* arm.c (FL_WBUF): Define.
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob163365fc46a3f1577eef6c6a146d7bd547263f4c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Util; use Exp_Util;
33 with Freeze; use Freeze;
34 with Lib.Xref; use Lib.Xref;
35 with Nlists; use Nlists;
36 with Nmake; use Nmake;
37 with Opt; use Opt;
38 with Sem; use Sem;
39 with Sem_Case; use Sem_Case;
40 with Sem_Ch3; use Sem_Ch3;
41 with Sem_Ch8; use Sem_Ch8;
42 with Sem_Disp; use Sem_Disp;
43 with Sem_Eval; use Sem_Eval;
44 with Sem_Res; use Sem_Res;
45 with Sem_Type; use Sem_Type;
46 with Sem_Util; use Sem_Util;
47 with Sem_Warn; use Sem_Warn;
48 with Stand; use Stand;
49 with Sinfo; use Sinfo;
50 with Targparm; use Targparm;
51 with Tbuild; use Tbuild;
52 with Uintp; use Uintp;
54 package body Sem_Ch5 is
56 Unblocked_Exit_Count : Nat := 0;
57 -- This variable is used when processing if statements, case statements,
58 -- and block statements. It counts the number of exit points that are
59 -- not blocked by unconditional transfer instructions (for IF and CASE,
60 -- these are the branches of the conditional, for a block, they are the
61 -- statement sequence of the block, and the statement sequences of any
62 -- exception handlers that are part of the block. When processing is
63 -- complete, if this count is zero, it means that control cannot fall
64 -- through the IF, CASE or block statement. This is used for the
65 -- generation of warning messages. This variable is recursively saved
66 -- on entry to processing the construct, and restored on exit.
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Analyze_Iteration_Scheme (N : Node_Id);
74 procedure Check_Possible_Current_Value_Condition (Cnode : Node_Id);
75 -- Cnode is N_If_Statement, N_Elsif_Part, or N_Iteration_Scheme
76 -- (the latter when a WHILE condition is present). This call checks
77 -- if Condition (Cnode) is of the form ([NOT] var op val), where var
78 -- is a simple object, val is known at compile time, and op is one
79 -- of the six relational operators. If this is the case, and the
80 -- Current_Value field of "var" is not set, then it is set to Cnode.
81 -- See Exp_Util.Set_Current_Value_Condition for further details.
83 ------------------------
84 -- Analyze_Assignment --
85 ------------------------
87 procedure Analyze_Assignment (N : Node_Id) is
88 Lhs : constant Node_Id := Name (N);
89 Rhs : constant Node_Id := Expression (N);
90 T1 : Entity_Id;
91 T2 : Entity_Id;
92 Decl : Node_Id;
93 Ent : Entity_Id;
95 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
96 -- N is the node for the left hand side of an assignment, and it
97 -- is not a variable. This routine issues an appropriate diagnostic.
99 procedure Set_Assignment_Type
100 (Opnd : Node_Id;
101 Opnd_Type : in out Entity_Id);
102 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type
103 -- is the nominal subtype. This procedure is used to deal with cases
104 -- where the nominal subtype must be replaced by the actual subtype.
106 -------------------------------
107 -- Diagnose_Non_Variable_Lhs --
108 -------------------------------
110 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
111 begin
112 -- Not worth posting another error if left hand side already
113 -- flagged as being illegal in some respect
115 if Error_Posted (N) then
116 return;
118 -- Some special bad cases of entity names
120 elsif Is_Entity_Name (N) then
121 if Ekind (Entity (N)) = E_In_Parameter then
122 Error_Msg_N
123 ("assignment to IN mode parameter not allowed", N);
125 -- Private declarations in a protected object are turned into
126 -- constants when compiling a protected function.
128 elsif Present (Scope (Entity (N)))
129 and then Is_Protected_Type (Scope (Entity (N)))
130 and then
131 (Ekind (Current_Scope) = E_Function
132 or else
133 Ekind (Enclosing_Dynamic_Scope (Current_Scope)) = E_Function)
134 then
135 Error_Msg_N
136 ("protected function cannot modify protected object", N);
138 elsif Ekind (Entity (N)) = E_Loop_Parameter then
139 Error_Msg_N
140 ("assignment to loop parameter not allowed", N);
142 else
143 Error_Msg_N
144 ("left hand side of assignment must be a variable", N);
145 end if;
147 -- For indexed components or selected components, test prefix
149 elsif Nkind (N) = N_Indexed_Component then
150 Diagnose_Non_Variable_Lhs (Prefix (N));
152 -- Another special case for assignment to discriminant
154 elsif Nkind (N) = N_Selected_Component then
155 if Present (Entity (Selector_Name (N)))
156 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
157 then
158 Error_Msg_N
159 ("assignment to discriminant not allowed", N);
160 else
161 Diagnose_Non_Variable_Lhs (Prefix (N));
162 end if;
164 else
165 -- If we fall through, we have no special message to issue!
167 Error_Msg_N ("left hand side of assignment must be a variable", N);
168 end if;
169 end Diagnose_Non_Variable_Lhs;
171 -------------------------
172 -- Set_Assignment_Type --
173 -------------------------
175 procedure Set_Assignment_Type
176 (Opnd : Node_Id;
177 Opnd_Type : in out Entity_Id)
179 begin
180 Require_Entity (Opnd);
182 -- If the assignment operand is an in-out or out parameter, then we
183 -- get the actual subtype (needed for the unconstrained case).
184 -- If the operand is the actual in an entry declaration, then within
185 -- the accept statement it is replaced with a local renaming, which
186 -- may also have an actual subtype.
188 if Is_Entity_Name (Opnd)
189 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
190 or else Ekind (Entity (Opnd)) =
191 E_In_Out_Parameter
192 or else Ekind (Entity (Opnd)) =
193 E_Generic_In_Out_Parameter
194 or else
195 (Ekind (Entity (Opnd)) = E_Variable
196 and then Nkind (Parent (Entity (Opnd))) =
197 N_Object_Renaming_Declaration
198 and then Nkind (Parent (Parent (Entity (Opnd)))) =
199 N_Accept_Statement))
200 then
201 Opnd_Type := Get_Actual_Subtype (Opnd);
203 -- If assignment operand is a component reference, then we get the
204 -- actual subtype of the component for the unconstrained case.
206 elsif
207 (Nkind (Opnd) = N_Selected_Component
208 or else Nkind (Opnd) = N_Explicit_Dereference)
209 and then not Is_Unchecked_Union (Opnd_Type)
210 then
211 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
213 if Present (Decl) then
214 Insert_Action (N, Decl);
215 Mark_Rewrite_Insertion (Decl);
216 Analyze (Decl);
217 Opnd_Type := Defining_Identifier (Decl);
218 Set_Etype (Opnd, Opnd_Type);
219 Freeze_Itype (Opnd_Type, N);
221 elsif Is_Constrained (Etype (Opnd)) then
222 Opnd_Type := Etype (Opnd);
223 end if;
225 -- For slice, use the constrained subtype created for the slice
227 elsif Nkind (Opnd) = N_Slice then
228 Opnd_Type := Etype (Opnd);
229 end if;
230 end Set_Assignment_Type;
232 -- Start of processing for Analyze_Assignment
234 begin
235 Analyze (Rhs);
236 Analyze (Lhs);
237 T1 := Etype (Lhs);
239 -- In the most general case, both Lhs and Rhs can be overloaded, and we
240 -- must compute the intersection of the possible types on each side.
