recog.c (split_all_insns): Remove dead code.
[official-gcc.git] / gcc / tree-ssa-structalias.c
blobed05178c23d47e70b779b3a943109693c1543a38
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dberlin@dberlin.org>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "obstack.h"
28 #include "bitmap.h"
29 #include "flags.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "tree.h"
33 #include "tree-flow.h"
34 #include "tree-inline.h"
35 #include "diagnostic-core.h"
36 #include "toplev.h"
37 #include "gimple.h"
38 #include "hashtab.h"
39 #include "function.h"
40 #include "cgraph.h"
41 #include "tree-pass.h"
42 #include "timevar.h"
43 #include "alloc-pool.h"
44 #include "splay-tree.h"
45 #include "params.h"
46 #include "cgraph.h"
47 #include "alias.h"
48 #include "pointer-set.h"
50 /* The idea behind this analyzer is to generate set constraints from the
51 program, then solve the resulting constraints in order to generate the
52 points-to sets.
54 Set constraints are a way of modeling program analysis problems that
55 involve sets. They consist of an inclusion constraint language,
56 describing the variables (each variable is a set) and operations that
57 are involved on the variables, and a set of rules that derive facts
58 from these operations. To solve a system of set constraints, you derive
59 all possible facts under the rules, which gives you the correct sets
60 as a consequence.
62 See "Efficient Field-sensitive pointer analysis for C" by "David
63 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
64 http://citeseer.ist.psu.edu/pearce04efficient.html
66 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
67 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
68 http://citeseer.ist.psu.edu/heintze01ultrafast.html
70 There are three types of real constraint expressions, DEREF,
71 ADDRESSOF, and SCALAR. Each constraint expression consists
72 of a constraint type, a variable, and an offset.
74 SCALAR is a constraint expression type used to represent x, whether
75 it appears on the LHS or the RHS of a statement.
76 DEREF is a constraint expression type used to represent *x, whether
77 it appears on the LHS or the RHS of a statement.
78 ADDRESSOF is a constraint expression used to represent &x, whether
79 it appears on the LHS or the RHS of a statement.
81 Each pointer variable in the program is assigned an integer id, and
82 each field of a structure variable is assigned an integer id as well.
84 Structure variables are linked to their list of fields through a "next
85 field" in each variable that points to the next field in offset
86 order.
87 Each variable for a structure field has
89 1. "size", that tells the size in bits of that field.
90 2. "fullsize, that tells the size in bits of the entire structure.
91 3. "offset", that tells the offset in bits from the beginning of the
92 structure to this field.
94 Thus,
95 struct f
97 int a;
98 int b;
99 } foo;
100 int *bar;
102 looks like
104 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
105 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
106 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
109 In order to solve the system of set constraints, the following is
110 done:
112 1. Each constraint variable x has a solution set associated with it,
113 Sol(x).
115 2. Constraints are separated into direct, copy, and complex.
116 Direct constraints are ADDRESSOF constraints that require no extra
117 processing, such as P = &Q
118 Copy constraints are those of the form P = Q.
119 Complex constraints are all the constraints involving dereferences
120 and offsets (including offsetted copies).
122 3. All direct constraints of the form P = &Q are processed, such
123 that Q is added to Sol(P)
125 4. All complex constraints for a given constraint variable are stored in a
126 linked list attached to that variable's node.
128 5. A directed graph is built out of the copy constraints. Each
129 constraint variable is a node in the graph, and an edge from
130 Q to P is added for each copy constraint of the form P = Q
132 6. The graph is then walked, and solution sets are
133 propagated along the copy edges, such that an edge from Q to P
134 causes Sol(P) <- Sol(P) union Sol(Q).
136 7. As we visit each node, all complex constraints associated with
137 that node are processed by adding appropriate copy edges to the graph, or the
138 appropriate variables to the solution set.
140 8. The process of walking the graph is iterated until no solution
141 sets change.
143 Prior to walking the graph in steps 6 and 7, We perform static
144 cycle elimination on the constraint graph, as well
145 as off-line variable substitution.
147 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
148 on and turned into anything), but isn't. You can just see what offset
149 inside the pointed-to struct it's going to access.
151 TODO: Constant bounded arrays can be handled as if they were structs of the
152 same number of elements.
154 TODO: Modeling heap and incoming pointers becomes much better if we
155 add fields to them as we discover them, which we could do.
157 TODO: We could handle unions, but to be honest, it's probably not
158 worth the pain or slowdown. */
160 /* IPA-PTA optimizations possible.
162 When the indirect function called is ANYTHING we can add disambiguation
163 based on the function signatures (or simply the parameter count which
164 is the varinfo size). We also do not need to consider functions that
165 do not have their address taken.
167 The is_global_var bit which marks escape points is overly conservative
168 in IPA mode. Split it to is_escape_point and is_global_var - only
169 externally visible globals are escape points in IPA mode. This is
170 also needed to fix the pt_solution_includes_global predicate
171 (and thus ptr_deref_may_alias_global_p).
173 The way we introduce DECL_PT_UID to avoid fixing up all points-to
174 sets in the translation unit when we copy a DECL during inlining
175 pessimizes precision. The advantage is that the DECL_PT_UID keeps
176 compile-time and memory usage overhead low - the points-to sets
177 do not grow or get unshared as they would during a fixup phase.
178 An alternative solution is to delay IPA PTA until after all
179 inlining transformations have been applied.
181 The way we propagate clobber/use information isn't optimized.
182 It should use a new complex constraint that properly filters
183 out local variables of the callee (though that would make
184 the sets invalid after inlining). OTOH we might as well
185 admit defeat to WHOPR and simply do all the clobber/use analysis
186 and propagation after PTA finished but before we threw away
187 points-to information for memory variables. WHOPR and PTA
188 do not play along well anyway - the whole constraint solving
189 would need to be done in WPA phase and it will be very interesting
190 to apply the results to local SSA names during LTRANS phase.
192 We probably should compute a per-function unit-ESCAPE solution
193 propagating it simply like the clobber / uses solutions. The
194 solution can go alongside the non-IPA espaced solution and be
195 used to query which vars escape the unit through a function.
197 We never put function decls in points-to sets so we do not
198 keep the set of called functions for indirect calls.
200 And probably more. */
201 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct heapvar_map)))
202 htab_t heapvar_for_stmt;
204 static bool use_field_sensitive = true;
205 static int in_ipa_mode = 0;
207 /* Used for predecessor bitmaps. */
208 static bitmap_obstack predbitmap_obstack;
210 /* Used for points-to sets. */
211 static bitmap_obstack pta_obstack;
213 /* Used for oldsolution members of variables. */
214 static bitmap_obstack oldpta_obstack;
216 /* Used for per-solver-iteration bitmaps. */
217 static bitmap_obstack iteration_obstack;
219 static unsigned int create_variable_info_for (tree, const char *);
220 typedef struct constraint_graph *constraint_graph_t;
221 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
223 struct constraint;
224 typedef struct constraint *constraint_t;
226 DEF_VEC_P(constraint_t);
227 DEF_VEC_ALLOC_P(constraint_t,heap);
229 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
230 if (a) \
231 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
233 static struct constraint_stats
235 unsigned int total_vars;
236 unsigned int nonpointer_vars;
237 unsigned int unified_vars_static;
238 unsigned int unified_vars_dynamic;
239 unsigned int iterations;
240 unsigned int num_edges;
241 unsigned int num_implicit_edges;
242 unsigned int points_to_sets_created;
243 } stats;
245 struct variable_info
247 /* ID of this variable */
248 unsigned int id;
250 /* True if this is a variable created by the constraint analysis, such as
251 heap variables and constraints we had to break up. */
252 unsigned int is_artificial_var : 1;
254 /* True if this is a special variable whose solution set should not be
255 changed. */
256 unsigned int is_special_var : 1;
258 /* True for variables whose size is not known or variable. */
259 unsigned int is_unknown_size_var : 1;
261 /* True for (sub-)fields that represent a whole variable. */
262 unsigned int is_full_var : 1;
264 /* True if this is a heap variable. */
265 unsigned int is_heap_var : 1;
267 /* True if this is a variable tracking a restrict pointer source. */
268 unsigned int is_restrict_var : 1;
270 /* True if this field may contain pointers. */
271 unsigned int may_have_pointers : 1;
273 /* True if this field has only restrict qualified pointers. */
274 unsigned int only_restrict_pointers : 1;
276 /* True if this represents a global variable. */
277 unsigned int is_global_var : 1;
279 /* True if this represents a IPA function info. */
280 unsigned int is_fn_info : 1;
282 /* A link to the variable for the next field in this structure. */
283 struct variable_info *next;
285 /* Offset of this variable, in bits, from the base variable */
286 unsigned HOST_WIDE_INT offset;
288 /* Size of the variable, in bits. */
289 unsigned HOST_WIDE_INT size;
291 /* Full size of the base variable, in bits. */
292 unsigned HOST_WIDE_INT fullsize;
294 /* Name of this variable */
295 const char *name;
297 /* Tree that this variable is associated with. */
298 tree decl;
300 /* Points-to set for this variable. */
301 bitmap solution;
303 /* Old points-to set for this variable. */
304 bitmap oldsolution;
306 typedef struct variable_info *varinfo_t;
308 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
309 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
310 unsigned HOST_WIDE_INT);
311 static varinfo_t lookup_vi_for_tree (tree);
313 /* Pool of variable info structures. */
314 static alloc_pool variable_info_pool;
316 DEF_VEC_P(varinfo_t);
318 DEF_VEC_ALLOC_P(varinfo_t, heap);
320 /* Table of variable info structures for constraint variables.
321 Indexed directly by variable info id. */
322 static VEC(varinfo_t,heap) *varmap;
324 /* Return the varmap element N */
326 static inline varinfo_t
327 get_varinfo (unsigned int n)
329 return VEC_index (varinfo_t, varmap, n);
332 /* Static IDs for the special variables. */
333 enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
334 escaped_id = 3, nonlocal_id = 4,
335 storedanything_id = 5, integer_id = 6 };
337 struct GTY(()) heapvar_map {
338 struct tree_map map;
339 unsigned HOST_WIDE_INT offset;
342 static int
343 heapvar_map_eq (const void *p1, const void *p2)
345 const struct heapvar_map *h1 = (const struct heapvar_map *)p1;
346 const struct heapvar_map *h2 = (const struct heapvar_map *)p2;
347 return (h1->map.base.from == h2->map.base.from
348 && h1->offset == h2->offset);
351 static unsigned int
352 heapvar_map_hash (struct heapvar_map *h)
354 return iterative_hash_host_wide_int (h->offset,
355 htab_hash_pointer (h->map.base.from));
358 /* Lookup a heap var for FROM, and return it if we find one. */
360 static tree
361 heapvar_lookup (tree from, unsigned HOST_WIDE_INT offset)
363 struct heapvar_map *h, in;
364 in.map.base.from = from;
365 in.offset = offset;
366 h = (struct heapvar_map *) htab_find_with_hash (heapvar_for_stmt, &in,
367 heapvar_map_hash (&in));
368 if (h)
369 return h->map.to;
370 return NULL_TREE;
373 /* Insert a mapping FROM->TO in the heap var for statement
374 hashtable. */
376 static void
377 heapvar_insert (tree from, unsigned HOST_WIDE_INT offset, tree to)
379 struct heapvar_map *h;
380 void **loc;
382 h = ggc_alloc_heapvar_map ();
383 h->map.base.from = from;
384 h->offset = offset;
385 h->map.hash = heapvar_map_hash (h);
386 h->map.to = to;
387 loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->map.hash, INSERT);
388 gcc_assert (*loc == NULL);
389 *(struct heapvar_map **) loc = h;
392 /* Return a new variable info structure consisting for a variable
393 named NAME, and using constraint graph node NODE. Append it
394 to the vector of variable info structures. */
396 static varinfo_t
397 new_var_info (tree t, const char *name)
399 unsigned index = VEC_length (varinfo_t, varmap);
400 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
402 ret->id = index;
403 ret->name = name;
404 ret->decl = t;
405 /* Vars without decl are artificial and do not have sub-variables. */
406 ret->is_artificial_var = (t == NULL_TREE);
407 ret->is_special_var = false;
408 ret->is_unknown_size_var = false;
409 ret->is_full_var = (t == NULL_TREE);
410 ret->is_heap_var = false;
411 ret->is_restrict_var = false;
412 ret->may_have_pointers = true;
413 ret->only_restrict_pointers = false;
414 ret->is_global_var = (t == NULL_TREE);
415 ret->is_fn_info = false;
416 if (t && DECL_P (t))
417 ret->is_global_var = is_global_var (t);
418 ret->solution = BITMAP_ALLOC (&pta_obstack);
419 ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
420 ret->next = NULL;
422 stats.total_vars++;
424 VEC_safe_push (varinfo_t, heap, varmap, ret);
426 return ret;
430 /* A map mapping call statements to per-stmt variables for uses
431 and clobbers specific to the call. */
432 struct pointer_map_t *call_stmt_vars;
434 /* Lookup or create the variable for the call statement CALL. */
436 static varinfo_t
437 get_call_vi (gimple call)
439 void **slot_p;
440 varinfo_t vi, vi2;
442 slot_p = pointer_map_insert (call_stmt_vars, call);
443 if (*slot_p)
444 return (varinfo_t) *slot_p;
446 vi = new_var_info (NULL_TREE, "CALLUSED");
447 vi->offset = 0;
448 vi->size = 1;
449 vi->fullsize = 2;
450 vi->is_full_var = true;
452 vi->next = vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED");
453 vi2->offset = 1;
454 vi2->size = 1;
455 vi2->fullsize = 2;
456 vi2->is_full_var = true;
458 *slot_p = (void *) vi;
459 return vi;
462 /* Lookup the variable for the call statement CALL representing
463 the uses. Returns NULL if there is nothing special about this call. */
465 static varinfo_t
466 lookup_call_use_vi (gimple call)
468 void **slot_p;
470 slot_p = pointer_map_contains (call_stmt_vars, call);
471 if (slot_p)
472 return (varinfo_t) *slot_p;
474 return NULL;
477 /* Lookup the variable for the call statement CALL representing
478 the clobbers. Returns NULL if there is nothing special about this call. */
480 static varinfo_t
481 lookup_call_clobber_vi (gimple call)
483 varinfo_t uses = lookup_call_use_vi (call);
484 if (!uses)
485 return NULL;
487 return uses->next;
490 /* Lookup or create the variable for the call statement CALL representing
491 the uses. */
493 static varinfo_t
494 get_call_use_vi (gimple call)
496 return get_call_vi (call);
499 /* Lookup or create the variable for the call statement CALL representing
500 the clobbers. */
502 static varinfo_t ATTRIBUTE_UNUSED
503 get_call_clobber_vi (gimple call)
505 return get_call_vi (call)->next;
509 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
511 /* An expression that appears in a constraint. */
513 struct constraint_expr
515 /* Constraint type. */
516 constraint_expr_type type;
518 /* Variable we are referring to in the constraint. */
519 unsigned int var;
521 /* Offset, in bits, of this constraint from the beginning of
522 variables it ends up referring to.
524 IOW, in a deref constraint, we would deref, get the result set,
525 then add OFFSET to each member. */
526 HOST_WIDE_INT offset;
529 /* Use 0x8000... as special unknown offset. */
530 #define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
532 typedef struct constraint_expr ce_s;
533 DEF_VEC_O(ce_s);
534 DEF_VEC_ALLOC_O(ce_s, heap);
535 static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool, bool);
536 static void get_constraint_for (tree, VEC(ce_s, heap) **);
537 static void get_constraint_for_rhs (tree, VEC(ce_s, heap) **);
538 static void do_deref (VEC (ce_s, heap) **);
540 /* Our set constraints are made up of two constraint expressions, one
541 LHS, and one RHS.
543 As described in the introduction, our set constraints each represent an
544 operation between set valued variables.
546 struct constraint
548 struct constraint_expr lhs;
549 struct constraint_expr rhs;
552 /* List of constraints that we use to build the constraint graph from. */
554 static VEC(constraint_t,heap) *constraints;
555 static alloc_pool constraint_pool;
557 /* The constraint graph is represented as an array of bitmaps
558 containing successor nodes. */
560 struct constraint_graph
562 /* Size of this graph, which may be different than the number of
563 nodes in the variable map. */
564 unsigned int size;
566 /* Explicit successors of each node. */
567 bitmap *succs;
569 /* Implicit predecessors of each node (Used for variable
570 substitution). */
571 bitmap *implicit_preds;
573 /* Explicit predecessors of each node (Used for variable substitution). */
574 bitmap *preds;
576 /* Indirect cycle representatives, or -1 if the node has no indirect
577 cycles. */
578 int *indirect_cycles;
580 /* Representative node for a node. rep[a] == a unless the node has
581 been unified. */
582 unsigned int *rep;
584 /* Equivalence class representative for a label. This is used for
585 variable substitution. */
586 int *eq_rep;
588 /* Pointer equivalence label for a node. All nodes with the same
589 pointer equivalence label can be unified together at some point
590 (either during constraint optimization or after the constraint
591 graph is built). */
592 unsigned int *pe;
594 /* Pointer equivalence representative for a label. This is used to
595 handle nodes that are pointer equivalent but not location
596 equivalent. We can unite these once the addressof constraints
597 are transformed into initial points-to sets. */
598 int *pe_rep;
600 /* Pointer equivalence label for each node, used during variable
601 substitution. */
602 unsigned int *pointer_label;
604 /* Location equivalence label for each node, used during location
605 equivalence finding. */
606 unsigned int *loc_label;
608 /* Pointed-by set for each node, used during location equivalence
609 finding. This is pointed-by rather than pointed-to, because it
610 is constructed using the predecessor graph. */
611 bitmap *pointed_by;
613 /* Points to sets for pointer equivalence. This is *not* the actual
614 points-to sets for nodes. */
615 bitmap *points_to;
617 /* Bitmap of nodes where the bit is set if the node is a direct
618 node. Used for variable substitution. */
619 sbitmap direct_nodes;
621 /* Bitmap of nodes where the bit is set if the node is address
622 taken. Used for variable substitution. */
623 bitmap address_taken;
625 /* Vector of complex constraints for each graph node. Complex
626 constraints are those involving dereferences or offsets that are
627 not 0. */
628 VEC(constraint_t,heap) **complex;
631 static constraint_graph_t graph;
633 /* During variable substitution and the offline version of indirect
634 cycle finding, we create nodes to represent dereferences and
635 address taken constraints. These represent where these start and
636 end. */
637 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
638 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
640 /* Return the representative node for NODE, if NODE has been unioned
641 with another NODE.
642 This function performs path compression along the way to finding
643 the representative. */
645 static unsigned int
646 find (unsigned int node)
648 gcc_assert (node < graph->size);
649 if (graph->rep[node] != node)
650 return graph->rep[node] = find (graph->rep[node]);
651 return node;
654 /* Union the TO and FROM nodes to the TO nodes.
655 Note that at some point in the future, we may want to do
656 union-by-rank, in which case we are going to have to return the
657 node we unified to. */
659 static bool
660 unite (unsigned int to, unsigned int from)
662 gcc_assert (to < graph->size && from < graph->size);
663 if (to != from && graph->rep[from] != to)
665 graph->rep[from] = to;
666 return true;
668 return false;
671 /* Create a new constraint consisting of LHS and RHS expressions. */
673 static constraint_t
674 new_constraint (const struct constraint_expr lhs,
675 const struct constraint_expr rhs)
677 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
678 ret->lhs = lhs;
679 ret->rhs = rhs;
680 return ret;
683 /* Print out constraint C to FILE. */
685 static void
686 dump_constraint (FILE *file, constraint_t c)
688 if (c->lhs.type == ADDRESSOF)
689 fprintf (file, "&");
690 else if (c->lhs.type == DEREF)
691 fprintf (file, "*");
692 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
693 if (c->lhs.offset == UNKNOWN_OFFSET)
694 fprintf (file, " + UNKNOWN");
695 else if (c->lhs.offset != 0)
696 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
697 fprintf (file, " = ");
698 if (c->rhs.type == ADDRESSOF)
699 fprintf (file, "&");
700 else if (c->rhs.type == DEREF)
701 fprintf (file, "*");
702 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
703 if (c->rhs.offset == UNKNOWN_OFFSET)
704 fprintf (file, " + UNKNOWN");
705 else if (c->rhs.offset != 0)
706 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
707 fprintf (file, "\n");
711 void debug_constraint (constraint_t);
712 void debug_constraints (void);
713 void debug_constraint_graph (void);
714 void debug_solution_for_var (unsigned int);
715 void debug_sa_points_to_info (void);
717 /* Print out constraint C to stderr. */
719 DEBUG_FUNCTION void
720 debug_constraint (constraint_t c)
722 dump_constraint (stderr, c);
725 /* Print out all constraints to FILE */
727 static void
728 dump_constraints (FILE *file, int from)
730 int i;
731 constraint_t c;
732 for (i = from; VEC_iterate (constraint_t, constraints, i, c); i++)
733 dump_constraint (file, c);
736 /* Print out all constraints to stderr. */
738 DEBUG_FUNCTION void
739 debug_constraints (void)
741 dump_constraints (stderr, 0);
744 /* Print out to FILE the edge in the constraint graph that is created by
745 constraint c. The edge may have a label, depending on the type of
746 constraint that it represents. If complex1, e.g: a = *b, then the label
747 is "=*", if complex2, e.g: *a = b, then the label is "*=", if
748 complex with an offset, e.g: a = b + 8, then the label is "+".
749 Otherwise the edge has no label. */
751 static void
752 dump_constraint_edge (FILE *file, constraint_t c)
754 if (c->rhs.type != ADDRESSOF)
756 const char *src = get_varinfo (c->rhs.var)->name;
757 const char *dst = get_varinfo (c->lhs.var)->name;
758 fprintf (file, " \"%s\" -> \"%s\" ", src, dst);
759 /* Due to preprocessing of constraints, instructions like *a = *b are
760 illegal; thus, we do not have to handle such cases. */
761 if (c->lhs.type == DEREF)
762 fprintf (file, " [ label=\"*=\" ] ;\n");
763 else if (c->rhs.type == DEREF)
764 fprintf (file, " [ label=\"=*\" ] ;\n");
765 else
767 /* We must check the case where the constraint is an offset.
768 In this case, it is treated as a complex constraint. */
769 if (c->rhs.offset != c->lhs.offset)
770 fprintf (file, " [ label=\"+\" ] ;\n");
771 else
772 fprintf (file, " ;\n");
777 /* Print the constraint graph in dot format. */
779 static void
780 dump_constraint_graph (FILE *file)
782 unsigned int i=0, size;
783 constraint_t c;
785 /* Only print the graph if it has already been initialized: */
786 if (!graph)
787 return;
789 /* Print the constraints used to produce the constraint graph. The
790 constraints will be printed as comments in the dot file: */
791 fprintf (file, "\n\n/* Constraints used in the constraint graph:\n");
792 dump_constraints (file, 0);
793 fprintf (file, "*/\n");
795 /* Prints the header of the dot file: */
796 fprintf (file, "\n\n// The constraint graph in dot format:\n");
797 fprintf (file, "strict digraph {\n");
798 fprintf (file, " node [\n shape = box\n ]\n");
799 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
800 fprintf (file, "\n // List of nodes in the constraint graph:\n");
802 /* The next lines print the nodes in the graph. In order to get the
803 number of nodes in the graph, we must choose the minimum between the
804 vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
805 yet been initialized, then graph->size == 0, otherwise we must only
806 read nodes that have an entry in VEC (varinfo_t, varmap). */
807 size = VEC_length (varinfo_t, varmap);
808 size = size < graph->size ? size : graph->size;
809 for (i = 0; i < size; i++)
811 const char *name = get_varinfo (graph->rep[i])->name;
812 fprintf (file, " \"%s\" ;\n", name);
815 /* Go over the list of constraints printing the edges in the constraint
816 graph. */
817 fprintf (file, "\n // The constraint edges:\n");
818 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
819 if (c)
820 dump_constraint_edge (file, c);
822 /* Prints the tail of the dot file. By now, only the closing bracket. */
823 fprintf (file, "}\n\n\n");
826 /* Print out the constraint graph to stderr. */
828 DEBUG_FUNCTION void
829 debug_constraint_graph (void)
831 dump_constraint_graph (stderr);
834 /* SOLVER FUNCTIONS
836 The solver is a simple worklist solver, that works on the following
837 algorithm:
839 sbitmap changed_nodes = all zeroes;
840 changed_count = 0;
841 For each node that is not already collapsed:
842 changed_count++;
843 set bit in changed nodes
845 while (changed_count > 0)
847 compute topological ordering for constraint graph
849 find and collapse cycles in the constraint graph (updating
850 changed if necessary)
852 for each node (n) in the graph in topological order:
853 changed_count--;
855 Process each complex constraint associated with the node,
856 updating changed if necessary.
858 For each outgoing edge from n, propagate the solution from n to
859 the destination of the edge, updating changed as necessary.
861 } */
863 /* Return true if two constraint expressions A and B are equal. */
865 static bool
866 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
868 return a.type == b.type && a.var == b.var && a.offset == b.offset;
871 /* Return true if constraint expression A is less than constraint expression
872 B. This is just arbitrary, but consistent, in order to give them an
873 ordering. */
875 static bool
876 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
878 if (a.type == b.type)
880 if (a.var == b.var)
881 return a.offset < b.offset;
882 else
883 return a.var < b.var;
885 else
886 return a.type < b.type;
889 /* Return true if constraint A is less than constraint B. This is just
890 arbitrary, but consistent, in order to give them an ordering. */
892 static bool
893 constraint_less (const constraint_t a, const constraint_t b)
895 if (constraint_expr_less (a->lhs, b->lhs))
896 return true;
897 else if (constraint_expr_less (b->lhs, a->lhs))
898 return false;
899 else
900 return constraint_expr_less (a->rhs, b->rhs);
903 /* Return true if two constraints A and B are equal. */
905 static bool
906 constraint_equal (struct constraint a, struct constraint b)
908 return constraint_expr_equal (a.lhs, b.lhs)
909 && constraint_expr_equal (a.rhs, b.rhs);
913 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
915 static constraint_t
916 constraint_vec_find (VEC(constraint_t,heap) *vec,
917 struct constraint lookfor)
919 unsigned int place;
920 constraint_t found;
922 if (vec == NULL)
923 return NULL;
925 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
926 if (place >= VEC_length (constraint_t, vec))
927 return NULL;
928 found = VEC_index (constraint_t, vec, place);
929 if (!constraint_equal (*found, lookfor))
930 return NULL;
931 return found;
934 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
936 static void
937 constraint_set_union (VEC(constraint_t,heap) **to,
938 VEC(constraint_t,heap) **from)
940 int i;
941 constraint_t c;
943 FOR_EACH_VEC_ELT (constraint_t, *from, i, c)
945 if (constraint_vec_find (*to, *c) == NULL)
947 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
948 constraint_less);
949 VEC_safe_insert (constraint_t, heap, *to, place, c);
954 /* Expands the solution in SET to all sub-fields of variables included.
