* arm.c (FL_WBUF): Define.
[official-gcc.git] / gcc / ada / inline.adb
blobab12d842548e86b82f3025d35c4344eb1f16700e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- I N L I N E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2004 Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Ch7; use Exp_Ch7;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Tss; use Exp_Tss;
34 with Fname; use Fname;
35 with Fname.UF; use Fname.UF;
36 with Lib; use Lib;
37 with Nlists; use Nlists;
38 with Opt; use Opt;
39 with Sem_Ch8; use Sem_Ch8;
40 with Sem_Ch10; use Sem_Ch10;
41 with Sem_Ch12; use Sem_Ch12;
42 with Sem_Util; use Sem_Util;
43 with Sinfo; use Sinfo;
44 with Snames; use Snames;
45 with Stand; use Stand;
46 with Uname; use Uname;
48 package body Inline is
50 --------------------
51 -- Inlined Bodies --
52 --------------------
54 -- Inlined functions are actually placed in line by the backend if the
55 -- corresponding bodies are available (i.e. compiled). Whenever we find
56 -- a call to an inlined subprogram, we add the name of the enclosing
57 -- compilation unit to a worklist. After all compilation, and after
58 -- expansion of generic bodies, we traverse the list of pending bodies
59 -- and compile them as well.
61 package Inlined_Bodies is new Table.Table (
62 Table_Component_Type => Entity_Id,
63 Table_Index_Type => Int,
64 Table_Low_Bound => 0,
65 Table_Initial => Alloc.Inlined_Bodies_Initial,
66 Table_Increment => Alloc.Inlined_Bodies_Increment,
67 Table_Name => "Inlined_Bodies");
69 -----------------------
70 -- Inline Processing --
71 -----------------------
73 -- For each call to an inlined subprogram, we make entries in a table
74 -- that stores caller and callee, and indicates a prerequisite from
75 -- one to the other. We also record the compilation unit that contains
76 -- the callee. After analyzing the bodies of all such compilation units,
77 -- we produce a list of subprograms in topological order, for use by the
78 -- back-end. If P2 is a prerequisite of P1, then P1 calls P2, and for
79 -- proper inlining the back-end must analyze the body of P2 before that of
80 -- P1. The code below guarantees that the transitive closure of inlined
81 -- subprograms called from the main compilation unit is made available to
82 -- the code generator.
84 Last_Inlined : Entity_Id := Empty;
86 -- For each entry in the table we keep a list of successors in topological
87 -- order, i.e. callers of the current subprogram.
89 type Subp_Index is new Nat;
90 No_Subp : constant Subp_Index := 0;
92 -- The subprogram entities are hashed into the Inlined table.
94 Num_Hash_Headers : constant := 512;
96 Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
97 of Subp_Index;
99 type Succ_Index is new Nat;
100 No_Succ : constant Succ_Index := 0;
102 type Succ_Info is record
103 Subp : Subp_Index;
104 Next : Succ_Index;
105 end record;
107 -- The following table stores list elements for the successor lists.
108 -- These lists cannot be chained directly through entries in the Inlined
109 -- table, because a given subprogram can appear in several such lists.
111 package Successors is new Table.Table (
112 Table_Component_Type => Succ_Info,
113 Table_Index_Type => Succ_Index,
114 Table_Low_Bound => 1,
115 Table_Initial => Alloc.Successors_Initial,
116 Table_Increment => Alloc.Successors_Increment,
117 Table_Name => "Successors");
119 type Subp_Info is record
120 Name : Entity_Id := Empty;
121 First_Succ : Succ_Index := No_Succ;
122 Count : Integer := 0;
123 Listed : Boolean := False;
124 Main_Call : Boolean := False;
125 Next : Subp_Index := No_Subp;
126 Next_Nopred : Subp_Index := No_Subp;
127 end record;
129 package Inlined is new Table.Table (
130 Table_Component_Type => Subp_Info,
131 Table_Index_Type => Subp_Index,
132 Table_Low_Bound => 1,
133 Table_Initial => Alloc.Inlined_Initial,
134 Table_Increment => Alloc.Inlined_Increment,
135 Table_Name => "Inlined");
137 -----------------------
138 -- Local Subprograms --
139 -----------------------
141 function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean;
142 -- Return True if Scop is in the main unit or its spec, or in a
143 -- parent of the main unit if it is a child unit.
