* arm.c (FL_WBUF): Define.
[official-gcc.git] / gcc / ddg.c
blobea65835a3245e004751464d540950718d356a57a
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "sched-int.h"
40 #include "target.h"
41 #include "cfglayout.h"
42 #include "cfgloop.h"
43 #include "sbitmap.h"
44 #include "expr.h"
45 #include "bitmap.h"
46 #include "df.h"
47 #include "ddg.h"
49 /* A flag indicating that a ddg edge belongs to an SCC or not. */
50 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
52 /* Forward declarations. */
53 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
54 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
55 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
56 static void create_ddg_dependence (ddg_ptr, ddg_node_ptr, ddg_node_ptr, rtx);
57 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
58 dep_type, dep_data_type, int);
59 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
60 dep_data_type, int, int);
61 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
63 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
64 static bool mem_ref_p;
66 /* Auxiliary function for mem_read_insn_p. */
67 static int
68 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
70 if (MEM_P (*x))
71 mem_ref_p = true;
72 return 0;
75 /* Auxiliary function for mem_read_insn_p. */
76 static void
77 mark_mem_use_1 (rtx *x, void *data)
79 for_each_rtx (x, mark_mem_use, data);
82 /* Returns nonzero if INSN reads from memory. */
83 static bool
84 mem_read_insn_p (rtx insn)
86 mem_ref_p = false;
87 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
88 return mem_ref_p;
91 static void
92 mark_mem_store (rtx loc, rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
94 if (MEM_P (loc))
95 mem_ref_p = true;
98 /* Returns nonzero if INSN writes to memory. */
99 static bool
100 mem_write_insn_p (rtx insn)
102 mem_ref_p = false;
103 note_stores (PATTERN (insn), mark_mem_store, NULL);
104 return mem_ref_p;
107 /* Returns nonzero if X has access to memory. */
108 static bool
109 rtx_mem_access_p (rtx x)
111 int i, j;
112 const char *fmt;
113 enum rtx_code code;
115 if (x == 0)
116 return false;
118 if (MEM_P (x))
119 return true;
121 code = GET_CODE (x);
122 fmt = GET_RTX_FORMAT (code);
123 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
125 if (fmt[i] == 'e')
127 if (rtx_mem_access_p (XEXP (x, i)))
128 return true;
130 else if (fmt[i] == 'E')
131 for (j = 0; j < XVECLEN (x, i); j++)
133 if (rtx_mem_access_p (XVECEXP (x, i, j)))
134 return true;
137 return false;
140 /* Returns nonzero if INSN reads to or writes from memory. */
141 static bool
142 mem_access_insn_p (rtx insn)
144 return rtx_mem_access_p (PATTERN (insn));
147 /* Computes the dependence parameters (latency, distance etc.), creates
148 a ddg_edge and adds it to the given DDG. */
149 static void
150 create_ddg_dependence (ddg_ptr g, ddg_node_ptr src_node,
151 ddg_node_ptr dest_node, rtx link)
153 ddg_edge_ptr e;
154 int latency, distance = 0;
155 int interloop = (src_node->cuid >= dest_node->cuid);
156 dep_type t = TRUE_DEP;
157 dep_data_type dt = (mem_access_insn_p (src_node->insn)
158 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
159 : REG_DEP);
161 /* For now we don't have an exact calculation of the distance,
162 so assume 1 conservatively. */
163 if (interloop)
164 distance = 1;
166 gcc_assert (link);
168 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
169 if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
170 t = ANTI_DEP;
171 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
172 t = OUTPUT_DEP;
173 latency = insn_cost (src_node->insn, link, dest_node->insn);
175 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
177 if (interloop)
179 /* Some interloop dependencies are relaxed:
180 1. Every insn is output dependent on itself; ignore such deps.
