* gcc.target/powerpc/builtins-1-le.c: Filter out gimple folding disabled
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob186467d9cb3f5fa184d8cf8ac002189fb84a2b23
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Tss; use Exp_Tss;
41 with Exp_Util; use Exp_Util;
42 with Freeze; use Freeze;
43 with Ghost; use Ghost;
44 with Inline; use Inline;
45 with Itypes; use Itypes;
46 with Lib.Xref; use Lib.Xref;
47 with Layout; use Layout;
48 with Namet; use Namet;
49 with Lib; use Lib;
50 with Nlists; use Nlists;
51 with Nmake; use Nmake;
52 with Opt; use Opt;
53 with Output; use Output;
54 with Restrict; use Restrict;
55 with Rident; use Rident;
56 with Rtsfind; use Rtsfind;
57 with Sem; use Sem;
58 with Sem_Aux; use Sem_Aux;
59 with Sem_Cat; use Sem_Cat;
60 with Sem_Ch3; use Sem_Ch3;
61 with Sem_Ch4; use Sem_Ch4;
62 with Sem_Ch5; use Sem_Ch5;
63 with Sem_Ch8; use Sem_Ch8;
64 with Sem_Ch9; use Sem_Ch9;
65 with Sem_Ch10; use Sem_Ch10;
66 with Sem_Ch12; use Sem_Ch12;
67 with Sem_Ch13; use Sem_Ch13;
68 with Sem_Dim; use Sem_Dim;
69 with Sem_Disp; use Sem_Disp;
70 with Sem_Dist; use Sem_Dist;
71 with Sem_Elim; use Sem_Elim;
72 with Sem_Eval; use Sem_Eval;
73 with Sem_Mech; use Sem_Mech;
74 with Sem_Prag; use Sem_Prag;
75 with Sem_Res; use Sem_Res;
76 with Sem_Util; use Sem_Util;
77 with Sem_Type; use Sem_Type;
78 with Sem_Warn; use Sem_Warn;
79 with Sinput; use Sinput;
80 with Stand; use Stand;
81 with Sinfo; use Sinfo;
82 with Sinfo.CN; use Sinfo.CN;
83 with Snames; use Snames;
84 with Stringt; use Stringt;
85 with Style;
86 with Stylesw; use Stylesw;
87 with Tbuild; use Tbuild;
88 with Uintp; use Uintp;
89 with Urealp; use Urealp;
90 with Validsw; use Validsw;
92 package body Sem_Ch6 is
94 May_Hide_Profile : Boolean := False;
95 -- This flag is used to indicate that two formals in two subprograms being
96 -- checked for conformance differ only in that one is an access parameter
97 -- while the other is of a general access type with the same designated
98 -- type. In this case, if the rest of the signatures match, a call to
99 -- either subprogram may be ambiguous, which is worth a warning. The flag
100 -- is set in Compatible_Types, and the warning emitted in
101 -- New_Overloaded_Entity.
103 -----------------------
104 -- Local Subprograms --
105 -----------------------
107 procedure Analyze_Function_Return (N : Node_Id);
108 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
109 -- applies to a [generic] function.
111 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
112 -- Analyze a generic subprogram body. N is the body to be analyzed, and
113 -- Gen_Id is the defining entity Id for the corresponding spec.
115 procedure Analyze_Null_Procedure
116 (N : Node_Id;
117 Is_Completion : out Boolean);
118 -- A null procedure can be a declaration or (Ada 2012) a completion
120 procedure Analyze_Return_Statement (N : Node_Id);
121 -- Common processing for simple and extended return statements
123 procedure Analyze_Return_Type (N : Node_Id);
124 -- Subsidiary to Process_Formals: analyze subtype mark in function
125 -- specification in a context where the formals are visible and hide
126 -- outer homographs.
128 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
129 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
130 -- that we can use RETURN but not skip the debug output at the end.
132 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
133 -- Returns true if Subp can override a predefined operator.
135 procedure Check_Conformance
136 (New_Id : Entity_Id;
137 Old_Id : Entity_Id;
138 Ctype : Conformance_Type;
139 Errmsg : Boolean;
140 Conforms : out Boolean;
141 Err_Loc : Node_Id := Empty;
142 Get_Inst : Boolean := False;
143 Skip_Controlling_Formals : Boolean := False);
144 -- Given two entities, this procedure checks that the profiles associated
145 -- with these entities meet the conformance criterion given by the third
146 -- parameter. If they conform, Conforms is set True and control returns
147 -- to the caller. If they do not conform, Conforms is set to False, and
148 -- in addition, if Errmsg is True on the call, proper messages are output
149 -- to complain about the conformance failure. If Err_Loc is non_Empty
150 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
151 -- error messages are placed on the appropriate part of the construct
152 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
153 -- against a formal access-to-subprogram type so Get_Instance_Of must
154 -- be called.
156 procedure Check_Limited_Return
157 (N : Node_Id;
158 Expr : Node_Id;
159 R_Type : Entity_Id);
160 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
161 -- types. Used only for simple return statements. Expr is the expression
162 -- returned.
164 procedure Check_Subprogram_Order (N : Node_Id);
165 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
166 -- the alpha ordering rule for N if this ordering requirement applicable.
168 procedure Check_Returns
169 (HSS : Node_Id;
170 Mode : Character;
171 Err : out Boolean;
172 Proc : Entity_Id := Empty);
173 -- Called to check for missing return statements in a function body, or for
174 -- returns present in a procedure body which has No_Return set. HSS is the
175 -- handled statement sequence for the subprogram body. This procedure
176 -- checks all flow paths to make sure they either have return (Mode = 'F',
177 -- used for functions) or do not have a return (Mode = 'P', used for
178 -- No_Return procedures). The flag Err is set if there are any control
179 -- paths not explicitly terminated by a return in the function case, and is
180 -- True otherwise. Proc is the entity for the procedure case and is used
181 -- in posting the warning message.
183 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
184 -- In Ada 2012, a primitive equality operator on an untagged record type
185 -- must appear before the type is frozen, and have the same visibility as
186 -- that of the type. This procedure checks that this rule is met, and
187 -- otherwise emits an error on the subprogram declaration and a warning
188 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
189 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
190 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
191 -- is set, otherwise the call has no effect.
193 procedure Enter_Overloaded_Entity (S : Entity_Id);
194 -- This procedure makes S, a new overloaded entity, into the first visible
195 -- entity with that name.
197 function Is_Non_Overriding_Operation
198 (Prev_E : Entity_Id;
199 New_E : Entity_Id) return Boolean;
200 -- Enforce the rule given in 12.3(18): a private operation in an instance
201 -- overrides an inherited operation only if the corresponding operation
202 -- was overriding in the generic. This needs to be checked for primitive
203 -- operations of types derived (in the generic unit) from formal private
204 -- or formal derived types.
206 procedure Make_Inequality_Operator (S : Entity_Id);
207 -- Create the declaration for an inequality operator that is implicitly
208 -- created by a user-defined equality operator that yields a boolean.
210 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
211 -- Formal_Id is an formal parameter entity. This procedure deals with
212 -- setting the proper validity status for this entity, which depends on
213 -- the kind of parameter and the validity checking mode.
215 ---------------------------------------------
216 -- Analyze_Abstract_Subprogram_Declaration --
217 ---------------------------------------------
219 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
220 Scop : constant Entity_Id := Current_Scope;
221 Subp_Id : constant Entity_Id :=
222 Analyze_Subprogram_Specification (Specification (N));
224 begin
225 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
227 Generate_Definition (Subp_Id);
229 -- Set the SPARK mode from the current context (may be overwritten later
230 -- with explicit pragma).
232 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
233 Set_SPARK_Pragma_Inherited (Subp_Id);
235 -- Preserve relevant elaboration-related attributes of the context which
236 -- are no longer available or very expensive to recompute once analysis,
237 -- resolution, and expansion are over.
239 Mark_Elaboration_Attributes
240 (N_Id => Subp_Id,
241 Checks => True);
243 Set_Is_Abstract_Subprogram (Subp_Id);
244 New_Overloaded_Entity (Subp_Id);
245 Check_Delayed_Subprogram (Subp_Id);
247 Set_Categorization_From_Scope (Subp_Id, Scop);
249 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
250 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
252 -- Issue a warning if the abstract subprogram is neither a dispatching
253 -- operation nor an operation that overrides an inherited subprogram or
254 -- predefined operator, since this most likely indicates a mistake.
256 elsif Warn_On_Redundant_Constructs
257 and then not Is_Dispatching_Operation (Subp_Id)
258 and then not Present (Overridden_Operation (Subp_Id))
259 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
260 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
261 then
262 Error_Msg_N
263 ("abstract subprogram is not dispatching or overriding?r?", N);
264 end if;
266 Generate_Reference_To_Formals (Subp_Id);
267 Check_Eliminated (Subp_Id);
269 if Has_Aspects (N) then
270 Analyze_Aspect_Specifications (N, Subp_Id);
271 end if;
272 end Analyze_Abstract_Subprogram_Declaration;
274 ---------------------------------
275 -- Analyze_Expression_Function --
276 ---------------------------------
278 procedure Analyze_Expression_Function (N : Node_Id) is
279 Expr : constant Node_Id := Expression (N);
280 Loc : constant Source_Ptr := Sloc (N);
281 LocX : constant Source_Ptr := Sloc (Expr);
282 Spec : constant Node_Id := Specification (N);
284 procedure Freeze_Expr_Types (Def_Id : Entity_Id);
285 -- N is an expression function that is a completion and Def_Id its
286 -- defining entity. Freeze before N all the types referenced by the
287 -- expression of the function.
289 -----------------------
290 -- Freeze_Expr_Types --
291 -----------------------
293 procedure Freeze_Expr_Types (Def_Id : Entity_Id) is
294 function Cloned_Expression return Node_Id;
295 -- Build a duplicate of the expression of the return statement that
296 -- has no defining entities shared with the original expression.
298 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
299 -- Freeze all types referenced in the subtree rooted at Node
301 -----------------------
302 -- Cloned_Expression --
303 -----------------------
305 function Cloned_Expression return Node_Id is
306 function Clone_Id (Node : Node_Id) return Traverse_Result;
307 -- Tree traversal routine that clones the defining identifier of
308 -- iterator and loop parameter specification nodes.
310 ----------------
311 -- Check_Node --
312 ----------------
314 function Clone_Id (Node : Node_Id) return Traverse_Result is
315 begin
316 if Nkind_In (Node, N_Iterator_Specification,
317 N_Loop_Parameter_Specification)
318 then
319 Set_Defining_Identifier (Node,
320 New_Copy (Defining_Identifier (Node)));
321 end if;
323 return OK;
324 end Clone_Id;
326 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
328 -- Local variable
330 Dup_Expr : constant Node_Id := New_Copy_Tree (Expr);
332 -- Start of processing for Cloned_Expression
334 begin
335 -- We must duplicate the expression with semantic information to
336 -- inherit the decoration of global entities in generic instances.
337 -- Set the parent of the new node to be the parent of the original
338 -- to get the proper context, which is needed for complete error
339 -- reporting and for semantic analysis.
341 Set_Parent (Dup_Expr, Parent (Expr));
343 -- Replace the defining identifier of iterators and loop param
344 -- specifications by a clone to ensure that the cloned expression
345 -- and the original expression don't have shared identifiers;
346 -- otherwise, as part of the preanalysis of the expression, these
347 -- shared identifiers may be left decorated with itypes which
348 -- will not be available in the tree passed to the backend.
350 Clone_Def_Ids (Dup_Expr);
352 return Dup_Expr;
353 end Cloned_Expression;
355 ----------------------
356 -- Freeze_Type_Refs --
357 ----------------------
359 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
360 procedure Check_And_Freeze_Type (Typ : Entity_Id);
361 -- Check that Typ is fully declared and freeze it if so
363 ---------------------------
364 -- Check_And_Freeze_Type --
365 ---------------------------
367 procedure Check_And_Freeze_Type (Typ : Entity_Id) is
368 begin
369 -- Skip Itypes created by the preanalysis, and itypes whose
370 -- scope is another type (i.e. component subtypes that depend
371 -- on a discriminant),
373 if Is_Itype (Typ)
374 and then (Scope_Within_Or_Same (Scope (Typ), Def_Id)
375 or else Is_Type (Scope (Typ)))
376 then
377 return;
378 end if;
380 -- This provides a better error message than generating
381 -- primitives whose compilation fails much later. Refine
382 -- the error message if possible.
384 Check_Fully_Declared (Typ, Node);
386 if Error_Posted (Node) then
387 if Has_Private_Component (Typ)
388 and then not Is_Private_Type (Typ)
389 then
390 Error_Msg_NE ("\type& has private component", Node, Typ);
391 end if;
393 else
394 Freeze_Before (N, Typ);
395 end if;
396 end Check_And_Freeze_Type;
398 -- Start of processing for Freeze_Type_Refs
400 begin
401 -- Check that a type referenced by an entity can be frozen
403 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
404 Check_And_Freeze_Type (Etype (Entity (Node)));
406 -- Check that the enclosing record type can be frozen
408 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
409 Check_And_Freeze_Type (Scope (Entity (Node)));
410 end if;
412 -- Freezing an access type does not freeze the designated type,
413 -- but freezing conversions between access to interfaces requires
414 -- that the interface types themselves be frozen, so that dispatch
415 -- table entities are properly created.
417 -- Unclear whether a more general rule is needed ???
419 elsif Nkind (Node) = N_Type_Conversion
420 and then Is_Access_Type (Etype (Node))
421 and then Is_Interface (Designated_Type (Etype (Node)))
422 then
423 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
424 end if;
426 -- An implicit dereference freezes the designated type. In the
427 -- case of a dispatching call whose controlling argument is an
428 -- access type, the dereference is not made explicit, so we must
429 -- check for such a call and freeze the designated type.
431 if Nkind (Node) in N_Has_Etype
432 and then Present (Etype (Node))
433 and then Is_Access_Type (Etype (Node))
434 and then Nkind (Parent (Node)) = N_Function_Call
435 and then Node = Controlling_Argument (Parent (Node))
436 then
437 Check_And_Freeze_Type (Designated_Type (Etype (Node)));
438 end if;
440 -- No point in posting several errors on the same expression
442 if Serious_Errors_Detected > 0 then
443 return Abandon;
444 else
445 return OK;
446 end if;
447 end Freeze_Type_Refs;
449 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
451 -- Local variables
453 Saved_First_Entity : constant Entity_Id := First_Entity (Def_Id);
454 Saved_Last_Entity : constant Entity_Id := Last_Entity (Def_Id);
455 Dup_Expr : constant Node_Id := Cloned_Expression;
457 -- Start of processing for Freeze_Expr_Types
459 begin
460 -- Preanalyze a duplicate of the expression to have available the
461 -- minimum decoration needed to locate referenced unfrozen types
462 -- without adding any decoration to the function expression.
464 Push_Scope (Def_Id);
465 Install_Formals (Def_Id);
467 Preanalyze_Spec_Expression (Dup_Expr, Etype (Def_Id));
468 End_Scope;
470 -- Restore certain attributes of Def_Id since the preanalysis may
471 -- have introduced itypes to this scope, thus modifying attributes
472 -- First_Entity and Last_Entity.
474 Set_First_Entity (Def_Id, Saved_First_Entity);
475 Set_Last_Entity (Def_Id, Saved_Last_Entity);
477 if Present (Last_Entity (Def_Id)) then
478 Set_Next_Entity (Last_Entity (Def_Id), Empty);
479 end if;
481 -- Freeze all types referenced in the expression
483 Freeze_References (Dup_Expr);
484 end Freeze_Expr_Types;
486 -- Local variables
488 Asp : Node_Id;
489 New_Body : Node_Id;
490 New_Spec : Node_Id;
491 Orig_N : Node_Id;
492 Ret : Node_Id;
494 Def_Id : Entity_Id := Empty;
495 Prev : Entity_Id;
496 -- If the expression is a completion, Prev is the entity whose
497 -- declaration is completed. Def_Id is needed to analyze the spec.
499 -- Start of processing for Analyze_Expression_Function
501 begin
502 -- This is one of the occasions on which we transform the tree during
503 -- semantic analysis. If this is a completion, transform the expression
504 -- function into an equivalent subprogram body, and analyze it.
506 -- Expression functions are inlined unconditionally. The back-end will
507 -- determine whether this is possible.
509 Inline_Processing_Required := True;
511 -- Create a specification for the generated body. This must be done
512 -- prior to the analysis of the initial declaration.
514 New_Spec := Copy_Subprogram_Spec (Spec);
515 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
517 -- If there are previous overloadable entities with the same name,
518 -- check whether any of them is completed by the expression function.
519 -- In a generic context a formal subprogram has no completion.
521 if Present (Prev)
522 and then Is_Overloadable (Prev)
523 and then not Is_Formal_Subprogram (Prev)
524 then
525 Def_Id := Analyze_Subprogram_Specification (Spec);
526 Prev := Find_Corresponding_Spec (N);
528 -- The previous entity may be an expression function as well, in
529 -- which case the redeclaration is illegal.
531 if Present (Prev)
532 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
533 N_Expression_Function
534 then
535 Error_Msg_Sloc := Sloc (Prev);
536 Error_Msg_N ("& conflicts with declaration#", Def_Id);
537 return;
538 end if;
539 end if;
541 Ret := Make_Simple_Return_Statement (LocX, Expr);
543 New_Body :=
544 Make_Subprogram_Body (Loc,
545 Specification => New_Spec,
546 Declarations => Empty_List,
547 Handled_Statement_Sequence =>
548 Make_Handled_Sequence_Of_Statements (LocX,
549 Statements => New_List (Ret)));
550 Set_Was_Expression_Function (New_Body);
552 -- If the expression completes a generic subprogram, we must create a
553 -- separate node for the body, because at instantiation the original
554 -- node of the generic copy must be a generic subprogram body, and
555 -- cannot be a expression function. Otherwise we just rewrite the
556 -- expression with the non-generic body.
558 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
559 Insert_After (N, New_Body);
561 -- Propagate any aspects or pragmas that apply to the expression
562 -- function to the proper body when the expression function acts
563 -- as a completion.
565 if Has_Aspects (N) then
566 Move_Aspects (N, To => New_Body);
567 end if;
569 Relocate_Pragmas_To_Body (New_Body);
571 Rewrite (N, Make_Null_Statement (Loc));
572 Set_Has_Completion (Prev, False);
573 Analyze (N);
574 Analyze (New_Body);
575 Set_Is_Inlined (Prev);
577 -- If the expression function is a completion, the previous declaration
578 -- must come from source. We know already that it appears in the current
579 -- scope. The entity itself may be internally created if within a body
580 -- to be inlined.
582 elsif Present (Prev)
583 and then Is_Overloadable (Prev)
584 and then not Is_Formal_Subprogram (Prev)
585 and then Comes_From_Source (Parent (Prev))
586 then
587 Set_Has_Completion (Prev, False);
588 Set_Is_Inlined (Prev);
590 -- AI12-0103: Expression functions that are a completion freeze their
591 -- expression but don't freeze anything else (unlike regular bodies).
593 -- Note that we cannot defer this freezing to the analysis of the
594 -- expression itself, because a freeze node might appear in a nested
595 -- scope, leading to an elaboration order issue in gigi.
596 -- As elsewhere, we do not emit freeze nodes within a generic unit.
598 if not Inside_A_Generic then
599 Freeze_Expr_Types (Def_Id);
600 end if;
602 -- For navigation purposes, indicate that the function is a body
604 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
605 Rewrite (N, New_Body);
607 -- Remove any existing aspects from the original node because the act
608 -- of rewriting causes the list to be shared between the two nodes.
610 Orig_N := Original_Node (N);
611 Remove_Aspects (Orig_N);
613 -- Propagate any pragmas that apply to expression function to the
614 -- proper body when the expression function acts as a completion.
615 -- Aspects are automatically transfered because of node rewriting.
617 Relocate_Pragmas_To_Body (N);
618 Analyze (N);
620 -- Once the aspects of the generated body have been analyzed, create
621 -- a copy for ASIS purposes and associate it with the original node.
623 if Has_Aspects (N) then
624 Set_Aspect_Specifications (Orig_N,
625 New_Copy_List_Tree (Aspect_Specifications (N)));
626 end if;
628 -- Prev is the previous entity with the same name, but it is can
629 -- be an unrelated spec that is not completed by the expression
630 -- function. In that case the relevant entity is the one in the body.
631 -- Not clear that the backend can inline it in this case ???
633 if Has_Completion (Prev) then
635 -- The formals of the expression function are body formals,
636 -- and do not appear in the ali file, which will only contain
637 -- references to the formals of the original subprogram spec.
639 declare
640 F1 : Entity_Id;
641 F2 : Entity_Id;
643 begin
644 F1 := First_Formal (Def_Id);
645 F2 := First_Formal (Prev);
647 while Present (F1) loop
648 Set_Spec_Entity (F1, F2);
649 Next_Formal (F1);
650 Next_Formal (F2);
651 end loop;
652 end;
654 else
655 Set_Is_Inlined (Defining_Entity (New_Body));
656 end if;
658 -- If this is not a completion, create both a declaration and a body, so
659 -- that the expression can be inlined whenever possible.
661 else
662 -- An expression function that is not a completion is not a
663 -- subprogram declaration, and thus cannot appear in a protected
664 -- definition.
666 if Nkind (Parent (N)) = N_Protected_Definition then
667 Error_Msg_N
668 ("an expression function is not a legal protected operation", N);
669 end if;
671 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
673 -- Remove any existing aspects from the original node because the act
674 -- of rewriting causes the list to be shared between the two nodes.
676 Orig_N := Original_Node (N);
677 Remove_Aspects (Orig_N);
679 Analyze (N);
681 -- Once the aspects of the generated spec have been analyzed, create
682 -- a copy for ASIS purposes and associate it with the original node.
684 if Has_Aspects (N) then
685 Set_Aspect_Specifications (Orig_N,
686 New_Copy_List_Tree (Aspect_Specifications (N)));
687 end if;
689 -- If aspect SPARK_Mode was specified on the body, it needs to be
690 -- repeated both on the generated spec and the body.
692 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
694 if Present (Asp) then
695 Asp := New_Copy_Tree (Asp);
696 Set_Analyzed (Asp, False);
697 Set_Aspect_Specifications (New_Body, New_List (Asp));
698 end if;
700 Def_Id := Defining_Entity (N);
701 Set_Is_Inlined (Def_Id);
703 -- Establish the linkages between the spec and the body. These are
704 -- used when the expression function acts as the prefix of attribute
705 -- 'Access in order to freeze the original expression which has been
706 -- moved to the generated body.
708 Set_Corresponding_Body (N, Defining_Entity (New_Body));
709 Set_Corresponding_Spec (New_Body, Def_Id);
711 -- Within a generic pre-analyze the original expression for name
712 -- capture. The body is also generated but plays no role in
713 -- this because it is not part of the original source.
715 if Inside_A_Generic then
716 Set_Has_Completion (Def_Id);
717 Push_Scope (Def_Id);
718 Install_Formals (Def_Id);
719 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
720 End_Scope;
721 end if;
723 -- To prevent premature freeze action, insert the new body at the end
724 -- of the current declarations, or at the end of the package spec.
725 -- However, resolve usage names now, to prevent spurious visibility
726 -- on later entities. Note that the function can now be called in
727 -- the current declarative part, which will appear to be prior to
728 -- the presence of the body in the code. There are nevertheless no
729 -- order of elaboration issues because all name resolution has taken
730 -- place at the point of declaration.
732 declare
733 Decls : List_Id := List_Containing (N);
734 Expr : constant Node_Id := Expression (Ret);
735 Par : constant Node_Id := Parent (Decls);
736 Typ : constant Entity_Id := Etype (Def_Id);
738 begin
739 -- If this is a wrapper created for in an instance for a formal
740 -- subprogram, insert body after declaration, to be analyzed when
741 -- the enclosing instance is analyzed.
743 if GNATprove_Mode
744 and then Is_Generic_Actual_Subprogram (Def_Id)
745 then
746 Insert_After (N, New_Body);
748 else
749 if Nkind (Par) = N_Package_Specification
750 and then Decls = Visible_Declarations (Par)
751 and then Present (Private_Declarations (Par))
752 and then not Is_Empty_List (Private_Declarations (Par))
753 then
754 Decls := Private_Declarations (Par);
755 end if;
757 Insert_After (Last (Decls), New_Body);
759 -- Preanalyze the expression if not already done above
761 if not Inside_A_Generic then
762 Push_Scope (Def_Id);
763 Install_Formals (Def_Id);
764 Preanalyze_Spec_Expression (Expr, Typ);
765 Check_Limited_Return (Original_Node (N), Expr, Typ);
766 End_Scope;
767 end if;
768 end if;
769 end;
770 end if;
772 -- Check incorrect use of dynamically tagged expression. This doesn't
773 -- fall out automatically when analyzing the generated function body,
774 -- because Check_Dynamically_Tagged_Expression deliberately ignores
775 -- nodes that don't come from source.
777 if Present (Def_Id)
778 and then Nkind (Def_Id) in N_Has_Etype
779 and then Is_Tagged_Type (Etype (Def_Id))
780 then
781 Check_Dynamically_Tagged_Expression
782 (Expr => Expr,
783 Typ => Etype (Def_Id),
784 Related_Nod => Original_Node (N));
785 end if;
787 -- If the return expression is a static constant, we suppress warning
788 -- messages on unused formals, which in most cases will be noise.
790 Set_Is_Trivial_Subprogram
791 (Defining_Entity (New_Body), Is_OK_Static_Expression (Expr));
792 end Analyze_Expression_Function;
794 ----------------------------------------
795 -- Analyze_Extended_Return_Statement --
796 ----------------------------------------
798 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
799 begin
800 Check_Compiler_Unit ("extended return statement", N);
801 Analyze_Return_Statement (N);
802 end Analyze_Extended_Return_Statement;
804 ----------------------------
805 -- Analyze_Function_Call --
806 ----------------------------
808 procedure Analyze_Function_Call (N : Node_Id) is
809 Actuals : constant List_Id := Parameter_Associations (N);
810 Func_Nam : constant Node_Id := Name (N);
811 Actual : Node_Id;
813 begin
814 Analyze (Func_Nam);
816 -- A call of the form A.B (X) may be an Ada 2005 call, which is
817 -- rewritten as B (A, X). If the rewriting is successful, the call
818 -- has been analyzed and we just return.
820 if Nkind (Func_Nam) = N_Selected_Component
821 and then Name (N) /= Func_Nam
822 and then Is_Rewrite_Substitution (N)
823 and then Present (Etype (N))
824 then
825 return;
826 end if;
828 -- If error analyzing name, then set Any_Type as result type and return
830 if Etype (Func_Nam) = Any_Type then
831 Set_Etype (N, Any_Type);
832 return;
833 end if;
835 -- Otherwise analyze the parameters
837 if Present (Actuals) then
838 Actual := First (Actuals);
839 while Present (Actual) loop
840 Analyze (Actual);
841 Check_Parameterless_Call (Actual);
842 Next (Actual);
843 end loop;
844 end if;
846 Analyze_Call (N);
847 end Analyze_Function_Call;
849 -----------------------------
850 -- Analyze_Function_Return --
851 -----------------------------
853 procedure Analyze_Function_Return (N : Node_Id) is
854 Loc : constant Source_Ptr := Sloc (N);
855 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
856 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
858 R_Type : constant Entity_Id := Etype (Scope_Id);
859 -- Function result subtype
861 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
862 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
863 -- aggregate in a return statement.
865 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
866 -- Check that the return_subtype_indication properly matches the result
867 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
869 -----------------------------------
870 -- Check_Aggregate_Accessibility --
871 -----------------------------------
873 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
874 Typ : constant Entity_Id := Etype (Aggr);
875 Assoc : Node_Id;
876 Discr : Entity_Id;
877 Expr : Node_Id;
878 Obj : Node_Id;
880 begin
881 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
882 Discr := First_Discriminant (Typ);
883 Assoc := First (Component_Associations (Aggr));
884 while Present (Discr) loop
885 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
886 Expr := Expression (Assoc);
888 if Nkind (Expr) = N_Attribute_Reference
889 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
890 then
891 Obj := Prefix (Expr);
892 while Nkind_In (Obj, N_Indexed_Component,
893 N_Selected_Component)
894 loop
895 Obj := Prefix (Obj);
896 end loop;
898 -- Do not check aliased formals or function calls. A
899 -- run-time check may still be needed ???
901 if Is_Entity_Name (Obj)
902 and then Comes_From_Source (Obj)
903 then
904 if Is_Formal (Entity (Obj))
905 and then Is_Aliased (Entity (Obj))
906 then
907 null;
909 elsif Object_Access_Level (Obj) >
910 Scope_Depth (Scope (Scope_Id))
911 then
912 Error_Msg_N
913 ("access discriminant in return aggregate would "
914 & "be a dangling reference", Obj);
915 end if;
916 end if;
917 end if;
918 end if;
920 Next_Discriminant (Discr);
921 end loop;
922 end if;
923 end Check_Aggregate_Accessibility;
925 -------------------------------------
926 -- Check_Return_Subtype_Indication --
927 -------------------------------------
929 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
930 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
932 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
933 -- Subtype given in the extended return statement (must match R_Type)
935 Subtype_Ind : constant Node_Id :=
936 Object_Definition (Original_Node (Obj_Decl));
938 procedure Error_No_Match (N : Node_Id);
939 -- Output error messages for case where types do not statically
940 -- match. N is the location for the messages.
942 --------------------
943 -- Error_No_Match --
944 --------------------
946 procedure Error_No_Match (N : Node_Id) is
947 begin
948 Error_Msg_N
949 ("subtype must statically match function result subtype", N);
951 if not Predicates_Match (R_Stm_Type, R_Type) then
952 Error_Msg_Node_2 := R_Type;
953 Error_Msg_NE
954 ("\predicate of& does not match predicate of&",
955 N, R_Stm_Type);
956 end if;
957 end Error_No_Match;
959 -- Start of processing for Check_Return_Subtype_Indication
961 begin
962 -- First, avoid cascaded errors
964 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
965 return;
966 end if;
968 -- "return access T" case; check that the return statement also has
969 -- "access T", and that the subtypes statically match:
970 -- if this is an access to subprogram the signatures must match.
972 if Is_Anonymous_Access_Type (R_Type) then
973 if Is_Anonymous_Access_Type (R_Stm_Type) then
974 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
975 then
976 if Base_Type (Designated_Type (R_Stm_Type)) /=
977 Base_Type (Designated_Type (R_Type))
978 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
979 then
980 Error_No_Match (Subtype_Mark (Subtype_Ind));
981 end if;
983 else
984 -- For two anonymous access to subprogram types, the types
985 -- themselves must be type conformant.
987 if not Conforming_Types
988 (R_Stm_Type, R_Type, Fully_Conformant)
989 then
990 Error_No_Match (Subtype_Ind);
991 end if;
992 end if;
994 else
995 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
996 end if;
998 -- If the return object is of an anonymous access type, then report
999 -- an error if the function's result type is not also anonymous.
1001 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
1002 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
1003 Error_Msg_N
1004 ("anonymous access not allowed for function with named access "
1005 & "result", Subtype_Ind);
1007 -- Subtype indication case: check that the return object's type is
1008 -- covered by the result type, and that the subtypes statically match
1009 -- when the result subtype is constrained. Also handle record types
1010 -- with unknown discriminants for which we have built the underlying
1011 -- record view. Coverage is needed to allow specific-type return
1012 -- objects when the result type is class-wide (see AI05-32).
1014 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
1015 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
1016 and then
1017 Covers
1018 (Base_Type (R_Type),
1019 Underlying_Record_View (Base_Type (R_Stm_Type))))
1020 then
1021 -- A null exclusion may be present on the return type, on the
1022 -- function specification, on the object declaration or on the
1023 -- subtype itself.
1025 if Is_Access_Type (R_Type)
1026 and then
1027 (Can_Never_Be_Null (R_Type)
1028 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
1029 Can_Never_Be_Null (R_Stm_Type)
1030 then
1031 Error_No_Match (Subtype_Ind);
1032 end if;
1034 -- AI05-103: for elementary types, subtypes must statically match
1036 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
1037 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
1038 Error_No_Match (Subtype_Ind);
1039 end if;
1040 end if;
1042 -- All remaining cases are illegal
1044 -- Note: previous versions of this subprogram allowed the return
1045 -- value to be the ancestor of the return type if the return type
1046 -- was a null extension. This was plainly incorrect.
1048 else
1049 Error_Msg_N
1050 ("wrong type for return_subtype_indication", Subtype_Ind);
1051 end if;
1052 end Check_Return_Subtype_Indication;
1054 ---------------------
1055 -- Local Variables --
1056 ---------------------
1058 Expr : Node_Id;
1059 Obj_Decl : Node_Id := Empty;
1061 -- Start of processing for Analyze_Function_Return
1063 begin
1064 Set_Return_Present (Scope_Id);
1066 if Nkind (N) = N_Simple_Return_Statement then
1067 Expr := Expression (N);
1069 -- Guard against a malformed expression. The parser may have tried to
1070 -- recover but the node is not analyzable.
1072 if Nkind (Expr) = N_Error then
1073 Set_Etype (Expr, Any_Type);
1074 Expander_Mode_Save_And_Set (False);
1075 return;
1077 else
1078 -- The resolution of a controlled [extension] aggregate associated
1079 -- with a return statement creates a temporary which needs to be
1080 -- finalized on function exit. Wrap the return statement inside a
1081 -- block so that the finalization machinery can detect this case.
1082 -- This early expansion is done only when the return statement is
1083 -- not part of a handled sequence of statements.
1085 if Nkind_In (Expr, N_Aggregate,
1086 N_Extension_Aggregate)
1087 and then Needs_Finalization (R_Type)
1088 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1089 then
1090 Rewrite (N,
1091 Make_Block_Statement (Loc,
1092 Handled_Statement_Sequence =>
1093 Make_Handled_Sequence_Of_Statements (Loc,
1094 Statements => New_List (Relocate_Node (N)))));
1096 Analyze (N);
1097 return;
1098 end if;
1100 Analyze (Expr);
1102 -- Ada 2005 (AI-251): If the type of the returned object is
1103 -- an access to an interface type then we add an implicit type
1104 -- conversion to force the displacement of the "this" pointer to
1105 -- reference the secondary dispatch table. We cannot delay the
1106 -- generation of this implicit conversion until the expansion
1107 -- because in this case the type resolution changes the decoration
1108 -- of the expression node to match R_Type; by contrast, if the
1109 -- returned object is a class-wide interface type then it is too
1110 -- early to generate here the implicit conversion since the return
1111 -- statement may be rewritten by the expander into an extended
1112 -- return statement whose expansion takes care of adding the
1113 -- implicit type conversion to displace the pointer to the object.
1115 if Expander_Active
1116 and then Serious_Errors_Detected = 0
1117 and then Is_Access_Type (R_Type)
1118 and then not Nkind_In (Expr, N_Null, N_Raise_Expression)
1119 and then Is_Interface (Designated_Type (R_Type))
1120 and then Is_Progenitor (Designated_Type (R_Type),
1121 Designated_Type (Etype (Expr)))
1122 then
1123 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1124 Analyze (Expr);
1125 end if;
1127 Resolve (Expr, R_Type);
1128 Check_Limited_Return (N, Expr, R_Type);
1130 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
1131 Check_Aggregate_Accessibility (Expr);
1132 end if;
1133 end if;
1135 -- RETURN only allowed in SPARK as the last statement in function
1137 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1138 and then
1139 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
1140 or else Present (Next (N)))
1141 then
1142 Check_SPARK_05_Restriction
1143 ("RETURN should be the last statement in function", N);
1144 end if;
1146 else
1147 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
1148 Obj_Decl := Last (Return_Object_Declarations (N));
1150 -- Analyze parts specific to extended_return_statement:
1152 declare
1153 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
1154 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1156 begin
1157 Expr := Expression (Obj_Decl);
1159 -- Note: The check for OK_For_Limited_Init will happen in
1160 -- Analyze_Object_Declaration; we treat it as a normal
1161 -- object declaration.