145 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
146 -- Make two entries in Inlined table, for an inlined subprogram being
147 -- called, and for the inlined subprogram that contains the call. If
148 -- the call is in the main compilation unit, Caller is Empty.
150 function Add_Subp (E : Entity_Id) return Subp_Index;
151 -- Make entry in Inlined table for subprogram E, or return table index
152 -- that already holds E.
154 function Has_Initialized_Type (E : Entity_Id) return Boolean;
155 -- If a candidate for inlining contains type declarations for types with
156 -- non-trivial initialization procedures, they are not worth inlining.
158 function Is_Nested (E : Entity_Id) return Boolean;
159 -- If the function is nested inside some other function, it will
160 -- always be compiled if that function is, so don't add it to the
161 -- inline list. We cannot compile a nested function outside the
162 -- scope of the containing function anyway. This is also the case if
163 -- the function is defined in a task body or within an entry (for
164 -- example, an initialization procedure).
166 procedure Add_Inlined_Subprogram (Index : Subp_Index);
167 -- Add subprogram to Inlined List once all of its predecessors have been
168 -- placed on the list. Decrement the count of all its successors, and
169 -- add them to list (recursively) if count drops to zero.
171 ------------------------------
172 -- Deferred Cleanup Actions --
173 ------------------------------
175 -- The cleanup actions for scopes that contain instantiations is delayed
176 -- until after expansion of those instantiations, because they may
177 -- contain finalizable objects or tasks that affect the cleanup code.
178 -- A scope that contains instantiations only needs to be finalized once,
179 -- even if it contains more than one instance. We keep a list of scopes
180 -- that must still be finalized, and call cleanup_actions after all the
181 -- instantiations have been completed.
183 To_Clean : Elist_Id;
185 procedure Add_Scope_To_Clean (Inst : Entity_Id);
186 -- Build set of scopes on which cleanup actions must be performed.
188 procedure Cleanup_Scopes;
189 -- Complete cleanup actions on scopes that need it.
191 --------------
192 -- Add_Call --
193 --------------
195 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
196 P1 : constant Subp_Index := Add_Subp (Called);
197 P2 : Subp_Index;
198 J : Succ_Index;
200 begin
201 if Present (Caller) then
202 P2 := Add_Subp (Caller);
204 -- Add P2 to the list of successors of P1, if not already there.
205 -- Note that P2 may contain more than one call to P1, and only
206 -- one needs to be recorded.
208 J := Inlined.Table (P1).First_Succ;
210 while J /= No_Succ loop
212 if Successors.Table (J).Subp = P2 then
213 return;
214 end if;
216 J := Successors.Table (J).Next;
217 end loop;
219 -- On exit, make a successor entry for P2.
221 Successors.Increment_Last;
222 Successors.Table (Successors.Last).Subp := P2;
223 Successors.Table (Successors.Last).Next :=
224 Inlined.Table (P1).First_Succ;
225 Inlined.Table (P1).First_Succ := Successors.Last;
227 Inlined.Table (P2).Count := Inlined.Table (P2).Count + 1;
229 else
230 Inlined.Table (P1).Main_Call := True;
231 end if;
232 end Add_Call;
234 ----------------------
235 -- Add_Inlined_Body --
236 ----------------------
238 procedure Add_Inlined_Body (E : Entity_Id) is
239 Pack : Entity_Id;
241 function Must_Inline return Boolean;
242 -- Inlining is only done if the call statement N is in the main unit,
243 -- or within the body of another inlined subprogram.
245 -----------------
246 -- Must_Inline --
247 -----------------
249 function Must_Inline return Boolean is
250 Scop : Entity_Id := Current_Scope;
251 Comp : Node_Id;
253 begin
254 -- Check if call is in main unit
256 while Scope (Scop) /= Standard_Standard
257 and then not Is_Child_Unit (Scop)
258 loop
259 Scop := Scope (Scop);
260 end loop;
262 Comp := Parent (Scop);
264 while Nkind (Comp) /= N_Compilation_Unit loop
265 Comp := Parent (Comp);
266 end loop;
268 if Comp = Cunit (Main_Unit)
269 or else Comp = Library_Unit (Cunit (Main_Unit))
270 then
271 Add_Call (E);
272 return True;
273 end if;
275 -- Call is not in main unit. See if it's in some inlined
276 -- subprogram.
