* arm.c (FL_WBUF): Define.
[official-gcc.git] / gcc / ada / s-taprop-hpux-dce.adb
blobc5a13d03951a90d93e4a95db40869ba314000139
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNARL; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNARL was developed by the GNARL team at Florida State University. --
30 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- This is a HP-UX DCE threads (HPUX 10) version of this package
36 -- This package contains all the GNULL primitives that interface directly
37 -- with the underlying OS.
39 pragma Polling (Off);
40 -- Turn off polling, we do not want ATC polling to take place during
41 -- tasking operations. It causes infinite loops and other problems.
43 with System.Tasking.Debug;
44 -- used for Known_Tasks
46 with Interfaces.C;
47 -- used for int
48 -- size_t
50 with System.Interrupt_Management;
51 -- used for Keep_Unmasked
52 -- Abort_Task_Interrupt
53 -- Interrupt_ID
55 with System.Interrupt_Management.Operations;
56 -- used for Set_Interrupt_Mask
57 -- All_Tasks_Mask
58 pragma Elaborate_All (System.Interrupt_Management.Operations);
60 with System.Parameters;
61 -- used for Size_Type
63 with System.Task_Primitives.Interrupt_Operations;
64 -- used for Get_Interrupt_ID
66 with System.Tasking;
67 -- used for Ada_Task_Control_Block
68 -- Task_Id
70 with System.Soft_Links;
71 -- used for Defer/Undefer_Abort
73 -- Note that we do not use System.Tasking.Initialization directly since
74 -- this is a higher level package that we shouldn't depend on. For example
75 -- when using the restricted run time, it is replaced by
76 -- System.Tasking.Restricted.Stages.
78 with System.OS_Primitives;
79 -- used for Delay_Modes
81 with Unchecked_Conversion;
82 with Unchecked_Deallocation;
84 package body System.Task_Primitives.Operations is
86 use System.Tasking.Debug;
87 use System.Tasking;
88 use Interfaces.C;
89 use System.OS_Interface;
90 use System.Parameters;
91 use System.OS_Primitives;
93 package PIO renames System.Task_Primitives.Interrupt_Operations;
94 package SSL renames System.Soft_Links;
96 ----------------
97 -- Local Data --
98 ----------------
100 -- The followings are logically constants, but need to be initialized
101 -- at run time.
103 Single_RTS_Lock : aliased RTS_Lock;
104 -- This is a lock to allow only one thread of control in the RTS at
105 -- a time; it is used to execute in mutual exclusion from all other tasks.
106 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
108 ATCB_Key : aliased pthread_key_t;
109 -- Key used to find the Ada Task_Id associated with a thread
111 Environment_Task_Id : Task_Id;
112 -- A variable to hold Task_Id for the environment task
114 Unblocked_Signal_Mask : aliased sigset_t;
115 -- The set of signals that should unblocked in all tasks
117 Time_Slice_Val : Integer;
118 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
120 Dispatching_Policy : Character;
121 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
123 -- Note: the reason that Locking_Policy is not needed is that this
124 -- is not implemented for DCE threads. The HPUX 10 port is at this
125 -- stage considered dead, and no further work is planned on it.
127 FIFO_Within_Priorities : constant Boolean := Dispatching_Policy = 'F';
128 -- Indicates whether FIFO_Within_Priorities is set
130 Foreign_Task_Elaborated : aliased Boolean := True;
131 -- Used to identified fake tasks (i.e., non-Ada Threads)
133 --------------------
134 -- Local Packages --
135 --------------------
137 package Specific is
139 procedure Initialize (Environment_Task : Task_Id);
140 pragma Inline (Initialize);
141 -- Initialize various data needed by this package
143 function Is_Valid_Task return Boolean;
144 pragma Inline (Is_Valid_Task);
145 -- Does the executing thread have a TCB?