1163 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1164 Analyze (Obj_Decl);
1166 Check_Return_Subtype_Indication (Obj_Decl);
1168 if Present (HSS) then
1169 Analyze (HSS);
1171 if Present (Exception_Handlers (HSS)) then
1173 -- ???Has_Nested_Block_With_Handler needs to be set.
1174 -- Probably by creating an actual N_Block_Statement.
1175 -- Probably in Expand.
1177 null;
1178 end if;
1179 end if;
1181 -- Mark the return object as referenced, since the return is an
1182 -- implicit reference of the object.
1184 Set_Referenced (Defining_Identifier (Obj_Decl));
1186 Check_References (Stm_Entity);
1188 -- Check RM 6.5 (5.9/3)
1190 if Has_Aliased then
1191 if Ada_Version < Ada_2012 then
1193 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1194 -- Can it really happen (extended return???)
1196 Error_Msg_N
1197 ("aliased only allowed for limited return objects "
1198 & "in Ada 2012??", N);
1200 elsif not Is_Limited_View (R_Type) then
1201 Error_Msg_N
1202 ("aliased only allowed for limited return objects", N);
1203 end if;
1204 end if;
1205 end;
1206 end if;
1208 -- Case of Expr present
1210 if Present (Expr) then
1212 -- Defend against previous errors
1214 if Nkind (Expr) = N_Empty
1215 or else No (Etype (Expr))
1216 then
1217 return;
1218 end if;
1220 -- Apply constraint check. Note that this is done before the implicit
1221 -- conversion of the expression done for anonymous access types to
1222 -- ensure correct generation of the null-excluding check associated
1223 -- with null-excluding expressions found in return statements.
1225 Apply_Constraint_Check (Expr, R_Type);
1227 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1228 -- type, apply an implicit conversion of the expression to that type
1229 -- to force appropriate static and run-time accessibility checks.
1231 if Ada_Version >= Ada_2005
1232 and then Ekind (R_Type) = E_Anonymous_Access_Type
1233 then
1234 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1235 Analyze_And_Resolve (Expr, R_Type);
1237 -- If this is a local anonymous access to subprogram, the
1238 -- accessibility check can be applied statically. The return is
1239 -- illegal if the access type of the return expression is declared
1240 -- inside of the subprogram (except if it is the subtype indication
1241 -- of an extended return statement).
1243 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1244 if not Comes_From_Source (Current_Scope)
1245 or else Ekind (Current_Scope) = E_Return_Statement
1246 then
1247 null;
1249 elsif
1250 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1251 then
1252 Error_Msg_N ("cannot return local access to subprogram", N);
1253 end if;
1255 -- The expression cannot be of a formal incomplete type
1257 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1258 and then Is_Generic_Type (Etype (Expr))
1259 then
1260 Error_Msg_N
1261 ("cannot return expression of a formal incomplete type", N);
1262 end if;
1264 -- If the result type is class-wide, then check that the return
1265 -- expression's type is not declared at a deeper level than the
1266 -- function (RM05-6.5(5.6/2)).
1268 if Ada_Version >= Ada_2005
1269 and then Is_Class_Wide_Type (R_Type)
1270 then
1271 if Type_Access_Level (Etype (Expr)) >
1272 Subprogram_Access_Level (Scope_Id)
1273 then
1274 Error_Msg_N
1275 ("level of return expression type is deeper than "
1276 & "class-wide function!", Expr);
1277 end if;
1278 end if;
1280 -- Check incorrect use of dynamically tagged expression
1282 if Is_Tagged_Type (R_Type) then
1283 Check_Dynamically_Tagged_Expression
1284 (Expr => Expr,
1285 Typ => R_Type,
1286 Related_Nod => N);
1287 end if;
1289 -- ??? A real run-time accessibility check is needed in cases
1290 -- involving dereferences of access parameters. For now we just
1291 -- check the static cases.
1293 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1294 and then Is_Limited_View (Etype (Scope_Id))
1295 and then Object_Access_Level (Expr) >
1296 Subprogram_Access_Level (Scope_Id)
1297 then
1298 -- Suppress the message in a generic, where the rewriting
1299 -- is irrelevant.
1301 if Inside_A_Generic then
1302 null;
1304 else
1305 Rewrite (N,
1306 Make_Raise_Program_Error (Loc,
1307 Reason => PE_Accessibility_Check_Failed));
1308 Analyze (N);
1310 Error_Msg_Warn := SPARK_Mode /= On;
1311 Error_Msg_N ("cannot return a local value by reference<<", N);
1312 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1313 end if;
1314 end if;
1316 if Known_Null (Expr)
1317 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1318 and then Null_Exclusion_Present (Parent (Scope_Id))
1319 then
1320 Apply_Compile_Time_Constraint_Error
1321 (N => Expr,
1322 Msg => "(Ada 2005) null not allowed for "
1323 & "null-excluding return??",
1324 Reason => CE_Null_Not_Allowed);
1325 end if;
1327 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1328 -- has no initializing expression.
1330 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1331 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1332 Subprogram_Access_Level (Scope_Id)
1333 then
1334 Error_Msg_N
1335 ("level of return expression type is deeper than "
1336 & "class-wide function!", Obj_Decl);
1337 end if;
1338 end if;
1339 end Analyze_Function_Return;
1341 -------------------------------------
1342 -- Analyze_Generic_Subprogram_Body --
1343 -------------------------------------
1345 procedure Analyze_Generic_Subprogram_Body
1346 (N : Node_Id;
1347 Gen_Id : Entity_Id)
1349 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1350 Kind : constant Entity_Kind := Ekind (Gen_Id);
1351 Body_Id : Entity_Id;
1352 New_N : Node_Id;
1353 Spec : Node_Id;
1355 begin
1356 -- Copy body and disable expansion while analyzing the generic For a
1357 -- stub, do not copy the stub (which would load the proper body), this
1358 -- will be done when the proper body is analyzed.
1360 if Nkind (N) /= N_Subprogram_Body_Stub then
1361 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1362 Rewrite (N, New_N);
1364 -- Once the contents of the generic copy and the template are
1365 -- swapped, do the same for their respective aspect specifications.
1367 Exchange_Aspects (N, New_N);
1369 -- Collect all contract-related source pragmas found within the
1370 -- template and attach them to the contract of the subprogram body.
1371 -- This contract is used in the capture of global references within
1372 -- annotations.
1374 Create_Generic_Contract (N);
1376 Start_Generic;
1377 end if;
1379 Spec := Specification (N);
1381 -- Within the body of the generic, the subprogram is callable, and
1382 -- behaves like the corresponding non-generic unit.
1384 Body_Id := Defining_Entity (Spec);
1386 if Kind = E_Generic_Procedure
1387 and then Nkind (Spec) /= N_Procedure_Specification
1388 then
1389 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1390 return;
1392 elsif Kind = E_Generic_Function
1393 and then Nkind (Spec) /= N_Function_Specification
1394 then
1395 Error_Msg_N ("invalid body for generic function ", Body_Id);
1396 return;
1397 end if;
1399 Set_Corresponding_Body (Gen_Decl, Body_Id);
1401 if Has_Completion (Gen_Id)
1402 and then Nkind (Parent (N)) /= N_Subunit
1403 then
1404 Error_Msg_N ("duplicate generic body", N);
1405 return;
1406 else
1407 Set_Has_Completion (Gen_Id);
1408 end if;
1410 if Nkind (N) = N_Subprogram_Body_Stub then
1411 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1412 else
1413 Set_Corresponding_Spec (N, Gen_Id);
1414 end if;
1416 if Nkind (Parent (N)) = N_Compilation_Unit then
1417 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1418 end if;
1420 -- Make generic parameters immediately visible in the body. They are
1421 -- needed to process the formals declarations. Then make the formals
1422 -- visible in a separate step.
1424 Push_Scope (Gen_Id);
1426 declare
1427 E : Entity_Id;
1428 First_Ent : Entity_Id;
1430 begin
1431 First_Ent := First_Entity (Gen_Id);
1433 E := First_Ent;
1434 while Present (E) and then not Is_Formal (E) loop
1435 Install_Entity (E);
1436 Next_Entity (E);
1437 end loop;
1439 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1441 -- Now generic formals are visible, and the specification can be
1442 -- analyzed, for subsequent conformance check.
1444 Body_Id := Analyze_Subprogram_Specification (Spec);
1446 -- Make formal parameters visible
1448 if Present (E) then
1450 -- E is the first formal parameter, we loop through the formals
1451 -- installing them so that they will be visible.
1453 Set_First_Entity (Gen_Id, E);
1454 while Present (E) loop
1455 Install_Entity (E);
1456 Next_Formal (E);
1457 end loop;
1458 end if;
1460 -- Visible generic entity is callable within its own body
1462 Set_Ekind (Gen_Id, Ekind (Body_Id));
1463 Set_Ekind (Body_Id, E_Subprogram_Body);
1464 Set_Convention (Body_Id, Convention (Gen_Id));
1465 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1466 Set_Scope (Body_Id, Scope (Gen_Id));
1468 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1470 if Nkind (N) = N_Subprogram_Body_Stub then
1472 -- No body to analyze, so restore state of generic unit
1474 Set_Ekind (Gen_Id, Kind);
1475 Set_Ekind (Body_Id, Kind);
1477 if Present (First_Ent) then
1478 Set_First_Entity (Gen_Id, First_Ent);
1479 end if;
1481 End_Scope;
1482 return;
1483 end if;
1485 -- If this is a compilation unit, it must be made visible explicitly,
1486 -- because the compilation of the declaration, unlike other library
1487 -- unit declarations, does not. If it is not a unit, the following
1488 -- is redundant but harmless.
1490 Set_Is_Immediately_Visible (Gen_Id);
1491 Reference_Body_Formals (Gen_Id, Body_Id);
1493 if Is_Child_Unit (Gen_Id) then
1494 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1495 end if;
1497 Set_Actual_Subtypes (N, Current_Scope);
1499 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1500 Set_SPARK_Pragma_Inherited (Body_Id);
1502 -- Analyze any aspect specifications that appear on the generic
1503 -- subprogram body.
1505 if Has_Aspects (N) then
1506 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
1507 end if;
1509 Analyze_Declarations (Declarations (N));
1510 Check_Completion;
1512 -- Process the contract of the subprogram body after all declarations
1513 -- have been analyzed. This ensures that any contract-related pragmas
1514 -- are available through the N_Contract node of the body.
1516 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1518 Analyze (Handled_Statement_Sequence (N));
1519 Save_Global_References (Original_Node (N));
1521 -- Prior to exiting the scope, include generic formals again (if any
1522 -- are present) in the set of local entities.
1524 if Present (First_Ent) then
1525 Set_First_Entity (Gen_Id, First_Ent);
1526 end if;
1528 Check_References (Gen_Id);
1529 end;
1531 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1532 Update_Use_Clause_Chain;
1533 Validate_Categorization_Dependency (N, Gen_Id);
1534 End_Scope;
1535 Check_Subprogram_Order (N);
1537 -- Outside of its body, unit is generic again
1539 Set_Ekind (Gen_Id, Kind);
1540 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1542 if Style_Check then
1543 Style.Check_Identifier (Body_Id, Gen_Id);
1544 end if;
1546 End_Generic;
1547 end Analyze_Generic_Subprogram_Body;
1549 ----------------------------
1550 -- Analyze_Null_Procedure --
1551 ----------------------------
1553 procedure Analyze_Null_Procedure
1554 (N : Node_Id;
1555 Is_Completion : out Boolean)
1557 Loc : constant Source_Ptr := Sloc (N);
1558 Spec : constant Node_Id := Specification (N);
1559 Designator : Entity_Id;
1560 Form : Node_Id;
1561 Null_Body : Node_Id := Empty;
1562 Null_Stmt : Node_Id := Null_Statement (Spec);
1563 Prev : Entity_Id;
1565 begin
1566 -- Capture the profile of the null procedure before analysis, for
1567 -- expansion at the freeze point and at each point of call. The body is
1568 -- used if the procedure has preconditions, or if it is a completion. In
1569 -- the first case the body is analyzed at the freeze point, in the other
1570 -- it replaces the null procedure declaration.
1572 -- For a null procedure that comes from source, a NULL statement is
1573 -- provided by the parser, which carries the source location of the
1574 -- NULL keyword, and has Comes_From_Source set. For a null procedure
1575 -- from expansion, create one now.
1577 if No (Null_Stmt) then
1578 Null_Stmt := Make_Null_Statement (Loc);
1579 end if;
1581 Null_Body :=
1582 Make_Subprogram_Body (Loc,
1583 Specification => New_Copy_Tree (Spec),
1584 Declarations => New_List,
1585 Handled_Statement_Sequence =>
1586 Make_Handled_Sequence_Of_Statements (Loc,
1587 Statements => New_List (Null_Stmt)));
1589 -- Create new entities for body and formals
1591 Set_Defining_Unit_Name (Specification (Null_Body),
1592 Make_Defining_Identifier
1593 (Sloc (Defining_Entity (N)),
1594 Chars (Defining_Entity (N))));
1596 Form := First (Parameter_Specifications (Specification (Null_Body)));
1597 while Present (Form) loop
1598 Set_Defining_Identifier (Form,
1599 Make_Defining_Identifier
1600 (Sloc (Defining_Identifier (Form)),
1601 Chars (Defining_Identifier (Form))));
1602 Next (Form);
1603 end loop;
1605 -- Determine whether the null procedure may be a completion of a generic
1606 -- suprogram, in which case we use the new null body as the completion
1607 -- and set minimal semantic information on the original declaration,
1608 -- which is rewritten as a null statement.
1610 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1612 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1613 Insert_Before (N, Null_Body);
1614 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1616 Rewrite (N, Make_Null_Statement (Loc));
1617 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1618 Is_Completion := True;
1619 return;
1621 else
1622 -- Resolve the types of the formals now, because the freeze point may
1623 -- appear in a different context, e.g. an instantiation.
1625 Form := First (Parameter_Specifications (Specification (Null_Body)));
1626 while Present (Form) loop
1627 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1628 Find_Type (Parameter_Type (Form));
1630 elsif No (Access_To_Subprogram_Definition
1631 (Parameter_Type (Form)))
1632 then
1633 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1635 -- The case of a null procedure with a formal that is an
1636 -- access-to-subprogram type, and that is used as an actual
1637 -- in an instantiation is left to the enthusiastic reader.
1639 else
1640 null;
1641 end if;
1643 Next (Form);
1644 end loop;
1645 end if;
1647 -- If there are previous overloadable entities with the same name, check
1648 -- whether any of them is completed by the null procedure.
1650 if Present (Prev) and then Is_Overloadable (Prev) then
1651 Designator := Analyze_Subprogram_Specification (Spec);
1652 Prev := Find_Corresponding_Spec (N);
1653 end if;
1655 if No (Prev) or else not Comes_From_Source (Prev) then
1656 Designator := Analyze_Subprogram_Specification (Spec);
1657 Set_Has_Completion (Designator);
1659 -- Signal to caller that this is a procedure declaration
1661 Is_Completion := False;
1663 -- Null procedures are always inlined, but generic formal subprograms
1664 -- which appear as such in the internal instance of formal packages,
1665 -- need no completion and are not marked Inline.
1667 if Expander_Active
1668 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1669 then
1670 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1671 Set_Body_To_Inline (N, Null_Body);
1672 Set_Is_Inlined (Designator);
1673 end if;
1675 else
1676 -- The null procedure is a completion. We unconditionally rewrite
1677 -- this as a null body (even if expansion is not active), because
1678 -- there are various error checks that are applied on this body
1679 -- when it is analyzed (e.g. correct aspect placement).
1681 if Has_Completion (Prev) then
1682 Error_Msg_Sloc := Sloc (Prev);
1683 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1684 end if;
1686 Check_Previous_Null_Procedure (N, Prev);
1688 Is_Completion := True;
1689 Rewrite (N, Null_Body);
1690 Analyze (N);
1691 end if;
1692 end Analyze_Null_Procedure;
1694 -----------------------------
1695 -- Analyze_Operator_Symbol --
1696 -----------------------------
1698 -- An operator symbol such as "+" or "and" may appear in context where the
1699 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1700 -- is just a string, as in (conjunction = "or"). In these cases the parser
1701 -- generates this node, and the semantics does the disambiguation. Other
1702 -- such case are actuals in an instantiation, the generic unit in an
1703 -- instantiation, and pragma arguments.
1705 procedure Analyze_Operator_Symbol (N : Node_Id) is
1706 Par : constant Node_Id := Parent (N);
1708 begin
1709 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1710 or else Nkind (Par) = N_Function_Instantiation
1711 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1712 or else (Nkind (Par) = N_Pragma_Argument_Association
1713 and then not Is_Pragma_String_Literal (Par))
1714 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1715 or else (Nkind (Par) = N_Attribute_Reference
1716 and then Attribute_Name (Par) /= Name_Value)
1717 then
1718 Find_Direct_Name (N);
1720 else
1721 Change_Operator_Symbol_To_String_Literal (N);
1722 Analyze (N);
1723 end if;
1724 end Analyze_Operator_Symbol;
1726 -----------------------------------
1727 -- Analyze_Parameter_Association --
1728 -----------------------------------
1730 procedure Analyze_Parameter_Association (N : Node_Id) is
1731 begin
1732 Analyze (Explicit_Actual_Parameter (N));
1733 end Analyze_Parameter_Association;
1735 ----------------------------
1736 -- Analyze_Procedure_Call --
1737 ----------------------------
1739 -- WARNING: This routine manages Ghost regions. Return statements must be
1740 -- replaced by gotos which jump to the end of the routine and restore the
1741 -- Ghost mode.
1743 procedure Analyze_Procedure_Call (N : Node_Id) is
1744 procedure Analyze_Call_And_Resolve;
1745 -- Do Analyze and Resolve calls for procedure call. At the end, check
1746 -- for illegal order dependence.
1747 -- ??? where is the check for illegal order dependencies?
1749 ------------------------------
1750 -- Analyze_Call_And_Resolve --
1751 ------------------------------
1753 procedure Analyze_Call_And_Resolve is
1754 begin
1755 if Nkind (N) = N_Procedure_Call_Statement then
1756 Analyze_Call (N);
1757 Resolve (N, Standard_Void_Type);
1758 else
1759 Analyze (N);
1760 end if;
1761 end Analyze_Call_And_Resolve;
1763 -- Local variables
1765 Actuals : constant List_Id := Parameter_Associations (N);
1766 Loc : constant Source_Ptr := Sloc (N);
1767 P : constant Node_Id := Name (N);
1769 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1770 -- Save the Ghost mode to restore on exit
1772 Actual : Node_Id;
1773 New_N : Node_Id;
1775 -- Start of processing for Analyze_Procedure_Call
1777 begin
1778 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1779 -- a procedure call or an entry call. The prefix may denote an access
1780 -- to subprogram type, in which case an implicit dereference applies.
1781 -- If the prefix is an indexed component (without implicit dereference)
1782 -- then the construct denotes a call to a member of an entire family.
1783 -- If the prefix is a simple name, it may still denote a call to a
1784 -- parameterless member of an entry family. Resolution of these various
1785 -- interpretations is delicate.
1787 -- Do not analyze machine code statements to avoid rejecting them in
1788 -- CodePeer mode.
1790 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1791 Set_Etype (P, Standard_Void_Type);
1792 else
1793 Analyze (P);
1794 end if;
1796 -- If this is a call of the form Obj.Op, the call may have been analyzed
1797 -- and possibly rewritten into a block, in which case we are done.
1799 if Analyzed (N) then
1800 return;
1802 -- If there is an error analyzing the name (which may have been
1803 -- rewritten if the original call was in prefix notation) then error
1804 -- has been emitted already, mark node and return.
1806 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1807 Set_Etype (N, Any_Type);
1808 return;
1809 end if;
1811 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1812 -- Set the mode now to ensure that any nodes generated during analysis
1813 -- and expansion are properly marked as Ghost.
1815 Mark_And_Set_Ghost_Procedure_Call (N);
1817 -- Otherwise analyze the parameters
1819 if Present (Actuals) then
1820 Actual := First (Actuals);
1822 while Present (Actual) loop
1823 Analyze (Actual);
1824 Check_Parameterless_Call (Actual);
1825 Next (Actual);
1826 end loop;
1827 end if;
1829 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1831 if Nkind (P) = N_Attribute_Reference
1832 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1833 Name_Elab_Body,
1834 Name_Elab_Subp_Body)
1835 then
1836 if Present (Actuals) then
1837 Error_Msg_N
1838 ("no parameters allowed for this call", First (Actuals));
1839 goto Leave;
1840 end if;
1842 Set_Etype (N, Standard_Void_Type);
1843 Set_Analyzed (N);
1845 elsif Is_Entity_Name (P)
1846 and then Is_Record_Type (Etype (Entity (P)))
1847 and then Remote_AST_I_Dereference (P)
1848 then
1849 goto Leave;
1851 elsif Is_Entity_Name (P)
1852 and then Ekind (Entity (P)) /= E_Entry_Family
1853 then
1854 if Is_Access_Type (Etype (P))
1855 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1856 and then No (Actuals)
1857 and then Comes_From_Source (N)
1858 then
1859 Error_Msg_N ("missing explicit dereference in call", N);
1860 end if;
1862 Analyze_Call_And_Resolve;
1864 -- If the prefix is the simple name of an entry family, this is a
1865 -- parameterless call from within the task body itself.
1867 elsif Is_Entity_Name (P)
1868 and then Nkind (P) = N_Identifier
1869 and then Ekind (Entity (P)) = E_Entry_Family
1870 and then Present (Actuals)
1871 and then No (Next (First (Actuals)))
1872 then
1873 -- Can be call to parameterless entry family. What appears to be the
1874 -- sole argument is in fact the entry index. Rewrite prefix of node
1875 -- accordingly. Source representation is unchanged by this
1876 -- transformation.
1878 New_N :=
1879 Make_Indexed_Component (Loc,
1880 Prefix =>
1881 Make_Selected_Component (Loc,
1882 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1883 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1884 Expressions => Actuals);
1885 Set_Name (N, New_N);
1886 Set_Etype (New_N, Standard_Void_Type);
1887 Set_Parameter_Associations (N, No_List);
1888 Analyze_Call_And_Resolve;
1890 elsif Nkind (P) = N_Explicit_Dereference then
1891 if Ekind (Etype (P)) = E_Subprogram_Type then
1892 Analyze_Call_And_Resolve;
1893 else
1894 Error_Msg_N ("expect access to procedure in call", P);
1895 end if;
1897 -- The name can be a selected component or an indexed component that
1898 -- yields an access to subprogram. Such a prefix is legal if the call
1899 -- has parameter associations.
1901 elsif Is_Access_Type (Etype (P))
1902 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1903 then
1904 if Present (Actuals) then
1905 Analyze_Call_And_Resolve;
1906 else
1907 Error_Msg_N ("missing explicit dereference in call ", N);
1908 end if;
1910 -- If not an access to subprogram, then the prefix must resolve to the
1911 -- name of an entry, entry family, or protected operation.
1913 -- For the case of a simple entry call, P is a selected component where
1914 -- the prefix is the task and the selector name is the entry. A call to
1915 -- a protected procedure will have the same syntax. If the protected
1916 -- object contains overloaded operations, the entity may appear as a
1917 -- function, the context will select the operation whose type is Void.
1919 elsif Nkind (P) = N_Selected_Component
1920 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1921 E_Function,
1922 E_Procedure)
1923 then
1924 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1925 -- in prefix notation may still be missing its controlling argument,
1926 -- so perform the transformation now.
1928 if SPARK_Mode = On and then In_Inlined_Body then
1929 declare
1930 Subp : constant Entity_Id := Entity (Selector_Name (P));
1931 Typ : constant Entity_Id := Etype (Prefix (P));
1933 begin
1934 if Is_Tagged_Type (Typ)
1935 and then Present (First_Formal (Subp))
1936 and then Etype (First_Formal (Subp)) = Typ
1937 and then Try_Object_Operation (P)
1938 then
1939 return;
1941 else
1942 Analyze_Call_And_Resolve;
1943 end if;
1944 end;
1946 else
1947 Analyze_Call_And_Resolve;
1948 end if;
1950 elsif Nkind (P) = N_Selected_Component
1951 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1952 and then Present (Actuals)
1953 and then No (Next (First (Actuals)))
1954 then
1955 -- Can be call to parameterless entry family. What appears to be the
1956 -- sole argument is in fact the entry index. Rewrite prefix of node
1957 -- accordingly. Source representation is unchanged by this
1958 -- transformation.
1960 New_N :=
1961 Make_Indexed_Component (Loc,
1962 Prefix => New_Copy (P),
1963 Expressions => Actuals);
1964 Set_Name (N, New_N);
1965 Set_Etype (New_N, Standard_Void_Type);
1966 Set_Parameter_Associations (N, No_List);
1967 Analyze_Call_And_Resolve;
1969 -- For the case of a reference to an element of an entry family, P is
1970 -- an indexed component whose prefix is a selected component (task and
1971 -- entry family), and whose index is the entry family index.
1973 elsif Nkind (P) = N_Indexed_Component
1974 and then Nkind (Prefix (P)) = N_Selected_Component
1975 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1976 then
1977 Analyze_Call_And_Resolve;
1979 -- If the prefix is the name of an entry family, it is a call from
1980 -- within the task body itself.
1982 elsif Nkind (P) = N_Indexed_Component
1983 and then Nkind (Prefix (P)) = N_Identifier
1984 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1985 then
1986 New_N :=
1987 Make_Selected_Component (Loc,
1988 Prefix =>
1989 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1990 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1991 Rewrite (Prefix (P), New_N);
1992 Analyze (P);
1993 Analyze_Call_And_Resolve;
1995 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1996 -- procedure name, so the construct can only be a qualified expression.
1998 elsif Nkind (P) = N_Qualified_Expression
1999 and then Ada_Version >= Ada_2012
2000 then
2001 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
2002 Analyze (N);
2004 -- Anything else is an error
2006 else
2007 Error_Msg_N ("invalid procedure or entry call", N);
2008 end if;
2010 <<Leave>>
2011 Restore_Ghost_Mode (Saved_GM);
2012 end Analyze_Procedure_Call;
2014 ------------------------------
2015 -- Analyze_Return_Statement --
2016 ------------------------------
2018 procedure Analyze_Return_Statement (N : Node_Id) is
2019 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
2020 N_Simple_Return_Statement));
2022 Returns_Object : constant Boolean :=
2023 Nkind (N) = N_Extended_Return_Statement
2024 or else
2025 (Nkind (N) = N_Simple_Return_Statement
2026 and then Present (Expression (N)));
2027 -- True if we're returning something; that is, "return <expression>;"
2028 -- or "return Result : T [:= ...]". False for "return;". Used for error
2029 -- checking: If Returns_Object is True, N should apply to a function
2030 -- body; otherwise N should apply to a procedure body, entry body,
2031 -- accept statement, or extended return statement.
2033 function Find_What_It_Applies_To return Entity_Id;
2034 -- Find the entity representing the innermost enclosing body, accept
2035 -- statement, or extended return statement. If the result is a callable
2036 -- construct or extended return statement, then this will be the value
2037 -- of the Return_Applies_To attribute. Otherwise, the program is
2038 -- illegal. See RM-6.5(4/2).
2040 -----------------------------
2041 -- Find_What_It_Applies_To --
2042 -----------------------------
2044 function Find_What_It_Applies_To return Entity_Id is
2045 Result : Entity_Id := Empty;
2047 begin
2048 -- Loop outward through the Scope_Stack, skipping blocks, loops,
2049 -- and postconditions.
2051 for J in reverse 0 .. Scope_Stack.Last loop
2052 Result := Scope_Stack.Table (J).Entity;
2053 exit when not Ekind_In (Result, E_Block, E_Loop)
2054 and then Chars (Result) /= Name_uPostconditions;
2055 end loop;
2057 pragma Assert (Present (Result));
2058 return Result;
2059 end Find_What_It_Applies_To;
2061 -- Local declarations
2063 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
2064 Kind : constant Entity_Kind := Ekind (Scope_Id);
2065 Loc : constant Source_Ptr := Sloc (N);
2066 Stm_Entity : constant Entity_Id :=
2067 New_Internal_Entity
2068 (E_Return_Statement, Current_Scope, Loc, 'R');
2070 -- Start of processing for Analyze_Return_Statement
2072 begin
2073 Set_Return_Statement_Entity (N, Stm_Entity);
2075 Set_Etype (Stm_Entity, Standard_Void_Type);
2076 Set_Return_Applies_To (Stm_Entity, Scope_Id);
2078 -- Place Return entity on scope stack, to simplify enforcement of 6.5
2079 -- (4/2): an inner return statement will apply to this extended return.
2081 if Nkind (N) = N_Extended_Return_Statement then
2082 Push_Scope (Stm_Entity);
2083 end if;
2085 -- Check that pragma No_Return is obeyed. Don't complain about the
2086 -- implicitly-generated return that is placed at the end.
2088 if No_Return (Scope_Id) and then Comes_From_Source (N) then
2089 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
2090 end if;
2092 -- Warn on any unassigned OUT parameters if in procedure
2094 if Ekind (Scope_Id) = E_Procedure then
2095 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
2096 end if;
2098 -- Check that functions return objects, and other things do not
2100 if Kind = E_Function or else Kind = E_Generic_Function then
2101 if not Returns_Object then
2102 Error_Msg_N ("missing expression in return from function", N);
2103 end if;
2105 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
2106 if Returns_Object then
2107 Error_Msg_N ("procedure cannot return value (use function)", N);
2108 end if;
2110 elsif Kind = E_Entry or else Kind = E_Entry_Family then
2111 if Returns_Object then
2112 if Is_Protected_Type (Scope (Scope_Id)) then
2113 Error_Msg_N ("entry body cannot return value", N);
2114 else
2115 Error_Msg_N ("accept statement cannot return value", N);
2116 end if;
2117 end if;
2119 elsif Kind = E_Return_Statement then
2121 -- We are nested within another return statement, which must be an
2122 -- extended_return_statement.
2124 if Returns_Object then
2125 if Nkind (N) = N_Extended_Return_Statement then
2126 Error_Msg_N
2127 ("extended return statement cannot be nested (use `RETURN;`)",
2130 -- Case of a simple return statement with a value inside extended
2131 -- return statement.
2133 else
2134 Error_Msg_N
2135 ("return nested in extended return statement cannot return "
2136 & "value (use `RETURN;`)", N);
2137 end if;
2138 end if;
2140 else
2141 Error_Msg_N ("illegal context for return statement", N);
2142 end if;
2144 if Ekind_In (Kind, E_Function, E_Generic_Function) then
2145 Analyze_Function_Return (N);
2147 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
2148 Set_Return_Present (Scope_Id);
2149 end if;
2151 if Nkind (N) = N_Extended_Return_Statement then
2152 End_Scope;
2153 end if;
2155 Kill_Current_Values (Last_Assignment_Only => True);
2156 Check_Unreachable_Code (N);
2158 Analyze_Dimension (N);
2159 end Analyze_Return_Statement;
2161 -------------------------------------
2162 -- Analyze_Simple_Return_Statement --
2163 -------------------------------------
2165 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2166 begin
2167 if Present (Expression (N)) then
2168 Mark_Coextensions (N, Expression (N));
2169 end if;
2171 Analyze_Return_Statement (N);
2172 end Analyze_Simple_Return_Statement;
2174 -------------------------
2175 -- Analyze_Return_Type --
2176 -------------------------
2178 procedure Analyze_Return_Type (N : Node_Id) is
2179 Designator : constant Entity_Id := Defining_Entity (N);
2180 Typ : Entity_Id := Empty;
2182 begin
2183 -- Normal case where result definition does not indicate an error
2185 if Result_Definition (N) /= Error then
2186 if Nkind (Result_Definition (N)) = N_Access_Definition then
2187 Check_SPARK_05_Restriction
2188 ("access result is not allowed", Result_Definition (N));
2190 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2192 declare
2193 AD : constant Node_Id :=
2194 Access_To_Subprogram_Definition (Result_Definition (N));
2195 begin
2196 if Present (AD) and then Protected_Present (AD) then
2197 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2198 else
2199 Typ := Access_Definition (N, Result_Definition (N));
2200 end if;
2201 end;
2203 Set_Parent (Typ, Result_Definition (N));
2204 Set_Is_Local_Anonymous_Access (Typ);
2205 Set_Etype (Designator, Typ);
2207 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2209 Null_Exclusion_Static_Checks (N);
2211 -- Subtype_Mark case
2213 else
2214 Find_Type (Result_Definition (N));
2215 Typ := Entity (Result_Definition (N));
2216 Set_Etype (Designator, Typ);
2218 -- Unconstrained array as result is not allowed in SPARK
2220 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2221 Check_SPARK_05_Restriction
2222 ("returning an unconstrained array is not allowed",
2223 Result_Definition (N));
2224 end if;
2226 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2228 Null_Exclusion_Static_Checks (N);
2230 -- If a null exclusion is imposed on the result type, then create
2231 -- a null-excluding itype (an access subtype) and use it as the
2232 -- function's Etype. Note that the null exclusion checks are done
2233 -- right before this, because they don't get applied to types that
2234 -- do not come from source.
2236 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2237 Set_Etype (Designator,
2238 Create_Null_Excluding_Itype
2239 (T => Typ,
2240 Related_Nod => N,
2241 Scope_Id => Scope (Current_Scope)));
2243 -- The new subtype must be elaborated before use because
2244 -- it is visible outside of the function. However its base
2245 -- type may not be frozen yet, so the reference that will
2246 -- force elaboration must be attached to the freezing of
2247 -- the base type.
2249 -- If the return specification appears on a proper body,
2250 -- the subtype will have been created already on the spec.
2252 if Is_Frozen (Typ) then
2253 if Nkind (Parent (N)) = N_Subprogram_Body
2254 and then Nkind (Parent (Parent (N))) = N_Subunit
2255 then
2256 null;
2257 else
2258 Build_Itype_Reference (Etype (Designator), Parent (N));
2259 end if;
2261 else
2262 Ensure_Freeze_Node (Typ);
2264 declare
2265 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2266 begin
2267 Set_Itype (IR, Etype (Designator));
2268 Append_Freeze_Actions (Typ, New_List (IR));
2269 end;
2270 end if;
2272 else
2273 Set_Etype (Designator, Typ);
2274 end if;
2276 if Ekind (Typ) = E_Incomplete_Type
2277 or else (Is_Class_Wide_Type (Typ)
2278 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2279 then
2280 -- AI05-0151: Tagged incomplete types are allowed in all formal
2281 -- parts. Untagged incomplete types are not allowed in bodies.
2282 -- As a consequence, limited views cannot appear in a basic
2283 -- declaration that is itself within a body, because there is
2284 -- no point at which the non-limited view will become visible.
2286 if Ada_Version >= Ada_2012 then
2287 if From_Limited_With (Typ) and then In_Package_Body then
2288 Error_Msg_NE
2289 ("invalid use of incomplete type&",
2290 Result_Definition (N), Typ);
2292 -- The return type of a subprogram body cannot be of a
2293 -- formal incomplete type.
2295 elsif Is_Generic_Type (Typ)
2296 and then Nkind (Parent (N)) = N_Subprogram_Body
2297 then
2298 Error_Msg_N
2299 ("return type cannot be a formal incomplete type",
2300 Result_Definition (N));
2302 elsif Is_Class_Wide_Type (Typ)
2303 and then Is_Generic_Type (Root_Type (Typ))
2304 and then Nkind (Parent (N)) = N_Subprogram_Body
2305 then
2306 Error_Msg_N
2307 ("return type cannot be a formal incomplete type",
2308 Result_Definition (N));
2310 elsif Is_Tagged_Type (Typ) then
2311 null;
2313 -- Use is legal in a thunk generated for an operation
2314 -- inherited from a progenitor.
