1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Expander
; use Expander
;
32 with Exp_Util
; use Exp_Util
;
33 with Freeze
; use Freeze
;
34 with Lib
.Xref
; use Lib
.Xref
;
35 with Nlists
; use Nlists
;
36 with Nmake
; use Nmake
;
39 with Sem_Case
; use Sem_Case
;
40 with Sem_Ch3
; use Sem_Ch3
;
41 with Sem_Ch8
; use Sem_Ch8
;
42 with Sem_Disp
; use Sem_Disp
;
43 with Sem_Eval
; use Sem_Eval
;
44 with Sem_Res
; use Sem_Res
;
45 with Sem_Type
; use Sem_Type
;
46 with Sem_Util
; use Sem_Util
;
47 with Sem_Warn
; use Sem_Warn
;
48 with Stand
; use Stand
;
49 with Sinfo
; use Sinfo
;
50 with Targparm
; use Targparm
;
51 with Tbuild
; use Tbuild
;
52 with Uintp
; use Uintp
;
54 package body Sem_Ch5
is
56 Unblocked_Exit_Count
: Nat
:= 0;
57 -- This variable is used when processing if statements, case statements,
58 -- and block statements. It counts the number of exit points that are
59 -- not blocked by unconditional transfer instructions (for IF and CASE,
60 -- these are the branches of the conditional, for a block, they are the
61 -- statement sequence of the block, and the statement sequences of any
62 -- exception handlers that are part of the block. When processing is
63 -- complete, if this count is zero, it means that control cannot fall
64 -- through the IF, CASE or block statement. This is used for the
65 -- generation of warning messages. This variable is recursively saved
66 -- on entry to processing the construct, and restored on exit.
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Analyze_Iteration_Scheme
(N
: Node_Id
);
74 procedure Check_Possible_Current_Value_Condition
(Cnode
: Node_Id
);
75 -- Cnode is N_If_Statement, N_Elsif_Part, or N_Iteration_Scheme
76 -- (the latter when a WHILE condition is present). This call checks
77 -- if Condition (Cnode) is of the form ([NOT] var op val), where var
78 -- is a simple object, val is known at compile time, and op is one
79 -- of the six relational operators. If this is the case, and the
80 -- Current_Value field of "var" is not set, then it is set to Cnode.
81 -- See Exp_Util.Set_Current_Value_Condition for further details.
83 ------------------------
84 -- Analyze_Assignment --
85 ------------------------
87 procedure Analyze_Assignment
(N
: Node_Id
) is
88 Lhs
: constant Node_Id
:= Name
(N
);
89 Rhs
: constant Node_Id
:= Expression
(N
);
95 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
);
96 -- N is the node for the left hand side of an assignment, and it
97 -- is not a variable. This routine issues an appropriate diagnostic.
99 procedure Set_Assignment_Type
101 Opnd_Type
: in out Entity_Id
);
102 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
103 -- is the nominal subtype. This procedure is used to deal with cases
104 -- where the nominal subtype must be replaced by the actual subtype.
106 -------------------------------
107 -- Diagnose_Non_Variable_Lhs --
108 -------------------------------
110 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
) is
112 -- Not worth posting another error if left hand side already
113 -- flagged as being illegal in some respect
115 if Error_Posted
(N
) then
118 -- Some special bad cases of entity names
120 elsif Is_Entity_Name
(N
) then
121 if Ekind
(Entity
(N
)) = E_In_Parameter
then
123 ("assignment to IN mode parameter not allowed", N
);
125 -- Private declarations in a protected object are turned into
126 -- constants when compiling a protected function.
128 elsif Present
(Scope
(Entity
(N
)))
129 and then Is_Protected_Type
(Scope
(Entity
(N
)))
131 (Ekind
(Current_Scope
) = E_Function
133 Ekind
(Enclosing_Dynamic_Scope
(Current_Scope
)) = E_Function
)
136 ("protected function cannot modify protected object", N
);
138 elsif Ekind
(Entity
(N
)) = E_Loop_Parameter
then
140 ("assignment to loop parameter not allowed", N
);
144 ("left hand side of assignment must be a variable", N
);
147 -- For indexed components or selected components, test prefix
149 elsif Nkind
(N
) = N_Indexed_Component
then
150 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
152 -- Another special case for assignment to discriminant
154 elsif Nkind
(N
) = N_Selected_Component
then
155 if Present
(Entity
(Selector_Name
(N
)))
156 and then Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
159 ("assignment to discriminant not allowed", N
);
161 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
165 -- If we fall through, we have no special message to issue!
167 Error_Msg_N
("left hand side of assignment must be a variable", N
);
169 end Diagnose_Non_Variable_Lhs
;
171 -------------------------
172 -- Set_Assignment_Type --
173 -------------------------
175 procedure Set_Assignment_Type
177 Opnd_Type
: in out Entity_Id
)
180 Require_Entity
(Opnd
);
182 -- If the assignment operand is an in-out or out parameter, then we
183 -- get the actual subtype (needed for the unconstrained case).
184 -- If the operand is the actual in an entry declaration, then within
185 -- the accept statement it is replaced with a local renaming, which
186 -- may also have an actual subtype.
188 if Is_Entity_Name
(Opnd
)
189 and then (Ekind
(Entity
(Opnd
)) = E_Out_Parameter
190 or else Ekind
(Entity
(Opnd
)) =
192 or else Ekind
(Entity
(Opnd
)) =
193 E_Generic_In_Out_Parameter
195 (Ekind
(Entity
(Opnd
)) = E_Variable
196 and then Nkind
(Parent
(Entity
(Opnd
))) =
197 N_Object_Renaming_Declaration
198 and then Nkind
(Parent
(Parent
(Entity
(Opnd
)))) =
201 Opnd_Type
:= Get_Actual_Subtype
(Opnd
);
203 -- If assignment operand is a component reference, then we get the
204 -- actual subtype of the component for the unconstrained case.
207 (Nkind
(Opnd
) = N_Selected_Component
208 or else Nkind
(Opnd
) = N_Explicit_Dereference
)
209 and then not Is_Unchecked_Union
(Opnd_Type
)
211 Decl
:= Build_Actual_Subtype_Of_Component
(Opnd_Type
, Opnd
);
213 if Present
(Decl
) then
214 Insert_Action
(N
, Decl
);
215 Mark_Rewrite_Insertion
(Decl
);
217 Opnd_Type
:= Defining_Identifier
(Decl
);
218 Set_Etype
(Opnd
, Opnd_Type
);
219 Freeze_Itype
(Opnd_Type
, N
);
221 elsif Is_Constrained
(Etype
(Opnd
)) then
222 Opnd_Type
:= Etype
(Opnd
);
225 -- For slice, use the constrained subtype created for the slice
227 elsif Nkind
(Opnd
) = N_Slice
then
228 Opnd_Type
:= Etype
(Opnd
);
230 end Set_Assignment_Type
;
232 -- Start of processing for Analyze_Assignment
239 -- In the most general case, both Lhs and Rhs can be overloaded, and we
240 -- must compute the intersection of the possible types on each side.