955 Union the expanded result into RESULT. */
957 static void
958 solution_set_expand (bitmap result, bitmap set)
960 bitmap_iterator bi;
961 bitmap vars = NULL;
962 unsigned j;
964 /* In a first pass record all variables we need to add all
965 sub-fields off. This avoids quadratic behavior. */
966 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
968 varinfo_t v = get_varinfo (j);
969 if (v->is_artificial_var
970 || v->is_full_var)
971 continue;
972 v = lookup_vi_for_tree (v->decl);
973 if (vars == NULL)
974 vars = BITMAP_ALLOC (NULL);
975 bitmap_set_bit (vars, v->id);
978 /* In the second pass now do the addition to the solution and
979 to speed up solving add it to the delta as well. */
980 if (vars != NULL)
982 EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
984 varinfo_t v = get_varinfo (j);
985 for (; v != NULL; v = v->next)
986 bitmap_set_bit (result, v->id);
988 BITMAP_FREE (vars);
992 /* Take a solution set SET, add OFFSET to each member of the set, and
993 overwrite SET with the result when done. */
995 static void
996 solution_set_add (bitmap set, HOST_WIDE_INT offset)
998 bitmap result = BITMAP_ALLOC (&iteration_obstack);
999 unsigned int i;
1000 bitmap_iterator bi;
1002 /* If the offset is unknown we have to expand the solution to
1003 all subfields. */
1004 if (offset == UNKNOWN_OFFSET)
1006 solution_set_expand (set, set);
1007 return;
1010 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1012 varinfo_t vi = get_varinfo (i);
1014 /* If this is a variable with just one field just set its bit
1015 in the result. */
1016 if (vi->is_artificial_var
1017 || vi->is_unknown_size_var
1018 || vi->is_full_var)
1019 bitmap_set_bit (result, i);
1020 else
1022 unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
1024 /* If the offset makes the pointer point to before the
1025 variable use offset zero for the field lookup. */
1026 if (offset < 0
1027 && fieldoffset > vi->offset)
1028 fieldoffset = 0;
1030 if (offset != 0)
1031 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
1033 bitmap_set_bit (result, vi->id);
1034 /* If the result is not exactly at fieldoffset include the next
1035 field as well. See get_constraint_for_ptr_offset for more
1036 rationale. */
1037 if (vi->offset != fieldoffset
1038 && vi->next != NULL)
1039 bitmap_set_bit (result, vi->next->id);
1043 bitmap_copy (set, result);
1044 BITMAP_FREE (result);
1047 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
1048 process. */
1050 static bool
1051 set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
1053 if (inc == 0)
1054 return bitmap_ior_into (to, from);
1055 else
1057 bitmap tmp;
1058 bool res;
1060 tmp = BITMAP_ALLOC (&iteration_obstack);
1061 bitmap_copy (tmp, from);
1062 solution_set_add (tmp, inc);
1063 res = bitmap_ior_into (to, tmp);
1064 BITMAP_FREE (tmp);
1065 return res;
1069 /* Insert constraint C into the list of complex constraints for graph
1070 node VAR. */
1072 static void
1073 insert_into_complex (constraint_graph_t graph,
1074 unsigned int var, constraint_t c)
1076 VEC (constraint_t, heap) *complex = graph->complex[var];
1077 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
1078 constraint_less);
1080 /* Only insert constraints that do not already exist. */
1081 if (place >= VEC_length (constraint_t, complex)
1082 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
1083 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
1087 /* Condense two variable nodes into a single variable node, by moving
1088 all associated info from SRC to TO. */
1090 static void
1091 merge_node_constraints (constraint_graph_t graph, unsigned int to,
1092 unsigned int from)
1094 unsigned int i;
1095 constraint_t c;
1097 gcc_assert (find (from) == to);
1099 /* Move all complex constraints from src node into to node */
1100 FOR_EACH_VEC_ELT (constraint_t, graph->complex[from], i, c)
1102 /* In complex constraints for node src, we may have either
1103 a = *src, and *src = a, or an offseted constraint which are
1104 always added to the rhs node's constraints. */
1106 if (c->rhs.type == DEREF)
1107 c->rhs.var = to;
1108 else if (c->lhs.type == DEREF)
1109 c->lhs.var = to;
1110 else
1111 c->rhs.var = to;
1113 constraint_set_union (&graph->complex[to], &graph->complex[from]);
1114 VEC_free (constraint_t, heap, graph->complex[from]);
1115 graph->complex[from] = NULL;
1119 /* Remove edges involving NODE from GRAPH. */
1121 static void
1122 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
1124 if (graph->succs[node])
1125 BITMAP_FREE (graph->succs[node]);
1128 /* Merge GRAPH nodes FROM and TO into node TO. */
1130 static void
1131 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1132 unsigned int from)
1134 if (graph->indirect_cycles[from] != -1)
1136 /* If we have indirect cycles with the from node, and we have
1137 none on the to node, the to node has indirect cycles from the
1138 from node now that they are unified.
1139 If indirect cycles exist on both, unify the nodes that they
1140 are in a cycle with, since we know they are in a cycle with
1141 each other. */
1142 if (graph->indirect_cycles[to] == -1)
1143 graph->indirect_cycles[to] = graph->indirect_cycles[from];
1146 /* Merge all the successor edges. */
1147 if (graph->succs[from])
1149 if (!graph->succs[to])
1150 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1151 bitmap_ior_into (graph->succs[to],
1152 graph->succs[from]);
1155 clear_edges_for_node (graph, from);
1159 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1160 it doesn't exist in the graph already. */
1162 static void
1163 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1164 unsigned int from)
1166 if (to == from)
1167 return;
1169 if (!graph->implicit_preds[to])
1170 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1172 if (bitmap_set_bit (graph->implicit_preds[to], from))
1173 stats.num_implicit_edges++;
1176 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1177 it doesn't exist in the graph already.
1178 Return false if the edge already existed, true otherwise. */
1180 static void
1181 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1182 unsigned int from)
1184 if (!graph->preds[to])
1185 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1186 bitmap_set_bit (graph->preds[to], from);
1189 /* Add a graph edge to GRAPH, going from FROM to TO if
1190 it doesn't exist in the graph already.
1191 Return false if the edge already existed, true otherwise. */
1193 static bool
1194 add_graph_edge (constraint_graph_t graph, unsigned int to,
1195 unsigned int from)
1197 if (to == from)
1199 return false;
1201 else
1203 bool r = false;
1205 if (!graph->succs[from])
1206 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1207 if (bitmap_set_bit (graph->succs[from], to))
1209 r = true;
1210 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1211 stats.num_edges++;
1213 return r;
1218 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1220 static bool
1221 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1222 unsigned int dest)
1224 return (graph->succs[dest]
1225 && bitmap_bit_p (graph->succs[dest], src));
1228 /* Initialize the constraint graph structure to contain SIZE nodes. */
1230 static void
1231 init_graph (unsigned int size)
1233 unsigned int j;
1235 graph = XCNEW (struct constraint_graph);
1236 graph->size = size;
1237 graph->succs = XCNEWVEC (bitmap, graph->size);
1238 graph->indirect_cycles = XNEWVEC (int, graph->size);
1239 graph->rep = XNEWVEC (unsigned int, graph->size);
1240 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
1241 graph->pe = XCNEWVEC (unsigned int, graph->size);
1242 graph->pe_rep = XNEWVEC (int, graph->size);
1244 for (j = 0; j < graph->size; j++)
1246 graph->rep[j] = j;
1247 graph->pe_rep[j] = -1;
1248 graph->indirect_cycles[j] = -1;
1252 /* Build the constraint graph, adding only predecessor edges right now. */
1254 static void
1255 build_pred_graph (void)
1257 int i;
1258 constraint_t c;
1259 unsigned int j;
1261 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1262 graph->preds = XCNEWVEC (bitmap, graph->size);
1263 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1264 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1265 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1266 graph->points_to = XCNEWVEC (bitmap, graph->size);
1267 graph->eq_rep = XNEWVEC (int, graph->size);
1268 graph->direct_nodes = sbitmap_alloc (graph->size);
1269 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1270 sbitmap_zero (graph->direct_nodes);
1272 for (j = 0; j < FIRST_REF_NODE; j++)
1274 if (!get_varinfo (j)->is_special_var)
1275 SET_BIT (graph->direct_nodes, j);
1278 for (j = 0; j < graph->size; j++)
1279 graph->eq_rep[j] = -1;
1281 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
1282 graph->indirect_cycles[j] = -1;
1284 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
1286 struct constraint_expr lhs = c->lhs;
1287 struct constraint_expr rhs = c->rhs;
1288 unsigned int lhsvar = lhs.var;
1289 unsigned int rhsvar = rhs.var;
1291 if (lhs.type == DEREF)
1293 /* *x = y. */
1294 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1295 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1297 else if (rhs.type == DEREF)
1299 /* x = *y */
1300 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1301 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1302 else
1303 RESET_BIT (graph->direct_nodes, lhsvar);
1305 else if (rhs.type == ADDRESSOF)
1307 varinfo_t v;
1309 /* x = &y */
1310 if (graph->points_to[lhsvar] == NULL)
1311 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1312 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1314 if (graph->pointed_by[rhsvar] == NULL)
1315 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1316 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1318 /* Implicitly, *x = y */
1319 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1321 /* All related variables are no longer direct nodes. */
1322 RESET_BIT (graph->direct_nodes, rhsvar);
1323 v = get_varinfo (rhsvar);
1324 if (!v->is_full_var)
1326 v = lookup_vi_for_tree (v->decl);
1329 RESET_BIT (graph->direct_nodes, v->id);
1330 v = v->next;
1332 while (v != NULL);
1334 bitmap_set_bit (graph->address_taken, rhsvar);
1336 else if (lhsvar > anything_id
1337 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1339 /* x = y */
1340 add_pred_graph_edge (graph, lhsvar, rhsvar);
1341 /* Implicitly, *x = *y */
1342 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1343 FIRST_REF_NODE + rhsvar);
1345 else if (lhs.offset != 0 || rhs.offset != 0)
1347 if (rhs.offset != 0)
1348 RESET_BIT (graph->direct_nodes, lhs.var);
1349 else if (lhs.offset != 0)
1350 RESET_BIT (graph->direct_nodes, rhs.var);
1355 /* Build the constraint graph, adding successor edges. */
1357 static void
1358 build_succ_graph (void)
1360 unsigned i, t;
1361 constraint_t c;
1363 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
1365 struct constraint_expr lhs;
1366 struct constraint_expr rhs;
1367 unsigned int lhsvar;
1368 unsigned int rhsvar;
1370 if (!c)
1371 continue;
1373 lhs = c->lhs;
1374 rhs = c->rhs;
1375 lhsvar = find (lhs.var);
1376 rhsvar = find (rhs.var);
1378 if (lhs.type == DEREF)
1380 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1381 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1383 else if (rhs.type == DEREF)
1385 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1386 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1388 else if (rhs.type == ADDRESSOF)
1390 /* x = &y */
1391 gcc_assert (find (rhs.var) == rhs.var);
1392 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1394 else if (lhsvar > anything_id
1395 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1397 add_graph_edge (graph, lhsvar, rhsvar);
1401 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1402 receive pointers. */
1403 t = find (storedanything_id);
1404 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1406 if (!TEST_BIT (graph->direct_nodes, i)
1407 && get_varinfo (i)->may_have_pointers)
1408 add_graph_edge (graph, find (i), t);
1411 /* Everything stored to ANYTHING also potentially escapes. */
1412 add_graph_edge (graph, find (escaped_id), t);
1416 /* Changed variables on the last iteration. */
1417 static unsigned int changed_count;
1418 static sbitmap changed;
1420 /* Strongly Connected Component visitation info. */
1422 struct scc_info
1424 sbitmap visited;
1425 sbitmap deleted;
1426 unsigned int *dfs;
1427 unsigned int *node_mapping;
1428 int current_index;
1429 VEC(unsigned,heap) *scc_stack;
1433 /* Recursive routine to find strongly connected components in GRAPH.
1434 SI is the SCC info to store the information in, and N is the id of current
1435 graph node we are processing.
1437 This is Tarjan's strongly connected component finding algorithm, as
1438 modified by Nuutila to keep only non-root nodes on the stack.
1439 The algorithm can be found in "On finding the strongly connected
1440 connected components in a directed graph" by Esko Nuutila and Eljas
1441 Soisalon-Soininen, in Information Processing Letters volume 49,
1442 number 1, pages 9-14. */
1444 static void
1445 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1447 unsigned int i;
1448 bitmap_iterator bi;
1449 unsigned int my_dfs;
1451 SET_BIT (si->visited, n);
1452 si->dfs[n] = si->current_index ++;
1453 my_dfs = si->dfs[n];
1455 /* Visit all the successors. */
1456 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1458 unsigned int w;
1460 if (i > LAST_REF_NODE)
1461 break;
1463 w = find (i);
1464 if (TEST_BIT (si->deleted, w))
1465 continue;
1467 if (!TEST_BIT (si->visited, w))
1468 scc_visit (graph, si, w);
1470 unsigned int t = find (w);
1471 unsigned int nnode = find (n);
1472 gcc_assert (nnode == n);
1474 if (si->dfs[t] < si->dfs[nnode])
1475 si->dfs[n] = si->dfs[t];
1479 /* See if any components have been identified. */
1480 if (si->dfs[n] == my_dfs)
1482 if (VEC_length (unsigned, si->scc_stack) > 0
1483 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1485 bitmap scc = BITMAP_ALLOC (NULL);
1486 unsigned int lowest_node;
1487 bitmap_iterator bi;
1489 bitmap_set_bit (scc, n);
1491 while (VEC_length (unsigned, si->scc_stack) != 0
1492 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1494 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1496 bitmap_set_bit (scc, w);
1499 lowest_node = bitmap_first_set_bit (scc);
1500 gcc_assert (lowest_node < FIRST_REF_NODE);
1502 /* Collapse the SCC nodes into a single node, and mark the
1503 indirect cycles. */
1504 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1506 if (i < FIRST_REF_NODE)
1508 if (unite (lowest_node, i))
1509 unify_nodes (graph, lowest_node, i, false);
1511 else
1513 unite (lowest_node, i);
1514 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1518 SET_BIT (si->deleted, n);
1520 else
1521 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1524 /* Unify node FROM into node TO, updating the changed count if
1525 necessary when UPDATE_CHANGED is true. */
1527 static void
1528 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1529 bool update_changed)
1532 gcc_assert (to != from && find (to) == to);
1533 if (dump_file && (dump_flags & TDF_DETAILS))
1534 fprintf (dump_file, "Unifying %s to %s\n",
1535 get_varinfo (from)->name,
1536 get_varinfo (to)->name);
1538 if (update_changed)
1539 stats.unified_vars_dynamic++;
1540 else
1541 stats.unified_vars_static++;
1543 merge_graph_nodes (graph, to, from);
1544 merge_node_constraints (graph, to, from);
1546 /* Mark TO as changed if FROM was changed. If TO was already marked
1547 as changed, decrease the changed count. */
1549 if (update_changed && TEST_BIT (changed, from))
1551 RESET_BIT (changed, from);
1552 if (!TEST_BIT (changed, to))
1553 SET_BIT (changed, to);
1554 else
1556 gcc_assert (changed_count > 0);
1557 changed_count--;
1560 if (get_varinfo (from)->solution)
1562 /* If the solution changes because of the merging, we need to mark
1563 the variable as changed. */
1564 if (bitmap_ior_into (get_varinfo (to)->solution,
1565 get_varinfo (from)->solution))
1567 if (update_changed && !TEST_BIT (changed, to))
1569 SET_BIT (changed, to);
1570 changed_count++;
1574 BITMAP_FREE (get_varinfo (from)->solution);
1575 BITMAP_FREE (get_varinfo (from)->oldsolution);
1577 if (stats.iterations > 0)
1579 BITMAP_FREE (get_varinfo (to)->oldsolution);
1580 get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
1583 if (valid_graph_edge (graph, to, to))
1585 if (graph->succs[to])
1586 bitmap_clear_bit (graph->succs[to], to);
1590 /* Information needed to compute the topological ordering of a graph. */
1592 struct topo_info
1594 /* sbitmap of visited nodes. */
1595 sbitmap visited;
1596 /* Array that stores the topological order of the graph, *in
1597 reverse*. */
1598 VEC(unsigned,heap) *topo_order;
1602 /* Initialize and return a topological info structure. */
1604 static struct topo_info *
1605 init_topo_info (void)
1607 size_t size = graph->size;
1608 struct topo_info *ti = XNEW (struct topo_info);
1609 ti->visited = sbitmap_alloc (size);
1610 sbitmap_zero (ti->visited);
1611 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1612 return ti;
1616 /* Free the topological sort info pointed to by TI. */
1618 static void
1619 free_topo_info (struct topo_info *ti)
1621 sbitmap_free (ti->visited);
1622 VEC_free (unsigned, heap, ti->topo_order);
1623 free (ti);
1626 /* Visit the graph in topological order, and store the order in the
1627 topo_info structure. */
1629 static void
1630 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1631 unsigned int n)
1633 bitmap_iterator bi;
1634 unsigned int j;
1636 SET_BIT (ti->visited, n);
1638 if (graph->succs[n])
1639 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1641 if (!TEST_BIT (ti->visited, j))
1642 topo_visit (graph, ti, j);
1645 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1648 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1649 starting solution for y. */
1651 static void
1652 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1653 bitmap delta)
1655 unsigned int lhs = c->lhs.var;
1656 bool flag = false;
1657 bitmap sol = get_varinfo (lhs)->solution;
1658 unsigned int j;
1659 bitmap_iterator bi;
1660 HOST_WIDE_INT roffset = c->rhs.offset;
1662 /* Our IL does not allow this. */
1663 gcc_assert (c->lhs.offset == 0);
1665 /* If the solution of Y contains anything it is good enough to transfer
1666 this to the LHS. */
1667 if (bitmap_bit_p (delta, anything_id))
1669 flag |= bitmap_set_bit (sol, anything_id);
1670 goto done;
1673 /* If we do not know at with offset the rhs is dereferenced compute
1674 the reachability set of DELTA, conservatively assuming it is
1675 dereferenced at all valid offsets. */
1676 if (roffset == UNKNOWN_OFFSET)
1678 solution_set_expand (delta, delta);
1679 /* No further offset processing is necessary. */
1680 roffset = 0;
1683 /* For each variable j in delta (Sol(y)), add
1684 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1685 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1687 varinfo_t v = get_varinfo (j);
1688 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1689 unsigned int t;
1691 if (v->is_full_var)
1692 fieldoffset = v->offset;
1693 else if (roffset != 0)
1694 v = first_vi_for_offset (v, fieldoffset);
1695 /* If the access is outside of the variable we can ignore it. */
1696 if (!v)
1697 continue;
1701 t = find (v->id);
1703 /* Adding edges from the special vars is pointless.
1704 They don't have sets that can change. */
1705 if (get_varinfo (t)->is_special_var)
1706 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1707 /* Merging the solution from ESCAPED needlessly increases
1708 the set. Use ESCAPED as representative instead. */
1709 else if (v->id == escaped_id)
1710 flag |= bitmap_set_bit (sol, escaped_id);
1711 else if (v->may_have_pointers
1712 && add_graph_edge (graph, lhs, t))
1713 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1715 /* If the variable is not exactly at the requested offset
1716 we have to include the next one. */
1717 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1718 || v->next == NULL)
1719 break;
1721 v = v->next;
1722 fieldoffset = v->offset;
1724 while (1);
1727 done:
1728 /* If the LHS solution changed, mark the var as changed. */
1729 if (flag)
1731 get_varinfo (lhs)->solution = sol;
1732 if (!TEST_BIT (changed, lhs))
1734 SET_BIT (changed, lhs);
1735 changed_count++;
1740 /* Process a constraint C that represents *(x + off) = y using DELTA
1741 as the starting solution for x. */
1743 static void
1744 do_ds_constraint (constraint_t c, bitmap delta)
1746 unsigned int rhs = c->rhs.var;
1747 bitmap sol = get_varinfo (rhs)->solution;
1748 unsigned int j;
1749 bitmap_iterator bi;
1750 HOST_WIDE_INT loff = c->lhs.offset;
1751 bool escaped_p = false;
1753 /* Our IL does not allow this. */
1754 gcc_assert (c->rhs.offset == 0);
1756 /* If the solution of y contains ANYTHING simply use the ANYTHING
1757 solution. This avoids needlessly increasing the points-to sets. */
1758 if (bitmap_bit_p (sol, anything_id))
1759 sol = get_varinfo (find (anything_id))->solution;
1761 /* If the solution for x contains ANYTHING we have to merge the
1762 solution of y into all pointer variables which we do via
1763 STOREDANYTHING. */
1764 if (bitmap_bit_p (delta, anything_id))
1766 unsigned t = find (storedanything_id);
1767 if (add_graph_edge (graph, t, rhs))
1769 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1771 if (!TEST_BIT (changed, t))
1773 SET_BIT (changed, t);
1774 changed_count++;
1778 return;
1781 /* If we do not know at with offset the rhs is dereferenced compute
1782 the reachability set of DELTA, conservatively assuming it is
1783 dereferenced at all valid offsets. */
1784 if (loff == UNKNOWN_OFFSET)
1786 solution_set_expand (delta, delta);
1787 loff = 0;
1790 /* For each member j of delta (Sol(x)), add an edge from y to j and
1791 union Sol(y) into Sol(j) */
1792 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1794 varinfo_t v = get_varinfo (j);
1795 unsigned int t;
1796 HOST_WIDE_INT fieldoffset = v->offset + loff;
1798 if (v->is_full_var)
1799 fieldoffset = v->offset;
1800 else if (loff != 0)
1801 v = first_vi_for_offset (v, fieldoffset);
1802 /* If the access is outside of the variable we can ignore it. */
1803 if (!v)
1804 continue;
1808 if (v->may_have_pointers)
1810 /* If v is a global variable then this is an escape point. */
1811 if (v->is_global_var
1812 && !escaped_p)
1814 t = find (escaped_id);
1815 if (add_graph_edge (graph, t, rhs)
1816 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1817 && !TEST_BIT (changed, t))
1819 SET_BIT (changed, t);
1820 changed_count++;
1822 /* Enough to let rhs escape once. */
1823 escaped_p = true;
1826 if (v->is_special_var)
1827 break;
1829 t = find (v->id);
1830 if (add_graph_edge (graph, t, rhs)
1831 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1832 && !TEST_BIT (changed, t))
1834 SET_BIT (changed, t);
1835 changed_count++;
1839 /* If the variable is not exactly at the requested offset
1840 we have to include the next one. */
1841 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1842 || v->next == NULL)
1843 break;
1845 v = v->next;
1846 fieldoffset = v->offset;
1848 while (1);
1852 /* Handle a non-simple (simple meaning requires no iteration),
1853 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1855 static void
1856 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1858 if (c->lhs.type == DEREF)
1860 if (c->rhs.type == ADDRESSOF)
1862 gcc_unreachable();
1864 else
1866 /* *x = y */
1867 do_ds_constraint (c, delta);
1870 else if (c->rhs.type == DEREF)
1872 /* x = *y */
1873 if (!(get_varinfo (c->lhs.var)->is_special_var))
1874 do_sd_constraint (graph, c, delta);
1876 else
1878 bitmap tmp;
1879 bitmap solution;
1880 bool flag = false;
1882 gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
1883 solution = get_varinfo (c->rhs.var)->solution;
1884 tmp = get_varinfo (c->lhs.var)->solution;
1886 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
1888 if (flag)
1890 get_varinfo (c->lhs.var)->solution = tmp;
1891 if (!TEST_BIT (changed, c->lhs.var))
1893 SET_BIT (changed, c->lhs.var);
1894 changed_count++;
1900 /* Initialize and return a new SCC info structure. */
1902 static struct scc_info *
1903 init_scc_info (size_t size)
1905 struct scc_info *si = XNEW (struct scc_info);
1906 size_t i;
1908 si->current_index = 0;
1909 si->visited = sbitmap_alloc (size);
1910 sbitmap_zero (si->visited);
1911 si->deleted = sbitmap_alloc (size);
1912 sbitmap_zero (si->deleted);
1913 si->node_mapping = XNEWVEC (unsigned int, size);
1914 si->dfs = XCNEWVEC (unsigned int, size);
1916 for (i = 0; i < size; i++)
1917 si->node_mapping[i] = i;
1919 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1920 return si;
1923 /* Free an SCC info structure pointed to by SI */
1925 static void
1926 free_scc_info (struct scc_info *si)
1928 sbitmap_free (si->visited);
1929 sbitmap_free (si->deleted);
1930 free (si->node_mapping);
1931 free (si->dfs);
1932 VEC_free (unsigned, heap, si->scc_stack);
1933 free (si);
1937 /* Find indirect cycles in GRAPH that occur, using strongly connected
1938 components, and note them in the indirect cycles map.