2316 elsif Is_Thunk (Designator)
2317 and then Present (Non_Limited_View (Typ))
2318 then
2319 null;
2321 elsif Nkind (Parent (N)) = N_Subprogram_Body
2322 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2323 N_Entry_Body)
2324 then
2325 Error_Msg_NE
2326 ("invalid use of untagged incomplete type&",
2327 Designator, Typ);
2328 end if;
2330 -- The type must be completed in the current package. This
2331 -- is checked at the end of the package declaration when
2332 -- Taft-amendment types are identified. If the return type
2333 -- is class-wide, there is no required check, the type can
2334 -- be a bona fide TAT.
2336 if Ekind (Scope (Current_Scope)) = E_Package
2337 and then In_Private_Part (Scope (Current_Scope))
2338 and then not Is_Class_Wide_Type (Typ)
2339 then
2340 Append_Elmt (Designator, Private_Dependents (Typ));
2341 end if;
2343 else
2344 Error_Msg_NE
2345 ("invalid use of incomplete type&", Designator, Typ);
2346 end if;
2347 end if;
2348 end if;
2350 -- Case where result definition does indicate an error
2352 else
2353 Set_Etype (Designator, Any_Type);
2354 end if;
2355 end Analyze_Return_Type;
2357 -----------------------------
2358 -- Analyze_Subprogram_Body --
2359 -----------------------------
2361 procedure Analyze_Subprogram_Body (N : Node_Id) is
2362 Loc : constant Source_Ptr := Sloc (N);
2363 Body_Spec : constant Node_Id := Specification (N);
2364 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2366 begin
2367 if Debug_Flag_C then
2368 Write_Str ("==> subprogram body ");
2369 Write_Name (Chars (Body_Id));
2370 Write_Str (" from ");
2371 Write_Location (Loc);
2372 Write_Eol;
2373 Indent;
2374 end if;
2376 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2378 -- The real work is split out into the helper, so it can do "return;"
2379 -- without skipping the debug output:
2381 Analyze_Subprogram_Body_Helper (N);
2383 if Debug_Flag_C then
2384 Outdent;
2385 Write_Str ("<== subprogram body ");
2386 Write_Name (Chars (Body_Id));
2387 Write_Str (" from ");
2388 Write_Location (Loc);
2389 Write_Eol;
2390 end if;
2391 end Analyze_Subprogram_Body;
2393 ------------------------------------
2394 -- Analyze_Subprogram_Body_Helper --
2395 ------------------------------------
2397 -- This procedure is called for regular subprogram bodies, generic bodies,
2398 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2399 -- specification matters, and is used to create a proper declaration for
2400 -- the subprogram, or to perform conformance checks.
2402 -- WARNING: This routine manages Ghost regions. Return statements must be
2403 -- replaced by gotos which jump to the end of the routine and restore the
2404 -- Ghost mode.
2406 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2407 Body_Spec : Node_Id := Specification (N);
2408 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2409 Loc : constant Source_Ptr := Sloc (N);
2410 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2412 Conformant : Boolean;
2413 Desig_View : Entity_Id := Empty;
2414 Exch_Views : Elist_Id := No_Elist;
2415 HSS : Node_Id;
2416 Mask_Types : Elist_Id := No_Elist;
2417 Prot_Typ : Entity_Id := Empty;
2418 Spec_Decl : Node_Id := Empty;
2419 Spec_Id : Entity_Id;
2421 Last_Real_Spec_Entity : Entity_Id := Empty;
2422 -- When we analyze a separate spec, the entity chain ends up containing
2423 -- the formals, as well as any itypes generated during analysis of the
2424 -- default expressions for parameters, or the arguments of associated
2425 -- precondition/postcondition pragmas (which are analyzed in the context
2426 -- of the spec since they have visibility on formals).
2428 -- These entities belong with the spec and not the body. However we do
2429 -- the analysis of the body in the context of the spec (again to obtain
2430 -- visibility to the formals), and all the entities generated during
2431 -- this analysis end up also chained to the entity chain of the spec.
2432 -- But they really belong to the body, and there is circuitry to move
2433 -- them from the spec to the body.
2435 -- However, when we do this move, we don't want to move the real spec
2436 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2437 -- variable points to the last real spec entity, so we only move those
2438 -- chained beyond that point. It is initialized to Empty to deal with
2439 -- the case where there is no separate spec.
2441 function Body_Has_Contract return Boolean;
2442 -- Check whether unanalyzed body has an aspect or pragma that may
2443 -- generate a SPARK contract.
2445 function Body_Has_SPARK_Mode_On return Boolean;
2446 -- Check whether SPARK_Mode On applies to the subprogram body, either
2447 -- because it is specified directly on the body, or because it is
2448 -- inherited from the enclosing subprogram or package.
2450 procedure Build_Subprogram_Declaration;
2451 -- Create a matching subprogram declaration for subprogram body N
2453 procedure Check_Anonymous_Return;
2454 -- Ada 2005: if a function returns an access type that denotes a task,
2455 -- or a type that contains tasks, we must create a master entity for
2456 -- the anonymous type, which typically will be used in an allocator
2457 -- in the body of the function.
2459 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2460 -- Look ahead to recognize a pragma that may appear after the body.
2461 -- If there is a previous spec, check that it appears in the same
2462 -- declarative part. If the pragma is Inline_Always, perform inlining
2463 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2464 -- If the body acts as a spec, and inlining is required, we create a
2465 -- subprogram declaration for it, in order to attach the body to inline.
2466 -- If pragma does not appear after the body, check whether there is
2467 -- an inline pragma before any local declarations.
2469 procedure Check_Missing_Return;
2470 -- Checks for a function with a no return statements, and also performs
2471 -- the warning checks implemented by Check_Returns. In formal mode, also
2472 -- verify that a function ends with a RETURN and that a procedure does
2473 -- not contain any RETURN.
2475 function Disambiguate_Spec return Entity_Id;
2476 -- When a primitive is declared between the private view and the full
2477 -- view of a concurrent type which implements an interface, a special
2478 -- mechanism is used to find the corresponding spec of the primitive
2479 -- body.
2481 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2482 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2483 -- incomplete types coming from a limited context and replace their
2484 -- limited views with the non-limited ones. Return the list of changes
2485 -- to be used to undo the transformation.
2487 function Is_Private_Concurrent_Primitive
2488 (Subp_Id : Entity_Id) return Boolean;
2489 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2490 -- type that implements an interface and has a private view.
2492 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2493 -- N is the body generated for an expression function that is not a
2494 -- completion and Spec_Id the defining entity of its spec. Mark all
2495 -- the not-yet-frozen types referenced by the simple return statement
2496 -- of the function as formally frozen.
2498 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2499 -- Undo the transformation done by Exchange_Limited_Views.
2501 procedure Set_Trivial_Subprogram (N : Node_Id);
2502 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2503 -- subprogram whose body is being analyzed. N is the statement node
2504 -- causing the flag to be set, if the following statement is a return
2505 -- of an entity, we mark the entity as set in source to suppress any
2506 -- warning on the stylized use of function stubs with a dummy return.
2508 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
2509 -- Undo the transformation done by Mask_Unfrozen_Types
2511 procedure Verify_Overriding_Indicator;
2512 -- If there was a previous spec, the entity has been entered in the
2513 -- current scope previously. If the body itself carries an overriding
2514 -- indicator, check that it is consistent with the known status of the
2515 -- entity.
2517 -----------------------
2518 -- Body_Has_Contract --
2519 -----------------------
2521 function Body_Has_Contract return Boolean is
2522 Decls : constant List_Id := Declarations (N);
2523 Item : Node_Id;
2525 begin
2526 -- Check for aspects that may generate a contract
2528 if Present (Aspect_Specifications (N)) then
2529 Item := First (Aspect_Specifications (N));
2530 while Present (Item) loop
2531 if Is_Subprogram_Contract_Annotation (Item) then
2532 return True;
2533 end if;
2535 Next (Item);
2536 end loop;
2537 end if;
2539 -- Check for pragmas that may generate a contract
2541 if Present (Decls) then
2542 Item := First (Decls);
2543 while Present (Item) loop
2544 if Nkind (Item) = N_Pragma
2545 and then Is_Subprogram_Contract_Annotation (Item)
2546 then
2547 return True;
2548 end if;
2550 Next (Item);
2551 end loop;
2552 end if;
2554 return False;
2555 end Body_Has_Contract;
2557 ----------------------------
2558 -- Body_Has_SPARK_Mode_On --
2559 ----------------------------
2561 function Body_Has_SPARK_Mode_On return Boolean is
2562 Decls : constant List_Id := Declarations (N);
2563 Item : Node_Id;
2565 begin
2566 -- Check for SPARK_Mode aspect
2568 if Present (Aspect_Specifications (N)) then
2569 Item := First (Aspect_Specifications (N));
2570 while Present (Item) loop
2571 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2572 return Get_SPARK_Mode_From_Annotation (Item) = On;
2573 end if;
2575 Next (Item);
2576 end loop;
2577 end if;
2579 -- Check for SPARK_Mode pragma
2581 if Present (Decls) then
2582 Item := First (Decls);
2583 while Present (Item) loop
2585 -- Pragmas that apply to a subprogram body are usually grouped
2586 -- together. Look for a potential pragma SPARK_Mode among them.
2588 if Nkind (Item) = N_Pragma then
2589 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2590 return Get_SPARK_Mode_From_Annotation (Item) = On;
2591 end if;
2593 -- Otherwise the first non-pragma declarative item terminates
2594 -- the region where pragma SPARK_Mode may appear.
2596 else
2597 exit;
2598 end if;
2600 Next (Item);
2601 end loop;
2602 end if;
2604 -- Otherwise, the applicable SPARK_Mode is inherited from the
2605 -- enclosing subprogram or package.
2607 return SPARK_Mode = On;
2608 end Body_Has_SPARK_Mode_On;
2610 ----------------------------------
2611 -- Build_Subprogram_Declaration --
2612 ----------------------------------
2614 procedure Build_Subprogram_Declaration is
2615 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2616 -- Relocate certain categorization pragmas from the declarative list
2617 -- of subprogram body From and insert them after node To. The pragmas
2618 -- in question are:
2619 -- Ghost
2620 -- Volatile_Function
2621 -- Also copy pragma SPARK_Mode if present in the declarative list
2622 -- of subprogram body From and insert it after node To. This pragma
2623 -- should not be moved, as it applies to the body too.
2625 ------------------
2626 -- Move_Pragmas --
2627 ------------------
2629 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2630 Decl : Node_Id;
2631 Next_Decl : Node_Id;
2633 begin
2634 pragma Assert (Nkind (From) = N_Subprogram_Body);
2636 -- The destination node must be part of a list, as the pragmas are
2637 -- inserted after it.
2639 pragma Assert (Is_List_Member (To));
2641 -- Inspect the declarations of the subprogram body looking for
2642 -- specific pragmas.
2644 Decl := First (Declarations (N));
2645 while Present (Decl) loop
2646 Next_Decl := Next (Decl);
2648 if Nkind (Decl) = N_Pragma then
2649 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2650 Insert_After (To, New_Copy_Tree (Decl));
2652 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2653 Name_Ghost,
2654 Name_Volatile_Function)
2655 then
2656 Remove (Decl);
2657 Insert_After (To, Decl);
2658 end if;
2659 end if;
2661 Decl := Next_Decl;
2662 end loop;
2663 end Move_Pragmas;
2665 -- Local variables
2667 Decl : Node_Id;
2668 Subp_Decl : Node_Id;
2670 -- Start of processing for Build_Subprogram_Declaration
2672 begin
2673 -- Create a matching subprogram spec using the profile of the body.
2674 -- The structure of the tree is identical, but has new entities for
2675 -- the defining unit name and formal parameters.
2677 Subp_Decl :=
2678 Make_Subprogram_Declaration (Loc,
2679 Specification => Copy_Subprogram_Spec (Body_Spec));
2680 Set_Comes_From_Source (Subp_Decl, True);
2682 -- Relocate the aspects and relevant pragmas from the subprogram body
2683 -- to the generated spec because it acts as the initial declaration.
2685 Insert_Before (N, Subp_Decl);
2686 Move_Aspects (N, To => Subp_Decl);
2687 Move_Pragmas (N, To => Subp_Decl);
2689 -- Ensure that the generated corresponding spec and original body
2690 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2691 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2692 -- correctly set for local subprograms.
2694 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2696 Analyze (Subp_Decl);
2698 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2699 -- the body since the expander may generate calls using that entity.
2700 -- Required to ensure that Expand_Call rewrites calls to this
2701 -- function by calls to the built procedure.
2703 if Modify_Tree_For_C
2704 and then Nkind (Body_Spec) = N_Function_Specification
2705 and then
2706 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2707 then
2708 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2709 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2710 Corresponding_Procedure
2711 (Defining_Entity (Specification (Subp_Decl))));
2712 end if;
2714 -- Analyze any relocated source pragmas or pragmas created for aspect
2715 -- specifications.
2717 Decl := Next (Subp_Decl);
2718 while Present (Decl) loop
2720 -- Stop the search for pragmas once the body has been reached as
2721 -- this terminates the region where pragmas may appear.
2723 if Decl = N then
2724 exit;
2726 elsif Nkind (Decl) = N_Pragma then
2727 Analyze (Decl);
2728 end if;
2730 Next (Decl);
2731 end loop;
2733 Spec_Id := Defining_Entity (Subp_Decl);
2734 Set_Corresponding_Spec (N, Spec_Id);
2736 -- Mark the generated spec as a source construct to ensure that all
2737 -- calls to it are properly registered in ALI files for GNATprove.
2739 Set_Comes_From_Source (Spec_Id, True);
2741 -- Ensure that the specs of the subprogram declaration and its body
2742 -- are identical, otherwise they will appear non-conformant due to
2743 -- rewritings in the default values of formal parameters.
2745 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2746 Set_Specification (N, Body_Spec);
2747 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2748 end Build_Subprogram_Declaration;
2750 ----------------------------
2751 -- Check_Anonymous_Return --
2752 ----------------------------
2754 procedure Check_Anonymous_Return is
2755 Decl : Node_Id;
2756 Par : Node_Id;
2757 Scop : Entity_Id;
2759 begin
2760 if Present (Spec_Id) then
2761 Scop := Spec_Id;
2762 else
2763 Scop := Body_Id;
2764 end if;
2766 if Ekind (Scop) = E_Function
2767 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2768 and then not Is_Thunk (Scop)
2770 -- Skip internally built functions which handle the case of
2771 -- a null access (see Expand_Interface_Conversion)
2773 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2774 and then not Comes_From_Source (Parent (Scop)))
2776 and then (Has_Task (Designated_Type (Etype (Scop)))
2777 or else
2778 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2779 and then
2780 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2781 and then Expander_Active
2783 -- Avoid cases with no tasking support
2785 and then RTE_Available (RE_Current_Master)
2786 and then not Restriction_Active (No_Task_Hierarchy)
2787 then
2788 Decl :=
2789 Make_Object_Declaration (Loc,
2790 Defining_Identifier =>
2791 Make_Defining_Identifier (Loc, Name_uMaster),
2792 Constant_Present => True,
2793 Object_Definition =>
2794 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2795 Expression =>
2796 Make_Explicit_Dereference (Loc,
2797 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2799 if Present (Declarations (N)) then
2800 Prepend (Decl, Declarations (N));
2801 else
2802 Set_Declarations (N, New_List (Decl));
2803 end if;
2805 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2806 Set_Has_Master_Entity (Scop);
2808 -- Now mark the containing scope as a task master
2810 Par := N;
2811 while Nkind (Par) /= N_Compilation_Unit loop
2812 Par := Parent (Par);
2813 pragma Assert (Present (Par));
2815 -- If we fall off the top, we are at the outer level, and
2816 -- the environment task is our effective master, so nothing
2817 -- to mark.
2819 if Nkind_In
2820 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2821 then
2822 Set_Is_Task_Master (Par, True);
2823 exit;
2824 end if;
2825 end loop;
2826 end if;
2827 end Check_Anonymous_Return;
2829 -------------------------
2830 -- Check_Inline_Pragma --
2831 -------------------------
2833 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2834 Prag : Node_Id;
2835 Plist : List_Id;
2837 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2838 -- True when N is a pragma Inline or Inline_Always that applies
2839 -- to this subprogram.
2841 -----------------------
2842 -- Is_Inline_Pragma --
2843 -----------------------
2845 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2846 begin
2847 if Nkind (N) = N_Pragma
2848 and then
2849 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2850 or else (Pragma_Name_Unmapped (N) = Name_Inline
2851 and then
2852 (Front_End_Inlining or else Optimization_Level > 0)))
2853 and then Present (Pragma_Argument_Associations (N))
2854 then
2855 declare
2856 Pragma_Arg : Node_Id :=
2857 Expression (First (Pragma_Argument_Associations (N)));
2858 begin
2859 if Nkind (Pragma_Arg) = N_Selected_Component then
2860 Pragma_Arg := Selector_Name (Pragma_Arg);
2861 end if;
2863 return Chars (Pragma_Arg) = Chars (Body_Id);
2864 end;
2866 else
2867 return False;
2868 end if;
2869 end Is_Inline_Pragma;
2871 -- Start of processing for Check_Inline_Pragma
2873 begin
2874 if not Expander_Active then
2875 return;
2876 end if;
2878 if Is_List_Member (N)
2879 and then Present (Next (N))
2880 and then Is_Inline_Pragma (Next (N))
2881 then
2882 Prag := Next (N);
2884 elsif Nkind (N) /= N_Subprogram_Body_Stub
2885 and then Present (Declarations (N))
2886 and then Is_Inline_Pragma (First (Declarations (N)))
2887 then
2888 Prag := First (Declarations (N));
2890 else
2891 Prag := Empty;
2892 end if;
2894 if Present (Prag) then
2895 if Present (Spec_Id) then
2896 if Is_List_Member (N)
2897 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2898 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2899 then
2900 Analyze (Prag);
2901 end if;
2903 else
2904 -- Create a subprogram declaration, to make treatment uniform.
2905 -- Make the sloc of the subprogram name that of the entity in
2906 -- the body, so that style checks find identical strings.
2908 declare
2909 Subp : constant Entity_Id :=
2910 Make_Defining_Identifier
2911 (Sloc (Body_Id), Chars (Body_Id));
2912 Decl : constant Node_Id :=
2913 Make_Subprogram_Declaration (Loc,
2914 Specification =>
2915 New_Copy_Tree (Specification (N)));
2917 begin
2918 -- Link the body and the generated spec
2920 Set_Corresponding_Body (Decl, Body_Id);
2921 Set_Corresponding_Spec (N, Subp);
2923 Set_Defining_Unit_Name (Specification (Decl), Subp);
2925 -- To ensure proper coverage when body is inlined, indicate
2926 -- whether the subprogram comes from source.
2928 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2930 if Present (First_Formal (Body_Id)) then
2931 Plist := Copy_Parameter_List (Body_Id);
2932 Set_Parameter_Specifications
2933 (Specification (Decl), Plist);
2934 end if;
2936 -- Move aspects to the new spec
2938 if Has_Aspects (N) then
2939 Move_Aspects (N, To => Decl);
2940 end if;
2942 Insert_Before (N, Decl);
2943 Analyze (Decl);
2944 Analyze (Prag);
2945 Set_Has_Pragma_Inline (Subp);
2947 if Pragma_Name (Prag) = Name_Inline_Always then
2948 Set_Is_Inlined (Subp);
2949 Set_Has_Pragma_Inline_Always (Subp);
2950 end if;
2952 -- Prior to copying the subprogram body to create a template
2953 -- for it for subsequent inlining, remove the pragma from
2954 -- the current body so that the copy that will produce the
2955 -- new body will start from a completely unanalyzed tree.
2957 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2958 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2959 end if;
2961 Spec := Subp;
2962 end;
2963 end if;
2964 end if;
2965 end Check_Inline_Pragma;
2967 --------------------------
2968 -- Check_Missing_Return --
2969 --------------------------
2971 procedure Check_Missing_Return is
2972 Id : Entity_Id;
2973 Missing_Ret : Boolean;
2975 begin
2976 if Nkind (Body_Spec) = N_Function_Specification then
2977 if Present (Spec_Id) then
2978 Id := Spec_Id;
2979 else
2980 Id := Body_Id;
2981 end if;
2983 if Return_Present (Id) then
2984 Check_Returns (HSS, 'F', Missing_Ret);
2986 if Missing_Ret then
2987 Set_Has_Missing_Return (Id);
2988 end if;
2990 -- Within a premature instantiation of a package with no body, we
2991 -- build completions of the functions therein, with a Raise
2992 -- statement. No point in complaining about a missing return in
2993 -- this case.
2995 elsif Ekind (Id) = E_Function
2996 and then In_Instance
2997 and then Present (Statements (HSS))
2998 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2999 then
3000 null;
3002 elsif Is_Generic_Subprogram (Id)
3003 or else not Is_Machine_Code_Subprogram (Id)
3004 then
3005 Error_Msg_N ("missing RETURN statement in function body", N);
3006 end if;
3008 -- If procedure with No_Return, check returns
3010 elsif Nkind (Body_Spec) = N_Procedure_Specification
3011 and then Present (Spec_Id)
3012 and then No_Return (Spec_Id)
3013 then
3014 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
3015 end if;
3017 -- Special checks in SPARK mode
3019 if Nkind (Body_Spec) = N_Function_Specification then
3021 -- In SPARK mode, last statement of a function should be a return
3023 declare
3024 Stat : constant Node_Id := Last_Source_Statement (HSS);
3025 begin
3026 if Present (Stat)
3027 and then not Nkind_In (Stat, N_Simple_Return_Statement,
3028 N_Extended_Return_Statement)
3029 then
3030 Check_SPARK_05_Restriction
3031 ("last statement in function should be RETURN", Stat);
3032 end if;
3033 end;
3035 -- In SPARK mode, verify that a procedure has no return
3037 elsif Nkind (Body_Spec) = N_Procedure_Specification then
3038 if Present (Spec_Id) then
3039 Id := Spec_Id;
3040 else
3041 Id := Body_Id;
3042 end if;
3044 -- Would be nice to point to return statement here, can we
3045 -- borrow the Check_Returns procedure here ???
3047 if Return_Present (Id) then
3048 Check_SPARK_05_Restriction
3049 ("procedure should not have RETURN", N);
3050 end if;
3051 end if;
3052 end Check_Missing_Return;
3054 -----------------------
3055 -- Disambiguate_Spec --
3056 -----------------------
3058 function Disambiguate_Spec return Entity_Id is
3059 Priv_Spec : Entity_Id;
3060 Spec_N : Entity_Id;
3062 procedure Replace_Types (To_Corresponding : Boolean);
3063 -- Depending on the flag, replace the type of formal parameters of
3064 -- Body_Id if it is a concurrent type implementing interfaces with
3065 -- the corresponding record type or the other way around.
3067 procedure Replace_Types (To_Corresponding : Boolean) is
3068 Formal : Entity_Id;
3069 Formal_Typ : Entity_Id;
3071 begin
3072 Formal := First_Formal (Body_Id);
3073 while Present (Formal) loop
3074 Formal_Typ := Etype (Formal);
3076 if Is_Class_Wide_Type (Formal_Typ) then
3077 Formal_Typ := Root_Type (Formal_Typ);
3078 end if;
3080 -- From concurrent type to corresponding record
3082 if To_Corresponding then
3083 if Is_Concurrent_Type (Formal_Typ)
3084 and then Present (Corresponding_Record_Type (Formal_Typ))
3085 and then
3086 Present (Interfaces
3087 (Corresponding_Record_Type (Formal_Typ)))
3088 then
3089 Set_Etype (Formal,
3090 Corresponding_Record_Type (Formal_Typ));
3091 end if;
3093 -- From corresponding record to concurrent type
3095 else
3096 if Is_Concurrent_Record_Type (Formal_Typ)
3097 and then Present (Interfaces (Formal_Typ))
3098 then
3099 Set_Etype (Formal,
3100 Corresponding_Concurrent_Type (Formal_Typ));
3101 end if;
3102 end if;
3104 Next_Formal (Formal);
3105 end loop;
3106 end Replace_Types;
3108 -- Start of processing for Disambiguate_Spec
3110 begin
3111 -- Try to retrieve the specification of the body as is. All error
3112 -- messages are suppressed because the body may not have a spec in
3113 -- its current state.
3115 Spec_N := Find_Corresponding_Spec (N, False);
3117 -- It is possible that this is the body of a primitive declared
3118 -- between a private and a full view of a concurrent type. The
3119 -- controlling parameter of the spec carries the concurrent type,
3120 -- not the corresponding record type as transformed by Analyze_
3121 -- Subprogram_Specification. In such cases, we undo the change
3122 -- made by the analysis of the specification and try to find the
3123 -- spec again.
3125 -- Note that wrappers already have their corresponding specs and
3126 -- bodies set during their creation, so if the candidate spec is
3127 -- a wrapper, then we definitely need to swap all types to their
3128 -- original concurrent status.
3130 if No (Spec_N)
3131 or else Is_Primitive_Wrapper (Spec_N)
3132 then
3133 -- Restore all references of corresponding record types to the
3134 -- original concurrent types.
3136 Replace_Types (To_Corresponding => False);
3137 Priv_Spec := Find_Corresponding_Spec (N, False);
3139 -- The current body truly belongs to a primitive declared between
3140 -- a private and a full view. We leave the modified body as is,
3141 -- and return the true spec.
3143 if Present (Priv_Spec)
3144 and then Is_Private_Primitive (Priv_Spec)
3145 then
3146 return Priv_Spec;
3147 end if;
3149 -- In case that this is some sort of error, restore the original
3150 -- state of the body.
3152 Replace_Types (To_Corresponding => True);
3153 end if;
3155 return Spec_N;
3156 end Disambiguate_Spec;
3158 ----------------------------
3159 -- Exchange_Limited_Views --
3160 ----------------------------
3162 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3163 Result : Elist_Id := No_Elist;
3165 procedure Detect_And_Exchange (Id : Entity_Id);
3166 -- Determine whether Id's type denotes an incomplete type associated
3167 -- with a limited with clause and exchange the limited view with the
3168 -- non-limited one when available. Note that the non-limited view
3169 -- may exist because of a with_clause in another unit in the context,
3170 -- but cannot be used because the current view of the enclosing unit
3171 -- is still a limited view.
3173 -------------------------
3174 -- Detect_And_Exchange --
3175 -------------------------
3177 procedure Detect_And_Exchange (Id : Entity_Id) is
3178 Typ : constant Entity_Id := Etype (Id);
3179 begin
3180 if From_Limited_With (Typ)
3181 and then Has_Non_Limited_View (Typ)
3182 and then not From_Limited_With (Scope (Typ))
3183 then
3184 if No (Result) then
3185 Result := New_Elmt_List;
3186 end if;
3188 Prepend_Elmt (Typ, Result);
3189 Prepend_Elmt (Id, Result);
3190 Set_Etype (Id, Non_Limited_View (Typ));
3191 end if;
3192 end Detect_And_Exchange;
3194 -- Local variables
3196 Formal : Entity_Id;
3198 -- Start of processing for Exchange_Limited_Views
3200 begin
3201 -- Do not process subprogram bodies as they already use the non-
3202 -- limited view of types.
3204 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
3205 return No_Elist;
3206 end if;
3208 -- Examine all formals and swap views when applicable
3210 Formal := First_Formal (Subp_Id);
3211 while Present (Formal) loop
3212 Detect_And_Exchange (Formal);
3214 Next_Formal (Formal);
3215 end loop;
3217 -- Process the return type of a function
3219 if Ekind (Subp_Id) = E_Function then
3220 Detect_And_Exchange (Subp_Id);
3221 end if;
3223 return Result;
3224 end Exchange_Limited_Views;
3226 -------------------------------------
3227 -- Is_Private_Concurrent_Primitive --
3228 -------------------------------------
3230 function Is_Private_Concurrent_Primitive
3231 (Subp_Id : Entity_Id) return Boolean
3233 Formal_Typ : Entity_Id;
3235 begin
3236 if Present (First_Formal (Subp_Id)) then
3237 Formal_Typ := Etype (First_Formal (Subp_Id));
3239 if Is_Concurrent_Record_Type (Formal_Typ) then
3240 if Is_Class_Wide_Type (Formal_Typ) then
3241 Formal_Typ := Root_Type (Formal_Typ);
3242 end if;
3244 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3245 end if;
3247 -- The type of the first formal is a concurrent tagged type with
3248 -- a private view.
3250 return
3251 Is_Concurrent_Type (Formal_Typ)
3252 and then Is_Tagged_Type (Formal_Typ)
3253 and then Has_Private_Declaration (Formal_Typ);
3254 end if;
3256 return False;
3257 end Is_Private_Concurrent_Primitive;
3259 -------------------------
3260 -- Mask_Unfrozen_Types --
3261 -------------------------
3263 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3264 Result : Elist_Id := No_Elist;
3266 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3267 -- Mask all types referenced in the subtree rooted at Node
3269 --------------------
3270 -- Mask_Type_Refs --
3271 --------------------
3273 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3274 procedure Mask_Type (Typ : Entity_Id);
3275 -- ??? what does this do?
3277 ---------------
3278 -- Mask_Type --
3279 ---------------
3281 procedure Mask_Type (Typ : Entity_Id) is
3282 begin
3283 -- Skip Itypes created by the preanalysis
3285 if Is_Itype (Typ)
3286 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3287 then
3288 return;
3289 end if;
3291 if not Is_Frozen (Typ) then
3292 Set_Is_Frozen (Typ);
3293 Append_New_Elmt (Typ, Result);
3294 end if;
3295 end Mask_Type;
3297 -- Start of processing for Mask_Type_Refs
3299 begin
3300 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3301 Mask_Type (Etype (Entity (Node)));
3303 if Ekind_In (Entity (Node), E_Component, E_Discriminant) then
3304 Mask_Type (Scope (Entity (Node)));
3305 end if;
3307 elsif Nkind_In (Node, N_Aggregate, N_Null, N_Type_Conversion)
3308 and then Present (Etype (Node))
3309 then
3310 Mask_Type (Etype (Node));
3311 end if;
3313 return OK;
3314 end Mask_Type_Refs;
3316 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3318 -- Local variables
3320 Return_Stmt : constant Node_Id :=
3321 First (Statements (Handled_Statement_Sequence (N)));
3323 -- Start of processing for Mask_Unfrozen_Types
3325 begin
3326 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3328 Mask_References (Expression (Return_Stmt));
3330 return Result;
3331 end Mask_Unfrozen_Types;
3333 ---------------------------
3334 -- Restore_Limited_Views --
3335 ---------------------------
3337 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3338 Elmt : Elmt_Id := First_Elmt (Restore_List);
3339 Id : Entity_Id;
3341 begin
3342 while Present (Elmt) loop
3343 Id := Node (Elmt);
3344 Next_Elmt (Elmt);
3345 Set_Etype (Id, Node (Elmt));
3346 Next_Elmt (Elmt);
3347 end loop;
3348 end Restore_Limited_Views;
3350 ----------------------------
3351 -- Set_Trivial_Subprogram --
3352 ----------------------------
3354 procedure Set_Trivial_Subprogram (N : Node_Id) is
3355 Nxt : constant Node_Id := Next (N);
3357 begin
3358 Set_Is_Trivial_Subprogram (Body_Id);
3360 if Present (Spec_Id) then
3361 Set_Is_Trivial_Subprogram (Spec_Id);
3362 end if;
3364 if Present (Nxt)
3365 and then Nkind (Nxt) = N_Simple_Return_Statement
3366 and then No (Next (Nxt))
3367 and then Present (Expression (Nxt))
3368 and then Is_Entity_Name (Expression (Nxt))
3369 then
3370 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3371 end if;
3372 end Set_Trivial_Subprogram;
3374 ---------------------------
3375 -- Unmask_Unfrozen_Types --
3376 ---------------------------
3378 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
3379 Elmt : Elmt_Id := First_Elmt (Unmask_List);
3381 begin
3382 while Present (Elmt) loop
3383 Set_Is_Frozen (Node (Elmt), False);
3384 Next_Elmt (Elmt);
3385 end loop;
3386 end Unmask_Unfrozen_Types;
3388 ---------------------------------
3389 -- Verify_Overriding_Indicator --
3390 ---------------------------------
3392 procedure Verify_Overriding_Indicator is
3393 begin
3394 if Must_Override (Body_Spec) then
3395 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3396 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3397 then
3398 null;
3400 elsif not Present (Overridden_Operation (Spec_Id)) then
3401 Error_Msg_NE
3402 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3404 -- Overriding indicators aren't allowed for protected subprogram
3405 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3406 -- this to a warning if -gnatd.E is enabled.
3408 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3409 Error_Msg_Warn := Error_To_Warning;
3410 Error_Msg_N
3411 ("<<overriding indicator not allowed for protected "
3412 & "subprogram body", Body_Spec);
3413 end if;
3415 elsif Must_Not_Override (Body_Spec) then
3416 if Present (Overridden_Operation (Spec_Id)) then
3417 Error_Msg_NE
3418 ("subprogram& overrides inherited operation",
3419 Body_Spec, Spec_Id);
3421 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3422 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3423 then
3424 Error_Msg_NE
3425 ("subprogram& overrides predefined operator ",
3426 Body_Spec, Spec_Id);
3428 -- Overriding indicators aren't allowed for protected subprogram
3429 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3430 -- this to a warning if -gnatd.E is enabled.
3432 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3433 Error_Msg_Warn := Error_To_Warning;
3435 Error_Msg_N
3436 ("<<overriding indicator not allowed "
3437 & "for protected subprogram body", Body_Spec);
3439 -- If this is not a primitive operation, then the overriding
3440 -- indicator is altogether illegal.
3442 elsif not Is_Primitive (Spec_Id) then
3443 Error_Msg_N
3444 ("overriding indicator only allowed "
3445 & "if subprogram is primitive", Body_Spec);
3446 end if;
3448 -- If checking the style rule and the operation overrides, then
3449 -- issue a warning about a missing overriding_indicator. Protected
3450 -- subprogram bodies are excluded from this style checking, since
3451 -- they aren't primitives (even though their declarations can
3452 -- override) and aren't allowed to have an overriding_indicator.
3454 elsif Style_Check
3455 and then Present (Overridden_Operation (Spec_Id))
3456 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3457 then
3458 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3459 Style.Missing_Overriding (N, Body_Id);
3461 elsif Style_Check
3462 and then Can_Override_Operator (Spec_Id)
3463 and then not In_Predefined_Unit (Spec_Id)
3464 then
3465 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3466 Style.Missing_Overriding (N, Body_Id);
3467 end if;
3468 end Verify_Overriding_Indicator;
3470 -- Local variables
3472 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3473 Saved_ISMP : constant Boolean :=
3474 Ignore_SPARK_Mode_Pragmas_In_Instance;
3475 -- Save the Ghost and SPARK mode-related data to restore on exit
3477 -- Start of processing for Analyze_Subprogram_Body_Helper
3479 begin
3480 -- A [generic] subprogram body freezes the contract of the nearest
3481 -- enclosing package body and all other contracts encountered in the
3482 -- same declarative part up to and excluding the subprogram body:
3484 -- package body Nearest_Enclosing_Package
3485 -- with Refined_State => (State => Constit)
3486 -- is
3487 -- Constit : ...;
3489 -- procedure Freezes_Enclosing_Package_Body
3490 -- with Refined_Depends => (Input => Constit) ...