181 2. Every true/flow dependence is an anti dependence in the
182 opposite direction with distance 1; such register deps
183 will be removed by renaming if broken --- ignore them. */
184 if (!(t == OUTPUT_DEP && src_node == dest_node)
185 && !(t == ANTI_DEP && dt == REG_DEP))
186 add_backarc_to_ddg (g, e);
187 else
188 free (e);
190 else if (t == ANTI_DEP && dt == REG_DEP)
191 free (e); /* We can fix broken anti register deps using reg-moves. */
192 else
193 add_edge_to_ddg (g, e);
196 /* The same as the above function, but it doesn't require a link parameter. */
197 static void
198 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
199 dep_type d_t, dep_data_type d_dt, int distance)
201 ddg_edge_ptr e;
202 int l;
203 rtx link = alloc_INSN_LIST (to->insn, NULL_RTX);
205 if (d_t == ANTI_DEP)
206 PUT_REG_NOTE_KIND (link, REG_DEP_ANTI);
207 else if (d_t == OUTPUT_DEP)
208 PUT_REG_NOTE_KIND (link, REG_DEP_OUTPUT);
210 l = insn_cost (from->insn, link, to->insn);
211 free_INSN_LIST_node (link);
213 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
214 if (distance > 0)
215 add_backarc_to_ddg (g, e);
216 else
217 add_edge_to_ddg (g, e);
221 /* Given a downwards exposed register def RD, add inter-loop true dependences
222 for all its uses in the next iteration, and an output dependence to the
223 first def of the next iteration. */
224 static void
225 add_deps_for_def (ddg_ptr g, struct df *df, struct ref *rd)
227 int regno = DF_REF_REGNO (rd);
228 struct bb_info *bb_info = DF_BB_INFO (df, g->bb);
229 struct df_link *r_use;
230 int use_before_def = false;
231 rtx def_insn = DF_REF_INSN (rd);
232 ddg_node_ptr src_node = get_node_of_insn (g, def_insn);
234 /* Create and inter-loop true dependence between RD and each of its uses
235 that is upwards exposed in RD's block. */
236 for (r_use = DF_REF_CHAIN (rd); r_use != NULL; r_use = r_use->next)
238 if (bitmap_bit_p (bb_info->ru_gen, r_use->ref->id))
240 rtx use_insn = DF_REF_INSN (r_use->ref);
241 ddg_node_ptr dest_node = get_node_of_insn (g, use_insn);
243 gcc_assert (src_node && dest_node);
245 /* Any such upwards exposed use appears before the rd def. */
246 use_before_def = true;
247 create_ddg_dep_no_link (g, src_node, dest_node, TRUE_DEP,
248 REG_DEP, 1);
252 /* Create an inter-loop output dependence between RD (which is the
253 last def in its block, being downwards exposed) and the first def
254 in its block. Avoid creating a self output dependence. Avoid creating
255 an output dependence if there is a dependence path between the two defs
256 starting with a true dependence followed by an anti dependence (i.e. if
257 there is a use between the two defs. */
258 if (! use_before_def)
260 struct ref *def = df_bb_regno_first_def_find (df, g->bb, regno);
261 int i;
262 ddg_node_ptr dest_node;
264 if (!def || rd->id == def->id)
265 return;
267 /* Check if there are uses after RD. */
268 for (i = src_node->cuid + 1; i < g->num_nodes; i++)
269 if (df_reg_used (df, g->nodes[i].insn, rd->reg))
270 return;
272 dest_node = get_node_of_insn (g, def->insn);
273 create_ddg_dep_no_link (g, src_node, dest_node, OUTPUT_DEP, REG_DEP, 1);
277 /* Given a register USE, add an inter-loop anti dependence to the first
278 (nearest BLOCK_BEGIN) def of the next iteration, unless USE is followed
279 by a def in the block. */
280 static void
281 add_deps_for_use (ddg_ptr g, struct df *df, struct ref *use)
283 int i;
284 int regno = DF_REF_REGNO (use);
285 struct ref *first_def = df_bb_regno_first_def_find (df, g->bb, regno);
286 ddg_node_ptr use_node;
287 ddg_node_ptr def_node;
288 struct bb_info *bb_info;
290 bb_info = DF_BB_INFO (df, g->bb);
292 if (!first_def)
293 return;
295 use_node = get_node_of_insn (g, use->insn);
296 def_node = get_node_of_insn (g, first_def->insn);
298 gcc_assert (use_node && def_node);