242 if Is_Overloaded
(Lhs
) then
249 Get_First_Interp
(Lhs
, I
, It
);
251 while Present
(It
.Typ
) loop
252 if Has_Compatible_Type
(Rhs
, It
.Typ
) then
253 if T1
/= Any_Type
then
255 -- An explicit dereference is overloaded if the prefix
256 -- is. Try to remove the ambiguity on the prefix, the
257 -- error will be posted there if the ambiguity is real.
259 if Nkind
(Lhs
) = N_Explicit_Dereference
then
262 PI1
: Interp_Index
:= 0;
268 Get_First_Interp
(Prefix
(Lhs
), PI
, PIt
);
270 while Present
(PIt
.Typ
) loop
271 if Is_Access_Type
(PIt
.Typ
)
272 and then Has_Compatible_Type
273 (Rhs
, Designated_Type
(PIt
.Typ
))
277 Disambiguate
(Prefix
(Lhs
),
280 if PIt
= No_Interp
then
282 ("ambiguous left-hand side"
283 & " in assignment", Lhs
);
286 Resolve
(Prefix
(Lhs
), PIt
.Typ
);
296 Get_Next_Interp
(PI
, PIt
);
302 ("ambiguous left-hand side in assignment", Lhs
);
310 Get_Next_Interp
(I
, It
);
314 if T1
= Any_Type
then
316 ("no valid types for left-hand side for assignment", Lhs
);
323 if not Is_Variable
(Lhs
) then
324 Diagnose_Non_Variable_Lhs
(Lhs
);
327 elsif Is_Limited_Type
(T1
)
328 and then not Assignment_OK
(Lhs
)
329 and then not Assignment_OK
(Original_Node
(Lhs
))
332 ("left hand of assignment must not be limited type", Lhs
);
333 Explain_Limited_Type
(T1
, Lhs
);
337 -- Resolution may have updated the subtype, in case the left-hand
338 -- side is a private protected component. Use the correct subtype
339 -- to avoid scoping issues in the back-end.
342 Set_Assignment_Type
(Lhs
, T1
);
345 Check_Unset_Reference
(Rhs
);
347 -- Remaining steps are skipped if Rhs was syntactically in error
355 if Covers
(T1
, T2
) then
358 Wrong_Type
(Rhs
, Etype
(Lhs
));
362 Set_Assignment_Type
(Rhs
, T2
);
364 if Total_Errors_Detected
/= 0 then
374 if T1
= Any_Type
or else T2
= Any_Type
then
378 if (Is_Class_Wide_Type
(T2
) or else Is_Dynamically_Tagged
(Rhs
))
379 and then not Is_Class_Wide_Type
(T1
)
381 Error_Msg_N
("dynamically tagged expression not allowed!", Rhs
);
383 elsif Is_Class_Wide_Type
(T1
)
384 and then not Is_Class_Wide_Type
(T2
)
385 and then not Is_Tag_Indeterminate
(Rhs
)
386 and then not Is_Dynamically_Tagged
(Rhs
)
388 Error_Msg_N
("dynamically tagged expression required!", Rhs
);
391 -- Tag propagation is done only in semantics mode only. If expansion
392 -- is on, the rhs tag indeterminate function call has been expanded
393 -- and tag propagation would have happened too late, so the
394 -- propagation take place in expand_call instead.
396 if not Expander_Active
397 and then Is_Class_Wide_Type
(T1
)
398 and then Is_Tag_Indeterminate
(Rhs
)
400 Propagate_Tag
(Lhs
, Rhs
);
405 if Ada_Version
>= Ada_05
406 and then Nkind
(Rhs
) = N_Null
407 and then Is_Access_Type
(T1
)
408 and then not Assignment_OK
(Lhs
)
409 and then ((Is_Entity_Name
(Lhs
)
410 and then Can_Never_Be_Null
(Entity
(Lhs
)))
411 or else Can_Never_Be_Null
(Etype
(Lhs
)))
413 Apply_Compile_Time_Constraint_Error
415 Msg
=> "(Ada 2005) NULL not allowed in null-excluding objects?",
416 Reason
=> CE_Null_Not_Allowed
);
419 if Is_Scalar_Type
(T1
) then
420 Apply_Scalar_Range_Check
(Rhs
, Etype
(Lhs
));
422 elsif Is_Array_Type
(T1
)
424 (Nkind
(Rhs
) /= N_Type_Conversion
425 or else Is_Constrained
(Etype
(Rhs
)))
427 -- Assignment verifies that the length of the Lsh and Rhs are equal,
428 -- but of course the indices do not have to match. If the right-hand
429 -- side is a type conversion to an unconstrained type, a length check
430 -- is performed on the expression itself during expansion. In rare
431 -- cases, the redundant length check is computed on an index type
432 -- with a different representation, triggering incorrect code in
435 Apply_Length_Check
(Rhs
, Etype
(Lhs
));
438 -- Discriminant checks are applied in the course of expansion
443 -- Note: modifications of the Lhs may only be recorded after
444 -- checks have been applied.
446 Note_Possible_Modification
(Lhs
);
448 -- ??? a real accessibility check is needed when ???
450 -- Post warning for useless assignment
452 if Warn_On_Redundant_Constructs
454 -- We only warn for source constructs
456 and then Comes_From_Source
(N
)
458 -- Where the entity is the same on both sides
460 and then Is_Entity_Name
(Lhs
)
461 and then Is_Entity_Name
(Original_Node
(Rhs
))
462 and then Entity
(Lhs
) = Entity
(Original_Node
(Rhs
))
464 -- But exclude the case where the right side was an operation
465 -- that got rewritten (e.g. JUNK + K, where K was known to be
466 -- zero). We don't want to warn in such a case, since it is
467 -- reasonable to write such expressions especially when K is
468 -- defined symbolically in some other package.
