1 /* real.c - software floating point emulation.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
5 Re-written by Richard Henderson <rth@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
26 #include "coretypes.h"
33 /* The floating point model used internally is not exactly IEEE 754
34 compliant, and close to the description in the ISO C99 standard,
35 section 5.2.4.2.2 Characteristics of floating types.
39 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
43 b = base or radix, here always 2
45 p = precision (the number of base-b digits in the significand)
46 f_k = the digits of the significand.
48 We differ from typical IEEE 754 encodings in that the entire
49 significand is fractional. Normalized significands are in the
52 A requirement of the model is that P be larger than the largest
53 supported target floating-point type by at least 2 bits. This gives
54 us proper rounding when we truncate to the target type. In addition,
55 E must be large enough to hold the smallest supported denormal number
58 Both of these requirements are easily satisfied. The largest target
59 significand is 113 bits; we store at least 160. The smallest
60 denormal number fits in 17 exponent bits; we store 27.
62 Note that the decimal string conversion routines are sensitive to
63 rounding errors. Since the raw arithmetic routines do not themselves
64 have guard digits or rounding, the computation of 10**exp can
65 accumulate more than a few digits of error. The previous incarnation
66 of real.c successfully used a 144-bit fraction; given the current
67 layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits.
69 Target floating point models that use base 16 instead of base 2
70 (i.e. IBM 370), are handled during round_for_format, in which we
71 canonicalize the exponent to be a multiple of 4 (log2(16)), and
72 adjust the significand to match. */
75 /* Used to classify two numbers simultaneously. */
76 #define CLASS2(A, B) ((A) << 2 | (B))
78 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
79 #error "Some constant folding done by hand to avoid shift count warnings"
82 static void get_zero (REAL_VALUE_TYPE
*, int);
83 static void get_canonical_qnan (REAL_VALUE_TYPE
*, int);
84 static void get_canonical_snan (REAL_VALUE_TYPE
*, int);
85 static void get_inf (REAL_VALUE_TYPE
*, int);
86 static bool sticky_rshift_significand (REAL_VALUE_TYPE
*,
87 const REAL_VALUE_TYPE
*, unsigned int);
88 static void rshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
90 static void lshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
92 static void lshift_significand_1 (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
93 static bool add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*,
94 const REAL_VALUE_TYPE
*);
95 static bool sub_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
96 const REAL_VALUE_TYPE
*, int);
97 static void neg_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
98 static int cmp_significands (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
99 static int cmp_significand_0 (const REAL_VALUE_TYPE
*);
100 static void set_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
101 static void clear_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
102 static bool test_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
103 static void clear_significand_below (REAL_VALUE_TYPE
*, unsigned int);
104 static bool div_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
105 const REAL_VALUE_TYPE
*);
106 static void normalize (REAL_VALUE_TYPE
*);
108 static bool do_add (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
109 const REAL_VALUE_TYPE
*, int);
110 static bool do_multiply (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
111 const REAL_VALUE_TYPE
*);
112 static bool do_divide (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
113 const REAL_VALUE_TYPE
*);
114 static int do_compare (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*, int);
115 static void do_fix_trunc (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
117 static unsigned long rtd_divmod (REAL_VALUE_TYPE
*, REAL_VALUE_TYPE
*);
119 static const REAL_VALUE_TYPE
* ten_to_ptwo (int);
120 static const REAL_VALUE_TYPE
* ten_to_mptwo (int);
121 static const REAL_VALUE_TYPE
* real_digit (int);
122 static void times_pten (REAL_VALUE_TYPE
*, int);
124 static void round_for_format (const struct real_format
*, REAL_VALUE_TYPE
*);
126 /* Initialize R with a positive zero. */
129 get_zero (REAL_VALUE_TYPE
*r
, int sign
)
131 memset (r
, 0, sizeof (*r
));
135 /* Initialize R with the canonical quiet NaN. */
138 get_canonical_qnan (REAL_VALUE_TYPE
*r
, int sign
)
140 memset (r
, 0, sizeof (*r
));
147 get_canonical_snan (REAL_VALUE_TYPE
*r
, int sign
)
149 memset (r
, 0, sizeof (*r
));
157 get_inf (REAL_VALUE_TYPE
*r
, int sign
)
159 memset (r
, 0, sizeof (*r
));
165 /* Right-shift the significand of A by N bits; put the result in the
166 significand of R. If any one bits are shifted out, return true. */
169 sticky_rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
172 unsigned long sticky
= 0;
173 unsigned int i
, ofs
= 0;
175 if (n
>= HOST_BITS_PER_LONG
)
177 for (i
= 0, ofs
= n
/ HOST_BITS_PER_LONG
; i
< ofs
; ++i
)
179 n
&= HOST_BITS_PER_LONG
- 1;
184 sticky
|= a
->sig
[ofs
] & (((unsigned long)1 << n
) - 1);
185 for (i
= 0; i
< SIGSZ
; ++i
)
188 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
189 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
190 << (HOST_BITS_PER_LONG
- n
)));
195 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
196 r
->sig
[i
] = a
->sig
[ofs
+ i
];
197 for (; i
< SIGSZ
; ++i
)
204 /* Right-shift the significand of A by N bits; put the result in the
208 rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
211 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
213 n
&= HOST_BITS_PER_LONG
- 1;
216 for (i
= 0; i
< SIGSZ
; ++i
)
219 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
220 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
221 << (HOST_BITS_PER_LONG
- n
)));
226 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
227 r
->sig
[i
] = a
->sig
[ofs
+ i
];
228 for (; i
< SIGSZ
; ++i
)
233 /* Left-shift the significand of A by N bits; put the result in the
237 lshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
240 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
242 n
&= HOST_BITS_PER_LONG
- 1;
245 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
246 r
->sig
[SIGSZ
-1-i
] = a
->sig
[SIGSZ
-1-i
-ofs
];
247 for (; i
< SIGSZ
; ++i
)
248 r
->sig
[SIGSZ
-1-i
] = 0;
251 for (i
= 0; i
< SIGSZ
; ++i
)
254 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
]) << n
)
255 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
-1])
256 >> (HOST_BITS_PER_LONG
- n
)));
260 /* Likewise, but N is specialized to 1. */
263 lshift_significand_1 (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
267 for (i
= SIGSZ
- 1; i
> 0; --i
)
268 r
->sig
[i
] = (a
->sig
[i
] << 1) | (a
->sig
[i
-1] >> (HOST_BITS_PER_LONG
- 1));
269 r
->sig
[0] = a
->sig
[0] << 1;
272 /* Add the significands of A and B, placing the result in R. Return
273 true if there was carry out of the most significant word. */
276 add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
277 const REAL_VALUE_TYPE
*b
)
282 for (i
= 0; i
< SIGSZ
; ++i
)
284 unsigned long ai
= a
->sig
[i
];
285 unsigned long ri
= ai
+ b
->sig
[i
];
301 /* Subtract the significands of A and B, placing the result in R. CARRY is
302 true if there's a borrow incoming to the least significant word.
303 Return true if there was borrow out of the most significant word. */
306 sub_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
307 const REAL_VALUE_TYPE
*b
, int carry
)
311 for (i
= 0; i
< SIGSZ
; ++i
)
313 unsigned long ai
= a
->sig
[i
];
314 unsigned long ri
= ai
- b
->sig
[i
];
330 /* Negate the significand A, placing the result in R. */
333 neg_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
338 for (i
= 0; i
< SIGSZ
; ++i
)
340 unsigned long ri
, ai
= a
->sig
[i
];
359 /* Compare significands. Return tri-state vs zero. */
362 cmp_significands (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
366 for (i
= SIGSZ
- 1; i
>= 0; --i
)
368 unsigned long ai
= a
->sig
[i
];
369 unsigned long bi
= b
->sig
[i
];
380 /* Return true if A is nonzero. */
383 cmp_significand_0 (const REAL_VALUE_TYPE
*a
)
387 for (i
= SIGSZ
- 1; i
>= 0; --i
)
394 /* Set bit N of the significand of R. */
397 set_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
399 r
->sig
[n
/ HOST_BITS_PER_LONG
]
400 |= (unsigned long)1 << (n
% HOST_BITS_PER_LONG
);
403 /* Clear bit N of the significand of R. */
406 clear_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
408 r
->sig
[n
/ HOST_BITS_PER_LONG
]
409 &= ~((unsigned long)1 << (n
% HOST_BITS_PER_LONG
));
412 /* Test bit N of the significand of R. */
415 test_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
417 /* ??? Compiler bug here if we return this expression directly.