300 /* Make sure there are no defs after USE. */
301 for (i = use_node->cuid + 1; i < g->num_nodes; i++)
302 if (df_find_def (df, g->nodes[i].insn, use->reg))
303 return;
304 /* We must not add ANTI dep when there is an intra-loop TRUE dep in
305 the opozite direction. If the first_def reaches the USE then there is
306 such a dep. */
307 if (! bitmap_bit_p (bb_info->rd_gen, first_def->id))
308 create_ddg_dep_no_link (g, use_node, def_node, ANTI_DEP, REG_DEP, 1);
311 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
312 static void
313 build_inter_loop_deps (ddg_ptr g, struct df *df)
315 unsigned rd_num, u_num;
316 struct bb_info *bb_info;
317 bitmap_iterator bi;
319 bb_info = DF_BB_INFO (df, g->bb);
321 /* Find inter-loop output and true deps by connecting downward exposed defs
322 to the first def of the BB and to upwards exposed uses. */
323 EXECUTE_IF_SET_IN_BITMAP (bb_info->rd_gen, 0, rd_num, bi)
325 struct ref *rd = df->defs[rd_num];
327 add_deps_for_def (g, df, rd);
330 /* Find inter-loop anti deps. We are interested in uses of the block that
331 appear below all defs; this implies that these uses are killed. */
332 EXECUTE_IF_SET_IN_BITMAP (bb_info->ru_kill, 0, u_num, bi)
334 struct ref *use = df->uses[u_num];
336 /* We are interested in uses of this BB. */
337 if (BLOCK_FOR_INSN (use->insn) == g->bb)
338 add_deps_for_use (g, df,use);
342 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
343 to ddg G. */
344 static void
345 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
347 if (mem_write_insn_p (from->insn))
349 if (mem_read_insn_p (to->insn))
350 create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
351 else if (from->cuid != to->cuid)
352 create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
354 else
356 if (mem_read_insn_p (to->insn))
357 return;
358 else if (from->cuid != to->cuid)
360 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
361 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
367 /* Perform intra-block Data Dependency analysis and connect the nodes in
368 the DDG. We assume the loop has a single basic block. */
369 static void
370 build_intra_loop_deps (ddg_ptr g)
372 int i;
373 /* Hold the dependency analysis state during dependency calculations. */
374 struct deps tmp_deps;
375 rtx head, tail, link;
377 /* Build the dependence information, using the sched_analyze function. */
378 init_deps_global ();
379 init_deps (&tmp_deps);
381 /* Do the intra-block data dependence analysis for the given block. */
382 get_block_head_tail (g->bb->index, &head, &tail);
383 sched_analyze (&tmp_deps, head, tail);
385 /* Build intra-loop data dependencies using the scheduler dependency
386 analysis. */
387 for (i = 0; i < g->num_nodes; i++)
389 ddg_node_ptr dest_node = &g->nodes[i];
391 if (! INSN_P (dest_node->insn))
392 continue;
394 for (link = LOG_LINKS (dest_node->insn); link; link = XEXP (link, 1))
396 ddg_node_ptr src_node = get_node_of_insn (g, XEXP (link, 0));
398 if (!src_node)
399 continue;
401 add_forward_dependence (XEXP (link, 0), dest_node->insn,
402 REG_NOTE_KIND (link));
403 create_ddg_dependence (g, src_node, dest_node,
404 INSN_DEPEND (src_node->insn));
407 /* If this insn modifies memory, add an edge to all insns that access
408 memory. */
409 if (mem_access_insn_p (dest_node->insn))
411 int j;
413 for (j = 0; j <= i; j++)
415 ddg_node_ptr j_node = &g->nodes[j];
416 if (mem_access_insn_p (j_node->insn))
417 /* Don't bother calculating inter-loop dep if an intra-loop dep
418 already exists. */
419 if (! TEST_BIT (dest_node->successors, j))
420 add_inter_loop_mem_dep (g, dest_node, j_node);
425 /* Free the INSN_LISTs. */
426 finish_deps_global ();
427 free_deps (&tmp_deps);
431 /* Given a basic block, create its DDG and return a pointer to a variable
432 of ddg type that represents it.