278 Scop := Current_Scope;
279 while Scope (Scop) /= Standard_Standard
280 and then not Is_Child_Unit (Scop)
281 loop
282 if Is_Overloadable (Scop)
283 and then Is_Inlined (Scop)
284 then
285 Add_Call (E, Scop);
286 return True;
287 end if;
289 Scop := Scope (Scop);
290 end loop;
292 return False;
294 end Must_Inline;
296 -- Start of processing for Add_Inlined_Body
298 begin
299 -- Find unit containing E, and add to list of inlined bodies if needed.
300 -- If the body is already present, no need to load any other unit. This
301 -- is the case for an initialization procedure, which appears in the
302 -- package declaration that contains the type. It is also the case if
303 -- the body has already been analyzed. Finally, if the unit enclosing
304 -- E is an instance, the instance body will be analyzed in any case,
305 -- and there is no need to add the enclosing unit (whose body might not
306 -- be available).
308 -- Library-level functions must be handled specially, because there is
309 -- no enclosing package to retrieve. In this case, it is the body of
310 -- the function that will have to be loaded.
312 if not Is_Abstract (E) and then not Is_Nested (E)
313 and then Convention (E) /= Convention_Protected
314 then
315 Pack := Scope (E);
317 if Must_Inline
318 and then Ekind (Pack) = E_Package
319 then
320 Set_Is_Called (E);
322 if Pack = Standard_Standard then
324 -- Library-level inlined function. Add function iself to
325 -- list of needed units.
327 Inlined_Bodies.Increment_Last;
328 Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
330 elsif Is_Generic_Instance (Pack) then
331 null;
333 elsif not Is_Inlined (Pack)
334 and then not Has_Completion (E)
335 and then not Scope_In_Main_Unit (Pack)
336 then
337 Set_Is_Inlined (Pack);
338 Inlined_Bodies.Increment_Last;
339 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
340 end if;
341 end if;
342 end if;
343 end Add_Inlined_Body;
345 ----------------------------
346 -- Add_Inlined_Subprogram --
347 ----------------------------
349 procedure Add_Inlined_Subprogram (Index : Subp_Index) is
350 E : constant Entity_Id := Inlined.Table (Index).Name;
351 Succ : Succ_Index;
352 Subp : Subp_Index;
354 function Back_End_Cannot_Inline (Subp : Entity_Id) return Boolean;
355 -- There are various conditions under which back-end inlining cannot
356 -- be done reliably:
358 -- a) If a body has handlers, it must not be inlined, because this
359 -- may violate program semantics, and because in zero-cost exception
360 -- mode it will lead to undefined symbols at link time.
362 -- b) If a body contains inlined function instances, it cannot be
363 -- inlined under ZCX because the numerix suffix generated by gigi
364 -- will be different in the body and the place of the inlined call.
366 -- This procedure must be carefully coordinated with the back end
368 ----------------------------
369 -- Back_End_Cannot_Inline --
370 ----------------------------
372 function Back_End_Cannot_Inline (Subp : Entity_Id) return Boolean is
373 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
374 Body_Ent : Entity_Id;
375 Ent : Entity_Id;
377 begin
378 if Nkind (Decl) = N_Subprogram_Declaration
379 and then Present (Corresponding_Body (Decl))
380 then
381 Body_Ent := Corresponding_Body (Decl);
382 else
383 return False;
384 end if;
386 -- If subprogram is marked Inline_Always, inlining is mandatory
388 if Is_Always_Inlined (Subp) then
389 return False;
390 end if;
392 if Present
393 (Exception_Handlers
394 (Handled_Statement_Sequence
395 (Unit_Declaration_Node (Corresponding_Body (Decl)))))
396 then
397 return True;
398 end if;
400 Ent := First_Entity (Body_Ent);
402 while Present (Ent) loop
403 if Is_Subprogram (Ent)
404 and then Is_Generic_Instance (Ent)
405 then
406 return True;
407 end if;
409 Next_Entity (Ent);
410 end loop;
411 return False;
412 end Back_End_Cannot_Inline;
414 -- Start of processing for Add_Inlined_Subprogram
416 begin
417 -- Insert the current subprogram in the list of inlined subprograms,
418 -- if it can actually be inlined by the back-end.