418 The conversion to bool strips the "&1" and we wind up testing
419 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
420 int t
= (r
->sig
[n
/ HOST_BITS_PER_LONG
] >> (n
% HOST_BITS_PER_LONG
)) & 1;
424 /* Clear bits 0..N-1 of the significand of R. */
427 clear_significand_below (REAL_VALUE_TYPE
*r
, unsigned int n
)
429 int i
, w
= n
/ HOST_BITS_PER_LONG
;
431 for (i
= 0; i
< w
; ++i
)
434 r
->sig
[w
] &= ~(((unsigned long)1 << (n
% HOST_BITS_PER_LONG
)) - 1);
437 /* Divide the significands of A and B, placing the result in R. Return
438 true if the division was inexact. */
441 div_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
442 const REAL_VALUE_TYPE
*b
)
445 int i
, bit
= SIGNIFICAND_BITS
- 1;
446 unsigned long msb
, inexact
;
449 memset (r
->sig
, 0, sizeof (r
->sig
));
455 msb
= u
.sig
[SIGSZ
-1] & SIG_MSB
;
456 lshift_significand_1 (&u
, &u
);
458 if (msb
|| cmp_significands (&u
, b
) >= 0)
460 sub_significands (&u
, &u
, b
, 0);
461 set_significand_bit (r
, bit
);
466 for (i
= 0, inexact
= 0; i
< SIGSZ
; i
++)
472 /* Adjust the exponent and significand of R such that the most
473 significant bit is set. We underflow to zero and overflow to
474 infinity here, without denormals. (The intermediate representation
475 exponent is large enough to handle target denormals normalized.) */
478 normalize (REAL_VALUE_TYPE
*r
)
483 /* Find the first word that is nonzero. */
484 for (i
= SIGSZ
- 1; i
>= 0; i
--)
486 shift
+= HOST_BITS_PER_LONG
;
490 /* Zero significand flushes to zero. */
498 /* Find the first bit that is nonzero. */
500 if (r
->sig
[i
] & ((unsigned long)1 << (HOST_BITS_PER_LONG
- 1 - j
)))
506 exp
= REAL_EXP (r
) - shift
;
508 get_inf (r
, r
->sign
);
509 else if (exp
< -MAX_EXP
)
510 get_zero (r
, r
->sign
);
513 SET_REAL_EXP (r
, exp
);
514 lshift_significand (r
, r
, shift
);
519 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
520 result may be inexact due to a loss of precision. */
523 do_add (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
524 const REAL_VALUE_TYPE
*b
, int subtract_p
)
528 bool inexact
= false;
530 /* Determine if we need to add or subtract. */
532 subtract_p
= (sign
^ b
->sign
) ^ subtract_p
;
534 switch (CLASS2 (a
->cl
, b
->cl
))
536 case CLASS2 (rvc_zero
, rvc_zero
):
537 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
538 get_zero (r
, sign
& !subtract_p
);
541 case CLASS2 (rvc_zero
, rvc_normal
):
542 case CLASS2 (rvc_zero
, rvc_inf
):
543 case CLASS2 (rvc_zero
, rvc_nan
):
545 case CLASS2 (rvc_normal
, rvc_nan
):
546 case CLASS2 (rvc_inf
, rvc_nan
):
547 case CLASS2 (rvc_nan
, rvc_nan
):
548 /* ANY + NaN = NaN. */
549 case CLASS2 (rvc_normal
, rvc_inf
):
552 r
->sign
= sign
^ subtract_p
;
555 case CLASS2 (rvc_normal
, rvc_zero
):
556 case CLASS2 (rvc_inf
, rvc_zero
):
557 case CLASS2 (rvc_nan
, rvc_zero
):
559 case CLASS2 (rvc_nan
, rvc_normal
):
560 case CLASS2 (rvc_nan
, rvc_inf
):
561 /* NaN + ANY = NaN. */
562 case CLASS2 (rvc_inf
, rvc_normal
):
567 case CLASS2 (rvc_inf
, rvc_inf
):
569 /* Inf - Inf = NaN. */
570 get_canonical_qnan (r
, 0);
572 /* Inf + Inf = Inf. */
576 case CLASS2 (rvc_normal
, rvc_normal
):
583 /* Swap the arguments such that A has the larger exponent. */
584 dexp
= REAL_EXP (a
) - REAL_EXP (b
);
587 const REAL_VALUE_TYPE
*t
;
594 /* If the exponents are not identical, we need to shift the
595 significand of B down. */
598 /* If the exponents are too far apart, the significands
599 do not overlap, which makes the subtraction a noop. */
600 if (dexp
>= SIGNIFICAND_BITS
)
607 inexact
|= sticky_rshift_significand (&t
, b
, dexp
);
613 if (sub_significands (r
, a
, b
, inexact
))
615 /* We got a borrow out of the subtraction. That means that
616 A and B had the same exponent, and B had the larger
617 significand. We need to swap the sign and negate the
620 neg_significand (r
, r
);
625 if (add_significands (r
, a
, b
))
627 /* We got carry out of the addition. This means we need to
628 shift the significand back down one bit and increase the
630 inexact
|= sticky_rshift_significand (r
, r
, 1);
631 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
642 SET_REAL_EXP (r
, exp
);
643 /* Zero out the remaining fields. */
647 /* Re-normalize the result. */
650 /* Special case: if the subtraction results in zero, the result
652 if (r
->cl
== rvc_zero
)
655 r
->sig
[0] |= inexact
;
660 /* Calculate R = A * B. Return true if the result may be inexact. */
663 do_multiply (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
664 const REAL_VALUE_TYPE
*b
)
666 REAL_VALUE_TYPE u
, t
, *rr
;
667 unsigned int i
, j
, k
;
668 int sign
= a
->sign
^ b
->sign
;
669 bool inexact
= false;
671 switch (CLASS2 (a
->cl
, b
->cl
))
673 case CLASS2 (rvc_zero
, rvc_zero
):
674 case CLASS2 (rvc_zero
, rvc_normal
):
675 case CLASS2 (rvc_normal
, rvc_zero
):
676 /* +-0 * ANY = 0 with appropriate sign. */
680 case CLASS2 (rvc_zero
, rvc_nan
):
681 case CLASS2 (rvc_normal
, rvc_nan
):
682 case CLASS2 (rvc_inf
, rvc_nan
):
683 case CLASS2 (rvc_nan
, rvc_nan
):
684 /* ANY * NaN = NaN. */
689 case CLASS2 (rvc_nan
, rvc_zero
):
690 case CLASS2 (rvc_nan
, rvc_normal
):
691 case CLASS2 (rvc_nan
, rvc_inf
):
692 /* NaN * ANY = NaN. */
697 case CLASS2 (rvc_zero
, rvc_inf
):
698 case CLASS2 (rvc_inf
, rvc_zero
):
700 get_canonical_qnan (r
, sign
);
703 case CLASS2 (rvc_inf
, rvc_inf
):
704 case CLASS2 (rvc_normal
, rvc_inf
):
705 case CLASS2 (rvc_inf
, rvc_normal
):
706 /* Inf * Inf = Inf, R * Inf = Inf */
710 case CLASS2 (rvc_normal
, rvc_normal
):
717 if (r
== a
|| r
== b
)
723 /* Collect all the partial products. Since we don't have sure access
724 to a widening multiply, we split each long into two half-words.
726 Consider the long-hand form of a four half-word multiplication:
736 We construct partial products of the widened half-word products
737 that are known to not overlap, e.g. DF+DH. Each such partial
738 product is given its proper exponent, which allows us to sum them
739 and obtain the finished product. */
741 for (i
= 0; i
< SIGSZ
* 2; ++i
)
743 unsigned long ai
= a
->sig
[i
/ 2];
745 ai
>>= HOST_BITS_PER_LONG
/ 2;
747 ai
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
752 for (j
= 0; j
< 2; ++j
)
754 int exp
= (REAL_EXP (a
) - (2*SIGSZ
-1-i
)*(HOST_BITS_PER_LONG
/2)
755 + (REAL_EXP (b
) - (1-j
)*(HOST_BITS_PER_LONG
/2)));
764 /* Would underflow to zero, which we shouldn't bother adding. */
769 memset (&u
, 0, sizeof (u
));
771 SET_REAL_EXP (&u
, exp
);
773 for (k
= j
; k
< SIGSZ
* 2; k
+= 2)
775 unsigned long bi
= b
->sig
[k
/ 2];
777 bi
>>= HOST_BITS_PER_LONG
/ 2;
779 bi
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
781 u
.sig
[k
/ 2] = ai
* bi
;
785 inexact
|= do_add (rr
, rr
, &u
, 0);
796 /* Calculate R = A / B. Return true if the result may be inexact. */
799 do_divide (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
800 const REAL_VALUE_TYPE
*b
)
802 int exp
, sign
= a
->sign
^ b
->sign
;
803 REAL_VALUE_TYPE t
, *rr
;
806 switch (CLASS2 (a
->cl
, b
->cl
))
808 case CLASS2 (rvc_zero
, rvc_zero
):
810 case CLASS2 (rvc_inf
, rvc_inf
):
811 /* Inf / Inf = NaN. */
812 get_canonical_qnan (r
, sign
);
815 case CLASS2 (rvc_zero
, rvc_normal
):
816 case CLASS2 (rvc_zero
, rvc_inf
):
818 case CLASS2 (rvc_normal
, rvc_inf
):
823 case CLASS2 (rvc_normal
, rvc_zero
):
825 case CLASS2 (rvc_inf
, rvc_zero
):
830 case CLASS2 (rvc_zero
, rvc_nan
):
831 case CLASS2 (rvc_normal
, rvc_nan
):
832 case CLASS2 (rvc_inf
, rvc_nan
):
833 case CLASS2 (rvc_nan
, rvc_nan
):
834 /* ANY / NaN = NaN. */
839 case CLASS2 (rvc_nan
, rvc_zero
):
840 case CLASS2 (rvc_nan
, rvc_normal
):
841 case CLASS2 (rvc_nan
, rvc_inf
):
842 /* NaN / ANY = NaN. */
847 case CLASS2 (rvc_inf
, rvc_normal
):
852 case CLASS2 (rvc_normal
, rvc_normal
):
859 if (r
== a
|| r
== b
)
864 /* Make sure all fields in the result are initialized. */
869 exp
= REAL_EXP (a
) - REAL_EXP (b
) + 1;
880 SET_REAL_EXP (rr
, exp
);
882 inexact
= div_significands (rr
, a
, b
);
884 /* Re-normalize the result. */
886 rr
->sig
[0] |= inexact
;
894 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
895 one of the two operands is a NaN. */
898 do_compare (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
,
903 switch (CLASS2 (a
->cl
, b
->cl
))
905 case CLASS2 (rvc_zero
, rvc_zero
):
906 /* Sign of zero doesn't matter for compares. */
909 case CLASS2 (rvc_inf
, rvc_zero
):
910 case CLASS2 (rvc_inf
, rvc_normal
):
911 case CLASS2 (rvc_normal
, rvc_zero
):
912 return (a
->sign
? -1 : 1);
914 case CLASS2 (rvc_inf
, rvc_inf
):
915 return -a
->sign
- -b
->sign
;
917 case CLASS2 (rvc_zero
, rvc_normal
):
918 case CLASS2 (rvc_zero
, rvc_inf
):
919 case CLASS2 (rvc_normal
, rvc_inf
):
920 return (b
->sign
? 1 : -1);
922 case CLASS2 (rvc_zero
, rvc_nan
):
923 case CLASS2 (rvc_normal
, rvc_nan
):
924 case CLASS2 (rvc_inf
, rvc_nan
):
925 case CLASS2 (rvc_nan
, rvc_nan
):
926 case CLASS2 (rvc_nan
, rvc_zero
):
927 case CLASS2 (rvc_nan
, rvc_normal
):
928 case CLASS2 (rvc_nan
, rvc_inf
):
931 case CLASS2 (rvc_normal
, rvc_normal
):
938 if (a
->sign
!= b
->sign
)
939 return -a
->sign
- -b
->sign
;
941 if (REAL_EXP (a
) > REAL_EXP (b
))
943 else if (REAL_EXP (a
) < REAL_EXP (b
))
946 ret
= cmp_significands (a
, b
);
948 return (a
->sign
? -ret
: ret
);
951 /* Return A truncated to an integral value toward zero. */
954 do_fix_trunc (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
966 if (REAL_EXP (r
) <= 0)
967 get_zero (r
, r
->sign
);
968 else if (REAL_EXP (r
) < SIGNIFICAND_BITS
)
969 clear_significand_below (r
, SIGNIFICAND_BITS
- REAL_EXP (r
));
977 /* Perform the binary or unary operation described by CODE.