242 if Is_Overloaded (Lhs) then
243 declare
244 I : Interp_Index;
245 It : Interp;
247 begin
248 T1 := Any_Type;
249 Get_First_Interp (Lhs, I, It);
251 while Present (It.Typ) loop
252 if Has_Compatible_Type (Rhs, It.Typ) then
253 if T1 /= Any_Type then
255 -- An explicit dereference is overloaded if the prefix
256 -- is. Try to remove the ambiguity on the prefix, the
257 -- error will be posted there if the ambiguity is real.
259 if Nkind (Lhs) = N_Explicit_Dereference then
260 declare
261 PI : Interp_Index;
262 PI1 : Interp_Index := 0;
263 PIt : Interp;
264 Found : Boolean;
266 begin
267 Found := False;
268 Get_First_Interp (Prefix (Lhs), PI, PIt);
270 while Present (PIt.Typ) loop
271 if Is_Access_Type (PIt.Typ)
272 and then Has_Compatible_Type
273 (Rhs, Designated_Type (PIt.Typ))
274 then
275 if Found then
276 PIt :=
277 Disambiguate (Prefix (Lhs),
278 PI1, PI, Any_Type);
280 if PIt = No_Interp then
281 Error_Msg_N
282 ("ambiguous left-hand side"
283 & " in assignment", Lhs);
284 exit;
285 else
286 Resolve (Prefix (Lhs), PIt.Typ);
287 end if;
289 exit;
290 else
291 Found := True;
292 PI1 := PI;
293 end if;
294 end if;
296 Get_Next_Interp (PI, PIt);
297 end loop;
298 end;
300 else
301 Error_Msg_N
302 ("ambiguous left-hand side in assignment", Lhs);
303 exit;
304 end if;
305 else
306 T1 := It.Typ;
307 end if;
308 end if;
310 Get_Next_Interp (I, It);
311 end loop;
312 end;
314 if T1 = Any_Type then
315 Error_Msg_N
316 ("no valid types for left-hand side for assignment", Lhs);
317 return;
318 end if;
319 end if;
321 Resolve (Lhs, T1);
323 if not Is_Variable (Lhs) then
324 Diagnose_Non_Variable_Lhs (Lhs);
325 return;
327 elsif Is_Limited_Type (T1)
328 and then not Assignment_OK (Lhs)
329 and then not Assignment_OK (Original_Node (Lhs))
330 then
331 Error_Msg_N
332 ("left hand of assignment must not be limited type", Lhs);
333 Explain_Limited_Type (T1, Lhs);
334 return;
335 end if;
337 -- Resolution may have updated the subtype, in case the left-hand
338 -- side is a private protected component. Use the correct subtype
339 -- to avoid scoping issues in the back-end.
341 T1 := Etype (Lhs);
342 Set_Assignment_Type (Lhs, T1);
344 Resolve (Rhs, T1);
345 Check_Unset_Reference (Rhs);
347 -- Remaining steps are skipped if Rhs was syntactically in error
349 if Rhs = Error then
350 return;
351 end if;
353 T2 := Etype (Rhs);
355 if Covers (T1, T2) then
356 null;
357 else
358 Wrong_Type (Rhs, Etype (Lhs));
359 return;
360 end if;
362 Set_Assignment_Type (Rhs, T2);
364 if Total_Errors_Detected /= 0 then
365 if No (T1) then
366 T1 := Any_Type;
367 end if;
369 if No (T2) then
370 T2 := Any_Type;
371 end if;
372 end if;
374 if T1 = Any_Type or else T2 = Any_Type then
375 return;
376 end if;
378 if (Is_Class_Wide_Type (T2) or else Is_Dynamically_Tagged (Rhs))
379 and then not Is_Class_Wide_Type (T1)
380 then
381 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
383 elsif Is_Class_Wide_Type (T1)
384 and then not Is_Class_Wide_Type (T2)
385 and then not Is_Tag_Indeterminate (Rhs)
386 and then not Is_Dynamically_Tagged (Rhs)
387 then
388 Error_Msg_N ("dynamically tagged expression required!", Rhs);
389 end if;
391 -- Tag propagation is done only in semantics mode only. If expansion
392 -- is on, the rhs tag indeterminate function call has been expanded
393 -- and tag propagation would have happened too late, so the
394 -- propagation take place in expand_call instead.
396 if not Expander_Active
397 and then Is_Class_Wide_Type (T1)
398 and then Is_Tag_Indeterminate (Rhs)
399 then
400 Propagate_Tag (Lhs, Rhs);
401 end if;
403 -- Ada 2005 (AI-231)
405 if Ada_Version >= Ada_05
406 and then Nkind (Rhs) = N_Null
407 and then Is_Access_Type (T1)
408 and then not Assignment_OK (Lhs)
409 and then ((Is_Entity_Name (Lhs)
410 and then Can_Never_Be_Null (Entity (Lhs)))
411 or else Can_Never_Be_Null (Etype (Lhs)))
412 then
413 Apply_Compile_Time_Constraint_Error
414 (N => Lhs,
415 Msg => "(Ada 2005) NULL not allowed in null-excluding objects?",
416 Reason => CE_Null_Not_Allowed);
417 end if;
419 if Is_Scalar_Type (T1) then
420 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
422 elsif Is_Array_Type (T1)
423 and then
424 (Nkind (Rhs) /= N_Type_Conversion
425 or else Is_Constrained (Etype (Rhs)))
426 then
427 -- Assignment verifies that the length of the Lsh and Rhs are equal,
428 -- but of course the indices do not have to match. If the right-hand
429 -- side is a type conversion to an unconstrained type, a length check
430 -- is performed on the expression itself during expansion. In rare
431 -- cases, the redundant length check is computed on an index type
432 -- with a different representation, triggering incorrect code in
433 -- the back end.
435 Apply_Length_Check (Rhs, Etype (Lhs));
437 else
438 -- Discriminant checks are applied in the course of expansion
440 null;
441 end if;
443 -- Note: modifications of the Lhs may only be recorded after
444 -- checks have been applied.
446 Note_Possible_Modification (Lhs);
448 -- ??? a real accessibility check is needed when ???
450 -- Post warning for useless assignment
452 if Warn_On_Redundant_Constructs
454 -- We only warn for source constructs
456 and then Comes_From_Source (N)
458 -- Where the entity is the same on both sides
460 and then Is_Entity_Name (Lhs)
461 and then Is_Entity_Name (Original_Node (Rhs))
462 and then Entity (Lhs) = Entity (Original_Node (Rhs))
464 -- But exclude the case where the right side was an operation
465 -- that got rewritten (e.g. JUNK + K, where K was known to be
466 -- zero). We don't want to warn in such a case, since it is
467 -- reasonable to write such expressions especially when K is
468 -- defined symbolically in some other package.