147 procedure Set (Self_Id : Task_Id);
148 pragma Inline (Set);
149 -- Set the self id for the current task
151 function Self return Task_Id;
152 pragma Inline (Self);
153 -- Return a pointer to the Ada Task Control Block of the calling task
155 end Specific;
157 package body Specific is separate;
158 -- The body of this package is target specific
160 ---------------------------------
161 -- Support for foreign threads --
162 ---------------------------------
164 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
165 -- Allocate and Initialize a new ATCB for the current Thread
167 function Register_Foreign_Thread
168 (Thread : Thread_Id) return Task_Id is separate;
170 -----------------------
171 -- Local Subprograms --
172 -----------------------
174 procedure Abort_Handler (Sig : Signal);
176 function To_Address is new Unchecked_Conversion (Task_Id, System.Address);
178 -------------------
179 -- Abort_Handler --
180 -------------------
182 procedure Abort_Handler (Sig : Signal) is
183 pragma Unreferenced (Sig);
185 Self_Id : constant Task_Id := Self;
186 Result : Interfaces.C.int;
187 Old_Set : aliased sigset_t;
189 begin
190 if Self_Id.Deferral_Level = 0
191 and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level and then
192 not Self_Id.Aborting
193 then
194 Self_Id.Aborting := True;
196 -- Make sure signals used for RTS internal purpose are unmasked
198 Result := pthread_sigmask (SIG_UNBLOCK,
199 Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access);
200 pragma Assert (Result = 0);
202 raise Standard'Abort_Signal;
203 end if;
204 end Abort_Handler;
206 -----------------
207 -- Stack_Guard --
208 -----------------
210 -- The underlying thread system sets a guard page at the
211 -- bottom of a thread stack, so nothing is needed.
212 -- ??? Check the comment above
214 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
215 pragma Unreferenced (T, On);
216 begin
217 null;
218 end Stack_Guard;
220 -------------------
221 -- Get_Thread_Id --
222 -------------------
224 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
225 begin
226 return T.Common.LL.Thread;
227 end Get_Thread_Id;
229 ----------
230 -- Self --
231 ----------
233 function Self return Task_Id renames Specific.Self;
235 ---------------------
236 -- Initialize_Lock --
237 ---------------------
239 -- Note: mutexes and cond_variables needed per-task basis are
240 -- initialized in Initialize_TCB and the Storage_Error is
241 -- handled. Other mutexes (such as RTS_Lock, Memory_Lock...)
242 -- used in RTS is initialized before any status change of RTS.
243 -- Therefore rasing Storage_Error in the following routines
244 -- should be able to be handled safely.
246 procedure Initialize_Lock
247 (Prio : System.Any_Priority;
248 L : access Lock)
250 Attributes : aliased pthread_mutexattr_t;
251 Result : Interfaces.C.int;
253 begin
254 Result := pthread_mutexattr_init (Attributes'Access);
255 pragma Assert (Result = 0 or else Result = ENOMEM);
257 if Result = ENOMEM then
258 raise Storage_Error;
259 end if;
261 L.Priority := Prio;
263 Result := pthread_mutex_init (L.L'Access, Attributes'Access);
264 pragma Assert (Result = 0 or else Result = ENOMEM);
266 if Result = ENOMEM then
267 raise Storage_Error;
268 end if;
270 Result := pthread_mutexattr_destroy (Attributes'Access);
271 pragma Assert (Result = 0);
272 end Initialize_Lock;
274 procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
275 pragma Unreferenced (Level);
277 Attributes : aliased pthread_mutexattr_t;
278 Result : Interfaces.C.int;
280 begin
281 Result := pthread_mutexattr_init (Attributes'Access);
282 pragma Assert (Result = 0 or else Result = ENOMEM);
284 if Result = ENOMEM then
285 raise Storage_Error;
286 end if;
288 Result := pthread_mutex_init (L, Attributes'Access);
290 pragma Assert (Result = 0 or else Result = ENOMEM);
292 if Result = ENOMEM then
293 raise Storage_Error;
294 end if;
296 Result := pthread_mutexattr_destroy (Attributes'Access);
297 pragma Assert (Result = 0);
298 end Initialize_Lock;
300 -------------------
301 -- Finalize_Lock --
302 -------------------
304 procedure Finalize_Lock (L : access Lock) is
305 Result : Interfaces.C.int;
306 begin
307 Result := pthread_mutex_destroy (L.L'Access);
308 pragma Assert (Result = 0);
309 end Finalize_Lock;
311 procedure Finalize_Lock (L : access RTS_Lock) is
312 Result : Interfaces.C.int;
