1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2005 Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Util
; use Exp_Util
;
33 with Freeze
; use Freeze
;
34 with Itypes
; use Itypes
;
35 with Lib
.Xref
; use Lib
.Xref
;
36 with Namet
; use Namet
;
37 with Nmake
; use Nmake
;
38 with Nlists
; use Nlists
;
41 with Sem_Cat
; use Sem_Cat
;
42 with Sem_Ch8
; use Sem_Ch8
;
43 with Sem_Ch13
; use Sem_Ch13
;
44 with Sem_Eval
; use Sem_Eval
;
45 with Sem_Res
; use Sem_Res
;
46 with Sem_Util
; use Sem_Util
;
47 with Sem_Type
; use Sem_Type
;
48 with Sem_Warn
; use Sem_Warn
;
49 with Sinfo
; use Sinfo
;
50 with Snames
; use Snames
;
51 with Stringt
; use Stringt
;
52 with Stand
; use Stand
;
53 with Targparm
; use Targparm
;
54 with Tbuild
; use Tbuild
;
55 with Uintp
; use Uintp
;
57 with GNAT
.Spelling_Checker
; use GNAT
.Spelling_Checker
;
59 package body Sem_Aggr
is
61 type Case_Bounds
is record
64 Choice_Node
: Node_Id
;
67 type Case_Table_Type
is array (Nat
range <>) of Case_Bounds
;
68 -- Table type used by Check_Case_Choices procedure
70 -----------------------
71 -- Local Subprograms --
72 -----------------------
74 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
);
75 -- Sort the Case Table using the Lower Bound of each Choice as the key.
76 -- A simple insertion sort is used since the number of choices in a case
77 -- statement of variant part will usually be small and probably in near
80 procedure Check_Can_Never_Be_Null
(N
: Node_Id
; Expr
: Node_Id
);
81 -- Ada 2005 (AI-231): Check bad usage of the null-exclusion issue
83 ------------------------------------------------------
84 -- Subprograms used for RECORD AGGREGATE Processing --
85 ------------------------------------------------------
87 procedure Resolve_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
);
88 -- This procedure performs all the semantic checks required for record
89 -- aggregates. Note that for aggregates analysis and resolution go
90 -- hand in hand. Aggregate analysis has been delayed up to here and
91 -- it is done while resolving the aggregate.
93 -- N is the N_Aggregate node.
94 -- Typ is the record type for the aggregate resolution
96 -- While performing the semantic checks, this procedure
97 -- builds a new Component_Association_List where each record field
98 -- appears alone in a Component_Choice_List along with its corresponding
99 -- expression. The record fields in the Component_Association_List
100 -- appear in the same order in which they appear in the record type Typ.
102 -- Once this new Component_Association_List is built and all the
103 -- semantic checks performed, the original aggregate subtree is replaced
104 -- with the new named record aggregate just built. Note that the subtree
105 -- substitution is performed with Rewrite so as to be
106 -- able to retrieve the original aggregate.
108 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
109 -- yields the aggregate format expected by Gigi. Typically, this kind of
110 -- tree manipulations are done in the expander. However, because the
111 -- semantic checks that need to be performed on record aggregates really
112 -- go hand in hand with the record aggregate normalization, the aggregate
113 -- subtree transformation is performed during resolution rather than
114 -- expansion. Had we decided otherwise we would have had to duplicate
115 -- most of the code in the expansion procedure Expand_Record_Aggregate.
116 -- Note, however, that all the expansion concerning aggegates for tagged
117 -- records is done in Expand_Record_Aggregate.
119 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
121 -- 1. Make sure that the record type against which the record aggregate
122 -- has to be resolved is not abstract. Furthermore if the type is
123 -- a null aggregate make sure the input aggregate N is also null.
125 -- 2. Verify that the structure of the aggregate is that of a record
126 -- aggregate. Specifically, look for component associations and ensure
127 -- that each choice list only has identifiers or the N_Others_Choice
128 -- node. Also make sure that if present, the N_Others_Choice occurs
129 -- last and by itself.
131 -- 3. If Typ contains discriminants, the values for each discriminant
132 -- is looked for. If the record type Typ has variants, we check
133 -- that the expressions corresponding to each discriminant ruling
134 -- the (possibly nested) variant parts of Typ, are static. This
135 -- allows us to determine the variant parts to which the rest of
136 -- the aggregate must conform. The names of discriminants with their
137 -- values are saved in a new association list, New_Assoc_List which
138 -- is later augmented with the names and values of the remaining
139 -- components in the record type.
141 -- During this phase we also make sure that every discriminant is
142 -- assigned exactly one value. Note that when several values
143 -- for a given discriminant are found, semantic processing continues
144 -- looking for further errors. In this case it's the first
145 -- discriminant value found which we will be recorded.
147 -- IMPORTANT NOTE: For derived tagged types this procedure expects
148 -- First_Discriminant and Next_Discriminant to give the correct list
149 -- of discriminants, in the correct order.
151 -- 4. After all the discriminant values have been gathered, we can
152 -- set the Etype of the record aggregate. If Typ contains no
153 -- discriminants this is straightforward: the Etype of N is just
154 -- Typ, otherwise a new implicit constrained subtype of Typ is
155 -- built to be the Etype of N.
157 -- 5. Gather the remaining record components according to the discriminant
158 -- values. This involves recursively traversing the record type
159 -- structure to see what variants are selected by the given discriminant
160 -- values. This processing is a little more convoluted if Typ is a
161 -- derived tagged types since we need to retrieve the record structure
162 -- of all the ancestors of Typ.
164 -- 6. After gathering the record components we look for their values
165 -- in the record aggregate and emit appropriate error messages
166 -- should we not find such values or should they be duplicated.
168 -- 7. We then make sure no illegal component names appear in the
169 -- record aggegate and make sure that the type of the record
170 -- components appearing in a same choice list is the same.
171 -- Finally we ensure that the others choice, if present, is
172 -- used to provide the value of at least a record component.
174 -- 8. The original aggregate node is replaced with the new named
175 -- aggregate built in steps 3 through 6, as explained earlier.
177 -- Given the complexity of record aggregate resolution, the primary
178 -- goal of this routine is clarity and simplicity rather than execution
179 -- and storage efficiency. If there are only positional components in the
180 -- aggregate the running time is linear. If there are associations
181 -- the running time is still linear as long as the order of the
182 -- associations is not too far off the order of the components in the
183 -- record type. If this is not the case the running time is at worst
184 -- quadratic in the size of the association list.
186 procedure Check_Misspelled_Component
187 (Elements
: Elist_Id
;
188 Component
: Node_Id
);
189 -- Give possible misspelling diagnostic if Component is likely to be
190 -- a misspelling of one of the components of the Assoc_List.
191 -- This is called by Resolv_Aggr_Expr after producing
192 -- an invalid component error message.
194 procedure Check_Static_Discriminated_Subtype
(T
: Entity_Id
; V
: Node_Id
);
195 -- An optimization: determine whether a discriminated subtype has a
196 -- static constraint, and contains array components whose length is also
197 -- static, either because they are constrained by the discriminant, or
198 -- because the original component bounds are static.
200 -----------------------------------------------------
201 -- Subprograms used for ARRAY AGGREGATE Processing --
202 -----------------------------------------------------
204 function Resolve_Array_Aggregate
207 Index_Constr
: Node_Id
;
208 Component_Typ
: Entity_Id
;
209 Others_Allowed
: Boolean)
211 -- This procedure performs the semantic checks for an array aggregate.
212 -- True is returned if the aggregate resolution succeeds.
213 -- The procedure works by recursively checking each nested aggregate.
214 -- Specifically, after checking a sub-aggregate nested at the i-th level
215 -- we recursively check all the subaggregates at the i+1-st level (if any).
216 -- Note that for aggregates analysis and resolution go hand in hand.
217 -- Aggregate analysis has been delayed up to here and it is done while
218 -- resolving the aggregate.
220 -- N is the current N_Aggregate node to be checked.
222 -- Index is the index node corresponding to the array sub-aggregate that
223 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
224 -- corresponding index type (or subtype).
226 -- Index_Constr is the node giving the applicable index constraint if
227 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
228 -- contexts [...] that can be used to determine the bounds of the array
229 -- value specified by the aggregate". If Others_Allowed below is False
230 -- there is no applicable index constraint and this node is set to Index.
232 -- Component_Typ is the array component type.
234 -- Others_Allowed indicates whether an others choice is allowed
235 -- in the context where the top-level aggregate appeared.
237 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
239 -- 1. Make sure that the others choice, if present, is by itself and
240 -- appears last in the sub-aggregate. Check that we do not have
241 -- positional and named components in the array sub-aggregate (unless
242 -- the named association is an others choice). Finally if an others
243 -- choice is present, make sure it is allowed in the aggregate contex.
245 -- 2. If the array sub-aggregate contains discrete_choices:
247 -- (A) Verify their validity. Specifically verify that:
249 -- (a) If a null range is present it must be the only possible
250 -- choice in the array aggregate.
252 -- (b) Ditto for a non static range.
254 -- (c) Ditto for a non static expression.
256 -- In addition this step analyzes and resolves each discrete_choice,
257 -- making sure that its type is the type of the corresponding Index.
258 -- If we are not at the lowest array aggregate level (in the case of
259 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
260 -- recursively on each component expression. Otherwise, resolve the
261 -- bottom level component expressions against the expected component
262 -- type ONLY IF the component corresponds to a single discrete choice
263 -- which is not an others choice (to see why read the DELAYED
264 -- COMPONENT RESOLUTION below).
266 -- (B) Determine the bounds of the sub-aggregate and lowest and
267 -- highest choice values.
269 -- 3. For positional aggregates:
271 -- (A) Loop over the component expressions either recursively invoking
272 -- Resolve_Array_Aggregate on each of these for multi-dimensional
273 -- array aggregates or resolving the bottom level component
274 -- expressions against the expected component type.
276 -- (B) Determine the bounds of the positional sub-aggregates.
278 -- 4. Try to determine statically whether the evaluation of the array
279 -- sub-aggregate raises Constraint_Error. If yes emit proper
280 -- warnings. The precise checks are the following:
282 -- (A) Check that the index range defined by aggregate bounds is
283 -- compatible with corresponding index subtype.
284 -- We also check against the base type. In fact it could be that
285 -- Low/High bounds of the base type are static whereas those of
286 -- the index subtype are not. Thus if we can statically catch
287 -- a problem with respect to the base type we are guaranteed
288 -- that the same problem will arise with the index subtype
290 -- (B) If we are dealing with a named aggregate containing an others
291 -- choice and at least one discrete choice then make sure the range
292 -- specified by the discrete choices does not overflow the
293 -- aggregate bounds. We also check against the index type and base
294 -- type bounds for the same reasons given in (A).
296 -- (C) If we are dealing with a positional aggregate with an others
297 -- choice make sure the number of positional elements specified
298 -- does not overflow the aggregate bounds. We also check against
299 -- the index type and base type bounds as mentioned in (A).
301 -- Finally construct an N_Range node giving the sub-aggregate bounds.
302 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
303 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
304 -- to build the appropriate aggregate subtype. Aggregate_Bounds
305 -- information is needed during expansion.
307 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
308 -- expressions in an array aggregate may call Duplicate_Subexpr or some
309 -- other routine that inserts code just outside the outermost aggregate.
310 -- If the array aggregate contains discrete choices or an others choice,
311 -- this may be wrong. Consider for instance the following example.
313 -- type Rec is record
317 -- type Acc_Rec is access Rec;
318 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
320 -- Then the transformation of "new Rec" that occurs during resolution
321 -- entails the following code modifications
323 -- P7b : constant Acc_Rec := new Rec;
325 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
327 -- This code transformation is clearly wrong, since we need to call
328 -- "new Rec" for each of the 3 array elements. To avoid this problem we
329 -- delay resolution of the components of non positional array aggregates
330 -- to the expansion phase. As an optimization, if the discrete choice
331 -- specifies a single value we do not delay resolution.
333 function Array_Aggr_Subtype
(N
: Node_Id
; Typ
: Node_Id
) return Entity_Id
;
334 -- This routine returns the type or subtype of an array aggregate.
336 -- N is the array aggregate node whose type we return.
338 -- Typ is the context type in which N occurs.
340 -- This routine creates an implicit array subtype whose bounds are
341 -- those defined by the aggregate. When this routine is invoked
342 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
343 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
344 -- sub-aggregate bounds. When building the aggegate itype, this function
345 -- traverses the array aggregate N collecting such Aggregate_Bounds and
346 -- constructs the proper array aggregate itype.