470 and then Nkind
(Original_Node
(Rhs
)) not in N_Op
473 ("?useless assignment of & to itself", N
, Entity
(Lhs
));
476 -- Check for non-allowed composite assignment
478 if not Support_Composite_Assign_On_Target
479 and then (Is_Array_Type
(T1
) or else Is_Record_Type
(T1
))
480 and then (not Has_Size_Clause
(T1
) or else Esize
(T1
) > 64)
482 Error_Msg_CRT
("composite assignment", N
);
485 -- One more step. Let's see if we have a simple assignment of a
486 -- known at compile time value to a simple variable. If so, we
487 -- can record the value as the current value providing that:
489 -- We still have a simple assignment statement (no expansion
490 -- activity has modified it in some peculiar manner)
492 -- The type is a discrete type
494 -- The assignment is to a named entity
496 -- The value is known at compile time
498 if Nkind
(N
) /= N_Assignment_Statement
499 or else not Is_Discrete_Type
(T1
)
500 or else not Is_Entity_Name
(Lhs
)
501 or else not Compile_Time_Known_Value
(Rhs
)
508 -- Capture value if save to do so
510 if Safe_To_Capture_Value
(N
, Ent
) then
511 Set_Current_Value
(Ent
, Rhs
);
513 end Analyze_Assignment
;
515 -----------------------------
516 -- Analyze_Block_Statement --
517 -----------------------------
519 procedure Analyze_Block_Statement
(N
: Node_Id
) is
520 Decls
: constant List_Id
:= Declarations
(N
);
521 Id
: constant Node_Id
:= Identifier
(N
);
522 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
525 -- If no handled statement sequence is present, things are really
526 -- messed up, and we just return immediately (this is a defence
527 -- against previous errors).
533 -- Normal processing with HSS present
536 EH
: constant List_Id
:= Exception_Handlers
(HSS
);
537 Ent
: Entity_Id
:= Empty
;
540 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
541 -- Recursively save value of this global, will be restored on exit
544 -- Initialize unblocked exit count for statements of begin block
545 -- plus one for each excption handler that is present.
547 Unblocked_Exit_Count
:= 1;
550 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ List_Length
(EH
);
553 -- If a label is present analyze it and mark it as referenced
559 -- An error defense. If we have an identifier, but no entity,
560 -- then something is wrong. If we have previous errors, then
561 -- just remove the identifier and continue, otherwise raise
565 if Total_Errors_Detected
/= 0 then
566 Set_Identifier
(N
, Empty
);
572 Set_Ekind
(Ent
, E_Block
);
573 Generate_Reference
(Ent
, N
, ' ');
574 Generate_Definition
(Ent
);
576 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
577 Set_Label_Construct
(Parent
(Ent
), N
);
582 -- If no entity set, create a label entity
585 Ent
:= New_Internal_Entity
(E_Block
, Current_Scope
, Sloc
(N
), 'B');
586 Set_Identifier
(N
, New_Occurrence_Of
(Ent
, Sloc
(N
)));
590 Set_Etype
(Ent
, Standard_Void_Type
);
591 Set_Block_Node
(Ent
, Identifier
(N
));
594 if Present
(Decls
) then
595 Analyze_Declarations
(Decls
);
600 Process_End_Label
(HSS
, 'e', Ent
);
602 -- If exception handlers are present, then we indicate that
603 -- enclosing scopes contain a block with handlers. We only
604 -- need to mark non-generic scopes.
609 Set_Has_Nested_Block_With_Handler
(S
);
610 exit when Is_Overloadable
(S
)
611 or else Ekind
(S
) = E_Package
612 or else Is_Generic_Unit
(S
);
617 Check_References
(Ent
);
620 if Unblocked_Exit_Count
= 0 then
621 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
622 Check_Unreachable_Code
(N
);
624 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
627 end Analyze_Block_Statement
;
629 ----------------------------
630 -- Analyze_Case_Statement --
631 ----------------------------
633 procedure Analyze_Case_Statement
(N
: Node_Id
) is
635 Exp_Type
: Entity_Id
;
636 Exp_Btype
: Entity_Id
;
639 Others_Present
: Boolean;
641 Statements_Analyzed
: Boolean := False;
642 -- Set True if at least some statement sequences get analyzed.
643 -- If False on exit, means we had a serious error that prevented
644 -- full analysis of the case statement, and as a result it is not
645 -- a good idea to output warning messages about unreachable code.
647 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
648 -- Recursively save value of this global, will be restored on exit
650 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
651 -- Error routine invoked by the generic instantiation below when
652 -- the case statment has a non static choice.
654 procedure Process_Statements
(Alternative
: Node_Id
);
655 -- Analyzes all the statements associated to a case alternative.
656 -- Needed by the generic instantiation below.
658 package Case_Choices_Processing
is new
659 Generic_Choices_Processing
660 (Get_Alternatives
=> Alternatives
,
661 Get_Choices
=> Discrete_Choices
,
662 Process_Empty_Choice
=> No_OP
,
663 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
664 Process_Associated_Node
=> Process_Statements
);
665 use Case_Choices_Processing
;
666 -- Instantiation of the generic choice processing package
668 -----------------------------
669 -- Non_Static_Choice_Error --
670 -----------------------------
672 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
675 ("choice given in case statement is not static!", Choice
);
676 end Non_Static_Choice_Error
;
678 ------------------------
679 -- Process_Statements --
680 ------------------------
682 procedure Process_Statements
(Alternative
: Node_Id
) is
683 Choices
: constant List_Id
:= Discrete_Choices
(Alternative
);
687 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
688 Statements_Analyzed
:= True;
690 -- An interesting optimization. If the case statement expression
691 -- is a simple entity, then we can set the current value within
692 -- an alternative if the alternative has one possible value.
696 -- when 2 | 3 => beta
697 -- when others => gamma
699 -- Here we know that N is initially 1 within alpha, but for beta
700 -- and gamma, we do not know anything more about the initial value.
702 if Is_Entity_Name
(Exp
) then
705 if Ekind
(Ent
) = E_Variable
707 Ekind
(Ent
) = E_In_Out_Parameter
709 Ekind
(Ent
) = E_Out_Parameter
711 if List_Length
(Choices
) = 1
712 and then Nkind
(First
(Choices
)) in N_Subexpr
713 and then Compile_Time_Known_Value
(First
(Choices
))
715 Set_Current_Value
(Entity
(Exp
), First
(Choices
));
718 Analyze_Statements
(Statements
(Alternative
));
720 -- After analyzing the case, set the current value to empty
721 -- since we won't know what it is for the next alternative
722 -- (unless reset by this same circuit), or after the case.
724 Set_Current_Value
(Entity
(Exp
), Empty
);
729 -- Case where expression is not an entity name of a variable
731 Analyze_Statements
(Statements
(Alternative
));
732 end Process_Statements
;
734 -- Table to record choices. Put after subprograms since we make
735 -- a call to Number_Of_Choices to get the right number of entries.