420 if not Scope_In_Main_Unit (E)
421 and then Is_Inlined (E)
422 and then not Is_Nested (E)
423 and then not Has_Initialized_Type (E)
424 then
425 if Back_End_Cannot_Inline (E) then
426 Set_Is_Inlined (E, False);
428 else
429 if No (Last_Inlined) then
430 Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
431 else
432 Set_Next_Inlined_Subprogram (Last_Inlined, E);
433 end if;
435 Last_Inlined := E;
436 end if;
437 end if;
439 Inlined.Table (Index).Listed := True;
440 Succ := Inlined.Table (Index).First_Succ;
442 while Succ /= No_Succ loop
443 Subp := Successors.Table (Succ).Subp;
444 Inlined.Table (Subp).Count := Inlined.Table (Subp).Count - 1;
446 if Inlined.Table (Subp).Count = 0 then
447 Add_Inlined_Subprogram (Subp);
448 end if;
450 Succ := Successors.Table (Succ).Next;
451 end loop;
452 end Add_Inlined_Subprogram;
454 ------------------------
455 -- Add_Scope_To_Clean --
456 ------------------------
458 procedure Add_Scope_To_Clean (Inst : Entity_Id) is
459 Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
460 Elmt : Elmt_Id;
462 begin
463 -- If the instance appears in a library-level package declaration,
464 -- all finalization is global, and nothing needs doing here.
466 if Scop = Standard_Standard then
467 return;
468 end if;
470 -- If the instance appears within a generic subprogram there is nothing
471 -- to finalize either.
473 declare
474 S : Entity_Id;
475 begin
476 S := Scope (Inst);
477 while Present (S) and then S /= Standard_Standard loop
478 if Is_Generic_Subprogram (S) then
479 return;
480 end if;
482 S := Scope (S);
483 end loop;
484 end;
486 Elmt := First_Elmt (To_Clean);
488 while Present (Elmt) loop
490 if Node (Elmt) = Scop then
491 return;
492 end if;
494 Elmt := Next_Elmt (Elmt);
495 end loop;
497 Append_Elmt (Scop, To_Clean);
498 end Add_Scope_To_Clean;
500 --------------
501 -- Add_Subp --
502 --------------
504 function Add_Subp (E : Entity_Id) return Subp_Index is
505 Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
506 J : Subp_Index;
508 procedure New_Entry;
509 -- Initialize entry in Inlined table.
511 procedure New_Entry is
512 begin
513 Inlined.Increment_Last;
514 Inlined.Table (Inlined.Last).Name := E;
515 Inlined.Table (Inlined.Last).First_Succ := No_Succ;
516 Inlined.Table (Inlined.Last).Count := 0;
517 Inlined.Table (Inlined.Last).Listed := False;
518 Inlined.Table (Inlined.Last).Main_Call := False;
519 Inlined.Table (Inlined.Last).Next := No_Subp;
520 Inlined.Table (Inlined.Last).Next_Nopred := No_Subp;
521 end New_Entry;
523 -- Start of processing for Add_Subp
525 begin
526 if Hash_Headers (Index) = No_Subp then
527 New_Entry;
528 Hash_Headers (Index) := Inlined.Last;
529 return Inlined.Last;
531 else
532 J := Hash_Headers (Index);
534 while J /= No_Subp loop
536 if Inlined.Table (J).Name = E then
537 return J;
538 else
539 Index := J;
540 J := Inlined.Table (J).Next;
541 end if;
542 end loop;
544 -- On exit, subprogram was not found. Enter in table. Index is
545 -- the current last entry on the hash chain.