3492 -- This ensures that any annotations referenced by the contract of the
3493 -- [generic] subprogram body are available. This form of freezing is
3494 -- decoupled from the usual Freeze_xxx mechanism because it must also
3495 -- work in the context of generics where normal freezing is disabled.
3497 -- Only bodies coming from source should cause this type of freezing.
3498 -- Expression functions that act as bodies and complete an initial
3499 -- declaration must be included in this category, hence the use of
3500 -- Original_Node.
3502 if Comes_From_Source (Original_Node (N)) then
3503 Freeze_Previous_Contracts (N);
3504 end if;
3506 -- Generic subprograms are handled separately. They always have a
3507 -- generic specification. Determine whether current scope has a
3508 -- previous declaration.
3510 -- If the subprogram body is defined within an instance of the same
3511 -- name, the instance appears as a package renaming, and will be hidden
3512 -- within the subprogram.
3514 if Present (Prev_Id)
3515 and then not Is_Overloadable (Prev_Id)
3516 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3517 or else Comes_From_Source (Prev_Id))
3518 then
3519 if Is_Generic_Subprogram (Prev_Id) then
3520 Spec_Id := Prev_Id;
3522 -- A subprogram body is Ghost when it is stand alone and subject
3523 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3524 -- the mode now to ensure that any nodes generated during analysis
3525 -- and expansion are properly marked as Ghost.
3527 Mark_And_Set_Ghost_Body (N, Spec_Id);
3529 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3530 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3532 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3534 if Nkind (N) = N_Subprogram_Body then
3535 HSS := Handled_Statement_Sequence (N);
3536 Check_Missing_Return;
3537 end if;
3539 goto Leave;
3541 -- Otherwise a previous entity conflicts with the subprogram name.
3542 -- Attempting to enter name will post error.
3544 else
3545 Enter_Name (Body_Id);
3546 goto Leave;
3547 end if;
3549 -- Non-generic case, find the subprogram declaration, if one was seen,
3550 -- or enter new overloaded entity in the current scope. If the
3551 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3552 -- part of the context of one of its subunits. No need to redo the
3553 -- analysis.
3555 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3556 goto Leave;
3558 else
3559 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3561 if Nkind (N) = N_Subprogram_Body_Stub
3562 or else No (Corresponding_Spec (N))
3563 then
3564 if Is_Private_Concurrent_Primitive (Body_Id) then
3565 Spec_Id := Disambiguate_Spec;
3567 -- A subprogram body is Ghost when it is stand alone and
3568 -- subject to pragma Ghost or when the corresponding spec is
3569 -- Ghost. Set the mode now to ensure that any nodes generated
3570 -- during analysis and expansion are properly marked as Ghost.
3572 Mark_And_Set_Ghost_Body (N, Spec_Id);
3574 else
3575 Spec_Id := Find_Corresponding_Spec (N);
3577 -- A subprogram body is Ghost when it is stand alone and
3578 -- subject to pragma Ghost or when the corresponding spec is
3579 -- Ghost. Set the mode now to ensure that any nodes generated
3580 -- during analysis and expansion are properly marked as Ghost.
3582 Mark_And_Set_Ghost_Body (N, Spec_Id);
3584 -- In GNATprove mode, if the body has no previous spec, create
3585 -- one so that the inlining machinery can operate properly.
3586 -- Transfer aspects, if any, to the new spec, so that they
3587 -- are legal and can be processed ahead of the body.
3588 -- We make two copies of the given spec, one for the new
3589 -- declaration, and one for the body.
3591 if No (Spec_Id) and then GNATprove_Mode
3593 -- Inlining does not apply during pre-analysis of code
3595 and then Full_Analysis
3597 -- Inlining only applies to full bodies, not stubs
3599 and then Nkind (N) /= N_Subprogram_Body_Stub
3601 -- Inlining only applies to bodies in the source code, not to
3602 -- those generated by the compiler. In particular, expression
3603 -- functions, whose body is generated by the compiler, are
3604 -- treated specially by GNATprove.
3606 and then Comes_From_Source (Body_Id)
3608 -- This cannot be done for a compilation unit, which is not
3609 -- in a context where we can insert a new spec.
3611 and then Is_List_Member (N)
3613 -- Inlining only applies to subprograms without contracts,
3614 -- as a contract is a sign that GNATprove should perform a
3615 -- modular analysis of the subprogram instead of a contextual
3616 -- analysis at each call site. The same test is performed in
3617 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3618 -- here in another form (because the contract has not been
3619 -- attached to the body) to avoid front-end errors in case
3620 -- pragmas are used instead of aspects, because the
3621 -- corresponding pragmas in the body would not be transferred
3622 -- to the spec, leading to legality errors.
3624 and then not Body_Has_Contract
3625 and then not Inside_A_Generic
3626 then
3627 Build_Subprogram_Declaration;
3629 -- If this is a function that returns a constrained array, and
3630 -- we are generating SPARK_For_C, create subprogram declaration
3631 -- to simplify subsequent C generation.
3633 elsif No (Spec_Id)
3634 and then Modify_Tree_For_C
3635 and then Nkind (Body_Spec) = N_Function_Specification
3636 and then Is_Array_Type (Etype (Body_Id))
3637 and then Is_Constrained (Etype (Body_Id))
3638 then
3639 Build_Subprogram_Declaration;
3640 end if;
3641 end if;
3643 -- If this is a duplicate body, no point in analyzing it
3645 if Error_Posted (N) then
3646 goto Leave;
3647 end if;
3649 -- A subprogram body should cause freezing of its own declaration,
3650 -- but if there was no previous explicit declaration, then the
3651 -- subprogram will get frozen too late (there may be code within
3652 -- the body that depends on the subprogram having been frozen,
3653 -- such as uses of extra formals), so we force it to be frozen
3654 -- here. Same holds if the body and spec are compilation units.
3655 -- Finally, if the return type is an anonymous access to protected
3656 -- subprogram, it must be frozen before the body because its
3657 -- expansion has generated an equivalent type that is used when
3658 -- elaborating the body.
3660 -- An exception in the case of Ada 2012, AI05-177: The bodies
3661 -- created for expression functions do not freeze.
3663 if No (Spec_Id)
3664 and then Nkind (Original_Node (N)) /= N_Expression_Function
3665 then
3666 Freeze_Before (N, Body_Id);
3668 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3669 Freeze_Before (N, Spec_Id);
3671 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3672 Freeze_Before (N, Etype (Body_Id));
3673 end if;
3675 else
3676 Spec_Id := Corresponding_Spec (N);
3678 -- A subprogram body is Ghost when it is stand alone and subject
3679 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3680 -- the mode now to ensure that any nodes generated during analysis
3681 -- and expansion are properly marked as Ghost.
3683 Mark_And_Set_Ghost_Body (N, Spec_Id);
3684 end if;
3685 end if;
3687 -- Previously we scanned the body to look for nested subprograms, and
3688 -- rejected an inline directive if nested subprograms were present,
3689 -- because the back-end would generate conflicting symbols for the
3690 -- nested bodies. This is now unnecessary.
3692 -- Look ahead to recognize a pragma Inline that appears after the body
3694 Check_Inline_Pragma (Spec_Id);
3696 -- Deal with special case of a fully private operation in the body of
3697 -- the protected type. We must create a declaration for the subprogram,
3698 -- in order to attach the protected subprogram that will be used in
3699 -- internal calls. We exclude compiler generated bodies from the
3700 -- expander since the issue does not arise for those cases.
3702 if No (Spec_Id)
3703 and then Comes_From_Source (N)
3704 and then Is_Protected_Type (Current_Scope)
3705 then
3706 Spec_Id := Build_Private_Protected_Declaration (N);
3707 end if;
3709 -- If we are generating C and this is a function returning a constrained
3710 -- array type for which we must create a procedure with an extra out
3711 -- parameter, build and analyze the body now. The procedure declaration
3712 -- has already been created. We reuse the source body of the function,
3713 -- because in an instance it may contain global references that cannot
3714 -- be reanalyzed. The source function itself is not used any further,
3715 -- so we mark it as having a completion. If the subprogram is a stub the
3716 -- transformation is done later, when the proper body is analyzed.
3718 if Expander_Active
3719 and then Modify_Tree_For_C
3720 and then Present (Spec_Id)
3721 and then Ekind (Spec_Id) = E_Function
3722 and then Nkind (N) /= N_Subprogram_Body_Stub
3723 and then Rewritten_For_C (Spec_Id)
3724 then
3725 Set_Has_Completion (Spec_Id);
3727 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3728 Analyze (N);
3730 -- The entity for the created procedure must remain invisible, so it
3731 -- does not participate in resolution of subsequent references to the
3732 -- function.
3734 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3735 goto Leave;
3736 end if;
3738 -- If a separate spec is present, then deal with freezing issues
3740 if Present (Spec_Id) then
3741 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3742 Verify_Overriding_Indicator;
3744 -- In general, the spec will be frozen when we start analyzing the
3745 -- body. However, for internally generated operations, such as
3746 -- wrapper functions for inherited operations with controlling
3747 -- results, the spec may not have been frozen by the time we expand
3748 -- the freeze actions that include the bodies. In particular, extra
3749 -- formals for accessibility or for return-in-place may need to be
3750 -- generated. Freeze nodes, if any, are inserted before the current
3751 -- body. These freeze actions are also needed in ASIS mode and in
3752 -- Compile_Only mode to enable the proper back-end type annotations.
3753 -- They are necessary in any case to insure order of elaboration
3754 -- in gigi.
3756 if not Is_Frozen (Spec_Id)
3757 and then (Expander_Active
3758 or else ASIS_Mode
3759 or else (Operating_Mode = Check_Semantics
3760 and then Serious_Errors_Detected = 0))
3761 then
3762 -- The body generated for an expression function that is not a
3763 -- completion is a freeze point neither for the profile nor for
3764 -- anything else. That's why, in order to prevent any freezing
3765 -- during analysis, we need to mask types declared outside the
3766 -- expression that are not yet frozen.
3768 if Nkind (N) = N_Subprogram_Body
3769 and then Was_Expression_Function (N)
3770 and then not Has_Completion (Spec_Id)
3771 then
3772 Set_Is_Frozen (Spec_Id);
3773 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
3774 else
3775 Set_Has_Delayed_Freeze (Spec_Id);
3776 Freeze_Before (N, Spec_Id);
3777 end if;
3778 end if;
3779 end if;
3781 -- If the subprogram has a class-wide clone, build its body as a copy
3782 -- of the original body, and rewrite body of original subprogram as a
3783 -- wrapper that calls the clone.
3785 if Present (Spec_Id)
3786 and then Present (Class_Wide_Clone (Spec_Id))
3787 and then (Comes_From_Source (N) or else Was_Expression_Function (N))
3788 then
3789 Build_Class_Wide_Clone_Body (Spec_Id, N);
3791 -- This is the new body for the existing primitive operation
3793 Rewrite (N, Build_Class_Wide_Clone_Call
3794 (Sloc (N), New_List, Spec_Id, Parent (Spec_Id)));
3795 Set_Has_Completion (Spec_Id, False);
3796 Analyze (N);
3797 return;
3798 end if;
3800 -- Place subprogram on scope stack, and make formals visible. If there
3801 -- is a spec, the visible entity remains that of the spec.
3803 if Present (Spec_Id) then
3804 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3806 if Is_Child_Unit (Spec_Id) then
3807 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3808 end if;
3810 if Style_Check then
3811 Style.Check_Identifier (Body_Id, Spec_Id);
3812 end if;
3814 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3815 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3817 if Is_Abstract_Subprogram (Spec_Id) then
3818 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3819 goto Leave;
3821 else
3822 Set_Convention (Body_Id, Convention (Spec_Id));
3823 Set_Has_Completion (Spec_Id);
3825 if Is_Protected_Type (Scope (Spec_Id)) then
3826 Prot_Typ := Scope (Spec_Id);
3827 end if;
3829 -- If this is a body generated for a renaming, do not check for
3830 -- full conformance. The check is redundant, because the spec of
3831 -- the body is a copy of the spec in the renaming declaration,
3832 -- and the test can lead to spurious errors on nested defaults.
3834 if Present (Spec_Decl)
3835 and then not Comes_From_Source (N)
3836 and then
3837 (Nkind (Original_Node (Spec_Decl)) =
3838 N_Subprogram_Renaming_Declaration
3839 or else (Present (Corresponding_Body (Spec_Decl))
3840 and then
3841 Nkind (Unit_Declaration_Node
3842 (Corresponding_Body (Spec_Decl))) =
3843 N_Subprogram_Renaming_Declaration))
3844 then
3845 Conformant := True;
3847 -- Conversely, the spec may have been generated for specless body
3848 -- with an inline pragma. The entity comes from source, which is
3849 -- both semantically correct and necessary for proper inlining.
3850 -- The subprogram declaration itself is not in the source.
3852 elsif Comes_From_Source (N)
3853 and then Present (Spec_Decl)
3854 and then not Comes_From_Source (Spec_Decl)
3855 and then Has_Pragma_Inline (Spec_Id)
3856 then
3857 Conformant := True;
3859 else
3860 Check_Conformance
3861 (Body_Id, Spec_Id,
3862 Fully_Conformant, True, Conformant, Body_Id);
3863 end if;
3865 -- If the body is not fully conformant, we have to decide if we
3866 -- should analyze it or not. If it has a really messed up profile
3867 -- then we probably should not analyze it, since we will get too
3868 -- many bogus messages.
3870 -- Our decision is to go ahead in the non-fully conformant case
3871 -- only if it is at least mode conformant with the spec. Note
3872 -- that the call to Check_Fully_Conformant has issued the proper
3873 -- error messages to complain about the lack of conformance.
3875 if not Conformant
3876 and then not Mode_Conformant (Body_Id, Spec_Id)
3877 then
3878 goto Leave;
3879 end if;
3880 end if;
3882 if Spec_Id /= Body_Id then
3883 Reference_Body_Formals (Spec_Id, Body_Id);
3884 end if;
3886 Set_Ekind (Body_Id, E_Subprogram_Body);
3888 if Nkind (N) = N_Subprogram_Body_Stub then
3889 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3891 -- Regular body
3893 else
3894 Set_Corresponding_Spec (N, Spec_Id);
3896 -- Ada 2005 (AI-345): If the operation is a primitive operation
3897 -- of a concurrent type, the type of the first parameter has been
3898 -- replaced with the corresponding record, which is the proper
3899 -- run-time structure to use. However, within the body there may
3900 -- be uses of the formals that depend on primitive operations
3901 -- of the type (in particular calls in prefixed form) for which
3902 -- we need the original concurrent type. The operation may have
3903 -- several controlling formals, so the replacement must be done
3904 -- for all of them.
3906 if Comes_From_Source (Spec_Id)
3907 and then Present (First_Entity (Spec_Id))
3908 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3909 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3910 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3911 and then Present (Corresponding_Concurrent_Type
3912 (Etype (First_Entity (Spec_Id))))
3913 then
3914 declare
3915 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3916 Form : Entity_Id;
3918 begin
3919 Form := First_Formal (Spec_Id);
3920 while Present (Form) loop
3921 if Etype (Form) = Typ then
3922 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3923 end if;
3925 Next_Formal (Form);
3926 end loop;
3927 end;
3928 end if;
3930 -- Make the formals visible, and place subprogram on scope stack.
3931 -- This is also the point at which we set Last_Real_Spec_Entity
3932 -- to mark the entities which will not be moved to the body.
3934 Install_Formals (Spec_Id);
3935 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3937 -- Within an instance, add local renaming declarations so that
3938 -- gdb can retrieve the values of actuals more easily. This is
3939 -- only relevant if generating code (and indeed we definitely
3940 -- do not want these definitions -gnatc mode, because that would
3941 -- confuse ASIS).
3943 if Is_Generic_Instance (Spec_Id)
3944 and then Is_Wrapper_Package (Current_Scope)
3945 and then Expander_Active
3946 then
3947 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3948 end if;
3950 Push_Scope (Spec_Id);
3952 -- Make sure that the subprogram is immediately visible. For
3953 -- child units that have no separate spec this is indispensable.
3954 -- Otherwise it is safe albeit redundant.
3956 Set_Is_Immediately_Visible (Spec_Id);
3957 end if;
3959 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3960 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3961 Set_Scope (Body_Id, Scope (Spec_Id));
3963 -- Case of subprogram body with no previous spec
3965 else
3966 -- Check for style warning required
3968 if Style_Check
3970 -- Only apply check for source level subprograms for which checks
3971 -- have not been suppressed.
3973 and then Comes_From_Source (Body_Id)
3974 and then not Suppress_Style_Checks (Body_Id)
3976 -- No warnings within an instance
3978 and then not In_Instance
3980 -- No warnings for expression functions
3982 and then Nkind (Original_Node (N)) /= N_Expression_Function
3983 then
3984 Style.Body_With_No_Spec (N);
3985 end if;
3987 New_Overloaded_Entity (Body_Id);
3989 if Nkind (N) /= N_Subprogram_Body_Stub then
3990 Set_Acts_As_Spec (N);
3991 Generate_Definition (Body_Id);
3992 Generate_Reference
3993 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3995 -- If the body is an entry wrapper created for an entry with
3996 -- preconditions, it must be compiled in the context of the
3997 -- enclosing synchronized object, because it may mention other
3998 -- operations of the type.
4000 if Is_Entry_Wrapper (Body_Id) then
4001 declare
4002 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
4003 begin
4004 Push_Scope (Prot);
4005 Install_Declarations (Prot);
4006 end;
4007 end if;
4009 Install_Formals (Body_Id);
4011 Push_Scope (Body_Id);
4012 end if;
4014 -- For stubs and bodies with no previous spec, generate references to
4015 -- formals.
4017 Generate_Reference_To_Formals (Body_Id);
4018 end if;
4020 -- Entry barrier functions are generated outside the protected type and
4021 -- should not carry the SPARK_Mode of the enclosing context.
4023 if Nkind (N) = N_Subprogram_Body
4024 and then Is_Entry_Barrier_Function (N)
4025 then
4026 null;
4028 -- The body is generated as part of expression function expansion. When
4029 -- the expression function appears in the visible declarations of a
4030 -- package, the body is added to the private declarations. Since both
4031 -- declarative lists may be subject to a different SPARK_Mode, inherit
4032 -- the mode of the spec.
4034 -- package P with SPARK_Mode is
4035 -- function Expr_Func ... is (...); -- original
4036 -- [function Expr_Func ...;] -- generated spec
4037 -- -- mode is ON
4038 -- private
4039 -- pragma SPARK_Mode (Off);
4040 -- [function Expr_Func ... is return ...;] -- generated body
4041 -- end P; -- mode is ON
4043 elsif not Comes_From_Source (N)
4044 and then Present (Spec_Id)
4045 and then Is_Expression_Function (Spec_Id)
4046 then
4047 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4048 Set_SPARK_Pragma_Inherited
4049 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4051 -- Set the SPARK_Mode from the current context (may be overwritten later
4052 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4053 -- initially on a stand-alone subprogram body, but is then relocated to
4054 -- a generated corresponding spec. In this scenario the mode is shared
4055 -- between the spec and body.
4057 elsif No (SPARK_Pragma (Body_Id)) then
4058 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4059 Set_SPARK_Pragma_Inherited (Body_Id);
4060 end if;
4062 -- A subprogram body may be instantiated or inlined at a later pass.
4063 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4064 -- applied to the initial declaration of the body.
4066 if Present (Spec_Id) then
4067 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4068 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4069 end if;
4071 else
4072 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4073 -- case the body is instantiated or inlined later and out of context.
4074 -- The body uses this attribute to restore the value of the global
4075 -- flag.
4077 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4078 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4080 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4081 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4082 end if;
4083 end if;
4085 -- If this is the proper body of a stub, we must verify that the stub
4086 -- conforms to the body, and to the previous spec if one was present.
4087 -- We know already that the body conforms to that spec. This test is
4088 -- only required for subprograms that come from source.
4090 if Nkind (Parent (N)) = N_Subunit
4091 and then Comes_From_Source (N)
4092 and then not Error_Posted (Body_Id)
4093 and then Nkind (Corresponding_Stub (Parent (N))) =
4094 N_Subprogram_Body_Stub
4095 then
4096 declare
4097 Old_Id : constant Entity_Id :=
4098 Defining_Entity
4099 (Specification (Corresponding_Stub (Parent (N))));
4101 Conformant : Boolean := False;
4103 begin
4104 if No (Spec_Id) then
4105 Check_Fully_Conformant (Body_Id, Old_Id);
4107 else
4108 Check_Conformance
4109 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4111 if not Conformant then
4113 -- The stub was taken to be a new declaration. Indicate that
4114 -- it lacks a body.
4116 Set_Has_Completion (Old_Id, False);
4117 end if;
4118 end if;
4119 end;
4120 end if;
4122 Set_Has_Completion (Body_Id);
4123 Check_Eliminated (Body_Id);
4125 -- Analyze any aspect specifications that appear on the subprogram body
4126 -- stub. Stop the analysis now as the stub does not have a declarative
4127 -- or a statement part, and it cannot be inlined.
4129 if Nkind (N) = N_Subprogram_Body_Stub then
4130 if Has_Aspects (N) then
4131 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
4132 end if;
4134 goto Leave;
4135 end if;
4137 -- Handle inlining
4139 -- Note: Normally we don't do any inlining if expansion is off, since
4140 -- we won't generate code in any case. An exception arises in GNATprove
4141 -- mode where we want to expand some calls in place, even with expansion
4142 -- disabled, since the inlining eases formal verification.
4144 if not GNATprove_Mode
4145 and then Expander_Active
4146 and then Serious_Errors_Detected = 0
4147 and then Present (Spec_Id)
4148 and then Has_Pragma_Inline (Spec_Id)
4149 then
4150 -- Legacy implementation (relying on front-end inlining)
4152 if not Back_End_Inlining then
4153 if (Has_Pragma_Inline_Always (Spec_Id)
4154 and then not Opt.Disable_FE_Inline_Always)
4155 or else (Front_End_Inlining
4156 and then not Opt.Disable_FE_Inline)
4157 then
4158 Build_Body_To_Inline (N, Spec_Id);
4159 end if;
4161 -- New implementation (relying on back-end inlining)
4163 else
4164 if Has_Pragma_Inline_Always (Spec_Id)
4165 or else Optimization_Level > 0
4166 then
4167 -- Handle function returning an unconstrained type
4169 if Comes_From_Source (Body_Id)
4170 and then Ekind (Spec_Id) = E_Function
4171 and then Returns_Unconstrained_Type (Spec_Id)
4173 -- If function builds in place, i.e. returns a limited type,
4174 -- inlining cannot be done.
4176 and then not Is_Limited_Type (Etype (Spec_Id))
4177 then
4178 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4180 else
4181 declare
4182 Subp_Body : constant Node_Id :=
4183 Unit_Declaration_Node (Body_Id);
4184 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4186 begin
4187 -- Do not pass inlining to the backend if the subprogram
4188 -- has declarations or statements which cannot be inlined
4189 -- by the backend. This check is done here to emit an
4190 -- error instead of the generic warning message reported
4191 -- by the GCC backend (ie. "function might not be
4192 -- inlinable").
4194 if Present (Subp_Decl)
4195 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
4196 then
4197 null;
4199 elsif Has_Excluded_Statement
4200 (Spec_Id,
4201 Statements
4202 (Handled_Statement_Sequence (Subp_Body)))
4203 then
4204 null;
4206 -- If the backend inlining is available then at this
4207 -- stage we only have to mark the subprogram as inlined.
4208 -- The expander will take care of registering it in the
4209 -- table of subprograms inlined by the backend a part of
4210 -- processing calls to it (cf. Expand_Call)
4212 else
4213 Set_Is_Inlined (Spec_Id);
4214 end if;
4215 end;
4216 end if;
4217 end if;
4218 end if;
4220 -- In GNATprove mode, inline only when there is a separate subprogram
4221 -- declaration for now, as inlining of subprogram bodies acting as
4222 -- declarations, or subprogram stubs, are not supported by front-end
4223 -- inlining. This inlining should occur after analysis of the body, so
4224 -- that it is known whether the value of SPARK_Mode, which can be
4225 -- defined by a pragma inside the body, is applicable to the body.
4226 -- Inlining can be disabled with switch -gnatdm
4228 elsif GNATprove_Mode
4229 and then Full_Analysis
4230 and then not Inside_A_Generic
4231 and then Present (Spec_Id)
4232 and then
4233 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4234 and then Body_Has_SPARK_Mode_On
4235 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4236 and then not Body_Has_Contract
4237 and then not Debug_Flag_M
4238 then
4239 Build_Body_To_Inline (N, Spec_Id);
4240 end if;
4242 -- When generating code, inherited pre/postconditions are handled when
4243 -- expanding the corresponding contract.
4245 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4246 -- of the specification we have to install the private withed units.
4247 -- This holds for child units as well.
4249 if Is_Compilation_Unit (Body_Id)
4250 or else Nkind (Parent (N)) = N_Compilation_Unit
4251 then
4252 Install_Private_With_Clauses (Body_Id);
4253 end if;
4255 Check_Anonymous_Return;
4257 -- Set the Protected_Formal field of each extra formal of the protected
4258 -- subprogram to reference the corresponding extra formal of the
4259 -- subprogram that implements it. For regular formals this occurs when
4260 -- the protected subprogram's declaration is expanded, but the extra
4261 -- formals don't get created until the subprogram is frozen. We need to
4262 -- do this before analyzing the protected subprogram's body so that any
4263 -- references to the original subprogram's extra formals will be changed
4264 -- refer to the implementing subprogram's formals (see Expand_Formal).
4266 if Present (Spec_Id)
4267 and then Is_Protected_Type (Scope (Spec_Id))
4268 and then Present (Protected_Body_Subprogram (Spec_Id))
4269 then
4270 declare
4271 Impl_Subp : constant Entity_Id :=
4272 Protected_Body_Subprogram (Spec_Id);
4273 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4274 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4276 begin
4277 while Present (Prot_Ext_Formal) loop
4278 pragma Assert (Present (Impl_Ext_Formal));
4279 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4280 Next_Formal_With_Extras (Prot_Ext_Formal);
4281 Next_Formal_With_Extras (Impl_Ext_Formal);
4282 end loop;
4283 end;
4284 end if;
4286 -- Now we can go on to analyze the body
4288 HSS := Handled_Statement_Sequence (N);
4289 Set_Actual_Subtypes (N, Current_Scope);
4291 -- Add a declaration for the Protection object, renaming declarations
4292 -- for discriminals and privals and finally a declaration for the entry
4293 -- family index (if applicable). This form of early expansion is done
4294 -- when the Expander is active because Install_Private_Data_Declarations
4295 -- references entities which were created during regular expansion. The
4296 -- subprogram entity must come from source, and not be an internally
4297 -- generated subprogram.
4299 if Expander_Active
4300 and then Present (Prot_Typ)
4301 and then Present (Spec_Id)
4302 and then Comes_From_Source (Spec_Id)
4303 and then not Is_Eliminated (Spec_Id)
4304 then
4305 Install_Private_Data_Declarations
4306 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4307 end if;
4309 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4310 -- may now appear in parameter and result profiles. Since the analysis
4311 -- of a subprogram body may use the parameter and result profile of the
4312 -- spec, swap any limited views with their non-limited counterpart.
4314 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4315 Exch_Views := Exchange_Limited_Views (Spec_Id);
4316 end if;
4318 -- If the return type is an anonymous access type whose designated type
4319 -- is the limited view of a class-wide type and the non-limited view is
4320 -- available, update the return type accordingly.
4322 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4323 declare
4324 Etyp : Entity_Id;
4325 Rtyp : Entity_Id;
4327 begin
4328 Rtyp := Etype (Spec_Id);
4330 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4331 Etyp := Directly_Designated_Type (Rtyp);
4333 if Is_Class_Wide_Type (Etyp)
4334 and then From_Limited_With (Etyp)
4335 then
4336 Desig_View := Etyp;
4337 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4338 end if;
4339 end if;
4340 end;
4341 end if;
4343 -- Analyze any aspect specifications that appear on the subprogram body
4345 if Has_Aspects (N) then
4346 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
4347 end if;
4349 Analyze_Declarations (Declarations (N));
4351 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4353 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4354 if Present (SPARK_Pragma (Spec_Id)) then
4355 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4356 and then
4357 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4358 then
4359 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4360 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4361 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4362 Error_Msg_NE
4363 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4364 end if;
4366 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4367 null;
4369 else
4370 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4371 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4372 Error_Msg_Sloc := Sloc (Spec_Id);
4373 Error_Msg_NE
4374 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4375 end if;
4376 end if;
4378 -- A subprogram body freezes its own contract. Analyze the contract
4379 -- after the declarations of the body have been processed as pragmas
4380 -- are now chained on the contract of the subprogram body.
4382 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4384 -- Check completion, and analyze the statements
4386 Check_Completion;
4387 Inspect_Deferred_Constant_Completion (Declarations (N));
4388 Analyze (HSS);
4390 -- Deal with end of scope processing for the body
4392 Process_End_Label (HSS, 't', Current_Scope);
4393 Update_Use_Clause_Chain;
4394 End_Scope;
4396 -- If we are compiling an entry wrapper, remove the enclosing
4397 -- synchronized object from the stack.
4399 if Is_Entry_Wrapper (Body_Id) then
4400 End_Scope;
4401 end if;
4403 Check_Subprogram_Order (N);
4404 Set_Analyzed (Body_Id);
4406 -- If we have a separate spec, then the analysis of the declarations
4407 -- caused the entities in the body to be chained to the spec id, but
4408 -- we want them chained to the body id. Only the formal parameters
4409 -- end up chained to the spec id in this case.
4411 if Present (Spec_Id) then
4413 -- We must conform to the categorization of our spec
4415 Validate_Categorization_Dependency (N, Spec_Id);
4417 -- And if this is a child unit, the parent units must conform
4419 if Is_Child_Unit (Spec_Id) then
4420 Validate_Categorization_Dependency
4421 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4422 end if;
4424 -- Here is where we move entities from the spec to the body
4426 -- Case where there are entities that stay with the spec
4428 if Present (Last_Real_Spec_Entity) then
4430 -- No body entities (happens when the only real spec entities come
4431 -- from precondition and postcondition pragmas).
4433 if No (Last_Entity (Body_Id)) then
4434 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4436 -- Body entities present (formals), so chain stuff past them
4438 else
4439 Set_Next_Entity
4440 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4441 end if;
4443 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4444 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4445 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4447 -- Case where there are no spec entities, in this case there can be
4448 -- no body entities either, so just move everything.
4450 -- If the body is generated for an expression function, it may have
4451 -- been preanalyzed already, if 'access was applied to it.
4453 else
4454 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4455 N_Expression_Function
4456 then
4457 pragma Assert (No (Last_Entity (Body_Id)));
4458 null;
4459 end if;
4461 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4462 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4463 Set_First_Entity (Spec_Id, Empty);
4464 Set_Last_Entity (Spec_Id, Empty);
4465 end if;
4467 -- Otherwise the body does not complete a previous declaration. Check
4468 -- the categorization of the body against the units it withs.
4470 else
4471 Validate_Categorization_Dependency (N, Body_Id);
4472 end if;
4474 Check_Missing_Return;
4476 -- Now we are going to check for variables that are never modified in
4477 -- the body of the procedure. But first we deal with a special case
4478 -- where we want to modify this check. If the body of the subprogram
4479 -- starts with a raise statement or its equivalent, or if the body
4480 -- consists entirely of a null statement, then it is pretty obvious that
4481 -- it is OK to not reference the parameters. For example, this might be
4482 -- the following common idiom for a stubbed function: statement of the
4483 -- procedure raises an exception. In particular this deals with the
4484 -- common idiom of a stubbed function, which appears something like:
4486 -- function F (A : Integer) return Some_Type;
4487 -- X : Some_Type;
4488 -- begin
4489 -- raise Program_Error;
4490 -- return X;
4491 -- end F;
4493 -- Here the purpose of X is simply to satisfy the annoying requirement
4494 -- in Ada that there be at least one return, and we certainly do not
4495 -- want to go posting warnings on X that it is not initialized. On
4496 -- the other hand, if X is entirely unreferenced that should still
4497 -- get a warning.
4499 -- What we do is to detect these cases, and if we find them, flag the
4500 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4501 -- suppress unwanted warnings. For the case of the function stub above
4502 -- we have a special test to set X as apparently assigned to suppress
4503 -- the warning.
4505 declare
4506 Stm : Node_Id;
4508 begin
4509 -- Skip call markers installed by the ABE mechanism, labels, and
4510 -- Push_xxx_Error_Label to find the first real statement.
4512 Stm := First (Statements (HSS));
4513 while Nkind_In (Stm, N_Call_Marker, N_Label)
4514 or else Nkind (Stm) in N_Push_xxx_Label
4515 loop
4516 Next (Stm);
4517 end loop;
4519 -- Do the test on the original statement before expansion
4521 declare
4522 Ostm : constant Node_Id := Original_Node (Stm);
4524 begin
4525 -- If explicit raise statement, turn on flag
4527 if Nkind (Ostm) = N_Raise_Statement then
4528 Set_Trivial_Subprogram (Stm);
4530 -- If null statement, and no following statements, turn on flag
4532 elsif Nkind (Stm) = N_Null_Statement
4533 and then Comes_From_Source (Stm)
4534 and then No (Next (Stm))
4535 then
4536 Set_Trivial_Subprogram (Stm);
4538 -- Check for explicit call cases which likely raise an exception
4540 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4541 if Is_Entity_Name (Name (Ostm)) then
4542 declare
4543 Ent : constant Entity_Id := Entity (Name (Ostm));
4545 begin
4546 -- If the procedure is marked No_Return, then likely it
4547 -- raises an exception, but in any case it is not coming
4548 -- back here, so turn on the flag.
4550 if Present (Ent)
4551 and then Ekind (Ent) = E_Procedure
4552 and then No_Return (Ent)
4553 then
4554 Set_Trivial_Subprogram (Stm);
4555 end if;
4556 end;
4557 end if;
4558 end if;
4559 end;
4560 end;
4562 -- Check for variables that are never modified
4564 declare
4565 E1 : Entity_Id;
4566 E2 : Entity_Id;
4568 begin
4569 -- If there is a separate spec, then transfer Never_Set_In_Source
4570 -- flags from out parameters to the corresponding entities in the
4571 -- body. The reason we do that is we want to post error flags on
4572 -- the body entities, not the spec entities.
4574 if Present (Spec_Id) then
4575 E1 := First_Entity (Spec_Id);
4576 while Present (E1) loop
4577 if Ekind (E1) = E_Out_Parameter then
4578 E2 := First_Entity (Body_Id);
4579 while Present (E2) loop
4580 exit when Chars (E1) = Chars (E2);
4581 Next_Entity (E2);
4582 end loop;
4584 if Present (E2) then
4585 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4586 end if;
4587 end if;
4589 Next_Entity (E1);
4590 end loop;
4591 end if;
4593 -- Check references in body
4595 Check_References (Body_Id);
4596 end;
4598 -- Check for nested subprogram, and mark outer level subprogram if so
4600 declare
4601 Ent : Entity_Id;
4603 begin
4604 if Present (Spec_Id) then
4605 Ent := Spec_Id;
4606 else
4607 Ent := Body_Id;
4608 end if;
4610 loop
4611 Ent := Enclosing_Subprogram (Ent);
4612 exit when No (Ent) or else Is_Subprogram (Ent);
4613 end loop;
4615 if Present (Ent) then
4616 Set_Has_Nested_Subprogram (Ent);
4617 end if;
4618 end;
4620 -- Restore the limited views in the spec, if any, to let the back end
4621 -- process it without running into circularities.