737 Case_Table
: Choice_Table_Type
(1 .. Number_Of_Choices
(N
));
739 -- Start of processing for Analyze_Case_Statement
742 Unblocked_Exit_Count
:= 0;
743 Exp
:= Expression
(N
);
744 Analyze_And_Resolve
(Exp
, Any_Discrete
);
745 Check_Unset_Reference
(Exp
);
746 Exp_Type
:= Etype
(Exp
);
747 Exp_Btype
:= Base_Type
(Exp_Type
);
749 -- The expression must be of a discrete type which must be determinable
750 -- independently of the context in which the expression occurs, but
751 -- using the fact that the expression must be of a discrete type.
752 -- Moreover, the type this expression must not be a character literal
753 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
755 -- If error already reported by Resolve, nothing more to do
757 if Exp_Btype
= Any_Discrete
758 or else Exp_Btype
= Any_Type
762 elsif Exp_Btype
= Any_Character
then
764 ("character literal as case expression is ambiguous", Exp
);
767 elsif Ada_Version
= Ada_83
768 and then (Is_Generic_Type
(Exp_Btype
)
769 or else Is_Generic_Type
(Root_Type
(Exp_Btype
)))
772 ("(Ada 83) case expression cannot be of a generic type", Exp
);
776 -- If the case expression is a formal object of mode in out, then
777 -- treat it as having a nonstatic subtype by forcing use of the base
778 -- type (which has to get passed to Check_Case_Choices below). Also
779 -- use base type when the case expression is parenthesized.
781 if Paren_Count
(Exp
) > 0
782 or else (Is_Entity_Name
(Exp
)
783 and then Ekind
(Entity
(Exp
)) = E_Generic_In_Out_Parameter
)
785 Exp_Type
:= Exp_Btype
;
788 -- Call instantiated Analyze_Choices which does the rest of the work
791 (N
, Exp_Type
, Case_Table
, Last_Choice
, Dont_Care
, Others_Present
);
793 if Exp_Type
= Universal_Integer
and then not Others_Present
then
794 Error_Msg_N
("case on universal integer requires OTHERS choice", Exp
);
797 -- If all our exits were blocked by unconditional transfers of control,
798 -- then the entire CASE statement acts as an unconditional transfer of
799 -- control, so treat it like one, and check unreachable code. Skip this
800 -- test if we had serious errors preventing any statement analysis.
802 if Unblocked_Exit_Count
= 0 and then Statements_Analyzed
then
803 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
804 Check_Unreachable_Code
(N
);
806 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
809 if not Expander_Active
810 and then Compile_Time_Known_Value
(Expression
(N
))
811 and then Serious_Errors_Detected
= 0
814 Chosen
: constant Node_Id
:= Find_Static_Alternative
(N
);
818 Alt
:= First
(Alternatives
(N
));
820 while Present
(Alt
) loop
821 if Alt
/= Chosen
then
822 Remove_Warning_Messages
(Statements
(Alt
));
829 end Analyze_Case_Statement
;
831 ----------------------------
832 -- Analyze_Exit_Statement --
833 ----------------------------
835 -- If the exit includes a name, it must be the name of a currently open
836 -- loop. Otherwise there must be an innermost open loop on the stack,
837 -- to which the statement implicitly refers.
839 procedure Analyze_Exit_Statement
(N
: Node_Id
) is
840 Target
: constant Node_Id
:= Name
(N
);
841 Cond
: constant Node_Id
:= Condition
(N
);
842 Scope_Id
: Entity_Id
;
848 Check_Unreachable_Code
(N
);
851 if Present
(Target
) then
853 U_Name
:= Entity
(Target
);
855 if not In_Open_Scopes
(U_Name
) or else Ekind
(U_Name
) /= E_Loop
then
856 Error_Msg_N
("invalid loop name in exit statement", N
);
859 Set_Has_Exit
(U_Name
);
866 for J
in reverse 0 .. Scope_Stack
.Last
loop
867 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
868 Kind
:= Ekind
(Scope_Id
);
871 and then (No
(Target
) or else Scope_Id
= U_Name
) then
872 Set_Has_Exit
(Scope_Id
);
875 elsif Kind
= E_Block
or else Kind
= E_Loop
then
880 ("cannot exit from program unit or accept statement", N
);
885 -- Verify that if present the condition is a Boolean expression
887 if Present
(Cond
) then
888 Analyze_And_Resolve
(Cond
, Any_Boolean
);
889 Check_Unset_Reference
(Cond
);
891 end Analyze_Exit_Statement
;
893 ----------------------------
894 -- Analyze_Goto_Statement --
895 ----------------------------
897 procedure Analyze_Goto_Statement
(N
: Node_Id
) is
898 Label
: constant Node_Id
:= Name
(N
);
899 Scope_Id
: Entity_Id
;
900 Label_Scope
: Entity_Id
;
903 Check_Unreachable_Code
(N
);
907 if Entity
(Label
) = Any_Id
then
910 elsif Ekind
(Entity
(Label
)) /= E_Label
then
911 Error_Msg_N
("target of goto statement must be a label", Label
);
914 elsif not Reachable
(Entity
(Label
)) then
915 Error_Msg_N
("target of goto statement is not reachable", Label
);
919 Label_Scope
:= Enclosing_Scope
(Entity
(Label
));
921 for J
in reverse 0 .. Scope_Stack
.Last
loop
922 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
924 if Label_Scope
= Scope_Id
925 or else (Ekind
(Scope_Id
) /= E_Block
926 and then Ekind
(Scope_Id
) /= E_Loop
)
928 if Scope_Id
/= Label_Scope
then
930 ("cannot exit from program unit or accept statement", N
);
938 end Analyze_Goto_Statement
;
940 --------------------------
941 -- Analyze_If_Statement --
942 --------------------------
944 -- A special complication arises in the analysis of if statements
946 -- The expander has circuitry to completely delete code that it
947 -- can tell will not be executed (as a result of compile time known
948 -- conditions). In the analyzer, we ensure that code that will be
949 -- deleted in this manner is analyzed but not expanded. This is
950 -- obviously more efficient, but more significantly, difficulties
951 -- arise if code is expanded and then eliminated (e.g. exception
952 -- table entries disappear). Similarly, itypes generated in deleted
953 -- code must be frozen from start, because the nodes on which they
954 -- depend will not be available at the freeze point.
956 procedure Analyze_If_Statement
(N
: Node_Id
) is
959 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
960 -- Recursively save value of this global, will be restored on exit
962 Save_In_Deleted_Code
: Boolean;
964 Del
: Boolean := False;
965 -- This flag gets set True if a True condition has been found,
966 -- which means that remaining ELSE/ELSIF parts are deleted.