1940 This technique comes from Ben Hardekopf and Calvin Lin,
1941 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1942 Lines of Code", submitted to PLDI 2007. */
1944 static void
1945 find_indirect_cycles (constraint_graph_t graph)
1947 unsigned int i;
1948 unsigned int size = graph->size;
1949 struct scc_info *si = init_scc_info (size);
1951 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1952 if (!TEST_BIT (si->visited, i) && find (i) == i)
1953 scc_visit (graph, si, i);
1955 free_scc_info (si);
1958 /* Compute a topological ordering for GRAPH, and store the result in the
1959 topo_info structure TI. */
1961 static void
1962 compute_topo_order (constraint_graph_t graph,
1963 struct topo_info *ti)
1965 unsigned int i;
1966 unsigned int size = graph->size;
1968 for (i = 0; i != size; ++i)
1969 if (!TEST_BIT (ti->visited, i) && find (i) == i)
1970 topo_visit (graph, ti, i);
1973 /* Structure used to for hash value numbering of pointer equivalence
1974 classes. */
1976 typedef struct equiv_class_label
1978 hashval_t hashcode;
1979 unsigned int equivalence_class;
1980 bitmap labels;
1981 } *equiv_class_label_t;
1982 typedef const struct equiv_class_label *const_equiv_class_label_t;
1984 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1985 classes. */
1986 static htab_t pointer_equiv_class_table;
1988 /* A hashtable for mapping a bitmap of labels->location equivalence
1989 classes. */
1990 static htab_t location_equiv_class_table;
1992 /* Hash function for a equiv_class_label_t */
1994 static hashval_t
1995 equiv_class_label_hash (const void *p)
1997 const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
1998 return ecl->hashcode;
2001 /* Equality function for two equiv_class_label_t's. */
2003 static int
2004 equiv_class_label_eq (const void *p1, const void *p2)
2006 const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
2007 const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
2008 return (eql1->hashcode == eql2->hashcode
2009 && bitmap_equal_p (eql1->labels, eql2->labels));
2012 /* Lookup a equivalence class in TABLE by the bitmap of LABELS it
2013 contains. */
2015 static unsigned int
2016 equiv_class_lookup (htab_t table, bitmap labels)
2018 void **slot;
2019 struct equiv_class_label ecl;
2021 ecl.labels = labels;
2022 ecl.hashcode = bitmap_hash (labels);
2024 slot = htab_find_slot_with_hash (table, &ecl,
2025 ecl.hashcode, NO_INSERT);
2026 if (!slot)
2027 return 0;
2028 else
2029 return ((equiv_class_label_t) *slot)->equivalence_class;
2033 /* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
2034 to TABLE. */
2036 static void
2037 equiv_class_add (htab_t table, unsigned int equivalence_class,
2038 bitmap labels)
2040 void **slot;
2041 equiv_class_label_t ecl = XNEW (struct equiv_class_label);
2043 ecl->labels = labels;
2044 ecl->equivalence_class = equivalence_class;
2045 ecl->hashcode = bitmap_hash (labels);
2047 slot = htab_find_slot_with_hash (table, ecl,
2048 ecl->hashcode, INSERT);
2049 gcc_assert (!*slot);
2050 *slot = (void *) ecl;
2053 /* Perform offline variable substitution.
2055 This is a worst case quadratic time way of identifying variables
2056 that must have equivalent points-to sets, including those caused by
2057 static cycles, and single entry subgraphs, in the constraint graph.
2059 The technique is described in "Exploiting Pointer and Location
2060 Equivalence to Optimize Pointer Analysis. In the 14th International
2061 Static Analysis Symposium (SAS), August 2007." It is known as the
2062 "HU" algorithm, and is equivalent to value numbering the collapsed
2063 constraint graph including evaluating unions.
2065 The general method of finding equivalence classes is as follows:
2066 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
2067 Initialize all non-REF nodes to be direct nodes.
2068 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
2069 variable}
2070 For each constraint containing the dereference, we also do the same
2071 thing.
2073 We then compute SCC's in the graph and unify nodes in the same SCC,
2074 including pts sets.
2076 For each non-collapsed node x:
2077 Visit all unvisited explicit incoming edges.
2078 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
2079 where y->x.
2080 Lookup the equivalence class for pts(x).
2081 If we found one, equivalence_class(x) = found class.
2082 Otherwise, equivalence_class(x) = new class, and new_class is
2083 added to the lookup table.
2085 All direct nodes with the same equivalence class can be replaced
2086 with a single representative node.
2087 All unlabeled nodes (label == 0) are not pointers and all edges
2088 involving them can be eliminated.
2089 We perform these optimizations during rewrite_constraints
2091 In addition to pointer equivalence class finding, we also perform
2092 location equivalence class finding. This is the set of variables
2093 that always appear together in points-to sets. We use this to
2094 compress the size of the points-to sets. */
2096 /* Current maximum pointer equivalence class id. */
2097 static int pointer_equiv_class;
2099 /* Current maximum location equivalence class id. */
2100 static int location_equiv_class;
2102 /* Recursive routine to find strongly connected components in GRAPH,
2103 and label it's nodes with DFS numbers. */
2105 static void
2106 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2108 unsigned int i;
2109 bitmap_iterator bi;
2110 unsigned int my_dfs;
2112 gcc_assert (si->node_mapping[n] == n);
2113 SET_BIT (si->visited, n);
2114 si->dfs[n] = si->current_index ++;
2115 my_dfs = si->dfs[n];
2117 /* Visit all the successors. */
2118 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2120 unsigned int w = si->node_mapping[i];
2122 if (TEST_BIT (si->deleted, w))
2123 continue;
2125 if (!TEST_BIT (si->visited, w))
2126 condense_visit (graph, si, w);
2128 unsigned int t = si->node_mapping[w];
2129 unsigned int nnode = si->node_mapping[n];
2130 gcc_assert (nnode == n);
2132 if (si->dfs[t] < si->dfs[nnode])
2133 si->dfs[n] = si->dfs[t];
2137 /* Visit all the implicit predecessors. */
2138 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2140 unsigned int w = si->node_mapping[i];
2142 if (TEST_BIT (si->deleted, w))
2143 continue;
2145 if (!TEST_BIT (si->visited, w))
2146 condense_visit (graph, si, w);
2148 unsigned int t = si->node_mapping[w];
2149 unsigned int nnode = si->node_mapping[n];
2150 gcc_assert (nnode == n);
2152 if (si->dfs[t] < si->dfs[nnode])
2153 si->dfs[n] = si->dfs[t];
2157 /* See if any components have been identified. */
2158 if (si->dfs[n] == my_dfs)
2160 while (VEC_length (unsigned, si->scc_stack) != 0
2161 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
2163 unsigned int w = VEC_pop (unsigned, si->scc_stack);
2164 si->node_mapping[w] = n;
2166 if (!TEST_BIT (graph->direct_nodes, w))
2167 RESET_BIT (graph->direct_nodes, n);
2169 /* Unify our nodes. */
2170 if (graph->preds[w])
2172 if (!graph->preds[n])
2173 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2174 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2176 if (graph->implicit_preds[w])
2178 if (!graph->implicit_preds[n])
2179 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2180 bitmap_ior_into (graph->implicit_preds[n],
2181 graph->implicit_preds[w]);
2183 if (graph->points_to[w])
2185 if (!graph->points_to[n])
2186 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2187 bitmap_ior_into (graph->points_to[n],
2188 graph->points_to[w]);
2191 SET_BIT (si->deleted, n);
2193 else
2194 VEC_safe_push (unsigned, heap, si->scc_stack, n);
2197 /* Label pointer equivalences. */
2199 static void
2200 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2202 unsigned int i;
2203 bitmap_iterator bi;
2204 SET_BIT (si->visited, n);
2206 if (!graph->points_to[n])
2207 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2209 /* Label and union our incoming edges's points to sets. */
2210 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2212 unsigned int w = si->node_mapping[i];
2213 if (!TEST_BIT (si->visited, w))
2214 label_visit (graph, si, w);
2216 /* Skip unused edges */
2217 if (w == n || graph->pointer_label[w] == 0)
2218 continue;
2220 if (graph->points_to[w])
2221 bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
2223 /* Indirect nodes get fresh variables. */
2224 if (!TEST_BIT (graph->direct_nodes, n))
2225 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2227 if (!bitmap_empty_p (graph->points_to[n]))
2229 unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
2230 graph->points_to[n]);
2231 if (!label)
2233 label = pointer_equiv_class++;
2234 equiv_class_add (pointer_equiv_class_table,
2235 label, graph->points_to[n]);
2237 graph->pointer_label[n] = label;
2241 /* Perform offline variable substitution, discovering equivalence
2242 classes, and eliminating non-pointer variables. */
2244 static struct scc_info *
2245 perform_var_substitution (constraint_graph_t graph)
2247 unsigned int i;
2248 unsigned int size = graph->size;
2249 struct scc_info *si = init_scc_info (size);
2251 bitmap_obstack_initialize (&iteration_obstack);
2252 pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
2253 equiv_class_label_eq, free);
2254 location_equiv_class_table = htab_create (511, equiv_class_label_hash,
2255 equiv_class_label_eq, free);
2256 pointer_equiv_class = 1;
2257 location_equiv_class = 1;
2259 /* Condense the nodes, which means to find SCC's, count incoming
2260 predecessors, and unite nodes in SCC's. */
2261 for (i = 0; i < FIRST_REF_NODE; i++)
2262 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2263 condense_visit (graph, si, si->node_mapping[i]);
2265 sbitmap_zero (si->visited);
2266 /* Actually the label the nodes for pointer equivalences */
2267 for (i = 0; i < FIRST_REF_NODE; i++)
2268 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2269 label_visit (graph, si, si->node_mapping[i]);
2271 /* Calculate location equivalence labels. */
2272 for (i = 0; i < FIRST_REF_NODE; i++)
2274 bitmap pointed_by;
2275 bitmap_iterator bi;
2276 unsigned int j;
2277 unsigned int label;
2279 if (!graph->pointed_by[i])
2280 continue;
2281 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2283 /* Translate the pointed-by mapping for pointer equivalence
2284 labels. */
2285 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2287 bitmap_set_bit (pointed_by,
2288 graph->pointer_label[si->node_mapping[j]]);
2290 /* The original pointed_by is now dead. */
2291 BITMAP_FREE (graph->pointed_by[i]);
2293 /* Look up the location equivalence label if one exists, or make
2294 one otherwise. */
2295 label = equiv_class_lookup (location_equiv_class_table,
2296 pointed_by);
2297 if (label == 0)
2299 label = location_equiv_class++;
2300 equiv_class_add (location_equiv_class_table,
2301 label, pointed_by);
2303 else
2305 if (dump_file && (dump_flags & TDF_DETAILS))
2306 fprintf (dump_file, "Found location equivalence for node %s\n",
2307 get_varinfo (i)->name);
2308 BITMAP_FREE (pointed_by);
2310 graph->loc_label[i] = label;
2314 if (dump_file && (dump_flags & TDF_DETAILS))
2315 for (i = 0; i < FIRST_REF_NODE; i++)
2317 bool direct_node = TEST_BIT (graph->direct_nodes, i);
2318 fprintf (dump_file,
2319 "Equivalence classes for %s node id %d:%s are pointer: %d"
2320 ", location:%d\n",
2321 direct_node ? "Direct node" : "Indirect node", i,
2322 get_varinfo (i)->name,
2323 graph->pointer_label[si->node_mapping[i]],
2324 graph->loc_label[si->node_mapping[i]]);
2327 /* Quickly eliminate our non-pointer variables. */
2329 for (i = 0; i < FIRST_REF_NODE; i++)
2331 unsigned int node = si->node_mapping[i];
2333 if (graph->pointer_label[node] == 0)
2335 if (dump_file && (dump_flags & TDF_DETAILS))
2336 fprintf (dump_file,
2337 "%s is a non-pointer variable, eliminating edges.\n",
2338 get_varinfo (node)->name);
2339 stats.nonpointer_vars++;
2340 clear_edges_for_node (graph, node);
2344 return si;
2347 /* Free information that was only necessary for variable
2348 substitution. */
2350 static void
2351 free_var_substitution_info (struct scc_info *si)
2353 free_scc_info (si);
2354 free (graph->pointer_label);
2355 free (graph->loc_label);
2356 free (graph->pointed_by);
2357 free (graph->points_to);
2358 free (graph->eq_rep);
2359 sbitmap_free (graph->direct_nodes);
2360 htab_delete (pointer_equiv_class_table);
2361 htab_delete (location_equiv_class_table);
2362 bitmap_obstack_release (&iteration_obstack);
2365 /* Return an existing node that is equivalent to NODE, which has
2366 equivalence class LABEL, if one exists. Return NODE otherwise. */
2368 static unsigned int
2369 find_equivalent_node (constraint_graph_t graph,
2370 unsigned int node, unsigned int label)
2372 /* If the address version of this variable is unused, we can
2373 substitute it for anything else with the same label.
2374 Otherwise, we know the pointers are equivalent, but not the
2375 locations, and we can unite them later. */
2377 if (!bitmap_bit_p (graph->address_taken, node))
2379 gcc_assert (label < graph->size);
2381 if (graph->eq_rep[label] != -1)
2383 /* Unify the two variables since we know they are equivalent. */
2384 if (unite (graph->eq_rep[label], node))
2385 unify_nodes (graph, graph->eq_rep[label], node, false);
2386 return graph->eq_rep[label];
2388 else
2390 graph->eq_rep[label] = node;
2391 graph->pe_rep[label] = node;
2394 else
2396 gcc_assert (label < graph->size);
2397 graph->pe[node] = label;
2398 if (graph->pe_rep[label] == -1)
2399 graph->pe_rep[label] = node;
2402 return node;
2405 /* Unite pointer equivalent but not location equivalent nodes in
2406 GRAPH. This may only be performed once variable substitution is
2407 finished. */
2409 static void
2410 unite_pointer_equivalences (constraint_graph_t graph)
2412 unsigned int i;
2414 /* Go through the pointer equivalences and unite them to their
2415 representative, if they aren't already. */
2416 for (i = 0; i < FIRST_REF_NODE; i++)
2418 unsigned int label = graph->pe[i];
2419 if (label)
2421 int label_rep = graph->pe_rep[label];
2423 if (label_rep == -1)
2424 continue;
2426 label_rep = find (label_rep);
2427 if (label_rep >= 0 && unite (label_rep, find (i)))
2428 unify_nodes (graph, label_rep, i, false);
2433 /* Move complex constraints to the GRAPH nodes they belong to. */
2435 static void
2436 move_complex_constraints (constraint_graph_t graph)
2438 int i;
2439 constraint_t c;
2441 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
2443 if (c)
2445 struct constraint_expr lhs = c->lhs;
2446 struct constraint_expr rhs = c->rhs;
2448 if (lhs.type == DEREF)
2450 insert_into_complex (graph, lhs.var, c);
2452 else if (rhs.type == DEREF)
2454 if (!(get_varinfo (lhs.var)->is_special_var))
2455 insert_into_complex (graph, rhs.var, c);
2457 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2458 && (lhs.offset != 0 || rhs.offset != 0))
2460 insert_into_complex (graph, rhs.var, c);
2467 /* Optimize and rewrite complex constraints while performing
2468 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2469 result of perform_variable_substitution. */
2471 static void
2472 rewrite_constraints (constraint_graph_t graph,
2473 struct scc_info *si)
2475 int i;
2476 unsigned int j;
2477 constraint_t c;
2479 for (j = 0; j < graph->size; j++)
2480 gcc_assert (find (j) == j);
2482 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
2484 struct constraint_expr lhs = c->lhs;
2485 struct constraint_expr rhs = c->rhs;
2486 unsigned int lhsvar = find (lhs.var);
2487 unsigned int rhsvar = find (rhs.var);
2488 unsigned int lhsnode, rhsnode;
2489 unsigned int lhslabel, rhslabel;
2491 lhsnode = si->node_mapping[lhsvar];
2492 rhsnode = si->node_mapping[rhsvar];
2493 lhslabel = graph->pointer_label[lhsnode];
2494 rhslabel = graph->pointer_label[rhsnode];
2496 /* See if it is really a non-pointer variable, and if so, ignore
2497 the constraint. */
2498 if (lhslabel == 0)
2500 if (dump_file && (dump_flags & TDF_DETAILS))
2503 fprintf (dump_file, "%s is a non-pointer variable,"
2504 "ignoring constraint:",
2505 get_varinfo (lhs.var)->name);
2506 dump_constraint (dump_file, c);
2508 VEC_replace (constraint_t, constraints, i, NULL);
2509 continue;
2512 if (rhslabel == 0)
2514 if (dump_file && (dump_flags & TDF_DETAILS))
2517 fprintf (dump_file, "%s is a non-pointer variable,"
2518 "ignoring constraint:",
2519 get_varinfo (rhs.var)->name);
2520 dump_constraint (dump_file, c);
2522 VEC_replace (constraint_t, constraints, i, NULL);
2523 continue;
2526 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2527 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2528 c->lhs.var = lhsvar;
2529 c->rhs.var = rhsvar;
2534 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2535 part of an SCC, false otherwise. */
2537 static bool
2538 eliminate_indirect_cycles (unsigned int node)
2540 if (graph->indirect_cycles[node] != -1
2541 && !bitmap_empty_p (get_varinfo (node)->solution))
2543 unsigned int i;
2544 VEC(unsigned,heap) *queue = NULL;
2545 int queuepos;
2546 unsigned int to = find (graph->indirect_cycles[node]);
2547 bitmap_iterator bi;
2549 /* We can't touch the solution set and call unify_nodes
2550 at the same time, because unify_nodes is going to do
2551 bitmap unions into it. */
2553 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2555 if (find (i) == i && i != to)
2557 if (unite (to, i))
2558 VEC_safe_push (unsigned, heap, queue, i);
2562 for (queuepos = 0;
2563 VEC_iterate (unsigned, queue, queuepos, i);
2564 queuepos++)
2566 unify_nodes (graph, to, i, true);
2568 VEC_free (unsigned, heap, queue);
2569 return true;
2571 return false;
2574 /* Solve the constraint graph GRAPH using our worklist solver.
2575 This is based on the PW* family of solvers from the "Efficient Field
2576 Sensitive Pointer Analysis for C" paper.
2577 It works by iterating over all the graph nodes, processing the complex
2578 constraints and propagating the copy constraints, until everything stops
2579 changed. This corresponds to steps 6-8 in the solving list given above. */
2581 static void
2582 solve_graph (constraint_graph_t graph)
2584 unsigned int size = graph->size;
2585 unsigned int i;
2586 bitmap pts;
2588 changed_count = 0;
2589 changed = sbitmap_alloc (size);
2590 sbitmap_zero (changed);
2592 /* Mark all initial non-collapsed nodes as changed. */
2593 for (i = 0; i < size; i++)
2595 varinfo_t ivi = get_varinfo (i);
2596 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2597 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2598 || VEC_length (constraint_t, graph->complex[i]) > 0))
2600 SET_BIT (changed, i);
2601 changed_count++;
2605 /* Allocate a bitmap to be used to store the changed bits. */
2606 pts = BITMAP_ALLOC (&pta_obstack);
2608 while (changed_count > 0)
2610 unsigned int i;
2611 struct topo_info *ti = init_topo_info ();
2612 stats.iterations++;
2614 bitmap_obstack_initialize (&iteration_obstack);
2616 compute_topo_order (graph, ti);
2618 while (VEC_length (unsigned, ti->topo_order) != 0)
2621 i = VEC_pop (unsigned, ti->topo_order);
2623 /* If this variable is not a representative, skip it. */
2624 if (find (i) != i)
2625 continue;
2627 /* In certain indirect cycle cases, we may merge this
2628 variable to another. */
2629 if (eliminate_indirect_cycles (i) && find (i) != i)
2630 continue;
2632 /* If the node has changed, we need to process the
2633 complex constraints and outgoing edges again. */
2634 if (TEST_BIT (changed, i))
2636 unsigned int j;
2637 constraint_t c;
2638 bitmap solution;
2639 VEC(constraint_t,heap) *complex = graph->complex[i];
2640 bool solution_empty;
2642 RESET_BIT (changed, i);
2643 changed_count--;
2645 /* Compute the changed set of solution bits. */
2646 bitmap_and_compl (pts, get_varinfo (i)->solution,
2647 get_varinfo (i)->oldsolution);
2649 if (bitmap_empty_p (pts))
2650 continue;
2652 bitmap_ior_into (get_varinfo (i)->oldsolution, pts);
2654 solution = get_varinfo (i)->solution;
2655 solution_empty = bitmap_empty_p (solution);
2657 /* Process the complex constraints */
2658 FOR_EACH_VEC_ELT (constraint_t, complex, j, c)
2660 /* XXX: This is going to unsort the constraints in
2661 some cases, which will occasionally add duplicate
2662 constraints during unification. This does not
2663 affect correctness. */
2664 c->lhs.var = find (c->lhs.var);
2665 c->rhs.var = find (c->rhs.var);
2667 /* The only complex constraint that can change our
2668 solution to non-empty, given an empty solution,
2669 is a constraint where the lhs side is receiving
2670 some set from elsewhere. */
2671 if (!solution_empty || c->lhs.type != DEREF)
2672 do_complex_constraint (graph, c, pts);
2675 solution_empty = bitmap_empty_p (solution);
2677 if (!solution_empty)
2679 bitmap_iterator bi;
2680 unsigned eff_escaped_id = find (escaped_id);
2682 /* Propagate solution to all successors. */
2683 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2684 0, j, bi)
2686 bitmap tmp;
2687 bool flag;
2689 unsigned int to = find (j);
2690 tmp = get_varinfo (to)->solution;
2691 flag = false;
2693 /* Don't try to propagate to ourselves. */
2694 if (to == i)
2695 continue;
2697 /* If we propagate from ESCAPED use ESCAPED as
2698 placeholder. */
2699 if (i == eff_escaped_id)
2700 flag = bitmap_set_bit (tmp, escaped_id);
2701 else
2702 flag = set_union_with_increment (tmp, pts, 0);
2704 if (flag)
2706 get_varinfo (to)->solution = tmp;
2707 if (!TEST_BIT (changed, to))
2709 SET_BIT (changed, to);
2710 changed_count++;
2717 free_topo_info (ti);
2718 bitmap_obstack_release (&iteration_obstack);
2721 BITMAP_FREE (pts);
2722 sbitmap_free (changed);
2723 bitmap_obstack_release (&oldpta_obstack);
2726 /* Map from trees to variable infos. */
2727 static struct pointer_map_t *vi_for_tree;
2730 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2732 static void
2733 insert_vi_for_tree (tree t, varinfo_t vi)
2735 void **slot = pointer_map_insert (vi_for_tree, t);
2736 gcc_assert (vi);
2737 gcc_assert (*slot == NULL);
2738 *slot = vi;
2741 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2742 exist in the map, return NULL, otherwise, return the varinfo we found. */
2744 static varinfo_t
2745 lookup_vi_for_tree (tree t)
2747 void **slot = pointer_map_contains (vi_for_tree, t);
2748 if (slot == NULL)
2749 return NULL;
2751 return (varinfo_t) *slot;
2754 /* Return a printable name for DECL */
2756 static const char *
2757 alias_get_name (tree decl)
2759 const char *res;
2760 char *temp;
2761 int num_printed = 0;
2763 if (DECL_ASSEMBLER_NAME_SET_P (decl))
2764 res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
2765 else
2766 res= get_name (decl);
2767 if (res != NULL)
2768 return res;
2770 res = "NULL";
2771 if (!dump_file)
2772 return res;
2774 if (TREE_CODE (decl) == SSA_NAME)
2776 num_printed = asprintf (&temp, "%s_%u",
2777 alias_get_name (SSA_NAME_VAR (decl)),
2778 SSA_NAME_VERSION (decl));
2780 else if (DECL_P (decl))
2782 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2784 if (num_printed > 0)
2786 res = ggc_strdup (temp);
2787 free (temp);
2789 return res;
2792 /* Find the variable id for tree T in the map.
2793 If T doesn't exist in the map, create an entry for it and return it. */
2795 static varinfo_t
2796 get_vi_for_tree (tree t)
2798 void **slot = pointer_map_contains (vi_for_tree, t);
2799 if (slot == NULL)
2800 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2802 return (varinfo_t) *slot;
2805 /* Get a scalar constraint expression for a new temporary variable. */
2807 static struct constraint_expr
2808 new_scalar_tmp_constraint_exp (const char *name)
2810 struct constraint_expr tmp;
2811 varinfo_t vi;
2813 vi = new_var_info (NULL_TREE, name);
2814 vi->offset = 0;
2815 vi->size = -1;
2816 vi->fullsize = -1;
2817 vi->is_full_var = 1;
2819 tmp.var = vi->id;
2820 tmp.type = SCALAR;
2821 tmp.offset = 0;
2823 return tmp;
2826 /* Get a constraint expression vector from an SSA_VAR_P node.
2827 If address_p is true, the result will be taken its address of. */
2829 static void
2830 get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
2832 struct constraint_expr cexpr;
2833 varinfo_t vi;
2835 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2836 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2838 /* For parameters, get at the points-to set for the actual parm
2839 decl. */
2840 if (TREE_CODE (t) == SSA_NAME
2841 && (TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2842 || TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL)
2843 && SSA_NAME_IS_DEFAULT_DEF (t))
2845 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2846 return;
2849 vi = get_vi_for_tree (t);
2850 cexpr.var = vi->id;
2851 cexpr.type = SCALAR;
2852 cexpr.offset = 0;
2853 /* If we determine the result is "anything", and we know this is readonly,
2854 say it points to readonly memory instead. */
2855 if (cexpr.var == anything_id && TREE_READONLY (t))
2857 gcc_unreachable ();
2858 cexpr.type = ADDRESSOF;
2859 cexpr.var = readonly_id;
2862 /* If we are not taking the address of the constraint expr, add all
2863 sub-fiels of the variable as well. */
2864 if (!address_p
2865 && !vi->is_full_var)
2867 for (; vi; vi = vi->next)
2869 cexpr.var = vi->id;
2870 VEC_safe_push (ce_s, heap, *results, &cexpr);
2872 return;
2875 VEC_safe_push (ce_s, heap, *results, &cexpr);
2878 /* Process constraint T, performing various simplifications and then
2879 adding it to our list of overall constraints. */
2881 static void
2882 process_constraint (constraint_t t)
2884 struct constraint_expr rhs = t->rhs;
2885 struct constraint_expr lhs = t->lhs;
2887 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2888 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2890 /* If we didn't get any useful constraint from the lhs we get
2891 &ANYTHING as fallback from get_constraint_for. Deal with
2892 it here by turning it into *ANYTHING. */
2893 if (lhs.type == ADDRESSOF
2894 && lhs.var == anything_id)
2895 lhs.type = DEREF;
2897 /* ADDRESSOF on the lhs is invalid. */
2898 gcc_assert (lhs.type != ADDRESSOF);
2900 /* We shouldn't add constraints from things that cannot have pointers.