470 and then Nkind (Original_Node (Rhs)) not in N_Op
471 then
472 Error_Msg_NE
473 ("?useless assignment of & to itself", N, Entity (Lhs));
474 end if;
476 -- Check for non-allowed composite assignment
478 if not Support_Composite_Assign_On_Target
479 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
480 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
481 then
482 Error_Msg_CRT ("composite assignment", N);
483 end if;
485 -- One more step. Let's see if we have a simple assignment of a
486 -- known at compile time value to a simple variable. If so, we
487 -- can record the value as the current value providing that:
489 -- We still have a simple assignment statement (no expansion
490 -- activity has modified it in some peculiar manner)
492 -- The type is a discrete type
494 -- The assignment is to a named entity
496 -- The value is known at compile time
498 if Nkind (N) /= N_Assignment_Statement
499 or else not Is_Discrete_Type (T1)
500 or else not Is_Entity_Name (Lhs)
501 or else not Compile_Time_Known_Value (Rhs)
502 then
503 return;
504 end if;
506 Ent := Entity (Lhs);
508 -- Capture value if save to do so
510 if Safe_To_Capture_Value (N, Ent) then
511 Set_Current_Value (Ent, Rhs);
512 end if;
513 end Analyze_Assignment;
515 -----------------------------
516 -- Analyze_Block_Statement --
517 -----------------------------
519 procedure Analyze_Block_Statement (N : Node_Id) is
520 Decls : constant List_Id := Declarations (N);
521 Id : constant Node_Id := Identifier (N);
522 HSS : constant Node_Id := Handled_Statement_Sequence (N);
524 begin
525 -- If no handled statement sequence is present, things are really
526 -- messed up, and we just return immediately (this is a defence
527 -- against previous errors).
529 if No (HSS) then
530 return;
531 end if;
533 -- Normal processing with HSS present
535 declare
536 EH : constant List_Id := Exception_Handlers (HSS);
537 Ent : Entity_Id := Empty;
538 S : Entity_Id;
540 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
541 -- Recursively save value of this global, will be restored on exit
543 begin
544 -- Initialize unblocked exit count for statements of begin block
545 -- plus one for each excption handler that is present.
547 Unblocked_Exit_Count := 1;
549 if Present (EH) then
550 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
551 end if;
553 -- If a label is present analyze it and mark it as referenced
555 if Present (Id) then
556 Analyze (Id);
557 Ent := Entity (Id);
559 -- An error defense. If we have an identifier, but no entity,
560 -- then something is wrong. If we have previous errors, then
561 -- just remove the identifier and continue, otherwise raise
562 -- an exception.
564 if No (Ent) then
565 if Total_Errors_Detected /= 0 then
566 Set_Identifier (N, Empty);
567 else
568 raise Program_Error;
569 end if;
571 else
572 Set_Ekind (Ent, E_Block);
573 Generate_Reference (Ent, N, ' ');
574 Generate_Definition (Ent);
576 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
577 Set_Label_Construct (Parent (Ent), N);
578 end if;
579 end if;
580 end if;
582 -- If no entity set, create a label entity
584 if No (Ent) then
585 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
586 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
587 Set_Parent (Ent, N);
588 end if;
590 Set_Etype (Ent, Standard_Void_Type);
591 Set_Block_Node (Ent, Identifier (N));
592 New_Scope (Ent);
594 if Present (Decls) then
595 Analyze_Declarations (Decls);
596 Check_Completion;
597 end if;
599 Analyze (HSS);
600 Process_End_Label (HSS, 'e', Ent);
602 -- If exception handlers are present, then we indicate that
603 -- enclosing scopes contain a block with handlers. We only
604 -- need to mark non-generic scopes.
606 if Present (EH) then
607 S := Scope (Ent);
608 loop
609 Set_Has_Nested_Block_With_Handler (S);
610 exit when Is_Overloadable (S)
611 or else Ekind (S) = E_Package
612 or else Is_Generic_Unit (S);
613 S := Scope (S);
614 end loop;
615 end if;
617 Check_References (Ent);
618 End_Scope;
620 if Unblocked_Exit_Count = 0 then
621 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
622 Check_Unreachable_Code (N);
623 else
624 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
625 end if;
626 end;
627 end Analyze_Block_Statement;
629 ----------------------------
630 -- Analyze_Case_Statement --
631 ----------------------------
633 procedure Analyze_Case_Statement (N : Node_Id) is
634 Exp : Node_Id;
635 Exp_Type : Entity_Id;
636 Exp_Btype : Entity_Id;
637 Last_Choice : Nat;
638 Dont_Care : Boolean;
639 Others_Present : Boolean;
641 Statements_Analyzed : Boolean := False;
642 -- Set True if at least some statement sequences get analyzed.
643 -- If False on exit, means we had a serious error that prevented
644 -- full analysis of the case statement, and as a result it is not
645 -- a good idea to output warning messages about unreachable code.
647 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
648 -- Recursively save value of this global, will be restored on exit
650 procedure Non_Static_Choice_Error (Choice : Node_Id);
651 -- Error routine invoked by the generic instantiation below when
652 -- the case statment has a non static choice.
654 procedure Process_Statements (Alternative : Node_Id);
655 -- Analyzes all the statements associated to a case alternative.
656 -- Needed by the generic instantiation below.
658 package Case_Choices_Processing is new
659 Generic_Choices_Processing
660 (Get_Alternatives => Alternatives,
661 Get_Choices => Discrete_Choices,
662 Process_Empty_Choice => No_OP,
663 Process_Non_Static_Choice => Non_Static_Choice_Error,
664 Process_Associated_Node => Process_Statements);
665 use Case_Choices_Processing;
666 -- Instantiation of the generic choice processing package
668 -----------------------------
669 -- Non_Static_Choice_Error --
670 -----------------------------
672 procedure Non_Static_Choice_Error (Choice : Node_Id) is
673 begin
674 Flag_Non_Static_Expr
675 ("choice given in case statement is not static!", Choice);
676 end Non_Static_Choice_Error;
678 ------------------------
679 -- Process_Statements --
680 ------------------------
682 procedure Process_Statements (Alternative : Node_Id) is
683 Choices : constant List_Id := Discrete_Choices (Alternative);
684 Ent : Entity_Id;
686 begin
687 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
688 Statements_Analyzed := True;
690 -- An interesting optimization. If the case statement expression
691 -- is a simple entity, then we can set the current value within
692 -- an alternative if the alternative has one possible value.
694 -- case N is
695 -- when 1 => alpha
696 -- when 2 | 3 => beta
697 -- when others => gamma
699 -- Here we know that N is initially 1 within alpha, but for beta
700 -- and gamma, we do not know anything more about the initial value.
702 if Is_Entity_Name (Exp) then
703 Ent := Entity (Exp);
705 if Ekind (Ent) = E_Variable
706 or else
707 Ekind (Ent) = E_In_Out_Parameter
708 or else
709 Ekind (Ent) = E_Out_Parameter
710 then
711 if List_Length (Choices) = 1
712 and then Nkind (First (Choices)) in N_Subexpr
713 and then Compile_Time_Known_Value (First (Choices))
714 then
715 Set_Current_Value (Entity (Exp), First (Choices));
716 end if;
718 Analyze_Statements (Statements (Alternative));
720 -- After analyzing the case, set the current value to empty
721 -- since we won't know what it is for the next alternative
722 -- (unless reset by this same circuit), or after the case.