978 For a unary operation, leave OP1 NULL. This function returns
979 true if the result may be inexact due to loss of precision. */
982 real_arithmetic (REAL_VALUE_TYPE
*r
, int icode
, const REAL_VALUE_TYPE
*op0
,
983 const REAL_VALUE_TYPE
*op1
)
985 enum tree_code code
= icode
;
990 return do_add (r
, op0
, op1
, 0);
993 return do_add (r
, op0
, op1
, 1);
996 return do_multiply (r
, op0
, op1
);
999 return do_divide (r
, op0
, op1
);
1002 if (op1
->cl
== rvc_nan
)
1004 else if (do_compare (op0
, op1
, -1) < 0)
1011 if (op1
->cl
== rvc_nan
)
1013 else if (do_compare (op0
, op1
, 1) < 0)
1029 case FIX_TRUNC_EXPR
:
1030 do_fix_trunc (r
, op0
);
1039 /* Legacy. Similar, but return the result directly. */
1042 real_arithmetic2 (int icode
, const REAL_VALUE_TYPE
*op0
,
1043 const REAL_VALUE_TYPE
*op1
)
1046 real_arithmetic (&r
, icode
, op0
, op1
);
1051 real_compare (int icode
, const REAL_VALUE_TYPE
*op0
,
1052 const REAL_VALUE_TYPE
*op1
)
1054 enum tree_code code
= icode
;
1059 return do_compare (op0
, op1
, 1) < 0;
1061 return do_compare (op0
, op1
, 1) <= 0;
1063 return do_compare (op0
, op1
, -1) > 0;
1065 return do_compare (op0
, op1
, -1) >= 0;
1067 return do_compare (op0
, op1
, -1) == 0;
1069 return do_compare (op0
, op1
, -1) != 0;
1070 case UNORDERED_EXPR
:
1071 return op0
->cl
== rvc_nan
|| op1
->cl
== rvc_nan
;
1073 return op0
->cl
!= rvc_nan
&& op1
->cl
!= rvc_nan
;
1075 return do_compare (op0
, op1
, -1) < 0;
1077 return do_compare (op0
, op1
, -1) <= 0;
1079 return do_compare (op0
, op1
, 1) > 0;
1081 return do_compare (op0
, op1
, 1) >= 0;
1083 return do_compare (op0
, op1
, 0) == 0;
1085 return do_compare (op0
, op1
, 0) != 0;
1092 /* Return floor log2(R). */
1095 real_exponent (const REAL_VALUE_TYPE
*r
)
1103 return (unsigned int)-1 >> 1;
1105 return REAL_EXP (r
);
1111 /* R = OP0 * 2**EXP. */
1114 real_ldexp (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*op0
, int exp
)
1125 exp
+= REAL_EXP (op0
);
1127 get_inf (r
, r
->sign
);
1128 else if (exp
< -MAX_EXP
)
1129 get_zero (r
, r
->sign
);
1131 SET_REAL_EXP (r
, exp
);
1139 /* Determine whether a floating-point value X is infinite. */
1142 real_isinf (const REAL_VALUE_TYPE
*r
)
1144 return (r
->cl
== rvc_inf
);
1147 /* Determine whether a floating-point value X is a NaN. */
1150 real_isnan (const REAL_VALUE_TYPE
*r
)
1152 return (r
->cl
== rvc_nan
);
1155 /* Determine whether a floating-point value X is negative. */
1158 real_isneg (const REAL_VALUE_TYPE
*r
)
1163 /* Determine whether a floating-point value X is minus zero. */
1166 real_isnegzero (const REAL_VALUE_TYPE
*r
)
1168 return r
->sign
&& r
->cl
== rvc_zero
;
1171 /* Compare two floating-point objects for bitwise identity. */
1174 real_identical (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
1180 if (a
->sign
!= b
->sign
)
1190 if (REAL_EXP (a
) != REAL_EXP (b
))
1195 if (a
->signalling
!= b
->signalling
)
1197 /* The significand is ignored for canonical NaNs. */
1198 if (a
->canonical
|| b
->canonical
)
1199 return a
->canonical
== b
->canonical
;
1206 for (i
= 0; i
< SIGSZ
; ++i
)
1207 if (a
->sig
[i
] != b
->sig
[i
])
1213 /* Try to change R into its exact multiplicative inverse in machine
1214 mode MODE. Return true if successful. */
1217 exact_real_inverse (enum machine_mode mode
, REAL_VALUE_TYPE
*r
)
1219 const REAL_VALUE_TYPE
*one
= real_digit (1);
1223 if (r
->cl
!= rvc_normal
)
1226 /* Check for a power of two: all significand bits zero except the MSB. */
1227 for (i
= 0; i
< SIGSZ
-1; ++i
)
1230 if (r
->sig
[SIGSZ
-1] != SIG_MSB
)
1233 /* Find the inverse and truncate to the required mode. */
1234 do_divide (&u
, one
, r
);
1235 real_convert (&u
, mode
, &u
);
1237 /* The rounding may have overflowed. */
1238 if (u
.cl
!= rvc_normal
)
1240 for (i
= 0; i
< SIGSZ
-1; ++i
)
1243 if (u
.sig
[SIGSZ
-1] != SIG_MSB
)
1250 /* Render R as an integer. */
1253 real_to_integer (const REAL_VALUE_TYPE
*r
)
1255 unsigned HOST_WIDE_INT i
;
1266 i
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1272 if (REAL_EXP (r
) <= 0)
1274 /* Only force overflow for unsigned overflow. Signed overflow is
1275 undefined, so it doesn't matter what we return, and some callers
1276 expect to be able to use this routine for both signed and
1277 unsigned conversions. */
1278 if (REAL_EXP (r
) > HOST_BITS_PER_WIDE_INT
)
1281 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1282 i
= r
->sig
[SIGSZ
-1];
1285 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2 * HOST_BITS_PER_LONG
);
1286 i
= r
->sig
[SIGSZ
-1];
1287 i
= i
<< (HOST_BITS_PER_LONG
- 1) << 1;
1288 i
|= r
->sig
[SIGSZ
-2];
1291 i
>>= HOST_BITS_PER_WIDE_INT
- REAL_EXP (r
);
1302 /* Likewise, but to an integer pair, HI+LOW. */
1305 real_to_integer2 (HOST_WIDE_INT
*plow
, HOST_WIDE_INT
*phigh
,
1306 const REAL_VALUE_TYPE
*r
)
1309 HOST_WIDE_INT low
, high
;
1322 high
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1336 /* Only force overflow for unsigned overflow. Signed overflow is
1337 undefined, so it doesn't matter what we return, and some callers
1338 expect to be able to use this routine for both signed and
1339 unsigned conversions. */
1340 if (exp
> 2*HOST_BITS_PER_WIDE_INT
)
1343 rshift_significand (&t
, r
, 2*HOST_BITS_PER_WIDE_INT
- exp
);
1344 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1346 high
= t
.sig
[SIGSZ
-1];
1347 low
= t
.sig
[SIGSZ
-2];
1351 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2*HOST_BITS_PER_LONG
);
1352 high
= t
.sig
[SIGSZ
-1];
1353 high
= high
<< (HOST_BITS_PER_LONG
- 1) << 1;
1354 high
|= t
.sig
[SIGSZ
-2];
1356 low
= t
.sig
[SIGSZ
-3];
1357 low
= low
<< (HOST_BITS_PER_LONG
- 1) << 1;
1358 low
|= t
.sig
[SIGSZ
-4];
1366 low
= -low
, high
= ~high
;
1378 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1379 of NUM / DEN. Return the quotient and place the remainder in NUM.
1380 It is expected that NUM / DEN are close enough that the quotient is
1383 static unsigned long
1384 rtd_divmod (REAL_VALUE_TYPE
*num
, REAL_VALUE_TYPE
*den
)
1386 unsigned long q
, msb
;
1387 int expn
= REAL_EXP (num
), expd
= REAL_EXP (den
);
1396 msb
= num
->sig
[SIGSZ
-1] & SIG_MSB
;
1398 lshift_significand_1 (num
, num
);
1400 if (msb
|| cmp_significands (num
, den
) >= 0)
1402 sub_significands (num
, num
, den
, 0);
1406 while (--expn
>= expd
);
1408 SET_REAL_EXP (num
, expd
);
1414 /* Render R as a decimal floating point constant. Emit DIGITS significant
1415 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1416 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1419 #define M_LOG10_2 0.30102999566398119521
1422 real_to_decimal (char *str
, const REAL_VALUE_TYPE
*r_orig
, size_t buf_size
,
1423 size_t digits
, int crop_trailing_zeros
)
1425 const REAL_VALUE_TYPE
*one
, *ten
;
1426 REAL_VALUE_TYPE r
, pten
, u
, v
;
1427 int dec_exp
, cmp_one
, digit
;
1429 char *p
, *first
, *last
;
1436 strcpy (str
, (r
.sign
? "-0.0" : "0.0"));
1441 strcpy (str
, (r
.sign
? "-Inf" : "+Inf"));
1444 /* ??? Print the significand as well, if not canonical? */
1445 strcpy (str
, (r
.sign
? "-NaN" : "+NaN"));
1451 /* Bound the number of digits printed by the size of the representation. */
1452 max_digits
= SIGNIFICAND_BITS
* M_LOG10_2
;
1453 if (digits
== 0 || digits
> max_digits
)
1454 digits
= max_digits
;
1456 /* Estimate the decimal exponent, and compute the length of the string it
1457 will print as. Be conservative and add one to account for possible
1458 overflow or rounding error. */
1459 dec_exp
= REAL_EXP (&r
) * M_LOG10_2
;
1460 for (max_digits
= 1; dec_exp
; max_digits
++)
1463 /* Bound the number of digits printed by the size of the output buffer. */
1464 max_digits
= buf_size
- 1 - 1 - 2 - max_digits
- 1;
1465 gcc_assert (max_digits
<= buf_size
);
1466 if (digits
> max_digits
)
1467 digits
= max_digits
;
1469 one
= real_digit (1);
1470 ten
= ten_to_ptwo (0);
1478 cmp_one
= do_compare (&r
, one
, 0);
1483 /* Number is greater than one. Convert significand to an integer
1484 and strip trailing decimal zeros. */
1487 SET_REAL_EXP (&u
, SIGNIFICAND_BITS
- 1);
1489 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1490 m
= floor_log2 (max_digits
);
1492 /* Iterate over the bits of the possible powers of 10 that might
1493 be present in U and eliminate them. That is, if we find that
1494 10**2**M divides U evenly, keep the division and increase
1500 do_divide (&t
, &u
, ten_to_ptwo (m
));
1501 do_fix_trunc (&v
, &t
);
1502 if (cmp_significands (&v
, &t
) == 0)
1510 /* Revert the scaling to integer that we performed earlier. */
1511 SET_REAL_EXP (&u
, REAL_EXP (&u
) + REAL_EXP (&r
)
1512 - (SIGNIFICAND_BITS
- 1));
1515 /* Find power of 10. Do this by dividing out 10**2**M when
1516 this is larger than the current remainder. Fill PTEN with
1517 the power of 10 that we compute. */
1518 if (REAL_EXP (&r
) > 0)
1520 m
= floor_log2 ((int)(REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1523 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1524 if (do_compare (&u
, ptentwo
, 0) >= 0)
1526 do_divide (&u
, &u
, ptentwo
);
1527 do_multiply (&pten
, &pten
, ptentwo
);
1534 /* We managed to divide off enough tens in the above reduction
1535 loop that we've now got a negative exponent. Fall into the
1536 less-than-one code to compute the proper value for PTEN. */
1543 /* Number is less than one. Pad significand with leading
1549 /* Stop if we'd shift bits off the bottom. */
1553 do_multiply (&u
, &v
, ten
);
1555 /* Stop if we're now >= 1. */
1556 if (REAL_EXP (&u
) > 0)
1564 /* Find power of 10. Do this by multiplying in P=10**2**M when
1565 the current remainder is smaller than 1/P. Fill PTEN with the
1566 power of 10 that we compute. */
1567 m
= floor_log2 ((int)(-REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1570 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1571 const REAL_VALUE_TYPE
*ptenmtwo
= ten_to_mptwo (m
);
1573 if (do_compare (&v
, ptenmtwo
, 0) <= 0)
1575 do_multiply (&v
, &v
, ptentwo
);
1576 do_multiply (&pten
, &pten
, ptentwo
);
1582 /* Invert the positive power of 10 that we've collected so far. */
1583 do_divide (&pten
, one
, &pten
);
1591 /* At this point, PTEN should contain the nearest power of 10 smaller
1592 than R, such that this division produces the first digit.