348 -- Note that in the case of multidimensional aggregates each inner
349 -- sub-aggregate corresponding to a given array dimension, may provide a
350 -- different bounds. If it is possible to determine statically that
351 -- some sub-aggregates corresponding to the same index do not have the
352 -- same bounds, then a warning is emitted. If such check is not possible
353 -- statically (because some sub-aggregate bounds are dynamic expressions)
354 -- then this job is left to the expander. In all cases the particular
355 -- bounds that this function will chose for a given dimension is the first
356 -- N_Range node for a sub-aggregate corresponding to that dimension.
358 -- Note that the Raises_Constraint_Error flag of an array aggregate
359 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
360 -- is set in Resolve_Array_Aggregate but the aggregate is not
361 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
362 -- first construct the proper itype for the aggregate (Gigi needs
363 -- this). After constructing the proper itype we will eventually replace
364 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
365 -- Of course in cases such as:
367 -- type Arr is array (integer range <>) of Integer;
368 -- A : Arr := (positive range -1 .. 2 => 0);
370 -- The bounds of the aggregate itype are cooked up to look reasonable
371 -- (in this particular case the bounds will be 1 .. 2).
373 procedure Aggregate_Constraint_Checks
375 Check_Typ
: Entity_Id
);
376 -- Checks expression Exp against subtype Check_Typ. If Exp is an
377 -- aggregate and Check_Typ a constrained record type with discriminants,
378 -- we generate the appropriate discriminant checks. If Exp is an array
379 -- aggregate then emit the appropriate length checks. If Exp is a scalar
380 -- type, or a string literal, Exp is changed into Check_Typ'(Exp) to
381 -- ensure that range checks are performed at run time.
383 procedure Make_String_Into_Aggregate
(N
: Node_Id
);
384 -- A string literal can appear in a context in which a one dimensional
385 -- array of characters is expected. This procedure simply rewrites the
386 -- string as an aggregate, prior to resolution.
388 ---------------------------------
389 -- Aggregate_Constraint_Checks --
390 ---------------------------------
392 procedure Aggregate_Constraint_Checks
394 Check_Typ
: Entity_Id
)
396 Exp_Typ
: constant Entity_Id
:= Etype
(Exp
);
399 if Raises_Constraint_Error
(Exp
) then
403 -- This is really expansion activity, so make sure that expansion
404 -- is on and is allowed.
406 if not Expander_Active
or else In_Default_Expression
then
410 -- First check if we have to insert discriminant checks
412 if Has_Discriminants
(Exp_Typ
) then
413 Apply_Discriminant_Check
(Exp
, Check_Typ
);
415 -- Next emit length checks for array aggregates
417 elsif Is_Array_Type
(Exp_Typ
) then
418 Apply_Length_Check
(Exp
, Check_Typ
);
420 -- Finally emit scalar and string checks. If we are dealing with a
421 -- scalar literal we need to check by hand because the Etype of
422 -- literals is not necessarily correct.
424 elsif Is_Scalar_Type
(Exp_Typ
)
425 and then Compile_Time_Known_Value
(Exp
)
427 if Is_Out_Of_Range
(Exp
, Base_Type
(Check_Typ
)) then
428 Apply_Compile_Time_Constraint_Error
429 (Exp
, "value not in range of}?", CE_Range_Check_Failed
,
430 Ent
=> Base_Type
(Check_Typ
),
431 Typ
=> Base_Type
(Check_Typ
));
433 elsif Is_Out_Of_Range
(Exp
, Check_Typ
) then
434 Apply_Compile_Time_Constraint_Error
435 (Exp
, "value not in range of}?", CE_Range_Check_Failed
,
439 elsif not Range_Checks_Suppressed
(Check_Typ
) then
440 Apply_Scalar_Range_Check
(Exp
, Check_Typ
);
443 elsif (Is_Scalar_Type
(Exp_Typ
)
444 or else Nkind
(Exp
) = N_String_Literal
)
445 and then Exp_Typ
/= Check_Typ
447 if Is_Entity_Name
(Exp
)
448 and then Ekind
(Entity
(Exp
)) = E_Constant
450 -- If expression is a constant, it is worthwhile checking whether
451 -- it is a bound of the type.
453 if (Is_Entity_Name
(Type_Low_Bound
(Check_Typ
))
454 and then Entity
(Exp
) = Entity
(Type_Low_Bound
(Check_Typ
)))
455 or else (Is_Entity_Name
(Type_High_Bound
(Check_Typ
))
456 and then Entity
(Exp
) = Entity
(Type_High_Bound
(Check_Typ
)))
461 Rewrite
(Exp
, Convert_To
(Check_Typ
, Relocate_Node
(Exp
)));
462 Analyze_And_Resolve
(Exp
, Check_Typ
);
463 Check_Unset_Reference
(Exp
);
466 Rewrite
(Exp
, Convert_To
(Check_Typ
, Relocate_Node
(Exp
)));
467 Analyze_And_Resolve
(Exp
, Check_Typ
);
468 Check_Unset_Reference
(Exp
);
471 -- Ada 2005 (AI-231): Generate conversion to the null-excluding
472 -- type to force the corresponding run-time check
474 elsif Is_Access_Type
(Check_Typ
)
475 and then Can_Never_Be_Null
(Check_Typ
)
476 and then not Can_Never_Be_Null
(Exp_Typ
)
478 Rewrite
(Exp
, Convert_To
(Check_Typ
, Relocate_Node
(Exp
)));
479 Analyze_And_Resolve
(Exp
, Check_Typ
);
480 Check_Unset_Reference
(Exp
);
482 end Aggregate_Constraint_Checks
;
484 ------------------------
485 -- Array_Aggr_Subtype --
486 ------------------------
488 function Array_Aggr_Subtype
493 Aggr_Dimension
: constant Pos
:= Number_Dimensions
(Typ
);
494 -- Number of aggregate index dimensions.
496 Aggr_Range
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
497 -- Constrained N_Range of each index dimension in our aggregate itype.
499 Aggr_Low
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
500 Aggr_High
: array (1 .. Aggr_Dimension
) of Node_Id
:= (others => Empty
);
501 -- Low and High bounds for each index dimension in our aggregate itype.
503 Is_Fully_Positional
: Boolean := True;
505 procedure Collect_Aggr_Bounds
(N
: Node_Id
; Dim
: Pos
);
506 -- N is an array (sub-)aggregate. Dim is the dimension corresponding to
507 -- (sub-)aggregate N. This procedure collects the constrained N_Range
508 -- nodes corresponding to each index dimension of our aggregate itype.
509 -- These N_Range nodes are collected in Aggr_Range above.
510 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
511 -- bounds of each index dimension. If, when collecting, two bounds
512 -- corresponding to the same dimension are static and found to differ,
513 -- then emit a warning, and mark N as raising Constraint_Error.
515 -------------------------
516 -- Collect_Aggr_Bounds --
517 -------------------------
519 procedure Collect_Aggr_Bounds
(N
: Node_Id
; Dim
: Pos
) is
520 This_Range
: constant Node_Id
:= Aggregate_Bounds
(N
);
521 -- The aggregate range node of this specific sub-aggregate.
523 This_Low
: constant Node_Id
:= Low_Bound
(Aggregate_Bounds
(N
));
524 This_High
: constant Node_Id
:= High_Bound
(Aggregate_Bounds
(N
));
525 -- The aggregate bounds of this specific sub-aggregate.
531 -- Collect the first N_Range for a given dimension that you find.
532 -- For a given dimension they must be all equal anyway.
534 if No
(Aggr_Range
(Dim
)) then
535 Aggr_Low
(Dim
) := This_Low
;
536 Aggr_High
(Dim
) := This_High
;
537 Aggr_Range
(Dim
) := This_Range
;
540 if Compile_Time_Known_Value
(This_Low
) then
541 if not Compile_Time_Known_Value
(Aggr_Low
(Dim
)) then
542 Aggr_Low
(Dim
) := This_Low
;
544 elsif Expr_Value
(This_Low
) /= Expr_Value
(Aggr_Low
(Dim
)) then
545 Set_Raises_Constraint_Error
(N
);
546 Error_Msg_N
("Sub-aggregate low bound mismatch?", N
);
547 Error_Msg_N
("Constraint_Error will be raised at run-time?",
552 if Compile_Time_Known_Value
(This_High
) then
553 if not Compile_Time_Known_Value
(Aggr_High
(Dim
)) then
554 Aggr_High
(Dim
) := This_High
;
557 Expr_Value
(This_High
) /= Expr_Value
(Aggr_High
(Dim
))
559 Set_Raises_Constraint_Error
(N
);
560 Error_Msg_N
("Sub-aggregate high bound mismatch?", N
);
561 Error_Msg_N
("Constraint_Error will be raised at run-time?",
567 if Dim
< Aggr_Dimension
then
569 -- Process positional components
571 if Present
(Expressions
(N
)) then
572 Expr
:= First
(Expressions
(N
));
573 while Present
(Expr
) loop
574 Collect_Aggr_Bounds
(Expr
, Dim
+ 1);
579 -- Process component associations
581 if Present
(Component_Associations
(N
)) then
582 Is_Fully_Positional
:= False;
584 Assoc
:= First
(Component_Associations
(N
));
585 while Present
(Assoc
) loop
586 Expr
:= Expression
(Assoc
);
587 Collect_Aggr_Bounds
(Expr
, Dim
+ 1);
592 end Collect_Aggr_Bounds
;
594 -- Array_Aggr_Subtype variables
597 -- the final itype of the overall aggregate
599 Index_Constraints
: constant List_Id
:= New_List
;
600 -- The list of index constraints of the aggregate itype.
602 -- Start of processing for Array_Aggr_Subtype
605 -- Make sure that the list of index constraints is properly attached
606 -- to the tree, and then collect the aggregate bounds.
608 Set_Parent
(Index_Constraints
, N
);
609 Collect_Aggr_Bounds
(N
, 1);
611 -- Build the list of constrained indices of our aggregate itype.
613 for J
in 1 .. Aggr_Dimension
loop
614 Create_Index
: declare
615 Index_Base
: constant Entity_Id
:=
616 Base_Type
(Etype
(Aggr_Range
(J
)));
617 Index_Typ
: Entity_Id
;
620 -- Construct the Index subtype
622 Index_Typ
:= Create_Itype
(Subtype_Kind
(Ekind
(Index_Base
)), N
);
624 Set_Etype
(Index_Typ
, Index_Base
);
626 if Is_Character_Type
(Index_Base
) then
627 Set_Is_Character_Type
(Index_Typ
);
630 Set_Size_Info
(Index_Typ
, (Index_Base
));
631 Set_RM_Size
(Index_Typ
, RM_Size
(Index_Base
));
632 Set_First_Rep_Item
(Index_Typ
, First_Rep_Item
(Index_Base
));
633 Set_Scalar_Range
(Index_Typ
, Aggr_Range
(J
));
635 if Is_Discrete_Or_Fixed_Point_Type
(Index_Typ
) then
636 Set_RM_Size
(Index_Typ
, UI_From_Int
(Minimum_Size
(Index_Typ
)));
639 Set_Etype
(Aggr_Range
(J
), Index_Typ
);
641 Append
(Aggr_Range
(J
), To
=> Index_Constraints
);
645 -- Now build the Itype
647 Itype
:= Create_Itype
(E_Array_Subtype
, N
);
649 Set_First_Rep_Item
(Itype
, First_Rep_Item
(Typ
));
650 Set_Convention
(Itype
, Convention
(Typ
));
651 Set_Depends_On_Private
(Itype
, Has_Private_Component
(Typ
));
652 Set_Etype
(Itype
, Base_Type
(Typ
));
653 Set_Has_Alignment_Clause
(Itype
, Has_Alignment_Clause
(Typ
));
654 Set_Is_Aliased
(Itype
, Is_Aliased
(Typ
));
655 Set_Depends_On_Private
(Itype
, Depends_On_Private
(Typ
));
657 Copy_Suppress_Status
(Index_Check
, Typ
, Itype
);
658 Copy_Suppress_Status
(Length_Check
, Typ
, Itype
);
660 Set_First_Index
(Itype
, First
(Index_Constraints
));
661 Set_Is_Constrained
(Itype
, True);
662 Set_Is_Internal
(Itype
, True);
663 Init_Size_Align
(Itype
);
665 -- A simple optimization: purely positional aggregates of static
666 -- components should be passed to gigi unexpanded whenever possible,
667 -- and regardless of the staticness of the bounds themselves. Subse-
668 -- quent checks in exp_aggr verify that type is not packed, etc.