968 procedure Analyze_Cond_Then
(Cnode
: Node_Id
);
969 -- This is applied to either the N_If_Statement node itself or
970 -- to an N_Elsif_Part node. It deals with analyzing the condition
971 -- and the THEN statements associated with it.
973 -----------------------
974 -- Analyze_Cond_Then --
975 -----------------------
977 procedure Analyze_Cond_Then
(Cnode
: Node_Id
) is
978 Cond
: constant Node_Id
:= Condition
(Cnode
);
979 Tstm
: constant List_Id
:= Then_Statements
(Cnode
);
982 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
983 Analyze_And_Resolve
(Cond
, Any_Boolean
);
984 Check_Unset_Reference
(Cond
);
985 Check_Possible_Current_Value_Condition
(Cnode
);
987 -- If already deleting, then just analyze then statements
990 Analyze_Statements
(Tstm
);
992 -- Compile time known value, not deleting yet
994 elsif Compile_Time_Known_Value
(Cond
) then
995 Save_In_Deleted_Code
:= In_Deleted_Code
;
997 -- If condition is True, then analyze the THEN statements
998 -- and set no expansion for ELSE and ELSIF parts.
1000 if Is_True
(Expr_Value
(Cond
)) then
1001 Analyze_Statements
(Tstm
);
1003 Expander_Mode_Save_And_Set
(False);
1004 In_Deleted_Code
:= True;
1006 -- If condition is False, analyze THEN with expansion off
1008 else -- Is_False (Expr_Value (Cond))
1009 Expander_Mode_Save_And_Set
(False);
1010 In_Deleted_Code
:= True;
1011 Analyze_Statements
(Tstm
);
1012 Expander_Mode_Restore
;
1013 In_Deleted_Code
:= Save_In_Deleted_Code
;
1016 -- Not known at compile time, not deleting, normal analysis
1019 Analyze_Statements
(Tstm
);
1021 end Analyze_Cond_Then
;
1023 -- Start of Analyze_If_Statement
1026 -- Initialize exit count for else statements. If there is no else
1027 -- part, this count will stay non-zero reflecting the fact that the
1028 -- uncovered else case is an unblocked exit.
1030 Unblocked_Exit_Count
:= 1;
1031 Analyze_Cond_Then
(N
);
1033 -- Now to analyze the elsif parts if any are present
1035 if Present
(Elsif_Parts
(N
)) then
1036 E
:= First
(Elsif_Parts
(N
));
1037 while Present
(E
) loop
1038 Analyze_Cond_Then
(E
);
1043 if Present
(Else_Statements
(N
)) then
1044 Analyze_Statements
(Else_Statements
(N
));
1047 -- If all our exits were blocked by unconditional transfers of control,
1048 -- then the entire IF statement acts as an unconditional transfer of
1049 -- control, so treat it like one, and check unreachable code.
1051 if Unblocked_Exit_Count
= 0 then
1052 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1053 Check_Unreachable_Code
(N
);
1055 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1059 Expander_Mode_Restore
;
1060 In_Deleted_Code
:= Save_In_Deleted_Code
;
1063 if not Expander_Active
1064 and then Compile_Time_Known_Value
(Condition
(N
))
1065 and then Serious_Errors_Detected
= 0
1067 if Is_True
(Expr_Value
(Condition
(N
))) then
1068 Remove_Warning_Messages
(Else_Statements
(N
));
1070 if Present
(Elsif_Parts
(N
)) then
1071 E
:= First
(Elsif_Parts
(N
));
1073 while Present
(E
) loop
1074 Remove_Warning_Messages
(Then_Statements
(E
));
1080 Remove_Warning_Messages
(Then_Statements
(N
));
1083 end Analyze_If_Statement
;
1085 ----------------------------------------
1086 -- Analyze_Implicit_Label_Declaration --
1087 ----------------------------------------
1089 -- An implicit label declaration is generated in the innermost
1090 -- enclosing declarative part. This is done for labels as well as
1091 -- block and loop names.
1093 -- Note: any changes in this routine may need to be reflected in
1094 -- Analyze_Label_Entity.
1096 procedure Analyze_Implicit_Label_Declaration
(N
: Node_Id
) is
1097 Id
: constant Node_Id
:= Defining_Identifier
(N
);
1100 Set_Ekind
(Id
, E_Label
);
1101 Set_Etype
(Id
, Standard_Void_Type
);
1102 Set_Enclosing_Scope
(Id
, Current_Scope
);
1103 end Analyze_Implicit_Label_Declaration
;
1105 ------------------------------
1106 -- Analyze_Iteration_Scheme --
1107 ------------------------------
1109 procedure Analyze_Iteration_Scheme
(N
: Node_Id
) is
1111 procedure Process_Bounds
(R
: Node_Id
);
1112 -- If the iteration is given by a range, create temporaries and
1113 -- assignment statements block to capture the bounds and perform
1114 -- required finalization actions in case a bound includes a function
1115 -- call that uses the temporary stack. We first pre-analyze a copy of
1116 -- the range in order to determine the expected type, and analyze
1117 -- and resolve the original bounds.
1119 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
);
1120 -- If the bounds are given by a 'Range reference on a function call
1121 -- that returns a controlled array, introduce an explicit declaration
1122 -- to capture the bounds, so that the function result can be finalized
1123 -- in timely fashion.
1125 --------------------
1126 -- Process_Bounds --
1127 --------------------
1129 procedure Process_Bounds
(R
: Node_Id
) is
1130 Loc
: constant Source_Ptr
:= Sloc
(N
);
1131 R_Copy
: constant Node_Id
:= New_Copy_Tree
(R
);
1132 Lo
: constant Node_Id
:= Low_Bound
(R
);
1133 Hi
: constant Node_Id
:= High_Bound
(R
);
1134 New_Lo_Bound
: Node_Id
:= Empty
;
1135 New_Hi_Bound
: Node_Id
:= Empty
;
1139 (Original_Bound
: Node_Id
;
1140 Analyzed_Bound
: Node_Id
) return Node_Id
;
1141 -- Create one declaration followed by one assignment statement
1142 -- to capture the value of bound. We create a separate assignment
1143 -- in order to force the creation of a block in case the bound
1144 -- contains a call that uses the secondary stack.
1151 (Original_Bound
: Node_Id
;
1152 Analyzed_Bound
: Node_Id
) return Node_Id
1157 Decl_Typ
: Entity_Id
;
1160 -- If the bound is a constant or an object, no need for a
1161 -- separate declaration. If the bound is the result of previous
1162 -- expansion it is already analyzed and should not be modified.
1163 -- Note that the Bound will be resolved later, if needed, as
1164 -- part of the call to Make_Index (literal bounds may need to
1165 -- be resolved to type Integer).