547 New_Entry;
548 Inlined.Table (Index).Next := Inlined.Last;
549 return Inlined.Last;
550 end if;
551 end Add_Subp;
553 ----------------------------
554 -- Analyze_Inlined_Bodies --
555 ----------------------------
557 procedure Analyze_Inlined_Bodies is
558 Comp_Unit : Node_Id;
559 J : Int;
560 Pack : Entity_Id;
561 S : Succ_Index;
563 begin
564 Analyzing_Inlined_Bodies := False;
566 if Serious_Errors_Detected = 0 then
567 New_Scope (Standard_Standard);
569 J := 0;
570 while J <= Inlined_Bodies.Last
571 and then Serious_Errors_Detected = 0
572 loop
573 Pack := Inlined_Bodies.Table (J);
575 while Present (Pack)
576 and then Scope (Pack) /= Standard_Standard
577 and then not Is_Child_Unit (Pack)
578 loop
579 Pack := Scope (Pack);
580 end loop;
582 Comp_Unit := Parent (Pack);
584 while Present (Comp_Unit)
585 and then Nkind (Comp_Unit) /= N_Compilation_Unit
586 loop
587 Comp_Unit := Parent (Comp_Unit);
588 end loop;
590 -- Load the body, unless it the main unit, or is an instance
591 -- whose body has already been analyzed.
593 if Present (Comp_Unit)
594 and then Comp_Unit /= Cunit (Main_Unit)
595 and then Body_Required (Comp_Unit)
596 and then (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
597 or else No (Corresponding_Body (Unit (Comp_Unit))))
598 then
599 declare
600 Bname : constant Unit_Name_Type :=
601 Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
603 OK : Boolean;
605 begin
606 if not Is_Loaded (Bname) then
607 Load_Needed_Body (Comp_Unit, OK);
609 if not OK then
610 Error_Msg_Unit_1 := Bname;
611 Error_Msg_N
612 ("one or more inlined subprograms accessed in $!",
613 Comp_Unit);
614 Error_Msg_Name_1 :=
615 Get_File_Name (Bname, Subunit => False);
616 Error_Msg_N ("\but file{ was not found!", Comp_Unit);
617 raise Unrecoverable_Error;
618 end if;
619 end if;
620 end;
621 end if;
623 J := J + 1;
624 end loop;
626 -- The analysis of required bodies may have produced additional
627 -- generic instantiations. To obtain further inlining, we perform
628 -- another round of generic body instantiations. Establishing a
629 -- fully recursive loop between inlining and generic instantiations
630 -- is unlikely to yield more than this one additional pass.
632 Instantiate_Bodies;
634 -- The list of inlined subprograms is an overestimate, because
635 -- it includes inlined functions called from functions that are
636 -- compiled as part of an inlined package, but are not themselves
637 -- called. An accurate computation of just those subprograms that
638 -- are needed requires that we perform a transitive closure over
639 -- the call graph, starting from calls in the main program. Here
640 -- we do one step of the inverse transitive closure, and reset
641 -- the Is_Called flag on subprograms all of whose callers are not.
643 for Index in Inlined.First .. Inlined.Last loop
644 S := Inlined.Table (Index).First_Succ;
646 if S /= No_Succ
647 and then not Inlined.Table (Index).Main_Call
648 then
649 Set_Is_Called (Inlined.Table (Index).Name, False);
651 while S /= No_Succ loop
653 if Is_Called
654 (Inlined.Table (Successors.Table (S).Subp).Name)
655 or else Inlined.Table (Successors.Table (S).Subp).Main_Call
656 then
657 Set_Is_Called (Inlined.Table (Index).Name);
658 exit;
659 end if;
661 S := Successors.Table (S).Next;
662 end loop;
663 end if;
664 end loop;
666 -- Now that the units are compiled, chain the subprograms within
667 -- that are called and inlined. Produce list of inlined subprograms
668 -- sorted in topological order. Start with all subprograms that
669 -- have no prerequisites, i.e. inlined subprograms that do not call
670 -- other inlined subprograms.
672 for Index in Inlined.First .. Inlined.Last loop
674 if Is_Called (Inlined.Table (Index).Name)
675 and then Inlined.Table (Index).Count = 0
676 and then not Inlined.Table (Index).Listed
677 then
678 Add_Inlined_Subprogram (Index);
679 end if;
680 end loop;
682 -- Because Add_Inlined_Subprogram treats recursively nodes that have
683 -- no prerequisites left, at the end of the loop all subprograms
684 -- must have been listed. If there are any unlisted subprograms
685 -- left, there must be some recursive chains that cannot be inlined.