670 Set_Size_Known_At_Compile_Time
(Itype
,
672 and then Comes_From_Source
(N
)
673 and then Size_Known_At_Compile_Time
(Component_Type
(Typ
)));
675 -- We always need a freeze node for a packed array subtype, so that
676 -- we can build the Packed_Array_Type corresponding to the subtype.
677 -- If expansion is disabled, the packed array subtype is not built,
678 -- and we must not generate a freeze node for the type, or else it
679 -- will appear incomplete to gigi.
681 if Is_Packed
(Itype
) and then not In_Default_Expression
682 and then Expander_Active
684 Freeze_Itype
(Itype
, N
);
688 end Array_Aggr_Subtype
;
690 --------------------------------
691 -- Check_Misspelled_Component --
692 --------------------------------
694 procedure Check_Misspelled_Component
695 (Elements
: Elist_Id
;
698 Max_Suggestions
: constant := 2;
700 Nr_Of_Suggestions
: Natural := 0;
701 Suggestion_1
: Entity_Id
:= Empty
;
702 Suggestion_2
: Entity_Id
:= Empty
;
703 Component_Elmt
: Elmt_Id
;
706 -- All the components of List are matched against Component and
707 -- a count is maintained of possible misspellings. When at the
708 -- end of the analysis there are one or two (not more!) possible
709 -- misspellings, these misspellings will be suggested as
710 -- possible correction.
712 Get_Name_String
(Chars
(Component
));
715 S
: constant String (1 .. Name_Len
) :=
716 Name_Buffer
(1 .. Name_Len
);
720 Component_Elmt
:= First_Elmt
(Elements
);
722 while Nr_Of_Suggestions
<= Max_Suggestions
723 and then Present
(Component_Elmt
)
726 Get_Name_String
(Chars
(Node
(Component_Elmt
)));
728 if Is_Bad_Spelling_Of
(Name_Buffer
(1 .. Name_Len
), S
) then
729 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
731 case Nr_Of_Suggestions
is
732 when 1 => Suggestion_1
:= Node
(Component_Elmt
);
733 when 2 => Suggestion_2
:= Node
(Component_Elmt
);
738 Next_Elmt
(Component_Elmt
);
741 -- Report at most two suggestions
743 if Nr_Of_Suggestions
= 1 then
744 Error_Msg_NE
("\possible misspelling of&",
745 Component
, Suggestion_1
);
747 elsif Nr_Of_Suggestions
= 2 then
748 Error_Msg_Node_2
:= Suggestion_2
;
749 Error_Msg_NE
("\possible misspelling of& or&",
750 Component
, Suggestion_1
);
753 end Check_Misspelled_Component
;
755 ----------------------------------------
756 -- Check_Static_Discriminated_Subtype --
757 ----------------------------------------
759 procedure Check_Static_Discriminated_Subtype
(T
: Entity_Id
; V
: Node_Id
) is
760 Disc
: constant Entity_Id
:= First_Discriminant
(T
);
765 if Has_Record_Rep_Clause
(T
) then
768 elsif Present
(Next_Discriminant
(Disc
)) then
771 elsif Nkind
(V
) /= N_Integer_Literal
then
775 Comp
:= First_Component
(T
);
777 while Present
(Comp
) loop
779 if Is_Scalar_Type
(Etype
(Comp
)) then
782 elsif Is_Private_Type
(Etype
(Comp
))
783 and then Present
(Full_View
(Etype
(Comp
)))
784 and then Is_Scalar_Type
(Full_View
(Etype
(Comp
)))
788 elsif Is_Array_Type
(Etype
(Comp
)) then
790 if Is_Bit_Packed_Array
(Etype
(Comp
)) then
794 Ind
:= First_Index
(Etype
(Comp
));
796 while Present
(Ind
) loop
798 if Nkind
(Ind
) /= N_Range
799 or else Nkind
(Low_Bound
(Ind
)) /= N_Integer_Literal
800 or else Nkind
(High_Bound
(Ind
)) /= N_Integer_Literal
812 Next_Component
(Comp
);
815 -- On exit, all components have statically known sizes.
817 Set_Size_Known_At_Compile_Time
(T
);
818 end Check_Static_Discriminated_Subtype
;
820 --------------------------------
821 -- Make_String_Into_Aggregate --
822 --------------------------------
824 procedure Make_String_Into_Aggregate
(N
: Node_Id
) is
825 Exprs
: constant List_Id
:= New_List
;
826 Loc
: constant Source_Ptr
:= Sloc
(N
);
827 Str
: constant String_Id
:= Strval
(N
);
828 Strlen
: constant Nat
:= String_Length
(Str
);
836 for J
in 1 .. Strlen
loop
837 C
:= Get_String_Char
(Str
, J
);
838 Set_Character_Literal_Name
(C
);
841 Make_Character_Literal
(P
,
843 Char_Literal_Value
=> UI_From_CC
(C
));
844 Set_Etype
(C_Node
, Any_Character
);
845 Append_To
(Exprs
, C_Node
);
848 -- something special for wide strings ???
851 New_N
:= Make_Aggregate
(Loc
, Expressions
=> Exprs
);
852 Set_Analyzed
(New_N
);
853 Set_Etype
(New_N
, Any_Composite
);
856 end Make_String_Into_Aggregate
;
858 -----------------------
859 -- Resolve_Aggregate --
860 -----------------------
862 procedure Resolve_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
863 Pkind
: constant Node_Kind
:= Nkind
(Parent
(N
));
865 Aggr_Subtyp
: Entity_Id
;
866 -- The actual aggregate subtype. This is not necessarily the same as Typ
867 -- which is the subtype of the context in which the aggregate was found.
870 -- Check for aggregates not allowed in configurable run-time mode.
871 -- We allow all cases of aggregates that do not come from source,
872 -- since these are all assumed to be small (e.g. bounds of a string
873 -- literal). We also allow aggregates of types we know to be small.
875 if not Support_Aggregates_On_Target
876 and then Comes_From_Source
(N
)
877 and then (not Known_Static_Esize
(Typ
) or else Esize
(Typ
) > 64)
879 Error_Msg_CRT
("aggregate", N
);
882 if Is_Limited_Composite
(Typ
) then
883 Error_Msg_N
("aggregate type cannot have limited component", N
);
884 Explain_Limited_Type
(Typ
, N
);
886 -- Ada 2005 (AI-287): Limited aggregates allowed
888 elsif Is_Limited_Type
(Typ
)
889 and Ada_Version
< Ada_05
891 Error_Msg_N
("aggregate type cannot be limited", N
);
892 Explain_Limited_Type
(Typ
, N
);
894 elsif Is_Class_Wide_Type
(Typ
) then
895 Error_Msg_N
("type of aggregate cannot be class-wide", N
);
897 elsif Typ
= Any_String
898 or else Typ
= Any_Composite
900 Error_Msg_N
("no unique type for aggregate", N
);
901 Set_Etype
(N
, Any_Composite
);
903 elsif Is_Array_Type
(Typ
) and then Null_Record_Present
(N
) then
904 Error_Msg_N
("null record forbidden in array aggregate", N
);
906 elsif Is_Record_Type
(Typ
) then
907 Resolve_Record_Aggregate
(N
, Typ
);
909 elsif Is_Array_Type
(Typ
) then
911 -- First a special test, for the case of a positional aggregate
912 -- of characters which can be replaced by a string literal.
913 -- Do not perform this transformation if this was a string literal
914 -- to start with, whose components needed constraint checks, or if
915 -- the component type is non-static, because it will require those
916 -- checks and be transformed back into an aggregate.
918 if Number_Dimensions
(Typ
) = 1
920 (Root_Type
(Component_Type
(Typ
)) = Standard_Character
922 Root_Type
(Component_Type
(Typ
)) = Standard_Wide_Character
924 Root_Type
(Component_Type
(Typ
)) = Standard_Wide_Wide_Character
)
925 and then No
(Component_Associations
(N
))
926 and then not Is_Limited_Composite
(Typ
)
927 and then not Is_Private_Composite
(Typ
)
928 and then not Is_Bit_Packed_Array
(Typ
)
929 and then Nkind
(Original_Node
(Parent
(N
))) /= N_String_Literal
930 and then Is_Static_Subtype
(Component_Type
(Typ
))
936 Expr
:= First
(Expressions
(N
));
937 while Present
(Expr
) loop
938 exit when Nkind
(Expr
) /= N_Character_Literal
;
945 Expr
:= First
(Expressions
(N
));
946 while Present
(Expr
) loop
947 Store_String_Char
(UI_To_CC
(Char_Literal_Value
(Expr
)));
952 Make_String_Literal
(Sloc
(N
), End_String
));
954 Analyze_And_Resolve
(N
, Typ
);
960 -- Here if we have a real aggregate to deal with
962 Array_Aggregate
: declare
963 Aggr_Resolved
: Boolean;
965 Aggr_Typ
: constant Entity_Id
:= Etype
(Typ
);
966 -- This is the unconstrained array type, which is the type
967 -- against which the aggregate is to be resolved. Typ itself
968 -- is the array type of the context which may not be the same
969 -- subtype as the subtype for the final aggregate.
972 -- In the following we determine whether an others choice is
973 -- allowed inside the array aggregate. The test checks the context
974 -- in which the array aggregate occurs. If the context does not
975 -- permit it, or the aggregate type is unconstrained, an others
976 -- choice is not allowed.
978 -- Note that there is no node for Explicit_Actual_Parameter.
979 -- To test for this context we therefore have to test for node
980 -- N_Parameter_Association which itself appears only if there is a
981 -- formal parameter. Consequently we also need to test for
982 -- N_Procedure_Call_Statement or N_Function_Call.
984 Set_Etype
(N
, Aggr_Typ
); -- may be overridden later on
986 -- Ada 2005 (AI-231): Propagate the null_exclusion attribute to
987 -- the components of the array aggregate
989 if Ada_Version
>= Ada_05
then
990 Set_Can_Never_Be_Null
(Aggr_Typ
, Can_Never_Be_Null
(Typ
));
993 if Is_Constrained
(Typ
) and then
994 (Pkind
= N_Assignment_Statement
or else
995 Pkind
= N_Parameter_Association
or else
996 Pkind
= N_Function_Call
or else
997 Pkind
= N_Procedure_Call_Statement
or else
998 Pkind
= N_Generic_Association
or else
999 Pkind
= N_Formal_Object_Declaration
or else
1000 Pkind
= N_Return_Statement
or else
1001 Pkind
= N_Object_Declaration
or else
1002 Pkind
= N_Component_Declaration
or else
1003 Pkind
= N_Parameter_Specification
or else
1004 Pkind
= N_Qualified_Expression
or else
1005 Pkind
= N_Aggregate
or else
1006 Pkind
= N_Extension_Aggregate
or else
1007 Pkind
= N_Component_Association
)
1010 Resolve_Array_Aggregate
1012 Index
=> First_Index
(Aggr_Typ
),
1013 Index_Constr
=> First_Index
(Typ
),
1014 Component_Typ
=> Component_Type
(Typ
),
1015 Others_Allowed
=> True);
1019 Resolve_Array_Aggregate
1021 Index
=> First_Index
(Aggr_Typ
),
1022 Index_Constr
=> First_Index
(Aggr_Typ
),
1023 Component_Typ
=> Component_Type
(Typ
),
1024 Others_Allowed
=> False);
1027 if not Aggr_Resolved
then
1028 Aggr_Subtyp
:= Any_Composite
;
1030 Aggr_Subtyp
:= Array_Aggr_Subtype
(N
, Typ
);
1033 Set_Etype
(N
, Aggr_Subtyp
);
1034 end Array_Aggregate
;
1037 Error_Msg_N
("illegal context for aggregate", N
);
1041 -- If we can determine statically that the evaluation of the
1042 -- aggregate raises Constraint_Error, then replace the
1043 -- aggregate with an N_Raise_Constraint_Error node, but set the
1044 -- Etype to the right aggregate subtype. Gigi needs this.