724 Set_Current_Value (Entity (Exp), Empty);
725 return;
726 end if;
727 end if;
729 -- Case where expression is not an entity name of a variable
731 Analyze_Statements (Statements (Alternative));
732 end Process_Statements;
734 -- Table to record choices. Put after subprograms since we make
735 -- a call to Number_Of_Choices to get the right number of entries.
737 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
739 -- Start of processing for Analyze_Case_Statement
741 begin
742 Unblocked_Exit_Count := 0;
743 Exp := Expression (N);
744 Analyze_And_Resolve (Exp, Any_Discrete);
745 Check_Unset_Reference (Exp);
746 Exp_Type := Etype (Exp);
747 Exp_Btype := Base_Type (Exp_Type);
749 -- The expression must be of a discrete type which must be determinable
750 -- independently of the context in which the expression occurs, but
751 -- using the fact that the expression must be of a discrete type.
752 -- Moreover, the type this expression must not be a character literal
753 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
755 -- If error already reported by Resolve, nothing more to do
757 if Exp_Btype = Any_Discrete
758 or else Exp_Btype = Any_Type
759 then
760 return;
762 elsif Exp_Btype = Any_Character then
763 Error_Msg_N
764 ("character literal as case expression is ambiguous", Exp);
765 return;
767 elsif Ada_Version = Ada_83
768 and then (Is_Generic_Type (Exp_Btype)
769 or else Is_Generic_Type (Root_Type (Exp_Btype)))
770 then
771 Error_Msg_N
772 ("(Ada 83) case expression cannot be of a generic type", Exp);
773 return;
774 end if;
776 -- If the case expression is a formal object of mode in out, then
777 -- treat it as having a nonstatic subtype by forcing use of the base
778 -- type (which has to get passed to Check_Case_Choices below). Also
779 -- use base type when the case expression is parenthesized.
781 if Paren_Count (Exp) > 0
782 or else (Is_Entity_Name (Exp)
783 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
784 then
785 Exp_Type := Exp_Btype;
786 end if;
788 -- Call instantiated Analyze_Choices which does the rest of the work
790 Analyze_Choices
791 (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
793 if Exp_Type = Universal_Integer and then not Others_Present then
794 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
795 end if;
797 -- If all our exits were blocked by unconditional transfers of control,
798 -- then the entire CASE statement acts as an unconditional transfer of
799 -- control, so treat it like one, and check unreachable code. Skip this
800 -- test if we had serious errors preventing any statement analysis.
802 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
803 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
804 Check_Unreachable_Code (N);
805 else
806 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
807 end if;
809 if not Expander_Active
810 and then Compile_Time_Known_Value (Expression (N))
811 and then Serious_Errors_Detected = 0
812 then
813 declare
814 Chosen : constant Node_Id := Find_Static_Alternative (N);
815 Alt : Node_Id;
817 begin
818 Alt := First (Alternatives (N));
820 while Present (Alt) loop
821 if Alt /= Chosen then
822 Remove_Warning_Messages (Statements (Alt));
823 end if;
825 Next (Alt);
826 end loop;
827 end;
828 end if;
829 end Analyze_Case_Statement;
831 ----------------------------
832 -- Analyze_Exit_Statement --
833 ----------------------------
835 -- If the exit includes a name, it must be the name of a currently open
836 -- loop. Otherwise there must be an innermost open loop on the stack,
837 -- to which the statement implicitly refers.
839 procedure Analyze_Exit_Statement (N : Node_Id) is
840 Target : constant Node_Id := Name (N);
841 Cond : constant Node_Id := Condition (N);
842 Scope_Id : Entity_Id;
843 U_Name : Entity_Id;
844 Kind : Entity_Kind;
846 begin
847 if No (Cond) then
848 Check_Unreachable_Code (N);
849 end if;
851 if Present (Target) then
852 Analyze (Target);
853 U_Name := Entity (Target);
855 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
856 Error_Msg_N ("invalid loop name in exit statement", N);
857 return;
858 else
859 Set_Has_Exit (U_Name);
860 end if;
862 else
863 U_Name := Empty;
864 end if;
866 for J in reverse 0 .. Scope_Stack.Last loop
867 Scope_Id := Scope_Stack.Table (J).Entity;
868 Kind := Ekind (Scope_Id);
870 if Kind = E_Loop
871 and then (No (Target) or else Scope_Id = U_Name) then
872 Set_Has_Exit (Scope_Id);
873 exit;
875 elsif Kind = E_Block or else Kind = E_Loop then
876 null;
878 else
879 Error_Msg_N
880 ("cannot exit from program unit or accept statement", N);
881 exit;
882 end if;
883 end loop;
885 -- Verify that if present the condition is a Boolean expression
887 if Present (Cond) then
888 Analyze_And_Resolve (Cond, Any_Boolean);
889 Check_Unset_Reference (Cond);
890 end if;
891 end Analyze_Exit_Statement;
893 ----------------------------
894 -- Analyze_Goto_Statement --
895 ----------------------------
897 procedure Analyze_Goto_Statement (N : Node_Id) is
898 Label : constant Node_Id := Name (N);
899 Scope_Id : Entity_Id;
900 Label_Scope : Entity_Id;
902 begin
903 Check_Unreachable_Code (N);
905 Analyze (Label);
907 if Entity (Label) = Any_Id then
908 return;
910 elsif Ekind (Entity (Label)) /= E_Label then
911 Error_Msg_N ("target of goto statement must be a label", Label);
912 return;
914 elsif not Reachable (Entity (Label)) then
915 Error_Msg_N ("target of goto statement is not reachable", Label);
916 return;
917 end if;
919 Label_Scope := Enclosing_Scope (Entity (Label));
921 for J in reverse 0 .. Scope_Stack.Last loop
922 Scope_Id := Scope_Stack.Table (J).Entity;
924 if Label_Scope = Scope_Id
925 or else (Ekind (Scope_Id) /= E_Block
926 and then Ekind (Scope_Id) /= E_Loop)
927 then
928 if Scope_Id /= Label_Scope then
929 Error_Msg_N
930 ("cannot exit from program unit or accept statement", N);
931 end if;
933 return;
934 end if;
935 end loop;
937 raise Program_Error;
938 end Analyze_Goto_Statement;
940 --------------------------
941 -- Analyze_If_Statement --
942 --------------------------
944 -- A special complication arises in the analysis of if statements
946 -- The expander has circuitry to completely delete code that it
947 -- can tell will not be executed (as a result of compile time known
948 -- conditions). In the analyzer, we ensure that code that will be
949 -- deleted in this manner is analyzed but not expanded. This is
950 -- obviously more efficient, but more significantly, difficulties
951 -- arise if code is expanded and then eliminated (e.g. exception
952 -- table entries disappear). Similarly, itypes generated in deleted
953 -- code must be frozen from start, because the nodes on which they
954 -- depend will not be available at the freeze point.
956 procedure Analyze_If_Statement (N : Node_Id) is
957 E : Node_Id;
959 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
960 -- Recursively save value of this global, will be restored on exit
962 Save_In_Deleted_Code : Boolean;
964 Del : Boolean := False;
965 -- This flag gets set True if a True condition has been found,
966 -- which means that remaining ELSE/ELSIF parts are deleted.