1594 Using a divide-step primitive that returns the complete integral
1595 remainder avoids the rounding error that would be produced if
1596 we were to use do_divide here and then simply multiply by 10 for
1597 each subsequent digit. */
1599 digit
= rtd_divmod (&r
, &pten
);
1601 /* Be prepared for error in that division via underflow ... */
1602 if (digit
== 0 && cmp_significand_0 (&r
))
1604 /* Multiply by 10 and try again. */
1605 do_multiply (&r
, &r
, ten
);
1606 digit
= rtd_divmod (&r
, &pten
);
1608 gcc_assert (digit
!= 0);
1611 /* ... or overflow. */
1621 gcc_assert (digit
<= 10);
1625 /* Generate subsequent digits. */
1626 while (--digits
> 0)
1628 do_multiply (&r
, &r
, ten
);
1629 digit
= rtd_divmod (&r
, &pten
);
1634 /* Generate one more digit with which to do rounding. */
1635 do_multiply (&r
, &r
, ten
);
1636 digit
= rtd_divmod (&r
, &pten
);
1638 /* Round the result. */
1641 /* Round to nearest. If R is nonzero there are additional
1642 nonzero digits to be extracted. */
1643 if (cmp_significand_0 (&r
))
1645 /* Round to even. */
1646 else if ((p
[-1] - '0') & 1)
1663 /* Carry out of the first digit. This means we had all 9's and
1664 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1672 /* Insert the decimal point. */
1673 first
[0] = first
[1];
1676 /* If requested, drop trailing zeros. Never crop past "1.0". */
1677 if (crop_trailing_zeros
)
1678 while (last
> first
+ 3 && last
[-1] == '0')
1681 /* Append the exponent. */
1682 sprintf (last
, "e%+d", dec_exp
);
1685 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1686 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1687 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1688 strip trailing zeros. */
1691 real_to_hexadecimal (char *str
, const REAL_VALUE_TYPE
*r
, size_t buf_size
,
1692 size_t digits
, int crop_trailing_zeros
)
1694 int i
, j
, exp
= REAL_EXP (r
);
1707 strcpy (str
, (r
->sign
? "-Inf" : "+Inf"));
1710 /* ??? Print the significand as well, if not canonical? */
1711 strcpy (str
, (r
->sign
? "-NaN" : "+NaN"));
1718 digits
= SIGNIFICAND_BITS
/ 4;
1720 /* Bound the number of digits printed by the size of the output buffer. */
1722 sprintf (exp_buf
, "p%+d", exp
);
1723 max_digits
= buf_size
- strlen (exp_buf
) - r
->sign
- 4 - 1;
1724 gcc_assert (max_digits
<= buf_size
);
1725 if (digits
> max_digits
)
1726 digits
= max_digits
;
1737 for (i
= SIGSZ
- 1; i
>= 0; --i
)
1738 for (j
= HOST_BITS_PER_LONG
- 4; j
>= 0; j
-= 4)
1740 *p
++ = "0123456789abcdef"[(r
->sig
[i
] >> j
) & 15];
1746 if (crop_trailing_zeros
)
1747 while (p
> first
+ 1 && p
[-1] == '0')
1750 sprintf (p
, "p%+d", exp
);
1753 /* Initialize R from a decimal or hexadecimal string. The string is
1754 assumed to have been syntax checked already. */
1757 real_from_string (REAL_VALUE_TYPE
*r
, const char *str
)
1769 else if (*str
== '+')
1772 if (str
[0] == '0' && (str
[1] == 'x' || str
[1] == 'X'))
1774 /* Hexadecimal floating point. */
1775 int pos
= SIGNIFICAND_BITS
- 4, d
;
1783 d
= hex_value (*str
);
1788 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1789 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1798 if (pos
== SIGNIFICAND_BITS
- 4)
1805 d
= hex_value (*str
);
1810 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1811 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1817 if (*str
== 'p' || *str
== 'P')
1819 bool exp_neg
= false;
1827 else if (*str
== '+')
1831 while (ISDIGIT (*str
))
1837 /* Overflowed the exponent. */
1852 SET_REAL_EXP (r
, exp
);
1858 /* Decimal floating point. */
1859 const REAL_VALUE_TYPE
*ten
= ten_to_ptwo (0);
1864 while (ISDIGIT (*str
))
1867 do_multiply (r
, r
, ten
);
1869 do_add (r
, r
, real_digit (d
), 0);
1874 if (r
->cl
== rvc_zero
)
1879 while (ISDIGIT (*str
))
1882 do_multiply (r
, r
, ten
);
1884 do_add (r
, r
, real_digit (d
), 0);
1889 if (*str
== 'e' || *str
== 'E')
1891 bool exp_neg
= false;
1899 else if (*str
== '+')
1903 while (ISDIGIT (*str
))
1909 /* Overflowed the exponent. */
1923 times_pten (r
, exp
);
1938 /* Legacy. Similar, but return the result directly. */
1941 real_from_string2 (const char *s
, enum machine_mode mode
)
1945 real_from_string (&r
, s
);
1946 if (mode
!= VOIDmode
)
1947 real_convert (&r
, mode
, &r
);
1952 /* Initialize R from the integer pair HIGH+LOW. */
1955 real_from_integer (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
1956 unsigned HOST_WIDE_INT low
, HOST_WIDE_INT high
,
1959 if (low
== 0 && high
== 0)
1963 memset (r
, 0, sizeof (*r
));
1965 r
->sign
= high
< 0 && !unsigned_p
;
1966 SET_REAL_EXP (r
, 2 * HOST_BITS_PER_WIDE_INT
);
1977 if (HOST_BITS_PER_LONG
== HOST_BITS_PER_WIDE_INT
)
1979 r
->sig
[SIGSZ
-1] = high
;
1980 r
->sig
[SIGSZ
-2] = low
;
1984 gcc_assert (HOST_BITS_PER_LONG
*2 == HOST_BITS_PER_WIDE_INT
);
1985 r
->sig
[SIGSZ
-1] = high
>> (HOST_BITS_PER_LONG
- 1) >> 1;
1986 r
->sig
[SIGSZ
-2] = high
;
1987 r
->sig
[SIGSZ
-3] = low
>> (HOST_BITS_PER_LONG
- 1) >> 1;
1988 r
->sig
[SIGSZ
-4] = low
;
1994 if (mode
!= VOIDmode
)
1995 real_convert (r
, mode
, r
);
1998 /* Returns 10**2**N. */
2000 static const REAL_VALUE_TYPE
*
2003 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2005 gcc_assert (n
>= 0);
2006 gcc_assert (n
< EXP_BITS
);
2008 if (tens
[n
].cl
== rvc_zero
)
2010 if (n
< (HOST_BITS_PER_WIDE_INT
== 64 ? 5 : 4))
2012 HOST_WIDE_INT t
= 10;
2015 for (i
= 0; i
< n
; ++i
)
2018 real_from_integer (&tens
[n
], VOIDmode
, t
, 0, 1);
2022 const REAL_VALUE_TYPE
*t
= ten_to_ptwo (n
- 1);
2023 do_multiply (&tens
[n
], t
, t
);
2030 /* Returns 10**(-2**N). */
2032 static const REAL_VALUE_TYPE
*
2033 ten_to_mptwo (int n
)
2035 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2037 gcc_assert (n
>= 0);
2038 gcc_assert (n
< EXP_BITS
);
2040 if (tens
[n
].cl
== rvc_zero
)
2041 do_divide (&tens
[n
], real_digit (1), ten_to_ptwo (n
));
2048 static const REAL_VALUE_TYPE
*
2051 static REAL_VALUE_TYPE num
[10];
2053 gcc_assert (n
>= 0);
2054 gcc_assert (n
<= 9);
2056 if (n
> 0 && num
[n
].cl
== rvc_zero
)
2057 real_from_integer (&num
[n
], VOIDmode
, n
, 0, 1);
2062 /* Multiply R by 10**EXP. */
2065 times_pten (REAL_VALUE_TYPE
*r
, int exp
)
2067 REAL_VALUE_TYPE pten
, *rr
;
2068 bool negative
= (exp
< 0);
2074 pten
= *real_digit (1);
2080 for (i
= 0; exp
> 0; ++i
, exp
>>= 1)
2082 do_multiply (rr
, rr
, ten_to_ptwo (i
));
2085 do_divide (r
, r
, &pten
);
2088 /* Fills R with +Inf. */
2091 real_inf (REAL_VALUE_TYPE
*r
)
2096 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2097 we force a QNaN, else we force an SNaN. The string, if not empty,
2098 is parsed as a number and placed in the significand. Return true
2099 if the string was successfully parsed. */
2102 real_nan (REAL_VALUE_TYPE
*r
, const char *str
, int quiet
,
2103 enum machine_mode mode
)
2105 const struct real_format
*fmt
;
2107 fmt
= REAL_MODE_FORMAT (mode
);
2113 get_canonical_qnan (r
, 0);
2115 get_canonical_snan (r
, 0);
2121 memset (r
, 0, sizeof (*r
));
2124 /* Parse akin to strtol into the significand of R. */
2126 while (ISSPACE (*str
))
2130 else if (*str
== '+')
2140 while ((d
= hex_value (*str
)) < base
)
2147 lshift_significand (r
, r
, 3);
2150 lshift_significand (r
, r
, 4);
2153 lshift_significand_1 (&u
, r
);
2154 lshift_significand (r
, r
, 3);
2155 add_significands (r
, r
, &u
);
2163 add_significands (r
, r
, &u
);
2168 /* Must have consumed the entire string for success. */
2172 /* Shift the significand into place such that the bits
2173 are in the most significant bits for the format. */
2174 lshift_significand (r
, r
, SIGNIFICAND_BITS
- fmt
->pnan
);
2176 /* Our MSB is always unset for NaNs. */
2177 r
->sig
[SIGSZ
-1] &= ~SIG_MSB
;
2179 /* Force quiet or signalling NaN. */
2180 r
->signalling
= !quiet
;
2186 /* Fills R with the largest finite value representable in mode MODE.
2187 If SIGN is nonzero, R is set to the most negative finite value. */
2190 real_maxval (REAL_VALUE_TYPE
*r
, int sign
, enum machine_mode mode
)
2192 const struct real_format
*fmt
;
2195 fmt
= REAL_MODE_FORMAT (mode
);
2202 SET_REAL_EXP (r
, fmt
->emax
* fmt
->log2_b
);
2204 np2
= SIGNIFICAND_BITS
- fmt
->p
* fmt
->log2_b
;
2205 memset (r
->sig
, -1, SIGSZ
* sizeof (unsigned long));
2206 clear_significand_below (r
, np2
);
2209 /* Fills R with 2**N. */
2212 real_2expN (REAL_VALUE_TYPE
*r
, int n
)
2214 memset (r
, 0, sizeof (*r
));
2219 else if (n
< -MAX_EXP
)
2224 SET_REAL_EXP (r
, n
);
2225 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2231 round_for_format (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
)
2234 unsigned long sticky
;
2238 p2
= fmt
->p
* fmt
->log2_b
;
2239 emin2m1
= (fmt
->emin
- 1) * fmt
->log2_b
;
2240 emax2
= fmt
->emax
* fmt
->log2_b
;
2242 np2
= SIGNIFICAND_BITS
- p2
;
2246 get_zero (r
, r
->sign
);
2248 if (!fmt
->has_signed_zero
)
2253 get_inf (r
, r
->sign
);
2258 clear_significand_below (r
, np2
);
2268 /* If we're not base2, normalize the exponent to a multiple of
2270 if (fmt
->log2_b
!= 1)
2272 int shift
= REAL_EXP (r
) & (fmt
->log2_b
- 1);
2275 shift
= fmt
->log2_b
- shift
;
2276 r
->sig
[0] |= sticky_rshift_significand (r
, r
, shift
);
2277 SET_REAL_EXP (r
, REAL_EXP (r
) + shift
);
2281 /* Check the range of the exponent. If we're out of range,
2282 either underflow or overflow. */
2283 if (REAL_EXP (r
) > emax2
)
2285 else if (REAL_EXP (r
) <= emin2m1
)
2289 if (!fmt
->has_denorm
)
2291 /* Don't underflow completely until we've had a chance to round. */
2292 if (REAL_EXP (r
) < emin2m1
)
2297 diff
= emin2m1
- REAL_EXP (r
) + 1;
2301 /* De-normalize the significand. */
2302 r
->sig
[0] |= sticky_rshift_significand (r
, r
, diff
);
2303 SET_REAL_EXP (r
, REAL_EXP (r
) + diff
);
2307 /* There are P2 true significand bits, followed by one guard bit,
2308 followed by one sticky bit, followed by stuff. Fold nonzero
2309 stuff into the sticky bit. */
2312 for (i
= 0, w
= (np2
- 1) / HOST_BITS_PER_LONG
; i
< w
; ++i
)
2313 sticky
|= r
->sig
[i
];
2315 r
->sig
[w
] & (((unsigned long)1 << ((np2
- 1) % HOST_BITS_PER_LONG
)) - 1);
2317 guard
= test_significand_bit (r
, np2
- 1);
2318 lsb
= test_significand_bit (r
, np2
);
2320 /* Round to even. */
2321 if (guard
&& (sticky
|| lsb
))
2325 set_significand_bit (&u
, np2
);
2327 if (add_significands (r
, r
, &u
))
2329 /* Overflow. Means the significand had been all ones, and
2330 is now all zeros. Need to increase the exponent, and
2331 possibly re-normalize it. */
2332 SET_REAL_EXP (r
, REAL_EXP (r
) + 1);
2333 if (REAL_EXP (r
) > emax2
)
2335 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2337 if (fmt
->log2_b
!= 1)
2339 int shift
= REAL_EXP (r
) & (fmt
->log2_b
- 1);
2342 shift
= fmt
->log2_b
- shift
;
2343 rshift_significand (r
, r
, shift
);
2344 SET_REAL_EXP (r
, REAL_EXP (r
) + shift
);
2345 if (REAL_EXP (r
) > emax2
)
2352 /* Catch underflow that we deferred until after rounding. */
2353 if (REAL_EXP (r
) <= emin2m1
)
2356 /* Clear out trailing garbage. */
2357 clear_significand_below (r
, np2
);
2360 /* Extend or truncate to a new mode. */
2363 real_convert (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
2364 const REAL_VALUE_TYPE
*a
)
2366 const struct real_format
*fmt
;
2368 fmt
= REAL_MODE_FORMAT (mode
);
2372 round_for_format (fmt
, r
);
2374 /* round_for_format de-normalizes denormals. Undo just that part. */
2375 if (r
->cl
== rvc_normal
)
2379 /* Legacy. Likewise, except return the struct directly. */
2382 real_value_truncate (enum machine_mode mode
, REAL_VALUE_TYPE a
)
2385 real_convert (&r
, mode
, &a
);
2389 /* Return true if truncating to MODE is exact. */
2392 exact_real_truncate (enum machine_mode mode
, const REAL_VALUE_TYPE
*a
)
2395 real_convert (&t
, mode
, a
);
2396 return real_identical (&t
, a
);
2399 /* Write R to the given target format. Place the words of the result
2400 in target word order in BUF. There are always 32 bits in each
2401 long, no matter the size of the host long.