4623 if Exch_Views /= No_Elist then
4624 Restore_Limited_Views (Exch_Views);
4625 end if;
4627 if Mask_Types /= No_Elist then
4628 Unmask_Unfrozen_Types (Mask_Types);
4629 end if;
4631 if Present (Desig_View) then
4632 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4633 end if;
4635 <<Leave>>
4636 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
4637 Restore_Ghost_Mode (Saved_GM);
4638 end Analyze_Subprogram_Body_Helper;
4640 ------------------------------------
4641 -- Analyze_Subprogram_Declaration --
4642 ------------------------------------
4644 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4645 Scop : constant Entity_Id := Current_Scope;
4646 Designator : Entity_Id;
4648 Is_Completion : Boolean;
4649 -- Indicates whether a null procedure declaration is a completion
4651 begin
4652 -- Null procedures are not allowed in SPARK
4654 if Nkind (Specification (N)) = N_Procedure_Specification
4655 and then Null_Present (Specification (N))
4656 then
4657 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4659 -- Null procedures are allowed in protected types, following the
4660 -- recent AI12-0147.
4662 if Is_Protected_Type (Current_Scope)
4663 and then Ada_Version < Ada_2012
4664 then
4665 Error_Msg_N ("protected operation cannot be a null procedure", N);
4666 end if;
4668 Analyze_Null_Procedure (N, Is_Completion);
4670 -- The null procedure acts as a body, nothing further is needed
4672 if Is_Completion then
4673 return;
4674 end if;
4675 end if;
4677 Designator := Analyze_Subprogram_Specification (Specification (N));
4679 -- A reference may already have been generated for the unit name, in
4680 -- which case the following call is redundant. However it is needed for
4681 -- declarations that are the rewriting of an expression function.
4683 Generate_Definition (Designator);
4685 -- Set the SPARK mode from the current context (may be overwritten later
4686 -- with explicit pragma). This is not done for entry barrier functions
4687 -- because they are generated outside the protected type and should not
4688 -- carry the mode of the enclosing context.
4690 if Nkind (N) = N_Subprogram_Declaration
4691 and then Is_Entry_Barrier_Function (N)
4692 then
4693 null;
4695 else
4696 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4697 Set_SPARK_Pragma_Inherited (Designator);
4698 end if;
4700 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
4701 -- the body of this subprogram is instantiated or inlined later and out
4702 -- of context. The body uses this attribute to restore the value of the
4703 -- global flag.
4705 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4706 Set_Ignore_SPARK_Mode_Pragmas (Designator);
4707 end if;
4709 -- Preserve relevant elaboration-related attributes of the context which
4710 -- are no longer available or very expensive to recompute once analysis,
4711 -- resolution, and expansion are over.
4713 Mark_Elaboration_Attributes
4714 (N_Id => Designator,
4715 Checks => True);
4717 if Debug_Flag_C then
4718 Write_Str ("==> subprogram spec ");
4719 Write_Name (Chars (Designator));
4720 Write_Str (" from ");
4721 Write_Location (Sloc (N));
4722 Write_Eol;
4723 Indent;
4724 end if;
4726 Validate_RCI_Subprogram_Declaration (N);
4727 New_Overloaded_Entity (Designator);
4728 Check_Delayed_Subprogram (Designator);
4730 -- If the type of the first formal of the current subprogram is a non-
4731 -- generic tagged private type, mark the subprogram as being a private
4732 -- primitive. Ditto if this is a function with controlling result, and
4733 -- the return type is currently private. In both cases, the type of the
4734 -- controlling argument or result must be in the current scope for the
4735 -- operation to be primitive.
4737 if Has_Controlling_Result (Designator)
4738 and then Is_Private_Type (Etype (Designator))
4739 and then Scope (Etype (Designator)) = Current_Scope
4740 and then not Is_Generic_Actual_Type (Etype (Designator))
4741 then
4742 Set_Is_Private_Primitive (Designator);
4744 elsif Present (First_Formal (Designator)) then
4745 declare
4746 Formal_Typ : constant Entity_Id :=
4747 Etype (First_Formal (Designator));
4748 begin
4749 Set_Is_Private_Primitive (Designator,
4750 Is_Tagged_Type (Formal_Typ)
4751 and then Scope (Formal_Typ) = Current_Scope
4752 and then Is_Private_Type (Formal_Typ)
4753 and then not Is_Generic_Actual_Type (Formal_Typ));
4754 end;
4755 end if;
4757 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4758 -- or null.
4760 if Ada_Version >= Ada_2005
4761 and then Comes_From_Source (N)
4762 and then Is_Dispatching_Operation (Designator)
4763 then
4764 declare
4765 E : Entity_Id;
4766 Etyp : Entity_Id;
4768 begin
4769 if Has_Controlling_Result (Designator) then
4770 Etyp := Etype (Designator);
4772 else
4773 E := First_Entity (Designator);
4774 while Present (E)
4775 and then Is_Formal (E)
4776 and then not Is_Controlling_Formal (E)
4777 loop
4778 Next_Entity (E);
4779 end loop;
4781 Etyp := Etype (E);
4782 end if;
4784 if Is_Access_Type (Etyp) then
4785 Etyp := Directly_Designated_Type (Etyp);
4786 end if;
4788 if Is_Interface (Etyp)
4789 and then not Is_Abstract_Subprogram (Designator)
4790 and then not (Ekind (Designator) = E_Procedure
4791 and then Null_Present (Specification (N)))
4792 then
4793 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4795 -- Specialize error message based on procedures vs. functions,
4796 -- since functions can't be null subprograms.
4798 if Ekind (Designator) = E_Procedure then
4799 Error_Msg_N
4800 ("interface procedure % must be abstract or null", N);
4801 else
4802 Error_Msg_N
4803 ("interface function % must be abstract", N);
4804 end if;
4805 end if;
4806 end;
4807 end if;
4809 -- What is the following code for, it used to be
4811 -- ??? Set_Suppress_Elaboration_Checks
4812 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4814 -- The following seems equivalent, but a bit dubious
4816 if Elaboration_Checks_Suppressed (Designator) then
4817 Set_Kill_Elaboration_Checks (Designator);
4818 end if;
4820 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4821 Set_Categorization_From_Scope (Designator, Scop);
4823 else
4824 -- For a compilation unit, check for library-unit pragmas
4826 Push_Scope (Designator);
4827 Set_Categorization_From_Pragmas (N);
4828 Validate_Categorization_Dependency (N, Designator);
4829 Pop_Scope;
4830 end if;
4832 -- For a compilation unit, set body required. This flag will only be
4833 -- reset if a valid Import or Interface pragma is processed later on.
4835 if Nkind (Parent (N)) = N_Compilation_Unit then
4836 Set_Body_Required (Parent (N), True);
4838 if Ada_Version >= Ada_2005
4839 and then Nkind (Specification (N)) = N_Procedure_Specification
4840 and then Null_Present (Specification (N))
4841 then
4842 Error_Msg_N
4843 ("null procedure cannot be declared at library level", N);
4844 end if;
4845 end if;
4847 Generate_Reference_To_Formals (Designator);
4848 Check_Eliminated (Designator);
4850 if Debug_Flag_C then
4851 Outdent;
4852 Write_Str ("<== subprogram spec ");
4853 Write_Name (Chars (Designator));
4854 Write_Str (" from ");
4855 Write_Location (Sloc (N));
4856 Write_Eol;
4857 end if;
4859 if Is_Protected_Type (Current_Scope) then
4861 -- Indicate that this is a protected operation, because it may be
4862 -- used in subsequent declarations within the protected type.
4864 Set_Convention (Designator, Convention_Protected);
4865 end if;
4867 List_Inherited_Pre_Post_Aspects (Designator);
4869 if Has_Aspects (N) then
4870 Analyze_Aspect_Specifications (N, Designator);
4871 end if;
4872 end Analyze_Subprogram_Declaration;
4874 --------------------------------------
4875 -- Analyze_Subprogram_Specification --
4876 --------------------------------------
4878 -- Reminder: N here really is a subprogram specification (not a subprogram
4879 -- declaration). This procedure is called to analyze the specification in
4880 -- both subprogram bodies and subprogram declarations (specs).
4882 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4883 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
4884 -- Determine whether entity E denotes the spec or body of an invariant
4885 -- procedure.
4887 ------------------------------------
4888 -- Is_Invariant_Procedure_Or_Body --
4889 ------------------------------------
4891 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
4892 Decl : constant Node_Id := Unit_Declaration_Node (E);
4893 Spec : Entity_Id;
4895 begin
4896 if Nkind (Decl) = N_Subprogram_Body then
4897 Spec := Corresponding_Spec (Decl);
4898 else
4899 Spec := E;
4900 end if;
4902 return
4903 Present (Spec)
4904 and then Ekind (Spec) = E_Procedure
4905 and then (Is_Partial_Invariant_Procedure (Spec)
4906 or else Is_Invariant_Procedure (Spec));
4907 end Is_Invariant_Procedure_Or_Body;
4909 -- Local variables
4911 Designator : constant Entity_Id := Defining_Entity (N);
4912 Formals : constant List_Id := Parameter_Specifications (N);
4914 -- Start of processing for Analyze_Subprogram_Specification
4916 begin
4917 -- User-defined operator is not allowed in SPARK, except as a renaming
4919 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4920 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4921 then
4922 Check_SPARK_05_Restriction
4923 ("user-defined operator is not allowed", N);
4924 end if;
4926 -- Proceed with analysis. Do not emit a cross-reference entry if the
4927 -- specification comes from an expression function, because it may be
4928 -- the completion of a previous declaration. If it is not, the cross-
4929 -- reference entry will be emitted for the new subprogram declaration.
4931 if Nkind (Parent (N)) /= N_Expression_Function then
4932 Generate_Definition (Designator);
4933 end if;
4935 if Nkind (N) = N_Function_Specification then
4936 Set_Ekind (Designator, E_Function);
4937 Set_Mechanism (Designator, Default_Mechanism);
4938 else
4939 Set_Ekind (Designator, E_Procedure);
4940 Set_Etype (Designator, Standard_Void_Type);
4941 end if;
4943 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4944 -- those subprograms which could be inlined in GNATprove mode (because
4945 -- Body_To_Inline is non-Empty) but should not be inlined.
4947 if GNATprove_Mode then
4948 Set_Is_Inlined_Always (Designator);
4949 end if;
4951 -- Introduce new scope for analysis of the formals and the return type
4953 Set_Scope (Designator, Current_Scope);
4955 if Present (Formals) then
4956 Push_Scope (Designator);
4957 Process_Formals (Formals, N);
4959 -- Check dimensions in N for formals with default expression
4961 Analyze_Dimension_Formals (N, Formals);
4963 -- Ada 2005 (AI-345): If this is an overriding operation of an
4964 -- inherited interface operation, and the controlling type is
4965 -- a synchronized type, replace the type with its corresponding
4966 -- record, to match the proper signature of an overriding operation.
4967 -- Same processing for an access parameter whose designated type is
4968 -- derived from a synchronized interface.
4970 -- This modification is not done for invariant procedures because
4971 -- the corresponding record may not necessarely be visible when the
4972 -- concurrent type acts as the full view of a private type.
4974 -- package Pack is
4975 -- type Prot is private with Type_Invariant => ...;
4976 -- procedure ConcInvariant (Obj : Prot);
4977 -- private
4978 -- protected type Prot is ...;
4979 -- type Concurrent_Record_Prot is record ...;
4980 -- procedure ConcInvariant (Obj : Prot) is
4981 -- ...
4982 -- end ConcInvariant;
4983 -- end Pack;
4985 -- In the example above, both the spec and body of the invariant
4986 -- procedure must utilize the private type as the controlling type.
4988 if Ada_Version >= Ada_2005
4989 and then not Is_Invariant_Procedure_Or_Body (Designator)
4990 then
4991 declare
4992 Formal : Entity_Id;
4993 Formal_Typ : Entity_Id;
4994 Rec_Typ : Entity_Id;
4995 Desig_Typ : Entity_Id;
4997 begin
4998 Formal := First_Formal (Designator);
4999 while Present (Formal) loop
5000 Formal_Typ := Etype (Formal);
5002 if Is_Concurrent_Type (Formal_Typ)
5003 and then Present (Corresponding_Record_Type (Formal_Typ))
5004 then
5005 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
5007 if Present (Interfaces (Rec_Typ)) then
5008 Set_Etype (Formal, Rec_Typ);
5009 end if;
5011 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
5012 Desig_Typ := Designated_Type (Formal_Typ);
5014 if Is_Concurrent_Type (Desig_Typ)
5015 and then Present (Corresponding_Record_Type (Desig_Typ))
5016 then
5017 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
5019 if Present (Interfaces (Rec_Typ)) then
5020 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5021 end if;
5022 end if;
5023 end if;
5025 Next_Formal (Formal);
5026 end loop;
5027 end;
5028 end if;
5030 End_Scope;
5032 -- The subprogram scope is pushed and popped around the processing of
5033 -- the return type for consistency with call above to Process_Formals
5034 -- (which itself can call Analyze_Return_Type), and to ensure that any
5035 -- itype created for the return type will be associated with the proper
5036 -- scope.
5038 elsif Nkind (N) = N_Function_Specification then
5039 Push_Scope (Designator);
5040 Analyze_Return_Type (N);
5041 End_Scope;
5042 end if;
5044 -- Function case
5046 if Nkind (N) = N_Function_Specification then
5048 -- Deal with operator symbol case
5050 if Nkind (Designator) = N_Defining_Operator_Symbol then
5051 Valid_Operator_Definition (Designator);
5052 end if;
5054 May_Need_Actuals (Designator);
5056 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5057 -- the subprogram is abstract also. This does not apply to renaming
5058 -- declarations, where abstractness is inherited, and to subprogram
5059 -- bodies generated for stream operations, which become renamings as
5060 -- bodies.
5062 -- In case of primitives associated with abstract interface types
5063 -- the check is applied later (see Analyze_Subprogram_Declaration).
5065 if not Nkind_In (Original_Node (Parent (N)),
5066 N_Abstract_Subprogram_Declaration,
5067 N_Formal_Abstract_Subprogram_Declaration,
5068 N_Subprogram_Renaming_Declaration)
5069 then
5070 if Is_Abstract_Type (Etype (Designator))
5071 and then not Is_Interface (Etype (Designator))
5072 then
5073 Error_Msg_N
5074 ("function that returns abstract type must be abstract", N);
5076 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5077 -- access result whose designated type is abstract.
5079 elsif Ada_Version >= Ada_2012
5080 and then Nkind (Result_Definition (N)) = N_Access_Definition
5081 and then
5082 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5083 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5084 then
5085 Error_Msg_N
5086 ("function whose access result designates abstract type "
5087 & "must be abstract", N);
5088 end if;
5089 end if;
5090 end if;
5092 return Designator;
5093 end Analyze_Subprogram_Specification;
5095 -----------------------
5096 -- Check_Conformance --
5097 -----------------------
5099 procedure Check_Conformance
5100 (New_Id : Entity_Id;
5101 Old_Id : Entity_Id;
5102 Ctype : Conformance_Type;
5103 Errmsg : Boolean;
5104 Conforms : out Boolean;
5105 Err_Loc : Node_Id := Empty;
5106 Get_Inst : Boolean := False;
5107 Skip_Controlling_Formals : Boolean := False)
5109 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5110 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5111 -- If Errmsg is True, then processing continues to post an error message
5112 -- for conformance error on given node. Two messages are output. The
5113 -- first message points to the previous declaration with a general "no
5114 -- conformance" message. The second is the detailed reason, supplied as
5115 -- Msg. The parameter N provide information for a possible & insertion
5116 -- in the message, and also provides the location for posting the
5117 -- message in the absence of a specified Err_Loc location.
5119 function Conventions_Match
5120 (Id1 : Entity_Id;
5121 Id2 : Entity_Id) return Boolean;
5122 -- Determine whether the conventions of arbitrary entities Id1 and Id2
5123 -- match.
5125 -----------------------
5126 -- Conformance_Error --
5127 -----------------------
5129 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5130 Enode : Node_Id;
5132 begin
5133 Conforms := False;
5135 if Errmsg then
5136 if No (Err_Loc) then
5137 Enode := N;
5138 else
5139 Enode := Err_Loc;
5140 end if;
5142 Error_Msg_Sloc := Sloc (Old_Id);
5144 case Ctype is
5145 when Type_Conformant =>
5146 Error_Msg_N -- CODEFIX
5147 ("not type conformant with declaration#!", Enode);
5149 when Mode_Conformant =>
5150 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5151 Error_Msg_N
5152 ("not mode conformant with operation inherited#!",
5153 Enode);
5154 else
5155 Error_Msg_N
5156 ("not mode conformant with declaration#!", Enode);
5157 end if;
5159 when Subtype_Conformant =>
5160 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5161 Error_Msg_N
5162 ("not subtype conformant with operation inherited#!",
5163 Enode);
5164 else
5165 Error_Msg_N
5166 ("not subtype conformant with declaration#!", Enode);
5167 end if;
5169 when Fully_Conformant =>
5170 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5171 Error_Msg_N -- CODEFIX
5172 ("not fully conformant with operation inherited#!",
5173 Enode);
5174 else
5175 Error_Msg_N -- CODEFIX
5176 ("not fully conformant with declaration#!", Enode);
5177 end if;
5178 end case;
5180 Error_Msg_NE (Msg, Enode, N);
5181 end if;
5182 end Conformance_Error;
5184 -----------------------
5185 -- Conventions_Match --
5186 -----------------------
5188 function Conventions_Match
5189 (Id1 : Entity_Id;
5190 Id2 : Entity_Id) return Boolean
5192 begin
5193 -- Ignore the conventions of anonymous access-to-subprogram types
5194 -- and subprogram types because these are internally generated and
5195 -- the only way these may receive a convention is if they inherit
5196 -- the convention of a related subprogram.
5198 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
5199 E_Subprogram_Type)
5200 or else
5201 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
5202 E_Subprogram_Type)
5203 then
5204 return True;
5206 -- Otherwise compare the conventions directly
5208 else
5209 return Convention (Id1) = Convention (Id2);
5210 end if;
5211 end Conventions_Match;
5213 -- Local Variables
5215 Old_Type : constant Entity_Id := Etype (Old_Id);
5216 New_Type : constant Entity_Id := Etype (New_Id);
5217 Old_Formal : Entity_Id;
5218 New_Formal : Entity_Id;
5219 Access_Types_Match : Boolean;
5220 Old_Formal_Base : Entity_Id;
5221 New_Formal_Base : Entity_Id;
5223 -- Start of processing for Check_Conformance
5225 begin
5226 Conforms := True;
5228 -- We need a special case for operators, since they don't appear
5229 -- explicitly.
5231 if Ctype = Type_Conformant then
5232 if Ekind (New_Id) = E_Operator
5233 and then Operator_Matches_Spec (New_Id, Old_Id)
5234 then
5235 return;
5236 end if;
5237 end if;
5239 -- If both are functions/operators, check return types conform
5241 if Old_Type /= Standard_Void_Type
5242 and then
5243 New_Type /= Standard_Void_Type
5244 then
5245 -- If we are checking interface conformance we omit controlling
5246 -- arguments and result, because we are only checking the conformance
5247 -- of the remaining parameters.
5249 if Has_Controlling_Result (Old_Id)
5250 and then Has_Controlling_Result (New_Id)
5251 and then Skip_Controlling_Formals
5252 then
5253 null;
5255 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5256 if Ctype >= Subtype_Conformant
5257 and then not Predicates_Match (Old_Type, New_Type)
5258 then
5259 Conformance_Error
5260 ("\predicate of return type does not match!", New_Id);
5261 else
5262 Conformance_Error
5263 ("\return type does not match!", New_Id);
5264 end if;
5266 return;
5267 end if;
5269 -- Ada 2005 (AI-231): In case of anonymous access types check the
5270 -- null-exclusion and access-to-constant attributes match.
5272 if Ada_Version >= Ada_2005
5273 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5274 and then
5275 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5276 or else Is_Access_Constant (Etype (Old_Type)) /=
5277 Is_Access_Constant (Etype (New_Type)))
5278 then
5279 Conformance_Error ("\return type does not match!", New_Id);
5280 return;
5281 end if;
5283 -- If either is a function/operator and the other isn't, error
5285 elsif Old_Type /= Standard_Void_Type
5286 or else New_Type /= Standard_Void_Type
5287 then
5288 Conformance_Error ("\functions can only match functions!", New_Id);
5289 return;
5290 end if;
5292 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5293 -- If this is a renaming as body, refine error message to indicate that
5294 -- the conflict is with the original declaration. If the entity is not
5295 -- frozen, the conventions don't have to match, the one of the renamed
5296 -- entity is inherited.
5298 if Ctype >= Subtype_Conformant then
5299 if not Conventions_Match (Old_Id, New_Id) then
5300 if not Is_Frozen (New_Id) then
5301 null;
5303 elsif Present (Err_Loc)
5304 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5305 and then Present (Corresponding_Spec (Err_Loc))
5306 then
5307 Error_Msg_Name_1 := Chars (New_Id);
5308 Error_Msg_Name_2 :=
5309 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5310 Conformance_Error ("\prior declaration for% has convention %!");
5312 else
5313 Conformance_Error ("\calling conventions do not match!");
5314 end if;
5316 return;
5318 elsif Is_Formal_Subprogram (Old_Id)
5319 or else Is_Formal_Subprogram (New_Id)
5320 then
5321 Conformance_Error ("\formal subprograms not allowed!");
5322 return;
5323 end if;
5324 end if;
5326 -- Deal with parameters
5328 -- Note: we use the entity information, rather than going directly
5329 -- to the specification in the tree. This is not only simpler, but
5330 -- absolutely necessary for some cases of conformance tests between
5331 -- operators, where the declaration tree simply does not exist.
5333 Old_Formal := First_Formal (Old_Id);
5334 New_Formal := First_Formal (New_Id);
5335 while Present (Old_Formal) and then Present (New_Formal) loop
5336 if Is_Controlling_Formal (Old_Formal)
5337 and then Is_Controlling_Formal (New_Formal)
5338 and then Skip_Controlling_Formals
5339 then
5340 -- The controlling formals will have different types when
5341 -- comparing an interface operation with its match, but both
5342 -- or neither must be access parameters.
5344 if Is_Access_Type (Etype (Old_Formal))
5346 Is_Access_Type (Etype (New_Formal))
5347 then
5348 goto Skip_Controlling_Formal;
5349 else
5350 Conformance_Error
5351 ("\access parameter does not match!", New_Formal);
5352 end if;
5353 end if;
5355 -- Ada 2012: Mode conformance also requires that formal parameters
5356 -- be both aliased, or neither.
5358 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5359 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5360 Conformance_Error
5361 ("\aliased parameter mismatch!", New_Formal);
5362 end if;
5363 end if;
5365 if Ctype = Fully_Conformant then
5367 -- Names must match. Error message is more accurate if we do
5368 -- this before checking that the types of the formals match.
5370 if Chars (Old_Formal) /= Chars (New_Formal) then
5371 Conformance_Error ("\name& does not match!", New_Formal);
5373 -- Set error posted flag on new formal as well to stop
5374 -- junk cascaded messages in some cases.
5376 Set_Error_Posted (New_Formal);
5377 return;
5378 end if;
5380 -- Null exclusion must match
5382 if Null_Exclusion_Present (Parent (Old_Formal))
5384 Null_Exclusion_Present (Parent (New_Formal))
5385 then
5386 -- Only give error if both come from source. This should be
5387 -- investigated some time, since it should not be needed ???
5389 if Comes_From_Source (Old_Formal)
5390 and then
5391 Comes_From_Source (New_Formal)
5392 then
5393 Conformance_Error
5394 ("\null exclusion for& does not match", New_Formal);
5396 -- Mark error posted on the new formal to avoid duplicated
5397 -- complaint about types not matching.
5399 Set_Error_Posted (New_Formal);
5400 end if;
5401 end if;
5402 end if;
5404 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5405 -- case occurs whenever a subprogram is being renamed and one of its
5406 -- parameters imposes a null exclusion. For example:
5408 -- type T is null record;
5409 -- type Acc_T is access T;
5410 -- subtype Acc_T_Sub is Acc_T;
5412 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5413 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5414 -- renames P;
5416 Old_Formal_Base := Etype (Old_Formal);
5417 New_Formal_Base := Etype (New_Formal);
5419 if Get_Inst then
5420 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5421 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5422 end if;
5424 Access_Types_Match := Ada_Version >= Ada_2005
5426 -- Ensure that this rule is only applied when New_Id is a
5427 -- renaming of Old_Id.
5429 and then Nkind (Parent (Parent (New_Id))) =
5430 N_Subprogram_Renaming_Declaration
5431 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5432 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5433 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5435 -- Now handle the allowed access-type case
5437 and then Is_Access_Type (Old_Formal_Base)
5438 and then Is_Access_Type (New_Formal_Base)
5440 -- The type kinds must match. The only exception occurs with
5441 -- multiple generics of the form:
5443 -- generic generic
5444 -- type F is private; type A is private;
5445 -- type F_Ptr is access F; type A_Ptr is access A;
5446 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5447 -- package F_Pack is ... package A_Pack is
5448 -- package F_Inst is
5449 -- new F_Pack (A, A_Ptr, A_P);
5451 -- When checking for conformance between the parameters of A_P
5452 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5453 -- because the compiler has transformed A_Ptr into a subtype of
5454 -- F_Ptr. We catch this case in the code below.
5456 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5457 or else
5458 (Is_Generic_Type (Old_Formal_Base)
5459 and then Is_Generic_Type (New_Formal_Base)
5460 and then Is_Internal (New_Formal_Base)
5461 and then Etype (Etype (New_Formal_Base)) =
5462 Old_Formal_Base))
5463 and then Directly_Designated_Type (Old_Formal_Base) =
5464 Directly_Designated_Type (New_Formal_Base)
5465 and then ((Is_Itype (Old_Formal_Base)
5466 and then Can_Never_Be_Null (Old_Formal_Base))
5467 or else
5468 (Is_Itype (New_Formal_Base)
5469 and then Can_Never_Be_Null (New_Formal_Base)));
5471 -- Types must always match. In the visible part of an instance,
5472 -- usual overloading rules for dispatching operations apply, and
5473 -- we check base types (not the actual subtypes).
5475 if In_Instance_Visible_Part
5476 and then Is_Dispatching_Operation (New_Id)
5477 then
5478 if not Conforming_Types
5479 (T1 => Base_Type (Etype (Old_Formal)),
5480 T2 => Base_Type (Etype (New_Formal)),
5481 Ctype => Ctype,
5482 Get_Inst => Get_Inst)
5483 and then not Access_Types_Match
5484 then
5485 Conformance_Error ("\type of & does not match!", New_Formal);
5486 return;
5487 end if;
5489 elsif not Conforming_Types
5490 (T1 => Old_Formal_Base,
5491 T2 => New_Formal_Base,
5492 Ctype => Ctype,
5493 Get_Inst => Get_Inst)
5494 and then not Access_Types_Match
5495 then
5496 -- Don't give error message if old type is Any_Type. This test
5497 -- avoids some cascaded errors, e.g. in case of a bad spec.
5499 if Errmsg and then Old_Formal_Base = Any_Type then
5500 Conforms := False;
5501 else
5502 if Ctype >= Subtype_Conformant
5503 and then
5504 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5505 then
5506 Conformance_Error
5507 ("\predicate of & does not match!", New_Formal);
5508 else
5509 Conformance_Error
5510 ("\type of & does not match!", New_Formal);
5512 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
5513 then
5514 Error_Msg_N ("\dimensions mismatch!", New_Formal);
5515 end if;
5516 end if;
5517 end if;
5519 return;
5520 end if;
5522 -- For mode conformance, mode must match
5524 if Ctype >= Mode_Conformant then
5525 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5526 if not Ekind_In (New_Id, E_Function, E_Procedure)
5527 or else not Is_Primitive_Wrapper (New_Id)
5528 then
5529 Conformance_Error ("\mode of & does not match!", New_Formal);
5531 else
5532 declare
5533 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5534 begin
5535 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5536 then
5537 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5538 else
5539 Conformance_Error
5540 ("\mode of & does not match!", New_Formal);
5541 end if;
5542 end;
5543 end if;
5545 return;
5547 -- Part of mode conformance for access types is having the same
5548 -- constant modifier.
5550 elsif Access_Types_Match
5551 and then Is_Access_Constant (Old_Formal_Base) /=
5552 Is_Access_Constant (New_Formal_Base)
5553 then
5554 Conformance_Error
5555 ("\constant modifier does not match!", New_Formal);
5556 return;
5557 end if;
5558 end if;
5560 if Ctype >= Subtype_Conformant then
5562 -- Ada 2005 (AI-231): In case of anonymous access types check
5563 -- the null-exclusion and access-to-constant attributes must
5564 -- match. For null exclusion, we test the types rather than the
5565 -- formals themselves, since the attribute is only set reliably
5566 -- on the formals in the Ada 95 case, and we exclude the case
5567 -- where Old_Formal is marked as controlling, to avoid errors
5568 -- when matching completing bodies with dispatching declarations
5569 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5571 if Ada_Version >= Ada_2005
5572 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5573 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5574 and then
5575 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5576 Can_Never_Be_Null (Etype (New_Formal))
5577 and then
5578 not Is_Controlling_Formal (Old_Formal))
5579 or else
5580 Is_Access_Constant (Etype (Old_Formal)) /=
5581 Is_Access_Constant (Etype (New_Formal)))
5583 -- Do not complain if error already posted on New_Formal. This
5584 -- avoids some redundant error messages.
5586 and then not Error_Posted (New_Formal)
5587 then
5588 -- It is allowed to omit the null-exclusion in case of stream
5589 -- attribute subprograms. We recognize stream subprograms
5590 -- through their TSS-generated suffix.
5592 declare
5593 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5595 begin
5596 if TSS_Name /= TSS_Stream_Read
5597 and then TSS_Name /= TSS_Stream_Write
5598 and then TSS_Name /= TSS_Stream_Input
5599 and then TSS_Name /= TSS_Stream_Output
5600 then
5601 -- Here we have a definite conformance error. It is worth
5602 -- special casing the error message for the case of a
5603 -- controlling formal (which excludes null).
5605 if Is_Controlling_Formal (New_Formal) then
5606 Error_Msg_Node_2 := Scope (New_Formal);
5607 Conformance_Error
5608 ("\controlling formal & of & excludes null, "
5609 & "declaration must exclude null as well",
5610 New_Formal);
5612 -- Normal case (couldn't we give more detail here???)
5614 else
5615 Conformance_Error
5616 ("\type of & does not match!", New_Formal);
5617 end if;
5619 return;
5620 end if;
5621 end;
5622 end if;
5623 end if;
5625 -- Full conformance checks
5627 if Ctype = Fully_Conformant then
5629 -- We have checked already that names match
5631 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5633 -- Check default expressions for in parameters
5635 declare
5636 NewD : constant Boolean :=
5637 Present (Default_Value (New_Formal));
5638 OldD : constant Boolean :=
5639 Present (Default_Value (Old_Formal));
5640 begin
5641 if NewD or OldD then
5643 -- The old default value has been analyzed because the
5644 -- current full declaration will have frozen everything
5645 -- before. The new default value has not been analyzed,
5646 -- so analyze it now before we check for conformance.
5648 if NewD then
5649 Push_Scope (New_Id);
5650 Preanalyze_Spec_Expression
5651 (Default_Value (New_Formal), Etype (New_Formal));
5652 End_Scope;
5653 end if;
5655 if not (NewD and OldD)
5656 or else not Fully_Conformant_Expressions
5657 (Default_Value (Old_Formal),
5658 Default_Value (New_Formal))
5659 then
5660 Conformance_Error
5661 ("\default expression for & does not match!",
5662 New_Formal);
5663 return;
5664 end if;
5665 end if;
5666 end;
5667 end if;
5668 end if;
5670 -- A couple of special checks for Ada 83 mode. These checks are
5671 -- skipped if either entity is an operator in package Standard,
5672 -- or if either old or new instance is not from the source program.
5674 if Ada_Version = Ada_83
5675 and then Sloc (Old_Id) > Standard_Location
5676 and then Sloc (New_Id) > Standard_Location
5677 and then Comes_From_Source (Old_Id)
5678 and then Comes_From_Source (New_Id)
5679 then
5680 declare
5681 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5682 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5684 begin
5685 -- Explicit IN must be present or absent in both cases. This
5686 -- test is required only in the full conformance case.
5688 if In_Present (Old_Param) /= In_Present (New_Param)
5689 and then Ctype = Fully_Conformant
5690 then
5691 Conformance_Error
5692 ("\(Ada 83) IN must appear in both declarations",
5693 New_Formal);
5694 return;
5695 end if;
5697 -- Grouping (use of comma in param lists) must be the same
5698 -- This is where we catch a misconformance like:
5700 -- A, B : Integer
5701 -- A : Integer; B : Integer
5703 -- which are represented identically in the tree except
5704 -- for the setting of the flags More_Ids and Prev_Ids.
5706 if More_Ids (Old_Param) /= More_Ids (New_Param)
5707 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5708 then
5709 Conformance_Error
5710 ("\grouping of & does not match!", New_Formal);
5711 return;
5712 end if;
5713 end;
5714 end if;
5716 -- This label is required when skipping controlling formals
5718 <<Skip_Controlling_Formal>>
5720 Next_Formal (Old_Formal);
5721 Next_Formal (New_Formal);
5722 end loop;
5724 if Present (Old_Formal) then
5725 Conformance_Error ("\too few parameters!");
5726 return;
5728 elsif Present (New_Formal) then
5729 Conformance_Error ("\too many parameters!", New_Formal);
5730 return;
5731 end if;
5732 end Check_Conformance;
5734 -----------------------
5735 -- Check_Conventions --
5736 -----------------------
5738 procedure Check_Conventions (Typ : Entity_Id) is
5739 Ifaces_List : Elist_Id;
5741 procedure Check_Convention (Op : Entity_Id);
5742 -- Verify that the convention of inherited dispatching operation Op is
5743 -- consistent among all subprograms it overrides. In order to minimize
5744 -- the search, Search_From is utilized to designate a specific point in
5745 -- the list rather than iterating over the whole list once more.
5747 ----------------------
5748 -- Check_Convention --
5749 ----------------------
5751 procedure Check_Convention (Op : Entity_Id) is
5752 Op_Conv : constant Convention_Id := Convention (Op);
5753 Iface_Conv : Convention_Id;
5754 Iface_Elmt : Elmt_Id;
5755 Iface_Prim_Elmt : Elmt_Id;
5756 Iface_Prim : Entity_Id;
5758 begin
5759 Iface_Elmt := First_Elmt (Ifaces_List);
5760 while Present (Iface_Elmt) loop
5761 Iface_Prim_Elmt :=
5762 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5763 while Present (Iface_Prim_Elmt) loop
5764 Iface_Prim := Node (Iface_Prim_Elmt);
5765 Iface_Conv := Convention (Iface_Prim);
5767 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5768 and then Iface_Conv /= Op_Conv
5769 then
5770 Error_Msg_N
5771 ("inconsistent conventions in primitive operations", Typ);
5773 Error_Msg_Name_1 := Chars (Op);
5774 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5775 Error_Msg_Sloc := Sloc (Op);
5777 if Comes_From_Source (Op) or else No (Alias (Op)) then
5778 if not Present (Overridden_Operation (Op)) then
5779 Error_Msg_N ("\\primitive % defined #", Typ);
5780 else
5781 Error_Msg_N
5782 ("\\overriding operation % with "
5783 & "convention % defined #", Typ);
5784 end if;
5786 else pragma Assert (Present (Alias (Op)));
5787 Error_Msg_Sloc := Sloc (Alias (Op));
5788 Error_Msg_N ("\\inherited operation % with "
5789 & "convention % defined #", Typ);
5790 end if;
5792 Error_Msg_Name_1 := Chars (Op);
5793 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5794 Error_Msg_Sloc := Sloc (Iface_Prim);
5795 Error_Msg_N ("\\overridden operation % with "
5796 & "convention % defined #", Typ);
5798 -- Avoid cascading errors
5800 return;
5801 end if;
5803 Next_Elmt (Iface_Prim_Elmt);
5804 end loop;
5806 Next_Elmt (Iface_Elmt);
5807 end loop;
5808 end Check_Convention;
5810 -- Local variables
5812 Prim_Op : Entity_Id;
5813 Prim_Op_Elmt : Elmt_Id;
5815 -- Start of processing for Check_Conventions
5817 begin
5818 if not Has_Interfaces (Typ) then
5819 return;
5820 end if;
5822 Collect_Interfaces (Typ, Ifaces_List);
5824 -- The algorithm checks every overriding dispatching operation against
5825 -- all the corresponding overridden dispatching operations, detecting
5826 -- differences in conventions.