2901 It's not completely trivial to avoid in the callers, so do it here. */
2902 if (rhs.type != ADDRESSOF
2903 && !get_varinfo (rhs.var)->may_have_pointers)
2904 return;
2906 /* Likewise adding to the solution of a non-pointer var isn't useful. */
2907 if (!get_varinfo (lhs.var)->may_have_pointers)
2908 return;
2910 /* This can happen in our IR with things like n->a = *p */
2911 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2913 /* Split into tmp = *rhs, *lhs = tmp */
2914 struct constraint_expr tmplhs;
2915 tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
2916 process_constraint (new_constraint (tmplhs, rhs));
2917 process_constraint (new_constraint (lhs, tmplhs));
2919 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
2921 /* Split into tmp = &rhs, *lhs = tmp */
2922 struct constraint_expr tmplhs;
2923 tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
2924 process_constraint (new_constraint (tmplhs, rhs));
2925 process_constraint (new_constraint (lhs, tmplhs));
2927 else
2929 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
2930 VEC_safe_push (constraint_t, heap, constraints, t);
2935 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2936 structure. */
2938 static HOST_WIDE_INT
2939 bitpos_of_field (const tree fdecl)
2942 if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
2943 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
2944 return -1;
2946 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * 8
2947 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
2951 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2952 resulting constraint expressions in *RESULTS. */
2954 static void
2955 get_constraint_for_ptr_offset (tree ptr, tree offset,
2956 VEC (ce_s, heap) **results)
2958 struct constraint_expr c;
2959 unsigned int j, n;
2960 HOST_WIDE_INT rhsunitoffset, rhsoffset;
2962 /* If we do not do field-sensitive PTA adding offsets to pointers
2963 does not change the points-to solution. */
2964 if (!use_field_sensitive)
2966 get_constraint_for_rhs (ptr, results);
2967 return;
2970 /* If the offset is not a non-negative integer constant that fits
2971 in a HOST_WIDE_INT, we have to fall back to a conservative
2972 solution which includes all sub-fields of all pointed-to
2973 variables of ptr. */
2974 if (offset == NULL_TREE
2975 || !host_integerp (offset, 0))
2976 rhsoffset = UNKNOWN_OFFSET;
2977 else
2979 /* Make sure the bit-offset also fits. */
2980 rhsunitoffset = TREE_INT_CST_LOW (offset);
2981 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
2982 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
2983 rhsoffset = UNKNOWN_OFFSET;
2986 get_constraint_for_rhs (ptr, results);
2987 if (rhsoffset == 0)
2988 return;
2990 /* As we are eventually appending to the solution do not use
2991 VEC_iterate here. */
2992 n = VEC_length (ce_s, *results);
2993 for (j = 0; j < n; j++)
2995 varinfo_t curr;
2996 c = *VEC_index (ce_s, *results, j);
2997 curr = get_varinfo (c.var);
2999 if (c.type == ADDRESSOF
3000 /* If this varinfo represents a full variable just use it. */
3001 && curr->is_full_var)
3002 c.offset = 0;
3003 else if (c.type == ADDRESSOF
3004 /* If we do not know the offset add all subfields. */
3005 && rhsoffset == UNKNOWN_OFFSET)
3007 varinfo_t temp = lookup_vi_for_tree (curr->decl);
3010 struct constraint_expr c2;
3011 c2.var = temp->id;
3012 c2.type = ADDRESSOF;
3013 c2.offset = 0;
3014 if (c2.var != c.var)
3015 VEC_safe_push (ce_s, heap, *results, &c2);
3016 temp = temp->next;
3018 while (temp);
3020 else if (c.type == ADDRESSOF)
3022 varinfo_t temp;
3023 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
3025 /* Search the sub-field which overlaps with the
3026 pointed-to offset. If the result is outside of the variable
3027 we have to provide a conservative result, as the variable is
3028 still reachable from the resulting pointer (even though it
3029 technically cannot point to anything). The last and first
3030 sub-fields are such conservative results.
3031 ??? If we always had a sub-field for &object + 1 then
3032 we could represent this in a more precise way. */
3033 if (rhsoffset < 0
3034 && curr->offset < offset)
3035 offset = 0;
3036 temp = first_or_preceding_vi_for_offset (curr, offset);
3038 /* If the found variable is not exactly at the pointed to
3039 result, we have to include the next variable in the
3040 solution as well. Otherwise two increments by offset / 2
3041 do not result in the same or a conservative superset
3042 solution. */
3043 if (temp->offset != offset
3044 && temp->next != NULL)
3046 struct constraint_expr c2;
3047 c2.var = temp->next->id;
3048 c2.type = ADDRESSOF;
3049 c2.offset = 0;
3050 VEC_safe_push (ce_s, heap, *results, &c2);
3052 c.var = temp->id;
3053 c.offset = 0;
3055 else
3056 c.offset = rhsoffset;
3058 VEC_replace (ce_s, *results, j, &c);
3063 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
3064 If address_p is true the result will be taken its address of.
3065 If lhs_p is true then the constraint expression is assumed to be used
3066 as the lhs. */
3068 static void
3069 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
3070 bool address_p, bool lhs_p)
3072 tree orig_t = t;
3073 HOST_WIDE_INT bitsize = -1;
3074 HOST_WIDE_INT bitmaxsize = -1;
3075 HOST_WIDE_INT bitpos;
3076 tree forzero;
3077 struct constraint_expr *result;
3079 /* Some people like to do cute things like take the address of
3080 &0->a.b */
3081 forzero = t;
3082 while (handled_component_p (forzero)
3083 || INDIRECT_REF_P (forzero)
3084 || TREE_CODE (forzero) == MEM_REF)
3085 forzero = TREE_OPERAND (forzero, 0);
3087 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
3089 struct constraint_expr temp;
3091 temp.offset = 0;
3092 temp.var = integer_id;
3093 temp.type = SCALAR;
3094 VEC_safe_push (ce_s, heap, *results, &temp);
3095 return;
3098 /* Handle type-punning through unions. If we are extracting a pointer
3099 from a union via a possibly type-punning access that pointer
3100 points to anything, similar to a conversion of an integer to
3101 a pointer. */
3102 if (!lhs_p)
3104 tree u;
3105 for (u = t;
3106 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
3107 u = TREE_OPERAND (u, 0))
3108 if (TREE_CODE (u) == COMPONENT_REF
3109 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
3111 struct constraint_expr temp;
3113 temp.offset = 0;
3114 temp.var = anything_id;
3115 temp.type = ADDRESSOF;
3116 VEC_safe_push (ce_s, heap, *results, &temp);
3117 return;
3121 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
3123 /* Pretend to take the address of the base, we'll take care of
3124 adding the required subset of sub-fields below. */
3125 get_constraint_for_1 (t, results, true, lhs_p);
3126 gcc_assert (VEC_length (ce_s, *results) == 1);
3127 result = VEC_last (ce_s, *results);
3129 if (result->type == SCALAR
3130 && get_varinfo (result->var)->is_full_var)
3131 /* For single-field vars do not bother about the offset. */
3132 result->offset = 0;
3133 else if (result->type == SCALAR)
3135 /* In languages like C, you can access one past the end of an
3136 array. You aren't allowed to dereference it, so we can
3137 ignore this constraint. When we handle pointer subtraction,
3138 we may have to do something cute here. */
3140 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
3141 && bitmaxsize != 0)
3143 /* It's also not true that the constraint will actually start at the
3144 right offset, it may start in some padding. We only care about
3145 setting the constraint to the first actual field it touches, so
3146 walk to find it. */
3147 struct constraint_expr cexpr = *result;
3148 varinfo_t curr;
3149 VEC_pop (ce_s, *results);
3150 cexpr.offset = 0;
3151 for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
3153 if (ranges_overlap_p (curr->offset, curr->size,
3154 bitpos, bitmaxsize))
3156 cexpr.var = curr->id;
3157 VEC_safe_push (ce_s, heap, *results, &cexpr);
3158 if (address_p)
3159 break;
3162 /* If we are going to take the address of this field then
3163 to be able to compute reachability correctly add at least
3164 the last field of the variable. */
3165 if (address_p
3166 && VEC_length (ce_s, *results) == 0)
3168 curr = get_varinfo (cexpr.var);
3169 while (curr->next != NULL)
3170 curr = curr->next;
3171 cexpr.var = curr->id;
3172 VEC_safe_push (ce_s, heap, *results, &cexpr);
3174 else if (VEC_length (ce_s, *results) == 0)
3175 /* Assert that we found *some* field there. The user couldn't be
3176 accessing *only* padding. */
3177 /* Still the user could access one past the end of an array
3178 embedded in a struct resulting in accessing *only* padding. */
3179 /* Or accessing only padding via type-punning to a type
3180 that has a filed just in padding space. */
3182 cexpr.type = SCALAR;
3183 cexpr.var = anything_id;
3184 cexpr.offset = 0;
3185 VEC_safe_push (ce_s, heap, *results, &cexpr);
3188 else if (bitmaxsize == 0)
3190 if (dump_file && (dump_flags & TDF_DETAILS))
3191 fprintf (dump_file, "Access to zero-sized part of variable,"
3192 "ignoring\n");
3194 else
3195 if (dump_file && (dump_flags & TDF_DETAILS))
3196 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3198 else if (result->type == DEREF)
3200 /* If we do not know exactly where the access goes say so. Note
3201 that only for non-structure accesses we know that we access
3202 at most one subfiled of any variable. */
3203 if (bitpos == -1
3204 || bitsize != bitmaxsize
3205 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t))
3206 || result->offset == UNKNOWN_OFFSET)
3207 result->offset = UNKNOWN_OFFSET;
3208 else
3209 result->offset += bitpos;
3211 else if (result->type == ADDRESSOF)
3213 /* We can end up here for component references on a
3214 VIEW_CONVERT_EXPR <>(&foobar). */
3215 result->type = SCALAR;
3216 result->var = anything_id;
3217 result->offset = 0;
3219 else
3220 gcc_unreachable ();
3224 /* Dereference the constraint expression CONS, and return the result.
3225 DEREF (ADDRESSOF) = SCALAR
3226 DEREF (SCALAR) = DEREF
3227 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3228 This is needed so that we can handle dereferencing DEREF constraints. */
3230 static void
3231 do_deref (VEC (ce_s, heap) **constraints)
3233 struct constraint_expr *c;
3234 unsigned int i = 0;
3236 FOR_EACH_VEC_ELT (ce_s, *constraints, i, c)
3238 if (c->type == SCALAR)
3239 c->type = DEREF;
3240 else if (c->type == ADDRESSOF)
3241 c->type = SCALAR;
3242 else if (c->type == DEREF)
3244 struct constraint_expr tmplhs;
3245 tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
3246 process_constraint (new_constraint (tmplhs, *c));
3247 c->var = tmplhs.var;
3249 else
3250 gcc_unreachable ();
3254 /* Given a tree T, return the constraint expression for taking the
3255 address of it. */
3257 static void
3258 get_constraint_for_address_of (tree t, VEC (ce_s, heap) **results)
3260 struct constraint_expr *c;
3261 unsigned int i;
3263 get_constraint_for_1 (t, results, true, true);
3265 FOR_EACH_VEC_ELT (ce_s, *results, i, c)
3267 if (c->type == DEREF)
3268 c->type = SCALAR;
3269 else
3270 c->type = ADDRESSOF;
3274 /* Given a tree T, return the constraint expression for it. */
3276 static void
3277 get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p,
3278 bool lhs_p)
3280 struct constraint_expr temp;
3282 /* x = integer is all glommed to a single variable, which doesn't
3283 point to anything by itself. That is, of course, unless it is an
3284 integer constant being treated as a pointer, in which case, we
3285 will return that this is really the addressof anything. This
3286 happens below, since it will fall into the default case. The only
3287 case we know something about an integer treated like a pointer is
3288 when it is the NULL pointer, and then we just say it points to
3289 NULL.
3291 Do not do that if -fno-delete-null-pointer-checks though, because
3292 in that case *NULL does not fail, so it _should_ alias *anything.
3293 It is not worth adding a new option or renaming the existing one,
3294 since this case is relatively obscure. */
3295 if ((TREE_CODE (t) == INTEGER_CST
3296 && integer_zerop (t))
3297 /* The only valid CONSTRUCTORs in gimple with pointer typed
3298 elements are zero-initializer. But in IPA mode we also
3299 process global initializers, so verify at least. */
3300 || (TREE_CODE (t) == CONSTRUCTOR
3301 && CONSTRUCTOR_NELTS (t) == 0))
3303 if (flag_delete_null_pointer_checks)
3304 temp.var = nothing_id;
3305 else
3306 temp.var = nonlocal_id;
3307 temp.type = ADDRESSOF;
3308 temp.offset = 0;
3309 VEC_safe_push (ce_s, heap, *results, &temp);
3310 return;
3313 /* String constants are read-only. */
3314 if (TREE_CODE (t) == STRING_CST)
3316 temp.var = readonly_id;
3317 temp.type = SCALAR;
3318 temp.offset = 0;
3319 VEC_safe_push (ce_s, heap, *results, &temp);
3320 return;
3323 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3325 case tcc_expression:
3327 switch (TREE_CODE (t))
3329 case ADDR_EXPR:
3330 get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3331 return;
3332 default:;
3334 break;
3336 case tcc_reference:
3338 switch (TREE_CODE (t))
3340 case MEM_REF:
3342 tree off = double_int_to_tree (sizetype, mem_ref_offset (t));
3343 get_constraint_for_ptr_offset (TREE_OPERAND (t, 0), off, results);
3344 do_deref (results);
3345 return;
3347 case ARRAY_REF:
3348 case ARRAY_RANGE_REF:
3349 case COMPONENT_REF:
3350 get_constraint_for_component_ref (t, results, address_p, lhs_p);
3351 return;
3352 case VIEW_CONVERT_EXPR:
3353 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p,
3354 lhs_p);
3355 return;
3356 /* We are missing handling for TARGET_MEM_REF here. */
3357 default:;
3359 break;
3361 case tcc_exceptional:
3363 switch (TREE_CODE (t))
3365 case SSA_NAME:
3367 get_constraint_for_ssa_var (t, results, address_p);
3368 return;
3370 case CONSTRUCTOR:
3372 unsigned int i;
3373 tree val;
3374 VEC (ce_s, heap) *tmp = NULL;
3375 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
3377 struct constraint_expr *rhsp;
3378 unsigned j;
3379 get_constraint_for_1 (val, &tmp, address_p, lhs_p);
3380 FOR_EACH_VEC_ELT (ce_s, tmp, j, rhsp)
3381 VEC_safe_push (ce_s, heap, *results, rhsp);
3382 VEC_truncate (ce_s, tmp, 0);
3384 VEC_free (ce_s, heap, tmp);
3385 /* We do not know whether the constructor was complete,
3386 so technically we have to add &NOTHING or &ANYTHING
3387 like we do for an empty constructor as well. */
3388 return;
3390 default:;
3392 break;
3394 case tcc_declaration:
3396 get_constraint_for_ssa_var (t, results, address_p);
3397 return;
3399 case tcc_constant:
3401 /* We cannot refer to automatic variables through constants. */
3402 temp.type = ADDRESSOF;
3403 temp.var = nonlocal_id;
3404 temp.offset = 0;
3405 VEC_safe_push (ce_s, heap, *results, &temp);
3406 return;
3408 default:;
3411 /* The default fallback is a constraint from anything. */
3412 temp.type = ADDRESSOF;
3413 temp.var = anything_id;
3414 temp.offset = 0;
3415 VEC_safe_push (ce_s, heap, *results, &temp);
3418 /* Given a gimple tree T, return the constraint expression vector for it. */
3420 static void
3421 get_constraint_for (tree t, VEC (ce_s, heap) **results)
3423 gcc_assert (VEC_length (ce_s, *results) == 0);
3425 get_constraint_for_1 (t, results, false, true);
3428 /* Given a gimple tree T, return the constraint expression vector for it
3429 to be used as the rhs of a constraint. */
3431 static void
3432 get_constraint_for_rhs (tree t, VEC (ce_s, heap) **results)
3434 gcc_assert (VEC_length (ce_s, *results) == 0);
3436 get_constraint_for_1 (t, results, false, false);
3440 /* Efficiently generates constraints from all entries in *RHSC to all
3441 entries in *LHSC. */
3443 static void
3444 process_all_all_constraints (VEC (ce_s, heap) *lhsc, VEC (ce_s, heap) *rhsc)
3446 struct constraint_expr *lhsp, *rhsp;
3447 unsigned i, j;
3449 if (VEC_length (ce_s, lhsc) <= 1
3450 || VEC_length (ce_s, rhsc) <= 1)
3452 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
3453 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
3454 process_constraint (new_constraint (*lhsp, *rhsp));
3456 else
3458 struct constraint_expr tmp;
3459 tmp = new_scalar_tmp_constraint_exp ("allalltmp");
3460 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
3461 process_constraint (new_constraint (tmp, *rhsp));
3462 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
3463 process_constraint (new_constraint (*lhsp, tmp));
3467 /* Handle aggregate copies by expanding into copies of the respective
3468 fields of the structures. */
3470 static void
3471 do_structure_copy (tree lhsop, tree rhsop)
3473 struct constraint_expr *lhsp, *rhsp;
3474 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
3475 unsigned j;
3477 get_constraint_for (lhsop, &lhsc);
3478 get_constraint_for_rhs (rhsop, &rhsc);
3479 lhsp = VEC_index (ce_s, lhsc, 0);
3480 rhsp = VEC_index (ce_s, rhsc, 0);
3481 if (lhsp->type == DEREF
3482 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3483 || rhsp->type == DEREF)
3485 if (lhsp->type == DEREF)
3487 gcc_assert (VEC_length (ce_s, lhsc) == 1);
3488 lhsp->offset = UNKNOWN_OFFSET;
3490 if (rhsp->type == DEREF)
3492 gcc_assert (VEC_length (ce_s, rhsc) == 1);
3493 rhsp->offset = UNKNOWN_OFFSET;
3495 process_all_all_constraints (lhsc, rhsc);
3497 else if (lhsp->type == SCALAR
3498 && (rhsp->type == SCALAR
3499 || rhsp->type == ADDRESSOF))
3501 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3502 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3503 unsigned k = 0;
3504 get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
3505 get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
3506 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
3508 varinfo_t lhsv, rhsv;
3509 rhsp = VEC_index (ce_s, rhsc, k);
3510 lhsv = get_varinfo (lhsp->var);
3511 rhsv = get_varinfo (rhsp->var);
3512 if (lhsv->may_have_pointers
3513 && ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3514 rhsv->offset + lhsoffset, rhsv->size))
3515 process_constraint (new_constraint (*lhsp, *rhsp));
3516 if (lhsv->offset + rhsoffset + lhsv->size
3517 > rhsv->offset + lhsoffset + rhsv->size)
3519 ++k;
3520 if (k >= VEC_length (ce_s, rhsc))
3521 break;
3523 else
3524 ++j;
3527 else
3528 gcc_unreachable ();
3530 VEC_free (ce_s, heap, lhsc);
3531 VEC_free (ce_s, heap, rhsc);
3534 /* Create constraints ID = { rhsc }. */
3536 static void
3537 make_constraints_to (unsigned id, VEC(ce_s, heap) *rhsc)
3539 struct constraint_expr *c;
3540 struct constraint_expr includes;
3541 unsigned int j;
3543 includes.var = id;
3544 includes.offset = 0;
3545 includes.type = SCALAR;
3547 FOR_EACH_VEC_ELT (ce_s, rhsc, j, c)
3548 process_constraint (new_constraint (includes, *c));
3551 /* Create a constraint ID = OP. */
3553 static void
3554 make_constraint_to (unsigned id, tree op)
3556 VEC(ce_s, heap) *rhsc = NULL;
3557 get_constraint_for_rhs (op, &rhsc);
3558 make_constraints_to (id, rhsc);
3559 VEC_free (ce_s, heap, rhsc);
3562 /* Create a constraint ID = &FROM. */
3564 static void
3565 make_constraint_from (varinfo_t vi, int from)
3567 struct constraint_expr lhs, rhs;
3569 lhs.var = vi->id;
3570 lhs.offset = 0;
3571 lhs.type = SCALAR;
3573 rhs.var = from;
3574 rhs.offset = 0;
3575 rhs.type = ADDRESSOF;
3576 process_constraint (new_constraint (lhs, rhs));
3579 /* Create a constraint ID = FROM. */
3581 static void
3582 make_copy_constraint (varinfo_t vi, int from)
3584 struct constraint_expr lhs, rhs;
3586 lhs.var = vi->id;
3587 lhs.offset = 0;
3588 lhs.type = SCALAR;
3590 rhs.var = from;
3591 rhs.offset = 0;
3592 rhs.type = SCALAR;
3593 process_constraint (new_constraint (lhs, rhs));
3596 /* Make constraints necessary to make OP escape. */
3598 static void
3599 make_escape_constraint (tree op)
3601 make_constraint_to (escaped_id, op);
3604 /* Add constraints to that the solution of VI is transitively closed. */
3606 static void
3607 make_transitive_closure_constraints (varinfo_t vi)
3609 struct constraint_expr lhs, rhs;
3611 /* VAR = *VAR; */
3612 lhs.type = SCALAR;
3613 lhs.var = vi->id;
3614 lhs.offset = 0;
3615 rhs.type = DEREF;
3616 rhs.var = vi->id;
3617 rhs.offset = 0;
3618 process_constraint (new_constraint (lhs, rhs));
3620 /* VAR = VAR + UNKNOWN; */
3621 lhs.type = SCALAR;
3622 lhs.var = vi->id;
3623 lhs.offset = 0;
3624 rhs.type = SCALAR;
3625 rhs.var = vi->id;
3626 rhs.offset = UNKNOWN_OFFSET;
3627 process_constraint (new_constraint (lhs, rhs));
3630 /* Create a new artificial heap variable with NAME.
3631 Return the created variable. */
3633 static varinfo_t
3634 make_heapvar_for (varinfo_t lhs, const char *name)
3636 varinfo_t vi;
3637 tree heapvar = heapvar_lookup (lhs->decl, lhs->offset);
3639 if (heapvar == NULL_TREE)
3641 var_ann_t ann;
3642 heapvar = create_tmp_var_raw (ptr_type_node, name);
3643 DECL_EXTERNAL (heapvar) = 1;
3645 heapvar_insert (lhs->decl, lhs->offset, heapvar);
3647 ann = get_var_ann (heapvar);
3648 ann->is_heapvar = 1;
3651 /* For global vars we need to add a heapvar to the list of referenced
3652 vars of a different function than it was created for originally. */
3653 if (cfun && gimple_referenced_vars (cfun))
3654 add_referenced_var (heapvar);
3656 vi = new_var_info (heapvar, name);
3657 vi->is_artificial_var = true;
3658 vi->is_heap_var = true;
3659 vi->is_unknown_size_var = true;
3660 vi->offset = 0;
3661 vi->fullsize = ~0;
3662 vi->size = ~0;
3663 vi->is_full_var = true;
3664 insert_vi_for_tree (heapvar, vi);
3666 return vi;
3669 /* Create a new artificial heap variable with NAME and make a
3670 constraint from it to LHS. Return the created variable. */
3672 static varinfo_t
3673 make_constraint_from_heapvar (varinfo_t lhs, const char *name)
3675 varinfo_t vi = make_heapvar_for (lhs, name);
3676 make_constraint_from (lhs, vi->id);
3678 return vi;
3681 /* Create a new artificial heap variable with NAME and make a
3682 constraint from it to LHS. Set flags according to a tag used
3683 for tracking restrict pointers. */
3685 static void
3686 make_constraint_from_restrict (varinfo_t lhs, const char *name)
3688 varinfo_t vi;
3689 vi = make_constraint_from_heapvar (lhs, name);
3690 vi->is_restrict_var = 1;
3691 vi->is_global_var = 0;
3692 vi->is_special_var = 1;
3693 vi->may_have_pointers = 0;
3696 /* In IPA mode there are varinfos for different aspects of reach
3697 function designator. One for the points-to set of the return
3698 value, one for the variables that are clobbered by the function,
3699 one for its uses and one for each parameter (including a single
3700 glob for remaining variadic arguments). */
3702 enum { fi_clobbers = 1, fi_uses = 2,
3703 fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
3705 /* Get a constraint for the requested part of a function designator FI
3706 when operating in IPA mode. */
3708 static struct constraint_expr
3709 get_function_part_constraint (varinfo_t fi, unsigned part)
3711 struct constraint_expr c;
3713 gcc_assert (in_ipa_mode);
3715 if (fi->id == anything_id)
3717 /* ??? We probably should have a ANYFN special variable. */
3718 c.var = anything_id;
3719 c.offset = 0;
3720 c.type = SCALAR;
3722 else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
3724 varinfo_t ai = first_vi_for_offset (fi, part);
3725 if (ai)
3726 c.var = ai->id;
3727 else
3728 c.var = anything_id;
3729 c.offset = 0;
3730 c.type = SCALAR;
3732 else
3734 c.var = fi->id;
3735 c.offset = part;
3736 c.type = DEREF;
3739 return c;
3742 /* For non-IPA mode, generate constraints necessary for a call on the
3743 RHS. */
3745 static void
3746 handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
3748 struct constraint_expr rhsc;
3749 unsigned i;
3750 bool returns_uses = false;
3752 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3754 tree arg = gimple_call_arg (stmt, i);
3755 int flags = gimple_call_arg_flags (stmt, i);
3757 /* If the argument is not used we can ignore it. */
3758 if (flags & EAF_UNUSED)
3759 continue;
3761 /* As we compute ESCAPED context-insensitive we do not gain
3762 any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
3763 set. The argument would still get clobbered through the
3764 escape solution.