1167 if Analyzed
(Original_Bound
) then
1168 return Original_Bound
;
1170 elsif Nkind
(Analyzed_Bound
) = N_Integer_Literal
1171 or else Is_Entity_Name
(Analyzed_Bound
)
1173 Analyze_And_Resolve
(Original_Bound
, Typ
);
1174 return Original_Bound
;
1177 Analyze_And_Resolve
(Original_Bound
, Typ
);
1181 Make_Defining_Identifier
(Loc
,
1182 Chars
=> New_Internal_Name
('S'));
1184 -- If the type of the discrete range is Universal_Integer, then
1185 -- the bound's type must be resolved to Integer, so the object
1186 -- used to hold the bound must also have type Integer.
1188 if Typ
= Universal_Integer
then
1189 Decl_Typ
:= Standard_Integer
;
1195 Make_Object_Declaration
(Loc
,
1196 Defining_Identifier
=> Id
,
1197 Object_Definition
=> New_Occurrence_Of
(Decl_Typ
, Loc
));
1199 Insert_Before
(Parent
(N
), Decl
);
1203 Make_Assignment_Statement
(Loc
,
1204 Name
=> New_Occurrence_Of
(Id
, Loc
),
1205 Expression
=> Relocate_Node
(Original_Bound
));
1207 Insert_Before
(Parent
(N
), Assign
);
1210 Rewrite
(Original_Bound
, New_Occurrence_Of
(Id
, Loc
));
1212 if Nkind
(Assign
) = N_Assignment_Statement
then
1213 return Expression
(Assign
);
1215 return Original_Bound
;
1219 -- Start of processing for Process_Bounds
1222 -- Determine expected type of range by analyzing separate copy.
1224 Set_Parent
(R_Copy
, Parent
(R
));
1225 Pre_Analyze_And_Resolve
(R_Copy
);
1226 Typ
:= Etype
(R_Copy
);
1229 New_Lo_Bound
:= One_Bound
(Lo
, Low_Bound
(R_Copy
));
1230 New_Hi_Bound
:= One_Bound
(Hi
, High_Bound
(R_Copy
));
1232 -- Propagate staticness to loop range itself, in case the
1233 -- corresponding subtype is static.
1235 if New_Lo_Bound
/= Lo
1236 and then Is_Static_Expression
(New_Lo_Bound
)
1238 Rewrite
(Low_Bound
(R
), New_Copy
(New_Lo_Bound
));
1241 if New_Hi_Bound
/= Hi
1242 and then Is_Static_Expression
(New_Hi_Bound
)
1244 Rewrite
(High_Bound
(R
), New_Copy
(New_Hi_Bound
));
1248 --------------------------------------
1249 -- Check_Controlled_Array_Attribute --
1250 --------------------------------------
1252 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
) is
1254 if Nkind
(DS
) = N_Attribute_Reference
1255 and then Is_Entity_Name
(Prefix
(DS
))
1256 and then Ekind
(Entity
(Prefix
(DS
))) = E_Function
1257 and then Is_Array_Type
(Etype
(Entity
(Prefix
(DS
))))
1260 Component_Type
(Etype
(Entity
(Prefix
(DS
)))))
1261 and then Expander_Active
1264 Loc
: constant Source_Ptr
:= Sloc
(N
);
1265 Arr
: constant Entity_Id
:=
1266 Etype
(Entity
(Prefix
(DS
)));
1267 Indx
: constant Entity_Id
:=
1268 Base_Type
(Etype
(First_Index
(Arr
)));
1269 Subt
: constant Entity_Id
:=
1270 Make_Defining_Identifier
1271 (Loc
, New_Internal_Name
('S'));
1276 Make_Subtype_Declaration
(Loc
,
1277 Defining_Identifier
=> Subt
,
1278 Subtype_Indication
=>
1279 Make_Subtype_Indication
(Loc
,
1280 Subtype_Mark
=> New_Reference_To
(Indx
, Loc
),
1282 Make_Range_Constraint
(Loc
,
1283 Relocate_Node
(DS
))));
1284 Insert_Before
(Parent
(N
), Decl
);
1288 Make_Attribute_Reference
(Loc
,
1289 Prefix
=> New_Reference_To
(Subt
, Loc
),
1290 Attribute_Name
=> Attribute_Name
(DS
)));
1294 end Check_Controlled_Array_Attribute
;
1296 -- Start of processing for Analyze_Iteration_Scheme
1299 -- For an infinite loop, there is no iteration scheme
1306 Cond
: constant Node_Id
:= Condition
(N
);
1309 -- For WHILE loop, verify that the condition is a Boolean
1310 -- expression and resolve and check it.
1312 if Present
(Cond
) then
1313 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1314 Check_Unset_Reference
(Cond
);
1316 -- Else we have a FOR loop
1320 LP
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
1321 Id
: constant Entity_Id
:= Defining_Identifier
(LP
);
1322 DS
: constant Node_Id
:= Discrete_Subtype_Definition
(LP
);
1327 -- We always consider the loop variable to be referenced,
1328 -- since the loop may be used just for counting purposes.
1330 Generate_Reference
(Id
, N
, ' ');
1332 -- Check for case of loop variable hiding a local
1333 -- variable (used later on to give a nice warning
1334 -- if the hidden variable is never assigned).
1337 H
: constant Entity_Id
:= Homonym
(Id
);
1340 and then Enclosing_Dynamic_Scope
(H
) =
1341 Enclosing_Dynamic_Scope
(Id
)
1342 and then Ekind
(H
) = E_Variable
1343 and then Is_Discrete_Type
(Etype
(H
))
1345 Set_Hiding_Loop_Variable
(H
, Id
);
1349 -- Now analyze the subtype definition. If it is
1350 -- a range, create temporaries for bounds.
1352 if Nkind
(DS
) = N_Range
1353 and then Expander_Active
1355 Process_Bounds
(DS
);
1364 -- The subtype indication may denote the completion
1365 -- of an incomplete type declaration.
1367 if Is_Entity_Name
(DS
)
1368 and then Present
(Entity
(DS
))
1369 and then Is_Type
(Entity
(DS
))
1370 and then Ekind
(Entity
(DS
)) = E_Incomplete_Type
1372 Set_Entity
(DS
, Get_Full_View
(Entity
(DS
)));
1373 Set_Etype
(DS
, Entity
(DS
));
1376 if not Is_Discrete_Type
(Etype
(DS
)) then
1377 Wrong_Type
(DS
, Any_Discrete
);
1378 Set_Etype
(DS
, Any_Type
);
1381 Check_Controlled_Array_Attribute
(DS
);
1383 Make_Index
(DS
, LP
);
1385 Set_Ekind
(Id
, E_Loop_Parameter
);
1386 Set_Etype
(Id
, Etype
(DS
));
1387 Set_Is_Known_Valid
(Id
, True);
1389 -- The loop is not a declarative part, so the only entity
1390 -- declared "within" must be frozen explicitly.