313 begin
314 Result := pthread_mutex_destroy (L);
315 pragma Assert (Result = 0);
316 end Finalize_Lock;
318 ----------------
319 -- Write_Lock --
320 ----------------
322 procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
323 Result : Interfaces.C.int;
325 begin
326 L.Owner_Priority := Get_Priority (Self);
328 if L.Priority < L.Owner_Priority then
329 Ceiling_Violation := True;
330 return;
331 end if;
333 Result := pthread_mutex_lock (L.L'Access);
334 pragma Assert (Result = 0);
335 Ceiling_Violation := False;
336 end Write_Lock;
338 procedure Write_Lock
339 (L : access RTS_Lock; Global_Lock : Boolean := False)
341 Result : Interfaces.C.int;
342 begin
343 if not Single_Lock or else Global_Lock then
344 Result := pthread_mutex_lock (L);
345 pragma Assert (Result = 0);
346 end if;
347 end Write_Lock;
349 procedure Write_Lock (T : Task_Id) is
350 Result : Interfaces.C.int;
351 begin
352 if not Single_Lock then
353 Result := pthread_mutex_lock (T.Common.LL.L'Access);
354 pragma Assert (Result = 0);
355 end if;
356 end Write_Lock;
358 ---------------
359 -- Read_Lock --
360 ---------------
362 procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
363 begin
364 Write_Lock (L, Ceiling_Violation);
365 end Read_Lock;
367 ------------
368 -- Unlock --
369 ------------
371 procedure Unlock (L : access Lock) is
372 Result : Interfaces.C.int;
373 begin
374 Result := pthread_mutex_unlock (L.L'Access);
375 pragma Assert (Result = 0);
376 end Unlock;
378 procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
379 Result : Interfaces.C.int;
380 begin
381 if not Single_Lock or else Global_Lock then
382 Result := pthread_mutex_unlock (L);
383 pragma Assert (Result = 0);
384 end if;
385 end Unlock;
387 procedure Unlock (T : Task_Id) is
388 Result : Interfaces.C.int;
389 begin
390 if not Single_Lock then
391 Result := pthread_mutex_unlock (T.Common.LL.L'Access);
392 pragma Assert (Result = 0);
393 end if;
394 end Unlock;
396 -----------
397 -- Sleep --
398 -----------
400 procedure Sleep
401 (Self_ID : Task_Id;
402 Reason : System.Tasking.Task_States)
404 pragma Unreferenced (Reason);
406 Result : Interfaces.C.int;
407 begin
408 if Single_Lock then
409 Result := pthread_cond_wait
410 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
411 else
412 Result := pthread_cond_wait
413 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
414 end if;
416 -- EINTR is not considered a failure
418 pragma Assert (Result = 0 or else Result = EINTR);
419 end Sleep;
421 -----------------
422 -- Timed_Sleep --
423 -----------------
425 procedure Timed_Sleep
426 (Self_ID : Task_Id;
427 Time : Duration;
428 Mode : ST.Delay_Modes;
429 Reason : System.Tasking.Task_States;
430 Timedout : out Boolean;
431 Yielded : out Boolean)
433 pragma Unreferenced (Reason);
435 Check_Time : constant Duration := Monotonic_Clock;
436 Abs_Time : Duration;
437 Request : aliased timespec;
438 Result : Interfaces.C.int;
440 begin
441 Timedout := True;
442 Yielded := False;
444 if Mode = Relative then
445 Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
446 else
447 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
448 end if;
450 if Abs_Time > Check_Time then
451 Request := To_Timespec (Abs_Time);
453 loop
454 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
455 or else Self_ID.Pending_Priority_Change;
457 if Single_Lock then
458 Result := pthread_cond_timedwait
459 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access,
460 Request'Access);
462 else
463 Result := pthread_cond_timedwait
464 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access,
465 Request'Access);
466 end if;
468 exit when Abs_Time <= Monotonic_Clock;
470 if Result = 0 or Result = EINTR then
472 -- Somebody may have called Wakeup for us
474 Timedout := False;
475 exit;
476 end if;
478 pragma Assert (Result = ETIMEDOUT);
479 end loop;
480 end if;
481 end Timed_Sleep;
483 -----------------
484 -- Timed_Delay --
485 -----------------
487 procedure Timed_Delay
488 (Self_ID : Task_Id;
489 Time : Duration;
490 Mode : ST.Delay_Modes)
492 Check_Time : constant Duration := Monotonic_Clock;
493 Abs_Time : Duration;
494 Request : aliased timespec;
495 Result : Interfaces.C.int;
497 begin
498 -- The little window between deferring abort and locking Self_ID is the
499 -- only reason to check for pending abort and priority change below!