1046 if Raises_Constraint_Error
(N
) then
1047 Aggr_Subtyp
:= Etype
(N
);
1049 Make_Raise_Constraint_Error
(Sloc
(N
),
1050 Reason
=> CE_Range_Check_Failed
));
1051 Set_Raises_Constraint_Error
(N
);
1052 Set_Etype
(N
, Aggr_Subtyp
);
1055 end Resolve_Aggregate
;
1057 -----------------------------
1058 -- Resolve_Array_Aggregate --
1059 -----------------------------
1061 function Resolve_Array_Aggregate
1064 Index_Constr
: Node_Id
;
1065 Component_Typ
: Entity_Id
;
1066 Others_Allowed
: Boolean)
1069 Loc
: constant Source_Ptr
:= Sloc
(N
);
1071 Failure
: constant Boolean := False;
1072 Success
: constant Boolean := True;
1074 Index_Typ
: constant Entity_Id
:= Etype
(Index
);
1075 Index_Typ_Low
: constant Node_Id
:= Type_Low_Bound
(Index_Typ
);
1076 Index_Typ_High
: constant Node_Id
:= Type_High_Bound
(Index_Typ
);
1077 -- The type of the index corresponding to the array sub-aggregate
1078 -- along with its low and upper bounds
1080 Index_Base
: constant Entity_Id
:= Base_Type
(Index_Typ
);
1081 Index_Base_Low
: constant Node_Id
:= Type_Low_Bound
(Index_Base
);
1082 Index_Base_High
: constant Node_Id
:= Type_High_Bound
(Index_Base
);
1083 -- ditto for the base type
1085 function Add
(Val
: Uint
; To
: Node_Id
) return Node_Id
;
1086 -- Creates a new expression node where Val is added to expression To.
1087 -- Tries to constant fold whenever possible. To must be an already
1088 -- analyzed expression.
1090 procedure Check_Bound
(BH
: Node_Id
; AH
: in out Node_Id
);
1091 -- Checks that AH (the upper bound of an array aggregate) is <= BH
1092 -- (the upper bound of the index base type). If the check fails a
1093 -- warning is emitted, the Raises_Constraint_Error Flag of N is set,
1094 -- and AH is replaced with a duplicate of BH.
1096 procedure Check_Bounds
(L
, H
: Node_Id
; AL
, AH
: Node_Id
);
1097 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1098 -- warning if not and sets the Raises_Constraint_Error Flag in N.
1100 procedure Check_Length
(L
, H
: Node_Id
; Len
: Uint
);
1101 -- Checks that range L .. H contains at least Len elements. Emits a
1102 -- warning if not and sets the Raises_Constraint_Error Flag in N.
1104 function Dynamic_Or_Null_Range
(L
, H
: Node_Id
) return Boolean;
1105 -- Returns True if range L .. H is dynamic or null.
1107 procedure Get
(Value
: out Uint
; From
: Node_Id
; OK
: out Boolean);
1108 -- Given expression node From, this routine sets OK to False if it
1109 -- cannot statically evaluate From. Otherwise it stores this static
1110 -- value into Value.
1112 function Resolve_Aggr_Expr
1114 Single_Elmt
: Boolean)
1116 -- Resolves aggregate expression Expr. Returs False if resolution
1117 -- fails. If Single_Elmt is set to False, the expression Expr may be
1118 -- used to initialize several array aggregate elements (this can
1119 -- happen for discrete choices such as "L .. H => Expr" or the others
1120 -- choice). In this event we do not resolve Expr unless expansion is
1121 -- disabled. To know why, see the DELAYED COMPONENT RESOLUTION
1128 function Add
(Val
: Uint
; To
: Node_Id
) return Node_Id
is
1134 if Raises_Constraint_Error
(To
) then
1138 -- First test if we can do constant folding
1140 if Compile_Time_Known_Value
(To
)
1141 or else Nkind
(To
) = N_Integer_Literal
1143 Expr_Pos
:= Make_Integer_Literal
(Loc
, Expr_Value
(To
) + Val
);
1144 Set_Is_Static_Expression
(Expr_Pos
);
1145 Set_Etype
(Expr_Pos
, Etype
(To
));
1146 Set_Analyzed
(Expr_Pos
, Analyzed
(To
));
1148 if not Is_Enumeration_Type
(Index_Typ
) then
1151 -- If we are dealing with enumeration return
1152 -- Index_Typ'Val (Expr_Pos)
1156 Make_Attribute_Reference
1158 Prefix
=> New_Reference_To
(Index_Typ
, Loc
),
1159 Attribute_Name
=> Name_Val
,
1160 Expressions
=> New_List
(Expr_Pos
));
1166 -- If we are here no constant folding possible
1168 if not Is_Enumeration_Type
(Index_Base
) then
1171 Left_Opnd
=> Duplicate_Subexpr
(To
),
1172 Right_Opnd
=> Make_Integer_Literal
(Loc
, Val
));
1174 -- If we are dealing with enumeration return
1175 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1179 Make_Attribute_Reference
1181 Prefix
=> New_Reference_To
(Index_Typ
, Loc
),
1182 Attribute_Name
=> Name_Pos
,
1183 Expressions
=> New_List
(Duplicate_Subexpr
(To
)));
1187 Left_Opnd
=> To_Pos
,
1188 Right_Opnd
=> Make_Integer_Literal
(Loc
, Val
));
1191 Make_Attribute_Reference
1193 Prefix
=> New_Reference_To
(Index_Typ
, Loc
),
1194 Attribute_Name
=> Name_Val
,
1195 Expressions
=> New_List
(Expr_Pos
));
1205 procedure Check_Bound
(BH
: Node_Id
; AH
: in out Node_Id
) is
1213 Get
(Value
=> Val_BH
, From
=> BH
, OK
=> OK_BH
);
1214 Get
(Value
=> Val_AH
, From
=> AH
, OK
=> OK_AH
);
1216 if OK_BH
and then OK_AH
and then Val_BH
< Val_AH
then
1217 Set_Raises_Constraint_Error
(N
);
1218 Error_Msg_N
("upper bound out of range?", AH
);
1219 Error_Msg_N
("Constraint_Error will be raised at run-time?", AH
);
1221 -- You need to set AH to BH or else in the case of enumerations
1222 -- indices we will not be able to resolve the aggregate bounds.
1224 AH
:= Duplicate_Subexpr
(BH
);
1232 procedure Check_Bounds
(L
, H
: Node_Id
; AL
, AH
: Node_Id
) is
1244 if Raises_Constraint_Error
(N
)
1245 or else Dynamic_Or_Null_Range
(AL
, AH
)
1250 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1251 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1253 Get
(Value
=> Val_AL
, From
=> AL
, OK
=> OK_AL
);
1254 Get
(Value
=> Val_AH
, From
=> AH
, OK
=> OK_AH
);
1256 if OK_L
and then Val_L
> Val_AL
then
1257 Set_Raises_Constraint_Error
(N
);
1258 Error_Msg_N
("lower bound of aggregate out of range?", N
);
1259 Error_Msg_N
("\Constraint_Error will be raised at run-time?", N
);
1262 if OK_H
and then Val_H
< Val_AH
then
1263 Set_Raises_Constraint_Error
(N
);
1264 Error_Msg_N
("upper bound of aggregate out of range?", N
);
1265 Error_Msg_N
("\Constraint_Error will be raised at run-time?", N
);
1273 procedure Check_Length
(L
, H
: Node_Id
; Len
: Uint
) is
1283 if Raises_Constraint_Error
(N
) then
1287 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1288 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1290 if not OK_L
or else not OK_H
then
1294 -- If null range length is zero
1296 if Val_L
> Val_H
then
1297 Range_Len
:= Uint_0
;
1299 Range_Len
:= Val_H
- Val_L
+ 1;
1302 if Range_Len
< Len
then
1303 Set_Raises_Constraint_Error
(N
);
1304 Error_Msg_N
("Too many elements?", N
);
1305 Error_Msg_N
("Constraint_Error will be raised at run-time?", N
);
1309 ---------------------------
1310 -- Dynamic_Or_Null_Range --
1311 ---------------------------
1313 function Dynamic_Or_Null_Range
(L
, H
: Node_Id
) return Boolean is
1321 Get
(Value
=> Val_L
, From
=> L
, OK
=> OK_L
);
1322 Get
(Value
=> Val_H
, From
=> H
, OK
=> OK_H
);
1324 return not OK_L
or else not OK_H
1325 or else not Is_OK_Static_Expression
(L
)
1326 or else not Is_OK_Static_Expression
(H
)
1327 or else Val_L
> Val_H
;
1328 end Dynamic_Or_Null_Range
;
1334 procedure Get
(Value
: out Uint
; From
: Node_Id
; OK
: out Boolean) is
1338 if Compile_Time_Known_Value
(From
) then
1339 Value
:= Expr_Value
(From
);
1341 -- If expression From is something like Some_Type'Val (10) then
1344 elsif Nkind
(From
) = N_Attribute_Reference
1345 and then Attribute_Name
(From
) = Name_Val
1346 and then Compile_Time_Known_Value
(First
(Expressions
(From
)))
1348 Value
:= Expr_Value
(First
(Expressions
(From
)));
1356 -----------------------
1357 -- Resolve_Aggr_Expr --
1358 -----------------------
1360 function Resolve_Aggr_Expr
1362 Single_Elmt
: Boolean)
1365 Nxt_Ind
: constant Node_Id
:= Next_Index
(Index
);
1366 Nxt_Ind_Constr
: constant Node_Id
:= Next_Index
(Index_Constr
);
1367 -- Index is the current index corresponding to the expresion.
1369 Resolution_OK
: Boolean := True;
1370 -- Set to False if resolution of the expression failed.
1373 -- If the array type against which we are resolving the aggregate
1374 -- has several dimensions, the expressions nested inside the
1375 -- aggregate must be further aggregates (or strings).
1377 if Present
(Nxt_Ind
) then
1378 if Nkind
(Expr
) /= N_Aggregate
then
1380 -- A string literal can appear where a one-dimensional array
1381 -- of characters is expected. If the literal looks like an
1382 -- operator, it is still an operator symbol, which will be
1383 -- transformed into a string when analyzed.
1385 if Is_Character_Type
(Component_Typ
)
1386 and then No
(Next_Index
(Nxt_Ind
))
1387 and then (Nkind
(Expr
) = N_String_Literal
1388 or else Nkind
(Expr
) = N_Operator_Symbol
)
1390 -- A string literal used in a multidimensional array
1391 -- aggregate in place of the final one-dimensional
1392 -- aggregate must not be enclosed in parentheses.
1394 if Paren_Count
(Expr
) /= 0 then
1395 Error_Msg_N
("No parenthesis allowed here", Expr
);
1398 Make_String_Into_Aggregate
(Expr
);
1401 Error_Msg_N
("nested array aggregate expected", Expr
);
1406 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1407 -- Required to check the null-exclusion attribute (if present).
1408 -- This value may be overridden later on.
1410 Set_Etype
(Expr
, Etype
(N
));
1412 Resolution_OK
:= Resolve_Array_Aggregate
1413 (Expr
, Nxt_Ind
, Nxt_Ind_Constr
, Component_Typ
, Others_Allowed
);
1415 -- Do not resolve the expressions of discrete or others choices
1416 -- unless the expression covers a single component, or the expander
1420 or else not Expander_Active
1421 or else In_Default_Expression
1423 Analyze_And_Resolve
(Expr
, Component_Typ
);
1424 Check_Non_Static_Context
(Expr
);
1425 Aggregate_Constraint_Checks
(Expr
, Component_Typ
);
1426 Check_Unset_Reference
(Expr
);
1429 if Raises_Constraint_Error
(Expr
)
1430 and then Nkind
(Parent
(Expr
)) /= N_Component_Association
1432 Set_Raises_Constraint_Error
(N
);
1435 return Resolution_OK
;
1436 end Resolve_Aggr_Expr
;
1438 -- Variables local to Resolve_Array_Aggregate
1444 Who_Cares
: Node_Id
;
1446 Aggr_Low
: Node_Id
:= Empty
;
1447 Aggr_High
: Node_Id
:= Empty
;
1448 -- The actual low and high bounds of this sub-aggegate
1450 Choices_Low
: Node_Id
:= Empty
;
1451 Choices_High
: Node_Id
:= Empty
;
1452 -- The lowest and highest discrete choices values for a named aggregate
1454 Nb_Elements
: Uint
:= Uint_0
;
1455 -- The number of elements in a positional aggegate
1457 Others_Present
: Boolean := False;
1459 Nb_Choices
: Nat
:= 0;
1460 -- Contains the overall number of named choices in this sub-aggregate
1462 Nb_Discrete_Choices
: Nat
:= 0;
1463 -- The overall number of discrete choices (not counting others choice)
1465 Case_Table_Size
: Nat
;
1466 -- Contains the size of the case table needed to sort aggregate choices
1468 -- Start of processing for Resolve_Array_Aggregate
1471 -- STEP 1: make sure the aggregate is correctly formatted
1473 if Present
(Component_Associations
(N
)) then
1474 Assoc
:= First
(Component_Associations
(N
));
1475 while Present
(Assoc
) loop
1476 Choice
:= First
(Choices
(Assoc
));
1477 while Present
(Choice
) loop
1478 if Nkind
(Choice
) = N_Others_Choice
then
1479 Others_Present
:= True;
1481 if Choice
/= First
(Choices
(Assoc
))
1482 or else Present
(Next
(Choice
))
1485 ("OTHERS must appear alone in a choice list", Choice
);
1489 if Present
(Next
(Assoc
)) then
1491 ("OTHERS must appear last in an aggregate", Choice
);
1495 if Ada_Version
= Ada_83
1496 and then Assoc
/= First
(Component_Associations
(N
))
1497 and then (Nkind
(Parent
(N
)) = N_Assignment_Statement
1499 Nkind
(Parent
(N
)) = N_Object_Declaration
)
1502 ("(Ada 83) illegal context for OTHERS choice", N
);
1506 Nb_Choices
:= Nb_Choices
+ 1;
1514 -- At this point we know that the others choice, if present, is by
1515 -- itself and appears last in the aggregate. Check if we have mixed
1516 -- positional and discrete associations (other than the others choice).