1393 Flist
: constant List_Id
:= Freeze_Entity
(Id
, Sloc
(N
));
1395 if Is_Non_Empty_List
(Flist
) then
1396 Insert_Actions
(N
, Flist
);
1400 -- Check for null or possibly null range and issue warning.
1401 -- We suppress such messages in generic templates and
1402 -- instances, because in practice they tend to be dubious
1405 if Nkind
(DS
) = N_Range
1406 and then Comes_From_Source
(N
)
1409 L
: constant Node_Id
:= Low_Bound
(DS
);
1410 H
: constant Node_Id
:= High_Bound
(DS
);
1420 Determine_Range
(L
, LOK
, Llo
, Lhi
);
1421 Determine_Range
(H
, HOK
, Hlo
, Hhi
);
1423 -- If range of loop is null, issue warning
1425 if (LOK
and HOK
) and then Llo
> Hhi
then
1427 -- Suppress the warning if inside a generic
1428 -- template or instance, since in practice
1429 -- they tend to be dubious in these cases since
1430 -- they can result from intended parametrization.
1432 if not Inside_A_Generic
1433 and then not In_Instance
1436 ("?loop range is null, loop will not execute",
1440 -- Since we know the range of the loop is null,
1441 -- set the appropriate flag to suppress any
1442 -- warnings that would otherwise be issued in
1443 -- the body of the loop that will not execute.
1444 -- We do this even in the generic case, since
1445 -- if it is dubious to warn on the null loop
1446 -- itself, it is certainly dubious to warn for
1447 -- conditions that occur inside it!
1449 Set_Is_Null_Loop
(Parent
(N
));
1451 -- The other case for a warning is a reverse loop
1452 -- where the upper bound is the integer literal
1453 -- zero or one, and the lower bound can be positive.
1455 -- For example, we have
1457 -- for J in reverse N .. 1 loop
1459 -- In practice, this is very likely to be a case
1460 -- of reversing the bounds incorrectly in the range.
1462 elsif Reverse_Present
(LP
)
1463 and then Nkind
(H
) = N_Integer_Literal
1464 and then (Intval
(H
) = Uint_0
1466 Intval
(H
) = Uint_1
)
1469 Error_Msg_N
("?loop range may be null", DS
);
1477 end Analyze_Iteration_Scheme
;
1483 -- Note: the semantic work required for analyzing labels (setting them as
1484 -- reachable) was done in a prepass through the statements in the block,
1485 -- so that forward gotos would be properly handled. See Analyze_Statements
1486 -- for further details. The only processing required here is to deal with
1487 -- optimizations that depend on an assumption of sequential control flow,
1488 -- since of course the occurrence of a label breaks this assumption.
1490 procedure Analyze_Label
(N
: Node_Id
) is
1491 pragma Warnings
(Off
, N
);
1493 Kill_Current_Values
;
1496 --------------------------
1497 -- Analyze_Label_Entity --
1498 --------------------------
1500 procedure Analyze_Label_Entity
(E
: Entity_Id
) is
1502 Set_Ekind
(E
, E_Label
);
1503 Set_Etype
(E
, Standard_Void_Type
);
1504 Set_Enclosing_Scope
(E
, Current_Scope
);
1505 Set_Reachable
(E
, True);
1506 end Analyze_Label_Entity
;
1508 ----------------------------
1509 -- Analyze_Loop_Statement --
1510 ----------------------------
1512 procedure Analyze_Loop_Statement
(N
: Node_Id
) is
1513 Id
: constant Node_Id
:= Identifier
(N
);
1517 if Present
(Id
) then
1519 -- Make name visible, e.g. for use in exit statements. Loop
1520 -- labels are always considered to be referenced.
1524 Generate_Reference
(Ent
, N
, ' ');
1525 Generate_Definition
(Ent
);
1527 -- If we found a label, mark its type. If not, ignore it, since it
1528 -- means we have a conflicting declaration, which would already have
1529 -- been diagnosed at declaration time. Set Label_Construct of the
1530 -- implicit label declaration, which is not created by the parser
1531 -- for generic units.
1533 if Ekind
(Ent
) = E_Label
then
1534 Set_Ekind
(Ent
, E_Loop
);
1536 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
1537 Set_Label_Construct
(Parent
(Ent
), N
);
1541 -- Case of no identifier present
1544 Ent
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Sloc
(N
), 'L');
1545 Set_Etype
(Ent
, Standard_Void_Type
);
1546 Set_Parent
(Ent
, N
);
1549 -- Kill current values on entry to loop, since statements in body
1550 -- of loop may have been executed before the loop is entered.
1551 -- Similarly we kill values after the loop, since we do not know
1552 -- that the body of the loop was executed.
1554 Kill_Current_Values
;
1556 Analyze_Iteration_Scheme
(Iteration_Scheme
(N
));
1557 Analyze_Statements
(Statements
(N
));
1558 Process_End_Label
(N
, 'e', Ent
);
1560 Kill_Current_Values
;
1561 end Analyze_Loop_Statement
;
1563 ----------------------------
1564 -- Analyze_Null_Statement --
1565 ----------------------------
1567 -- Note: the semantics of the null statement is implemented by a single
1568 -- null statement, too bad everything isn't as simple as this!
1570 procedure Analyze_Null_Statement
(N
: Node_Id
) is
1571 pragma Warnings
(Off
, N
);
1574 end Analyze_Null_Statement
;
1576 ------------------------
1577 -- Analyze_Statements --
1578 ------------------------
1580 procedure Analyze_Statements
(L
: List_Id
) is
1585 -- The labels declared in the statement list are reachable from
1586 -- statements in the list. We do this as a prepass so that any
1587 -- goto statement will be properly flagged if its target is not
1588 -- reachable. This is not required, but is nice behavior!
1591 while Present
(S
) loop
1592 if Nkind
(S
) = N_Label
then
1593 Analyze
(Identifier
(S
));
1594 Lab
:= Entity
(Identifier
(S
));
1596 -- If we found a label mark it as reachable
1598 if Ekind
(Lab
) = E_Label
then
1599 Generate_Definition
(Lab
);
1600 Set_Reachable
(Lab
);
1602 if Nkind
(Parent
(Lab
)) = N_Implicit_Label_Declaration
then
1603 Set_Label_Construct
(Parent
(Lab
), S
);
1606 -- If we failed to find a label, it means the implicit declaration
1607 -- of the label was hidden. A for-loop parameter can do this to
1608 -- a label with the same name inside the loop, since the implicit
1609 -- label declaration is in the innermost enclosing body or block
1613 Error_Msg_Sloc
:= Sloc
(Lab
);
1615 ("implicit label declaration for & is hidden#",
1623 -- Perform semantic analysis on all statements
1625 Conditional_Statements_Begin
;
1628 while Present
(S
) loop
1633 Conditional_Statements_End
;
1635 -- Make labels unreachable. Visibility is not sufficient, because
1636 -- labels in one if-branch for example are not reachable from the
1637 -- other branch, even though their declarations are in the enclosing
1638 -- declarative part.