2403 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2406 real_to_target_fmt (long *buf
, const REAL_VALUE_TYPE
*r_orig
,
2407 const struct real_format
*fmt
)
2413 round_for_format (fmt
, &r
);
2417 (*fmt
->encode
) (fmt
, buf
, &r
);
2422 /* Similar, but look up the format from MODE. */
2425 real_to_target (long *buf
, const REAL_VALUE_TYPE
*r
, enum machine_mode mode
)
2427 const struct real_format
*fmt
;
2429 fmt
= REAL_MODE_FORMAT (mode
);
2432 return real_to_target_fmt (buf
, r
, fmt
);
2435 /* Read R from the given target format. Read the words of the result
2436 in target word order in BUF. There are always 32 bits in each
2437 long, no matter the size of the host long. */
2440 real_from_target_fmt (REAL_VALUE_TYPE
*r
, const long *buf
,
2441 const struct real_format
*fmt
)
2443 (*fmt
->decode
) (fmt
, r
, buf
);
2446 /* Similar, but look up the format from MODE. */
2449 real_from_target (REAL_VALUE_TYPE
*r
, const long *buf
, enum machine_mode mode
)
2451 const struct real_format
*fmt
;
2453 fmt
= REAL_MODE_FORMAT (mode
);
2456 (*fmt
->decode
) (fmt
, r
, buf
);
2459 /* Return the number of bits in the significand for MODE. */
2460 /* ??? Legacy. Should get access to real_format directly. */
2463 significand_size (enum machine_mode mode
)
2465 const struct real_format
*fmt
;
2467 fmt
= REAL_MODE_FORMAT (mode
);
2471 return fmt
->p
* fmt
->log2_b
;
2474 /* Return a hash value for the given real value. */
2475 /* ??? The "unsigned int" return value is intended to be hashval_t,
2476 but I didn't want to pull hashtab.h into real.h. */
2479 real_hash (const REAL_VALUE_TYPE
*r
)
2484 h
= r
->cl
| (r
->sign
<< 2);
2492 h
|= REAL_EXP (r
) << 3;
2497 h
^= (unsigned int)-1;
2506 if (sizeof(unsigned long) > sizeof(unsigned int))
2507 for (i
= 0; i
< SIGSZ
; ++i
)
2509 unsigned long s
= r
->sig
[i
];
2510 h
^= s
^ (s
>> (HOST_BITS_PER_LONG
/ 2));
2513 for (i
= 0; i
< SIGSZ
; ++i
)
2519 /* IEEE single-precision format. */
2521 static void encode_ieee_single (const struct real_format
*fmt
,
2522 long *, const REAL_VALUE_TYPE
*);
2523 static void decode_ieee_single (const struct real_format
*,
2524 REAL_VALUE_TYPE
*, const long *);
2527 encode_ieee_single (const struct real_format
*fmt
, long *buf
,
2528 const REAL_VALUE_TYPE
*r
)
2530 unsigned long image
, sig
, exp
;
2531 unsigned long sign
= r
->sign
;
2532 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2535 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
2546 image
|= 0x7fffffff;
2554 if (r
->signalling
== fmt
->qnan_msb_set
)
2558 /* We overload qnan_msb_set here: it's only clear for
2559 mips_ieee_single, which wants all mantissa bits but the
2560 quiet/signalling one set in canonical NaNs (at least
2562 if (r
->canonical
&& !fmt
->qnan_msb_set
)
2563 sig
|= (1 << 22) - 1;
2571 image
|= 0x7fffffff;
2575 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2576 whereas the intermediate representation is 0.F x 2**exp.
2577 Which means we're off by one. */
2581 exp
= REAL_EXP (r
) + 127 - 1;
2594 decode_ieee_single (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2597 unsigned long image
= buf
[0] & 0xffffffff;
2598 bool sign
= (image
>> 31) & 1;
2599 int exp
= (image
>> 23) & 0xff;
2601 memset (r
, 0, sizeof (*r
));
2602 image
<<= HOST_BITS_PER_LONG
- 24;
2607 if (image
&& fmt
->has_denorm
)
2611 SET_REAL_EXP (r
, -126);
2612 r
->sig
[SIGSZ
-1] = image
<< 1;
2615 else if (fmt
->has_signed_zero
)
2618 else if (exp
== 255 && (fmt
->has_nans
|| fmt
->has_inf
))
2624 r
->signalling
= (((image
>> (HOST_BITS_PER_LONG
- 2)) & 1)
2625 ^ fmt
->qnan_msb_set
);
2626 r
->sig
[SIGSZ
-1] = image
;
2638 SET_REAL_EXP (r
, exp
- 127 + 1);
2639 r
->sig
[SIGSZ
-1] = image
| SIG_MSB
;
2643 const struct real_format ieee_single_format
=
2662 const struct real_format mips_single_format
=
2682 /* IEEE double-precision format. */
2684 static void encode_ieee_double (const struct real_format
*fmt
,
2685 long *, const REAL_VALUE_TYPE
*);
2686 static void decode_ieee_double (const struct real_format
*,
2687 REAL_VALUE_TYPE
*, const long *);
2690 encode_ieee_double (const struct real_format
*fmt
, long *buf
,
2691 const REAL_VALUE_TYPE
*r
)
2693 unsigned long image_lo
, image_hi
, sig_lo
, sig_hi
, exp
;
2694 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2696 image_hi
= r
->sign
<< 31;
2699 if (HOST_BITS_PER_LONG
== 64)
2701 sig_hi
= r
->sig
[SIGSZ
-1];
2702 sig_lo
= (sig_hi
>> (64 - 53)) & 0xffffffff;
2703 sig_hi
= (sig_hi
>> (64 - 53 + 1) >> 31) & 0xfffff;
2707 sig_hi
= r
->sig
[SIGSZ
-1];
2708 sig_lo
= r
->sig
[SIGSZ
-2];
2709 sig_lo
= (sig_hi
<< 21) | (sig_lo
>> 11);
2710 sig_hi
= (sig_hi
>> 11) & 0xfffff;
2720 image_hi
|= 2047 << 20;
2723 image_hi
|= 0x7fffffff;
2724 image_lo
= 0xffffffff;
2732 sig_hi
= sig_lo
= 0;
2733 if (r
->signalling
== fmt
->qnan_msb_set
)
2734 sig_hi
&= ~(1 << 19);
2737 /* We overload qnan_msb_set here: it's only clear for
2738 mips_ieee_single, which wants all mantissa bits but the
2739 quiet/signalling one set in canonical NaNs (at least
2741 if (r
->canonical
&& !fmt
->qnan_msb_set
)
2743 sig_hi
|= (1 << 19) - 1;
2744 sig_lo
= 0xffffffff;
2746 else if (sig_hi
== 0 && sig_lo
== 0)
2749 image_hi
|= 2047 << 20;
2755 image_hi
|= 0x7fffffff;
2756 image_lo
= 0xffffffff;
2761 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2762 whereas the intermediate representation is 0.F x 2**exp.
2763 Which means we're off by one. */
2767 exp
= REAL_EXP (r
) + 1023 - 1;
2768 image_hi
|= exp
<< 20;
2777 if (FLOAT_WORDS_BIG_ENDIAN
)
2778 buf
[0] = image_hi
, buf
[1] = image_lo
;
2780 buf
[0] = image_lo
, buf
[1] = image_hi
;
2784 decode_ieee_double (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2787 unsigned long image_hi
, image_lo
;
2791 if (FLOAT_WORDS_BIG_ENDIAN
)
2792 image_hi
= buf
[0], image_lo
= buf
[1];
2794 image_lo
= buf
[0], image_hi
= buf
[1];
2795 image_lo
&= 0xffffffff;
2796 image_hi
&= 0xffffffff;
2798 sign
= (image_hi
>> 31) & 1;
2799 exp
= (image_hi
>> 20) & 0x7ff;
2801 memset (r
, 0, sizeof (*r
));
2803 image_hi
<<= 32 - 21;
2804 image_hi
|= image_lo
>> 21;
2805 image_hi
&= 0x7fffffff;
2806 image_lo
<<= 32 - 21;
2810 if ((image_hi
|| image_lo
) && fmt
->has_denorm
)
2814 SET_REAL_EXP (r
, -1022);
2815 if (HOST_BITS_PER_LONG
== 32)
2817 image_hi
= (image_hi
<< 1) | (image_lo
>> 31);
2819 r
->sig
[SIGSZ
-1] = image_hi
;
2820 r
->sig
[SIGSZ
-2] = image_lo
;
2824 image_hi
= (image_hi
<< 31 << 2) | (image_lo
<< 1);
2825 r
->sig
[SIGSZ
-1] = image_hi
;
2829 else if (fmt
->has_signed_zero
)
2832 else if (exp
== 2047 && (fmt
->has_nans
|| fmt
->has_inf
))
2834 if (image_hi
|| image_lo
)
2838 r
->signalling
= ((image_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
2839 if (HOST_BITS_PER_LONG
== 32)
2841 r
->sig
[SIGSZ
-1] = image_hi
;
2842 r
->sig
[SIGSZ
-2] = image_lo
;
2845 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
;
2857 SET_REAL_EXP (r
, exp
- 1023 + 1);
2858 if (HOST_BITS_PER_LONG
== 32)
2860 r
->sig
[SIGSZ
-1] = image_hi
| SIG_MSB
;
2861 r
->sig
[SIGSZ
-2] = image_lo
;
2864 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
| SIG_MSB
;
2868 const struct real_format ieee_double_format
=
2887 const struct real_format mips_double_format
=
2907 /* IEEE extended real format. This comes in three flavors: Intel's as
2908 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
2909 12- and 16-byte images may be big- or little endian; Motorola's is
2910 always big endian. */
2912 /* Helper subroutine which converts from the internal format to the
2913 12-byte little-endian Intel format. Functions below adjust this
2914 for the other possible formats. */
2916 encode_ieee_extended (const struct real_format
*fmt
, long *buf
,
2917 const REAL_VALUE_TYPE
*r
)
2919 unsigned long image_hi
, sig_hi
, sig_lo
;
2920 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2922 image_hi
= r
->sign
<< 15;
2923 sig_hi
= sig_lo
= 0;
2935 /* Intel requires the explicit integer bit to be set, otherwise
2936 it considers the value a "pseudo-infinity". Motorola docs
2937 say it doesn't care. */
2938 sig_hi
= 0x80000000;
2943 sig_lo
= sig_hi
= 0xffffffff;
2951 if (HOST_BITS_PER_LONG
== 32)
2953 sig_hi
= r
->sig
[SIGSZ
-1];
2954 sig_lo
= r
->sig
[SIGSZ
-2];
2958 sig_lo
= r
->sig
[SIGSZ
-1];
2959 sig_hi
= sig_lo
>> 31 >> 1;
2960 sig_lo
&= 0xffffffff;
2962 if (r
->signalling
== fmt
->qnan_msb_set
)
2963 sig_hi
&= ~(1 << 30);
2966 if ((sig_hi
& 0x7fffffff) == 0 && sig_lo
== 0)
2969 /* Intel requires the explicit integer bit to be set, otherwise
2970 it considers the value a "pseudo-nan". Motorola docs say it
2972 sig_hi
|= 0x80000000;
2977 sig_lo
= sig_hi
= 0xffffffff;
2983 int exp
= REAL_EXP (r
);
2985 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2986 whereas the intermediate representation is 0.F x 2**exp.