501 SSL.Abort_Defer.all;
503 if Single_Lock then
504 Lock_RTS;
505 end if;
507 Write_Lock (Self_ID);
509 if Mode = Relative then
510 Abs_Time := Time + Check_Time;
511 else
512 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
513 end if;
515 if Abs_Time > Check_Time then
516 Request := To_Timespec (Abs_Time);
517 Self_ID.Common.State := Delay_Sleep;
519 loop
520 if Self_ID.Pending_Priority_Change then
521 Self_ID.Pending_Priority_Change := False;
522 Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
523 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
524 end if;
526 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
528 if Single_Lock then
529 Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
530 Single_RTS_Lock'Access, Request'Access);
531 else
532 Result := pthread_cond_timedwait (Self_ID.Common.LL.CV'Access,
533 Self_ID.Common.LL.L'Access, Request'Access);
534 end if;
536 exit when Abs_Time <= Monotonic_Clock;
538 pragma Assert (Result = 0 or else
539 Result = ETIMEDOUT or else
540 Result = EINTR);
541 end loop;
543 Self_ID.Common.State := Runnable;
544 end if;
546 Unlock (Self_ID);
548 if Single_Lock then
549 Unlock_RTS;
550 end if;
552 Result := sched_yield;
553 SSL.Abort_Undefer.all;
554 end Timed_Delay;
556 ---------------------
557 -- Monotonic_Clock --
558 ---------------------
560 function Monotonic_Clock return Duration is
561 TS : aliased timespec;
562 Result : Interfaces.C.int;
563 begin
564 Result := Clock_Gettime (CLOCK_REALTIME, TS'Unchecked_Access);
565 pragma Assert (Result = 0);
566 return To_Duration (TS);
567 end Monotonic_Clock;
569 -------------------
570 -- RT_Resolution --
571 -------------------
573 function RT_Resolution return Duration is
574 begin
575 return 10#1.0#E-6;
576 end RT_Resolution;
578 ------------
579 -- Wakeup --
580 ------------
582 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
583 pragma Unreferenced (Reason);
585 Result : Interfaces.C.int;
587 begin
588 Result := pthread_cond_signal (T.Common.LL.CV'Access);
589 pragma Assert (Result = 0);
590 end Wakeup;
592 -----------
593 -- Yield --
594 -----------
596 procedure Yield (Do_Yield : Boolean := True) is
597 Result : Interfaces.C.int;
598 pragma Unreferenced (Result);
599 begin
600 if Do_Yield then
601 Result := sched_yield;
602 end if;
603 end Yield;
605 ------------------
606 -- Set_Priority --
607 ------------------
609 type Prio_Array_Type is array (System.Any_Priority) of Integer;
610 pragma Atomic_Components (Prio_Array_Type);
612 Prio_Array : Prio_Array_Type;
613 -- Global array containing the id of the currently running task for
614 -- each priority.
616 -- Note: we assume that we are on a single processor with run-til-blocked
617 -- scheduling.