687 for Index in Inlined.First .. Inlined.Last loop
688 if Is_Called (Inlined.Table (Index).Name)
689 and then Inlined.Table (Index).Count /= 0
690 and then not Is_Predefined_File_Name
691 (Unit_File_Name
692 (Get_Source_Unit (Inlined.Table (Index).Name)))
693 then
694 Error_Msg_N
695 ("& cannot be inlined?", Inlined.Table (Index).Name);
696 -- A warning on the first one might be sufficient.
697 end if;
698 end loop;
700 Pop_Scope;
701 end if;
702 end Analyze_Inlined_Bodies;
704 -----------------------------
705 -- Check_Body_For_Inlining --
706 -----------------------------
708 procedure Check_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
709 Bname : Unit_Name_Type;
710 E : Entity_Id;
711 OK : Boolean;
713 begin
714 if Is_Compilation_Unit (P)
715 and then not Is_Generic_Instance (P)
716 then
717 Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
718 E := First_Entity (P);
720 while Present (E) loop
721 if Is_Always_Inlined (E)
722 or else (Front_End_Inlining and then Has_Pragma_Inline (E))
723 then
724 if not Is_Loaded (Bname) then
725 Load_Needed_Body (N, OK);
727 if OK then
729 -- Check that we are not trying to inline a parent
730 -- whose body depends on a child, when we are compiling
731 -- the body of the child. Otherwise we have a potential
732 -- elaboration circularity with inlined subprograms and
733 -- with Taft-Amendment types.
735 declare
736 Comp : Node_Id; -- Body just compiled
737 Child_Spec : Entity_Id; -- Spec of main unit
738 Ent : Entity_Id; -- For iteration
739 With_Clause : Node_Id; -- Context of body.
741 begin
742 if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
743 and then Present (Body_Entity (P))
744 then
745 Child_Spec :=
746 Defining_Entity (
747 (Unit (Library_Unit (Cunit (Main_Unit)))));
749 Comp :=
750 Parent (Unit_Declaration_Node (Body_Entity (P)));
752 With_Clause := First (Context_Items (Comp));
754 -- Check whether the context of the body just
755 -- compiled includes a child of itself, and that
756 -- child is the spec of the main compilation.
758 while Present (With_Clause) loop
759 if Nkind (With_Clause) = N_With_Clause
760 and then
761 Scope (Entity (Name (With_Clause))) = P
762 and then
763 Entity (Name (With_Clause)) = Child_Spec
764 then
765 Error_Msg_Node_2 := Child_Spec;
766 Error_Msg_NE
767 ("body of & depends on child unit&?",
768 With_Clause, P);
769 Error_Msg_N
770 ("\subprograms in body cannot be inlined?",
771 With_Clause);
773 -- Disable further inlining from this unit,
774 -- and keep Taft-amendment types incomplete.
776 Ent := First_Entity (P);
778 while Present (Ent) loop
779 if Is_Type (Ent)
780 and then Has_Completion_In_Body (Ent)
781 then
782 Set_Full_View (Ent, Empty);
784 elsif Is_Subprogram (Ent) then
785 Set_Is_Inlined (Ent, False);
786 end if;
788 Next_Entity (Ent);
789 end loop;
791 return;
792 end if;
794 Next (With_Clause);
795 end loop;
796 end if;
797 end;
799 elsif Ineffective_Inline_Warnings then
800 Error_Msg_Unit_1 := Bname;
801 Error_Msg_N
802 ("unable to inline subprograms defined in $?", P);
803 Error_Msg_N ("\body not found?", P);
804 return;
805 end if;
806 end if;
808 return;
809 end if;
811 Next_Entity (E);
812 end loop;
813 end if;
814 end Check_Body_For_Inlining;
816 --------------------
817 -- Cleanup_Scopes --
818 --------------------
820 procedure Cleanup_Scopes is
821 Elmt : Elmt_Id;
822 Decl : Node_Id;
823 Scop : Entity_Id;
825 begin
826 Elmt := First_Elmt (To_Clean);
828 while Present (Elmt) loop
829 Scop := Node (Elmt);
831 if Ekind (Scop) = E_Entry then
832 Scop := Protected_Body_Subprogram (Scop);
834 elsif Is_Subprogram (Scop)
835 and then Is_Protected_Type (Scope (Scop))
836 and then Present (Protected_Body_Subprogram (Scop))
837 then
838 -- If a protected operation contains an instance, its
839 -- cleanup operations have been delayed, and the subprogram
840 -- has been rewritten in the expansion of the enclosing
841 -- protected body. It is the corresponding subprogram that
842 -- may require the cleanup operations.