5828 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5829 while Present (Prim_Op_Elmt) loop
5830 Prim_Op := Node (Prim_Op_Elmt);
5832 -- A small optimization: skip the predefined dispatching operations
5833 -- since they always have the same convention.
5835 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5836 Check_Convention (Prim_Op);
5837 end if;
5839 Next_Elmt (Prim_Op_Elmt);
5840 end loop;
5841 end Check_Conventions;
5843 ------------------------------
5844 -- Check_Delayed_Subprogram --
5845 ------------------------------
5847 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5848 procedure Possible_Freeze (T : Entity_Id);
5849 -- T is the type of either a formal parameter or of the return type. If
5850 -- T is not yet frozen and needs a delayed freeze, then the subprogram
5851 -- itself must be delayed.
5853 ---------------------
5854 -- Possible_Freeze --
5855 ---------------------
5857 procedure Possible_Freeze (T : Entity_Id) is
5858 Scop : constant Entity_Id := Scope (Designator);
5860 begin
5861 -- If the subprogram appears within a package instance (which may be
5862 -- the wrapper package of a subprogram instance) the freeze node for
5863 -- that package will freeze the subprogram at the proper place, so
5864 -- do not emit a freeze node for the subprogram, given that it may
5865 -- appear in the wrong scope.
5867 if Ekind (Scop) = E_Package
5868 and then not Comes_From_Source (Scop)
5869 and then Is_Generic_Instance (Scop)
5870 then
5871 null;
5873 elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5874 Set_Has_Delayed_Freeze (Designator);
5876 elsif Is_Access_Type (T)
5877 and then Has_Delayed_Freeze (Designated_Type (T))
5878 and then not Is_Frozen (Designated_Type (T))
5879 then
5880 Set_Has_Delayed_Freeze (Designator);
5881 end if;
5882 end Possible_Freeze;
5884 -- Local variables
5886 F : Entity_Id;
5888 -- Start of processing for Check_Delayed_Subprogram
5890 begin
5891 -- All subprograms, including abstract subprograms, may need a freeze
5892 -- node if some formal type or the return type needs one.
5894 Possible_Freeze (Etype (Designator));
5895 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5897 -- Need delayed freeze if any of the formal types themselves need a
5898 -- delayed freeze and are not yet frozen.
5900 F := First_Formal (Designator);
5901 while Present (F) loop
5902 Possible_Freeze (Etype (F));
5903 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5904 Next_Formal (F);
5905 end loop;
5907 -- Mark functions that return by reference. Note that it cannot be done
5908 -- for delayed_freeze subprograms because the underlying returned type
5909 -- may not be known yet (for private types).
5911 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5912 declare
5913 Typ : constant Entity_Id := Etype (Designator);
5914 Utyp : constant Entity_Id := Underlying_Type (Typ);
5916 begin
5917 if Is_Limited_View (Typ) then
5918 Set_Returns_By_Ref (Designator);
5920 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5921 Set_Returns_By_Ref (Designator);
5922 end if;
5923 end;
5924 end if;
5925 end Check_Delayed_Subprogram;
5927 ------------------------------------
5928 -- Check_Discriminant_Conformance --
5929 ------------------------------------
5931 procedure Check_Discriminant_Conformance
5932 (N : Node_Id;
5933 Prev : Entity_Id;
5934 Prev_Loc : Node_Id)
5936 Old_Discr : Entity_Id := First_Discriminant (Prev);
5937 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5938 New_Discr_Id : Entity_Id;
5939 New_Discr_Type : Entity_Id;
5941 procedure Conformance_Error (Msg : String; N : Node_Id);
5942 -- Post error message for conformance error on given node. Two messages
5943 -- are output. The first points to the previous declaration with a
5944 -- general "no conformance" message. The second is the detailed reason,
5945 -- supplied as Msg. The parameter N provide information for a possible
5946 -- & insertion in the message.
5948 -----------------------
5949 -- Conformance_Error --
5950 -----------------------
5952 procedure Conformance_Error (Msg : String; N : Node_Id) is
5953 begin
5954 Error_Msg_Sloc := Sloc (Prev_Loc);
5955 Error_Msg_N -- CODEFIX
5956 ("not fully conformant with declaration#!", N);
5957 Error_Msg_NE (Msg, N, N);
5958 end Conformance_Error;
5960 -- Start of processing for Check_Discriminant_Conformance
5962 begin
5963 while Present (Old_Discr) and then Present (New_Discr) loop
5964 New_Discr_Id := Defining_Identifier (New_Discr);
5966 -- The subtype mark of the discriminant on the full type has not
5967 -- been analyzed so we do it here. For an access discriminant a new
5968 -- type is created.
5970 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5971 New_Discr_Type :=
5972 Access_Definition (N, Discriminant_Type (New_Discr));
5974 else
5975 Analyze (Discriminant_Type (New_Discr));
5976 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5978 -- Ada 2005: if the discriminant definition carries a null
5979 -- exclusion, create an itype to check properly for consistency
5980 -- with partial declaration.
5982 if Is_Access_Type (New_Discr_Type)
5983 and then Null_Exclusion_Present (New_Discr)
5984 then
5985 New_Discr_Type :=
5986 Create_Null_Excluding_Itype
5987 (T => New_Discr_Type,
5988 Related_Nod => New_Discr,
5989 Scope_Id => Current_Scope);
5990 end if;
5991 end if;
5993 if not Conforming_Types
5994 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5995 then
5996 Conformance_Error ("type of & does not match!", New_Discr_Id);
5997 return;
5998 else
5999 -- Treat the new discriminant as an occurrence of the old one,
6000 -- for navigation purposes, and fill in some semantic
6001 -- information, for completeness.
6003 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
6004 Set_Etype (New_Discr_Id, Etype (Old_Discr));
6005 Set_Scope (New_Discr_Id, Scope (Old_Discr));
6006 end if;
6008 -- Names must match
6010 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
6011 Conformance_Error ("name & does not match!", New_Discr_Id);
6012 return;
6013 end if;
6015 -- Default expressions must match
6017 declare
6018 NewD : constant Boolean :=
6019 Present (Expression (New_Discr));
6020 OldD : constant Boolean :=
6021 Present (Expression (Parent (Old_Discr)));
6023 begin
6024 if NewD or OldD then
6026 -- The old default value has been analyzed and expanded,
6027 -- because the current full declaration will have frozen
6028 -- everything before. The new default values have not been
6029 -- expanded, so expand now to check conformance.
6031 if NewD then
6032 Preanalyze_Spec_Expression
6033 (Expression (New_Discr), New_Discr_Type);
6034 end if;
6036 if not (NewD and OldD)
6037 or else not Fully_Conformant_Expressions
6038 (Expression (Parent (Old_Discr)),
6039 Expression (New_Discr))
6041 then
6042 Conformance_Error
6043 ("default expression for & does not match!",
6044 New_Discr_Id);
6045 return;
6046 end if;
6047 end if;
6048 end;
6050 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6052 if Ada_Version = Ada_83 then
6053 declare
6054 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6056 begin
6057 -- Grouping (use of comma in param lists) must be the same
6058 -- This is where we catch a misconformance like:
6060 -- A, B : Integer
6061 -- A : Integer; B : Integer
6063 -- which are represented identically in the tree except
6064 -- for the setting of the flags More_Ids and Prev_Ids.
6066 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6067 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6068 then
6069 Conformance_Error
6070 ("grouping of & does not match!", New_Discr_Id);
6071 return;
6072 end if;
6073 end;
6074 end if;
6076 Next_Discriminant (Old_Discr);
6077 Next (New_Discr);
6078 end loop;
6080 if Present (Old_Discr) then
6081 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6082 return;
6084 elsif Present (New_Discr) then
6085 Conformance_Error
6086 ("too many discriminants!", Defining_Identifier (New_Discr));
6087 return;
6088 end if;
6089 end Check_Discriminant_Conformance;
6091 ----------------------------
6092 -- Check_Fully_Conformant --
6093 ----------------------------
6095 procedure Check_Fully_Conformant
6096 (New_Id : Entity_Id;
6097 Old_Id : Entity_Id;
6098 Err_Loc : Node_Id := Empty)
6100 Result : Boolean;
6101 pragma Warnings (Off, Result);
6102 begin
6103 Check_Conformance
6104 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6105 end Check_Fully_Conformant;
6107 --------------------------
6108 -- Check_Limited_Return --
6109 --------------------------
6111 procedure Check_Limited_Return
6112 (N : Node_Id;
6113 Expr : Node_Id;
6114 R_Type : Entity_Id)
6116 begin
6117 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
6118 -- replaced by anonymous access results. This is an incompatibility with
6119 -- Ada 95. Not clear whether this should be enforced yet or perhaps
6120 -- controllable with special switch. ???
6122 -- A limited interface that is not immutably limited is OK
6124 if Is_Limited_Interface (R_Type)
6125 and then
6126 not (Is_Task_Interface (R_Type)
6127 or else Is_Protected_Interface (R_Type)
6128 or else Is_Synchronized_Interface (R_Type))
6129 then
6130 null;
6132 elsif Is_Limited_Type (R_Type)
6133 and then not Is_Interface (R_Type)
6134 and then Comes_From_Source (N)
6135 and then not In_Instance_Body
6136 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
6137 then
6138 -- Error in Ada 2005
6140 if Ada_Version >= Ada_2005
6141 and then not Debug_Flag_Dot_L
6142 and then not GNAT_Mode
6143 then
6144 Error_Msg_N
6145 ("(Ada 2005) cannot copy object of a limited type "
6146 & "(RM-2005 6.5(5.5/2))", Expr);
6148 if Is_Limited_View (R_Type) then
6149 Error_Msg_N
6150 ("\return by reference not permitted in Ada 2005", Expr);
6151 end if;
6153 -- Warn in Ada 95 mode, to give folks a heads up about this
6154 -- incompatibility.
6156 -- In GNAT mode, this is just a warning, to allow it to be evilly
6157 -- turned off. Otherwise it is a real error.
6159 -- In a generic context, simplify the warning because it makes no
6160 -- sense to discuss pass-by-reference or copy.
6162 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
6163 if Inside_A_Generic then
6164 Error_Msg_N
6165 ("return of limited object not permitted in Ada 2005 "
6166 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6168 elsif Is_Limited_View (R_Type) then
6169 Error_Msg_N
6170 ("return by reference not permitted in Ada 2005 "
6171 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6172 else
6173 Error_Msg_N
6174 ("cannot copy object of a limited type in Ada 2005 "
6175 & "(RM-2005 6.5(5.5/2))?y?", Expr);
6176 end if;
6178 -- Ada 95 mode, and compatibility warnings disabled
6180 else
6181 pragma Assert (Ada_Version <= Ada_95);
6182 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
6183 return; -- skip continuation messages below
6184 end if;
6186 if not Inside_A_Generic then
6187 Error_Msg_N
6188 ("\consider switching to return of access type", Expr);
6189 Explain_Limited_Type (R_Type, Expr);
6190 end if;
6191 end if;
6192 end Check_Limited_Return;
6194 ---------------------------
6195 -- Check_Mode_Conformant --
6196 ---------------------------
6198 procedure Check_Mode_Conformant
6199 (New_Id : Entity_Id;
6200 Old_Id : Entity_Id;
6201 Err_Loc : Node_Id := Empty;
6202 Get_Inst : Boolean := False)
6204 Result : Boolean;
6205 pragma Warnings (Off, Result);
6206 begin
6207 Check_Conformance
6208 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6209 end Check_Mode_Conformant;
6211 --------------------------------
6212 -- Check_Overriding_Indicator --
6213 --------------------------------
6215 procedure Check_Overriding_Indicator
6216 (Subp : Entity_Id;
6217 Overridden_Subp : Entity_Id;
6218 Is_Primitive : Boolean)
6220 Decl : Node_Id;
6221 Spec : Node_Id;
6223 begin
6224 -- No overriding indicator for literals
6226 if Ekind (Subp) = E_Enumeration_Literal then
6227 return;
6229 elsif Ekind (Subp) = E_Entry then
6230 Decl := Parent (Subp);
6232 -- No point in analyzing a malformed operator
6234 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6235 and then Error_Posted (Subp)
6236 then
6237 return;
6239 else
6240 Decl := Unit_Declaration_Node (Subp);
6241 end if;
6243 if Nkind_In (Decl, N_Subprogram_Body,
6244 N_Subprogram_Body_Stub,
6245 N_Subprogram_Declaration,
6246 N_Abstract_Subprogram_Declaration,
6247 N_Subprogram_Renaming_Declaration)
6248 then
6249 Spec := Specification (Decl);
6251 elsif Nkind (Decl) = N_Entry_Declaration then
6252 Spec := Decl;
6254 else
6255 return;
6256 end if;
6258 -- The overriding operation is type conformant with the overridden one,
6259 -- but the names of the formals are not required to match. If the names
6260 -- appear permuted in the overriding operation, this is a possible
6261 -- source of confusion that is worth diagnosing. Controlling formals
6262 -- often carry names that reflect the type, and it is not worthwhile
6263 -- requiring that their names match.
6265 if Present (Overridden_Subp)
6266 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6267 then
6268 declare
6269 Form1 : Entity_Id;
6270 Form2 : Entity_Id;
6272 begin
6273 Form1 := First_Formal (Subp);
6274 Form2 := First_Formal (Overridden_Subp);
6276 -- If the overriding operation is a synchronized operation, skip
6277 -- the first parameter of the overridden operation, which is
6278 -- implicit in the new one. If the operation is declared in the
6279 -- body it is not primitive and all formals must match.
6281 if Is_Concurrent_Type (Scope (Subp))
6282 and then Is_Tagged_Type (Scope (Subp))
6283 and then not Has_Completion (Scope (Subp))
6284 then
6285 Form2 := Next_Formal (Form2);
6286 end if;
6288 if Present (Form1) then
6289 Form1 := Next_Formal (Form1);
6290 Form2 := Next_Formal (Form2);
6291 end if;
6293 while Present (Form1) loop
6294 if not Is_Controlling_Formal (Form1)
6295 and then Present (Next_Formal (Form2))
6296 and then Chars (Form1) = Chars (Next_Formal (Form2))
6297 then
6298 Error_Msg_Node_2 := Alias (Overridden_Subp);
6299 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6300 Error_Msg_NE
6301 ("& does not match corresponding formal of&#",
6302 Form1, Form1);
6303 exit;
6304 end if;
6306 Next_Formal (Form1);
6307 Next_Formal (Form2);
6308 end loop;
6309 end;
6310 end if;
6312 -- If there is an overridden subprogram, then check that there is no
6313 -- "not overriding" indicator, and mark the subprogram as overriding.
6314 -- This is not done if the overridden subprogram is marked as hidden,
6315 -- which can occur for the case of inherited controlled operations
6316 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6317 -- subprogram is not itself hidden. (Note: This condition could probably
6318 -- be simplified, leaving out the testing for the specific controlled
6319 -- cases, but it seems safer and clearer this way, and echoes similar
6320 -- special-case tests of this kind in other places.)
6322 if Present (Overridden_Subp)
6323 and then (not Is_Hidden (Overridden_Subp)
6324 or else
6325 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6326 Name_Adjust,
6327 Name_Finalize)
6328 and then Present (Alias (Overridden_Subp))
6329 and then not Is_Hidden (Alias (Overridden_Subp))))
6330 then
6331 if Must_Not_Override (Spec) then
6332 Error_Msg_Sloc := Sloc (Overridden_Subp);
6334 if Ekind (Subp) = E_Entry then
6335 Error_Msg_NE
6336 ("entry & overrides inherited operation #", Spec, Subp);
6337 else
6338 Error_Msg_NE
6339 ("subprogram & overrides inherited operation #", Spec, Subp);
6340 end if;
6342 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6343 -- as an extension of Root_Controlled, and thus has a useless Adjust
6344 -- operation. This operation should not be inherited by other limited
6345 -- controlled types. An explicit Adjust for them is not overriding.
6347 elsif Must_Override (Spec)
6348 and then Chars (Overridden_Subp) = Name_Adjust
6349 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6350 and then Present (Alias (Overridden_Subp))
6351 and then In_Predefined_Unit (Alias (Overridden_Subp))
6352 then
6353 Get_Name_String
6354 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
6355 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6357 elsif Is_Subprogram (Subp) then
6358 if Is_Init_Proc (Subp) then
6359 null;
6361 elsif No (Overridden_Operation (Subp)) then
6363 -- For entities generated by Derive_Subprograms the overridden
6364 -- operation is the inherited primitive (which is available
6365 -- through the attribute alias)
6367 if (Is_Dispatching_Operation (Subp)
6368 or else Is_Dispatching_Operation (Overridden_Subp))
6369 and then not Comes_From_Source (Overridden_Subp)
6370 and then Find_Dispatching_Type (Overridden_Subp) =
6371 Find_Dispatching_Type (Subp)
6372 and then Present (Alias (Overridden_Subp))
6373 and then Comes_From_Source (Alias (Overridden_Subp))
6374 then
6375 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6376 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6378 else
6379 Set_Overridden_Operation (Subp, Overridden_Subp);
6380 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6381 end if;
6382 end if;
6383 end if;
6385 -- If primitive flag is set or this is a protected operation, then
6386 -- the operation is overriding at the point of its declaration, so
6387 -- warn if necessary. Otherwise it may have been declared before the
6388 -- operation it overrides and no check is required.
6390 if Style_Check
6391 and then not Must_Override (Spec)
6392 and then (Is_Primitive
6393 or else Ekind (Scope (Subp)) = E_Protected_Type)
6394 then
6395 Style.Missing_Overriding (Decl, Subp);
6396 end if;
6398 -- If Subp is an operator, it may override a predefined operation, if
6399 -- it is defined in the same scope as the type to which it applies.
6400 -- In that case Overridden_Subp is empty because of our implicit
6401 -- representation for predefined operators. We have to check whether the
6402 -- signature of Subp matches that of a predefined operator. Note that
6403 -- first argument provides the name of the operator, and the second
6404 -- argument the signature that may match that of a standard operation.
6405 -- If the indicator is overriding, then the operator must match a
6406 -- predefined signature, because we know already that there is no
6407 -- explicit overridden operation.
6409 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6410 if Must_Not_Override (Spec) then
6412 -- If this is not a primitive or a protected subprogram, then
6413 -- "not overriding" is illegal.
6415 if not Is_Primitive
6416 and then Ekind (Scope (Subp)) /= E_Protected_Type
6417 then
6418 Error_Msg_N ("overriding indicator only allowed "
6419 & "if subprogram is primitive", Subp);
6421 elsif Can_Override_Operator (Subp) then
6422 Error_Msg_NE
6423 ("subprogram& overrides predefined operator ", Spec, Subp);
6424 end if;
6426 elsif Must_Override (Spec) then
6427 if No (Overridden_Operation (Subp))
6428 and then not Can_Override_Operator (Subp)
6429 then
6430 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6431 end if;
6433 elsif not Error_Posted (Subp)
6434 and then Style_Check
6435 and then Can_Override_Operator (Subp)
6436 and then not In_Predefined_Unit (Subp)
6437 then
6438 -- If style checks are enabled, indicate that the indicator is
6439 -- missing. However, at the point of declaration, the type of
6440 -- which this is a primitive operation may be private, in which
6441 -- case the indicator would be premature.
6443 if Has_Private_Declaration (Etype (Subp))
6444 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6445 then
6446 null;
6447 else
6448 Style.Missing_Overriding (Decl, Subp);
6449 end if;
6450 end if;
6452 elsif Must_Override (Spec) then
6453 if Ekind (Subp) = E_Entry then
6454 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6455 else
6456 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6457 end if;
6459 -- If the operation is marked "not overriding" and it's not primitive
6460 -- then an error is issued, unless this is an operation of a task or
6461 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6462 -- has been specified have already been checked above.
6464 elsif Must_Not_Override (Spec)
6465 and then not Is_Primitive
6466 and then Ekind (Subp) /= E_Entry
6467 and then Ekind (Scope (Subp)) /= E_Protected_Type
6468 then
6469 Error_Msg_N
6470 ("overriding indicator only allowed if subprogram is primitive",
6471 Subp);
6472 return;
6473 end if;
6474 end Check_Overriding_Indicator;
6476 -------------------
6477 -- Check_Returns --
6478 -------------------
6480 -- Note: this procedure needs to know far too much about how the expander
6481 -- messes with exceptions. The use of the flag Exception_Junk and the
6482 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6483 -- works, but is not very clean. It would be better if the expansion
6484 -- routines would leave Original_Node working nicely, and we could use
6485 -- Original_Node here to ignore all the peculiar expander messing ???
6487 procedure Check_Returns
6488 (HSS : Node_Id;
6489 Mode : Character;
6490 Err : out Boolean;
6491 Proc : Entity_Id := Empty)
6493 Handler : Node_Id;
6495 procedure Check_Statement_Sequence (L : List_Id);
6496 -- Internal recursive procedure to check a list of statements for proper
6497 -- termination by a return statement (or a transfer of control or a
6498 -- compound statement that is itself internally properly terminated).
6500 ------------------------------
6501 -- Check_Statement_Sequence --
6502 ------------------------------
6504 procedure Check_Statement_Sequence (L : List_Id) is
6505 Last_Stm : Node_Id;
6506 Stm : Node_Id;
6507 Kind : Node_Kind;
6509 function Assert_False return Boolean;
6510 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6511 -- rewritten as a null statement when assertions are off. The assert
6512 -- is not active, but it is still enough to kill the warning.
6514 ------------------
6515 -- Assert_False --
6516 ------------------
6518 function Assert_False return Boolean is
6519 Orig : constant Node_Id := Original_Node (Last_Stm);
6521 begin
6522 if Nkind (Orig) = N_Pragma
6523 and then Pragma_Name (Orig) = Name_Assert
6524 and then not Error_Posted (Orig)
6525 then
6526 declare
6527 Arg : constant Node_Id :=
6528 First (Pragma_Argument_Associations (Orig));
6529 Exp : constant Node_Id := Expression (Arg);
6530 begin
6531 return Nkind (Exp) = N_Identifier
6532 and then Chars (Exp) = Name_False;
6533 end;
6535 else
6536 return False;
6537 end if;
6538 end Assert_False;
6540 -- Local variables
6542 Raise_Exception_Call : Boolean;
6543 -- Set True if statement sequence terminated by Raise_Exception call
6544 -- or a Reraise_Occurrence call.
6546 -- Start of processing for Check_Statement_Sequence
6548 begin
6549 Raise_Exception_Call := False;
6551 -- Get last real statement
6553 Last_Stm := Last (L);
6555 -- Deal with digging out exception handler statement sequences that
6556 -- have been transformed by the local raise to goto optimization.
6557 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6558 -- optimization has occurred, we are looking at something like:
6560 -- begin
6561 -- original stmts in block
6563 -- exception \
6564 -- when excep1 => |
6565 -- goto L1; | omitted if No_Exception_Propagation
6566 -- when excep2 => |
6567 -- goto L2; /
6568 -- end;
6570 -- goto L3; -- skip handler when exception not raised
6572 -- <<L1>> -- target label for local exception
6573 -- begin
6574 -- estmts1
6575 -- end;
6577 -- goto L3;
6579 -- <<L2>>
6580 -- begin
6581 -- estmts2
6582 -- end;
6584 -- <<L3>>
6586 -- and what we have to do is to dig out the estmts1 and estmts2
6587 -- sequences (which were the original sequences of statements in
6588 -- the exception handlers) and check them.
6590 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6591 Stm := Last_Stm;
6592 loop
6593 Prev (Stm);
6594 exit when No (Stm);
6595 exit when Nkind (Stm) /= N_Block_Statement;
6596 exit when not Exception_Junk (Stm);
6597 Prev (Stm);
6598 exit when No (Stm);
6599 exit when Nkind (Stm) /= N_Label;
6600 exit when not Exception_Junk (Stm);
6601 Check_Statement_Sequence
6602 (Statements (Handled_Statement_Sequence (Next (Stm))));
6604 Prev (Stm);
6605 Last_Stm := Stm;
6606 exit when No (Stm);
6607 exit when Nkind (Stm) /= N_Goto_Statement;
6608 exit when not Exception_Junk (Stm);
6609 end loop;
6610 end if;
6612 -- Don't count pragmas
6614 while Nkind (Last_Stm) = N_Pragma
6616 -- Don't count call to SS_Release (can happen after Raise_Exception)
6618 or else
6619 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6620 and then
6621 Nkind (Name (Last_Stm)) = N_Identifier
6622 and then
6623 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6625 -- Don't count exception junk
6627 or else
6628 (Nkind_In (Last_Stm, N_Goto_Statement,
6629 N_Label,
6630 N_Object_Declaration)
6631 and then Exception_Junk (Last_Stm))
6632 or else Nkind (Last_Stm) in N_Push_xxx_Label
6633 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6635 -- Inserted code, such as finalization calls, is irrelevant: we only
6636 -- need to check original source.
6638 or else Is_Rewrite_Insertion (Last_Stm)
6639 loop
6640 Prev (Last_Stm);
6641 end loop;
6643 -- Here we have the "real" last statement
6645 Kind := Nkind (Last_Stm);
6647 -- Transfer of control, OK. Note that in the No_Return procedure
6648 -- case, we already diagnosed any explicit return statements, so
6649 -- we can treat them as OK in this context.
6651 if Is_Transfer (Last_Stm) then
6652 return;
6654 -- Check cases of explicit non-indirect procedure calls
6656 elsif Kind = N_Procedure_Call_Statement
6657 and then Is_Entity_Name (Name (Last_Stm))
6658 then
6659 -- Check call to Raise_Exception procedure which is treated
6660 -- specially, as is a call to Reraise_Occurrence.
6662 -- We suppress the warning in these cases since it is likely that
6663 -- the programmer really does not expect to deal with the case
6664 -- of Null_Occurrence, and thus would find a warning about a
6665 -- missing return curious, and raising Program_Error does not
6666 -- seem such a bad behavior if this does occur.
6668 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6669 -- behavior will be to raise Constraint_Error (see AI-329).
6671 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6672 or else
6673 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6674 then
6675 Raise_Exception_Call := True;
6677 -- For Raise_Exception call, test first argument, if it is
6678 -- an attribute reference for a 'Identity call, then we know
6679 -- that the call cannot possibly return.
6681 declare
6682 Arg : constant Node_Id :=
6683 Original_Node (First_Actual (Last_Stm));
6684 begin
6685 if Nkind (Arg) = N_Attribute_Reference
6686 and then Attribute_Name (Arg) = Name_Identity
6687 then
6688 return;
6689 end if;
6690 end;
6691 end if;
6693 -- If statement, need to look inside if there is an else and check
6694 -- each constituent statement sequence for proper termination.
6696 elsif Kind = N_If_Statement
6697 and then Present (Else_Statements (Last_Stm))
6698 then
6699 Check_Statement_Sequence (Then_Statements (Last_Stm));
6700 Check_Statement_Sequence (Else_Statements (Last_Stm));
6702 if Present (Elsif_Parts (Last_Stm)) then
6703 declare
6704 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6706 begin
6707 while Present (Elsif_Part) loop
6708 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6709 Next (Elsif_Part);
6710 end loop;
6711 end;
6712 end if;
6714 return;
6716 -- Case statement, check each case for proper termination
6718 elsif Kind = N_Case_Statement then
6719 declare
6720 Case_Alt : Node_Id;
6721 begin
6722 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6723 while Present (Case_Alt) loop
6724 Check_Statement_Sequence (Statements (Case_Alt));
6725 Next_Non_Pragma (Case_Alt);
6726 end loop;
6727 end;
6729 return;
6731 -- Block statement, check its handled sequence of statements
6733 elsif Kind = N_Block_Statement then
6734 declare
6735 Err1 : Boolean;
6737 begin
6738 Check_Returns
6739 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6741 if Err1 then
6742 Err := True;
6743 end if;
6745 return;
6746 end;
6748 -- Loop statement. If there is an iteration scheme, we can definitely
6749 -- fall out of the loop. Similarly if there is an exit statement, we
6750 -- can fall out. In either case we need a following return.
6752 elsif Kind = N_Loop_Statement then
6753 if Present (Iteration_Scheme (Last_Stm))
6754 or else Has_Exit (Entity (Identifier (Last_Stm)))
6755 then
6756 null;
6758 -- A loop with no exit statement or iteration scheme is either
6759 -- an infinite loop, or it has some other exit (raise/return).
6760 -- In either case, no warning is required.
6762 else
6763 return;
6764 end if;
6766 -- Timed entry call, check entry call and delay alternatives
6768 -- Note: in expanded code, the timed entry call has been converted
6769 -- to a set of expanded statements on which the check will work
6770 -- correctly in any case.
6772 elsif Kind = N_Timed_Entry_Call then
6773 declare
6774 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6775 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6777 begin
6778 -- If statement sequence of entry call alternative is missing,
6779 -- then we can definitely fall through, and we post the error
6780 -- message on the entry call alternative itself.
6782 if No (Statements (ECA)) then
6783 Last_Stm := ECA;
6785 -- If statement sequence of delay alternative is missing, then
6786 -- we can definitely fall through, and we post the error
6787 -- message on the delay alternative itself.
6789 -- Note: if both ECA and DCA are missing the return, then we
6790 -- post only one message, should be enough to fix the bugs.
6791 -- If not we will get a message next time on the DCA when the
6792 -- ECA is fixed.
6794 elsif No (Statements (DCA)) then
6795 Last_Stm := DCA;
6797 -- Else check both statement sequences
6799 else
6800 Check_Statement_Sequence (Statements (ECA));
6801 Check_Statement_Sequence (Statements (DCA));
6802 return;
6803 end if;
6804 end;
6806 -- Conditional entry call, check entry call and else part
6808 -- Note: in expanded code, the conditional entry call has been
6809 -- converted to a set of expanded statements on which the check
6810 -- will work correctly in any case.
6812 elsif Kind = N_Conditional_Entry_Call then
6813 declare
6814 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6816 begin
6817 -- If statement sequence of entry call alternative is missing,
6818 -- then we can definitely fall through, and we post the error
6819 -- message on the entry call alternative itself.
6821 if No (Statements (ECA)) then
6822 Last_Stm := ECA;
6824 -- Else check statement sequence and else part
6826 else
6827 Check_Statement_Sequence (Statements (ECA));
6828 Check_Statement_Sequence (Else_Statements (Last_Stm));
6829 return;
6830 end if;
6831 end;
6832 end if;
6834 -- If we fall through, issue appropriate message
6836 if Mode = 'F' then
6838 -- Kill warning if last statement is a raise exception call,
6839 -- or a pragma Assert (False). Note that with assertions enabled,
6840 -- such a pragma has been converted into a raise exception call
6841 -- already, so the Assert_False is for the assertions off case.
6843 if not Raise_Exception_Call and then not Assert_False then
6845 -- In GNATprove mode, it is an error to have a missing return
6847 Error_Msg_Warn := SPARK_Mode /= On;
6849 -- Issue error message or warning
6851 Error_Msg_N
6852 ("RETURN statement missing following this statement<<!",
6853 Last_Stm);
6854 Error_Msg_N
6855 ("\Program_Error ]<<!", Last_Stm);
6856 end if;
6858 -- Note: we set Err even though we have not issued a warning
6859 -- because we still have a case of a missing return. This is
6860 -- an extremely marginal case, probably will never be noticed
6861 -- but we might as well get it right.
6863 Err := True;
6865 -- Otherwise we have the case of a procedure marked No_Return
6867 else
6868 if not Raise_Exception_Call then
6869 if GNATprove_Mode then
6870 Error_Msg_N
6871 ("implied return after this statement would have raised "
6872 & "Program_Error", Last_Stm);
6874 -- In normal compilation mode, do not warn on a generated call
6875 -- (e.g. in the body of a renaming as completion).
6877 elsif Comes_From_Source (Last_Stm) then
6878 Error_Msg_N
6879 ("implied return after this statement will raise "
6880 & "Program_Error??", Last_Stm);
6881 end if;
6883 Error_Msg_Warn := SPARK_Mode /= On;
6884 Error_Msg_NE
6885 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6886 end if;
6888 declare
6889 RE : constant Node_Id :=
6890 Make_Raise_Program_Error (Sloc (Last_Stm),
6891 Reason => PE_Implicit_Return);
6892 begin
6893 Insert_After (Last_Stm, RE);
6894 Analyze (RE);
6895 end;
6896 end if;
6897 end Check_Statement_Sequence;
6899 -- Start of processing for Check_Returns
6901 begin
6902 Err := False;
6903 Check_Statement_Sequence (Statements (HSS));
6905 if Present (Exception_Handlers (HSS)) then
6906 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6907 while Present (Handler) loop
6908 Check_Statement_Sequence (Statements (Handler));
6909 Next_Non_Pragma (Handler);
6910 end loop;
6911 end if;
6912 end Check_Returns;
6914 ----------------------------
6915 -- Check_Subprogram_Order --
6916 ----------------------------
6918 procedure Check_Subprogram_Order (N : Node_Id) is
6920 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6921 -- This is used to check if S1 > S2 in the sense required by this test,
6922 -- for example nameab < namec, but name2 < name10.
6924 -----------------------------
6925 -- Subprogram_Name_Greater --
6926 -----------------------------
6928 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6929 L1, L2 : Positive;
6930 N1, N2 : Natural;
6932 begin
6933 -- Deal with special case where names are identical except for a
6934 -- numerical suffix. These are handled specially, taking the numeric
6935 -- ordering from the suffix into account.
6937 L1 := S1'Last;
6938 while S1 (L1) in '0' .. '9' loop
6939 L1 := L1 - 1;
6940 end loop;
6942 L2 := S2'Last;
6943 while S2 (L2) in '0' .. '9' loop
6944 L2 := L2 - 1;
6945 end loop;
6947 -- If non-numeric parts non-equal, do straight compare
6949 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6950 return S1 > S2;
6952 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6953 -- that a missing suffix is treated as numeric zero in this test.