2987 Which means we're off by one.
2989 Except for Motorola, which consider exp=0 and explicit
2990 integer bit set to continue to be normalized. In theory
2991 this discrepancy has been taken care of by the difference
2992 in fmt->emin in round_for_format. */
2999 gcc_assert (exp
>= 0);
3003 if (HOST_BITS_PER_LONG
== 32)
3005 sig_hi
= r
->sig
[SIGSZ
-1];
3006 sig_lo
= r
->sig
[SIGSZ
-2];
3010 sig_lo
= r
->sig
[SIGSZ
-1];
3011 sig_hi
= sig_lo
>> 31 >> 1;
3012 sig_lo
&= 0xffffffff;
3021 buf
[0] = sig_lo
, buf
[1] = sig_hi
, buf
[2] = image_hi
;
3024 /* Convert from the internal format to the 12-byte Motorola format
3025 for an IEEE extended real. */
3027 encode_ieee_extended_motorola (const struct real_format
*fmt
, long *buf
,
3028 const REAL_VALUE_TYPE
*r
)
3031 encode_ieee_extended (fmt
, intermed
, r
);
3033 /* Motorola chips are assumed always to be big-endian. Also, the
3034 padding in a Motorola extended real goes between the exponent and
3035 the mantissa. At this point the mantissa is entirely within
3036 elements 0 and 1 of intermed, and the exponent entirely within
3037 element 2, so all we have to do is swap the order around, and
3038 shift element 2 left 16 bits. */
3039 buf
[0] = intermed
[2] << 16;
3040 buf
[1] = intermed
[1];
3041 buf
[2] = intermed
[0];
3044 /* Convert from the internal format to the 12-byte Intel format for
3045 an IEEE extended real. */
3047 encode_ieee_extended_intel_96 (const struct real_format
*fmt
, long *buf
,
3048 const REAL_VALUE_TYPE
*r
)
3050 if (FLOAT_WORDS_BIG_ENDIAN
)
3052 /* All the padding in an Intel-format extended real goes at the high
3053 end, which in this case is after the mantissa, not the exponent.
3054 Therefore we must shift everything down 16 bits. */
3056 encode_ieee_extended (fmt
, intermed
, r
);
3057 buf
[0] = ((intermed
[2] << 16) | ((unsigned long)(intermed
[1] & 0xFFFF0000) >> 16));
3058 buf
[1] = ((intermed
[1] << 16) | ((unsigned long)(intermed
[0] & 0xFFFF0000) >> 16));
3059 buf
[2] = (intermed
[0] << 16);
3062 /* encode_ieee_extended produces what we want directly. */
3063 encode_ieee_extended (fmt
, buf
, r
);
3066 /* Convert from the internal format to the 16-byte Intel format for
3067 an IEEE extended real. */
3069 encode_ieee_extended_intel_128 (const struct real_format
*fmt
, long *buf
,
3070 const REAL_VALUE_TYPE
*r
)
3072 /* All the padding in an Intel-format extended real goes at the high end. */
3073 encode_ieee_extended_intel_96 (fmt
, buf
, r
);
3077 /* As above, we have a helper function which converts from 12-byte
3078 little-endian Intel format to internal format. Functions below
3079 adjust for the other possible formats. */
3081 decode_ieee_extended (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3084 unsigned long image_hi
, sig_hi
, sig_lo
;
3088 sig_lo
= buf
[0], sig_hi
= buf
[1], image_hi
= buf
[2];
3089 sig_lo
&= 0xffffffff;
3090 sig_hi
&= 0xffffffff;
3091 image_hi
&= 0xffffffff;
3093 sign
= (image_hi
>> 15) & 1;
3094 exp
= image_hi
& 0x7fff;
3096 memset (r
, 0, sizeof (*r
));
3100 if ((sig_hi
|| sig_lo
) && fmt
->has_denorm
)
3105 /* When the IEEE format contains a hidden bit, we know that
3106 it's zero at this point, and so shift up the significand
3107 and decrease the exponent to match. In this case, Motorola
3108 defines the explicit integer bit to be valid, so we don't
3109 know whether the msb is set or not. */
3110 SET_REAL_EXP (r
, fmt
->emin
);
3111 if (HOST_BITS_PER_LONG
== 32)
3113 r
->sig
[SIGSZ
-1] = sig_hi
;
3114 r
->sig
[SIGSZ
-2] = sig_lo
;
3117 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3121 else if (fmt
->has_signed_zero
)
3124 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3126 /* See above re "pseudo-infinities" and "pseudo-nans".
3127 Short summary is that the MSB will likely always be
3128 set, and that we don't care about it. */
3129 sig_hi
&= 0x7fffffff;
3131 if (sig_hi
|| sig_lo
)
3135 r
->signalling
= ((sig_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
3136 if (HOST_BITS_PER_LONG
== 32)
3138 r
->sig
[SIGSZ
-1] = sig_hi
;
3139 r
->sig
[SIGSZ
-2] = sig_lo
;
3142 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3154 SET_REAL_EXP (r
, exp
- 16383 + 1);
3155 if (HOST_BITS_PER_LONG
== 32)
3157 r
->sig
[SIGSZ
-1] = sig_hi
;
3158 r
->sig
[SIGSZ
-2] = sig_lo
;
3161 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3165 /* Convert from the internal format to the 12-byte Motorola format
3166 for an IEEE extended real. */
3168 decode_ieee_extended_motorola (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3173 /* Motorola chips are assumed always to be big-endian. Also, the
3174 padding in a Motorola extended real goes between the exponent and
3175 the mantissa; remove it. */
3176 intermed
[0] = buf
[2];
3177 intermed
[1] = buf
[1];
3178 intermed
[2] = (unsigned long)buf
[0] >> 16;
3180 decode_ieee_extended (fmt
, r
, intermed
);
3183 /* Convert from the internal format to the 12-byte Intel format for
3184 an IEEE extended real. */
3186 decode_ieee_extended_intel_96 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3189 if (FLOAT_WORDS_BIG_ENDIAN
)
3191 /* All the padding in an Intel-format extended real goes at the high
3192 end, which in this case is after the mantissa, not the exponent.
3193 Therefore we must shift everything up 16 bits. */
3196 intermed
[0] = (((unsigned long)buf
[2] >> 16) | (buf
[1] << 16));
3197 intermed
[1] = (((unsigned long)buf
[1] >> 16) | (buf
[0] << 16));
3198 intermed
[2] = ((unsigned long)buf
[0] >> 16);
3200 decode_ieee_extended (fmt
, r
, intermed
);
3203 /* decode_ieee_extended produces what we want directly. */
3204 decode_ieee_extended (fmt
, r
, buf
);
3207 /* Convert from the internal format to the 16-byte Intel format for
3208 an IEEE extended real. */
3210 decode_ieee_extended_intel_128 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3213 /* All the padding in an Intel-format extended real goes at the high end. */
3214 decode_ieee_extended_intel_96 (fmt
, r
, buf
);
3217 const struct real_format ieee_extended_motorola_format
=
3219 encode_ieee_extended_motorola
,
3220 decode_ieee_extended_motorola
,
3236 const struct real_format ieee_extended_intel_96_format
=
3238 encode_ieee_extended_intel_96
,
3239 decode_ieee_extended_intel_96
,
3255 const struct real_format ieee_extended_intel_128_format
=
3257 encode_ieee_extended_intel_128
,
3258 decode_ieee_extended_intel_128
,
3274 /* The following caters to i386 systems that set the rounding precision
3275 to 53 bits instead of 64, e.g. FreeBSD. */
3276 const struct real_format ieee_extended_intel_96_round_53_format
=
3278 encode_ieee_extended_intel_96
,
3279 decode_ieee_extended_intel_96
,
3295 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3296 numbers whose sum is equal to the extended precision value. The number
3297 with greater magnitude is first. This format has the same magnitude
3298 range as an IEEE double precision value, but effectively 106 bits of
3299 significand precision. Infinity and NaN are represented by their IEEE
3300 double precision value stored in the first number, the second number is
3301 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3303 static void encode_ibm_extended (const struct real_format
*fmt
,
3304 long *, const REAL_VALUE_TYPE
*);
3305 static void decode_ibm_extended (const struct real_format
*,
3306 REAL_VALUE_TYPE
*, const long *);
3309 encode_ibm_extended (const struct real_format
*fmt
, long *buf
,
3310 const REAL_VALUE_TYPE
*r
)
3312 REAL_VALUE_TYPE u
, normr
, v
;
3313 const struct real_format
*base_fmt
;
3315 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3317 /* Renormlize R before doing any arithmetic on it. */
3319 if (normr
.cl
== rvc_normal
)
3322 /* u = IEEE double precision portion of significand. */
3324 round_for_format (base_fmt
, &u
);
3325 encode_ieee_double (base_fmt
, &buf
[0], &u
);
3327 if (u
.cl
== rvc_normal
)
3329 do_add (&v
, &normr
, &u
, 1);
3330 /* Call round_for_format since we might need to denormalize. */
3331 round_for_format (base_fmt
, &v
);
3332 encode_ieee_double (base_fmt
, &buf
[2], &v
);
3336 /* Inf, NaN, 0 are all representable as doubles, so the
3337 least-significant part can be 0.0. */
3344 decode_ibm_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
, REAL_VALUE_TYPE
*r
,
3347 REAL_VALUE_TYPE u
, v
;
3348 const struct real_format
*base_fmt
;
3350 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3351 decode_ieee_double (base_fmt
, &u
, &buf
[0]);
3353 if (u
.cl
!= rvc_zero
&& u
.cl
!= rvc_inf
&& u
.cl
!= rvc_nan
)
3355 decode_ieee_double (base_fmt
, &v
, &buf
[2]);
3356 do_add (r
, &u
, &v
, 0);
3362 const struct real_format ibm_extended_format
=
3364 encode_ibm_extended
,
3365 decode_ibm_extended
,
3381 const struct real_format mips_extended_format
=
3383 encode_ibm_extended
,
3384 decode_ibm_extended
,
3401 /* IEEE quad precision format. */
3403 static void encode_ieee_quad (const struct real_format
*fmt
,
3404 long *, const REAL_VALUE_TYPE
*);
3405 static void decode_ieee_quad (const struct real_format
*,
3406 REAL_VALUE_TYPE
*, const long *);
3409 encode_ieee_quad (const struct real_format
*fmt
, long *buf
,
3410 const REAL_VALUE_TYPE
*r
)
3412 unsigned long image3
, image2
, image1
, image0
, exp
;
3413 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3416 image3
= r
->sign
<< 31;
3421 rshift_significand (&u
, r
, SIGNIFICAND_BITS
- 113);
3430 image3
|= 32767 << 16;
3433 image3
|= 0x7fffffff;
3434 image2
= 0xffffffff;
3435 image1
= 0xffffffff;
3436 image0
= 0xffffffff;
3443 image3
|= 32767 << 16;
3447 /* Don't use bits from the significand. The
3448 initialization above is right. */
3450 else if (HOST_BITS_PER_LONG
== 32)
3455 image3
|= u
.sig
[3] & 0xffff;
3460 image1
= image0
>> 31 >> 1;
3462 image3
|= (image2
>> 31 >> 1) & 0xffff;
3463 image0
&= 0xffffffff;
3464 image2
&= 0xffffffff;
3466 if (r
->signalling
== fmt
->qnan_msb_set
)
3470 /* We overload qnan_msb_set here: it's only clear for
3471 mips_ieee_single, which wants all mantissa bits but the
3472 quiet/signalling one set in canonical NaNs (at least
3474 if (r
->canonical
&& !fmt
->qnan_msb_set
)
3477 image2
= image1
= image0
= 0xffffffff;
3479 else if (((image3
& 0xffff) | image2
| image1
| image0
) == 0)
3484 image3
|= 0x7fffffff;
3485 image2
= 0xffffffff;
3486 image1
= 0xffffffff;
3487 image0
= 0xffffffff;
3492 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3493 whereas the intermediate representation is 0.F x 2**exp.