3765 ??? We might get away with less (and more precise) constraints
3766 if using a temporary for transitively closing things. */
3767 if ((flags & EAF_NOCLOBBER)
3768 && (flags & EAF_NOESCAPE))
3770 varinfo_t uses = get_call_use_vi (stmt);
3771 if (!(flags & EAF_DIRECT))
3772 make_transitive_closure_constraints (uses);
3773 make_constraint_to (uses->id, arg);
3774 returns_uses = true;
3776 else if (flags & EAF_NOESCAPE)
3778 varinfo_t uses = get_call_use_vi (stmt);
3779 varinfo_t clobbers = get_call_clobber_vi (stmt);
3780 if (!(flags & EAF_DIRECT))
3782 make_transitive_closure_constraints (uses);
3783 make_transitive_closure_constraints (clobbers);
3785 make_constraint_to (uses->id, arg);
3786 make_constraint_to (clobbers->id, arg);
3787 returns_uses = true;
3789 else
3790 make_escape_constraint (arg);
3793 /* If we added to the calls uses solution make sure we account for
3794 pointers to it to be returned. */
3795 if (returns_uses)
3797 rhsc.var = get_call_use_vi (stmt)->id;
3798 rhsc.offset = 0;
3799 rhsc.type = SCALAR;
3800 VEC_safe_push (ce_s, heap, *results, &rhsc);
3803 /* The static chain escapes as well. */
3804 if (gimple_call_chain (stmt))
3805 make_escape_constraint (gimple_call_chain (stmt));
3807 /* And if we applied NRV the address of the return slot escapes as well. */
3808 if (gimple_call_return_slot_opt_p (stmt)
3809 && gimple_call_lhs (stmt) != NULL_TREE
3810 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3812 VEC(ce_s, heap) *tmpc = NULL;
3813 struct constraint_expr lhsc, *c;
3814 get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3815 lhsc.var = escaped_id;
3816 lhsc.offset = 0;
3817 lhsc.type = SCALAR;
3818 FOR_EACH_VEC_ELT (ce_s, tmpc, i, c)
3819 process_constraint (new_constraint (lhsc, *c));
3820 VEC_free(ce_s, heap, tmpc);
3823 /* Regular functions return nonlocal memory. */
3824 rhsc.var = nonlocal_id;
3825 rhsc.offset = 0;
3826 rhsc.type = SCALAR;
3827 VEC_safe_push (ce_s, heap, *results, &rhsc);
3830 /* For non-IPA mode, generate constraints necessary for a call
3831 that returns a pointer and assigns it to LHS. This simply makes
3832 the LHS point to global and escaped variables. */
3834 static void
3835 handle_lhs_call (gimple stmt, tree lhs, int flags, VEC(ce_s, heap) *rhsc,
3836 tree fndecl)
3838 VEC(ce_s, heap) *lhsc = NULL;
3840 get_constraint_for (lhs, &lhsc);
3841 /* If the store is to a global decl make sure to
3842 add proper escape constraints. */
3843 lhs = get_base_address (lhs);
3844 if (lhs
3845 && DECL_P (lhs)
3846 && is_global_var (lhs))
3848 struct constraint_expr tmpc;
3849 tmpc.var = escaped_id;
3850 tmpc.offset = 0;
3851 tmpc.type = SCALAR;
3852 VEC_safe_push (ce_s, heap, lhsc, &tmpc);
3855 /* If the call returns an argument unmodified override the rhs
3856 constraints. */
3857 flags = gimple_call_return_flags (stmt);
3858 if (flags & ERF_RETURNS_ARG
3859 && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
3861 tree arg;
3862 rhsc = NULL;
3863 arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
3864 get_constraint_for (arg, &rhsc);
3865 process_all_all_constraints (lhsc, rhsc);
3866 VEC_free (ce_s, heap, rhsc);
3868 else if (flags & ERF_NOALIAS)
3870 varinfo_t vi;
3871 struct constraint_expr tmpc;
3872 rhsc = NULL;
3873 vi = make_heapvar_for (get_vi_for_tree (lhs), "HEAP");
3874 /* We delay marking allocated storage global until we know if
3875 it escapes. */
3876 DECL_EXTERNAL (vi->decl) = 0;
3877 vi->is_global_var = 0;
3878 /* If this is not a real malloc call assume the memory was
3879 initialized and thus may point to global memory. All
3880 builtin functions with the malloc attribute behave in a sane way. */
3881 if (!fndecl
3882 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
3883 make_constraint_from (vi, nonlocal_id);
3884 tmpc.var = vi->id;
3885 tmpc.offset = 0;
3886 tmpc.type = ADDRESSOF;
3887 VEC_safe_push (ce_s, heap, rhsc, &tmpc);
3890 process_all_all_constraints (lhsc, rhsc);
3892 VEC_free (ce_s, heap, lhsc);
3895 /* For non-IPA mode, generate constraints necessary for a call of a
3896 const function that returns a pointer in the statement STMT. */
3898 static void
3899 handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
3901 struct constraint_expr rhsc;
3902 unsigned int k;
3904 /* Treat nested const functions the same as pure functions as far
3905 as the static chain is concerned. */
3906 if (gimple_call_chain (stmt))
3908 varinfo_t uses = get_call_use_vi (stmt);
3909 make_transitive_closure_constraints (uses);
3910 make_constraint_to (uses->id, gimple_call_chain (stmt));
3911 rhsc.var = uses->id;
3912 rhsc.offset = 0;
3913 rhsc.type = SCALAR;
3914 VEC_safe_push (ce_s, heap, *results, &rhsc);
3917 /* May return arguments. */
3918 for (k = 0; k < gimple_call_num_args (stmt); ++k)
3920 tree arg = gimple_call_arg (stmt, k);
3921 VEC(ce_s, heap) *argc = NULL;
3922 unsigned i;
3923 struct constraint_expr *argp;
3924 get_constraint_for_rhs (arg, &argc);
3925 FOR_EACH_VEC_ELT (ce_s, argc, i, argp)
3926 VEC_safe_push (ce_s, heap, *results, argp);
3927 VEC_free(ce_s, heap, argc);
3930 /* May return addresses of globals. */
3931 rhsc.var = nonlocal_id;
3932 rhsc.offset = 0;
3933 rhsc.type = ADDRESSOF;
3934 VEC_safe_push (ce_s, heap, *results, &rhsc);
3937 /* For non-IPA mode, generate constraints necessary for a call to a
3938 pure function in statement STMT. */
3940 static void
3941 handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
3943 struct constraint_expr rhsc;
3944 unsigned i;
3945 varinfo_t uses = NULL;
3947 /* Memory reached from pointer arguments is call-used. */
3948 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3950 tree arg = gimple_call_arg (stmt, i);
3951 if (!uses)
3953 uses = get_call_use_vi (stmt);
3954 make_transitive_closure_constraints (uses);
3956 make_constraint_to (uses->id, arg);
3959 /* The static chain is used as well. */
3960 if (gimple_call_chain (stmt))
3962 if (!uses)
3964 uses = get_call_use_vi (stmt);
3965 make_transitive_closure_constraints (uses);
3967 make_constraint_to (uses->id, gimple_call_chain (stmt));
3970 /* Pure functions may return call-used and nonlocal memory. */
3971 if (uses)
3973 rhsc.var = uses->id;
3974 rhsc.offset = 0;
3975 rhsc.type = SCALAR;
3976 VEC_safe_push (ce_s, heap, *results, &rhsc);
3978 rhsc.var = nonlocal_id;
3979 rhsc.offset = 0;
3980 rhsc.type = SCALAR;
3981 VEC_safe_push (ce_s, heap, *results, &rhsc);
3985 /* Return the varinfo for the callee of CALL. */
3987 static varinfo_t
3988 get_fi_for_callee (gimple call)
3990 tree decl;
3992 /* If we can directly resolve the function being called, do so.
3993 Otherwise, it must be some sort of indirect expression that
3994 we should still be able to handle. */
3995 decl = gimple_call_fndecl (call);
3996 if (decl)
3997 return get_vi_for_tree (decl);
3999 decl = gimple_call_fn (call);
4000 /* The function can be either an SSA name pointer or,
4001 worse, an OBJ_TYPE_REF. In this case we have no
4002 clue and should be getting ANYFN (well, ANYTHING for now). */
4003 if (TREE_CODE (decl) == SSA_NAME)
4005 if (TREE_CODE (decl) == SSA_NAME
4006 && (TREE_CODE (SSA_NAME_VAR (decl)) == PARM_DECL
4007 || TREE_CODE (SSA_NAME_VAR (decl)) == RESULT_DECL)
4008 && SSA_NAME_IS_DEFAULT_DEF (decl))
4009 decl = SSA_NAME_VAR (decl);
4010 return get_vi_for_tree (decl);
4012 else if (TREE_CODE (decl) == INTEGER_CST
4013 || TREE_CODE (decl) == OBJ_TYPE_REF)
4014 return get_varinfo (anything_id);
4015 else
4016 gcc_unreachable ();
4019 /* Walk statement T setting up aliasing constraints according to the
4020 references found in T. This function is the main part of the
4021 constraint builder. AI points to auxiliary alias information used
4022 when building alias sets and computing alias grouping heuristics. */
4024 static void
4025 find_func_aliases (gimple origt)
4027 gimple t = origt;
4028 VEC(ce_s, heap) *lhsc = NULL;
4029 VEC(ce_s, heap) *rhsc = NULL;
4030 struct constraint_expr *c;
4031 varinfo_t fi;
4033 /* Now build constraints expressions. */
4034 if (gimple_code (t) == GIMPLE_PHI)
4036 size_t i;
4037 unsigned int j;
4039 /* For a phi node, assign all the arguments to
4040 the result. */
4041 get_constraint_for (gimple_phi_result (t), &lhsc);
4042 for (i = 0; i < gimple_phi_num_args (t); i++)
4044 tree strippedrhs = PHI_ARG_DEF (t, i);
4046 STRIP_NOPS (strippedrhs);
4047 get_constraint_for_rhs (gimple_phi_arg_def (t, i), &rhsc);
4049 FOR_EACH_VEC_ELT (ce_s, lhsc, j, c)
4051 struct constraint_expr *c2;
4052 while (VEC_length (ce_s, rhsc) > 0)
4054 c2 = VEC_last (ce_s, rhsc);
4055 process_constraint (new_constraint (*c, *c2));
4056 VEC_pop (ce_s, rhsc);
4061 /* In IPA mode, we need to generate constraints to pass call
4062 arguments through their calls. There are two cases,
4063 either a GIMPLE_CALL returning a value, or just a plain
4064 GIMPLE_CALL when we are not.
4066 In non-ipa mode, we need to generate constraints for each
4067 pointer passed by address. */
4068 else if (is_gimple_call (t))
4070 tree fndecl = gimple_call_fndecl (t);
4071 if (fndecl != NULL_TREE
4072 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
4073 /* ??? All builtins that are handled here need to be handled
4074 in the alias-oracle query functions explicitly! */
4075 switch (DECL_FUNCTION_CODE (fndecl))
4077 /* All the following functions return a pointer to the same object
4078 as their first argument points to. The functions do not add
4079 to the ESCAPED solution. The functions make the first argument
4080 pointed to memory point to what the second argument pointed to
4081 memory points to. */
4082 case BUILT_IN_STRCPY:
4083 case BUILT_IN_STRNCPY:
4084 case BUILT_IN_BCOPY:
4085 case BUILT_IN_MEMCPY:
4086 case BUILT_IN_MEMMOVE:
4087 case BUILT_IN_MEMPCPY:
4088 case BUILT_IN_STPCPY:
4089 case BUILT_IN_STPNCPY:
4090 case BUILT_IN_STRCAT:
4091 case BUILT_IN_STRNCAT:
4093 tree res = gimple_call_lhs (t);
4094 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4095 == BUILT_IN_BCOPY ? 1 : 0));
4096 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4097 == BUILT_IN_BCOPY ? 0 : 1));
4098 if (res != NULL_TREE)
4100 get_constraint_for (res, &lhsc);
4101 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
4102 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
4103 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY)
4104 get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
4105 else
4106 get_constraint_for (dest, &rhsc);
4107 process_all_all_constraints (lhsc, rhsc);
4108 VEC_free (ce_s, heap, lhsc);
4109 VEC_free (ce_s, heap, rhsc);
4111 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4112 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4113 do_deref (&lhsc);
4114 do_deref (&rhsc);
4115 process_all_all_constraints (lhsc, rhsc);
4116 VEC_free (ce_s, heap, lhsc);
4117 VEC_free (ce_s, heap, rhsc);
4118 return;
4120 case BUILT_IN_MEMSET:
4122 tree res = gimple_call_lhs (t);
4123 tree dest = gimple_call_arg (t, 0);
4124 unsigned i;
4125 ce_s *lhsp;
4126 struct constraint_expr ac;
4127 if (res != NULL_TREE)
4129 get_constraint_for (res, &lhsc);
4130 get_constraint_for (dest, &rhsc);
4131 process_all_all_constraints (lhsc, rhsc);
4132 VEC_free (ce_s, heap, lhsc);
4133 VEC_free (ce_s, heap, rhsc);
4135 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4136 do_deref (&lhsc);
4137 if (flag_delete_null_pointer_checks
4138 && integer_zerop (gimple_call_arg (t, 1)))
4140 ac.type = ADDRESSOF;
4141 ac.var = nothing_id;
4143 else
4145 ac.type = SCALAR;
4146 ac.var = integer_id;
4148 ac.offset = 0;
4149 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4150 process_constraint (new_constraint (*lhsp, ac));
4151 VEC_free (ce_s, heap, lhsc);
4152 return;
4154 /* All the following functions do not return pointers, do not
4155 modify the points-to sets of memory reachable from their
4156 arguments and do not add to the ESCAPED solution. */
4157 case BUILT_IN_SINCOS:
4158 case BUILT_IN_SINCOSF:
4159 case BUILT_IN_SINCOSL:
4160 case BUILT_IN_FREXP:
4161 case BUILT_IN_FREXPF:
4162 case BUILT_IN_FREXPL:
4163 case BUILT_IN_GAMMA_R:
4164 case BUILT_IN_GAMMAF_R:
4165 case BUILT_IN_GAMMAL_R:
4166 case BUILT_IN_LGAMMA_R:
4167 case BUILT_IN_LGAMMAF_R:
4168 case BUILT_IN_LGAMMAL_R:
4169 case BUILT_IN_MODF:
4170 case BUILT_IN_MODFF:
4171 case BUILT_IN_MODFL:
4172 case BUILT_IN_REMQUO:
4173 case BUILT_IN_REMQUOF:
4174 case BUILT_IN_REMQUOL:
4175 case BUILT_IN_FREE:
4176 return;
4177 /* Trampolines are special - they set up passing the static
4178 frame. */
4179 case BUILT_IN_INIT_TRAMPOLINE:
4181 tree tramp = gimple_call_arg (t, 0);
4182 tree nfunc = gimple_call_arg (t, 1);
4183 tree frame = gimple_call_arg (t, 2);
4184 unsigned i;
4185 struct constraint_expr lhs, *rhsp;
4186 if (in_ipa_mode)
4188 varinfo_t nfi = NULL;
4189 gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
4190 nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
4191 if (nfi)
4193 lhs = get_function_part_constraint (nfi, fi_static_chain);
4194 get_constraint_for (frame, &rhsc);
4195 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4196 process_constraint (new_constraint (lhs, *rhsp));
4197 VEC_free (ce_s, heap, rhsc);
4199 /* Make the frame point to the function for
4200 the trampoline adjustment call. */
4201 get_constraint_for (tramp, &lhsc);
4202 do_deref (&lhsc);
4203 get_constraint_for (nfunc, &rhsc);
4204 process_all_all_constraints (lhsc, rhsc);
4205 VEC_free (ce_s, heap, rhsc);
4206 VEC_free (ce_s, heap, lhsc);
4208 return;
4211 /* Else fallthru to generic handling which will let
4212 the frame escape. */
4213 break;
4215 case BUILT_IN_ADJUST_TRAMPOLINE:
4217 tree tramp = gimple_call_arg (t, 0);
4218 tree res = gimple_call_lhs (t);
4219 if (in_ipa_mode && res)
4221 get_constraint_for (res, &lhsc);
4222 get_constraint_for (tramp, &rhsc);
4223 do_deref (&rhsc);
4224 process_all_all_constraints (lhsc, rhsc);
4225 VEC_free (ce_s, heap, rhsc);
4226 VEC_free (ce_s, heap, lhsc);
4228 return;
4230 /* Variadic argument handling needs to be handled in IPA
4231 mode as well. */
4232 case BUILT_IN_VA_START:
4234 if (in_ipa_mode)
4236 tree valist = gimple_call_arg (t, 0);
4237 struct constraint_expr rhs, *lhsp;
4238 unsigned i;
4239 /* The va_list gets access to pointers in variadic
4240 arguments. */
4241 fi = lookup_vi_for_tree (cfun->decl);
4242 gcc_assert (fi != NULL);
4243 get_constraint_for (valist, &lhsc);
4244 do_deref (&lhsc);
4245 rhs = get_function_part_constraint (fi, ~0);
4246 rhs.type = ADDRESSOF;
4247 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4248 process_constraint (new_constraint (*lhsp, rhs));
4249 VEC_free (ce_s, heap, lhsc);
4250 /* va_list is clobbered. */
4251 make_constraint_to (get_call_clobber_vi (t)->id, valist);
4252 return;
4254 break;
4256 /* va_end doesn't have any effect that matters. */
4257 case BUILT_IN_VA_END:
4258 return;
4259 /* Alternate return. Simply give up for now. */
4260 case BUILT_IN_RETURN:
4262 fi = NULL;
4263 if (!in_ipa_mode
4264 || !(fi = get_vi_for_tree (cfun->decl)))
4265 make_constraint_from (get_varinfo (escaped_id), anything_id);
4266 else if (in_ipa_mode
4267 && fi != NULL)
4269 struct constraint_expr lhs, rhs;
4270 lhs = get_function_part_constraint (fi, fi_result);
4271 rhs.var = anything_id;
4272 rhs.offset = 0;
4273 rhs.type = SCALAR;
4274 process_constraint (new_constraint (lhs, rhs));
4276 return;
4278 /* printf-style functions may have hooks to set pointers to
4279 point to somewhere into the generated string. Leave them
4280 for a later excercise... */
4281 default:
4282 /* Fallthru to general call handling. */;
4284 if (!in_ipa_mode
4285 || (fndecl
4286 && (!(fi = lookup_vi_for_tree (fndecl))
4287 || !fi->is_fn_info)))
4289 VEC(ce_s, heap) *rhsc = NULL;
4290 int flags = gimple_call_flags (t);
4292 /* Const functions can return their arguments and addresses
4293 of global memory but not of escaped memory. */
4294 if (flags & (ECF_CONST|ECF_NOVOPS))
4296 if (gimple_call_lhs (t))
4297 handle_const_call (t, &rhsc);
4299 /* Pure functions can return addresses in and of memory
4300 reachable from their arguments, but they are not an escape
4301 point for reachable memory of their arguments. */
4302 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
4303 handle_pure_call (t, &rhsc);
4304 else
4305 handle_rhs_call (t, &rhsc);
4306 if (gimple_call_lhs (t))
4307 handle_lhs_call (t, gimple_call_lhs (t), flags, rhsc, fndecl);
4308 VEC_free (ce_s, heap, rhsc);
4310 else
4312 tree lhsop;
4313 unsigned j;
4315 fi = get_fi_for_callee (t);
4317 /* Assign all the passed arguments to the appropriate incoming
4318 parameters of the function. */
4319 for (j = 0; j < gimple_call_num_args (t); j++)
4321 struct constraint_expr lhs ;
4322 struct constraint_expr *rhsp;
4323 tree arg = gimple_call_arg (t, j);
4325 get_constraint_for_rhs (arg, &rhsc);
4326 lhs = get_function_part_constraint (fi, fi_parm_base + j);
4327 while (VEC_length (ce_s, rhsc) != 0)
4329 rhsp = VEC_last (ce_s, rhsc);
4330 process_constraint (new_constraint (lhs, *rhsp));
4331 VEC_pop (ce_s, rhsc);
4335 /* If we are returning a value, assign it to the result. */
4336 lhsop = gimple_call_lhs (t);
4337 if (lhsop)
4339 struct constraint_expr rhs;
4340 struct constraint_expr *lhsp;
4342 get_constraint_for (lhsop, &lhsc);
4343 rhs = get_function_part_constraint (fi, fi_result);
4344 if (fndecl
4345 && DECL_RESULT (fndecl)
4346 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4348 VEC(ce_s, heap) *tem = NULL;
4349 VEC_safe_push (ce_s, heap, tem, &rhs);
4350 do_deref (&tem);
4351 rhs = *VEC_index (ce_s, tem, 0);
4352 VEC_free(ce_s, heap, tem);
4354 FOR_EACH_VEC_ELT (ce_s, lhsc, j, lhsp)
4355 process_constraint (new_constraint (*lhsp, rhs));
4358 /* If we pass the result decl by reference, honor that. */
4359 if (lhsop
4360 && fndecl
4361 && DECL_RESULT (fndecl)
4362 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4364 struct constraint_expr lhs;
4365 struct constraint_expr *rhsp;
4367 get_constraint_for_address_of (lhsop, &rhsc);
4368 lhs = get_function_part_constraint (fi, fi_result);
4369 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4370 process_constraint (new_constraint (lhs, *rhsp));
4371 VEC_free (ce_s, heap, rhsc);
4374 /* If we use a static chain, pass it along. */
4375 if (gimple_call_chain (t))
4377 struct constraint_expr lhs;
4378 struct constraint_expr *rhsp;
4380 get_constraint_for (gimple_call_chain (t), &rhsc);
4381 lhs = get_function_part_constraint (fi, fi_static_chain);
4382 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4383 process_constraint (new_constraint (lhs, *rhsp));
4387 /* Otherwise, just a regular assignment statement. Only care about
4388 operations with pointer result, others are dealt with as escape
4389 points if they have pointer operands. */
4390 else if (is_gimple_assign (t))
4392 /* Otherwise, just a regular assignment statement. */
4393 tree lhsop = gimple_assign_lhs (t);
4394 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
4396 if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
4397 do_structure_copy (lhsop, rhsop);
4398 else
4400 get_constraint_for (lhsop, &lhsc);
4402 if (gimple_assign_rhs_code (t) == POINTER_PLUS_EXPR)
4403 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4404 gimple_assign_rhs2 (t), &rhsc);
4405 else if (gimple_assign_rhs_code (t) == BIT_AND_EXPR
4406 && TREE_CODE (gimple_assign_rhs2 (t)) == INTEGER_CST)
4408 /* Aligning a pointer via a BIT_AND_EXPR is offsetting
4409 the pointer. Handle it by offsetting it by UNKNOWN. */
4410 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4411 NULL_TREE, &rhsc);
4413 else if ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
4414 && !(POINTER_TYPE_P (gimple_expr_type (t))
4415 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
4416 || gimple_assign_single_p (t))
4417 get_constraint_for_rhs (rhsop, &rhsc);
4418 else
4420 /* All other operations are merges. */
4421 VEC (ce_s, heap) *tmp = NULL;
4422 struct constraint_expr *rhsp;
4423 unsigned i, j;
4424 get_constraint_for_rhs (gimple_assign_rhs1 (t), &rhsc);
4425 for (i = 2; i < gimple_num_ops (t); ++i)
4427 get_constraint_for_rhs (gimple_op (t, i), &tmp);
4428 FOR_EACH_VEC_ELT (ce_s, tmp, j, rhsp)
4429 VEC_safe_push (ce_s, heap, rhsc, rhsp);
4430 VEC_truncate (ce_s, tmp, 0);
4432 VEC_free (ce_s, heap, tmp);
4434 process_all_all_constraints (lhsc, rhsc);
4436 /* If there is a store to a global variable the rhs escapes. */
4437 if ((lhsop = get_base_address (lhsop)) != NULL_TREE
4438 && DECL_P (lhsop)
4439 && is_global_var (lhsop)
4440 && (!in_ipa_mode
4441 || DECL_EXTERNAL (lhsop) || TREE_PUBLIC (lhsop)))
4442 make_escape_constraint (rhsop);
4443 /* If this is a conversion of a non-restrict pointer to a
4444 restrict pointer track it with a new heapvar. */
4445 else if (gimple_assign_cast_p (t)
4446 && POINTER_TYPE_P (TREE_TYPE (rhsop))
4447 && POINTER_TYPE_P (TREE_TYPE (lhsop))
4448 && !TYPE_RESTRICT (TREE_TYPE (rhsop))
4449 && TYPE_RESTRICT (TREE_TYPE (lhsop)))
4450 make_constraint_from_restrict (get_vi_for_tree (lhsop),
4451 "CAST_RESTRICT");
4453 /* Handle escapes through return. */
4454 else if (gimple_code (t) == GIMPLE_RETURN
4455 && gimple_return_retval (t) != NULL_TREE)
4457 fi = NULL;
4458 if (!in_ipa_mode
4459 || !(fi = get_vi_for_tree (cfun->decl)))
4460 make_escape_constraint (gimple_return_retval (t));
4461 else if (in_ipa_mode
4462 && fi != NULL)
4464 struct constraint_expr lhs ;
4465 struct constraint_expr *rhsp;
4466 unsigned i;
4468 lhs = get_function_part_constraint (fi, fi_result);
4469 get_constraint_for_rhs (gimple_return_retval (t), &rhsc);
4470 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4471 process_constraint (new_constraint (lhs, *rhsp));
4474 /* Handle asms conservatively by adding escape constraints to everything. */
4475 else if (gimple_code (t) == GIMPLE_ASM)
4477 unsigned i, noutputs;
4478 const char **oconstraints;
4479 const char *constraint;
4480 bool allows_mem, allows_reg, is_inout;
4482 noutputs = gimple_asm_noutputs (t);
4483 oconstraints = XALLOCAVEC (const char *, noutputs);
4485 for (i = 0; i < noutputs; ++i)
4487 tree link = gimple_asm_output_op (t, i);
4488 tree op = TREE_VALUE (link);
4490 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4491 oconstraints[i] = constraint;
4492 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4493 &allows_reg, &is_inout);
4495 /* A memory constraint makes the address of the operand escape. */
4496 if (!allows_reg && allows_mem)
4497 make_escape_constraint (build_fold_addr_expr (op));
4499 /* The asm may read global memory, so outputs may point to
4500 any global memory. */
4501 if (op)
4503 VEC(ce_s, heap) *lhsc = NULL;
4504 struct constraint_expr rhsc, *lhsp;
4505 unsigned j;
4506 get_constraint_for (op, &lhsc);
4507 rhsc.var = nonlocal_id;
4508 rhsc.offset = 0;
4509 rhsc.type = SCALAR;
4510 FOR_EACH_VEC_ELT (ce_s, lhsc, j, lhsp)
4511 process_constraint (new_constraint (*lhsp, rhsc));
4512 VEC_free (ce_s, heap, lhsc);
4515 for (i = 0; i < gimple_asm_ninputs (t); ++i)
4517 tree link = gimple_asm_input_op (t, i);
4518 tree op = TREE_VALUE (link);
4520 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4522 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
4523 &allows_mem, &allows_reg);
4525 /* A memory constraint makes the address of the operand escape. */
4526 if (!allows_reg && allows_mem)
4527 make_escape_constraint (build_fold_addr_expr (op));
4528 /* Strictly we'd only need the constraint to ESCAPED if
4529 the asm clobbers memory, otherwise using something
4530 along the lines of per-call clobbers/uses would be enough. */
4531 else if (op)
4532 make_escape_constraint (op);
4536 VEC_free (ce_s, heap, rhsc);
4537 VEC_free (ce_s, heap, lhsc);
4541 /* Create a constraint adding to the clobber set of FI the memory
4542 pointed to by PTR. */
4544 static void
4545 process_ipa_clobber (varinfo_t fi, tree ptr)
4547 VEC(ce_s, heap) *ptrc = NULL;
4548 struct constraint_expr *c, lhs;
4549 unsigned i;
4550 get_constraint_for_rhs (ptr, &ptrc);
4551 lhs = get_function_part_constraint (fi, fi_clobbers);
4552 FOR_EACH_VEC_ELT (ce_s, ptrc, i, c)
4553 process_constraint (new_constraint (lhs, *c));
4554 VEC_free (ce_s, heap, ptrc);
4557 /* Walk statement T setting up clobber and use constraints according to the
4558 references found in T. This function is a main part of the
4559 IPA constraint builder. */
4561 static void
4562 find_func_clobbers (gimple origt)
4564 gimple t = origt;
4565 VEC(ce_s, heap) *lhsc = NULL;
4566 VEC(ce_s, heap) *rhsc = NULL;
4567 varinfo_t fi;
4569 /* Add constraints for clobbered/used in IPA mode.