433 Initialize the ddg structure fields to the appropriate values. */
434 ddg_ptr
435 create_ddg (basic_block bb, struct df *df, int closing_branch_deps)
437 ddg_ptr g;
438 rtx insn, first_note;
439 int i;
440 int num_nodes = 0;
442 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
444 g->bb = bb;
445 g->closing_branch_deps = closing_branch_deps;
447 /* Count the number of insns in the BB. */
448 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
449 insn = NEXT_INSN (insn))
451 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
452 continue;
454 if (mem_read_insn_p (insn))
455 g->num_loads++;
456 if (mem_write_insn_p (insn))
457 g->num_stores++;
458 num_nodes++;
461 /* There is nothing to do for this BB. */
462 if (num_nodes <= 1)
464 free (g);
465 return NULL;
468 /* Allocate the nodes array, and initialize the nodes. */
469 g->num_nodes = num_nodes;
470 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
471 g->closing_branch = NULL;
472 i = 0;
473 first_note = NULL_RTX;
474 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
475 insn = NEXT_INSN (insn))
477 if (! INSN_P (insn))
479 if (! first_note && NOTE_P (insn)
480 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
481 first_note = insn;
482 continue;
484 if (JUMP_P (insn))
486 gcc_assert (!g->closing_branch);
487 g->closing_branch = &g->nodes[i];
489 else if (GET_CODE (PATTERN (insn)) == USE)
491 if (! first_note)
492 first_note = insn;
493 continue;
496 g->nodes[i].cuid = i;
497 g->nodes[i].successors = sbitmap_alloc (num_nodes);
498 sbitmap_zero (g->nodes[i].successors);
499 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
500 sbitmap_zero (g->nodes[i].predecessors);
501 g->nodes[i].first_note = (first_note ? first_note : insn);
502 g->nodes[i++].insn = insn;
503 first_note = NULL_RTX;
506 /* We must have found a branch in DDG. */
507 gcc_assert (g->closing_branch);
510 /* Build the data dependency graph. */
511 build_intra_loop_deps (g);
512 build_inter_loop_deps (g, df);
513 return g;
516 /* Free all the memory allocated for the DDG. */
517 void
518 free_ddg (ddg_ptr g)
520 int i;
522 if (!g)
523 return;
525 for (i = 0; i < g->num_nodes; i++)
527 ddg_edge_ptr e = g->nodes[i].out;
529 while (e)
531 ddg_edge_ptr next = e->next_out;
533 free (e);
534 e = next;
536 sbitmap_free (g->nodes[i].successors);
537 sbitmap_free (g->nodes[i].predecessors);
539 if (g->num_backarcs > 0)
540 free (g->backarcs);
541 free (g->nodes);
542 free (g);
545 void
546 print_ddg_edge (FILE *dump_file, ddg_edge_ptr e)
548 char dep_c;
550 switch (e->type) {
551 case OUTPUT_DEP :
552 dep_c = 'O';
553 break;
554 case ANTI_DEP :
555 dep_c = 'A';
556 break;
557 default:
558 dep_c = 'T';
561 fprintf (dump_file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
562 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
565 /* Print the DDG nodes with there in/out edges to the dump file. */
566 void
567 print_ddg (FILE *dump_file, ddg_ptr g)
569 int i;
571 for (i = 0; i < g->num_nodes; i++)
573 ddg_edge_ptr e;
575 print_rtl_single (dump_file, g->nodes[i].insn);
576 fprintf (dump_file, "OUT ARCS: ");
577 for (e = g->nodes[i].out; e; e = e->next_out)
578 print_ddg_edge (dump_file, e);
580 fprintf (dump_file, "\nIN ARCS: ");
581 for (e = g->nodes[i].in; e; e = e->next_in)
582 print_ddg_edge (dump_file, e);
584 fprintf (dump_file, "\n");
588 /* Print the given DDG in VCG format. */
589 void
590 vcg_print_ddg (FILE *dump_file, ddg_ptr g)
592 int src_cuid;
594 fprintf (dump_file, "graph: {\n");
595 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
597 ddg_edge_ptr e;
598 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
600 fprintf (dump_file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