3494 Which means we're off by one. */
3498 exp
= REAL_EXP (r
) + 16383 - 1;
3499 image3
|= exp
<< 16;
3501 if (HOST_BITS_PER_LONG
== 32)
3506 image3
|= u
.sig
[3] & 0xffff;
3511 image1
= image0
>> 31 >> 1;
3513 image3
|= (image2
>> 31 >> 1) & 0xffff;
3514 image0
&= 0xffffffff;
3515 image2
&= 0xffffffff;
3523 if (FLOAT_WORDS_BIG_ENDIAN
)
3540 decode_ieee_quad (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3543 unsigned long image3
, image2
, image1
, image0
;
3547 if (FLOAT_WORDS_BIG_ENDIAN
)
3561 image0
&= 0xffffffff;
3562 image1
&= 0xffffffff;
3563 image2
&= 0xffffffff;
3565 sign
= (image3
>> 31) & 1;
3566 exp
= (image3
>> 16) & 0x7fff;
3569 memset (r
, 0, sizeof (*r
));
3573 if ((image3
| image2
| image1
| image0
) && fmt
->has_denorm
)
3578 SET_REAL_EXP (r
, -16382 + (SIGNIFICAND_BITS
- 112));
3579 if (HOST_BITS_PER_LONG
== 32)
3588 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3589 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3594 else if (fmt
->has_signed_zero
)
3597 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3599 if (image3
| image2
| image1
| image0
)
3603 r
->signalling
= ((image3
>> 15) & 1) ^ fmt
->qnan_msb_set
;
3605 if (HOST_BITS_PER_LONG
== 32)
3614 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3615 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3617 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3629 SET_REAL_EXP (r
, exp
- 16383 + 1);
3631 if (HOST_BITS_PER_LONG
== 32)
3640 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3641 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3643 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3644 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3648 const struct real_format ieee_quad_format
=
3667 const struct real_format mips_quad_format
=
3686 /* Descriptions of VAX floating point formats can be found beginning at
3688 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
3690 The thing to remember is that they're almost IEEE, except for word
3691 order, exponent bias, and the lack of infinities, nans, and denormals.
3693 We don't implement the H_floating format here, simply because neither
3694 the VAX or Alpha ports use it. */
3696 static void encode_vax_f (const struct real_format
*fmt
,
3697 long *, const REAL_VALUE_TYPE
*);
3698 static void decode_vax_f (const struct real_format
*,
3699 REAL_VALUE_TYPE
*, const long *);
3700 static void encode_vax_d (const struct real_format
*fmt
,
3701 long *, const REAL_VALUE_TYPE
*);
3702 static void decode_vax_d (const struct real_format
*,
3703 REAL_VALUE_TYPE
*, const long *);
3704 static void encode_vax_g (const struct real_format
*fmt
,
3705 long *, const REAL_VALUE_TYPE
*);
3706 static void decode_vax_g (const struct real_format
*,
3707 REAL_VALUE_TYPE
*, const long *);
3710 encode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3711 const REAL_VALUE_TYPE
*r
)
3713 unsigned long sign
, exp
, sig
, image
;
3715 sign
= r
->sign
<< 15;
3725 image
= 0xffff7fff | sign
;
3729 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
3730 exp
= REAL_EXP (r
) + 128;
3732 image
= (sig
<< 16) & 0xffff0000;
3746 decode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3747 REAL_VALUE_TYPE
*r
, const long *buf
)
3749 unsigned long image
= buf
[0] & 0xffffffff;
3750 int exp
= (image
>> 7) & 0xff;
3752 memset (r
, 0, sizeof (*r
));
3757 r
->sign
= (image
>> 15) & 1;
3758 SET_REAL_EXP (r
, exp
- 128);
3760 image
= ((image
& 0x7f) << 16) | ((image
>> 16) & 0xffff);
3761 r
->sig
[SIGSZ
-1] = (image
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
3766 encode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3767 const REAL_VALUE_TYPE
*r
)
3769 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
3774 image0
= image1
= 0;
3779 image0
= 0xffff7fff | sign
;
3780 image1
= 0xffffffff;
3784 /* Extract the significand into straight hi:lo. */
3785 if (HOST_BITS_PER_LONG
== 64)
3787 image0
= r
->sig
[SIGSZ
-1];
3788 image1
= (image0
>> (64 - 56)) & 0xffffffff;
3789 image0
= (image0
>> (64 - 56 + 1) >> 31) & 0x7fffff;
3793 image0
= r
->sig
[SIGSZ
-1];
3794 image1
= r
->sig
[SIGSZ
-2];
3795 image1
= (image0
<< 24) | (image1
>> 8);
3796 image0
= (image0
>> 8) & 0xffffff;
3799 /* Rearrange the half-words of the significand to match the
3801 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff007f;
3802 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
3804 /* Add the sign and exponent. */
3806 image0
|= (REAL_EXP (r
) + 128) << 7;
3813 if (FLOAT_WORDS_BIG_ENDIAN
)
3814 buf
[0] = image1
, buf
[1] = image0
;
3816 buf
[0] = image0
, buf
[1] = image1
;
3820 decode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3821 REAL_VALUE_TYPE
*r
, const long *buf
)
3823 unsigned long image0
, image1
;
3826 if (FLOAT_WORDS_BIG_ENDIAN
)
3827 image1
= buf
[0], image0
= buf
[1];
3829 image0
= buf
[0], image1
= buf
[1];
3830 image0
&= 0xffffffff;
3831 image1
&= 0xffffffff;
3833 exp
= (image0
>> 7) & 0xff;
3835 memset (r
, 0, sizeof (*r
));
3840 r
->sign
= (image0
>> 15) & 1;
3841 SET_REAL_EXP (r
, exp
- 128);
3843 /* Rearrange the half-words of the external format into
3844 proper ascending order. */
3845 image0
= ((image0
& 0x7f) << 16) | ((image0
>> 16) & 0xffff);
3846 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
3848 if (HOST_BITS_PER_LONG
== 64)
3850 image0
= (image0
<< 31 << 1) | image1
;
3853 r
->sig
[SIGSZ
-1] = image0
;
3857 r
->sig
[SIGSZ
-1] = image0
;
3858 r
->sig
[SIGSZ
-2] = image1
;
3859 lshift_significand (r
, r
, 2*HOST_BITS_PER_LONG
- 56);
3860 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3866 encode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3867 const REAL_VALUE_TYPE
*r
)
3869 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
3874 image0
= image1
= 0;
3879 image0
= 0xffff7fff | sign
;
3880 image1
= 0xffffffff;
3884 /* Extract the significand into straight hi:lo. */
3885 if (HOST_BITS_PER_LONG
== 64)
3887 image0
= r
->sig
[SIGSZ
-1];
3888 image1
= (image0
>> (64 - 53)) & 0xffffffff;
3889 image0
= (image0
>> (64 - 53 + 1) >> 31) & 0xfffff;
3893 image0
= r
->sig
[SIGSZ
-1];
3894 image1
= r
->sig
[SIGSZ
-2];
3895 image1
= (image0
<< 21) | (image1
>> 11);
3896 image0
= (image0
>> 11) & 0xfffff;
3899 /* Rearrange the half-words of the significand to match the
3901 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff000f;
3902 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
3904 /* Add the sign and exponent. */
3906 image0
|= (REAL_EXP (r
) + 1024) << 4;
3913 if (FLOAT_WORDS_BIG_ENDIAN
)
3914 buf
[0] = image1
, buf
[1] = image0
;
3916 buf
[0] = image0
, buf
[1] = image1
;
3920 decode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3921 REAL_VALUE_TYPE
*r
, const long *buf
)
3923 unsigned long image0
, image1
;
3926 if (FLOAT_WORDS_BIG_ENDIAN
)
3927 image1
= buf
[0], image0
= buf
[1];
3929 image0
= buf
[0], image1
= buf
[1];
3930 image0
&= 0xffffffff;
3931 image1
&= 0xffffffff;
3933 exp
= (image0
>> 4) & 0x7ff;
3935 memset (r
, 0, sizeof (*r
));
3940 r
->sign
= (image0
>> 15) & 1;
3941 SET_REAL_EXP (r
, exp
- 1024);
3943 /* Rearrange the half-words of the external format into
3944 proper ascending order. */
3945 image0
= ((image0
& 0xf) << 16) | ((image0
>> 16) & 0xffff);
3946 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
3948 if (HOST_BITS_PER_LONG
== 64)
3950 image0
= (image0
<< 31 << 1) | image1
;
3953 r
->sig
[SIGSZ
-1] = image0
;
3957 r
->sig
[SIGSZ
-1] = image0
;
3958 r
->sig
[SIGSZ
-2] = image1
;
3959 lshift_significand (r
, r
, 64 - 53);
3960 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3965 const struct real_format vax_f_format
=
3984 const struct real_format vax_d_format
=
4003 const struct real_format vax_g_format
=
4022 /* A good reference for these can be found in chapter 9 of
4023 "ESA/390 Principles of Operation", IBM document number SA22-7201-01.