1518 if Present
(Expressions
(N
))
1519 and then (Nb_Choices
> 1
1520 or else (Nb_Choices
= 1 and then not Others_Present
))
1523 ("named association cannot follow positional association",
1524 First
(Choices
(First
(Component_Associations
(N
)))));
1528 -- Test for the validity of an others choice if present
1530 if Others_Present
and then not Others_Allowed
then
1532 ("OTHERS choice not allowed here",
1533 First
(Choices
(First
(Component_Associations
(N
)))));
1537 -- Protect against cascaded errors
1539 if Etype
(Index_Typ
) = Any_Type
then
1543 -- STEP 2: Process named components
1545 if No
(Expressions
(N
)) then
1547 if Others_Present
then
1548 Case_Table_Size
:= Nb_Choices
- 1;
1550 Case_Table_Size
:= Nb_Choices
;
1556 -- Denote the lowest and highest values in an aggregate choice
1560 -- High end of one range and Low end of the next. Should be
1561 -- contiguous if there is no hole in the list of values.
1563 Missing_Values
: Boolean;
1564 -- Set True if missing index values
1566 S_Low
: Node_Id
:= Empty
;
1567 S_High
: Node_Id
:= Empty
;
1568 -- if a choice in an aggregate is a subtype indication these
1569 -- denote the lowest and highest values of the subtype
1571 Table
: Case_Table_Type
(1 .. Case_Table_Size
);
1572 -- Used to sort all the different choice values
1574 Single_Choice
: Boolean;
1575 -- Set to true every time there is a single discrete choice in a
1576 -- discrete association
1578 Prev_Nb_Discrete_Choices
: Nat
;
1579 -- Used to keep track of the number of discrete choices
1580 -- in the current association.
1583 -- STEP 2 (A): Check discrete choices validity.
1585 Assoc
:= First
(Component_Associations
(N
));
1586 while Present
(Assoc
) loop
1588 Prev_Nb_Discrete_Choices
:= Nb_Discrete_Choices
;
1589 Choice
:= First
(Choices
(Assoc
));
1593 if Nkind
(Choice
) = N_Others_Choice
then
1594 Single_Choice
:= False;
1597 -- Test for subtype mark without constraint
1599 elsif Is_Entity_Name
(Choice
) and then
1600 Is_Type
(Entity
(Choice
))
1602 if Base_Type
(Entity
(Choice
)) /= Index_Base
then
1604 ("invalid subtype mark in aggregate choice",
1609 elsif Nkind
(Choice
) = N_Subtype_Indication
then
1610 Resolve_Discrete_Subtype_Indication
(Choice
, Index_Base
);
1612 -- Does the subtype indication evaluation raise CE ?
1614 Get_Index_Bounds
(Subtype_Mark
(Choice
), S_Low
, S_High
);
1615 Get_Index_Bounds
(Choice
, Low
, High
);
1616 Check_Bounds
(S_Low
, S_High
, Low
, High
);
1618 else -- Choice is a range or an expression
1619 Resolve
(Choice
, Index_Base
);
1620 Check_Unset_Reference
(Choice
);
1621 Check_Non_Static_Context
(Choice
);
1623 -- Do not range check a choice. This check is redundant
1624 -- since this test is already performed when we check
1625 -- that the bounds of the array aggregate are within
1628 Set_Do_Range_Check
(Choice
, False);
1631 -- If we could not resolve the discrete choice stop here
1633 if Etype
(Choice
) = Any_Type
then
1636 -- If the discrete choice raises CE get its original bounds.
1638 elsif Nkind
(Choice
) = N_Raise_Constraint_Error
then
1639 Set_Raises_Constraint_Error
(N
);
1640 Get_Index_Bounds
(Original_Node
(Choice
), Low
, High
);
1642 -- Otherwise get its bounds as usual
1645 Get_Index_Bounds
(Choice
, Low
, High
);
1648 if (Dynamic_Or_Null_Range
(Low
, High
)
1649 or else (Nkind
(Choice
) = N_Subtype_Indication
1651 Dynamic_Or_Null_Range
(S_Low
, S_High
)))
1652 and then Nb_Choices
/= 1
1655 ("dynamic or empty choice in aggregate " &
1656 "must be the only choice", Choice
);
1660 Nb_Discrete_Choices
:= Nb_Discrete_Choices
+ 1;
1661 Table
(Nb_Discrete_Choices
).Choice_Lo
:= Low
;
1662 Table
(Nb_Discrete_Choices
).Choice_Hi
:= High
;
1667 -- Check if we have a single discrete choice and whether
1668 -- this discrete choice specifies a single value.
1671 (Nb_Discrete_Choices
= Prev_Nb_Discrete_Choices
+ 1)
1672 and then (Low
= High
);
1678 -- Ada 2005 (AI-231)
1680 if Ada_Version
>= Ada_05
then
1681 Check_Can_Never_Be_Null
(Etype
(N
), Expression
(Assoc
));
1684 -- Ada 2005 (AI-287): In case of default initialized component
1685 -- we delay the resolution to the expansion phase
1687 if Box_Present
(Assoc
) then
1689 -- Ada 2005 (AI-287): In case of default initialization
1690 -- of a component the expander will generate calls to
1691 -- the corresponding initialization subprogram.
1695 elsif not Resolve_Aggr_Expr
(Expression
(Assoc
),
1696 Single_Elmt
=> Single_Choice
)
1704 -- If aggregate contains more than one choice then these must be
1705 -- static. Sort them and check that they are contiguous
1707 if Nb_Discrete_Choices
> 1 then
1708 Sort_Case_Table
(Table
);
1709 Missing_Values
:= False;
1711 Outer
: for J
in 1 .. Nb_Discrete_Choices
- 1 loop
1712 if Expr_Value
(Table
(J
).Choice_Hi
) >=
1713 Expr_Value
(Table
(J
+ 1).Choice_Lo
)
1716 ("duplicate choice values in array aggregate",
1717 Table
(J
).Choice_Hi
);
1720 elsif not Others_Present
then
1722 Hi_Val
:= Expr_Value
(Table
(J
).Choice_Hi
);
1723 Lo_Val
:= Expr_Value
(Table
(J
+ 1).Choice_Lo
);
1725 -- If missing values, output error messages
1727 if Lo_Val
- Hi_Val
> 1 then
1729 -- Header message if not first missing value
1731 if not Missing_Values
then
1733 ("missing index value(s) in array aggregate", N
);
1734 Missing_Values
:= True;
1737 -- Output values of missing indexes
1739 Lo_Val
:= Lo_Val
- 1;
1740 Hi_Val
:= Hi_Val
+ 1;
1742 -- Enumeration type case
1744 if Is_Enumeration_Type
(Index_Typ
) then
1747 (Get_Enum_Lit_From_Pos
1748 (Index_Typ
, Hi_Val
, Loc
));
1750 if Lo_Val
= Hi_Val
then
1751 Error_Msg_N
("\ %", N
);
1755 (Get_Enum_Lit_From_Pos
1756 (Index_Typ
, Lo_Val
, Loc
));
1757 Error_Msg_N
("\ % .. %", N
);
1760 -- Integer types case
1763 Error_Msg_Uint_1
:= Hi_Val
;
1765 if Lo_Val
= Hi_Val
then
1766 Error_Msg_N
("\ ^", N
);
1768 Error_Msg_Uint_2
:= Lo_Val
;
1769 Error_Msg_N
("\ ^ .. ^", N
);
1776 if Missing_Values
then
1777 Set_Etype
(N
, Any_Composite
);
1782 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
1784 if Nb_Discrete_Choices
> 0 then
1785 Choices_Low
:= Table
(1).Choice_Lo
;
1786 Choices_High
:= Table
(Nb_Discrete_Choices
).Choice_Hi
;
1789 if Others_Present
then
1790 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
1793 Aggr_Low
:= Choices_Low
;
1794 Aggr_High
:= Choices_High
;
1798 -- STEP 3: Process positional components
1801 -- STEP 3 (A): Process positional elements
1803 Expr
:= First
(Expressions
(N
));
1804 Nb_Elements
:= Uint_0
;
1805 while Present
(Expr
) loop
1806 Nb_Elements
:= Nb_Elements
+ 1;
1808 -- Ada 2005 (AI-231)
1810 if Ada_Version
>= Ada_05
then
1811 Check_Can_Never_Be_Null
(Etype
(N
), Expr
);
1814 if not Resolve_Aggr_Expr
(Expr
, Single_Elmt
=> True) then
1821 if Others_Present
then
1822 Assoc
:= Last
(Component_Associations
(N
));
1824 -- Ada 2005 (AI-231)
1826 if Ada_Version
>= Ada_05
then
1827 Check_Can_Never_Be_Null
1828 (Etype
(N
), Expression
(Assoc
));
1831 -- Ada 2005 (AI-287): In case of default initialized component
1832 -- we delay the resolution to the expansion phase.
1834 if Box_Present
(Assoc
) then
1836 -- Ada 2005 (AI-287): In case of default initialization
1837 -- of a component the expander will generate calls to
1838 -- the corresponding initialization subprogram.
1842 elsif not Resolve_Aggr_Expr
(Expression
(Assoc
),
1843 Single_Elmt
=> False)
1849 -- STEP 3 (B): Compute the aggregate bounds
1851 if Others_Present
then
1852 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Aggr_High
);
1855 if Others_Allowed
then
1856 Get_Index_Bounds
(Index_Constr
, Aggr_Low
, Who_Cares
);
1858 Aggr_Low
:= Index_Typ_Low
;
1861 Aggr_High
:= Add
(Nb_Elements
- 1, To
=> Aggr_Low
);
1862 Check_Bound
(Index_Base_High
, Aggr_High
);
1866 -- STEP 4: Perform static aggregate checks and save the bounds
1870 Check_Bounds
(Index_Typ_Low
, Index_Typ_High
, Aggr_Low
, Aggr_High
);
1871 Check_Bounds
(Index_Base_Low
, Index_Base_High
, Aggr_Low
, Aggr_High
);
1875 if Others_Present
and then Nb_Discrete_Choices
> 0 then
1876 Check_Bounds
(Aggr_Low
, Aggr_High
, Choices_Low
, Choices_High
);
1877 Check_Bounds
(Index_Typ_Low
, Index_Typ_High
,
1878 Choices_Low
, Choices_High
);
1879 Check_Bounds
(Index_Base_Low
, Index_Base_High
,
1880 Choices_Low
, Choices_High
);
1884 elsif Others_Present
and then Nb_Elements
> 0 then
1885 Check_Length
(Aggr_Low
, Aggr_High
, Nb_Elements
);
1886 Check_Length
(Index_Typ_Low
, Index_Typ_High
, Nb_Elements
);
1887 Check_Length
(Index_Base_Low
, Index_Base_High
, Nb_Elements
);
1891 if Raises_Constraint_Error
(Aggr_Low
)
1892 or else Raises_Constraint_Error
(Aggr_High
)
1894 Set_Raises_Constraint_Error
(N
);
1897 Aggr_Low
:= Duplicate_Subexpr
(Aggr_Low
);
1899 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
1900 -- since the addition node returned by Add is not yet analyzed. Attach
1901 -- to tree and analyze first. Reset analyzed flag to insure it will get
1902 -- analyzed when it is a literal bound whose type must be properly
1905 if Others_Present
or else Nb_Discrete_Choices
> 0 then
1906 Aggr_High
:= Duplicate_Subexpr
(Aggr_High
);
1908 if Etype
(Aggr_High
) = Universal_Integer
then
1909 Set_Analyzed
(Aggr_High
, False);
1913 Set_Aggregate_Bounds
1914 (N
, Make_Range
(Loc
, Low_Bound
=> Aggr_Low
, High_Bound
=> Aggr_High
));
1916 -- The bounds may contain expressions that must be inserted upwards.