844 Set_Uses_Sec_Stack
845 (Protected_Body_Subprogram (Scop),
846 Uses_Sec_Stack (Scop));
847 Scop := Protected_Body_Subprogram (Scop);
848 end if;
850 if Ekind (Scop) = E_Block then
851 Decl := Parent (Block_Node (Scop));
853 else
854 Decl := Unit_Declaration_Node (Scop);
856 if Nkind (Decl) = N_Subprogram_Declaration
857 or else Nkind (Decl) = N_Task_Type_Declaration
858 or else Nkind (Decl) = N_Subprogram_Body_Stub
859 then
860 Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
861 end if;
862 end if;
864 New_Scope (Scop);
865 Expand_Cleanup_Actions (Decl);
866 End_Scope;
868 Elmt := Next_Elmt (Elmt);
869 end loop;
870 end Cleanup_Scopes;
872 --------------------------
873 -- Has_Initialized_Type --
874 --------------------------
876 function Has_Initialized_Type (E : Entity_Id) return Boolean is
877 E_Body : constant Node_Id := Get_Subprogram_Body (E);
878 Decl : Node_Id;
880 begin
881 if No (E_Body) then -- imported subprogram
882 return False;
884 else
885 Decl := First (Declarations (E_Body));
887 while Present (Decl) loop
889 if Nkind (Decl) = N_Full_Type_Declaration
890 and then Present (Init_Proc (Defining_Identifier (Decl)))
891 then
892 return True;
893 end if;
895 Next (Decl);
896 end loop;
897 end if;
899 return False;
900 end Has_Initialized_Type;
902 ----------------
903 -- Initialize --
904 ----------------
906 procedure Initialize is
907 begin
908 Analyzing_Inlined_Bodies := False;
909 Pending_Descriptor.Init;
910 Pending_Instantiations.Init;
911 Inlined_Bodies.Init;
912 Successors.Init;
913 Inlined.Init;
915 for J in Hash_Headers'Range loop
916 Hash_Headers (J) := No_Subp;
917 end loop;
918 end Initialize;
920 ------------------------
921 -- Instantiate_Bodies --
922 ------------------------
924 -- Generic bodies contain all the non-local references, so an
925 -- instantiation does not need any more context than Standard
926 -- itself, even if the instantiation appears in an inner scope.
927 -- Generic associations have verified that the contract model is
928 -- satisfied, so that any error that may occur in the analysis of
929 -- the body is an internal error.
931 procedure Instantiate_Bodies is
932 J : Int;
933 Info : Pending_Body_Info;
935 begin
936 if Serious_Errors_Detected = 0 then
938 Expander_Active := (Operating_Mode = Opt.Generate_Code);
939 New_Scope (Standard_Standard);
940 To_Clean := New_Elmt_List;
942 if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
943 Start_Generic;
944 end if;
946 -- A body instantiation may generate additional instantiations, so
947 -- the following loop must scan to the end of a possibly expanding
948 -- set (that's why we can't simply use a FOR loop here).
950 J := 0;
952 while J <= Pending_Instantiations.Last
953 and then Serious_Errors_Detected = 0
954 loop
955 Info := Pending_Instantiations.Table (J);
957 -- If the instantiation node is absent, it has been removed
958 -- as part of unreachable code.
960 if No (Info.Inst_Node) then
961 null;
963 elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
964 Instantiate_Package_Body (Info);
965 Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
967 else
968 Instantiate_Subprogram_Body (Info);
969 end if;
971 J := J + 1;
972 end loop;
974 -- Reset the table of instantiations. Additional instantiations
975 -- may be added through inlining, when additional bodies are
976 -- analyzed.
978 Pending_Instantiations.Init;
980 -- We can now complete the cleanup actions of scopes that contain
981 -- pending instantiations (skipped for generic units, since we
982 -- never need any cleanups in generic units).
983 -- pending instantiations.