601 print_rtl_single (dump_file, g->nodes[src_cuid].insn);
602 fprintf (dump_file, "\"}\n");
603 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
605 int dst_uid = INSN_UID (e->dest->insn);
606 int dst_cuid = e->dest->cuid;
608 /* Give the backarcs a different color. */
609 if (e->distance > 0)
610 fprintf (dump_file, "backedge: {color: red ");
611 else
612 fprintf (dump_file, "edge: { ");
614 fprintf (dump_file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
615 fprintf (dump_file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
616 fprintf (dump_file, "label: \"%d_%d\"}\n", e->latency, e->distance);
619 fprintf (dump_file, "}\n");
622 /* Create an edge and initialize it with given values. */
623 static ddg_edge_ptr
624 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
625 dep_type t, dep_data_type dt, int l, int d)
627 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
629 e->src = src;
630 e->dest = dest;
631 e->type = t;
632 e->data_type = dt;
633 e->latency = l;
634 e->distance = d;
635 e->next_in = e->next_out = NULL;
636 e->aux.info = 0;
637 return e;
640 /* Add the given edge to the in/out linked lists of the DDG nodes. */
641 static void
642 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
644 ddg_node_ptr src = e->src;
645 ddg_node_ptr dest = e->dest;
647 /* Should have allocated the sbitmaps. */
648 gcc_assert (src->successors && dest->predecessors);
650 SET_BIT (src->successors, dest->cuid);
651 SET_BIT (dest->predecessors, src->cuid);
652 e->next_in = dest->in;
653 dest->in = e;
654 e->next_out = src->out;
655 src->out = e;
660 /* Algorithm for computing the recurrence_length of an scc. We assume at
661 for now that cycles in the data dependence graph contain a single backarc.
662 This simplifies the algorithm, and can be generalized later. */
663 static void
664 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
666 int j;
667 int result = -1;
669 for (j = 0; j < scc->num_backarcs; j++)
671 ddg_edge_ptr backarc = scc->backarcs[j];
672 int length;
673 int distance = backarc->distance;
674 ddg_node_ptr src = backarc->dest;
675 ddg_node_ptr dest = backarc->src;
677 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
678 if (length < 0 )
680 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
681 continue;
683 length += backarc->latency;
684 result = MAX (result, (length / distance));
686 scc->recurrence_length = result;
689 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
690 and mark edges that belong to this scc as IN_SCC. */
691 static ddg_scc_ptr
692 create_scc (ddg_ptr g, sbitmap nodes)
694 ddg_scc_ptr scc;
695 int u;
697 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
698 scc->backarcs = NULL;
699 scc->num_backarcs = 0;
700 scc->nodes = sbitmap_alloc (g->num_nodes);
701 sbitmap_copy (scc->nodes, nodes);
703 /* Mark the backarcs that belong to this SCC. */
704 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u,
706 ddg_edge_ptr e;
707 ddg_node_ptr n = &g->nodes[u];
709 for (e = n->out; e; e = e->next_out)
710 if (TEST_BIT (nodes, e->dest->cuid))
712 e->aux.count = IN_SCC;
713 if (e->distance > 0)
714 add_backarc_to_scc (scc, e);
718 set_recurrence_length (scc, g);
719 return scc;
722 /* Cleans the memory allocation of a given SCC. */
723 static void
724 free_scc (ddg_scc_ptr scc)
726 if (!scc)
727 return;
729 sbitmap_free (scc->nodes);
730 if (scc->num_backarcs > 0)
731 free (scc->backarcs);
732 free (scc);
736 /* Add a given edge known to be a backarc to the given DDG. */
737 static void
738 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
740 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
742 add_edge_to_ddg (g, e);
743 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