4570 We are not interested in what automatic variables are clobbered
4571 or used as we only use the information in the caller to which
4572 they do not escape. */
4573 gcc_assert (in_ipa_mode);
4575 /* If the stmt refers to memory in any way it better had a VUSE. */
4576 if (gimple_vuse (t) == NULL_TREE)
4577 return;
4579 /* We'd better have function information for the current function. */
4580 fi = lookup_vi_for_tree (cfun->decl);
4581 gcc_assert (fi != NULL);
4583 /* Account for stores in assignments and calls. */
4584 if (gimple_vdef (t) != NULL_TREE
4585 && gimple_has_lhs (t))
4587 tree lhs = gimple_get_lhs (t);
4588 tree tem = lhs;
4589 while (handled_component_p (tem))
4590 tem = TREE_OPERAND (tem, 0);
4591 if ((DECL_P (tem)
4592 && !auto_var_in_fn_p (tem, cfun->decl))
4593 || INDIRECT_REF_P (tem)
4594 || (TREE_CODE (tem) == MEM_REF
4595 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4596 && auto_var_in_fn_p
4597 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
4599 struct constraint_expr lhsc, *rhsp;
4600 unsigned i;
4601 lhsc = get_function_part_constraint (fi, fi_clobbers);
4602 get_constraint_for_address_of (lhs, &rhsc);
4603 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4604 process_constraint (new_constraint (lhsc, *rhsp));
4605 VEC_free (ce_s, heap, rhsc);
4609 /* Account for uses in assigments and returns. */
4610 if (gimple_assign_single_p (t)
4611 || (gimple_code (t) == GIMPLE_RETURN
4612 && gimple_return_retval (t) != NULL_TREE))
4614 tree rhs = (gimple_assign_single_p (t)
4615 ? gimple_assign_rhs1 (t) : gimple_return_retval (t));
4616 tree tem = rhs;
4617 while (handled_component_p (tem))
4618 tem = TREE_OPERAND (tem, 0);
4619 if ((DECL_P (tem)
4620 && !auto_var_in_fn_p (tem, cfun->decl))
4621 || INDIRECT_REF_P (tem)
4622 || (TREE_CODE (tem) == MEM_REF
4623 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4624 && auto_var_in_fn_p
4625 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
4627 struct constraint_expr lhs, *rhsp;
4628 unsigned i;
4629 lhs = get_function_part_constraint (fi, fi_uses);
4630 get_constraint_for_address_of (rhs, &rhsc);
4631 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4632 process_constraint (new_constraint (lhs, *rhsp));
4633 VEC_free (ce_s, heap, rhsc);
4637 if (is_gimple_call (t))
4639 varinfo_t cfi = NULL;
4640 tree decl = gimple_call_fndecl (t);
4641 struct constraint_expr lhs, rhs;
4642 unsigned i, j;
4644 /* For builtins we do not have separate function info. For those
4645 we do not generate escapes for we have to generate clobbers/uses. */
4646 if (decl
4647 && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
4648 switch (DECL_FUNCTION_CODE (decl))
4650 /* The following functions use and clobber memory pointed to
4651 by their arguments. */
4652 case BUILT_IN_STRCPY:
4653 case BUILT_IN_STRNCPY:
4654 case BUILT_IN_BCOPY:
4655 case BUILT_IN_MEMCPY:
4656 case BUILT_IN_MEMMOVE:
4657 case BUILT_IN_MEMPCPY:
4658 case BUILT_IN_STPCPY:
4659 case BUILT_IN_STPNCPY:
4660 case BUILT_IN_STRCAT:
4661 case BUILT_IN_STRNCAT:
4663 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4664 == BUILT_IN_BCOPY ? 1 : 0));
4665 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4666 == BUILT_IN_BCOPY ? 0 : 1));
4667 unsigned i;
4668 struct constraint_expr *rhsp, *lhsp;
4669 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4670 lhs = get_function_part_constraint (fi, fi_clobbers);
4671 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4672 process_constraint (new_constraint (lhs, *lhsp));
4673 VEC_free (ce_s, heap, lhsc);
4674 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4675 lhs = get_function_part_constraint (fi, fi_uses);
4676 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4677 process_constraint (new_constraint (lhs, *rhsp));
4678 VEC_free (ce_s, heap, rhsc);
4679 return;
4681 /* The following function clobbers memory pointed to by
4682 its argument. */
4683 case BUILT_IN_MEMSET:
4685 tree dest = gimple_call_arg (t, 0);
4686 unsigned i;
4687 ce_s *lhsp;
4688 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4689 lhs = get_function_part_constraint (fi, fi_clobbers);
4690 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4691 process_constraint (new_constraint (lhs, *lhsp));
4692 VEC_free (ce_s, heap, lhsc);
4693 return;
4695 /* The following functions clobber their second and third
4696 arguments. */
4697 case BUILT_IN_SINCOS:
4698 case BUILT_IN_SINCOSF:
4699 case BUILT_IN_SINCOSL:
4701 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4702 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4703 return;
4705 /* The following functions clobber their second argument. */
4706 case BUILT_IN_FREXP:
4707 case BUILT_IN_FREXPF:
4708 case BUILT_IN_FREXPL:
4709 case BUILT_IN_LGAMMA_R:
4710 case BUILT_IN_LGAMMAF_R:
4711 case BUILT_IN_LGAMMAL_R:
4712 case BUILT_IN_GAMMA_R:
4713 case BUILT_IN_GAMMAF_R:
4714 case BUILT_IN_GAMMAL_R:
4715 case BUILT_IN_MODF:
4716 case BUILT_IN_MODFF:
4717 case BUILT_IN_MODFL:
4719 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4720 return;
4722 /* The following functions clobber their third argument. */
4723 case BUILT_IN_REMQUO:
4724 case BUILT_IN_REMQUOF:
4725 case BUILT_IN_REMQUOL:
4727 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4728 return;
4730 /* The following functions neither read nor clobber memory. */
4731 case BUILT_IN_FREE:
4732 return;
4733 /* Trampolines are of no interest to us. */
4734 case BUILT_IN_INIT_TRAMPOLINE:
4735 case BUILT_IN_ADJUST_TRAMPOLINE:
4736 return;
4737 case BUILT_IN_VA_START:
4738 case BUILT_IN_VA_END:
4739 return;
4740 /* printf-style functions may have hooks to set pointers to
4741 point to somewhere into the generated string. Leave them
4742 for a later excercise... */
4743 default:
4744 /* Fallthru to general call handling. */;
4747 /* Parameters passed by value are used. */
4748 lhs = get_function_part_constraint (fi, fi_uses);
4749 for (i = 0; i < gimple_call_num_args (t); i++)
4751 struct constraint_expr *rhsp;
4752 tree arg = gimple_call_arg (t, i);
4754 if (TREE_CODE (arg) == SSA_NAME
4755 || is_gimple_min_invariant (arg))
4756 continue;
4758 get_constraint_for_address_of (arg, &rhsc);
4759 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4760 process_constraint (new_constraint (lhs, *rhsp));
4761 VEC_free (ce_s, heap, rhsc);
4764 /* Build constraints for propagating clobbers/uses along the
4765 callgraph edges. */
4766 cfi = get_fi_for_callee (t);
4767 if (cfi->id == anything_id)
4769 if (gimple_vdef (t))
4770 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4771 anything_id);
4772 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4773 anything_id);
4774 return;
4777 /* For callees without function info (that's external functions),
4778 ESCAPED is clobbered and used. */
4779 if (gimple_call_fndecl (t)
4780 && !cfi->is_fn_info)
4782 varinfo_t vi;
4784 if (gimple_vdef (t))
4785 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4786 escaped_id);
4787 make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
4789 /* Also honor the call statement use/clobber info. */
4790 if ((vi = lookup_call_clobber_vi (t)) != NULL)
4791 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4792 vi->id);
4793 if ((vi = lookup_call_use_vi (t)) != NULL)
4794 make_copy_constraint (first_vi_for_offset (fi, fi_uses),
4795 vi->id);
4796 return;
4799 /* Otherwise the caller clobbers and uses what the callee does.
4800 ??? This should use a new complex constraint that filters
4801 local variables of the callee. */
4802 if (gimple_vdef (t))
4804 lhs = get_function_part_constraint (fi, fi_clobbers);
4805 rhs = get_function_part_constraint (cfi, fi_clobbers);
4806 process_constraint (new_constraint (lhs, rhs));
4808 lhs = get_function_part_constraint (fi, fi_uses);
4809 rhs = get_function_part_constraint (cfi, fi_uses);
4810 process_constraint (new_constraint (lhs, rhs));
4812 else if (gimple_code (t) == GIMPLE_ASM)
4814 /* ??? Ick. We can do better. */
4815 if (gimple_vdef (t))
4816 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4817 anything_id);
4818 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4819 anything_id);
4822 VEC_free (ce_s, heap, rhsc);
4826 /* Find the first varinfo in the same variable as START that overlaps with
4827 OFFSET. Return NULL if we can't find one. */
4829 static varinfo_t
4830 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
4832 /* If the offset is outside of the variable, bail out. */
4833 if (offset >= start->fullsize)
4834 return NULL;
4836 /* If we cannot reach offset from start, lookup the first field
4837 and start from there. */
4838 if (start->offset > offset)
4839 start = lookup_vi_for_tree (start->decl);
4841 while (start)
4843 /* We may not find a variable in the field list with the actual
4844 offset when when we have glommed a structure to a variable.
4845 In that case, however, offset should still be within the size
4846 of the variable. */
4847 if (offset >= start->offset
4848 && (offset - start->offset) < start->size)
4849 return start;
4851 start= start->next;
4854 return NULL;
4857 /* Find the first varinfo in the same variable as START that overlaps with
4858 OFFSET. If there is no such varinfo the varinfo directly preceding
4859 OFFSET is returned. */
4861 static varinfo_t
4862 first_or_preceding_vi_for_offset (varinfo_t start,
4863 unsigned HOST_WIDE_INT offset)
4865 /* If we cannot reach offset from start, lookup the first field
4866 and start from there. */
4867 if (start->offset > offset)
4868 start = lookup_vi_for_tree (start->decl);
4870 /* We may not find a variable in the field list with the actual
4871 offset when when we have glommed a structure to a variable.
4872 In that case, however, offset should still be within the size
4873 of the variable.
4874 If we got beyond the offset we look for return the field
4875 directly preceding offset which may be the last field. */
4876 while (start->next
4877 && offset >= start->offset
4878 && !((offset - start->offset) < start->size))
4879 start = start->next;
4881 return start;
4885 /* This structure is used during pushing fields onto the fieldstack
4886 to track the offset of the field, since bitpos_of_field gives it
4887 relative to its immediate containing type, and we want it relative
4888 to the ultimate containing object. */
4890 struct fieldoff
4892 /* Offset from the base of the base containing object to this field. */
4893 HOST_WIDE_INT offset;
4895 /* Size, in bits, of the field. */
4896 unsigned HOST_WIDE_INT size;
4898 unsigned has_unknown_size : 1;
4900 unsigned must_have_pointers : 1;
4902 unsigned may_have_pointers : 1;
4904 unsigned only_restrict_pointers : 1;
4906 typedef struct fieldoff fieldoff_s;
4908 DEF_VEC_O(fieldoff_s);
4909 DEF_VEC_ALLOC_O(fieldoff_s,heap);
4911 /* qsort comparison function for two fieldoff's PA and PB */
4913 static int
4914 fieldoff_compare (const void *pa, const void *pb)
4916 const fieldoff_s *foa = (const fieldoff_s *)pa;
4917 const fieldoff_s *fob = (const fieldoff_s *)pb;
4918 unsigned HOST_WIDE_INT foasize, fobsize;
4920 if (foa->offset < fob->offset)
4921 return -1;
4922 else if (foa->offset > fob->offset)
4923 return 1;
4925 foasize = foa->size;
4926 fobsize = fob->size;
4927 if (foasize < fobsize)
4928 return -1;
4929 else if (foasize > fobsize)
4930 return 1;
4931 return 0;
4934 /* Sort a fieldstack according to the field offset and sizes. */
4935 static void
4936 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
4938 VEC_qsort (fieldoff_s, fieldstack, fieldoff_compare);
4941 /* Return true if V is a tree that we can have subvars for.
4942 Normally, this is any aggregate type. Also complex
4943 types which are not gimple registers can have subvars. */
4945 static inline bool
4946 var_can_have_subvars (const_tree v)
4948 /* Volatile variables should never have subvars. */
4949 if (TREE_THIS_VOLATILE (v))
4950 return false;
4952 /* Non decls or memory tags can never have subvars. */
4953 if (!DECL_P (v))
4954 return false;
4956 /* Aggregates without overlapping fields can have subvars. */
4957 if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
4958 return true;
4960 return false;
4963 /* Return true if T is a type that does contain pointers. */
4965 static bool
4966 type_must_have_pointers (tree type)
4968 if (POINTER_TYPE_P (type))
4969 return true;
4971 if (TREE_CODE (type) == ARRAY_TYPE)
4972 return type_must_have_pointers (TREE_TYPE (type));
4974 /* A function or method can have pointers as arguments, so track
4975 those separately. */
4976 if (TREE_CODE (type) == FUNCTION_TYPE
4977 || TREE_CODE (type) == METHOD_TYPE)
4978 return true;
4980 return false;
4983 static bool
4984 field_must_have_pointers (tree t)
4986 return type_must_have_pointers (TREE_TYPE (t));
4989 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
4990 the fields of TYPE onto fieldstack, recording their offsets along
4991 the way.
4993 OFFSET is used to keep track of the offset in this entire
4994 structure, rather than just the immediately containing structure.
4995 Returns false if the caller is supposed to handle the field we
4996 recursed for. */
4998 static bool
4999 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
5000 HOST_WIDE_INT offset)
5002 tree field;
5003 bool empty_p = true;
5005 if (TREE_CODE (type) != RECORD_TYPE)
5006 return false;
5008 /* If the vector of fields is growing too big, bail out early.
5009 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
5010 sure this fails. */
5011 if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5012 return false;
5014 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5015 if (TREE_CODE (field) == FIELD_DECL)
5017 bool push = false;
5018 HOST_WIDE_INT foff = bitpos_of_field (field);
5020 if (!var_can_have_subvars (field)
5021 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
5022 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
5023 push = true;
5024 else if (!push_fields_onto_fieldstack
5025 (TREE_TYPE (field), fieldstack, offset + foff)
5026 && (DECL_SIZE (field)
5027 && !integer_zerop (DECL_SIZE (field))))
5028 /* Empty structures may have actual size, like in C++. So
5029 see if we didn't push any subfields and the size is
5030 nonzero, push the field onto the stack. */
5031 push = true;
5033 if (push)
5035 fieldoff_s *pair = NULL;
5036 bool has_unknown_size = false;
5037 bool must_have_pointers_p;
5039 if (!VEC_empty (fieldoff_s, *fieldstack))
5040 pair = VEC_last (fieldoff_s, *fieldstack);
5042 if (!DECL_SIZE (field)
5043 || !host_integerp (DECL_SIZE (field), 1))
5044 has_unknown_size = true;
5046 /* If adjacent fields do not contain pointers merge them. */
5047 must_have_pointers_p = field_must_have_pointers (field);
5048 if (pair
5049 && !has_unknown_size
5050 && !must_have_pointers_p
5051 && !pair->must_have_pointers
5052 && !pair->has_unknown_size
5053 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
5055 pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
5057 else
5059 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
5060 pair->offset = offset + foff;
5061 pair->has_unknown_size = has_unknown_size;
5062 if (!has_unknown_size)
5063 pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
5064 else
5065 pair->size = -1;
5066 pair->must_have_pointers = must_have_pointers_p;
5067 pair->may_have_pointers = true;
5068 pair->only_restrict_pointers
5069 = (!has_unknown_size
5070 && POINTER_TYPE_P (TREE_TYPE (field))
5071 && TYPE_RESTRICT (TREE_TYPE (field)));
5075 empty_p = false;
5078 return !empty_p;
5081 /* Count the number of arguments DECL has, and set IS_VARARGS to true
5082 if it is a varargs function. */
5084 static unsigned int
5085 count_num_arguments (tree decl, bool *is_varargs)
5087 unsigned int num = 0;
5088 tree t;
5090 /* Capture named arguments for K&R functions. They do not
5091 have a prototype and thus no TYPE_ARG_TYPES. */
5092 for (t = DECL_ARGUMENTS (decl); t; t = DECL_CHAIN (t))
5093 ++num;
5095 /* Check if the function has variadic arguments. */
5096 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
5097 if (TREE_VALUE (t) == void_type_node)
5098 break;
5099 if (!t)
5100 *is_varargs = true;
5102 return num;
5105 /* Creation function node for DECL, using NAME, and return the index
5106 of the variable we've created for the function. */
5108 static varinfo_t
5109 create_function_info_for (tree decl, const char *name)
5111 struct function *fn = DECL_STRUCT_FUNCTION (decl);
5112 varinfo_t vi, prev_vi;
5113 tree arg;
5114 unsigned int i;
5115 bool is_varargs = false;
5116 unsigned int num_args = count_num_arguments (decl, &is_varargs);
5118 /* Create the variable info. */
5120 vi = new_var_info (decl, name);
5121 vi->offset = 0;
5122 vi->size = 1;
5123 vi->fullsize = fi_parm_base + num_args;
5124 vi->is_fn_info = 1;
5125 vi->may_have_pointers = false;
5126 if (is_varargs)
5127 vi->fullsize = ~0;
5128 insert_vi_for_tree (vi->decl, vi);
5130 prev_vi = vi;
5132 /* Create a variable for things the function clobbers and one for
5133 things the function uses. */
5135 varinfo_t clobbervi, usevi;
5136 const char *newname;
5137 char *tempname;
5139 asprintf (&tempname, "%s.clobber", name);
5140 newname = ggc_strdup (tempname);
5141 free (tempname);
5143 clobbervi = new_var_info (NULL, newname);
5144 clobbervi->offset = fi_clobbers;
5145 clobbervi->size = 1;
5146 clobbervi->fullsize = vi->fullsize;
5147 clobbervi->is_full_var = true;
5148 clobbervi->is_global_var = false;
5149 gcc_assert (prev_vi->offset < clobbervi->offset);
5150 prev_vi->next = clobbervi;
5151 prev_vi = clobbervi;
5153 asprintf (&tempname, "%s.use", name);
5154 newname = ggc_strdup (tempname);
5155 free (tempname);
5157 usevi = new_var_info (NULL, newname);
5158 usevi->offset = fi_uses;
5159 usevi->size = 1;
5160 usevi->fullsize = vi->fullsize;
5161 usevi->is_full_var = true;
5162 usevi->is_global_var = false;
5163 gcc_assert (prev_vi->offset < usevi->offset);
5164 prev_vi->next = usevi;
5165 prev_vi = usevi;
5168 /* And one for the static chain. */
5169 if (fn->static_chain_decl != NULL_TREE)
5171 varinfo_t chainvi;
5172 const char *newname;
5173 char *tempname;
5175 asprintf (&tempname, "%s.chain", name);
5176 newname = ggc_strdup (tempname);
5177 free (tempname);
5179 chainvi = new_var_info (fn->static_chain_decl, newname);
5180 chainvi->offset = fi_static_chain;
5181 chainvi->size = 1;
5182 chainvi->fullsize = vi->fullsize;
5183 chainvi->is_full_var = true;
5184 chainvi->is_global_var = false;
5185 gcc_assert (prev_vi->offset < chainvi->offset);
5186 prev_vi->next = chainvi;
5187 prev_vi = chainvi;
5188 insert_vi_for_tree (fn->static_chain_decl, chainvi);
5191 /* Create a variable for the return var. */
5192 if (DECL_RESULT (decl) != NULL
5193 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
5195 varinfo_t resultvi;
5196 const char *newname;
5197 char *tempname;
5198 tree resultdecl = decl;
5200 if (DECL_RESULT (decl))
5201 resultdecl = DECL_RESULT (decl);
5203 asprintf (&tempname, "%s.result", name);
5204 newname = ggc_strdup (tempname);
5205 free (tempname);
5207 resultvi = new_var_info (resultdecl, newname);
5208 resultvi->offset = fi_result;
5209 resultvi->size = 1;
5210 resultvi->fullsize = vi->fullsize;
5211 resultvi->is_full_var = true;
5212 if (DECL_RESULT (decl))
5213 resultvi->may_have_pointers = true;
5214 gcc_assert (prev_vi->offset < resultvi->offset);
5215 prev_vi->next = resultvi;
5216 prev_vi = resultvi;
5217 if (DECL_RESULT (decl))
5218 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
5221 /* Set up variables for each argument. */
5222 arg = DECL_ARGUMENTS (decl);
5223 for (i = 0; i < num_args; i++)
5225 varinfo_t argvi;
5226 const char *newname;
5227 char *tempname;
5228 tree argdecl = decl;
5230 if (arg)
5231 argdecl = arg;
5233 asprintf (&tempname, "%s.arg%d", name, i);
5234 newname = ggc_strdup (tempname);
5235 free (tempname);
5237 argvi = new_var_info (argdecl, newname);
5238 argvi->offset = fi_parm_base + i;
5239 argvi->size = 1;
5240 argvi->is_full_var = true;
5241 argvi->fullsize = vi->fullsize;
5242 if (arg)
5243 argvi->may_have_pointers = true;
5244 gcc_assert (prev_vi->offset < argvi->offset);
5245 prev_vi->next = argvi;
5246 prev_vi = argvi;
5247 if (arg)
5249 insert_vi_for_tree (arg, argvi);
5250 arg = DECL_CHAIN (arg);
5254 /* Add one representative for all further args. */
5255 if (is_varargs)
5257 varinfo_t argvi;
5258 const char *newname;
5259 char *tempname;
5260 tree decl;
5262 asprintf (&tempname, "%s.varargs", name);
5263 newname = ggc_strdup (tempname);
5264 free (tempname);
5266 /* We need sth that can be pointed to for va_start. */
5267 decl = create_tmp_var_raw (ptr_type_node, name);
5268 get_var_ann (decl);
5270 argvi = new_var_info (decl, newname);
5271 argvi->offset = fi_parm_base + num_args;
5272 argvi->size = ~0;
5273 argvi->is_full_var = true;
5274 argvi->is_heap_var = true;
5275 argvi->fullsize = vi->fullsize;
5276 gcc_assert (prev_vi->offset < argvi->offset);
5277 prev_vi->next = argvi;
5278 prev_vi = argvi;
5281 return vi;
5285 /* Return true if FIELDSTACK contains fields that overlap.