1917 -- Attach them fully to the tree. After analysis, remove side effects
1918 -- from upper bound, if still needed.
1920 Set_Parent
(Aggregate_Bounds
(N
), N
);
1921 Analyze_And_Resolve
(Aggregate_Bounds
(N
), Index_Typ
);
1922 Check_Unset_Reference
(Aggregate_Bounds
(N
));
1924 if not Others_Present
and then Nb_Discrete_Choices
= 0 then
1925 Set_High_Bound
(Aggregate_Bounds
(N
),
1926 Duplicate_Subexpr
(High_Bound
(Aggregate_Bounds
(N
))));
1930 end Resolve_Array_Aggregate
;
1932 ---------------------------------
1933 -- Resolve_Extension_Aggregate --
1934 ---------------------------------
1936 -- There are two cases to consider:
1938 -- a) If the ancestor part is a type mark, the components needed are
1939 -- the difference between the components of the expected type and the
1940 -- components of the given type mark.
1942 -- b) If the ancestor part is an expression, it must be unambiguous,
1943 -- and once we have its type we can also compute the needed components
1944 -- as in the previous case. In both cases, if the ancestor type is not
1945 -- the immediate ancestor, we have to build this ancestor recursively.
1947 -- In both cases discriminants of the ancestor type do not play a
1948 -- role in the resolution of the needed components, because inherited
1949 -- discriminants cannot be used in a type extension. As a result we can
1950 -- compute independently the list of components of the ancestor type and
1951 -- of the expected type.
1953 procedure Resolve_Extension_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
1954 A
: constant Node_Id
:= Ancestor_Part
(N
);
1959 function Valid_Ancestor_Type
return Boolean;
1960 -- Verify that the type of the ancestor part is a non-private ancestor
1961 -- of the expected type.
1963 -------------------------
1964 -- Valid_Ancestor_Type --
1965 -------------------------
1967 function Valid_Ancestor_Type
return Boolean is
1968 Imm_Type
: Entity_Id
;
1971 Imm_Type
:= Base_Type
(Typ
);
1972 while Is_Derived_Type
(Imm_Type
)
1973 and then Etype
(Imm_Type
) /= Base_Type
(A_Type
)
1975 Imm_Type
:= Etype
(Base_Type
(Imm_Type
));
1978 if Etype
(Imm_Type
) /= Base_Type
(A_Type
) then
1979 Error_Msg_NE
("expect ancestor type of &", A
, Typ
);
1984 end Valid_Ancestor_Type
;
1986 -- Start of processing for Resolve_Extension_Aggregate
1991 if not Is_Tagged_Type
(Typ
) then
1992 Error_Msg_N
("type of extension aggregate must be tagged", N
);
1995 elsif Is_Limited_Type
(Typ
) then
1997 -- Ada 2005 (AI-287): Limited aggregates are allowed
1999 if Ada_Version
< Ada_05
then
2000 Error_Msg_N
("aggregate type cannot be limited", N
);
2001 Explain_Limited_Type
(Typ
, N
);
2005 elsif Is_Class_Wide_Type
(Typ
) then
2006 Error_Msg_N
("aggregate cannot be of a class-wide type", N
);
2010 if Is_Entity_Name
(A
)
2011 and then Is_Type
(Entity
(A
))
2013 A_Type
:= Get_Full_View
(Entity
(A
));
2015 if Valid_Ancestor_Type
then
2016 Set_Entity
(A
, A_Type
);
2017 Set_Etype
(A
, A_Type
);
2019 Validate_Ancestor_Part
(N
);
2020 Resolve_Record_Aggregate
(N
, Typ
);
2023 elsif Nkind
(A
) /= N_Aggregate
then
2024 if Is_Overloaded
(A
) then
2026 Get_First_Interp
(A
, I
, It
);
2028 while Present
(It
.Typ
) loop
2030 if Is_Tagged_Type
(It
.Typ
)
2031 and then not Is_Limited_Type
(It
.Typ
)
2033 if A_Type
/= Any_Type
then
2034 Error_Msg_N
("cannot resolve expression", A
);
2041 Get_Next_Interp
(I
, It
);
2044 if A_Type
= Any_Type
then
2046 ("ancestor part must be non-limited tagged type", A
);
2051 A_Type
:= Etype
(A
);
2054 if Valid_Ancestor_Type
then
2055 Resolve
(A
, A_Type
);
2056 Check_Unset_Reference
(A
);
2057 Check_Non_Static_Context
(A
);
2059 if Is_Class_Wide_Type
(Etype
(A
))
2060 and then Nkind
(Original_Node
(A
)) = N_Function_Call
2062 -- If the ancestor part is a dispatching call, it appears
2063 -- statically to be a legal ancestor, but it yields any
2064 -- member of the class, and it is not possible to determine
2065 -- whether it is an ancestor of the extension aggregate (much
2066 -- less which ancestor). It is not possible to determine the
2067 -- required components of the extension part.
2069 -- This check implements AI-306, which in fact was motivated
2070 -- by an ACT query to the ARG after this test was added.
2072 Error_Msg_N
("ancestor part must be statically tagged", A
);
2074 Resolve_Record_Aggregate
(N
, Typ
);
2079 Error_Msg_N
(" No unique type for this aggregate", A
);
2081 end Resolve_Extension_Aggregate
;
2083 ------------------------------
2084 -- Resolve_Record_Aggregate --
2085 ------------------------------
2087 procedure Resolve_Record_Aggregate
(N
: Node_Id
; Typ
: Entity_Id
) is
2088 New_Assoc_List
: constant List_Id
:= New_List
;
2089 New_Assoc
: Node_Id
;
2090 -- New_Assoc_List is the newly built list of N_Component_Association
2091 -- nodes. New_Assoc is one such N_Component_Association node in it.
2092 -- Please note that while Assoc and New_Assoc contain the same
2093 -- kind of nodes, they are used to iterate over two different
2094 -- N_Component_Association lists.
2096 Others_Etype
: Entity_Id
:= Empty
;
2097 -- This variable is used to save the Etype of the last record component
2098 -- that takes its value from the others choice. Its purpose is:
2100 -- (a) make sure the others choice is useful
2102 -- (b) make sure the type of all the components whose value is
2103 -- subsumed by the others choice are the same.
2105 -- This variable is updated as a side effect of function Get_Value
2107 Mbox_Present
: Boolean := False;
2108 Others_Mbox
: Boolean := False;
2109 -- Ada 2005 (AI-287): Variables used in case of default initialization
2110 -- to provide a functionality similar to Others_Etype. Mbox_Present
2111 -- indicates that the component takes its default initialization;
2112 -- Others_Mbox indicates that at least one component takes its default
2113 -- initialization. Similar to Others_Etype, they are also updated as a
2114 -- side effect of function Get_Value.
2116 procedure Add_Association
2117 (Component
: Entity_Id
;
2119 Box_Present
: Boolean := False);
2120 -- Builds a new N_Component_Association node which associates
2121 -- Component to expression Expr and adds it to the new association
2122 -- list New_Assoc_List being built.
2124 function Discr_Present
(Discr
: Entity_Id
) return Boolean;
2125 -- If aggregate N is a regular aggregate this routine will return True.
2126 -- Otherwise, if N is an extension aggregate, Discr is a discriminant
2127 -- whose value may already have been specified by N's ancestor part,
2128 -- this routine checks whether this is indeed the case and if so
2129 -- returns False, signaling that no value for Discr should appear in the
2130 -- N's aggregate part. Also, in this case, the routine appends to
2131 -- New_Assoc_List Discr the discriminant value specified in the ancestor
2137 Consider_Others_Choice
: Boolean := False)
2139 -- Given a record component stored in parameter Compon, the
2140 -- following function returns its value as it appears in the list
2141 -- From, which is a list of N_Component_Association nodes. If no
2142 -- component association has a choice for the searched component,
2143 -- the value provided by the others choice is returned, if there
2144 -- is one and Consider_Others_Choice is set to true. Otherwise
2145 -- Empty is returned. If there is more than one component association
2146 -- giving a value for the searched record component, an error message
2147 -- is emitted and the first found value is returned.
2149 -- If Consider_Others_Choice is set and the returned expression comes
2150 -- from the others choice, then Others_Etype is set as a side effect.
2151 -- An error message is emitted if the components taking their value
2152 -- from the others choice do not have same type.
2154 procedure Resolve_Aggr_Expr
(Expr
: Node_Id
; Component
: Node_Id
);
2155 -- Analyzes and resolves expression Expr against the Etype of the
2156 -- Component. This routine also applies all appropriate checks to Expr.
2157 -- It finally saves a Expr in the newly created association list that
2158 -- will be attached to the final record aggregate. Note that if the
2159 -- Parent pointer of Expr is not set then Expr was produced with a
2160 -- New_Copy_Tree or some such.
2162 ---------------------
2163 -- Add_Association --
2164 ---------------------
2166 procedure Add_Association
2167 (Component
: Entity_Id
;
2169 Box_Present
: Boolean := False)
2171 Choice_List
: constant List_Id
:= New_List
;
2172 New_Assoc
: Node_Id
;
2175 Append
(New_Occurrence_Of
(Component
, Sloc
(Expr
)), Choice_List
);
2177 Make_Component_Association
(Sloc
(Expr
),
2178 Choices
=> Choice_List
,
2180 Box_Present
=> Box_Present
);
2181 Append
(New_Assoc
, New_Assoc_List
);
2182 end Add_Association
;
2188 function Discr_Present
(Discr
: Entity_Id
) return Boolean is
2189 Regular_Aggr
: constant Boolean := Nkind
(N
) /= N_Extension_Aggregate
;
2194 Discr_Expr
: Node_Id
;
2196 Ancestor_Typ
: Entity_Id
;
2197 Orig_Discr
: Entity_Id
;
2199 D_Val
: Elmt_Id
:= No_Elmt
; -- stop junk warning
2201 Ancestor_Is_Subtyp
: Boolean;
2204 if Regular_Aggr
then
2208 Ancestor
:= Ancestor_Part
(N
);
2209 Ancestor_Typ
:= Etype
(Ancestor
);
2210 Loc
:= Sloc
(Ancestor
);
2212 Ancestor_Is_Subtyp
:=
2213 Is_Entity_Name
(Ancestor
) and then Is_Type
(Entity
(Ancestor
));
2215 -- If the ancestor part has no discriminants clearly N's aggregate
2216 -- part must provide a value for Discr.
2218 if not Has_Discriminants
(Ancestor_Typ
) then
2221 -- If the ancestor part is an unconstrained subtype mark then the
2222 -- Discr must be present in N's aggregate part.
2224 elsif Ancestor_Is_Subtyp
2225 and then not Is_Constrained
(Entity
(Ancestor
))
2230 -- Now look to see if Discr was specified in the ancestor part.
2232 Orig_Discr
:= Original_Record_Component
(Discr
);
2233 D
:= First_Discriminant
(Ancestor_Typ
);
2235 if Ancestor_Is_Subtyp
then
2236 D_Val
:= First_Elmt
(Discriminant_Constraint
(Entity
(Ancestor
)));
2239 while Present
(D
) loop
2240 -- If Ancestor has already specified Disc value than
2241 -- insert its value in the final aggregate.