968 procedure Analyze_Cond_Then (Cnode : Node_Id);
969 -- This is applied to either the N_If_Statement node itself or
970 -- to an N_Elsif_Part node. It deals with analyzing the condition
971 -- and the THEN statements associated with it.
973 -----------------------
974 -- Analyze_Cond_Then --
975 -----------------------
977 procedure Analyze_Cond_Then (Cnode : Node_Id) is
978 Cond : constant Node_Id := Condition (Cnode);
979 Tstm : constant List_Id := Then_Statements (Cnode);
981 begin
982 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
983 Analyze_And_Resolve (Cond, Any_Boolean);
984 Check_Unset_Reference (Cond);
985 Check_Possible_Current_Value_Condition (Cnode);
987 -- If already deleting, then just analyze then statements
989 if Del then
990 Analyze_Statements (Tstm);
992 -- Compile time known value, not deleting yet
994 elsif Compile_Time_Known_Value (Cond) then
995 Save_In_Deleted_Code := In_Deleted_Code;
997 -- If condition is True, then analyze the THEN statements
998 -- and set no expansion for ELSE and ELSIF parts.
1000 if Is_True (Expr_Value (Cond)) then
1001 Analyze_Statements (Tstm);
1002 Del := True;
1003 Expander_Mode_Save_And_Set (False);
1004 In_Deleted_Code := True;
1006 -- If condition is False, analyze THEN with expansion off
1008 else -- Is_False (Expr_Value (Cond))
1009 Expander_Mode_Save_And_Set (False);
1010 In_Deleted_Code := True;
1011 Analyze_Statements (Tstm);
1012 Expander_Mode_Restore;
1013 In_Deleted_Code := Save_In_Deleted_Code;
1014 end if;
1016 -- Not known at compile time, not deleting, normal analysis
1018 else
1019 Analyze_Statements (Tstm);
1020 end if;
1021 end Analyze_Cond_Then;
1023 -- Start of Analyze_If_Statement
1025 begin
1026 -- Initialize exit count for else statements. If there is no else
1027 -- part, this count will stay non-zero reflecting the fact that the
1028 -- uncovered else case is an unblocked exit.
1030 Unblocked_Exit_Count := 1;
1031 Analyze_Cond_Then (N);
1033 -- Now to analyze the elsif parts if any are present
1035 if Present (Elsif_Parts (N)) then
1036 E := First (Elsif_Parts (N));
1037 while Present (E) loop
1038 Analyze_Cond_Then (E);
1039 Next (E);
1040 end loop;
1041 end if;
1043 if Present (Else_Statements (N)) then
1044 Analyze_Statements (Else_Statements (N));
1045 end if;
1047 -- If all our exits were blocked by unconditional transfers of control,
1048 -- then the entire IF statement acts as an unconditional transfer of
1049 -- control, so treat it like one, and check unreachable code.
1051 if Unblocked_Exit_Count = 0 then
1052 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1053 Check_Unreachable_Code (N);
1054 else
1055 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1056 end if;
1058 if Del then
1059 Expander_Mode_Restore;
1060 In_Deleted_Code := Save_In_Deleted_Code;
1061 end if;
1063 if not Expander_Active
1064 and then Compile_Time_Known_Value (Condition (N))
1065 and then Serious_Errors_Detected = 0
1066 then
1067 if Is_True (Expr_Value (Condition (N))) then
1068 Remove_Warning_Messages (Else_Statements (N));
1070 if Present (Elsif_Parts (N)) then
1071 E := First (Elsif_Parts (N));
1073 while Present (E) loop
1074 Remove_Warning_Messages (Then_Statements (E));
1075 Next (E);
1076 end loop;
1077 end if;
1079 else
1080 Remove_Warning_Messages (Then_Statements (N));
1081 end if;
1082 end if;
1083 end Analyze_If_Statement;
1085 ----------------------------------------
1086 -- Analyze_Implicit_Label_Declaration --
1087 ----------------------------------------
1089 -- An implicit label declaration is generated in the innermost
1090 -- enclosing declarative part. This is done for labels as well as
1091 -- block and loop names.
1093 -- Note: any changes in this routine may need to be reflected in
1094 -- Analyze_Label_Entity.
1096 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1097 Id : constant Node_Id := Defining_Identifier (N);
1098 begin
1099 Enter_Name (Id);
1100 Set_Ekind (Id, E_Label);
1101 Set_Etype (Id, Standard_Void_Type);
1102 Set_Enclosing_Scope (Id, Current_Scope);
1103 end Analyze_Implicit_Label_Declaration;
1105 ------------------------------
1106 -- Analyze_Iteration_Scheme --
1107 ------------------------------
1109 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1111 procedure Process_Bounds (R : Node_Id);
1112 -- If the iteration is given by a range, create temporaries and
1113 -- assignment statements block to capture the bounds and perform
1114 -- required finalization actions in case a bound includes a function
1115 -- call that uses the temporary stack. We first pre-analyze a copy of
1116 -- the range in order to determine the expected type, and analyze
1117 -- and resolve the original bounds.
1119 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1120 -- If the bounds are given by a 'Range reference on a function call
1121 -- that returns a controlled array, introduce an explicit declaration
1122 -- to capture the bounds, so that the function result can be finalized
1123 -- in timely fashion.
1125 --------------------
1126 -- Process_Bounds --
1127 --------------------
1129 procedure Process_Bounds (R : Node_Id) is
1130 Loc : constant Source_Ptr := Sloc (N);
1131 R_Copy : constant Node_Id := New_Copy_Tree (R);
1132 Lo : constant Node_Id := Low_Bound (R);
1133 Hi : constant Node_Id := High_Bound (R);
1134 New_Lo_Bound : Node_Id := Empty;
1135 New_Hi_Bound : Node_Id := Empty;
1136 Typ : Entity_Id;
1138 function One_Bound
1139 (Original_Bound : Node_Id;
1140 Analyzed_Bound : Node_Id) return Node_Id;
1141 -- Create one declaration followed by one assignment statement
1142 -- to capture the value of bound. We create a separate assignment
1143 -- in order to force the creation of a block in case the bound
1144 -- contains a call that uses the secondary stack.
1146 ---------------
1147 -- One_Bound --
1148 ---------------
1150 function One_Bound
1151 (Original_Bound : Node_Id;
1152 Analyzed_Bound : Node_Id) return Node_Id
1154 Assign : Node_Id;
1155 Id : Entity_Id;
1156 Decl : Node_Id;
1157 Decl_Typ : Entity_Id;
1159 begin
1160 -- If the bound is a constant or an object, no need for a
1161 -- separate declaration. If the bound is the result of previous
1162 -- expansion it is already analyzed and should not be modified.
1163 -- Note that the Bound will be resolved later, if needed, as
1164 -- part of the call to Make_Index (literal bounds may need to
1165 -- be resolved to type Integer).