6955 else
6956 N1 := 0;
6957 while L1 < S1'Last loop
6958 L1 := L1 + 1;
6959 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6960 end loop;
6962 N2 := 0;
6963 while L2 < S2'Last loop
6964 L2 := L2 + 1;
6965 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6966 end loop;
6968 return N1 > N2;
6969 end if;
6970 end Subprogram_Name_Greater;
6972 -- Start of processing for Check_Subprogram_Order
6974 begin
6975 -- Check body in alpha order if this is option
6977 if Style_Check
6978 and then Style_Check_Order_Subprograms
6979 and then Nkind (N) = N_Subprogram_Body
6980 and then Comes_From_Source (N)
6981 and then In_Extended_Main_Source_Unit (N)
6982 then
6983 declare
6984 LSN : String_Ptr
6985 renames Scope_Stack.Table
6986 (Scope_Stack.Last).Last_Subprogram_Name;
6988 Body_Id : constant Entity_Id :=
6989 Defining_Entity (Specification (N));
6991 begin
6992 Get_Decoded_Name_String (Chars (Body_Id));
6994 if LSN /= null then
6995 if Subprogram_Name_Greater
6996 (LSN.all, Name_Buffer (1 .. Name_Len))
6997 then
6998 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6999 end if;
7001 Free (LSN);
7002 end if;
7004 LSN := new String'(Name_Buffer (1 .. Name_Len));
7005 end;
7006 end if;
7007 end Check_Subprogram_Order;
7009 ------------------------------
7010 -- Check_Subtype_Conformant --
7011 ------------------------------
7013 procedure Check_Subtype_Conformant
7014 (New_Id : Entity_Id;
7015 Old_Id : Entity_Id;
7016 Err_Loc : Node_Id := Empty;
7017 Skip_Controlling_Formals : Boolean := False;
7018 Get_Inst : Boolean := False)
7020 Result : Boolean;
7021 pragma Warnings (Off, Result);
7022 begin
7023 Check_Conformance
7024 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7025 Skip_Controlling_Formals => Skip_Controlling_Formals,
7026 Get_Inst => Get_Inst);
7027 end Check_Subtype_Conformant;
7029 -----------------------------------
7030 -- Check_Synchronized_Overriding --
7031 -----------------------------------
7033 procedure Check_Synchronized_Overriding
7034 (Def_Id : Entity_Id;
7035 Overridden_Subp : out Entity_Id)
7037 Ifaces_List : Elist_Id;
7038 In_Scope : Boolean;
7039 Typ : Entity_Id;
7041 function Matches_Prefixed_View_Profile
7042 (Prim_Params : List_Id;
7043 Iface_Params : List_Id) return Boolean;
7044 -- Determine whether a subprogram's parameter profile Prim_Params
7045 -- matches that of a potentially overridden interface subprogram
7046 -- Iface_Params. Also determine if the type of first parameter of
7047 -- Iface_Params is an implemented interface.
7049 -----------------------------------
7050 -- Matches_Prefixed_View_Profile --
7051 -----------------------------------
7053 function Matches_Prefixed_View_Profile
7054 (Prim_Params : List_Id;
7055 Iface_Params : List_Id) return Boolean
7057 function Is_Implemented
7058 (Ifaces_List : Elist_Id;
7059 Iface : Entity_Id) return Boolean;
7060 -- Determine if Iface is implemented by the current task or
7061 -- protected type.
7063 --------------------
7064 -- Is_Implemented --
7065 --------------------
7067 function Is_Implemented
7068 (Ifaces_List : Elist_Id;
7069 Iface : Entity_Id) return Boolean
7071 Iface_Elmt : Elmt_Id;
7073 begin
7074 Iface_Elmt := First_Elmt (Ifaces_List);
7075 while Present (Iface_Elmt) loop
7076 if Node (Iface_Elmt) = Iface then
7077 return True;
7078 end if;
7080 Next_Elmt (Iface_Elmt);
7081 end loop;
7083 return False;
7084 end Is_Implemented;
7086 -- Local variables
7088 Iface_Id : Entity_Id;
7089 Iface_Param : Node_Id;
7090 Iface_Typ : Entity_Id;
7091 Prim_Id : Entity_Id;
7092 Prim_Param : Node_Id;
7093 Prim_Typ : Entity_Id;
7095 -- Start of processing for Matches_Prefixed_View_Profile
7097 begin
7098 Iface_Param := First (Iface_Params);
7099 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
7101 if Is_Access_Type (Iface_Typ) then
7102 Iface_Typ := Designated_Type (Iface_Typ);
7103 end if;
7105 Prim_Param := First (Prim_Params);
7107 -- The first parameter of the potentially overridden subprogram must
7108 -- be an interface implemented by Prim.
7110 if not Is_Interface (Iface_Typ)
7111 or else not Is_Implemented (Ifaces_List, Iface_Typ)
7112 then
7113 return False;
7114 end if;
7116 -- The checks on the object parameters are done, so move on to the
7117 -- rest of the parameters.
7119 if not In_Scope then
7120 Prim_Param := Next (Prim_Param);
7121 end if;
7123 Iface_Param := Next (Iface_Param);
7124 while Present (Iface_Param) and then Present (Prim_Param) loop
7125 Iface_Id := Defining_Identifier (Iface_Param);
7126 Iface_Typ := Find_Parameter_Type (Iface_Param);
7128 Prim_Id := Defining_Identifier (Prim_Param);
7129 Prim_Typ := Find_Parameter_Type (Prim_Param);
7131 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
7132 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
7133 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
7134 then
7135 Iface_Typ := Designated_Type (Iface_Typ);
7136 Prim_Typ := Designated_Type (Prim_Typ);
7137 end if;
7139 -- Case of multiple interface types inside a parameter profile
7141 -- (Obj_Param : in out Iface; ...; Param : Iface)
7143 -- If the interface type is implemented, then the matching type in
7144 -- the primitive should be the implementing record type.
7146 if Ekind (Iface_Typ) = E_Record_Type
7147 and then Is_Interface (Iface_Typ)
7148 and then Is_Implemented (Ifaces_List, Iface_Typ)
7149 then
7150 if Prim_Typ /= Typ then
7151 return False;
7152 end if;
7154 -- The two parameters must be both mode and subtype conformant
7156 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
7157 or else not
7158 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
7159 then
7160 return False;
7161 end if;
7163 Next (Iface_Param);
7164 Next (Prim_Param);
7165 end loop;
7167 -- One of the two lists contains more parameters than the other
7169 if Present (Iface_Param) or else Present (Prim_Param) then
7170 return False;
7171 end if;
7173 return True;
7174 end Matches_Prefixed_View_Profile;
7176 -- Start of processing for Check_Synchronized_Overriding
7178 begin
7179 Overridden_Subp := Empty;
7181 -- Def_Id must be an entry or a subprogram. We should skip predefined
7182 -- primitives internally generated by the front end; however at this
7183 -- stage predefined primitives are still not fully decorated. As a
7184 -- minor optimization we skip here internally generated subprograms.
7186 if (Ekind (Def_Id) /= E_Entry
7187 and then Ekind (Def_Id) /= E_Function
7188 and then Ekind (Def_Id) /= E_Procedure)
7189 or else not Comes_From_Source (Def_Id)
7190 then
7191 return;
7192 end if;
7194 -- Search for the concurrent declaration since it contains the list of
7195 -- all implemented interfaces. In this case, the subprogram is declared
7196 -- within the scope of a protected or a task type.
7198 if Present (Scope (Def_Id))
7199 and then Is_Concurrent_Type (Scope (Def_Id))
7200 and then not Is_Generic_Actual_Type (Scope (Def_Id))
7201 then
7202 Typ := Scope (Def_Id);
7203 In_Scope := True;
7205 -- The enclosing scope is not a synchronized type and the subprogram
7206 -- has no formals.
7208 elsif No (First_Formal (Def_Id)) then
7209 return;
7211 -- The subprogram has formals and hence it may be a primitive of a
7212 -- concurrent type.
7214 else
7215 Typ := Etype (First_Formal (Def_Id));
7217 if Is_Access_Type (Typ) then
7218 Typ := Directly_Designated_Type (Typ);
7219 end if;
7221 if Is_Concurrent_Type (Typ)
7222 and then not Is_Generic_Actual_Type (Typ)
7223 then
7224 In_Scope := False;
7226 -- This case occurs when the concurrent type is declared within a
7227 -- generic unit. As a result the corresponding record has been built
7228 -- and used as the type of the first formal, we just have to retrieve
7229 -- the corresponding concurrent type.
7231 elsif Is_Concurrent_Record_Type (Typ)
7232 and then not Is_Class_Wide_Type (Typ)
7233 and then Present (Corresponding_Concurrent_Type (Typ))
7234 then
7235 Typ := Corresponding_Concurrent_Type (Typ);
7236 In_Scope := False;
7238 else
7239 return;
7240 end if;
7241 end if;
7243 -- There is no overriding to check if this is an inherited operation in
7244 -- a type derivation for a generic actual.
7246 Collect_Interfaces (Typ, Ifaces_List);
7248 if Is_Empty_Elmt_List (Ifaces_List) then
7249 return;
7250 end if;
7252 -- Determine whether entry or subprogram Def_Id overrides a primitive
7253 -- operation that belongs to one of the interfaces in Ifaces_List.
7255 declare
7256 Candidate : Entity_Id := Empty;
7257 Hom : Entity_Id := Empty;
7258 Subp : Entity_Id := Empty;
7260 begin
7261 -- Traverse the homonym chain, looking for a potentially overridden
7262 -- subprogram that belongs to an implemented interface.
7264 Hom := Current_Entity_In_Scope (Def_Id);
7265 while Present (Hom) loop
7266 Subp := Hom;
7268 if Subp = Def_Id
7269 or else not Is_Overloadable (Subp)
7270 or else not Is_Primitive (Subp)
7271 or else not Is_Dispatching_Operation (Subp)
7272 or else not Present (Find_Dispatching_Type (Subp))
7273 or else not Is_Interface (Find_Dispatching_Type (Subp))
7274 then
7275 null;
7277 -- Entries and procedures can override abstract or null interface
7278 -- procedures.
7280 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7281 and then Ekind (Subp) = E_Procedure
7282 and then Matches_Prefixed_View_Profile
7283 (Parameter_Specifications (Parent (Def_Id)),
7284 Parameter_Specifications (Parent (Subp)))
7285 then
7286 Candidate := Subp;
7288 -- For an overridden subprogram Subp, check whether the mode
7289 -- of its first parameter is correct depending on the kind of
7290 -- synchronized type.
7292 declare
7293 Formal : constant Node_Id := First_Formal (Candidate);
7295 begin
7296 -- In order for an entry or a protected procedure to
7297 -- override, the first parameter of the overridden routine
7298 -- must be of mode "out", "in out", or access-to-variable.
7300 if Ekind_In (Candidate, E_Entry, E_Procedure)
7301 and then Is_Protected_Type (Typ)
7302 and then Ekind (Formal) /= E_In_Out_Parameter
7303 and then Ekind (Formal) /= E_Out_Parameter
7304 and then Nkind (Parameter_Type (Parent (Formal))) /=
7305 N_Access_Definition
7306 then
7307 null;
7309 -- All other cases are OK since a task entry or routine does
7310 -- not have a restriction on the mode of the first parameter
7311 -- of the overridden interface routine.
7313 else
7314 Overridden_Subp := Candidate;
7315 return;
7316 end if;
7317 end;
7319 -- Functions can override abstract interface functions
7321 elsif Ekind (Def_Id) = E_Function
7322 and then Ekind (Subp) = E_Function
7323 and then Matches_Prefixed_View_Profile
7324 (Parameter_Specifications (Parent (Def_Id)),
7325 Parameter_Specifications (Parent (Subp)))
7326 and then Etype (Def_Id) = Etype (Subp)
7327 then
7328 Candidate := Subp;
7330 -- If an inherited subprogram is implemented by a protected
7331 -- function, then the first parameter of the inherited
7332 -- subprogram shall be of mode in, but not an access-to-
7333 -- variable parameter (RM 9.4(11/9)).
7335 if Present (First_Formal (Subp))
7336 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7337 and then
7338 (not Is_Access_Type (Etype (First_Formal (Subp)))
7339 or else
7340 Is_Access_Constant (Etype (First_Formal (Subp))))
7341 then
7342 Overridden_Subp := Subp;
7343 return;
7344 end if;
7345 end if;
7347 Hom := Homonym (Hom);
7348 end loop;
7350 -- After examining all candidates for overriding, we are left with
7351 -- the best match, which is a mode-incompatible interface routine.
7353 if In_Scope and then Present (Candidate) then
7354 Error_Msg_PT (Def_Id, Candidate);
7355 end if;
7357 Overridden_Subp := Candidate;
7358 return;
7359 end;
7360 end Check_Synchronized_Overriding;
7362 ---------------------------
7363 -- Check_Type_Conformant --
7364 ---------------------------
7366 procedure Check_Type_Conformant
7367 (New_Id : Entity_Id;
7368 Old_Id : Entity_Id;
7369 Err_Loc : Node_Id := Empty)
7371 Result : Boolean;
7372 pragma Warnings (Off, Result);
7373 begin
7374 Check_Conformance
7375 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7376 end Check_Type_Conformant;
7378 ---------------------------
7379 -- Can_Override_Operator --
7380 ---------------------------
7382 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7383 Typ : Entity_Id;
7385 begin
7386 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7387 return False;
7389 else
7390 Typ := Base_Type (Etype (First_Formal (Subp)));
7392 -- Check explicitly that the operation is a primitive of the type
7394 return Operator_Matches_Spec (Subp, Subp)
7395 and then not Is_Generic_Type (Typ)
7396 and then Scope (Subp) = Scope (Typ)
7397 and then not Is_Class_Wide_Type (Typ);
7398 end if;
7399 end Can_Override_Operator;
7401 ----------------------
7402 -- Conforming_Types --
7403 ----------------------
7405 function Conforming_Types
7406 (T1 : Entity_Id;
7407 T2 : Entity_Id;
7408 Ctype : Conformance_Type;
7409 Get_Inst : Boolean := False) return Boolean
7411 function Base_Types_Match
7412 (Typ_1 : Entity_Id;
7413 Typ_2 : Entity_Id) return Boolean;
7414 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7415 -- in different scopes (e.g. parent and child instances), then verify
7416 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7417 -- the same subtype chain. The whole purpose of this procedure is to
7418 -- prevent spurious ambiguities in an instantiation that may arise if
7419 -- two distinct generic types are instantiated with the same actual.
7421 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7422 -- An access parameter can designate an incomplete type. If the
7423 -- incomplete type is the limited view of a type from a limited_
7424 -- with_clause, check whether the non-limited view is available.
7425 -- If it is a (non-limited) incomplete type, get the full view.
7427 function Matches_Limited_With_View
7428 (Typ_1 : Entity_Id;
7429 Typ_2 : Entity_Id) return Boolean;
7430 -- Returns True if and only if either Typ_1 denotes a limited view of
7431 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7432 -- the limited with view of a type is used in a subprogram declaration
7433 -- and the subprogram body is in the scope of a regular with clause for
7434 -- the same unit. In such a case, the two type entities are considered
7435 -- identical for purposes of conformance checking.
7437 ----------------------
7438 -- Base_Types_Match --
7439 ----------------------
7441 function Base_Types_Match
7442 (Typ_1 : Entity_Id;
7443 Typ_2 : Entity_Id) return Boolean
7445 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7446 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7448 begin
7449 if Typ_1 = Typ_2 then
7450 return True;
7452 elsif Base_1 = Base_2 then
7454 -- The following is too permissive. A more precise test should
7455 -- check that the generic actual is an ancestor subtype of the
7456 -- other ???.
7458 -- See code in Find_Corresponding_Spec that applies an additional
7459 -- filter to handle accidental amiguities in instances.
7461 return
7462 not Is_Generic_Actual_Type (Typ_1)
7463 or else not Is_Generic_Actual_Type (Typ_2)
7464 or else Scope (Typ_1) /= Scope (Typ_2);
7466 -- If Typ_2 is a generic actual type it is declared as the subtype of
7467 -- the actual. If that actual is itself a subtype we need to use its
7468 -- own base type to check for compatibility.
7470 elsif Ekind (Base_2) = Ekind (Typ_2)
7471 and then Base_1 = Base_Type (Base_2)
7472 then
7473 return True;
7475 elsif Ekind (Base_1) = Ekind (Typ_1)
7476 and then Base_2 = Base_Type (Base_1)
7477 then
7478 return True;
7480 else
7481 return False;
7482 end if;
7483 end Base_Types_Match;
7485 --------------------------
7486 -- Find_Designated_Type --
7487 --------------------------
7489 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7490 Desig : Entity_Id;
7492 begin
7493 Desig := Directly_Designated_Type (Typ);
7495 if Ekind (Desig) = E_Incomplete_Type then
7497 -- If regular incomplete type, get full view if available
7499 if Present (Full_View (Desig)) then
7500 Desig := Full_View (Desig);
7502 -- If limited view of a type, get non-limited view if available,
7503 -- and check again for a regular incomplete type.
7505 elsif Present (Non_Limited_View (Desig)) then
7506 Desig := Get_Full_View (Non_Limited_View (Desig));
7507 end if;
7508 end if;
7510 return Desig;
7511 end Find_Designated_Type;
7513 -------------------------------
7514 -- Matches_Limited_With_View --
7515 -------------------------------
7517 function Matches_Limited_With_View
7518 (Typ_1 : Entity_Id;
7519 Typ_2 : Entity_Id) return Boolean
7521 function Is_Matching_Limited_View
7522 (Typ : Entity_Id;
7523 View : Entity_Id) return Boolean;
7524 -- Determine whether non-limited view View denotes type Typ in some
7525 -- conformant fashion.
7527 ------------------------------
7528 -- Is_Matching_Limited_View --
7529 ------------------------------
7531 function Is_Matching_Limited_View
7532 (Typ : Entity_Id;
7533 View : Entity_Id) return Boolean
7535 Root_Typ : Entity_Id;
7536 Root_View : Entity_Id;
7538 begin
7539 -- The non-limited view directly denotes the type
7541 if Typ = View then
7542 return True;
7544 -- The type is a subtype of the non-limited view
7546 elsif Is_Subtype_Of (Typ, View) then
7547 return True;
7549 -- Both the non-limited view and the type denote class-wide types
7551 elsif Is_Class_Wide_Type (Typ)
7552 and then Is_Class_Wide_Type (View)
7553 then
7554 Root_Typ := Root_Type (Typ);
7555 Root_View := Root_Type (View);
7557 if Root_Typ = Root_View then
7558 return True;
7560 -- An incomplete tagged type and its full view may receive two
7561 -- distinct class-wide types when the related package has not
7562 -- been analyzed yet.
7564 -- package Pack is
7565 -- type T is tagged; -- CW_1
7566 -- type T is tagged null record; -- CW_2
7567 -- end Pack;
7569 -- This is because the package lacks any semantic information
7570 -- that may eventually link both views of T. As a consequence,
7571 -- a client of the limited view of Pack will see CW_2 while a
7572 -- client of the non-limited view of Pack will see CW_1.
7574 elsif Is_Incomplete_Type (Root_Typ)
7575 and then Present (Full_View (Root_Typ))
7576 and then Full_View (Root_Typ) = Root_View
7577 then
7578 return True;
7580 elsif Is_Incomplete_Type (Root_View)
7581 and then Present (Full_View (Root_View))
7582 and then Full_View (Root_View) = Root_Typ
7583 then
7584 return True;
7585 end if;
7586 end if;
7588 return False;
7589 end Is_Matching_Limited_View;
7591 -- Start of processing for Matches_Limited_With_View
7593 begin
7594 -- In some cases a type imported through a limited_with clause, and
7595 -- its non-limited view are both visible, for example in an anonymous
7596 -- access-to-class-wide type in a formal, or when building the body
7597 -- for a subprogram renaming after the subprogram has been frozen.
7598 -- In these cases both entities designate the same type. In addition,
7599 -- if one of them is an actual in an instance, it may be a subtype of
7600 -- the non-limited view of the other.
7602 if From_Limited_With (Typ_1)
7603 and then From_Limited_With (Typ_2)
7604 and then Available_View (Typ_1) = Available_View (Typ_2)
7605 then
7606 return True;
7608 elsif From_Limited_With (Typ_1) then
7609 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7611 elsif From_Limited_With (Typ_2) then
7612 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7614 else
7615 return False;
7616 end if;
7617 end Matches_Limited_With_View;
7619 -- Local variables
7621 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7623 Type_1 : Entity_Id := T1;
7624 Type_2 : Entity_Id := T2;
7626 -- Start of processing for Conforming_Types
7628 begin
7629 -- The context is an instance association for a formal access-to-
7630 -- subprogram type; the formal parameter types require mapping because
7631 -- they may denote other formal parameters of the generic unit.
7633 if Get_Inst then
7634 Type_1 := Get_Instance_Of (T1);
7635 Type_2 := Get_Instance_Of (T2);
7636 end if;
7638 -- If one of the types is a view of the other introduced by a limited
7639 -- with clause, treat these as conforming for all purposes.
7641 if Matches_Limited_With_View (T1, T2) then
7642 return True;
7644 elsif Base_Types_Match (Type_1, Type_2) then
7645 if Ctype <= Mode_Conformant then
7646 return True;
7648 else
7649 return
7650 Subtypes_Statically_Match (Type_1, Type_2)
7651 and then Dimensions_Match (Type_1, Type_2);
7652 end if;
7654 elsif Is_Incomplete_Or_Private_Type (Type_1)
7655 and then Present (Full_View (Type_1))
7656 and then Base_Types_Match (Full_View (Type_1), Type_2)
7657 then
7658 return
7659 Ctype <= Mode_Conformant
7660 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7662 elsif Ekind (Type_2) = E_Incomplete_Type
7663 and then Present (Full_View (Type_2))
7664 and then Base_Types_Match (Type_1, Full_View (Type_2))
7665 then
7666 return
7667 Ctype <= Mode_Conformant
7668 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7670 elsif Is_Private_Type (Type_2)
7671 and then In_Instance
7672 and then Present (Full_View (Type_2))
7673 and then Base_Types_Match (Type_1, Full_View (Type_2))
7674 then
7675 return
7676 Ctype <= Mode_Conformant
7677 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7679 -- Another confusion between views in a nested instance with an
7680 -- actual private type whose full view is not in scope.
7682 elsif Ekind (Type_2) = E_Private_Subtype
7683 and then In_Instance
7684 and then Etype (Type_2) = Type_1
7685 then
7686 return True;
7688 -- In Ada 2012, incomplete types (including limited views) can appear
7689 -- as actuals in instantiations, where they are conformant to the
7690 -- corresponding incomplete formal.
7692 elsif Is_Incomplete_Type (Type_1)
7693 and then Is_Incomplete_Type (Type_2)
7694 and then In_Instance
7695 and then (Used_As_Generic_Actual (Type_1)
7696 or else Used_As_Generic_Actual (Type_2))
7697 then
7698 return True;
7699 end if;
7701 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7702 -- treated recursively because they carry a signature. As far as
7703 -- conformance is concerned, convention plays no role, and either
7704 -- or both could be access to protected subprograms.
7706 Are_Anonymous_Access_To_Subprogram_Types :=
7707 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7708 E_Anonymous_Access_Protected_Subprogram_Type)
7709 and then
7710 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7711 E_Anonymous_Access_Protected_Subprogram_Type);
7713 -- Test anonymous access type case. For this case, static subtype
7714 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7715 -- the base types because we may have built internal subtype entities
7716 -- to handle null-excluding types (see Process_Formals).
7718 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7719 and then
7720 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7722 -- Ada 2005 (AI-254)
7724 or else Are_Anonymous_Access_To_Subprogram_Types
7725 then
7726 declare
7727 Desig_1 : Entity_Id;
7728 Desig_2 : Entity_Id;
7730 begin
7731 -- In Ada 2005, access constant indicators must match for
7732 -- subtype conformance.
7734 if Ada_Version >= Ada_2005
7735 and then Ctype >= Subtype_Conformant
7736 and then
7737 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7738 then
7739 return False;
7740 end if;
7742 Desig_1 := Find_Designated_Type (Type_1);
7743 Desig_2 := Find_Designated_Type (Type_2);
7745 -- If the context is an instance association for a formal
7746 -- access-to-subprogram type; formal access parameter designated
7747 -- types require mapping because they may denote other formal
7748 -- parameters of the generic unit.
7750 if Get_Inst then
7751 Desig_1 := Get_Instance_Of (Desig_1);
7752 Desig_2 := Get_Instance_Of (Desig_2);
7753 end if;
7755 -- It is possible for a Class_Wide_Type to be introduced for an
7756 -- incomplete type, in which case there is a separate class_ wide
7757 -- type for the full view. The types conform if their Etypes
7758 -- conform, i.e. one may be the full view of the other. This can
7759 -- only happen in the context of an access parameter, other uses
7760 -- of an incomplete Class_Wide_Type are illegal.
7762 if Is_Class_Wide_Type (Desig_1)
7763 and then
7764 Is_Class_Wide_Type (Desig_2)
7765 then
7766 return
7767 Conforming_Types
7768 (Etype (Base_Type (Desig_1)),
7769 Etype (Base_Type (Desig_2)), Ctype);
7771 elsif Are_Anonymous_Access_To_Subprogram_Types then
7772 if Ada_Version < Ada_2005 then
7773 return
7774 Ctype = Type_Conformant
7775 or else Subtypes_Statically_Match (Desig_1, Desig_2);
7777 -- We must check the conformance of the signatures themselves
7779 else
7780 declare
7781 Conformant : Boolean;
7782 begin
7783 Check_Conformance
7784 (Desig_1, Desig_2, Ctype, False, Conformant);
7785 return Conformant;
7786 end;
7787 end if;
7789 -- A limited view of an actual matches the corresponding
7790 -- incomplete formal.
7792 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7793 and then From_Limited_With (Desig_2)
7794 and then Used_As_Generic_Actual (Etype (Desig_2))
7795 then
7796 return True;
7798 else
7799 return Base_Type (Desig_1) = Base_Type (Desig_2)
7800 and then (Ctype = Type_Conformant
7801 or else
7802 Subtypes_Statically_Match (Desig_1, Desig_2));
7803 end if;
7804 end;
7806 -- Otherwise definitely no match
7808 else
7809 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7810 and then Is_Access_Type (Type_2))
7811 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7812 and then Is_Access_Type (Type_1)))
7813 and then
7814 Conforming_Types
7815 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7816 then
7817 May_Hide_Profile := True;
7818 end if;
7820 return False;
7821 end if;
7822 end Conforming_Types;
7824 --------------------------
7825 -- Create_Extra_Formals --
7826 --------------------------
7828 procedure Create_Extra_Formals (E : Entity_Id) is
7829 First_Extra : Entity_Id := Empty;
7830 Formal : Entity_Id;
7831 Last_Extra : Entity_Id := Empty;
7833 function Add_Extra_Formal
7834 (Assoc_Entity : Entity_Id;
7835 Typ : Entity_Id;
7836 Scope : Entity_Id;
7837 Suffix : String) return Entity_Id;
7838 -- Add an extra formal to the current list of formals and extra formals.
7839 -- The extra formal is added to the end of the list of extra formals,
7840 -- and also returned as the result. These formals are always of mode IN.
7841 -- The new formal has the type Typ, is declared in Scope, and its name
7842 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7843 -- The following suffixes are currently used. They should not be changed
7844 -- without coordinating with CodePeer, which makes use of these to
7845 -- provide better messages.
7847 -- O denotes the Constrained bit.
7848 -- L denotes the accessibility level.
7849 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7850 -- the full list in exp_ch6.BIP_Formal_Kind.
7852 ----------------------
7853 -- Add_Extra_Formal --
7854 ----------------------
7856 function Add_Extra_Formal
7857 (Assoc_Entity : Entity_Id;
7858 Typ : Entity_Id;
7859 Scope : Entity_Id;
7860 Suffix : String) return Entity_Id
7862 EF : constant Entity_Id :=
7863 Make_Defining_Identifier (Sloc (Assoc_Entity),
7864 Chars => New_External_Name (Chars (Assoc_Entity),
7865 Suffix => Suffix));
7867 begin
7868 -- A little optimization. Never generate an extra formal for the
7869 -- _init operand of an initialization procedure, since it could
7870 -- never be used.
7872 if Chars (Formal) = Name_uInit then
7873 return Empty;
7874 end if;
7876 Set_Ekind (EF, E_In_Parameter);
7877 Set_Actual_Subtype (EF, Typ);
7878 Set_Etype (EF, Typ);
7879 Set_Scope (EF, Scope);
7880 Set_Mechanism (EF, Default_Mechanism);
7881 Set_Formal_Validity (EF);
7883 if No (First_Extra) then
7884 First_Extra := EF;
7885 Set_Extra_Formals (Scope, EF);
7886 end if;
7888 if Present (Last_Extra) then
7889 Set_Extra_Formal (Last_Extra, EF);
7890 end if;
7892 Last_Extra := EF;
7894 return EF;
7895 end Add_Extra_Formal;
7897 -- Local variables
7899 Formal_Type : Entity_Id;
7900 P_Formal : Entity_Id := Empty;
7902 -- Start of processing for Create_Extra_Formals
7904 begin
7905 -- We never generate extra formals if expansion is not active because we
7906 -- don't need them unless we are generating code.
7908 if not Expander_Active then
7909 return;
7910 end if;
7912 -- No need to generate extra formals in interface thunks whose target
7913 -- primitive has no extra formals.
7915 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
7916 return;
7917 end if;
7919 -- If this is a derived subprogram then the subtypes of the parent
7920 -- subprogram's formal parameters will be used to determine the need
7921 -- for extra formals.
7923 if Is_Overloadable (E) and then Present (Alias (E)) then
7924 P_Formal := First_Formal (Alias (E));
7925 end if;
7927 Formal := First_Formal (E);
7928 while Present (Formal) loop
7929 Last_Extra := Formal;
7930 Next_Formal (Formal);
7931 end loop;
7933 -- If Extra_Formals were already created, don't do it again. This
7934 -- situation may arise for subprogram types created as part of
7935 -- dispatching calls (see Expand_Dispatching_Call).
7937 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
7938 return;
7939 end if;
7941 -- If the subprogram is a predefined dispatching subprogram then don't
7942 -- generate any extra constrained or accessibility level formals. In
7943 -- general we suppress these for internal subprograms (by not calling
7944 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
7945 -- generated stream attributes do get passed through because extra
7946 -- build-in-place formals are needed in some cases (limited 'Input).
7948 if Is_Predefined_Internal_Operation (E) then
7949 goto Test_For_Func_Result_Extras;
7950 end if;
7952 Formal := First_Formal (E);
7953 while Present (Formal) loop
7955 -- Create extra formal for supporting the attribute 'Constrained.
7956 -- The case of a private type view without discriminants also
7957 -- requires the extra formal if the underlying type has defaulted
7958 -- discriminants.
7960 if Ekind (Formal) /= E_In_Parameter then
7961 if Present (P_Formal) then
7962 Formal_Type := Etype (P_Formal);
7963 else
7964 Formal_Type := Etype (Formal);
7965 end if;
7967 -- Do not produce extra formals for Unchecked_Union parameters.
7968 -- Jump directly to the end of the loop.
7970 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
7971 goto Skip_Extra_Formal_Generation;
7972 end if;
7974 if not Has_Discriminants (Formal_Type)
7975 and then Ekind (Formal_Type) in Private_Kind
7976 and then Present (Underlying_Type (Formal_Type))
7977 then
7978 Formal_Type := Underlying_Type (Formal_Type);
7979 end if;
7981 -- Suppress the extra formal if formal's subtype is constrained or
7982 -- indefinite, or we're compiling for Ada 2012 and the underlying
7983 -- type is tagged and limited. In Ada 2012, a limited tagged type
7984 -- can have defaulted discriminants, but 'Constrained is required
7985 -- to return True, so the formal is never needed (see AI05-0214).
7986 -- Note that this ensures consistency of calling sequences for
7987 -- dispatching operations when some types in a class have defaults
7988 -- on discriminants and others do not (and requiring the extra
7989 -- formal would introduce distributed overhead).
7991 -- If the type does not have a completion yet, treat as prior to
7992 -- Ada 2012 for consistency.
7994 if Has_Discriminants (Formal_Type)
7995 and then not Is_Constrained (Formal_Type)
7996 and then Is_Definite_Subtype (Formal_Type)
7997 and then (Ada_Version < Ada_2012
7998 or else No (Underlying_Type (Formal_Type))
7999 or else not
8000 (Is_Limited_Type (Formal_Type)
8001 and then
8002 (Is_Tagged_Type
8003 (Underlying_Type (Formal_Type)))))
8004 then
8005 Set_Extra_Constrained
8006 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
8007 end if;
8008 end if;
8010 -- Create extra formal for supporting accessibility checking. This
8011 -- is done for both anonymous access formals and formals of named
8012 -- access types that are marked as controlling formals. The latter
8013 -- case can occur when Expand_Dispatching_Call creates a subprogram
8014 -- type and substitutes the types of access-to-class-wide actuals
8015 -- for the anonymous access-to-specific-type of controlling formals.
8016 -- Base_Type is applied because in cases where there is a null
8017 -- exclusion the formal may have an access subtype.
8019 -- This is suppressed if we specifically suppress accessibility
8020 -- checks at the package level for either the subprogram, or the
8021 -- package in which it resides. However, we do not suppress it
8022 -- simply if the scope has accessibility checks suppressed, since
8023 -- this could cause trouble when clients are compiled with a
8024 -- different suppression setting. The explicit checks at the
8025 -- package level are safe from this point of view.
8027 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8028 or else (Is_Controlling_Formal (Formal)
8029 and then Is_Access_Type (Base_Type (Etype (Formal)))))
8030 and then not
8031 (Explicit_Suppress (E, Accessibility_Check)
8032 or else
8033 Explicit_Suppress (Scope (E), Accessibility_Check))
8034 and then
8035 (No (P_Formal)
8036 or else Present (Extra_Accessibility (P_Formal)))
8037 then
8038 Set_Extra_Accessibility
8039 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8040 end if;
8042 -- This label is required when skipping extra formal generation for
8043 -- Unchecked_Union parameters.
8045 <<Skip_Extra_Formal_Generation>>
8047 if Present (P_Formal) then
8048 Next_Formal (P_Formal);
8049 end if;
8051 Next_Formal (Formal);
8052 end loop;
8054 <<Test_For_Func_Result_Extras>>
8056 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8057 -- function call is ... determined by the point of call ...".
8059 if Needs_Result_Accessibility_Level (E) then
8060 Set_Extra_Accessibility_Of_Result
8061 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8062 end if;
8064 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8065 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8067 if Is_Build_In_Place_Function (E) then
8068 declare
8069 Result_Subt : constant Entity_Id := Etype (E);
8070 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
8071 Formal_Typ : Entity_Id;
8072 Subp_Decl : Node_Id;
8073 Discard : Entity_Id;
8075 begin
8076 -- In the case of functions with unconstrained result subtypes,
8077 -- add a 4-state formal indicating whether the return object is
8078 -- allocated by the caller (1), or should be allocated by the
8079 -- callee on the secondary stack (2), in the global heap (3), or
8080 -- in a user-defined storage pool (4). For the moment we just use
8081 -- Natural for the type of this formal. Note that this formal
8082 -- isn't usually needed in the case where the result subtype is
8083 -- constrained, but it is needed when the function has a tagged
8084 -- result, because generally such functions can be called in a
8085 -- dispatching context and such calls must be handled like calls
8086 -- to a class-wide function.
8088 if Needs_BIP_Alloc_Form (E) then
8089 Discard :=
8090 Add_Extra_Formal
8091 (E, Standard_Natural,
8092 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8094 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8095 -- use a user-defined pool. This formal is not added on
8096 -- ZFP as those targets do not support pools.
8098 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
8099 Discard :=
8100 Add_Extra_Formal
8101 (E, RTE (RE_Root_Storage_Pool_Ptr),
8102 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8103 end if;
8104 end if;
8106 -- In the case of functions whose result type needs finalization,
8107 -- add an extra formal which represents the finalization master.
8109 if Needs_BIP_Finalization_Master (E) then
8110 Discard :=
8111 Add_Extra_Formal
8112 (E, RTE (RE_Finalization_Master_Ptr),
8113 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8114 end if;
8116 -- When the result type contains tasks, add two extra formals: the
8117 -- master of the tasks to be created, and the caller's activation
8118 -- chain.
8120 if Has_Task (Full_Subt) then
8121 Discard :=
8122 Add_Extra_Formal
8123 (E, RTE (RE_Master_Id),
8124 E, BIP_Formal_Suffix (BIP_Task_Master));
8125 Discard :=
8126 Add_Extra_Formal
8127 (E, RTE (RE_Activation_Chain_Access),
8128 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8129 end if;
8131 -- All build-in-place functions get an extra formal that will be
8132 -- passed the address of the return object within the caller.