619 procedure Set_Priority
620 (T : Task_Id;
621 Prio : System.Any_Priority;
622 Loss_Of_Inheritance : Boolean := False)
624 Result : Interfaces.C.int;
625 Array_Item : Integer;
626 Param : aliased struct_sched_param;
628 begin
629 Param.sched_priority := Interfaces.C.int (Underlying_Priorities (Prio));
631 if Time_Slice_Val > 0 then
632 Result := pthread_setschedparam
633 (T.Common.LL.Thread, SCHED_RR, Param'Access);
635 elsif FIFO_Within_Priorities or else Time_Slice_Val = 0 then
636 Result := pthread_setschedparam
637 (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
639 else
640 Result := pthread_setschedparam
641 (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
642 end if;
644 pragma Assert (Result = 0);
646 if FIFO_Within_Priorities then
648 -- Annex D requirement [RM D.2.2 par. 9]:
649 -- If the task drops its priority due to the loss of inherited
650 -- priority, it is added at the head of the ready queue for its
651 -- new active priority.
653 if Loss_Of_Inheritance
654 and then Prio < T.Common.Current_Priority
655 then
656 Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
657 Prio_Array (T.Common.Base_Priority) := Array_Item;
659 loop
660 -- Let some processes a chance to arrive
662 Yield;
664 -- Then wait for our turn to proceed
666 exit when Array_Item = Prio_Array (T.Common.Base_Priority)
667 or else Prio_Array (T.Common.Base_Priority) = 1;
668 end loop;
670 Prio_Array (T.Common.Base_Priority) :=
671 Prio_Array (T.Common.Base_Priority) - 1;
672 end if;
673 end if;
675 T.Common.Current_Priority := Prio;
676 end Set_Priority;
678 ------------------
679 -- Get_Priority --
680 ------------------
682 function Get_Priority (T : Task_Id) return System.Any_Priority is
683 begin
684 return T.Common.Current_Priority;
685 end Get_Priority;
687 ----------------
688 -- Enter_Task --
689 ----------------
691 procedure Enter_Task (Self_ID : Task_Id) is
692 begin
693 Self_ID.Common.LL.Thread := pthread_self;
694 Specific.Set (Self_ID);
696 Lock_RTS;
698 for J in Known_Tasks'Range loop
699 if Known_Tasks (J) = null then
700 Known_Tasks (J) := Self_ID;
701 Self_ID.Known_Tasks_Index := J;
702 exit;
703 end if;
704 end loop;
706 Unlock_RTS;
707 end Enter_Task;
709 --------------
710 -- New_ATCB --
711 --------------
713 function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
714 begin
715 return new Ada_Task_Control_Block (Entry_Num);
716 end New_ATCB;
718 -------------------
719 -- Is_Valid_Task --
720 -------------------
722 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
724 -----------------------------
725 -- Register_Foreign_Thread --
726 -----------------------------
728 function Register_Foreign_Thread return Task_Id is
729 begin
730 if Is_Valid_Task then
731 return Self;
732 else
733 return Register_Foreign_Thread (pthread_self);
734 end if;
735 end Register_Foreign_Thread;
737 --------------------
738 -- Initialize_TCB --
739 --------------------
741 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
742 Mutex_Attr : aliased pthread_mutexattr_t;
743 Result : Interfaces.C.int;
744 Cond_Attr : aliased pthread_condattr_t;
746 begin
747 if not Single_Lock then
748 Result := pthread_mutexattr_init (Mutex_Attr'Access);
749 pragma Assert (Result = 0 or else Result = ENOMEM);
751 if Result = 0 then
752 Result := pthread_mutex_init (Self_ID.Common.LL.L'Access,
753 Mutex_Attr'Access);
754 pragma Assert (Result = 0 or else Result = ENOMEM);
755 end if;
757 if Result /= 0 then
758 Succeeded := False;
759 return;
760 end if;
762 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
763 pragma Assert (Result = 0);
764 end if;
766 Result := pthread_condattr_init (Cond_Attr'Access);