1167 if Analyzed (Original_Bound) then
1168 return Original_Bound;
1170 elsif Nkind (Analyzed_Bound) = N_Integer_Literal
1171 or else Is_Entity_Name (Analyzed_Bound)
1172 then
1173 Analyze_And_Resolve (Original_Bound, Typ);
1174 return Original_Bound;
1176 else
1177 Analyze_And_Resolve (Original_Bound, Typ);
1178 end if;
1180 Id :=
1181 Make_Defining_Identifier (Loc,
1182 Chars => New_Internal_Name ('S'));
1184 -- If the type of the discrete range is Universal_Integer, then
1185 -- the bound's type must be resolved to Integer, so the object
1186 -- used to hold the bound must also have type Integer.
1188 if Typ = Universal_Integer then
1189 Decl_Typ := Standard_Integer;
1190 else
1191 Decl_Typ := Typ;
1192 end if;
1194 Decl :=
1195 Make_Object_Declaration (Loc,
1196 Defining_Identifier => Id,
1197 Object_Definition => New_Occurrence_Of (Decl_Typ, Loc));
1199 Insert_Before (Parent (N), Decl);
1200 Analyze (Decl);
1202 Assign :=
1203 Make_Assignment_Statement (Loc,
1204 Name => New_Occurrence_Of (Id, Loc),
1205 Expression => Relocate_Node (Original_Bound));
1207 Insert_Before (Parent (N), Assign);
1208 Analyze (Assign);
1210 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
1212 if Nkind (Assign) = N_Assignment_Statement then
1213 return Expression (Assign);
1214 else
1215 return Original_Bound;
1216 end if;
1217 end One_Bound;
1219 -- Start of processing for Process_Bounds
1221 begin
1222 -- Determine expected type of range by analyzing separate copy.
1224 Set_Parent (R_Copy, Parent (R));
1225 Pre_Analyze_And_Resolve (R_Copy);
1226 Typ := Etype (R_Copy);
1227 Set_Etype (R, Typ);
1229 New_Lo_Bound := One_Bound (Lo, Low_Bound (R_Copy));
1230 New_Hi_Bound := One_Bound (Hi, High_Bound (R_Copy));
1232 -- Propagate staticness to loop range itself, in case the
1233 -- corresponding subtype is static.
1235 if New_Lo_Bound /= Lo
1236 and then Is_Static_Expression (New_Lo_Bound)
1237 then
1238 Rewrite (Low_Bound (R), New_Copy (New_Lo_Bound));
1239 end if;
1241 if New_Hi_Bound /= Hi
1242 and then Is_Static_Expression (New_Hi_Bound)
1243 then
1244 Rewrite (High_Bound (R), New_Copy (New_Hi_Bound));
1245 end if;
1246 end Process_Bounds;
1248 --------------------------------------
1249 -- Check_Controlled_Array_Attribute --
1250 --------------------------------------
1252 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1253 begin
1254 if Nkind (DS) = N_Attribute_Reference
1255 and then Is_Entity_Name (Prefix (DS))
1256 and then Ekind (Entity (Prefix (DS))) = E_Function
1257 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1258 and then
1259 Is_Controlled (
1260 Component_Type (Etype (Entity (Prefix (DS)))))
1261 and then Expander_Active
1262 then
1263 declare
1264 Loc : constant Source_Ptr := Sloc (N);
1265 Arr : constant Entity_Id :=
1266 Etype (Entity (Prefix (DS)));
1267 Indx : constant Entity_Id :=
1268 Base_Type (Etype (First_Index (Arr)));
1269 Subt : constant Entity_Id :=
1270 Make_Defining_Identifier
1271 (Loc, New_Internal_Name ('S'));
1272 Decl : Node_Id;
1274 begin
1275 Decl :=
1276 Make_Subtype_Declaration (Loc,
1277 Defining_Identifier => Subt,
1278 Subtype_Indication =>
1279 Make_Subtype_Indication (Loc,
1280 Subtype_Mark => New_Reference_To (Indx, Loc),
1281 Constraint =>
1282 Make_Range_Constraint (Loc,
1283 Relocate_Node (DS))));
1284 Insert_Before (Parent (N), Decl);
1285 Analyze (Decl);
1287 Rewrite (DS,
1288 Make_Attribute_Reference (Loc,
1289 Prefix => New_Reference_To (Subt, Loc),
1290 Attribute_Name => Attribute_Name (DS)));
1291 Analyze (DS);
1292 end;
1293 end if;
1294 end Check_Controlled_Array_Attribute;
1296 -- Start of processing for Analyze_Iteration_Scheme
1298 begin
1299 -- For an infinite loop, there is no iteration scheme
1301 if No (N) then
1302 return;
1304 else
1305 declare
1306 Cond : constant Node_Id := Condition (N);
1308 begin
1309 -- For WHILE loop, verify that the condition is a Boolean
1310 -- expression and resolve and check it.
1312 if Present (Cond) then
1313 Analyze_And_Resolve (Cond, Any_Boolean);
1314 Check_Unset_Reference (Cond);
1316 -- Else we have a FOR loop
1318 else
1319 declare
1320 LP : constant Node_Id := Loop_Parameter_Specification (N);
1321 Id : constant Entity_Id := Defining_Identifier (LP);
1322 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
1324 begin
1325 Enter_Name (Id);
1327 -- We always consider the loop variable to be referenced,
1328 -- since the loop may be used just for counting purposes.
1330 Generate_Reference (Id, N, ' ');
1332 -- Check for case of loop variable hiding a local
1333 -- variable (used later on to give a nice warning
1334 -- if the hidden variable is never assigned).
1336 declare
1337 H : constant Entity_Id := Homonym (Id);
1338 begin
1339 if Present (H)
1340 and then Enclosing_Dynamic_Scope (H) =
1341 Enclosing_Dynamic_Scope (Id)
1342 and then Ekind (H) = E_Variable
1343 and then Is_Discrete_Type (Etype (H))
1344 then
1345 Set_Hiding_Loop_Variable (H, Id);
1346 end if;
1347 end;
1349 -- Now analyze the subtype definition. If it is
1350 -- a range, create temporaries for bounds.
1352 if Nkind (DS) = N_Range
1353 and then Expander_Active
1354 then
1355 Process_Bounds (DS);
1356 else
1357 Analyze (DS);
1358 end if;
1360 if DS = Error then
1361 return;
1362 end if;
1364 -- The subtype indication may denote the completion
1365 -- of an incomplete type declaration.
1367 if Is_Entity_Name (DS)
1368 and then Present (Entity (DS))
1369 and then Is_Type (Entity (DS))
1370 and then Ekind (Entity (DS)) = E_Incomplete_Type
1371 then
1372 Set_Entity (DS, Get_Full_View (Entity (DS)));
1373 Set_Etype (DS, Entity (DS));
1374 end if;
1376 if not Is_Discrete_Type (Etype (DS)) then
1377 Wrong_Type (DS, Any_Discrete);
1378 Set_Etype (DS, Any_Type);
1379 end if;
1381 Check_Controlled_Array_Attribute (DS);
1383 Make_Index (DS, LP);
1385 Set_Ekind (Id, E_Loop_Parameter);
1386 Set_Etype (Id, Etype (DS));
1387 Set_Is_Known_Valid (Id, True);
1389 -- The loop is not a declarative part, so the only entity
1390 -- declared "within" must be frozen explicitly.