4024 An on-line version can be found here:
4026 http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DZ9AR001/9.1?DT=19930923083613
4029 static void encode_i370_single (const struct real_format
*fmt
,
4030 long *, const REAL_VALUE_TYPE
*);
4031 static void decode_i370_single (const struct real_format
*,
4032 REAL_VALUE_TYPE
*, const long *);
4033 static void encode_i370_double (const struct real_format
*fmt
,
4034 long *, const REAL_VALUE_TYPE
*);
4035 static void decode_i370_double (const struct real_format
*,
4036 REAL_VALUE_TYPE
*, const long *);
4039 encode_i370_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4040 long *buf
, const REAL_VALUE_TYPE
*r
)
4042 unsigned long sign
, exp
, sig
, image
;
4044 sign
= r
->sign
<< 31;
4054 image
= 0x7fffffff | sign
;
4058 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0xffffff;
4059 exp
= ((REAL_EXP (r
) / 4) + 64) << 24;
4060 image
= sign
| exp
| sig
;
4071 decode_i370_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4072 REAL_VALUE_TYPE
*r
, const long *buf
)
4074 unsigned long sign
, sig
, image
= buf
[0];
4077 sign
= (image
>> 31) & 1;
4078 exp
= (image
>> 24) & 0x7f;
4079 sig
= image
& 0xffffff;
4081 memset (r
, 0, sizeof (*r
));
4087 SET_REAL_EXP (r
, (exp
- 64) * 4);
4088 r
->sig
[SIGSZ
-1] = sig
<< (HOST_BITS_PER_LONG
- 24);
4094 encode_i370_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4095 long *buf
, const REAL_VALUE_TYPE
*r
)
4097 unsigned long sign
, exp
, image_hi
, image_lo
;
4099 sign
= r
->sign
<< 31;
4104 image_hi
= image_lo
= 0;
4109 image_hi
= 0x7fffffff | sign
;
4110 image_lo
= 0xffffffff;
4114 if (HOST_BITS_PER_LONG
== 64)
4116 image_hi
= r
->sig
[SIGSZ
-1];
4117 image_lo
= (image_hi
>> (64 - 56)) & 0xffffffff;
4118 image_hi
= (image_hi
>> (64 - 56 + 1) >> 31) & 0xffffff;
4122 image_hi
= r
->sig
[SIGSZ
-1];
4123 image_lo
= r
->sig
[SIGSZ
-2];
4124 image_lo
= (image_lo
>> 8) | (image_hi
<< 24);
4128 exp
= ((REAL_EXP (r
) / 4) + 64) << 24;
4129 image_hi
|= sign
| exp
;
4136 if (FLOAT_WORDS_BIG_ENDIAN
)
4137 buf
[0] = image_hi
, buf
[1] = image_lo
;
4139 buf
[0] = image_lo
, buf
[1] = image_hi
;
4143 decode_i370_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4144 REAL_VALUE_TYPE
*r
, const long *buf
)
4146 unsigned long sign
, image_hi
, image_lo
;
4149 if (FLOAT_WORDS_BIG_ENDIAN
)
4150 image_hi
= buf
[0], image_lo
= buf
[1];
4152 image_lo
= buf
[0], image_hi
= buf
[1];
4154 sign
= (image_hi
>> 31) & 1;
4155 exp
= (image_hi
>> 24) & 0x7f;
4156 image_hi
&= 0xffffff;
4157 image_lo
&= 0xffffffff;
4159 memset (r
, 0, sizeof (*r
));
4161 if (exp
|| image_hi
|| image_lo
)
4165 SET_REAL_EXP (r
, (exp
- 64) * 4 + (SIGNIFICAND_BITS
- 56));
4167 if (HOST_BITS_PER_LONG
== 32)
4169 r
->sig
[0] = image_lo
;
4170 r
->sig
[1] = image_hi
;
4173 r
->sig
[0] = image_lo
| (image_hi
<< 31 << 1);
4179 const struct real_format i370_single_format
=
4193 false, /* ??? The encoding does allow for "unnormals". */
4194 false, /* ??? The encoding does allow for "unnormals". */
4198 const struct real_format i370_double_format
=
4212 false, /* ??? The encoding does allow for "unnormals". */
4213 false, /* ??? The encoding does allow for "unnormals". */
4217 /* The "twos-complement" c4x format is officially defined as
4221 This is rather misleading. One must remember that F is signed.
4222 A better description would be
4224 x = -1**s * ((s + 1 + .f) * 2**e
4226 So if we have a (4 bit) fraction of .1000 with a sign bit of 1,
4227 that's -1 * (1+1+(-.5)) == -1.5. I think.
4229 The constructions here are taken from Tables 5-1 and 5-2 of the
4230 TMS320C4x User's Guide wherein step-by-step instructions for
4231 conversion from IEEE are presented. That's close enough to our
4232 internal representation so as to make things easy.
4234 See http://www-s.ti.com/sc/psheets/spru063c/spru063c.pdf */
4236 static void encode_c4x_single (const struct real_format
*fmt
,
4237 long *, const REAL_VALUE_TYPE
*);
4238 static void decode_c4x_single (const struct real_format
*,
4239 REAL_VALUE_TYPE
*, const long *);
4240 static void encode_c4x_extended (const struct real_format
*fmt
,
4241 long *, const REAL_VALUE_TYPE
*);
4242 static void decode_c4x_extended (const struct real_format
*,
4243 REAL_VALUE_TYPE
*, const long *);
4246 encode_c4x_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4247 long *buf
, const REAL_VALUE_TYPE
*r
)
4249 unsigned long image
, exp
, sig
;
4261 sig
= 0x800000 - r
->sign
;
4265 exp
= REAL_EXP (r
) - 1;
4266 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
4281 image
= ((exp
& 0xff) << 24) | (sig
& 0xffffff);
4286 decode_c4x_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4287 REAL_VALUE_TYPE
*r
, const long *buf
)
4289 unsigned long image
= buf
[0];
4293 exp
= (((image
>> 24) & 0xff) ^ 0x80) - 0x80;
4294 sf
= ((image
& 0xffffff) ^ 0x800000) - 0x800000;
4296 memset (r
, 0, sizeof (*r
));
4302 sig
= sf
& 0x7fffff;
4311 sig
= (sig
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
4313 SET_REAL_EXP (r
, exp
+ 1);
4314 r
->sig
[SIGSZ
-1] = sig
;
4319 encode_c4x_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4320 long *buf
, const REAL_VALUE_TYPE
*r
)
4322 unsigned long exp
, sig
;
4334 sig
= 0x80000000 - r
->sign
;
4338 exp
= REAL_EXP (r
) - 1;
4340 sig
= r
->sig
[SIGSZ
-1];
4341 if (HOST_BITS_PER_LONG
== 64)
4342 sig
= sig
>> 1 >> 31;
4359 exp
= (exp
& 0xff) << 24;
4362 if (FLOAT_WORDS_BIG_ENDIAN
)
4363 buf
[0] = exp
, buf
[1] = sig
;
4365 buf
[0] = sig
, buf
[0] = exp
;
4369 decode_c4x_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4370 REAL_VALUE_TYPE
*r
, const long *buf
)
4375 if (FLOAT_WORDS_BIG_ENDIAN
)
4376 exp
= buf
[0], sf
= buf
[1];
4378 sf
= buf
[0], exp
= buf
[1];
4380 exp
= (((exp
>> 24) & 0xff) & 0x80) - 0x80;
4381 sf
= ((sf
& 0xffffffff) ^ 0x80000000) - 0x80000000;
4383 memset (r
, 0, sizeof (*r
));
4389 sig
= sf
& 0x7fffffff;
4398 if (HOST_BITS_PER_LONG
== 64)
4399 sig
= sig
<< 1 << 31;
4402 SET_REAL_EXP (r
, exp
+ 1);
4403 r
->sig
[SIGSZ
-1] = sig
;
4407 const struct real_format c4x_single_format
=
4426 const struct real_format c4x_extended_format
=
4428 encode_c4x_extended
,
4429 decode_c4x_extended
,
4446 /* A synthetic "format" for internal arithmetic. It's the size of the
4447 internal significand minus the two bits needed for proper rounding.
4448 The encode and decode routines exist only to satisfy our paranoia
4451 static void encode_internal (const struct real_format
*fmt
,
4452 long *, const REAL_VALUE_TYPE
*);
4453 static void decode_internal (const struct real_format
*,
4454 REAL_VALUE_TYPE
*, const long *);
4457 encode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4458 const REAL_VALUE_TYPE
*r
)
4460 memcpy (buf
, r
, sizeof (*r
));
4464 decode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4465 REAL_VALUE_TYPE
*r
, const long *buf
)
4467 memcpy (r
, buf
, sizeof (*r
));
4470 const struct real_format real_internal_format
=
4476 SIGNIFICAND_BITS
- 2,
4477 SIGNIFICAND_BITS
- 2,
4489 /* Calculate the square root of X in mode MODE, and store the result
4490 in R. Return TRUE if the operation does not raise an exception.
4491 For details see "High Precision Division and Square Root",
4492 Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4493 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
4496 real_sqrt (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4497 const REAL_VALUE_TYPE
*x
)
4499 static REAL_VALUE_TYPE halfthree
;
4500 static bool init
= false;
4501 REAL_VALUE_TYPE h
, t
, i
;
4504 /* sqrt(-0.0) is -0.0. */
4505 if (real_isnegzero (x
))
4511 /* Negative arguments return NaN. */
4514 get_canonical_qnan (r
, 0);
4518 /* Infinity and NaN return themselves. */
4519 if (real_isinf (x
) || real_isnan (x
))
4527 do_add (&halfthree
, &dconst1
, &dconsthalf
, 0);
4531 /* Initial guess for reciprocal sqrt, i. */
4532 exp
= real_exponent (x
);
4533 real_ldexp (&i
, &dconst1
, -exp
/2);
4535 /* Newton's iteration for reciprocal sqrt, i. */
4536 for (iter
= 0; iter
< 16; iter
++)
4538 /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
4539 do_multiply (&t
, x
, &i
);
4540 do_multiply (&h
, &t
, &i
);
4541 do_multiply (&t
, &h
, &dconsthalf
);
4542 do_add (&h
, &halfthree
, &t
, 1);
4543 do_multiply (&t
, &i
, &h
);
4545 /* Check for early convergence. */
4546 if (iter
>= 6 && real_identical (&i
, &t
))
4549 /* ??? Unroll loop to avoid copying. */
4553 /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
4554 do_multiply (&t
, x
, &i
);
4555 do_multiply (&h
, &t
, &i
);
4556 do_add (&i
, &dconst1
, &h
, 1);
4557 do_multiply (&h
, &t
, &i
);
4558 do_multiply (&i
, &dconsthalf
, &h
);
4559 do_add (&h
, &t
, &i
, 0);
4561 /* ??? We need a Tuckerman test to get the last bit. */
4563 real_convert (r
, mode
, &h
);
4567 /* Calculate X raised to the integer exponent N in mode MODE and store
4568 the result in R. Return true if the result may be inexact due to
4569 loss of precision. The algorithm is the classic "left-to-right binary
4570 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4571 Algorithms", "The Art of Computer Programming", Volume 2. */
4574 real_powi (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4575 const REAL_VALUE_TYPE
*x
, HOST_WIDE_INT n
)
4577 unsigned HOST_WIDE_INT bit
;
4579 bool inexact
= false;
4591 /* Don't worry about overflow, from now on n is unsigned. */
4599 bit
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
4600 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
++)
4604 inexact
|= do_multiply (&t
, &t
, &t
);
4606 inexact
|= do_multiply (&t
, &t
, x
);
4614 inexact
|= do_divide (&t
, &dconst1
, &t
);
4616 real_convert (r
, mode
, &t
);
4620 /* Round X to the nearest integer not larger in absolute value, i.e.
4621 towards zero, placing the result in R in mode MODE. */
4624 real_trunc (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4625 const REAL_VALUE_TYPE
*x
)
4627 do_fix_trunc (r
, x
);
4628 if (mode
!= VOIDmode
)
4629 real_convert (r
, mode
, r
);
4632 /* Round X to the largest integer not greater in value, i.e. round
4633 down, placing the result in R in mode MODE. */
4636 real_floor (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4637 const REAL_VALUE_TYPE
*x
)
4641 do_fix_trunc (&t
, x
);
4642 if (! real_identical (&t
, x
) && x
->sign
)
4643 do_add (&t
, &t
, &dconstm1
, 0);
4644 if (mode
!= VOIDmode
)
4645 real_convert (r
, mode
, &t
);
4650 /* Round X to the smallest integer not less then argument, i.e. round
4651 up, placing the result in R in mode MODE. */
4654 real_ceil (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4655 const REAL_VALUE_TYPE
*x
)
4659 do_fix_trunc (&t
, x
);
4660 if (! real_identical (&t
, x
) && ! x
->sign
)
4661 do_add (&t
, &t
, &dconst1
, 0);
4662 if (mode
!= VOIDmode
)
4663 real_convert (r
, mode
, &t
);
4668 /* Round X to the nearest integer, but round halfway cases away from
4672 real_round (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4673 const REAL_VALUE_TYPE
*x
)
4675 do_add (r
, x
, &dconsthalf
, x
->sign
);
4676 do_fix_trunc (r
, r
);
4677 if (mode
!= VOIDmode
)
4678 real_convert (r
, mode
, r
);
4681 /* Set the sign of R to the sign of X. */
4684 real_copysign (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*x
)