initialize the data structures for variable tracking
2519 and parse the RTL to get the micro operations. */
2522 vt_initialize (void)
2526 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def
));
2531 HOST_WIDE_INT pre
, post
;
2533 /* Count the number of micro operations. */
2534 VTI (bb
)->n_mos
= 0;
2535 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
));
2536 insn
= NEXT_INSN (insn
))
2540 if (!frame_pointer_needed
)
2542 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
2548 note_uses (&PATTERN (insn
), count_uses_1
, insn
);
2549 note_stores (PATTERN (insn
), count_stores
, insn
);
2555 /* Add the micro-operations to the array. */
2556 VTI (bb
)->mos
= xmalloc (VTI (bb
)->n_mos
2557 * sizeof (struct micro_operation_def
));
2558 VTI (bb
)->n_mos
= 0;
2559 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
));
2560 insn
= NEXT_INSN (insn
))
2566 if (!frame_pointer_needed
)
2568 insn_stack_adjust_offset_pre_post (insn
, &pre
, &post
);
2571 micro_operation
*mo
= VTI (bb
)->mos
+ VTI (bb
)->n_mos
++;
2573 mo
->type
= MO_ADJUST
;
2579 n1
= VTI (bb
)->n_mos
;
2580 note_uses (&PATTERN (insn
), add_uses_1
, insn
);
2581 n2
= VTI (bb
)->n_mos
- 1;
2583 /* Order the MO_USEs to be before MO_USE_NO_VARs. */
2586 while (n1
< n2
&& VTI (bb
)->mos
[n1
].type
== MO_USE
)
2588 while (n1
< n2
&& VTI (bb
)->mos
[n2
].type
== MO_USE_NO_VAR
)
2594 sw
= VTI (bb
)->mos
[n1
];
2595 VTI (bb
)->mos
[n1
] = VTI (bb
)->mos
[n2
];
2596 VTI (bb
)->mos
[n2
] = sw
;
2602 micro_operation
*mo
= VTI (bb
)->mos
+ VTI (bb
)->n_mos
++;
2608 n1
= VTI (bb
)->n_mos
;
2609 note_stores (PATTERN (insn
), add_stores
, insn
);
2610 n2
= VTI (bb
)->n_mos
- 1;
2612 /* Order the MO_SETs to be before MO_CLOBBERs. */
2615 while (n1
< n2
&& VTI (bb
)->mos
[n1
].type
== MO_SET
)
2617 while (n1
< n2
&& VTI (bb
)->mos
[n2
].type
== MO_CLOBBER
)
2623 sw
= VTI (bb
)->mos
[n1
];
2624 VTI (bb
)->mos
[n1
] = VTI (bb
)->mos
[n2
];
2625 VTI (bb
)->mos
[n2
] = sw
;
2629 if (!frame_pointer_needed
&& post
)
2631 micro_operation
*mo
= VTI (bb
)->mos
+ VTI (bb
)->n_mos
++;
2633 mo
->type
= MO_ADJUST
;
2634 mo
->u
.adjust
= post
;
2641 /* Init the IN and OUT sets. */
2644 VTI (bb
)->visited
= false;
2645 dataflow_set_init (&VTI (bb
)->in
, 7);
2646 dataflow_set_init (&VTI (bb
)->out
, 7);
2649 attrs_pool
= create_alloc_pool ("attrs_def pool",
2650 sizeof (struct attrs_def
), 1024);
2651 var_pool
= create_alloc_pool ("variable_def pool",
2652 sizeof (struct variable_def
), 64);
2653 loc_chain_pool
= create_alloc_pool ("location_chain_def pool",
2654 sizeof (struct location_chain_def
),
2656 changed_variables
= htab_create (10, variable_htab_hash
, variable_htab_eq
,
2658 vt_add_function_parameters ();
2660 if (!frame_pointer_needed
)
2664 /* Create fake variable for tracking stack pointer changes. */
2665 frame_base_decl
= make_node (VAR_DECL
);
2666 DECL_NAME (frame_base_decl
) = get_identifier ("___frame_base_decl");
2667 TREE_TYPE (frame_base_decl
) = char_type_node
;
2668 DECL_ARTIFICIAL (frame_base_decl
) = 1;
2669 DECL_IGNORED_P (frame_base_decl
) = 1;
2671 /* Set its initial "location". */
2672 frame_stack_adjust
= -prologue_stack_adjust ();
2673 base
= gen_rtx_MEM (Pmode
, plus_constant (stack_pointer_rtx
,
2674 frame_stack_adjust
));
2675 set_variable_part (&VTI (ENTRY_BLOCK_PTR
)->out
, base
, frame_base_decl
, 0);
2679 frame_base_decl
= NULL
;
2683 /* Free the data structures needed for variable tracking. */
2692 free (VTI (bb
)->mos
);
2697 dataflow_set_destroy (&VTI (bb
)->in
);
2698 dataflow_set_destroy (&VTI (bb
)->out
);
2700 free_aux_for_blocks ();
2701 free_alloc_pool (attrs_pool
);
2702 free_alloc_pool (var_pool
);
2703 free_alloc_pool (loc_chain_pool
);
2704 htab_delete (changed_variables
);
2707 /* The entry point to variable tracking pass. */
2710 variable_tracking_main (void)
2712 if (n_basic_blocks
> 500 && n_edges
/ n_basic_blocks
>= 20)
2715 mark_dfs_back_edges ();
2717 if (!frame_pointer_needed
)
2719 if (!vt_stack_adjustments ())
2726 vt_find_locations ();
2731 dump_dataflow_sets ();
2732 dump_flow_info (dump_file
);