1392 declare
1393 Flist : constant List_Id := Freeze_Entity (Id, Sloc (N));
1394 begin
1395 if Is_Non_Empty_List (Flist) then
1396 Insert_Actions (N, Flist);
1397 end if;
1398 end;
1400 -- Check for null or possibly null range and issue warning.
1401 -- We suppress such messages in generic templates and
1402 -- instances, because in practice they tend to be dubious
1403 -- in these cases.
1405 if Nkind (DS) = N_Range
1406 and then Comes_From_Source (N)
1407 then
1408 declare
1409 L : constant Node_Id := Low_Bound (DS);
1410 H : constant Node_Id := High_Bound (DS);
1412 Llo : Uint;
1413 Lhi : Uint;
1414 LOK : Boolean;
1415 Hlo : Uint;
1416 Hhi : Uint;
1417 HOK : Boolean;
1419 begin
1420 Determine_Range (L, LOK, Llo, Lhi);
1421 Determine_Range (H, HOK, Hlo, Hhi);
1423 -- If range of loop is null, issue warning
1425 if (LOK and HOK) and then Llo > Hhi then
1427 -- Suppress the warning if inside a generic
1428 -- template or instance, since in practice
1429 -- they tend to be dubious in these cases since
1430 -- they can result from intended parametrization.
1432 if not Inside_A_Generic
1433 and then not In_Instance
1434 then
1435 Error_Msg_N
1436 ("?loop range is null, loop will not execute",
1437 DS);
1438 end if;
1440 -- Since we know the range of the loop is null,
1441 -- set the appropriate flag to suppress any
1442 -- warnings that would otherwise be issued in
1443 -- the body of the loop that will not execute.
1444 -- We do this even in the generic case, since
1445 -- if it is dubious to warn on the null loop
1446 -- itself, it is certainly dubious to warn for
1447 -- conditions that occur inside it!
1449 Set_Is_Null_Loop (Parent (N));
1451 -- The other case for a warning is a reverse loop
1452 -- where the upper bound is the integer literal
1453 -- zero or one, and the lower bound can be positive.
1455 -- For example, we have
1457 -- for J in reverse N .. 1 loop
1459 -- In practice, this is very likely to be a case
1460 -- of reversing the bounds incorrectly in the range.
1462 elsif Reverse_Present (LP)
1463 and then Nkind (H) = N_Integer_Literal
1464 and then (Intval (H) = Uint_0
1465 or else
1466 Intval (H) = Uint_1)
1467 and then Lhi > Hhi
1468 then
1469 Error_Msg_N ("?loop range may be null", DS);
1470 end if;
1471 end;
1472 end if;
1473 end;
1474 end if;
1475 end;
1476 end if;
1477 end Analyze_Iteration_Scheme;
1479 -------------------
1480 -- Analyze_Label --
1481 -------------------
1483 -- Note: the semantic work required for analyzing labels (setting them as
1484 -- reachable) was done in a prepass through the statements in the block,
1485 -- so that forward gotos would be properly handled. See Analyze_Statements
1486 -- for further details. The only processing required here is to deal with
1487 -- optimizations that depend on an assumption of sequential control flow,
1488 -- since of course the occurrence of a label breaks this assumption.
1490 procedure Analyze_Label (N : Node_Id) is
1491 pragma Warnings (Off, N);
1492 begin
1493 Kill_Current_Values;
1494 end Analyze_Label;
1496 --------------------------
1497 -- Analyze_Label_Entity --
1498 --------------------------
1500 procedure Analyze_Label_Entity (E : Entity_Id) is
1501 begin
1502 Set_Ekind (E, E_Label);
1503 Set_Etype (E, Standard_Void_Type);
1504 Set_Enclosing_Scope (E, Current_Scope);
1505 Set_Reachable (E, True);
1506 end Analyze_Label_Entity;
1508 ----------------------------
1509 -- Analyze_Loop_Statement --
1510 ----------------------------
1512 procedure Analyze_Loop_Statement (N : Node_Id) is
1513 Id : constant Node_Id := Identifier (N);
1514 Ent : Entity_Id;
1516 begin
1517 if Present (Id) then
1519 -- Make name visible, e.g. for use in exit statements. Loop
1520 -- labels are always considered to be referenced.
1522 Analyze (Id);
1523 Ent := Entity (Id);
1524 Generate_Reference (Ent, N, ' ');
1525 Generate_Definition (Ent);
1527 -- If we found a label, mark its type. If not, ignore it, since it
1528 -- means we have a conflicting declaration, which would already have
1529 -- been diagnosed at declaration time. Set Label_Construct of the
1530 -- implicit label declaration, which is not created by the parser
1531 -- for generic units.
1533 if Ekind (Ent) = E_Label then
1534 Set_Ekind (Ent, E_Loop);
1536 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
1537 Set_Label_Construct (Parent (Ent), N);
1538 end if;
1539 end if;
1541 -- Case of no identifier present
1543 else
1544 Ent := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L');
1545 Set_Etype (Ent, Standard_Void_Type);
1546 Set_Parent (Ent, N);
1547 end if;
1549 -- Kill current values on entry to loop, since statements in body
1550 -- of loop may have been executed before the loop is entered.
1551 -- Similarly we kill values after the loop, since we do not know
1552 -- that the body of the loop was executed.
1554 Kill_Current_Values;
1555 New_Scope (Ent);
1556 Analyze_Iteration_Scheme (Iteration_Scheme (N));
1557 Analyze_Statements (Statements (N));
1558 Process_End_Label (N, 'e', Ent);
1559 End_Scope;
1560 Kill_Current_Values;
1561 end Analyze_Loop_Statement;
1563 ----------------------------
1564 -- Analyze_Null_Statement --
1565 ----------------------------
1567 -- Note: the semantics of the null statement is implemented by a single
1568 -- null statement, too bad everything isn't as simple as this!
1570 procedure Analyze_Null_Statement (N : Node_Id) is
1571 pragma Warnings (Off, N);
1572 begin
1573 null;
1574 end Analyze_Null_Statement;
1576 ------------------------
1577 -- Analyze_Statements --
1578 ------------------------
1580 procedure Analyze_Statements (L : List_Id) is
1581 S : Node_Id;
1582 Lab : Entity_Id;
1584 begin
1585 -- The labels declared in the statement list are reachable from
1586 -- statements in the list. We do this as a prepass so that any
1587 -- goto statement will be properly flagged if its target is not
1588 -- reachable. This is not required, but is nice behavior!
1590 S := First (L);
1591 while Present (S) loop
1592 if Nkind (S) = N_Label then
1593 Analyze (Identifier (S));
1594 Lab := Entity (Identifier (S));
1596 -- If we found a label mark it as reachable
1598 if Ekind (Lab) = E_Label then
1599 Generate_Definition (Lab);
1600 Set_Reachable (Lab);
1602 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
1603 Set_Label_Construct (Parent (Lab), S);
1604 end if;
1606 -- If we failed to find a label, it means the implicit declaration
1607 -- of the label was hidden. A for-loop parameter can do this to
1608 -- a label with the same name inside the loop, since the implicit
1609 -- label declaration is in the innermost enclosing body or block
1610 -- statement.