985 if Expander_Active
986 and then not Is_Generic_Unit (Main_Unit_Entity)
987 then
988 Cleanup_Scopes;
990 -- Also generate subprogram descriptors that were delayed
992 for J in Pending_Descriptor.First .. Pending_Descriptor.Last loop
993 declare
994 Ent : constant Entity_Id := Pending_Descriptor.Table (J);
996 begin
997 if Is_Subprogram (Ent) then
998 Generate_Subprogram_Descriptor_For_Subprogram
999 (Get_Subprogram_Body (Ent), Ent);
1001 elsif Ekind (Ent) = E_Package then
1002 Generate_Subprogram_Descriptor_For_Package
1003 (Parent (Declaration_Node (Ent)), Ent);
1005 elsif Ekind (Ent) = E_Package_Body then
1006 Generate_Subprogram_Descriptor_For_Package
1007 (Declaration_Node (Ent), Ent);
1008 end if;
1009 end;
1010 end loop;
1012 elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
1013 End_Generic;
1014 end if;
1016 Pop_Scope;
1017 end if;
1018 end Instantiate_Bodies;
1020 ---------------
1021 -- Is_Nested --
1022 ---------------
1024 function Is_Nested (E : Entity_Id) return Boolean is
1025 Scop : Entity_Id := Scope (E);
1027 begin
1028 while Scop /= Standard_Standard loop
1029 if Ekind (Scop) in Subprogram_Kind then
1030 return True;
1032 elsif Ekind (Scop) = E_Task_Type
1033 or else Ekind (Scop) = E_Entry
1034 or else Ekind (Scop) = E_Entry_Family then
1035 return True;
1036 end if;
1038 Scop := Scope (Scop);
1039 end loop;
1041 return False;
1042 end Is_Nested;
1044 ----------
1045 -- Lock --
1046 ----------
1048 procedure Lock is
1049 begin
1050 Pending_Instantiations.Locked := True;
1051 Inlined_Bodies.Locked := True;
1052 Successors.Locked := True;
1053 Inlined.Locked := True;
1054 Pending_Instantiations.Release;
1055 Inlined_Bodies.Release;
1056 Successors.Release;
1057 Inlined.Release;
1058 end Lock;
1060 --------------------------
1061 -- Remove_Dead_Instance --
1062 --------------------------
1064 procedure Remove_Dead_Instance (N : Node_Id) is
1065 J : Int;
1067 begin
1068 J := 0;
1070 while J <= Pending_Instantiations.Last loop
1072 if Pending_Instantiations.Table (J).Inst_Node = N then
1073 Pending_Instantiations.Table (J).Inst_Node := Empty;
1074 return;
1075 end if;
1077 J := J + 1;
1078 end loop;
1079 end Remove_Dead_Instance;
1081 ------------------------
1082 -- Scope_In_Main_Unit --
1083 ------------------------
1085 function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean is
1086 Comp : Node_Id;
1087 S : Entity_Id := Scop;
1088 Ent : Entity_Id := Cunit_Entity (Main_Unit);
1090 begin
1091 -- The scope may be within the main unit, or it may be an ancestor
1092 -- of the main unit, if the main unit is a child unit. In both cases
1093 -- it makes no sense to process the body before the main unit. In
1094 -- the second case, this may lead to circularities if a parent body
1095 -- depends on a child spec, and we are analyzing the child.
1097 while Scope (S) /= Standard_Standard
1098 and then not Is_Child_Unit (S)
1099 loop
1100 S := Scope (S);
1101 end loop;
1103 Comp := Parent (S);
1105 while Present (Comp)
1106 and then Nkind (Comp) /= N_Compilation_Unit
1107 loop
1108 Comp := Parent (Comp);
1109 end loop;
1111 if Is_Child_Unit (Ent) then
1113 while Present (Ent)
1114 and then Is_Child_Unit (Ent)
1115 loop
1116 if Scope (Ent) = S then
1117 return True;
1118 end if;
1120 Ent := Scope (Ent);
1121 end loop;
1122 end if;
1124 return
1125 Comp = Cunit (Main_Unit)
1126 or else Comp = Library_Unit (Cunit (Main_Unit));
1127 end Scope_In_Main_Unit;
1129 end Inline;