1641 while Present
(S
) loop
1642 if Nkind
(S
) = N_Label
then
1643 Set_Reachable
(Entity
(Identifier
(S
)), False);
1648 end Analyze_Statements
;
1650 --------------------------------------------
1651 -- Check_Possible_Current_Value_Condition --
1652 --------------------------------------------
1654 procedure Check_Possible_Current_Value_Condition
(Cnode
: Node_Id
) is
1658 -- Loop to deal with (ignore for now) any NOT operators present
1660 Cond
:= Condition
(Cnode
);
1661 while Nkind
(Cond
) = N_Op_Not
loop
1662 Cond
:= Right_Opnd
(Cond
);
1665 -- Check possible relational operator
1667 if Nkind
(Cond
) = N_Op_Eq
1669 Nkind
(Cond
) = N_Op_Ne
1671 Nkind
(Cond
) = N_Op_Ge
1673 Nkind
(Cond
) = N_Op_Le
1675 Nkind
(Cond
) = N_Op_Gt
1677 Nkind
(Cond
) = N_Op_Lt
1679 if Compile_Time_Known_Value
(Right_Opnd
(Cond
))
1680 and then Nkind
(Left_Opnd
(Cond
)) = N_Identifier
1683 Ent
: constant Entity_Id
:= Entity
(Left_Opnd
(Cond
));
1686 if Ekind
(Ent
) = E_Variable
1688 Ekind
(Ent
) = E_Constant
1692 Ekind
(Ent
) = E_Loop_Parameter
1694 -- Here we have a case where the Current_Value field
1695 -- may need to be set. We set it if it is not already
1696 -- set to a compile time expression value.
1698 -- Note that this represents a decision that one
1699 -- condition blots out another previous one. That's
1700 -- certainly right if they occur at the same level.
1701 -- If the second one is nested, then the decision is
1702 -- neither right nor wrong (it would be equally OK
1703 -- to leave the outer one in place, or take the new
1704 -- inner one. Really we should record both, but our
1705 -- data structures are not that elaborate.
1707 if Nkind
(Current_Value
(Ent
)) not in N_Subexpr
then
1708 Set_Current_Value
(Ent
, Cnode
);
1714 end Check_Possible_Current_Value_Condition
;
1716 ----------------------------
1717 -- Check_Unreachable_Code --
1718 ----------------------------
1720 procedure Check_Unreachable_Code
(N
: Node_Id
) is
1721 Error_Loc
: Source_Ptr
;
1725 if Is_List_Member
(N
)
1726 and then Comes_From_Source
(N
)
1732 Nxt
:= Original_Node
(Next
(N
));
1734 -- If a label follows us, then we never have dead code, since
1735 -- someone could branch to the label, so we just ignore it.
1737 if Nkind
(Nxt
) = N_Label
then
1740 -- Otherwise see if we have a real statement following us
1743 and then Comes_From_Source
(Nxt
)
1744 and then Is_Statement
(Nxt
)
1746 -- Special very annoying exception. If we have a return that
1747 -- follows a raise, then we allow it without a warning, since
1748 -- the Ada RM annoyingly requires a useless return here!
1750 if Nkind
(Original_Node
(N
)) /= N_Raise_Statement
1751 or else Nkind
(Nxt
) /= N_Return_Statement
1753 -- The rather strange shenanigans with the warning message
1754 -- here reflects the fact that Kill_Dead_Code is very good
1755 -- at removing warnings in deleted code, and this is one
1756 -- warning we would prefer NOT to have removed :-)
1758 Error_Loc
:= Sloc
(Nxt
);
1760 -- If we have unreachable code, analyze and remove the
1761 -- unreachable code, since it is useless and we don't
1762 -- want to generate junk warnings.
1764 -- We skip this step if we are not in code generation mode.
1765 -- This is the one case where we remove dead code in the
1766 -- semantics as opposed to the expander, and we do not want
1767 -- to remove code if we are not in code generation mode,
1768 -- since this messes up the ASIS trees.
1770 -- Note that one might react by moving the whole circuit to
1771 -- exp_ch5, but then we lose the warning in -gnatc mode.
1773 if Operating_Mode
= Generate_Code
then
1777 -- Quit deleting when we have nothing more to delete
1778 -- or if we hit a label (since someone could transfer
1779 -- control to a label, so we should not delete it).
1781 exit when No
(Nxt
) or else Nkind
(Nxt
) = N_Label
;
1783 -- Statement/declaration is to be deleted
1787 Kill_Dead_Code
(Nxt
);
1791 -- Now issue the warning
1793 Error_Msg
("?unreachable code", Error_Loc
);
1796 -- If the unconditional transfer of control instruction is
1797 -- the last statement of a sequence, then see if our parent
1798 -- is one of the constructs for which we count unblocked exits,
1799 -- and if so, adjust the count.
1804 -- Statements in THEN part or ELSE part of IF statement
1806 if Nkind
(P
) = N_If_Statement
then
1809 -- Statements in ELSIF part of an IF statement
1811 elsif Nkind
(P
) = N_Elsif_Part
then
1813 pragma Assert
(Nkind
(P
) = N_If_Statement
);
1815 -- Statements in CASE statement alternative
1817 elsif Nkind
(P
) = N_Case_Statement_Alternative
then
1819 pragma Assert
(Nkind
(P
) = N_Case_Statement
);
1821 -- Statements in body of block
1823 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
1824 and then Nkind
(Parent
(P
)) = N_Block_Statement
1828 -- Statements in exception handler in a block
1830 elsif Nkind
(P
) = N_Exception_Handler
1831 and then Nkind
(Parent
(P
)) = N_Handled_Sequence_Of_Statements
1832 and then Nkind
(Parent
(Parent
(P
))) = N_Block_Statement
1836 -- None of these cases, so return
1842 -- This was one of the cases we are looking for (i.e. the
1843 -- parent construct was IF, CASE or block) so decrement count.
1845 Unblocked_Exit_Count
:= Unblocked_Exit_Count
- 1;
1849 end Check_Unreachable_Code
;