2243 if Original_Record_Component
(D
) = Orig_Discr
then
2244 if Ancestor_Is_Subtyp
then
2245 Discr_Expr
:= New_Copy_Tree
(Node
(D_Val
));
2248 Make_Selected_Component
(Loc
,
2249 Prefix
=> Duplicate_Subexpr
(Ancestor
),
2250 Selector_Name
=> New_Occurrence_Of
(Discr
, Loc
));
2253 Resolve_Aggr_Expr
(Discr_Expr
, Discr
);
2257 Next_Discriminant
(D
);
2259 if Ancestor_Is_Subtyp
then
2274 Consider_Others_Choice
: Boolean := False)
2278 Expr
: Node_Id
:= Empty
;
2279 Selector_Name
: Node_Id
;
2281 procedure Check_Non_Limited_Type
;
2282 -- Relax check to allow the default initialization of limited types.
2285 -- C : Lim := (..., others => <>);
2288 ----------------------------
2289 -- Check_Non_Limited_Type --
2290 ----------------------------
2292 procedure Check_Non_Limited_Type
is
2294 if Is_Limited_Type
(Etype
(Compon
))
2295 and then Comes_From_Source
(Compon
)
2296 and then not In_Instance_Body
2298 -- Ada 2005 (AI-287): Limited aggregates are allowed
2300 if Ada_Version
>= Ada_05
2301 and then Present
(Expression
(Assoc
))
2302 and then Nkind
(Expression
(Assoc
)) = N_Aggregate
2307 ("initialization not allowed for limited types", N
);
2308 Explain_Limited_Type
(Etype
(Compon
), Compon
);
2312 end Check_Non_Limited_Type
;
2314 -- Start of processing for Get_Value
2317 Mbox_Present
:= False;
2319 if Present
(From
) then
2320 Assoc
:= First
(From
);
2325 while Present
(Assoc
) loop
2326 Selector_Name
:= First
(Choices
(Assoc
));
2327 while Present
(Selector_Name
) loop
2328 if Nkind
(Selector_Name
) = N_Others_Choice
then
2329 if Consider_Others_Choice
and then No
(Expr
) then
2331 -- We need to duplicate the expression for each
2332 -- successive component covered by the others choice.
2333 -- This is redundant if the others_choice covers only
2334 -- one component (small optimization possible???), but
2335 -- indispensable otherwise, because each one must be
2336 -- expanded individually to preserve side-effects.
2338 -- Ada 2005 (AI-287): In case of default initialization
2339 -- of components, we duplicate the corresponding default
2340 -- expression (from the record type declaration).
2342 if Box_Present
(Assoc
) then
2343 Others_Mbox
:= True;
2344 Mbox_Present
:= True;
2346 if Expander_Active
then
2347 return New_Copy_Tree
(Expression
(Parent
(Compon
)));
2349 return Expression
(Parent
(Compon
));
2353 Check_Non_Limited_Type
;
2355 if Present
(Others_Etype
) and then
2356 Base_Type
(Others_Etype
) /= Base_Type
(Etype
2359 Error_Msg_N
("components in OTHERS choice must " &
2360 "have same type", Selector_Name
);
2363 Others_Etype
:= Etype
(Compon
);
2365 if Expander_Active
then
2366 return New_Copy_Tree
(Expression
(Assoc
));
2368 return Expression
(Assoc
);
2373 elsif Chars
(Compon
) = Chars
(Selector_Name
) then
2376 -- Ada 2005 (AI-231)
2378 if Ada_Version
>= Ada_05
2379 and then Nkind
(Expression
(Assoc
)) = N_Null
2381 Check_Can_Never_Be_Null
(Compon
, Expression
(Assoc
));
2384 -- We need to duplicate the expression when several
2385 -- components are grouped together with a "|" choice.
2386 -- For instance "filed1 | filed2 => Expr"
2388 -- Ada 2005 (AI-287)
2390 if Box_Present
(Assoc
) then
2391 Mbox_Present
:= True;
2393 -- Duplicate the default expression of the component
2394 -- from the record type declaration
2396 if Present
(Next
(Selector_Name
)) then
2398 New_Copy_Tree
(Expression
(Parent
(Compon
)));
2400 Expr
:= Expression
(Parent
(Compon
));
2404 Check_Non_Limited_Type
;
2406 if Present
(Next
(Selector_Name
)) then
2407 Expr
:= New_Copy_Tree
(Expression
(Assoc
));
2409 Expr
:= Expression
(Assoc
);
2413 Generate_Reference
(Compon
, Selector_Name
);
2417 ("more than one value supplied for &",
2418 Selector_Name
, Compon
);
2423 Next
(Selector_Name
);
2432 -----------------------
2433 -- Resolve_Aggr_Expr --
2434 -----------------------
2436 procedure Resolve_Aggr_Expr
(Expr
: Node_Id
; Component
: Node_Id
) is
2437 New_C
: Entity_Id
:= Component
;
2438 Expr_Type
: Entity_Id
:= Empty
;
2440 function Has_Expansion_Delayed
(Expr
: Node_Id
) return Boolean;
2441 -- If the expression is an aggregate (possibly qualified) then its
2442 -- expansion is delayed until the enclosing aggregate is expanded
2443 -- into assignments. In that case, do not generate checks on the
2444 -- expression, because they will be generated later, and will other-
2445 -- wise force a copy (to remove side-effects) that would leave a
2446 -- dynamic-sized aggregate in the code, something that gigi cannot
2450 -- Set to True if the resolved Expr node needs to be relocated
2451 -- when attached to the newly created association list. This node
2452 -- need not be relocated if its parent pointer is not set.
2453 -- In fact in this case Expr is the output of a New_Copy_Tree call.
2454 -- if Relocate is True then we have analyzed the expression node
2455 -- in the original aggregate and hence it needs to be relocated
2456 -- when moved over the new association list.
2458 function Has_Expansion_Delayed
(Expr
: Node_Id
) return Boolean is
2459 Kind
: constant Node_Kind
:= Nkind
(Expr
);
2462 return ((Kind
= N_Aggregate
2463 or else Kind
= N_Extension_Aggregate
)
2464 and then Present
(Etype
(Expr
))
2465 and then Is_Record_Type
(Etype
(Expr
))
2466 and then Expansion_Delayed
(Expr
))
2468 or else (Kind
= N_Qualified_Expression
2469 and then Has_Expansion_Delayed
(Expression
(Expr
)));
2470 end Has_Expansion_Delayed
;
2472 -- Start of processing for Resolve_Aggr_Expr
2475 -- If the type of the component is elementary or the type of the
2476 -- aggregate does not contain discriminants, use the type of the
2477 -- component to resolve Expr.
2479 if Is_Elementary_Type
(Etype
(Component
))
2480 or else not Has_Discriminants
(Etype
(N
))
2482 Expr_Type
:= Etype
(Component
);
2484 -- Otherwise we have to pick up the new type of the component from
2485 -- the new costrained subtype of the aggregate. In fact components
2486 -- which are of a composite type might be constrained by a
2487 -- discriminant, and we want to resolve Expr against the subtype were
2488 -- all discriminant occurrences are replaced with their actual value.
2491 New_C
:= First_Component
(Etype
(N
));
2492 while Present
(New_C
) loop
2493 if Chars
(New_C
) = Chars
(Component
) then
2494 Expr_Type
:= Etype
(New_C
);
2498 Next_Component
(New_C
);
2501 pragma Assert
(Present
(Expr_Type
));
2503 -- For each range in an array type where a discriminant has been
2504 -- replaced with the constraint, check that this range is within
2505 -- the range of the base type. This checks is done in the
2506 -- init proc for regular objects, but has to be done here for
2507 -- aggregates since no init proc is called for them.
2509 if Is_Array_Type
(Expr_Type
) then
2511 Index
: Node_Id
:= First_Index
(Expr_Type
);
2512 -- Range of the current constrained index in the array.
2514 Orig_Index
: Node_Id
:= First_Index
(Etype
(Component
));
2515 -- Range corresponding to the range Index above in the
2516 -- original unconstrained record type. The bounds of this
2517 -- range may be governed by discriminants.
2519 Unconstr_Index
: Node_Id
:= First_Index
(Etype
(Expr_Type
));
2520 -- Range corresponding to the range Index above for the
2521 -- unconstrained array type. This range is needed to apply
2525 while Present
(Index
) loop
2526 if Depends_On_Discriminant
(Orig_Index
) then
2527 Apply_Range_Check
(Index
, Etype
(Unconstr_Index
));
2531 Next_Index
(Orig_Index
);
2532 Next_Index
(Unconstr_Index
);
2538 -- If the Parent pointer of Expr is not set, Expr is an expression
2539 -- duplicated by New_Tree_Copy (this happens for record aggregates
2540 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
2541 -- Such a duplicated expression must be attached to the tree
2542 -- before analysis and resolution to enforce the rule that a tree
2543 -- fragment should never be analyzed or resolved unless it is
2544 -- attached to the current compilation unit.
2546 if No
(Parent
(Expr
)) then
2547 Set_Parent
(Expr
, N
);
2553 Analyze_And_Resolve
(Expr
, Expr_Type
);
2554 Check_Non_Static_Context
(Expr
);
2555 Check_Unset_Reference
(Expr
);
2557 if not Has_Expansion_Delayed
(Expr
) then
2558 Aggregate_Constraint_Checks
(Expr
, Expr_Type
);
2561 if Raises_Constraint_Error
(Expr
) then
2562 Set_Raises_Constraint_Error
(N
);
2566 Add_Association
(New_C
, Relocate_Node
(Expr
));
2568 Add_Association
(New_C
, Expr
);
2570 end Resolve_Aggr_Expr
;
2572 -- Resolve_Record_Aggregate local variables
2575 -- N_Component_Association node belonging to the input aggregate N
2578 Positional_Expr
: Node_Id
;
2579 Component
: Entity_Id
;
2580 Component_Elmt
: Elmt_Id
;
2582 Components
: constant Elist_Id
:= New_Elmt_List
;
2583 -- Components is the list of the record components whose value must
2584 -- be provided in the aggregate. This list does include discriminants.
2586 -- Start of processing for Resolve_Record_Aggregate
2589 -- We may end up calling Duplicate_Subexpr on expressions that are
2590 -- attached to New_Assoc_List. For this reason we need to attach it
2591 -- to the tree by setting its parent pointer to N. This parent point
2592 -- will change in STEP 8 below.
2594 Set_Parent
(New_Assoc_List
, N
);
2596 -- STEP 1: abstract type and null record verification
2598 if Is_Abstract
(Typ
) then
2599 Error_Msg_N
("type of aggregate cannot be abstract", N
);
2602 if No
(First_Entity
(Typ
)) and then Null_Record_Present
(N
) then
2606 elsif Present
(First_Entity
(Typ
))
2607 and then Null_Record_Present
(N
)
2608 and then not Is_Tagged_Type
(Typ
)
2610 Error_Msg_N
("record aggregate cannot be null", N
);
2613 elsif No
(First_Entity
(Typ
)) then
2614 Error_Msg_N
("record aggregate must be null", N
);
2618 -- STEP 2: Verify aggregate structure
2621 Selector_Name
: Node_Id
;
2622 Bad_Aggregate
: Boolean := False;
2625 if Present
(Component_Associations
(N
)) then
2626 Assoc
:= First
(Component_Associations
(N
));
2631 while Present
(Assoc
) loop
2632 Selector_Name
:= First
(Choices
(Assoc
));
2633 while Present
(Selector_Name
) loop
2634 if Nkind
(Selector_Name
) = N_Identifier
then
2637 elsif Nkind
(Selector_Name
) = N_Others_Choice
then
2638 if Selector_Name
/= First
(Choices
(Assoc
))
2639 or else Present
(Next
(Selector_Name
))
2641 Error_Msg_N
("OTHERS must appear alone in a choice list",
2645 elsif Present
(Next
(Assoc
)) then
2646 Error_Msg_N
("OTHERS must appear last in an aggregate",
2653 ("selector name should be identifier or OTHERS",
2655 Bad_Aggregate
:= True;
2658 Next
(Selector_Name
);
2664 if Bad_Aggregate
then
2669 -- STEP 3: Find discriminant Values
2672 Discrim
: Entity_Id
;
2673 Missing_Discriminants
: Boolean := False;
2676 if Present
(Expressions
(N
)) then
2677 Positional_Expr
:= First
(Expressions
(N
));
2679 Positional_Expr
:= Empty
;
2682 if Has_Discriminants
(Typ
) then
2683 Discrim
:= First_Discriminant
(Typ
);
2688 -- First find the discriminant values in the positional components
2690 while Present
(Discrim
) and then Present
(Positional_Expr
) loop
2691 if Discr_Present
(Discrim
) then
2692 Resolve_Aggr_Expr
(Positional_Expr
, Discrim
);
2694 -- Ada 2005 (AI-231)
2696 if Ada_Version
>= Ada_05
then
2697 Check_Can_Never_Be_Null
(Discrim
, Positional_Expr
);
2700 Next
(Positional_Expr
);
2703 if Present
(Get_Value
(Discrim
, Component_Associations
(N
))) then
2705 ("more than one value supplied for discriminant&",
2709 Next_Discriminant
(Discrim
);
2712 -- Find remaining discriminant values, if any, among named components
2714 while Present
(Discrim
) loop
2715 Expr
:= Get_Value
(Discrim
, Component_Associations
(N
), True);
2717 if not Discr_Present
(Discrim
) then
2718 if Present
(Expr
) then
2720 ("more than one value supplied for discriminant&",
2724 elsif No
(Expr
) then
2726 ("no value supplied for discriminant &", N
, Discrim
);
2727 Missing_Discriminants
:= True;
2730 Resolve_Aggr_Expr
(Expr
, Discrim
);
2733 Next_Discriminant
(Discrim
);
2736 if Missing_Discriminants
then
2740 -- At this point and until the beginning of STEP 6, New_Assoc_List
2741 -- contains only the discriminants and their values.