767 pragma Assert (Result = 0 or else Result = ENOMEM);
769 if Result = 0 then
770 Result := pthread_cond_init (Self_ID.Common.LL.CV'Access,
771 Cond_Attr'Access);
772 pragma Assert (Result = 0 or else Result = ENOMEM);
773 end if;
775 if Result = 0 then
776 Succeeded := True;
777 else
778 if not Single_Lock then
779 Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
780 pragma Assert (Result = 0);
781 end if;
783 Succeeded := False;
784 end if;
786 Result := pthread_condattr_destroy (Cond_Attr'Access);
787 pragma Assert (Result = 0);
788 end Initialize_TCB;
790 -----------------
791 -- Create_Task --
792 -----------------
794 procedure Create_Task
795 (T : Task_Id;
796 Wrapper : System.Address;
797 Stack_Size : System.Parameters.Size_Type;
798 Priority : System.Any_Priority;
799 Succeeded : out Boolean)
801 Attributes : aliased pthread_attr_t;
802 Adjusted_Stack_Size : Interfaces.C.size_t;
803 Result : Interfaces.C.int;
805 function Thread_Body_Access is new
806 Unchecked_Conversion (System.Address, Thread_Body);
808 begin
809 if Stack_Size = Unspecified_Size then
810 Adjusted_Stack_Size := Interfaces.C.size_t (Default_Stack_Size);
812 elsif Stack_Size < Minimum_Stack_Size then
813 Adjusted_Stack_Size := Interfaces.C.size_t (Minimum_Stack_Size);
815 else
816 Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size);
817 end if;
819 Result := pthread_attr_init (Attributes'Access);
820 pragma Assert (Result = 0 or else Result = ENOMEM);
822 if Result /= 0 then
823 Succeeded := False;
824 return;
825 end if;
827 Result := pthread_attr_setstacksize
828 (Attributes'Access, Adjusted_Stack_Size);
829 pragma Assert (Result = 0);
831 -- Since the initial signal mask of a thread is inherited from the
832 -- creator, and the Environment task has all its signals masked, we
833 -- do not need to manipulate caller's signal mask at this point.
834 -- All tasks in RTS will have All_Tasks_Mask initially.
836 Result := pthread_create
837 (T.Common.LL.Thread'Access,
838 Attributes'Access,
839 Thread_Body_Access (Wrapper),
840 To_Address (T));
841 pragma Assert (Result = 0 or else Result = EAGAIN);
843 Succeeded := Result = 0;
845 pthread_detach (T.Common.LL.Thread'Access);
846 -- Detach the thread using pthread_detach, sinc DCE threads do not have
847 -- pthread_attr_set_detachstate.
849 Result := pthread_attr_destroy (Attributes'Access);
850 pragma Assert (Result = 0);
852 Set_Priority (T, Priority);
853 end Create_Task;
855 ------------------
856 -- Finalize_TCB --
857 ------------------
859 procedure Finalize_TCB (T : Task_Id) is
860 Result : Interfaces.C.int;
861 Tmp : Task_Id := T;
862 Is_Self : constant Boolean := T = Self;
864 procedure Free is new
865 Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
867 begin
868 if not Single_Lock then
869 Result := pthread_mutex_destroy (T.Common.LL.L'Access);
870 pragma Assert (Result = 0);
871 end if;
873 Result := pthread_cond_destroy (T.Common.LL.CV'Access);
874 pragma Assert (Result = 0);
876 if T.Known_Tasks_Index /= -1 then
877 Known_Tasks (T.Known_Tasks_Index) := null;
878 end if;
880 Free (Tmp);
882 if Is_Self then
883 Specific.Set (null);
884 end if;
885 end Finalize_TCB;
887 ---------------
888 -- Exit_Task --
889 ---------------
891 procedure Exit_Task is
892 begin
893 Specific.Set (null);
894 end Exit_Task;
896 ----------------
897 -- Abort_Task --
898 ----------------
900 procedure Abort_Task (T : Task_Id) is
901 begin
903 -- Interrupt Server_Tasks may be waiting on an "event" flag (signal)
905 if T.Common.State = Interrupt_Server_Blocked_On_Event_Flag then
906 System.Interrupt_Management.Operations.Interrupt_Self_Process