5286 FIELDSTACK is assumed to be sorted by offset. */
5288 static bool
5289 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
5291 fieldoff_s *fo = NULL;
5292 unsigned int i;
5293 HOST_WIDE_INT lastoffset = -1;
5295 FOR_EACH_VEC_ELT (fieldoff_s, fieldstack, i, fo)
5297 if (fo->offset == lastoffset)
5298 return true;
5299 lastoffset = fo->offset;
5301 return false;
5304 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5305 This will also create any varinfo structures necessary for fields
5306 of DECL. */
5308 static varinfo_t
5309 create_variable_info_for_1 (tree decl, const char *name)
5311 varinfo_t vi, newvi;
5312 tree decl_type = TREE_TYPE (decl);
5313 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
5314 VEC (fieldoff_s,heap) *fieldstack = NULL;
5315 fieldoff_s *fo;
5316 unsigned int i;
5318 if (!declsize
5319 || !host_integerp (declsize, 1))
5321 vi = new_var_info (decl, name);
5322 vi->offset = 0;
5323 vi->size = ~0;
5324 vi->fullsize = ~0;
5325 vi->is_unknown_size_var = true;
5326 vi->is_full_var = true;
5327 vi->may_have_pointers = true;
5328 return vi;
5331 /* Collect field information. */
5332 if (use_field_sensitive
5333 && var_can_have_subvars (decl)
5334 /* ??? Force us to not use subfields for global initializers
5335 in IPA mode. Else we'd have to parse arbitrary initializers. */
5336 && !(in_ipa_mode
5337 && is_global_var (decl)
5338 && DECL_INITIAL (decl)))
5340 fieldoff_s *fo = NULL;
5341 bool notokay = false;
5342 unsigned int i;
5344 push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
5346 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
5347 if (fo->has_unknown_size
5348 || fo->offset < 0)
5350 notokay = true;
5351 break;
5354 /* We can't sort them if we have a field with a variable sized type,
5355 which will make notokay = true. In that case, we are going to return
5356 without creating varinfos for the fields anyway, so sorting them is a
5357 waste to boot. */
5358 if (!notokay)
5360 sort_fieldstack (fieldstack);
5361 /* Due to some C++ FE issues, like PR 22488, we might end up
5362 what appear to be overlapping fields even though they,
5363 in reality, do not overlap. Until the C++ FE is fixed,
5364 we will simply disable field-sensitivity for these cases. */
5365 notokay = check_for_overlaps (fieldstack);
5368 if (notokay)
5369 VEC_free (fieldoff_s, heap, fieldstack);
5372 /* If we didn't end up collecting sub-variables create a full
5373 variable for the decl. */
5374 if (VEC_length (fieldoff_s, fieldstack) <= 1
5375 || VEC_length (fieldoff_s, fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5377 vi = new_var_info (decl, name);
5378 vi->offset = 0;
5379 vi->may_have_pointers = true;
5380 vi->fullsize = TREE_INT_CST_LOW (declsize);
5381 vi->size = vi->fullsize;
5382 vi->is_full_var = true;
5383 VEC_free (fieldoff_s, heap, fieldstack);
5384 return vi;
5387 vi = new_var_info (decl, name);
5388 vi->fullsize = TREE_INT_CST_LOW (declsize);
5389 for (i = 0, newvi = vi;
5390 VEC_iterate (fieldoff_s, fieldstack, i, fo);
5391 ++i, newvi = newvi->next)
5393 const char *newname = "NULL";
5394 char *tempname;
5396 if (dump_file)
5398 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
5399 "+" HOST_WIDE_INT_PRINT_DEC, name, fo->offset, fo->size);
5400 newname = ggc_strdup (tempname);
5401 free (tempname);
5403 newvi->name = newname;
5404 newvi->offset = fo->offset;
5405 newvi->size = fo->size;
5406 newvi->fullsize = vi->fullsize;
5407 newvi->may_have_pointers = fo->may_have_pointers;
5408 newvi->only_restrict_pointers = fo->only_restrict_pointers;
5409 if (i + 1 < VEC_length (fieldoff_s, fieldstack))
5410 newvi->next = new_var_info (decl, name);
5413 VEC_free (fieldoff_s, heap, fieldstack);
5415 return vi;
5418 static unsigned int
5419 create_variable_info_for (tree decl, const char *name)
5421 varinfo_t vi = create_variable_info_for_1 (decl, name);
5422 unsigned int id = vi->id;
5424 insert_vi_for_tree (decl, vi);
5426 /* Create initial constraints for globals. */
5427 for (; vi; vi = vi->next)
5429 if (!vi->may_have_pointers
5430 || !vi->is_global_var)
5431 continue;
5433 /* Mark global restrict qualified pointers. */
5434 if ((POINTER_TYPE_P (TREE_TYPE (decl))
5435 && TYPE_RESTRICT (TREE_TYPE (decl)))
5436 || vi->only_restrict_pointers)
5437 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
5439 /* For escaped variables initialize them from nonlocal. */
5440 if (!in_ipa_mode
5441 || DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
5442 make_copy_constraint (vi, nonlocal_id);
5444 /* If this is a global variable with an initializer and we are in
5445 IPA mode generate constraints for it. In non-IPA mode
5446 the initializer from nonlocal is all we need. */
5447 if (in_ipa_mode
5448 && DECL_INITIAL (decl))
5450 VEC (ce_s, heap) *rhsc = NULL;
5451 struct constraint_expr lhs, *rhsp;
5452 unsigned i;
5453 get_constraint_for_rhs (DECL_INITIAL (decl), &rhsc);
5454 lhs.var = vi->id;
5455 lhs.offset = 0;
5456 lhs.type = SCALAR;
5457 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
5458 process_constraint (new_constraint (lhs, *rhsp));
5459 /* If this is a variable that escapes from the unit
5460 the initializer escapes as well. */
5461 if (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
5463 lhs.var = escaped_id;
5464 lhs.offset = 0;
5465 lhs.type = SCALAR;
5466 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
5467 process_constraint (new_constraint (lhs, *rhsp));
5469 VEC_free (ce_s, heap, rhsc);
5473 return id;
5476 /* Print out the points-to solution for VAR to FILE. */
5478 static void
5479 dump_solution_for_var (FILE *file, unsigned int var)
5481 varinfo_t vi = get_varinfo (var);
5482 unsigned int i;
5483 bitmap_iterator bi;
5485 /* Dump the solution for unified vars anyway, this avoids difficulties
5486 in scanning dumps in the testsuite. */
5487 fprintf (file, "%s = { ", vi->name);
5488 vi = get_varinfo (find (var));
5489 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5490 fprintf (file, "%s ", get_varinfo (i)->name);
5491 fprintf (file, "}");
5493 /* But note when the variable was unified. */
5494 if (vi->id != var)
5495 fprintf (file, " same as %s", vi->name);
5497 fprintf (file, "\n");
5500 /* Print the points-to solution for VAR to stdout. */
5502 DEBUG_FUNCTION void
5503 debug_solution_for_var (unsigned int var)
5505 dump_solution_for_var (stdout, var);
5508 /* Create varinfo structures for all of the variables in the
5509 function for intraprocedural mode. */
5511 static void
5512 intra_create_variable_infos (void)
5514 tree t;
5516 /* For each incoming pointer argument arg, create the constraint ARG
5517 = NONLOCAL or a dummy variable if it is a restrict qualified
5518 passed-by-reference argument. */
5519 for (t = DECL_ARGUMENTS (current_function_decl); t; t = DECL_CHAIN (t))
5521 varinfo_t p;
5523 /* For restrict qualified pointers to objects passed by
5524 reference build a real representative for the pointed-to object. */
5525 if (DECL_BY_REFERENCE (t)
5526 && POINTER_TYPE_P (TREE_TYPE (t))
5527 && TYPE_RESTRICT (TREE_TYPE (t)))
5529 struct constraint_expr lhsc, rhsc;
5530 varinfo_t vi;
5531 tree heapvar = heapvar_lookup (t, 0);
5532 if (heapvar == NULL_TREE)
5534 var_ann_t ann;
5535 heapvar = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t)),
5536 "PARM_NOALIAS");
5537 DECL_EXTERNAL (heapvar) = 1;
5538 heapvar_insert (t, 0, heapvar);
5539 ann = get_var_ann (heapvar);
5540 ann->is_heapvar = 1;
5542 if (gimple_referenced_vars (cfun))
5543 add_referenced_var (heapvar);
5544 lhsc.var = get_vi_for_tree (t)->id;
5545 lhsc.type = SCALAR;
5546 lhsc.offset = 0;
5547 rhsc.var = (vi = get_vi_for_tree (heapvar))->id;
5548 rhsc.type = ADDRESSOF;
5549 rhsc.offset = 0;
5550 process_constraint (new_constraint (lhsc, rhsc));
5551 vi->is_restrict_var = 1;
5552 continue;
5555 for (p = get_vi_for_tree (t); p; p = p->next)
5557 if (p->may_have_pointers)
5558 make_constraint_from (p, nonlocal_id);
5559 if (p->only_restrict_pointers)
5560 make_constraint_from_restrict (p, "PARM_RESTRICT");
5562 if (POINTER_TYPE_P (TREE_TYPE (t))
5563 && TYPE_RESTRICT (TREE_TYPE (t)))
5564 make_constraint_from_restrict (get_vi_for_tree (t), "PARM_RESTRICT");
5567 /* Add a constraint for a result decl that is passed by reference. */
5568 if (DECL_RESULT (cfun->decl)
5569 && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
5571 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
5573 for (p = result_vi; p; p = p->next)
5574 make_constraint_from (p, nonlocal_id);
5577 /* Add a constraint for the incoming static chain parameter. */
5578 if (cfun->static_chain_decl != NULL_TREE)
5580 varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
5582 for (p = chain_vi; p; p = p->next)
5583 make_constraint_from (p, nonlocal_id);
5587 /* Structure used to put solution bitmaps in a hashtable so they can
5588 be shared among variables with the same points-to set. */
5590 typedef struct shared_bitmap_info
5592 bitmap pt_vars;
5593 hashval_t hashcode;
5594 } *shared_bitmap_info_t;
5595 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
5597 static htab_t shared_bitmap_table;
5599 /* Hash function for a shared_bitmap_info_t */
5601 static hashval_t
5602 shared_bitmap_hash (const void *p)
5604 const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
5605 return bi->hashcode;
5608 /* Equality function for two shared_bitmap_info_t's. */
5610 static int
5611 shared_bitmap_eq (const void *p1, const void *p2)
5613 const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
5614 const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
5615 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
5618 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
5619 existing instance if there is one, NULL otherwise. */
5621 static bitmap
5622 shared_bitmap_lookup (bitmap pt_vars)
5624 void **slot;
5625 struct shared_bitmap_info sbi;
5627 sbi.pt_vars = pt_vars;
5628 sbi.hashcode = bitmap_hash (pt_vars);
5630 slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
5631 sbi.hashcode, NO_INSERT);
5632 if (!slot)
5633 return NULL;
5634 else
5635 return ((shared_bitmap_info_t) *slot)->pt_vars;
5639 /* Add a bitmap to the shared bitmap hashtable. */
5641 static void
5642 shared_bitmap_add (bitmap pt_vars)
5644 void **slot;
5645 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
5647 sbi->pt_vars = pt_vars;
5648 sbi->hashcode = bitmap_hash (pt_vars);
5650 slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
5651 sbi->hashcode, INSERT);
5652 gcc_assert (!*slot);
5653 *slot = (void *) sbi;
5657 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
5659 static void
5660 set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
5662 unsigned int i;
5663 bitmap_iterator bi;
5665 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
5667 varinfo_t vi = get_varinfo (i);
5669 /* The only artificial variables that are allowed in a may-alias
5670 set are heap variables. */
5671 if (vi->is_artificial_var && !vi->is_heap_var)
5672 continue;
5674 if (TREE_CODE (vi->decl) == VAR_DECL
5675 || TREE_CODE (vi->decl) == PARM_DECL
5676 || TREE_CODE (vi->decl) == RESULT_DECL)
5678 /* If we are in IPA mode we will not recompute points-to
5679 sets after inlining so make sure they stay valid. */
5680 if (in_ipa_mode
5681 && !DECL_PT_UID_SET_P (vi->decl))
5682 SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
5684 /* Add the decl to the points-to set. Note that the points-to
5685 set contains global variables. */
5686 bitmap_set_bit (into, DECL_PT_UID (vi->decl));
5687 if (vi->is_global_var)
5688 pt->vars_contains_global = true;
5694 /* Compute the points-to solution *PT for the variable VI. */
5696 static void
5697 find_what_var_points_to (varinfo_t orig_vi, struct pt_solution *pt)
5699 unsigned int i;
5700 bitmap_iterator bi;
5701 bitmap finished_solution;
5702 bitmap result;
5703 varinfo_t vi;
5705 memset (pt, 0, sizeof (struct pt_solution));
5707 /* This variable may have been collapsed, let's get the real
5708 variable. */
5709 vi = get_varinfo (find (orig_vi->id));
5711 /* Translate artificial variables into SSA_NAME_PTR_INFO
5712 attributes. */
5713 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5715 varinfo_t vi = get_varinfo (i);
5717 if (vi->is_artificial_var)
5719 if (vi->id == nothing_id)
5720 pt->null = 1;
5721 else if (vi->id == escaped_id)
5723 if (in_ipa_mode)
5724 pt->ipa_escaped = 1;
5725 else
5726 pt->escaped = 1;
5728 else if (vi->id == nonlocal_id)
5729 pt->nonlocal = 1;
5730 else if (vi->is_heap_var)
5731 /* We represent heapvars in the points-to set properly. */
5733 else if (vi->id == readonly_id)
5734 /* Nobody cares. */
5736 else if (vi->id == anything_id
5737 || vi->id == integer_id)
5738 pt->anything = 1;
5740 if (vi->is_restrict_var)
5741 pt->vars_contains_restrict = true;
5744 /* Instead of doing extra work, simply do not create
5745 elaborate points-to information for pt_anything pointers. */
5746 if (pt->anything
5747 && (orig_vi->is_artificial_var
5748 || !pt->vars_contains_restrict))
5749 return;
5751 /* Share the final set of variables when possible. */
5752 finished_solution = BITMAP_GGC_ALLOC ();
5753 stats.points_to_sets_created++;
5755 set_uids_in_ptset (finished_solution, vi->solution, pt);
5756 result = shared_bitmap_lookup (finished_solution);
5757 if (!result)
5759 shared_bitmap_add (finished_solution);
5760 pt->vars = finished_solution;
5762 else
5764 pt->vars = result;
5765 bitmap_clear (finished_solution);
5769 /* Given a pointer variable P, fill in its points-to set. */
5771 static void
5772 find_what_p_points_to (tree p)
5774 struct ptr_info_def *pi;
5775 tree lookup_p = p;
5776 varinfo_t vi;
5778 /* For parameters, get at the points-to set for the actual parm
5779 decl. */
5780 if (TREE_CODE (p) == SSA_NAME
5781 && (TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
5782 || TREE_CODE (SSA_NAME_VAR (p)) == RESULT_DECL)
5783 && SSA_NAME_IS_DEFAULT_DEF (p))
5784 lookup_p = SSA_NAME_VAR (p);
5786 vi = lookup_vi_for_tree (lookup_p);
5787 if (!vi)
5788 return;
5790 pi = get_ptr_info (p);
5791 find_what_var_points_to (vi, &pi->pt);
5795 /* Query statistics for points-to solutions. */
5797 static struct {
5798 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
5799 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
5800 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
5801 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
5802 } pta_stats;
5804 void
5805 dump_pta_stats (FILE *s)
5807 fprintf (s, "\nPTA query stats:\n");
5808 fprintf (s, " pt_solution_includes: "
5809 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5810 HOST_WIDE_INT_PRINT_DEC" queries\n",
5811 pta_stats.pt_solution_includes_no_alias,
5812 pta_stats.pt_solution_includes_no_alias
5813 + pta_stats.pt_solution_includes_may_alias);
5814 fprintf (s, " pt_solutions_intersect: "
5815 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5816 HOST_WIDE_INT_PRINT_DEC" queries\n",
5817 pta_stats.pt_solutions_intersect_no_alias,
5818 pta_stats.pt_solutions_intersect_no_alias
5819 + pta_stats.pt_solutions_intersect_may_alias);
5823 /* Reset the points-to solution *PT to a conservative default
5824 (point to anything). */
5826 void
5827 pt_solution_reset (struct pt_solution *pt)
5829 memset (pt, 0, sizeof (struct pt_solution));
5830 pt->anything = true;
5833 /* Set the points-to solution *PT to point only to the variables
5834 in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
5835 global variables and VARS_CONTAINS_RESTRICT specifies whether
5836 it contains restrict tag variables. */
5838 void
5839 pt_solution_set (struct pt_solution *pt, bitmap vars,
5840 bool vars_contains_global, bool vars_contains_restrict)
5842 memset (pt, 0, sizeof (struct pt_solution));
5843 pt->vars = vars;
5844 pt->vars_contains_global = vars_contains_global;
5845 pt->vars_contains_restrict = vars_contains_restrict;
5848 /* Set the points-to solution *PT to point only to the variable VAR. */
5850 void
5851 pt_solution_set_var (struct pt_solution *pt, tree var)
5853 memset (pt, 0, sizeof (struct pt_solution));
5854 pt->vars = BITMAP_GGC_ALLOC ();
5855 bitmap_set_bit (pt->vars, DECL_UID (var));
5856 pt->vars_contains_global = is_global_var (var);
5859 /* Computes the union of the points-to solutions *DEST and *SRC and
5860 stores the result in *DEST. This changes the points-to bitmap
5861 of *DEST and thus may not be used if that might be shared.
5862 The points-to bitmap of *SRC and *DEST will not be shared after
5863 this function if they were not before. */
5865 static void
5866 pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
5868 dest->anything |= src->anything;
5869 if (dest->anything)
5871 pt_solution_reset (dest);
5872 return;
5875 dest->nonlocal |= src->nonlocal;
5876 dest->escaped |= src->escaped;
5877 dest->ipa_escaped |= src->ipa_escaped;
5878 dest->null |= src->null;
5879 dest->vars_contains_global |= src->vars_contains_global;
5880 dest->vars_contains_restrict |= src->vars_contains_restrict;
5881 if (!src->vars)
5882 return;
5884 if (!dest->vars)
5885 dest->vars = BITMAP_GGC_ALLOC ();
5886 bitmap_ior_into (dest->vars, src->vars);
5889 /* Return true if the points-to solution *PT is empty. */
5891 bool
5892 pt_solution_empty_p (struct pt_solution *pt)
5894 if (pt->anything
5895 || pt->nonlocal)
5896 return false;
5898 if (pt->vars
5899 && !bitmap_empty_p (pt->vars))
5900 return false;
5902 /* If the solution includes ESCAPED, check if that is empty. */
5903 if (pt->escaped
5904 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5905 return false;
5907 /* If the solution includes ESCAPED, check if that is empty. */
5908 if (pt->ipa_escaped
5909 && !pt_solution_empty_p (&ipa_escaped_pt))
5910 return false;
5912 return true;
5915 /* Return true if the points-to solution *PT includes global memory. */
5917 bool
5918 pt_solution_includes_global (struct pt_solution *pt)
5920 if (pt->anything
5921 || pt->nonlocal
5922 || pt->vars_contains_global)
5923 return true;
5925 if (pt->escaped)
5926 return pt_solution_includes_global (&cfun->gimple_df->escaped);
5928 if (pt->ipa_escaped)
5929 return pt_solution_includes_global (&ipa_escaped_pt);
5931 /* ??? This predicate is not correct for the IPA-PTA solution
5932 as we do not properly distinguish between unit escape points
5933 and global variables. */
5934 if (cfun->gimple_df->ipa_pta)
5935 return true;
5937 return false;
5940 /* Return true if the points-to solution *PT includes the variable
5941 declaration DECL. */
5943 static bool
5944 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
5946 if (pt->anything)
5947 return true;
5949 if (pt->nonlocal
5950 && is_global_var (decl))
5951 return true;
5953 if (pt->vars
5954 && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
5955 return true;
5957 /* If the solution includes ESCAPED, check it. */
5958 if (pt->escaped
5959 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
5960 return true;
5962 /* If the solution includes ESCAPED, check it. */
5963 if (pt->ipa_escaped
5964 && pt_solution_includes_1 (&ipa_escaped_pt, decl))
5965 return true;
5967 return false;
5970 bool
5971 pt_solution_includes (struct pt_solution *pt, const_tree decl)
5973 bool res = pt_solution_includes_1 (pt, decl);
5974 if (res)
5975 ++pta_stats.pt_solution_includes_may_alias;
5976 else
5977 ++pta_stats.pt_solution_includes_no_alias;
5978 return res;
5981 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
5982 intersection. */
5984 static bool
5985 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
5987 if (pt1->anything || pt2->anything)
5988 return true;
5990 /* If either points to unknown global memory and the other points to
5991 any global memory they alias. */
5992 if ((pt1->nonlocal
5993 && (pt2->nonlocal
5994 || pt2->vars_contains_global))
5995 || (pt2->nonlocal
5996 && pt1->vars_contains_global))
5997 return true;
5999 /* Check the escaped solution if required. */
6000 if ((pt1->escaped || pt2->escaped)
6001 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
6003 /* If both point to escaped memory and that solution
6004 is not empty they alias. */
6005 if (pt1->escaped && pt2->escaped)
6006 return true;
6008 /* If either points to escaped memory see if the escaped solution
6009 intersects with the other. */
6010 if ((pt1->escaped
6011 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
6012 || (pt2->escaped
6013 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
6014 return true;
6017 /* Check the escaped solution if required.
6018 ??? Do we need to check the local against the IPA escaped sets? */
6019 if ((pt1->ipa_escaped || pt2->ipa_escaped)
6020 && !pt_solution_empty_p (&ipa_escaped_pt))
6022 /* If both point to escaped memory and that solution
6023 is not empty they alias. */
6024 if (pt1->ipa_escaped && pt2->ipa_escaped)
6025 return true;
6027 /* If either points to escaped memory see if the escaped solution
6028 intersects with the other. */
6029 if ((pt1->ipa_escaped
6030 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
6031 || (pt2->ipa_escaped
6032 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
6033 return true;
6036 /* Now both pointers alias if their points-to solution intersects. */
6037 return (pt1->vars
6038 && pt2->vars
6039 && bitmap_intersect_p (pt1->vars, pt2->vars));
6042 bool
6043 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
6045 bool res = pt_solutions_intersect_1 (pt1, pt2);
6046 if (res)
6047 ++pta_stats.pt_solutions_intersect_may_alias;
6048 else
6049 ++pta_stats.pt_solutions_intersect_no_alias;
6050 return res;
6053 /* Return true if both points-to solutions PT1 and PT2 for two restrict
6054 qualified pointers are possibly based on the same pointer. */
6056 bool
6057 pt_solutions_same_restrict_base (struct pt_solution *pt1,
6058 struct pt_solution *pt2)
6060 /* If we deal with points-to solutions of two restrict qualified
6061 pointers solely rely on the pointed-to variable bitmap intersection.