1612 else
1613 Error_Msg_Sloc := Sloc (Lab);
1614 Error_Msg_N
1615 ("implicit label declaration for & is hidden#",
1616 Identifier (S));
1617 end if;
1618 end if;
1620 Next (S);
1621 end loop;
1623 -- Perform semantic analysis on all statements
1625 Conditional_Statements_Begin;
1627 S := First (L);
1628 while Present (S) loop
1629 Analyze (S);
1630 Next (S);
1631 end loop;
1633 Conditional_Statements_End;
1635 -- Make labels unreachable. Visibility is not sufficient, because
1636 -- labels in one if-branch for example are not reachable from the
1637 -- other branch, even though their declarations are in the enclosing
1638 -- declarative part.
1640 S := First (L);
1641 while Present (S) loop
1642 if Nkind (S) = N_Label then
1643 Set_Reachable (Entity (Identifier (S)), False);
1644 end if;
1646 Next (S);
1647 end loop;
1648 end Analyze_Statements;
1650 --------------------------------------------
1651 -- Check_Possible_Current_Value_Condition --
1652 --------------------------------------------
1654 procedure Check_Possible_Current_Value_Condition (Cnode : Node_Id) is
1655 Cond : Node_Id;
1657 begin
1658 -- Loop to deal with (ignore for now) any NOT operators present
1660 Cond := Condition (Cnode);
1661 while Nkind (Cond) = N_Op_Not loop
1662 Cond := Right_Opnd (Cond);
1663 end loop;
1665 -- Check possible relational operator
1667 if Nkind (Cond) = N_Op_Eq
1668 or else
1669 Nkind (Cond) = N_Op_Ne
1670 or else
1671 Nkind (Cond) = N_Op_Ge
1672 or else
1673 Nkind (Cond) = N_Op_Le
1674 or else
1675 Nkind (Cond) = N_Op_Gt
1676 or else
1677 Nkind (Cond) = N_Op_Lt
1678 then
1679 if Compile_Time_Known_Value (Right_Opnd (Cond))
1680 and then Nkind (Left_Opnd (Cond)) = N_Identifier
1681 then
1682 declare
1683 Ent : constant Entity_Id := Entity (Left_Opnd (Cond));
1685 begin
1686 if Ekind (Ent) = E_Variable
1687 or else
1688 Ekind (Ent) = E_Constant
1689 or else
1690 Is_Formal (Ent)
1691 or else
1692 Ekind (Ent) = E_Loop_Parameter
1693 then
1694 -- Here we have a case where the Current_Value field
1695 -- may need to be set. We set it if it is not already
1696 -- set to a compile time expression value.
1698 -- Note that this represents a decision that one
1699 -- condition blots out another previous one. That's
1700 -- certainly right if they occur at the same level.
1701 -- If the second one is nested, then the decision is
1702 -- neither right nor wrong (it would be equally OK
1703 -- to leave the outer one in place, or take the new
1704 -- inner one. Really we should record both, but our
1705 -- data structures are not that elaborate.
1707 if Nkind (Current_Value (Ent)) not in N_Subexpr then
1708 Set_Current_Value (Ent, Cnode);
1709 end if;
1710 end if;
1711 end;
1712 end if;
1713 end if;
1714 end Check_Possible_Current_Value_Condition;
1716 ----------------------------
1717 -- Check_Unreachable_Code --
1718 ----------------------------
1720 procedure Check_Unreachable_Code (N : Node_Id) is
1721 Error_Loc : Source_Ptr;
1722 P : Node_Id;
1724 begin
1725 if Is_List_Member (N)
1726 and then Comes_From_Source (N)
1727 then
1728 declare
1729 Nxt : Node_Id;
1731 begin
1732 Nxt := Original_Node (Next (N));
1734 -- If a label follows us, then we never have dead code, since
1735 -- someone could branch to the label, so we just ignore it.
1737 if Nkind (Nxt) = N_Label then
1738 return;
1740 -- Otherwise see if we have a real statement following us
1742 elsif Present (Nxt)
1743 and then Comes_From_Source (Nxt)
1744 and then Is_Statement (Nxt)
1745 then
1746 -- Special very annoying exception. If we have a return that
1747 -- follows a raise, then we allow it without a warning, since
1748 -- the Ada RM annoyingly requires a useless return here!
1750 if Nkind (Original_Node (N)) /= N_Raise_Statement
1751 or else Nkind (Nxt) /= N_Return_Statement
1752 then
1753 -- The rather strange shenanigans with the warning message
1754 -- here reflects the fact that Kill_Dead_Code is very good
1755 -- at removing warnings in deleted code, and this is one
1756 -- warning we would prefer NOT to have removed :-)
1758 Error_Loc := Sloc (Nxt);
1760 -- If we have unreachable code, analyze and remove the
1761 -- unreachable code, since it is useless and we don't
1762 -- want to generate junk warnings.
1764 -- We skip this step if we are not in code generation mode.
1765 -- This is the one case where we remove dead code in the
1766 -- semantics as opposed to the expander, and we do not want
1767 -- to remove code if we are not in code generation mode,
1768 -- since this messes up the ASIS trees.
1770 -- Note that one might react by moving the whole circuit to
1771 -- exp_ch5, but then we lose the warning in -gnatc mode.
1773 if Operating_Mode = Generate_Code then
1774 loop
1775 Nxt := Next (N);
1777 -- Quit deleting when we have nothing more to delete
1778 -- or if we hit a label (since someone could transfer
1779 -- control to a label, so we should not delete it).
1781 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
1783 -- Statement/declaration is to be deleted
1785 Analyze (Nxt);
1786 Remove (Nxt);
1787 Kill_Dead_Code (Nxt);
1788 end loop;
1789 end if;
1791 -- Now issue the warning
1793 Error_Msg ("?unreachable code", Error_Loc);
1794 end if;
1796 -- If the unconditional transfer of control instruction is
1797 -- the last statement of a sequence, then see if our parent
1798 -- is one of the constructs for which we count unblocked exits,
1799 -- and if so, adjust the count.
1801 else
1802 P := Parent (N);
1804 -- Statements in THEN part or ELSE part of IF statement
1806 if Nkind (P) = N_If_Statement then
1807 null;
1809 -- Statements in ELSIF part of an IF statement
1811 elsif Nkind (P) = N_Elsif_Part then
1812 P := Parent (P);
1813 pragma Assert (Nkind (P) = N_If_Statement);
1815 -- Statements in CASE statement alternative
1817 elsif Nkind (P) = N_Case_Statement_Alternative then
1818 P := Parent (P);
1819 pragma Assert (Nkind (P) = N_Case_Statement);
1821 -- Statements in body of block
1823 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
1824 and then Nkind (Parent (P)) = N_Block_Statement
1825 then
1826 null;
1828 -- Statements in exception handler in a block
1830 elsif Nkind (P) = N_Exception_Handler
1831 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
1832 and then Nkind (Parent (Parent (P))) = N_Block_Statement
1833 then
1834 null;
1836 -- None of these cases, so return
1838 else
1839 return;
1840 end if;
1842 -- This was one of the cases we are looking for (i.e. the
1843 -- parent construct was IF, CASE or block) so decrement count.
1845 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
1846 end if;
1847 end;
1848 end if;
1849 end Check_Unreachable_Code;
1851 end Sem_Ch5;