907 (System.Interrupt_Management.Interrupt_ID
908 (PIO.Get_Interrupt_ID (T)));
909 end if;
910 end Abort_Task;
912 ----------------
913 -- Check_Exit --
914 ----------------
916 -- Dummy version
918 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
919 pragma Unreferenced (Self_ID);
920 begin
921 return True;
922 end Check_Exit;
924 --------------------
925 -- Check_No_Locks --
926 --------------------
928 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
929 pragma Unreferenced (Self_ID);
930 begin
931 return True;
932 end Check_No_Locks;
934 ----------------------
935 -- Environment_Task --
936 ----------------------
938 function Environment_Task return Task_Id is
939 begin
940 return Environment_Task_Id;
941 end Environment_Task;
943 --------------
944 -- Lock_RTS --
945 --------------
947 procedure Lock_RTS is
948 begin
949 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
950 end Lock_RTS;
952 ----------------
953 -- Unlock_RTS --
954 ----------------
956 procedure Unlock_RTS is
957 begin
958 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
959 end Unlock_RTS;
961 ------------------
962 -- Suspend_Task --
963 ------------------
965 function Suspend_Task
966 (T : ST.Task_Id;
967 Thread_Self : Thread_Id) return Boolean
969 pragma Unreferenced (T);
970 pragma Unreferenced (Thread_Self);
971 begin
972 return False;
973 end Suspend_Task;
975 -----------------
976 -- Resume_Task --
977 -----------------
979 function Resume_Task
980 (T : ST.Task_Id;
981 Thread_Self : Thread_Id) return Boolean
983 pragma Unreferenced (T);
984 pragma Unreferenced (Thread_Self);
985 begin
986 return False;
987 end Resume_Task;
989 ----------------
990 -- Initialize --
991 ----------------
993 procedure Initialize (Environment_Task : Task_Id) is
994 act : aliased struct_sigaction;
995 old_act : aliased struct_sigaction;
996 Tmp_Set : aliased sigset_t;
997 Result : Interfaces.C.int;
999 function State
1000 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1001 pragma Import (C, State, "__gnat_get_interrupt_state");
1002 -- Get interrupt state. Defined in a-init.c. The input argument is
1003 -- the interrupt number, and the result is one of the following:
1005 Default : constant Character := 's';
1006 -- 'n' this interrupt not set by any Interrupt_State pragma
1007 -- 'u' Interrupt_State pragma set state to User
1008 -- 'r' Interrupt_State pragma set state to Runtime
1009 -- 's' Interrupt_State pragma set state to System (use "default"
1010 -- system handler)
1012 begin
1013 Environment_Task_Id := Environment_Task;
1015 -- Initialize the lock used to synchronize chain of all ATCBs
1017 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1019 Specific.Initialize (Environment_Task);
1021 Enter_Task (Environment_Task);
1023 -- Install the abort-signal handler
1025 if State (System.Interrupt_Management.Abort_Task_Interrupt)
1026 /= Default
1027 then
1028 act.sa_flags := 0;
1029 act.sa_handler := Abort_Handler'Address;
1031 Result := sigemptyset (Tmp_Set'Access);
1032 pragma Assert (Result = 0);
1033 act.sa_mask := Tmp_Set;
1035 Result :=
1036 sigaction (
1037 Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1038 act'Unchecked_Access,
1039 old_act'Unchecked_Access);
1040 pragma Assert (Result = 0);
1041 end if;
1042 end Initialize;
1044 -- NOTE: Unlike other pthread implementations, we do *not* mask all
1045 -- signals here since we handle signals using the process-wide primitive
1046 -- signal, rather than using sigthreadmask and sigwait. The reason of
1047 -- this difference is that sigwait doesn't work when some critical
1048 -- signals (SIGABRT, SIGPIPE) are masked.
1050 end System.Task_Primitives.Operations;