2745 -- STEP 4: Set the Etype of the record aggregate
2747 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
2748 -- routine should really be exported in sem_util or some such and used
2749 -- in sem_ch3 and here rather than have a copy of the code which is a
2750 -- maintenance nightmare.
2752 -- ??? Performace WARNING. The current implementation creates a new
2753 -- itype for all aggregates whose base type is discriminated.
2754 -- This means that for record aggregates nested inside an array
2755 -- aggregate we will create a new itype for each record aggregate
2756 -- if the array cmponent type has discriminants. For large aggregates
2757 -- this may be a problem. What should be done in this case is
2758 -- to reuse itypes as much as possible.
2760 if Has_Discriminants
(Typ
) then
2761 Build_Constrained_Itype
: declare
2762 Loc
: constant Source_Ptr
:= Sloc
(N
);
2764 Subtyp_Decl
: Node_Id
;
2767 C
: constant List_Id
:= New_List
;
2770 New_Assoc
:= First
(New_Assoc_List
);
2771 while Present
(New_Assoc
) loop
2772 Append
(Duplicate_Subexpr
(Expression
(New_Assoc
)), To
=> C
);
2777 Make_Subtype_Indication
(Loc
,
2778 Subtype_Mark
=> New_Occurrence_Of
(Base_Type
(Typ
), Loc
),
2779 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
2781 Def_Id
:= Create_Itype
(Ekind
(Typ
), N
);
2784 Make_Subtype_Declaration
(Loc
,
2785 Defining_Identifier
=> Def_Id
,
2786 Subtype_Indication
=> Indic
);
2787 Set_Parent
(Subtyp_Decl
, Parent
(N
));
2789 -- Itypes must be analyzed with checks off (see itypes.ads).
2791 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
2793 Set_Etype
(N
, Def_Id
);
2794 Check_Static_Discriminated_Subtype
2795 (Def_Id
, Expression
(First
(New_Assoc_List
)));
2796 end Build_Constrained_Itype
;
2802 -- STEP 5: Get remaining components according to discriminant values
2805 Record_Def
: Node_Id
;
2806 Parent_Typ
: Entity_Id
;
2807 Root_Typ
: Entity_Id
;
2808 Parent_Typ_List
: Elist_Id
;
2809 Parent_Elmt
: Elmt_Id
;
2810 Errors_Found
: Boolean := False;
2814 if Is_Derived_Type
(Typ
) and then Is_Tagged_Type
(Typ
) then
2815 Parent_Typ_List
:= New_Elmt_List
;
2817 -- If this is an extension aggregate, the component list must
2818 -- include all components that are not in the given ancestor
2819 -- type. Otherwise, the component list must include components
2820 -- of all ancestors, starting with the root.
2822 if Nkind
(N
) = N_Extension_Aggregate
then
2823 Root_Typ
:= Base_Type
(Etype
(Ancestor_Part
(N
)));
2825 Root_Typ
:= Root_Type
(Typ
);
2827 if Nkind
(Parent
(Base_Type
(Root_Typ
)))
2828 = N_Private_Type_Declaration
2831 ("type of aggregate has private ancestor&!",
2833 Error_Msg_N
("must use extension aggregate!", N
);
2837 Dnode
:= Declaration_Node
(Base_Type
(Root_Typ
));
2839 -- If we don't get a full declaration, then we have some
2840 -- error which will get signalled later so skip this part.
2841 -- Otherwise, gather components of root that apply to the
2842 -- aggregate type. We use the base type in case there is an
2843 -- applicable stored constraint that renames the discriminants
2846 if Nkind
(Dnode
) = N_Full_Type_Declaration
then
2847 Record_Def
:= Type_Definition
(Dnode
);
2848 Gather_Components
(Base_Type
(Typ
),
2849 Component_List
(Record_Def
),
2850 Governed_By
=> New_Assoc_List
,
2852 Report_Errors
=> Errors_Found
);
2856 Parent_Typ
:= Base_Type
(Typ
);
2857 while Parent_Typ
/= Root_Typ
loop
2859 Prepend_Elmt
(Parent_Typ
, To
=> Parent_Typ_List
);
2860 Parent_Typ
:= Etype
(Parent_Typ
);
2862 if Nkind
(Parent
(Base_Type
(Parent_Typ
))) =
2863 N_Private_Type_Declaration
2864 or else Nkind
(Parent
(Base_Type
(Parent_Typ
))) =
2865 N_Private_Extension_Declaration
2867 if Nkind
(N
) /= N_Extension_Aggregate
then
2869 ("type of aggregate has private ancestor&!",
2871 Error_Msg_N
("must use extension aggregate!", N
);
2874 elsif Parent_Typ
/= Root_Typ
then
2876 ("ancestor part of aggregate must be private type&",
2877 Ancestor_Part
(N
), Parent_Typ
);
2883 -- Now collect components from all other ancestors.
2885 Parent_Elmt
:= First_Elmt
(Parent_Typ_List
);
2886 while Present
(Parent_Elmt
) loop
2887 Parent_Typ
:= Node
(Parent_Elmt
);
2888 Record_Def
:= Type_Definition
(Parent
(Base_Type
(Parent_Typ
)));
2889 Gather_Components
(Empty
,
2890 Component_List
(Record_Extension_Part
(Record_Def
)),
2891 Governed_By
=> New_Assoc_List
,
2893 Report_Errors
=> Errors_Found
);
2895 Next_Elmt
(Parent_Elmt
);
2899 Record_Def
:= Type_Definition
(Parent
(Base_Type
(Typ
)));
2901 if Null_Present
(Record_Def
) then
2904 Gather_Components
(Base_Type
(Typ
),
2905 Component_List
(Record_Def
),
2906 Governed_By
=> New_Assoc_List
,
2908 Report_Errors
=> Errors_Found
);
2912 if Errors_Found
then
2917 -- STEP 6: Find component Values
2920 Component_Elmt
:= First_Elmt
(Components
);
2922 -- First scan the remaining positional associations in the aggregate.
2923 -- Remember that at this point Positional_Expr contains the current
2924 -- positional association if any is left after looking for discriminant
2925 -- values in step 3.
2927 while Present
(Positional_Expr
) and then Present
(Component_Elmt
) loop
2928 Component
:= Node
(Component_Elmt
);
2929 Resolve_Aggr_Expr
(Positional_Expr
, Component
);
2931 -- Ada 2005 (AI-231)
2933 if Ada_Version
>= Ada_05
then
2934 Check_Can_Never_Be_Null
(Component
, Positional_Expr
);
2937 if Present
(Get_Value
(Component
, Component_Associations
(N
))) then
2939 ("more than one value supplied for Component &", N
, Component
);
2942 Next
(Positional_Expr
);
2943 Next_Elmt
(Component_Elmt
);
2946 if Present
(Positional_Expr
) then
2948 ("too many components for record aggregate", Positional_Expr
);
2951 -- Now scan for the named arguments of the aggregate
2953 while Present
(Component_Elmt
) loop
2954 Component
:= Node
(Component_Elmt
);
2955 Expr
:= Get_Value
(Component
, Component_Associations
(N
), True);
2957 -- Ada 2005 (AI-287): Default initialized limited component are
2958 -- passed to the expander, that will generate calls to the
2959 -- corresponding IP.
2961 if Mbox_Present
and then Is_Limited_Type
(Etype
(Component
)) then
2963 (Component
=> Component
,
2965 Box_Present
=> True);
2967 -- Ada 2005 (AI-287): No value supplied for component
2969 elsif Mbox_Present
and No
(Expr
) then
2972 elsif No
(Expr
) then
2973 Error_Msg_NE
("no value supplied for component &!", N
, Component
);
2976 Resolve_Aggr_Expr
(Expr
, Component
);
2979 Next_Elmt
(Component_Elmt
);
2982 -- STEP 7: check for invalid components + check type in choice list
2989 -- Type of first component in choice list
2992 if Present
(Component_Associations
(N
)) then
2993 Assoc
:= First
(Component_Associations
(N
));
2998 Verification
: while Present
(Assoc
) loop
2999 Selectr
:= First
(Choices
(Assoc
));
3002 if Nkind
(Selectr
) = N_Others_Choice
then
3004 -- Ada 2005 (AI-287): others choice may have expression or mbox
3006 if No
(Others_Etype
)
3007 and then not Others_Mbox
3010 ("OTHERS must represent at least one component", Selectr
);
3016 while Present
(Selectr
) loop
3017 New_Assoc
:= First
(New_Assoc_List
);
3018 while Present
(New_Assoc
) loop
3019 Component
:= First
(Choices
(New_Assoc
));
3020 exit when Chars
(Selectr
) = Chars
(Component
);
3024 -- If no association, this is not a legal component of
3025 -- of the type in question, except if this is an internal
3026 -- component supplied by a previous expansion.
3028 if No
(New_Assoc
) then
3029 if Box_Present
(Parent
(Selectr
)) then
3032 elsif Chars
(Selectr
) /= Name_uTag
3033 and then Chars
(Selectr
) /= Name_uParent
3034 and then Chars
(Selectr
) /= Name_uController
3036 if not Has_Discriminants
(Typ
) then
3037 Error_Msg_Node_2
:= Typ
;
3039 ("& is not a component of}",
3043 ("& is not a component of the aggregate subtype",
3047 Check_Misspelled_Component
(Components
, Selectr
);
3050 elsif No
(Typech
) then
3051 Typech
:= Base_Type
(Etype
(Component
));
3053 elsif Typech
/= Base_Type
(Etype
(Component
)) then
3054 if not Box_Present
(Parent
(Selectr
)) then
3056 ("components in choice list must have same type",
3065 end loop Verification
;
3068 -- STEP 8: replace the original aggregate
3071 New_Aggregate
: constant Node_Id
:= New_Copy
(N
);
3074 Set_Expressions
(New_Aggregate
, No_List
);
3075 Set_Etype
(New_Aggregate
, Etype
(N
));
3076 Set_Component_Associations
(New_Aggregate
, New_Assoc_List
);
3078 Rewrite
(N
, New_Aggregate
);
3080 end Resolve_Record_Aggregate
;
3082 -----------------------------
3083 -- Check_Can_Never_Be_Null --
3084 -----------------------------
3086 procedure Check_Can_Never_Be_Null
(N
: Node_Id
; Expr
: Node_Id
) is
3088 pragma Assert
(Ada_Version
>= Ada_05
);
3090 if Nkind
(Expr
) = N_Null
3091 and then Can_Never_Be_Null
(N
)
3093 Apply_Compile_Time_Constraint_Error
3095 Msg
=> "(Ada 2005) NULL not allowed in"
3096 & " null-excluding components?",
3097 Reason
=> CE_Null_Not_Allowed
,
3100 end Check_Can_Never_Be_Null
;
3102 ---------------------
3103 -- Sort_Case_Table --
3104 ---------------------
3106 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
) is
3107 L
: constant Int
:= Case_Table
'First;
3108 U
: constant Int
:= Case_Table
'Last;
3117 T
:= Case_Table
(K
+ 1);
3121 and then Expr_Value
(Case_Table
(J
- 1).Choice_Lo
) >
3122 Expr_Value
(T
.Choice_Lo
)
3124 Case_Table
(J
) := Case_Table
(J
- 1);
3128 Case_Table
(J
) := T
;
3131 end Sort_Case_Table
;