744 g->backarcs[g->num_backarcs++] = e;
747 /* Add backarc to an SCC. */
748 static void
749 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
751 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
753 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
754 scc->backarcs[scc->num_backarcs++] = e;
757 /* Add the given SCC to the DDG. */
758 static void
759 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
761 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
763 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
764 g->sccs[g->num_sccs++] = scc;
767 /* Given the instruction INSN return the node that represents it. */
768 ddg_node_ptr
769 get_node_of_insn (ddg_ptr g, rtx insn)
771 int i;
773 for (i = 0; i < g->num_nodes; i++)
774 if (insn == g->nodes[i].insn)
775 return &g->nodes[i];
776 return NULL;
779 /* Given a set OPS of nodes in the DDG, find the set of their successors
780 which are not in OPS, and set their bits in SUCC. Bits corresponding to
781 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
782 void
783 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
785 int i;
787 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i,
789 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
790 sbitmap_a_or_b (succ, succ, node_succ);
793 /* We want those that are not in ops. */
794 sbitmap_difference (succ, succ, ops);
797 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
798 which are not in OPS, and set their bits in PREDS. Bits corresponding to
799 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
800 void
801 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
803 int i;
805 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i,
807 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
808 sbitmap_a_or_b (preds, preds, node_preds);
811 /* We want those that are not in ops. */
812 sbitmap_difference (preds, preds, ops);
816 /* Compare function to be passed to qsort to order the backarcs in descending
817 recMII order. */
818 static int
819 compare_sccs (const void *s1, const void *s2)
821 int rec_l1 = (*(ddg_scc_ptr *)s1)->recurrence_length;
822 int rec_l2 = (*(ddg_scc_ptr *)s2)->recurrence_length;
823 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
827 /* Order the backarcs in descending recMII order using compare_sccs. */
828 static void
829 order_sccs (ddg_all_sccs_ptr g)
831 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
832 (int (*) (const void *, const void *)) compare_sccs);
835 /* Perform the Strongly Connected Components decomposing algorithm on the
836 DDG and return DDG_ALL_SCCS structure that contains them. */
837 ddg_all_sccs_ptr
838 create_ddg_all_sccs (ddg_ptr g)
840 int i;
841 int num_nodes = g->num_nodes;
842 sbitmap from = sbitmap_alloc (num_nodes);
843 sbitmap to = sbitmap_alloc (num_nodes);
844 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
845 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
846 xmalloc (sizeof (struct ddg_all_sccs));
848 sccs->ddg = g;
849 sccs->sccs = NULL;
850 sccs->num_sccs = 0;
852 for (i = 0; i < g->num_backarcs; i++)
854 ddg_scc_ptr scc;
855 ddg_edge_ptr backarc = g->backarcs[i];
856 ddg_node_ptr src = backarc->src;
857 ddg_node_ptr dest = backarc->dest;
859 /* If the backarc already belongs to an SCC, continue. */
860 if (backarc->aux.count == IN_SCC)
861 continue;
863 sbitmap_zero (from);
864 sbitmap_zero (to);
865 SET_BIT (from, dest->cuid);
866 SET_BIT (to, src->cuid);
868 if (find_nodes_on_paths (scc_nodes, g, from, to))
870 scc = create_scc (g, scc_nodes);
871 add_scc_to_ddg (sccs, scc);
874 order_sccs (sccs);
875 sbitmap_free (from);
876 sbitmap_free (to);
877 sbitmap_free (scc_nodes);
878 return sccs;
881 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