6062 For two pointers that are based on each other the bitmaps will
6063 intersect. */
6064 if (pt1->vars_contains_restrict
6065 && pt2->vars_contains_restrict)
6067 gcc_assert (pt1->vars && pt2->vars);
6068 return bitmap_intersect_p (pt1->vars, pt2->vars);
6071 return true;
6075 /* Dump points-to information to OUTFILE. */
6077 static void
6078 dump_sa_points_to_info (FILE *outfile)
6080 unsigned int i;
6082 fprintf (outfile, "\nPoints-to sets\n\n");
6084 if (dump_flags & TDF_STATS)
6086 fprintf (outfile, "Stats:\n");
6087 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
6088 fprintf (outfile, "Non-pointer vars: %d\n",
6089 stats.nonpointer_vars);
6090 fprintf (outfile, "Statically unified vars: %d\n",
6091 stats.unified_vars_static);
6092 fprintf (outfile, "Dynamically unified vars: %d\n",
6093 stats.unified_vars_dynamic);
6094 fprintf (outfile, "Iterations: %d\n", stats.iterations);
6095 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
6096 fprintf (outfile, "Number of implicit edges: %d\n",
6097 stats.num_implicit_edges);
6100 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
6102 varinfo_t vi = get_varinfo (i);
6103 if (!vi->may_have_pointers)
6104 continue;
6105 dump_solution_for_var (outfile, i);
6110 /* Debug points-to information to stderr. */
6112 DEBUG_FUNCTION void
6113 debug_sa_points_to_info (void)
6115 dump_sa_points_to_info (stderr);
6119 /* Initialize the always-existing constraint variables for NULL
6120 ANYTHING, READONLY, and INTEGER */
6122 static void
6123 init_base_vars (void)
6125 struct constraint_expr lhs, rhs;
6126 varinfo_t var_anything;
6127 varinfo_t var_nothing;
6128 varinfo_t var_readonly;
6129 varinfo_t var_escaped;
6130 varinfo_t var_nonlocal;
6131 varinfo_t var_storedanything;
6132 varinfo_t var_integer;
6134 /* Create the NULL variable, used to represent that a variable points
6135 to NULL. */
6136 var_nothing = new_var_info (NULL_TREE, "NULL");
6137 gcc_assert (var_nothing->id == nothing_id);
6138 var_nothing->is_artificial_var = 1;
6139 var_nothing->offset = 0;
6140 var_nothing->size = ~0;
6141 var_nothing->fullsize = ~0;
6142 var_nothing->is_special_var = 1;
6143 var_nothing->may_have_pointers = 0;
6144 var_nothing->is_global_var = 0;
6146 /* Create the ANYTHING variable, used to represent that a variable
6147 points to some unknown piece of memory. */
6148 var_anything = new_var_info (NULL_TREE, "ANYTHING");
6149 gcc_assert (var_anything->id == anything_id);
6150 var_anything->is_artificial_var = 1;
6151 var_anything->size = ~0;
6152 var_anything->offset = 0;
6153 var_anything->next = NULL;
6154 var_anything->fullsize = ~0;
6155 var_anything->is_special_var = 1;
6157 /* Anything points to anything. This makes deref constraints just
6158 work in the presence of linked list and other p = *p type loops,
6159 by saying that *ANYTHING = ANYTHING. */
6160 lhs.type = SCALAR;
6161 lhs.var = anything_id;
6162 lhs.offset = 0;
6163 rhs.type = ADDRESSOF;
6164 rhs.var = anything_id;
6165 rhs.offset = 0;
6167 /* This specifically does not use process_constraint because
6168 process_constraint ignores all anything = anything constraints, since all
6169 but this one are redundant. */
6170 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
6172 /* Create the READONLY variable, used to represent that a variable
6173 points to readonly memory. */
6174 var_readonly = new_var_info (NULL_TREE, "READONLY");
6175 gcc_assert (var_readonly->id == readonly_id);
6176 var_readonly->is_artificial_var = 1;
6177 var_readonly->offset = 0;
6178 var_readonly->size = ~0;
6179 var_readonly->fullsize = ~0;
6180 var_readonly->next = NULL;
6181 var_readonly->is_special_var = 1;
6183 /* readonly memory points to anything, in order to make deref
6184 easier. In reality, it points to anything the particular
6185 readonly variable can point to, but we don't track this
6186 separately. */
6187 lhs.type = SCALAR;
6188 lhs.var = readonly_id;
6189 lhs.offset = 0;
6190 rhs.type = ADDRESSOF;
6191 rhs.var = readonly_id; /* FIXME */
6192 rhs.offset = 0;
6193 process_constraint (new_constraint (lhs, rhs));
6195 /* Create the ESCAPED variable, used to represent the set of escaped
6196 memory. */
6197 var_escaped = new_var_info (NULL_TREE, "ESCAPED");
6198 gcc_assert (var_escaped->id == escaped_id);
6199 var_escaped->is_artificial_var = 1;
6200 var_escaped->offset = 0;
6201 var_escaped->size = ~0;
6202 var_escaped->fullsize = ~0;
6203 var_escaped->is_special_var = 0;
6205 /* Create the NONLOCAL variable, used to represent the set of nonlocal
6206 memory. */
6207 var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
6208 gcc_assert (var_nonlocal->id == nonlocal_id);
6209 var_nonlocal->is_artificial_var = 1;
6210 var_nonlocal->offset = 0;
6211 var_nonlocal->size = ~0;
6212 var_nonlocal->fullsize = ~0;
6213 var_nonlocal->is_special_var = 1;
6215 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
6216 lhs.type = SCALAR;
6217 lhs.var = escaped_id;
6218 lhs.offset = 0;
6219 rhs.type = DEREF;
6220 rhs.var = escaped_id;
6221 rhs.offset = 0;
6222 process_constraint (new_constraint (lhs, rhs));
6224 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6225 whole variable escapes. */
6226 lhs.type = SCALAR;
6227 lhs.var = escaped_id;
6228 lhs.offset = 0;
6229 rhs.type = SCALAR;
6230 rhs.var = escaped_id;
6231 rhs.offset = UNKNOWN_OFFSET;
6232 process_constraint (new_constraint (lhs, rhs));
6234 /* *ESCAPED = NONLOCAL. This is true because we have to assume
6235 everything pointed to by escaped points to what global memory can
6236 point to. */
6237 lhs.type = DEREF;
6238 lhs.var = escaped_id;
6239 lhs.offset = 0;
6240 rhs.type = SCALAR;
6241 rhs.var = nonlocal_id;
6242 rhs.offset = 0;
6243 process_constraint (new_constraint (lhs, rhs));
6245 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
6246 global memory may point to global memory and escaped memory. */
6247 lhs.type = SCALAR;
6248 lhs.var = nonlocal_id;
6249 lhs.offset = 0;
6250 rhs.type = ADDRESSOF;
6251 rhs.var = nonlocal_id;
6252 rhs.offset = 0;
6253 process_constraint (new_constraint (lhs, rhs));
6254 rhs.type = ADDRESSOF;
6255 rhs.var = escaped_id;
6256 rhs.offset = 0;
6257 process_constraint (new_constraint (lhs, rhs));
6259 /* Create the STOREDANYTHING variable, used to represent the set of
6260 variables stored to *ANYTHING. */
6261 var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
6262 gcc_assert (var_storedanything->id == storedanything_id);
6263 var_storedanything->is_artificial_var = 1;
6264 var_storedanything->offset = 0;
6265 var_storedanything->size = ~0;
6266 var_storedanything->fullsize = ~0;
6267 var_storedanything->is_special_var = 0;
6269 /* Create the INTEGER variable, used to represent that a variable points
6270 to what an INTEGER "points to". */
6271 var_integer = new_var_info (NULL_TREE, "INTEGER");
6272 gcc_assert (var_integer->id == integer_id);
6273 var_integer->is_artificial_var = 1;
6274 var_integer->size = ~0;
6275 var_integer->fullsize = ~0;
6276 var_integer->offset = 0;
6277 var_integer->next = NULL;
6278 var_integer->is_special_var = 1;
6280 /* INTEGER = ANYTHING, because we don't know where a dereference of
6281 a random integer will point to. */
6282 lhs.type = SCALAR;
6283 lhs.var = integer_id;
6284 lhs.offset = 0;
6285 rhs.type = ADDRESSOF;
6286 rhs.var = anything_id;
6287 rhs.offset = 0;
6288 process_constraint (new_constraint (lhs, rhs));
6291 /* Initialize things necessary to perform PTA */
6293 static void
6294 init_alias_vars (void)
6296 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
6298 bitmap_obstack_initialize (&pta_obstack);
6299 bitmap_obstack_initialize (&oldpta_obstack);
6300 bitmap_obstack_initialize (&predbitmap_obstack);
6302 constraint_pool = create_alloc_pool ("Constraint pool",
6303 sizeof (struct constraint), 30);
6304 variable_info_pool = create_alloc_pool ("Variable info pool",
6305 sizeof (struct variable_info), 30);
6306 constraints = VEC_alloc (constraint_t, heap, 8);
6307 varmap = VEC_alloc (varinfo_t, heap, 8);
6308 vi_for_tree = pointer_map_create ();
6309 call_stmt_vars = pointer_map_create ();
6311 memset (&stats, 0, sizeof (stats));
6312 shared_bitmap_table = htab_create (511, shared_bitmap_hash,
6313 shared_bitmap_eq, free);
6314 init_base_vars ();
6317 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6318 predecessor edges. */
6320 static void
6321 remove_preds_and_fake_succs (constraint_graph_t graph)
6323 unsigned int i;
6325 /* Clear the implicit ref and address nodes from the successor
6326 lists. */
6327 for (i = 0; i < FIRST_REF_NODE; i++)
6329 if (graph->succs[i])
6330 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
6331 FIRST_REF_NODE * 2);
6334 /* Free the successor list for the non-ref nodes. */
6335 for (i = FIRST_REF_NODE; i < graph->size; i++)
6337 if (graph->succs[i])
6338 BITMAP_FREE (graph->succs[i]);
6341 /* Now reallocate the size of the successor list as, and blow away
6342 the predecessor bitmaps. */
6343 graph->size = VEC_length (varinfo_t, varmap);
6344 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
6346 free (graph->implicit_preds);
6347 graph->implicit_preds = NULL;
6348 free (graph->preds);
6349 graph->preds = NULL;
6350 bitmap_obstack_release (&predbitmap_obstack);
6353 /* Initialize the heapvar for statement mapping. */
6355 static void
6356 init_alias_heapvars (void)
6358 if (!heapvar_for_stmt)
6359 heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, heapvar_map_eq,
6360 NULL);
6363 /* Delete the heapvar for statement mapping. */
6365 void
6366 delete_alias_heapvars (void)
6368 if (heapvar_for_stmt)
6369 htab_delete (heapvar_for_stmt);
6370 heapvar_for_stmt = NULL;
6373 /* Solve the constraint set. */
6375 static void
6376 solve_constraints (void)
6378 struct scc_info *si;
6380 if (dump_file)
6381 fprintf (dump_file,
6382 "\nCollapsing static cycles and doing variable "
6383 "substitution\n");
6385 init_graph (VEC_length (varinfo_t, varmap) * 2);
6387 if (dump_file)
6388 fprintf (dump_file, "Building predecessor graph\n");
6389 build_pred_graph ();
6391 if (dump_file)
6392 fprintf (dump_file, "Detecting pointer and location "
6393 "equivalences\n");
6394 si = perform_var_substitution (graph);
6396 if (dump_file)
6397 fprintf (dump_file, "Rewriting constraints and unifying "
6398 "variables\n");
6399 rewrite_constraints (graph, si);
6401 build_succ_graph ();
6402 free_var_substitution_info (si);
6404 if (dump_file && (dump_flags & TDF_GRAPH))
6405 dump_constraint_graph (dump_file);
6407 move_complex_constraints (graph);
6409 if (dump_file)
6410 fprintf (dump_file, "Uniting pointer but not location equivalent "
6411 "variables\n");
6412 unite_pointer_equivalences (graph);
6414 if (dump_file)
6415 fprintf (dump_file, "Finding indirect cycles\n");
6416 find_indirect_cycles (graph);
6418 /* Implicit nodes and predecessors are no longer necessary at this
6419 point. */
6420 remove_preds_and_fake_succs (graph);
6422 if (dump_file)
6423 fprintf (dump_file, "Solving graph\n");
6425 solve_graph (graph);
6427 if (dump_file)
6428 dump_sa_points_to_info (dump_file);
6431 /* Create points-to sets for the current function. See the comments
6432 at the start of the file for an algorithmic overview. */
6434 static void
6435 compute_points_to_sets (void)
6437 basic_block bb;
6438 unsigned i;
6439 varinfo_t vi;
6441 timevar_push (TV_TREE_PTA);
6443 init_alias_vars ();
6444 init_alias_heapvars ();
6446 intra_create_variable_infos ();
6448 /* Now walk all statements and build the constraint set. */
6449 FOR_EACH_BB (bb)
6451 gimple_stmt_iterator gsi;
6453 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6455 gimple phi = gsi_stmt (gsi);
6457 if (is_gimple_reg (gimple_phi_result (phi)))
6458 find_func_aliases (phi);
6461 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6463 gimple stmt = gsi_stmt (gsi);
6465 find_func_aliases (stmt);
6469 if (dump_file)
6471 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
6472 dump_constraints (dump_file, 0);
6475 /* From the constraints compute the points-to sets. */
6476 solve_constraints ();
6478 /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
6479 find_what_var_points_to (get_varinfo (escaped_id),
6480 &cfun->gimple_df->escaped);
6482 /* Make sure the ESCAPED solution (which is used as placeholder in
6483 other solutions) does not reference itself. This simplifies
6484 points-to solution queries. */
6485 cfun->gimple_df->escaped.escaped = 0;
6487 /* Mark escaped HEAP variables as global. */
6488 FOR_EACH_VEC_ELT (varinfo_t, varmap, i, vi)
6489 if (vi->is_heap_var
6490 && !vi->is_restrict_var
6491 && !vi->is_global_var)
6492 DECL_EXTERNAL (vi->decl) = vi->is_global_var
6493 = pt_solution_includes (&cfun->gimple_df->escaped, vi->decl);
6495 /* Compute the points-to sets for pointer SSA_NAMEs. */
6496 for (i = 0; i < num_ssa_names; ++i)
6498 tree ptr = ssa_name (i);
6499 if (ptr
6500 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6501 find_what_p_points_to (ptr);
6504 /* Compute the call-used/clobbered sets. */
6505 FOR_EACH_BB (bb)
6507 gimple_stmt_iterator gsi;
6509 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6511 gimple stmt = gsi_stmt (gsi);
6512 struct pt_solution *pt;
6513 if (!is_gimple_call (stmt))
6514 continue;
6516 pt = gimple_call_use_set (stmt);
6517 if (gimple_call_flags (stmt) & ECF_CONST)
6518 memset (pt, 0, sizeof (struct pt_solution));
6519 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6521 find_what_var_points_to (vi, pt);
6522 /* Escaped (and thus nonlocal) variables are always
6523 implicitly used by calls. */
6524 /* ??? ESCAPED can be empty even though NONLOCAL
6525 always escaped. */
6526 pt->nonlocal = 1;
6527 pt->escaped = 1;
6529 else
6531 /* If there is nothing special about this call then
6532 we have made everything that is used also escape. */
6533 *pt = cfun->gimple_df->escaped;
6534 pt->nonlocal = 1;
6537 pt = gimple_call_clobber_set (stmt);
6538 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6539 memset (pt, 0, sizeof (struct pt_solution));
6540 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6542 find_what_var_points_to (vi, pt);
6543 /* Escaped (and thus nonlocal) variables are always
6544 implicitly clobbered by calls. */
6545 /* ??? ESCAPED can be empty even though NONLOCAL
6546 always escaped. */
6547 pt->nonlocal = 1;
6548 pt->escaped = 1;
6550 else
6552 /* If there is nothing special about this call then
6553 we have made everything that is used also escape. */
6554 *pt = cfun->gimple_df->escaped;
6555 pt->nonlocal = 1;
6560 timevar_pop (TV_TREE_PTA);
6564 /* Delete created points-to sets. */
6566 static void
6567 delete_points_to_sets (void)
6569 unsigned int i;
6571 htab_delete (shared_bitmap_table);
6572 if (dump_file && (dump_flags & TDF_STATS))
6573 fprintf (dump_file, "Points to sets created:%d\n",
6574 stats.points_to_sets_created);
6576 pointer_map_destroy (vi_for_tree);
6577 pointer_map_destroy (call_stmt_vars);
6578 bitmap_obstack_release (&pta_obstack);
6579 VEC_free (constraint_t, heap, constraints);
6581 for (i = 0; i < graph->size; i++)
6582 VEC_free (constraint_t, heap, graph->complex[i]);
6583 free (graph->complex);
6585 free (graph->rep);
6586 free (graph->succs);
6587 free (graph->pe);
6588 free (graph->pe_rep);
6589 free (graph->indirect_cycles);
6590 free (graph);
6592 VEC_free (varinfo_t, heap, varmap);
6593 free_alloc_pool (variable_info_pool);
6594 free_alloc_pool (constraint_pool);
6598 /* Compute points-to information for every SSA_NAME pointer in the
6599 current function and compute the transitive closure of escaped
6600 variables to re-initialize the call-clobber states of local variables. */
6602 unsigned int
6603 compute_may_aliases (void)
6605 if (cfun->gimple_df->ipa_pta)
6607 if (dump_file)
6609 fprintf (dump_file, "\nNot re-computing points-to information "
6610 "because IPA points-to information is available.\n\n");
6612 /* But still dump what we have remaining it. */
6613 dump_alias_info (dump_file);
6615 if (dump_flags & TDF_DETAILS)
6616 dump_referenced_vars (dump_file);
6619 return 0;
6622 /* For each pointer P_i, determine the sets of variables that P_i may
6623 point-to. Compute the reachability set of escaped and call-used
6624 variables. */
6625 compute_points_to_sets ();
6627 /* Debugging dumps. */
6628 if (dump_file)
6630 dump_alias_info (dump_file);
6632 if (dump_flags & TDF_DETAILS)
6633 dump_referenced_vars (dump_file);
6636 /* Deallocate memory used by aliasing data structures and the internal
6637 points-to solution. */
6638 delete_points_to_sets ();
6640 gcc_assert (!need_ssa_update_p (cfun));
6642 return 0;
6645 static bool
6646 gate_tree_pta (void)
6648 return flag_tree_pta;
6651 /* A dummy pass to cause points-to information to be computed via
6652 TODO_rebuild_alias. */
6654 struct gimple_opt_pass pass_build_alias =
6657 GIMPLE_PASS,
6658 "alias", /* name */
6659 gate_tree_pta, /* gate */
6660 NULL, /* execute */
6661 NULL, /* sub */
6662 NULL, /* next */
6663 0, /* static_pass_number */
6664 TV_NONE, /* tv_id */
6665 PROP_cfg | PROP_ssa, /* properties_required */
6666 0, /* properties_provided */
6667 0, /* properties_destroyed */
6668 0, /* todo_flags_start */
6669 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
6673 /* A dummy pass to cause points-to information to be computed via
6674 TODO_rebuild_alias. */
6676 struct gimple_opt_pass pass_build_ealias =
6679 GIMPLE_PASS,
6680 "ealias", /* name */
6681 gate_tree_pta, /* gate */
6682 NULL, /* execute */
6683 NULL, /* sub */
6684 NULL, /* next */
6685 0, /* static_pass_number */
6686 TV_NONE, /* tv_id */
6687 PROP_cfg | PROP_ssa, /* properties_required */
6688 0, /* properties_provided */
6689 0, /* properties_destroyed */
6690 0, /* todo_flags_start */
6691 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
6696 /* Return true if we should execute IPA PTA. */
6697 static bool
6698 gate_ipa_pta (void)
6700 return (optimize
6701 && flag_ipa_pta
6702 /* Don't bother doing anything if the program has errors. */
6703 && !seen_error ());
6706 /* IPA PTA solutions for ESCAPED. */
6707 struct pt_solution ipa_escaped_pt
6708 = { true, false, false, false, false, false, false, NULL };
6710 /* Execute the driver for IPA PTA. */
6711 static unsigned int
6712 ipa_pta_execute (void)
6714 struct cgraph_node *node;
6715 struct varpool_node *var;
6716 int from;
6718 in_ipa_mode = 1;
6720 init_alias_heapvars ();
6721 init_alias_vars ();
6723 /* Build the constraints. */
6724 for (node = cgraph_nodes; node; node = node->next)
6726 struct cgraph_node *alias;
6727 varinfo_t vi;
6729 /* Nodes without a body are not interesting. Especially do not
6730 visit clones at this point for now - we get duplicate decls
6731 there for inline clones at least. */
6732 if (!gimple_has_body_p (node->decl)
6733 || node->clone_of)
6734 continue;
6736 vi = create_function_info_for (node->decl,
6737 alias_get_name (node->decl));
6739 /* Associate the varinfo node with all aliases. */
6740 for (alias = node->same_body; alias; alias = alias->next)
6741 insert_vi_for_tree (alias->decl, vi);
6744 /* Create constraints for global variables and their initializers. */
6745 for (var = varpool_nodes; var; var = var->next)
6747 struct varpool_node *alias;
6748 varinfo_t vi;
6750 vi = get_vi_for_tree (var->decl);
6752 /* Associate the varinfo node with all aliases. */
6753 for (alias = var->extra_name; alias; alias = alias->next)
6754 insert_vi_for_tree (alias->decl, vi);
6757 if (dump_file)
6759 fprintf (dump_file,
6760 "Generating constraints for global initializers\n\n");
6761 dump_constraints (dump_file, 0);
6762 fprintf (dump_file, "\n");
6764 from = VEC_length (constraint_t, constraints);
6766 for (node = cgraph_nodes; node; node = node->next)
6768 struct function *func;
6769 basic_block bb;
6770 tree old_func_decl;
6772 /* Nodes without a body are not interesting. */
6773 if (!gimple_has_body_p (node->decl)
6774 || node->clone_of)
6775 continue;
6777 if (dump_file)
6779 fprintf (dump_file,
6780 "Generating constraints for %s", cgraph_node_name (node));
6781 if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
6782 fprintf (dump_file, " (%s)",
6783 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (node->decl)));
6784 fprintf (dump_file, "\n");
6787 func = DECL_STRUCT_FUNCTION (node->decl);
6788 old_func_decl = current_function_decl;
6789 push_cfun (func);
6790 current_function_decl = node->decl;
6792 /* For externally visible functions use local constraints for
6793 their arguments. For local functions we see all callers
6794 and thus do not need initial constraints for parameters. */
6795 if (node->local.externally_visible)
6796 intra_create_variable_infos ();
6798 /* Build constriants for the function body. */
6799 FOR_EACH_BB_FN (bb, func)
6801 gimple_stmt_iterator gsi;
6803 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
6804 gsi_next (&gsi))
6806 gimple phi = gsi_stmt (gsi);
6808 if (is_gimple_reg (gimple_phi_result (phi)))
6809 find_func_aliases (phi);
6812 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6814 gimple stmt = gsi_stmt (gsi);
6816 find_func_aliases (stmt);
6817 find_func_clobbers (stmt);
6821 current_function_decl = old_func_decl;
6822 pop_cfun ();
6824 if (dump_file)
6826 fprintf (dump_file, "\n");
6827 dump_constraints (dump_file, from);
6828 fprintf (dump_file, "\n");
6830 from = VEC_length (constraint_t, constraints);
6833 /* From the constraints compute the points-to sets. */
6834 solve_constraints ();
6836 /* Compute the global points-to sets for ESCAPED.
6837 ??? Note that the computed escape set is not correct
6838 for the whole unit as we fail to consider graph edges to
6839 externally visible functions. */
6840 find_what_var_points_to (get_varinfo (escaped_id), &ipa_escaped_pt);
6842 /* Make sure the ESCAPED solution (which is used as placeholder in
6843 other solutions) does not reference itself. This simplifies
6844 points-to solution queries. */
6845 ipa_escaped_pt.ipa_escaped = 0;
6847 /* Assign the points-to sets to the SSA names in the unit. */
6848 for (node = cgraph_nodes; node; node = node->next)
6850 tree ptr;
6851 struct function *fn;
6852 unsigned i;
6853 varinfo_t fi;
6854 basic_block bb;
6855 struct pt_solution uses, clobbers;
6856 struct cgraph_edge *e;
6858 /* Nodes without a body are not interesting. */
6859 if (!gimple_has_body_p (node->decl)
6860 || node->clone_of)
6861 continue;
6863 fn = DECL_STRUCT_FUNCTION (node->decl);
6865 /* Compute the points-to sets for pointer SSA_NAMEs. */
6866 FOR_EACH_VEC_ELT (tree, fn->gimple_df->ssa_names, i, ptr)
6868 if (ptr
6869 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6870 find_what_p_points_to (ptr);
6873 /* Compute the call-use and call-clobber sets for all direct calls. */
6874 fi = lookup_vi_for_tree (node->decl);
6875 gcc_assert (fi->is_fn_info);
6876 find_what_var_points_to (first_vi_for_offset (fi, fi_clobbers),
6877 &clobbers);
6878 find_what_var_points_to (first_vi_for_offset (fi, fi_uses), &uses);
6879 for (e = node->callers; e; e = e->next_caller)
6881 if (!e->call_stmt)
6882 continue;
6884 *gimple_call_clobber_set (e->call_stmt) = clobbers;
6885 *gimple_call_use_set (e->call_stmt) = uses;
6888 /* Compute the call-use and call-clobber sets for indirect calls
6889 and calls to external functions. */
6890 FOR_EACH_BB_FN (bb, fn)
6892 gimple_stmt_iterator gsi;
6894 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6896 gimple stmt = gsi_stmt (gsi);
6897 struct pt_solution *pt;
6898 varinfo_t vi;
6899 tree decl;
6901 if (!is_gimple_call (stmt))
6902 continue;
6904 /* Handle direct calls to external functions. */
6905 decl = gimple_call_fndecl (stmt);
6906 if (decl
6907 && (!(fi = lookup_vi_for_tree (decl))
6908 || !fi->is_fn_info))
6910 pt = gimple_call_use_set (stmt);
6911 if (gimple_call_flags (stmt) & ECF_CONST)
6912 memset (pt, 0, sizeof (struct pt_solution));
6913 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6915 find_what_var_points_to (vi, pt);
6916 /* Escaped (and thus nonlocal) variables are always
6917 implicitly used by calls. */
6918 /* ??? ESCAPED can be empty even though NONLOCAL
6919 always escaped. */
6920 pt->nonlocal = 1;
6921 pt->ipa_escaped = 1;
6923 else
6925 /* If there is nothing special about this call then
6926 we have made everything that is used also escape. */
6927 *pt = ipa_escaped_pt;
6928 pt->nonlocal = 1;
6931 pt = gimple_call_clobber_set (stmt);
6932 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6933 memset (pt, 0, sizeof (struct pt_solution));
6934 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6936 find_what_var_points_to (vi, pt);
6937 /* Escaped (and thus nonlocal) variables are always
6938 implicitly clobbered by calls. */
6939 /* ??? ESCAPED can be empty even though NONLOCAL
6940 always escaped. */
6941 pt->nonlocal = 1;
6942 pt->ipa_escaped = 1;
6944 else
6946 /* If there is nothing special about this call then
6947 we have made everything that is used also escape. */
6948 *pt = ipa_escaped_pt;
6949 pt->nonlocal = 1;
6953 /* Handle indirect calls. */
6954 if (!decl
6955 && (fi = get_fi_for_callee (stmt)))
6957 /* We need to accumulate all clobbers/uses of all possible
6958 callees. */
6959 fi = get_varinfo (find (fi->id));
6960 /* If we cannot constrain the set of functions we'll end up
6961 calling we end up using/clobbering everything. */
6962 if (bitmap_bit_p (fi->solution, anything_id)
6963 || bitmap_bit_p (fi->solution, nonlocal_id)
6964 || bitmap_bit_p (fi->solution, escaped_id))
6966 pt_solution_reset (gimple_call_clobber_set (stmt));
6967 pt_solution_reset (gimple_call_use_set (stmt));
6969 else
6971 bitmap_iterator bi;
6972 unsigned i;
6973 struct pt_solution *uses, *clobbers;
6975 uses = gimple_call_use_set (stmt);
6976 clobbers = gimple_call_clobber_set (stmt);
6977 memset (uses, 0, sizeof (struct pt_solution));
6978 memset (clobbers, 0, sizeof (struct pt_solution));
6979 EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
6981 struct pt_solution sol;
6983 vi = get_varinfo (i);
6984 if (!vi->is_fn_info)
6986 /* ??? We could be more precise here? */
6987 uses->nonlocal = 1;
6988 uses->ipa_escaped = 1;
6989 clobbers->nonlocal = 1;
6990 clobbers->ipa_escaped = 1;
6991 continue;
6994 if (!uses->anything)
6996 find_what_var_points_to
6997 (first_vi_for_offset (vi, fi_uses), &sol);
6998 pt_solution_ior_into (uses, &sol);
7000 if (!clobbers->anything)
7002 find_what_var_points_to
7003 (first_vi_for_offset (vi, fi_clobbers), &sol);
7004 pt_solution_ior_into (clobbers, &sol);
7012 fn->gimple_df->ipa_pta = true;
7015 delete_points_to_sets ();
7017 in_ipa_mode = 0;
7019 return 0;
7022 struct simple_ipa_opt_pass pass_ipa_pta =
7025 SIMPLE_IPA_PASS,
7026 "pta", /* name */
7027 gate_ipa_pta, /* gate */
7028 ipa_pta_execute, /* execute */
7029 NULL, /* sub */
7030 NULL, /* next */
7031 0, /* static_pass_number */
7032 TV_IPA_PTA, /* tv_id */
7033 0, /* properties_required */
7034 0, /* properties_provided */
7035 0, /* properties_destroyed */
7036 0, /* todo_flags_start */
7037 TODO_update_ssa /* todo_flags_finish */
7042 #include "gt-tree-ssa-structalias.h"