882 void
883 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
885 int i;
887 if (!all_sccs)
888 return;
890 for (i = 0; i < all_sccs->num_sccs; i++)
891 free_scc (all_sccs->sccs[i]);
893 free (all_sccs);
897 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
898 nodes - find all nodes that lie on paths from FROM to TO (not excluding
899 nodes from FROM and TO). Return nonzero if nodes exist. */
901 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
903 int answer;
904 int change, u;
905 int num_nodes = g->num_nodes;
906 sbitmap workset = sbitmap_alloc (num_nodes);
907 sbitmap reachable_from = sbitmap_alloc (num_nodes);
908 sbitmap reach_to = sbitmap_alloc (num_nodes);
909 sbitmap tmp = sbitmap_alloc (num_nodes);
911 sbitmap_copy (reachable_from, from);
912 sbitmap_copy (tmp, from);
914 change = 1;
915 while (change)
917 change = 0;
918 sbitmap_copy (workset, tmp);
919 sbitmap_zero (tmp);
920 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
922 ddg_edge_ptr e;
923 ddg_node_ptr u_node = &g->nodes[u];
925 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
927 ddg_node_ptr v_node = e->dest;
928 int v = v_node->cuid;
930 if (!TEST_BIT (reachable_from, v))
932 SET_BIT (reachable_from, v);
933 SET_BIT (tmp, v);
934 change = 1;
940 sbitmap_copy (reach_to, to);
941 sbitmap_copy (tmp, to);
943 change = 1;
944 while (change)
946 change = 0;
947 sbitmap_copy (workset, tmp);
948 sbitmap_zero (tmp);
949 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
951 ddg_edge_ptr e;
952 ddg_node_ptr u_node = &g->nodes[u];
954 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
956 ddg_node_ptr v_node = e->src;
957 int v = v_node->cuid;
959 if (!TEST_BIT (reach_to, v))
961 SET_BIT (reach_to, v);
962 SET_BIT (tmp, v);
963 change = 1;
969 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
970 sbitmap_free (workset);
971 sbitmap_free (reachable_from);
972 sbitmap_free (reach_to);
973 sbitmap_free (tmp);
974 return answer;
978 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
979 at-least as large as the count of U_NODE plus the latency between them.
980 Sets a bit in TMP for each successor whose count was changed (increased).
981 Returns nonzero if any count was changed. */
982 static int
983 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
985 ddg_edge_ptr e;
986 int result = 0;
988 for (e = u_node->out; e; e = e->next_out)
990 ddg_node_ptr v_node = e->dest;
991 int v = v_node->cuid;
993 if (TEST_BIT (nodes, v)
994 && (e->distance == 0)
995 && (v_node->aux.count < u_node->aux.count + e->latency))
997 v_node->aux.count = u_node->aux.count + e->latency;
998 SET_BIT (tmp, v);
999 result = 1;
1002 return result;
1006 /* Find the length of a longest path from SRC to DEST in G,
1007 going only through NODES, and disregarding backarcs. */
1009 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1011 int i, u;
1012 int change = 1;
1013 int result;
1014 int num_nodes = g->num_nodes;
1015 sbitmap workset = sbitmap_alloc (num_nodes);
1016 sbitmap tmp = sbitmap_alloc (num_nodes);
1019 /* Data will hold the distance of the longest path found so far from
1020 src to each node. Initialize to -1 = less than minimum. */
1021 for (i = 0; i < g->num_nodes; i++)
1022 g->nodes[i].aux.count = -1;
1023 g->nodes[src].aux.count = 0;
1025 sbitmap_zero (tmp);
1026 SET_BIT (tmp, src);
1028 while (change)
1030 change = 0;
1031 sbitmap_copy (workset, tmp);
1032 sbitmap_zero (tmp);
1033 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
1035 ddg_node_ptr u_node = &g->nodes[u];
1037 change |= update_dist_to_successors (u_node, nodes, tmp);
1040 result = g->nodes[dest].aux.count;
1041 sbitmap_free (workset);
1042 sbitmap_free (tmp);
1043 return result;