8134 Formal_Typ :=
8135 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8137 -- Incomplete_View_From_Limited_With is needed here because
8138 -- gigi gets confused if the designated type is the full view
8139 -- coming from a limited-with'ed package. In the normal case,
8140 -- (no limited with) Incomplete_View_From_Limited_With
8141 -- returns Result_Subt.
8143 Set_Directly_Designated_Type
8144 (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
8145 Set_Etype (Formal_Typ, Formal_Typ);
8146 Set_Depends_On_Private
8147 (Formal_Typ, Has_Private_Component (Formal_Typ));
8148 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8149 Set_Is_Access_Constant (Formal_Typ, False);
8151 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8152 -- the designated type comes from the limited view (for back-end
8153 -- purposes).
8155 Set_From_Limited_With
8156 (Formal_Typ, From_Limited_With (Result_Subt));
8158 Layout_Type (Formal_Typ);
8160 -- Force the definition of the Itype in case of internal function
8161 -- calls within the same or nested scope.
8163 if Is_Subprogram_Or_Generic_Subprogram (E) then
8164 Subp_Decl := Parent (E);
8166 -- The insertion point for an Itype reference should be after
8167 -- the unit declaration node of the subprogram. An exception
8168 -- to this are inherited operations from a parent type in which
8169 -- case the derived type acts as their parent.
8171 if Nkind_In (Subp_Decl, N_Function_Specification,
8172 N_Procedure_Specification)
8173 then
8174 Subp_Decl := Parent (Subp_Decl);
8175 end if;
8177 Build_Itype_Reference (Formal_Typ, Subp_Decl);
8178 end if;
8180 Discard :=
8181 Add_Extra_Formal
8182 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8183 end;
8184 end if;
8186 -- If this is an instance of a generic, we need to have extra formals
8187 -- for the Alias.
8189 if Is_Generic_Instance (E) and then Present (Alias (E)) then
8190 Set_Extra_Formals (Alias (E), Extra_Formals (E));
8191 end if;
8192 end Create_Extra_Formals;
8194 -----------------------------
8195 -- Enter_Overloaded_Entity --
8196 -----------------------------
8198 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8199 function Matches_Predefined_Op return Boolean;
8200 -- This returns an approximation of whether S matches a predefined
8201 -- operator, based on the operator symbol, and the parameter and result
8202 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
8204 ---------------------------
8205 -- Matches_Predefined_Op --
8206 ---------------------------
8208 function Matches_Predefined_Op return Boolean is
8209 Formal_1 : constant Entity_Id := First_Formal (S);
8210 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
8211 Op : constant Name_Id := Chars (S);
8212 Result_Type : constant Entity_Id := Base_Type (Etype (S));
8213 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
8215 begin
8216 -- Binary operator
8218 if Present (Formal_2) then
8219 declare
8220 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
8222 begin
8223 -- All but "&" and "**" have same-types parameters
8225 case Op is
8226 when Name_Op_Concat
8227 | Name_Op_Expon
8229 null;
8231 when others =>
8232 if Type_1 /= Type_2 then
8233 return False;
8234 end if;
8235 end case;
8237 -- Check parameter and result types
8239 case Op is
8240 when Name_Op_And
8241 | Name_Op_Or
8242 | Name_Op_Xor
8244 return
8245 Is_Boolean_Type (Result_Type)
8246 and then Result_Type = Type_1;
8248 when Name_Op_Mod
8249 | Name_Op_Rem
8251 return
8252 Is_Integer_Type (Result_Type)
8253 and then Result_Type = Type_1;
8255 when Name_Op_Add
8256 | Name_Op_Divide
8257 | Name_Op_Multiply
8258 | Name_Op_Subtract
8260 return
8261 Is_Numeric_Type (Result_Type)
8262 and then Result_Type = Type_1;
8264 when Name_Op_Eq
8265 | Name_Op_Ne
8267 return
8268 Is_Boolean_Type (Result_Type)
8269 and then not Is_Limited_Type (Type_1);
8271 when Name_Op_Ge
8272 | Name_Op_Gt
8273 | Name_Op_Le
8274 | Name_Op_Lt
8276 return
8277 Is_Boolean_Type (Result_Type)
8278 and then (Is_Array_Type (Type_1)
8279 or else Is_Scalar_Type (Type_1));
8281 when Name_Op_Concat =>
8282 return Is_Array_Type (Result_Type);
8284 when Name_Op_Expon =>
8285 return
8286 (Is_Integer_Type (Result_Type)
8287 or else Is_Floating_Point_Type (Result_Type))
8288 and then Result_Type = Type_1
8289 and then Type_2 = Standard_Integer;
8291 when others =>
8292 raise Program_Error;
8293 end case;
8294 end;
8296 -- Unary operator
8298 else
8299 case Op is
8300 when Name_Op_Abs
8301 | Name_Op_Add
8302 | Name_Op_Subtract
8304 return
8305 Is_Numeric_Type (Result_Type)
8306 and then Result_Type = Type_1;
8308 when Name_Op_Not =>
8309 return
8310 Is_Boolean_Type (Result_Type)
8311 and then Result_Type = Type_1;
8313 when others =>
8314 raise Program_Error;
8315 end case;
8316 end if;
8317 end Matches_Predefined_Op;
8319 -- Local variables
8321 E : Entity_Id := Current_Entity_In_Scope (S);
8322 C_E : Entity_Id := Current_Entity (S);
8324 -- Start of processing for Enter_Overloaded_Entity
8326 begin
8327 if Present (E) then
8328 Set_Has_Homonym (E);
8329 Set_Has_Homonym (S);
8330 end if;
8332 Set_Is_Immediately_Visible (S);
8333 Set_Scope (S, Current_Scope);
8335 -- Chain new entity if front of homonym in current scope, so that
8336 -- homonyms are contiguous.
8338 if Present (E) and then E /= C_E then
8339 while Homonym (C_E) /= E loop
8340 C_E := Homonym (C_E);
8341 end loop;
8343 Set_Homonym (C_E, S);
8345 else
8346 E := C_E;
8347 Set_Current_Entity (S);
8348 end if;
8350 Set_Homonym (S, E);
8352 if Is_Inherited_Operation (S) then
8353 Append_Inherited_Subprogram (S);
8354 else
8355 Append_Entity (S, Current_Scope);
8356 end if;
8358 Set_Public_Status (S);
8360 if Debug_Flag_E then
8361 Write_Str ("New overloaded entity chain: ");
8362 Write_Name (Chars (S));
8364 E := S;
8365 while Present (E) loop
8366 Write_Str (" "); Write_Int (Int (E));
8367 E := Homonym (E);
8368 end loop;
8370 Write_Eol;
8371 end if;
8373 -- Generate warning for hiding
8375 if Warn_On_Hiding
8376 and then Comes_From_Source (S)
8377 and then In_Extended_Main_Source_Unit (S)
8378 then
8379 E := S;
8380 loop
8381 E := Homonym (E);
8382 exit when No (E);
8384 -- Warn unless genuine overloading. Do not emit warning on
8385 -- hiding predefined operators in Standard (these are either an
8386 -- (artifact of our implicit declarations, or simple noise) but
8387 -- keep warning on a operator defined on a local subtype, because
8388 -- of the real danger that different operators may be applied in
8389 -- various parts of the program.
8391 -- Note that if E and S have the same scope, there is never any
8392 -- hiding. Either the two conflict, and the program is illegal,
8393 -- or S is overriding an implicit inherited subprogram.
8395 if Scope (E) /= Scope (S)
8396 and then (not Is_Overloadable (E)
8397 or else Subtype_Conformant (E, S))
8398 and then (Is_Immediately_Visible (E)
8399 or else Is_Potentially_Use_Visible (S))
8400 then
8401 if Scope (E) = Standard_Standard then
8402 if Nkind (S) = N_Defining_Operator_Symbol
8403 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8404 Scope (S)
8405 and then Matches_Predefined_Op
8406 then
8407 Error_Msg_N
8408 ("declaration of & hides predefined operator?h?", S);
8409 end if;
8411 -- E not immediately within Standard
8413 else
8414 Error_Msg_Sloc := Sloc (E);
8415 Error_Msg_N ("declaration of & hides one #?h?", S);
8416 end if;
8417 end if;
8418 end loop;
8419 end if;
8420 end Enter_Overloaded_Entity;
8422 -----------------------------
8423 -- Check_Untagged_Equality --
8424 -----------------------------
8426 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8427 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8428 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8429 Obj_Decl : Node_Id;
8431 begin
8432 -- This check applies only if we have a subprogram declaration with an
8433 -- untagged record type.
8435 if Nkind (Decl) /= N_Subprogram_Declaration
8436 or else not Is_Record_Type (Typ)
8437 or else Is_Tagged_Type (Typ)
8438 then
8439 return;
8440 end if;
8442 -- In Ada 2012 case, we will output errors or warnings depending on
8443 -- the setting of debug flag -gnatd.E.
8445 if Ada_Version >= Ada_2012 then
8446 Error_Msg_Warn := Debug_Flag_Dot_EE;
8448 -- In earlier versions of Ada, nothing to do unless we are warning on
8449 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8451 else
8452 if not Warn_On_Ada_2012_Compatibility then
8453 return;
8454 end if;
8455 end if;
8457 -- Cases where the type has already been frozen
8459 if Is_Frozen (Typ) then
8461 -- If the type is not declared in a package, or if we are in the body
8462 -- of the package or in some other scope, the new operation is not
8463 -- primitive, and therefore legal, though suspicious. Should we
8464 -- generate a warning in this case ???
8466 if Ekind (Scope (Typ)) /= E_Package
8467 or else Scope (Typ) /= Current_Scope
8468 then
8469 return;
8471 -- If the type is a generic actual (sub)type, the operation is not
8472 -- primitive either because the base type is declared elsewhere.
8474 elsif Is_Generic_Actual_Type (Typ) then
8475 return;
8477 -- Here we have a definite error of declaration after freezing
8479 else
8480 if Ada_Version >= Ada_2012 then
8481 Error_Msg_NE
8482 ("equality operator must be declared before type & is "
8483 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8485 -- In Ada 2012 mode with error turned to warning, output one
8486 -- more warning to warn that the equality operation may not
8487 -- compose. This is the consequence of ignoring the error.
8489 if Error_Msg_Warn then
8490 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8491 end if;
8493 else
8494 Error_Msg_NE
8495 ("equality operator must be declared before type& is "
8496 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8497 end if;
8499 -- If we are in the package body, we could just move the
8500 -- declaration to the package spec, so add a message saying that.
8502 if In_Package_Body (Scope (Typ)) then
8503 if Ada_Version >= Ada_2012 then
8504 Error_Msg_N
8505 ("\move declaration to package spec<<", Eq_Op);
8506 else
8507 Error_Msg_N
8508 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8509 end if;
8511 -- Otherwise try to find the freezing point
8513 else
8514 Obj_Decl := Next (Parent (Typ));
8515 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8516 if Nkind (Obj_Decl) = N_Object_Declaration
8517 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8518 then
8519 -- Freezing point, output warnings
8521 if Ada_Version >= Ada_2012 then
8522 Error_Msg_NE
8523 ("type& is frozen by declaration??", Obj_Decl, Typ);
8524 Error_Msg_N
8525 ("\an equality operator cannot be declared after "
8526 & "this point??",
8527 Obj_Decl);
8528 else
8529 Error_Msg_NE
8530 ("type& is frozen by declaration (Ada 2012)?y?",
8531 Obj_Decl, Typ);
8532 Error_Msg_N
8533 ("\an equality operator cannot be declared after "
8534 & "this point (Ada 2012)?y?",
8535 Obj_Decl);
8536 end if;
8538 exit;
8539 end if;
8541 Next (Obj_Decl);
8542 end loop;
8543 end if;
8544 end if;
8546 -- Here if type is not frozen yet. It is illegal to have a primitive
8547 -- equality declared in the private part if the type is visible.
8549 elsif not In_Same_List (Parent (Typ), Decl)
8550 and then not Is_Limited_Type (Typ)
8551 then
8552 -- Shouldn't we give an RM reference here???
8554 if Ada_Version >= Ada_2012 then
8555 Error_Msg_N
8556 ("equality operator appears too late<<", Eq_Op);
8557 else
8558 Error_Msg_N
8559 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8560 end if;
8562 -- No error detected
8564 else
8565 return;
8566 end if;
8567 end Check_Untagged_Equality;
8569 -----------------------------
8570 -- Find_Corresponding_Spec --
8571 -----------------------------
8573 function Find_Corresponding_Spec
8574 (N : Node_Id;
8575 Post_Error : Boolean := True) return Entity_Id
8577 Spec : constant Node_Id := Specification (N);
8578 Designator : constant Entity_Id := Defining_Entity (Spec);
8580 E : Entity_Id;
8582 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8583 -- Even if fully conformant, a body may depend on a generic actual when
8584 -- the spec does not, or vice versa, in which case they were distinct
8585 -- entities in the generic.
8587 -------------------------------
8588 -- Different_Generic_Profile --
8589 -------------------------------
8591 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8592 F1, F2 : Entity_Id;
8594 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8595 -- Check that the types of corresponding formals have the same
8596 -- generic actual if any. We have to account for subtypes of a
8597 -- generic formal, declared between a spec and a body, which may
8598 -- appear distinct in an instance but matched in the generic, and
8599 -- the subtype may be used either in the spec or the body of the
8600 -- subprogram being checked.
8602 -------------------------
8603 -- Same_Generic_Actual --
8604 -------------------------
8606 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8608 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8609 -- Predicate to check whether S1 is a subtype of S2 in the source
8610 -- of the instance.
8612 -------------------------
8613 -- Is_Declared_Subtype --
8614 -------------------------
8616 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8617 begin
8618 return Comes_From_Source (Parent (S1))
8619 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8620 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8621 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8622 end Is_Declared_Subtype;
8624 -- Start of processing for Same_Generic_Actual
8626 begin
8627 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8628 or else Is_Declared_Subtype (T1, T2)
8629 or else Is_Declared_Subtype (T2, T1);
8630 end Same_Generic_Actual;
8632 -- Start of processing for Different_Generic_Profile
8634 begin
8635 if not In_Instance then
8636 return False;
8638 elsif Ekind (E) = E_Function
8639 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8640 then
8641 return True;
8642 end if;
8644 F1 := First_Formal (Designator);
8645 F2 := First_Formal (E);
8646 while Present (F1) loop
8647 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8648 return True;
8649 end if;
8651 Next_Formal (F1);
8652 Next_Formal (F2);
8653 end loop;
8655 return False;
8656 end Different_Generic_Profile;
8658 -- Start of processing for Find_Corresponding_Spec
8660 begin
8661 E := Current_Entity (Designator);
8662 while Present (E) loop
8664 -- We are looking for a matching spec. It must have the same scope,
8665 -- and the same name, and either be type conformant, or be the case
8666 -- of a library procedure spec and its body (which belong to one
8667 -- another regardless of whether they are type conformant or not).
8669 if Scope (E) = Current_Scope then
8670 if Current_Scope = Standard_Standard
8671 or else (Ekind (E) = Ekind (Designator)
8672 and then Type_Conformant (E, Designator))
8673 then
8674 -- Within an instantiation, we know that spec and body are
8675 -- subtype conformant, because they were subtype conformant in
8676 -- the generic. We choose the subtype-conformant entity here as
8677 -- well, to resolve spurious ambiguities in the instance that
8678 -- were not present in the generic (i.e. when two different
8679 -- types are given the same actual). If we are looking for a
8680 -- spec to match a body, full conformance is expected.
8682 if In_Instance then
8684 -- Inherit the convention and "ghostness" of the matching
8685 -- spec to ensure proper full and subtype conformance.
8687 Set_Convention (Designator, Convention (E));
8689 -- Skip past subprogram bodies and subprogram renamings that
8690 -- may appear to have a matching spec, but that aren't fully
8691 -- conformant with it. That can occur in cases where an
8692 -- actual type causes unrelated homographs in the instance.
8694 if Nkind_In (N, N_Subprogram_Body,
8695 N_Subprogram_Renaming_Declaration)
8696 and then Present (Homonym (E))
8697 and then not Fully_Conformant (Designator, E)
8698 then
8699 goto Next_Entity;
8701 elsif not Subtype_Conformant (Designator, E) then
8702 goto Next_Entity;
8704 elsif Different_Generic_Profile (E) then
8705 goto Next_Entity;
8706 end if;
8707 end if;
8709 -- Ada 2012 (AI05-0165): For internally generated bodies of
8710 -- null procedures locate the internally generated spec. We
8711 -- enforce mode conformance since a tagged type may inherit
8712 -- from interfaces several null primitives which differ only
8713 -- in the mode of the formals.
8715 if not (Comes_From_Source (E))
8716 and then Is_Null_Procedure (E)
8717 and then not Mode_Conformant (Designator, E)
8718 then
8719 null;
8721 -- For null procedures coming from source that are completions,
8722 -- analysis of the generated body will establish the link.
8724 elsif Comes_From_Source (E)
8725 and then Nkind (Spec) = N_Procedure_Specification
8726 and then Null_Present (Spec)
8727 then
8728 return E;
8730 -- Expression functions can be completions, but cannot be
8731 -- completed by an explicit body.
8733 elsif Comes_From_Source (E)
8734 and then Comes_From_Source (N)
8735 and then Nkind (N) = N_Subprogram_Body
8736 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8737 N_Expression_Function
8738 then
8739 Error_Msg_Sloc := Sloc (E);
8740 Error_Msg_N ("body conflicts with expression function#", N);
8741 return Empty;
8743 elsif not Has_Completion (E) then
8744 if Nkind (N) /= N_Subprogram_Body_Stub then
8745 Set_Corresponding_Spec (N, E);
8746 end if;
8748 Set_Has_Completion (E);
8749 return E;
8751 elsif Nkind (Parent (N)) = N_Subunit then
8753 -- If this is the proper body of a subunit, the completion
8754 -- flag is set when analyzing the stub.
8756 return E;
8758 -- If E is an internal function with a controlling result that
8759 -- was created for an operation inherited by a null extension,
8760 -- it may be overridden by a body without a previous spec (one
8761 -- more reason why these should be shunned). In that case we
8762 -- remove the generated body if present, because the current
8763 -- one is the explicit overriding.
8765 elsif Ekind (E) = E_Function
8766 and then Ada_Version >= Ada_2005
8767 and then not Comes_From_Source (E)
8768 and then Has_Controlling_Result (E)
8769 and then Is_Null_Extension (Etype (E))
8770 and then Comes_From_Source (Spec)
8771 then
8772 Set_Has_Completion (E, False);
8774 if Expander_Active
8775 and then Nkind (Parent (E)) = N_Function_Specification
8776 then
8777 Remove
8778 (Unit_Declaration_Node
8779 (Corresponding_Body (Unit_Declaration_Node (E))));
8781 return E;
8783 -- If expansion is disabled, or if the wrapper function has
8784 -- not been generated yet, this a late body overriding an
8785 -- inherited operation, or it is an overriding by some other
8786 -- declaration before the controlling result is frozen. In
8787 -- either case this is a declaration of a new entity.
8789 else
8790 return Empty;
8791 end if;
8793 -- If the body already exists, then this is an error unless
8794 -- the previous declaration is the implicit declaration of a
8795 -- derived subprogram. It is also legal for an instance to
8796 -- contain type conformant overloadable declarations (but the
8797 -- generic declaration may not), per 8.3(26/2).
8799 elsif No (Alias (E))
8800 and then not Is_Intrinsic_Subprogram (E)
8801 and then not In_Instance
8802 and then Post_Error
8803 then
8804 Error_Msg_Sloc := Sloc (E);
8806 if Is_Imported (E) then
8807 Error_Msg_NE
8808 ("body not allowed for imported subprogram & declared#",
8809 N, E);
8810 else
8811 Error_Msg_NE ("duplicate body for & declared#", N, E);
8812 end if;
8813 end if;
8815 -- Child units cannot be overloaded, so a conformance mismatch
8816 -- between body and a previous spec is an error.
8818 elsif Is_Child_Unit (E)
8819 and then
8820 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8821 and then
8822 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8823 N_Compilation_Unit
8824 and then Post_Error
8825 then
8826 Error_Msg_N
8827 ("body of child unit does not match previous declaration", N);
8828 end if;
8829 end if;
8831 <<Next_Entity>>
8832 E := Homonym (E);
8833 end loop;
8835 -- On exit, we know that no previous declaration of subprogram exists
8837 return Empty;
8838 end Find_Corresponding_Spec;
8840 ----------------------
8841 -- Fully_Conformant --
8842 ----------------------
8844 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8845 Result : Boolean;
8846 begin
8847 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8848 return Result;
8849 end Fully_Conformant;
8851 ----------------------------------
8852 -- Fully_Conformant_Expressions --
8853 ----------------------------------
8855 function Fully_Conformant_Expressions
8856 (Given_E1 : Node_Id;
8857 Given_E2 : Node_Id) return Boolean
8859 E1 : constant Node_Id := Original_Node (Given_E1);
8860 E2 : constant Node_Id := Original_Node (Given_E2);
8861 -- We always test conformance on original nodes, since it is possible
8862 -- for analysis and/or expansion to make things look as though they
8863 -- conform when they do not, e.g. by converting 1+2 into 3.
8865 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
8866 renames Fully_Conformant_Expressions;
8868 function FCL (L1, L2 : List_Id) return Boolean;
8869 -- Compare elements of two lists for conformance. Elements have to be
8870 -- conformant, and actuals inserted as default parameters do not match
8871 -- explicit actuals with the same value.
8873 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
8874 -- Compare an operator node with a function call
8876 ---------
8877 -- FCL --
8878 ---------
8880 function FCL (L1, L2 : List_Id) return Boolean is
8881 N1, N2 : Node_Id;
8883 begin
8884 if L1 = No_List then
8885 N1 := Empty;
8886 else
8887 N1 := First (L1);
8888 end if;
8890 if L2 = No_List then
8891 N2 := Empty;
8892 else
8893 N2 := First (L2);
8894 end if;
8896 -- Compare two lists, skipping rewrite insertions (we want to compare
8897 -- the original trees, not the expanded versions).
8899 loop
8900 if Is_Rewrite_Insertion (N1) then
8901 Next (N1);
8902 elsif Is_Rewrite_Insertion (N2) then
8903 Next (N2);
8904 elsif No (N1) then
8905 return No (N2);
8906 elsif No (N2) then
8907 return False;
8908 elsif not FCE (N1, N2) then
8909 return False;
8910 else
8911 Next (N1);
8912 Next (N2);
8913 end if;
8914 end loop;
8915 end FCL;
8917 ---------
8918 -- FCO --
8919 ---------
8921 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
8922 Actuals : constant List_Id := Parameter_Associations (Call_Node);
8923 Act : Node_Id;
8925 begin
8926 if No (Actuals)
8927 or else Entity (Op_Node) /= Entity (Name (Call_Node))
8928 then
8929 return False;
8931 else
8932 Act := First (Actuals);
8934 if Nkind (Op_Node) in N_Binary_Op then
8935 if not FCE (Left_Opnd (Op_Node), Act) then
8936 return False;
8937 end if;
8939 Next (Act);
8940 end if;
8942 return Present (Act)
8943 and then FCE (Right_Opnd (Op_Node), Act)
8944 and then No (Next (Act));
8945 end if;
8946 end FCO;
8948 -- Start of processing for Fully_Conformant_Expressions
8950 begin
8951 -- Nonconformant if paren count does not match. Note: if some idiot
8952 -- complains that we don't do this right for more than 3 levels of
8953 -- parentheses, they will be treated with the respect they deserve.
8955 if Paren_Count (E1) /= Paren_Count (E2) then
8956 return False;
8958 -- If same entities are referenced, then they are conformant even if
8959 -- they have different forms (RM 8.3.1(19-20)).
8961 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
8962 if Present (Entity (E1)) then
8963 return Entity (E1) = Entity (E2)
8965 -- One may be a discriminant that has been replaced by the
8966 -- corresponding discriminal.
8968 or else
8969 (Chars (Entity (E1)) = Chars (Entity (E2))
8970 and then Ekind (Entity (E1)) = E_Discriminant
8971 and then Ekind (Entity (E2)) = E_In_Parameter)
8973 -- The discriminant of a protected type is transformed into
8974 -- a local constant and then into a parameter of a protected
8975 -- operation.
8977 or else
8978 (Ekind (Entity (E1)) = E_Constant
8979 and then Ekind (Entity (E2)) = E_In_Parameter
8980 and then Present (Discriminal_Link (Entity (E1)))
8981 and then Discriminal_Link (Entity (E1)) =
8982 Discriminal_Link (Entity (E2)))
8984 -- AI12-050: The loop variables of quantified expressions
8985 -- match if they have the same identifier, even though they
8986 -- are different entities.
8988 or else
8989 (Chars (Entity (E1)) = Chars (Entity (E2))
8990 and then Ekind (Entity (E1)) = E_Loop_Parameter
8991 and then Ekind (Entity (E2)) = E_Loop_Parameter);
8993 elsif Nkind (E1) = N_Expanded_Name
8994 and then Nkind (E2) = N_Expanded_Name
8995 and then Nkind (Selector_Name (E1)) = N_Character_Literal
8996 and then Nkind (Selector_Name (E2)) = N_Character_Literal
8997 then
8998 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
9000 else
9001 -- Identifiers in component associations don't always have
9002 -- entities, but their names must conform.
9004 return Nkind (E1) = N_Identifier
9005 and then Nkind (E2) = N_Identifier
9006 and then Chars (E1) = Chars (E2);
9007 end if;
9009 elsif Nkind (E1) = N_Character_Literal
9010 and then Nkind (E2) = N_Expanded_Name
9011 then
9012 return Nkind (Selector_Name (E2)) = N_Character_Literal
9013 and then Chars (E1) = Chars (Selector_Name (E2));
9015 elsif Nkind (E2) = N_Character_Literal
9016 and then Nkind (E1) = N_Expanded_Name
9017 then
9018 return Nkind (Selector_Name (E1)) = N_Character_Literal
9019 and then Chars (E2) = Chars (Selector_Name (E1));
9021 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
9022 return FCO (E1, E2);
9024 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
9025 return FCO (E2, E1);
9027 -- Otherwise we must have the same syntactic entity
9029 elsif Nkind (E1) /= Nkind (E2) then
9030 return False;
9032 -- At this point, we specialize by node type
9034 else
9035 case Nkind (E1) is
9036 when N_Aggregate =>
9037 return
9038 FCL (Expressions (E1), Expressions (E2))
9039 and then
9040 FCL (Component_Associations (E1),
9041 Component_Associations (E2));
9043 when N_Allocator =>
9044 if Nkind (Expression (E1)) = N_Qualified_Expression
9045 or else
9046 Nkind (Expression (E2)) = N_Qualified_Expression
9047 then
9048 return FCE (Expression (E1), Expression (E2));
9050 -- Check that the subtype marks and any constraints
9051 -- are conformant
9053 else
9054 declare
9055 Indic1 : constant Node_Id := Expression (E1);
9056 Indic2 : constant Node_Id := Expression (E2);
9057 Elt1 : Node_Id;
9058 Elt2 : Node_Id;
9060 begin
9061 if Nkind (Indic1) /= N_Subtype_Indication then
9062 return
9063 Nkind (Indic2) /= N_Subtype_Indication
9064 and then Entity (Indic1) = Entity (Indic2);
9066 elsif Nkind (Indic2) /= N_Subtype_Indication then
9067 return
9068 Nkind (Indic1) /= N_Subtype_Indication
9069 and then Entity (Indic1) = Entity (Indic2);
9071 else
9072 if Entity (Subtype_Mark (Indic1)) /=
9073 Entity (Subtype_Mark (Indic2))
9074 then
9075 return False;
9076 end if;
9078 Elt1 := First (Constraints (Constraint (Indic1)));
9079 Elt2 := First (Constraints (Constraint (Indic2)));
9080 while Present (Elt1) and then Present (Elt2) loop
9081 if not FCE (Elt1, Elt2) then
9082 return False;
9083 end if;
9085 Next (Elt1);
9086 Next (Elt2);
9087 end loop;
9089 return True;
9090 end if;
9091 end;
9092 end if;
9094 when N_Attribute_Reference =>
9095 return
9096 Attribute_Name (E1) = Attribute_Name (E2)
9097 and then FCL (Expressions (E1), Expressions (E2));
9099 when N_Binary_Op =>
9100 return
9101 Entity (E1) = Entity (E2)
9102 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
9103 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
9105 when N_Membership_Test
9106 | N_Short_Circuit
9108 return
9109 FCE (Left_Opnd (E1), Left_Opnd (E2))
9110 and then
9111 FCE (Right_Opnd (E1), Right_Opnd (E2));
9113 when N_Case_Expression =>
9114 declare
9115 Alt1 : Node_Id;
9116 Alt2 : Node_Id;
9118 begin
9119 if not FCE (Expression (E1), Expression (E2)) then
9120 return False;
9122 else
9123 Alt1 := First (Alternatives (E1));
9124 Alt2 := First (Alternatives (E2));
9125 loop
9126 if Present (Alt1) /= Present (Alt2) then
9127 return False;
9128 elsif No (Alt1) then
9129 return True;
9130 end if;
9132 if not FCE (Expression (Alt1), Expression (Alt2))
9133 or else not FCL (Discrete_Choices (Alt1),
9134 Discrete_Choices (Alt2))
9135 then
9136 return False;
9137 end if;
9139 Next (Alt1);
9140 Next (Alt2);
9141 end loop;
9142 end if;
9143 end;
9145 when N_Character_Literal =>
9146 return
9147 Char_Literal_Value (E1) = Char_Literal_Value (E2);
9149 when N_Component_Association =>
9150 return
9151 FCL (Choices (E1), Choices (E2))
9152 and then
9153 FCE (Expression (E1), Expression (E2));
9155 when N_Explicit_Dereference =>
9156 return
9157 FCE (Prefix (E1), Prefix (E2));
9159 when N_Extension_Aggregate =>
9160 return
9161 FCL (Expressions (E1), Expressions (E2))
9162 and then Null_Record_Present (E1) =
9163 Null_Record_Present (E2)
9164 and then FCL (Component_Associations (E1),
9165 Component_Associations (E2));
9167 when N_Function_Call =>
9168 return
9169 FCE (Name (E1), Name (E2))
9170 and then
9171 FCL (Parameter_Associations (E1),
9172 Parameter_Associations (E2));
9174 when N_If_Expression =>
9175 return
9176 FCL (Expressions (E1), Expressions (E2));
9178 when N_Indexed_Component =>
9179 return
9180 FCE (Prefix (E1), Prefix (E2))
9181 and then
9182 FCL (Expressions (E1), Expressions (E2));
9184 when N_Integer_Literal =>
9185 return (Intval (E1) = Intval (E2));
9187 when N_Null =>
9188 return True;
9190 when N_Operator_Symbol =>
9191 return
9192 Chars (E1) = Chars (E2);
9194 when N_Others_Choice =>
9195 return True;
9197 when N_Parameter_Association =>
9198 return
9199 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
9200 and then FCE (Explicit_Actual_Parameter (E1),
9201 Explicit_Actual_Parameter (E2));
9203 when N_Qualified_Expression
9204 | N_Type_Conversion
9205 | N_Unchecked_Type_Conversion
9207 return
9208 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9209 and then
9210 FCE (Expression (E1), Expression (E2));
9212 when N_Quantified_Expression =>
9213 if not FCE (Condition (E1), Condition (E2)) then
9214 return False;
9215 end if;
9217 if Present (Loop_Parameter_Specification (E1))
9218 and then Present (Loop_Parameter_Specification (E2))
9219 then
9220 declare
9221 L1 : constant Node_Id :=
9222 Loop_Parameter_Specification (E1);
9223 L2 : constant Node_Id :=
9224 Loop_Parameter_Specification (E2);
9226 begin
9227 return
9228 Reverse_Present (L1) = Reverse_Present (L2)
9229 and then
9230 FCE (Defining_Identifier (L1),
9231 Defining_Identifier (L2))
9232 and then
9233 FCE (Discrete_Subtype_Definition (L1),
9234 Discrete_Subtype_Definition (L2));
9235 end;
9237 elsif Present (Iterator_Specification (E1))
9238 and then Present (Iterator_Specification (E2))
9239 then
9240 declare
9241 I1 : constant Node_Id := Iterator_Specification (E1);
9242 I2 : constant Node_Id := Iterator_Specification (E2);
9244 begin
9245 return
9246 FCE (Defining_Identifier (I1),
9247 Defining_Identifier (I2))
9248 and then
9249 Of_Present (I1) = Of_Present (I2)
9250 and then
9251 Reverse_Present (I1) = Reverse_Present (I2)
9252 and then FCE (Name (I1), Name (I2))
9253 and then FCE (Subtype_Indication (I1),
9254 Subtype_Indication (I2));
9255 end;
9257 -- The quantified expressions used different specifications to
9258 -- walk their respective ranges.
9260 else
9261 return False;
9262 end if;
9264 when N_Range =>
9265 return
9266 FCE (Low_Bound (E1), Low_Bound (E2))
9267 and then
9268 FCE (High_Bound (E1), High_Bound (E2));
9270 when N_Real_Literal =>
9271 return (Realval (E1) = Realval (E2));
9273 when N_Selected_Component =>
9274 return
9275 FCE (Prefix (E1), Prefix (E2))
9276 and then
9277 FCE (Selector_Name (E1), Selector_Name (E2));
9279 when N_Slice =>
9280 return
9281 FCE (Prefix (E1), Prefix (E2))
9282 and then
9283 FCE (Discrete_Range (E1), Discrete_Range (E2));
9285 when N_String_Literal =>
9286 declare
9287 S1 : constant String_Id := Strval (E1);
9288 S2 : constant String_Id := Strval (E2);
9289 L1 : constant Nat := String_Length (S1);
9290 L2 : constant Nat := String_Length (S2);
9292 begin
9293 if L1 /= L2 then
9294 return False;
9296 else
9297 for J in 1 .. L1 loop
9298 if Get_String_Char (S1, J) /=
9299 Get_String_Char (S2, J)
9300 then
9301 return False;
9302 end if;
9303 end loop;
9305 return True;
9306 end if;
9307 end;
9309 when N_Unary_Op =>
9310 return
9311 Entity (E1) = Entity (E2)
9312 and then
9313 FCE (Right_Opnd (E1), Right_Opnd (E2));
9315 -- All other node types cannot appear in this context. Strictly
9316 -- we should raise a fatal internal error. Instead we just ignore
9317 -- the nodes. This means that if anyone makes a mistake in the
9318 -- expander and mucks an expression tree irretrievably, the result
9319 -- will be a failure to detect a (probably very obscure) case
9320 -- of non-conformance, which is better than bombing on some
9321 -- case where two expressions do in fact conform.
9323 when others =>
9324 return True;
9325 end case;
9326 end if;
9327 end Fully_Conformant_Expressions;
9329 ----------------------------------------
9330 -- Fully_Conformant_Discrete_Subtypes --
9331 ----------------------------------------
9333 function Fully_Conformant_Discrete_Subtypes
9334 (Given_S1 : Node_Id;
9335 Given_S2 : Node_Id) return Boolean
9337 S1 : constant Node_Id := Original_Node (Given_S1);
9338 S2 : constant Node_Id := Original_Node (Given_S2);
9340 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9341 -- Special-case for a bound given by a discriminant, which in the body
9342 -- is replaced with the discriminal of the enclosing type.
9344 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9345 -- Check both bounds
9347 -----------------------
9348 -- Conforming_Bounds --
9349 -----------------------
9351 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9352 begin
9353 if Is_Entity_Name (B1)
9354 and then Is_Entity_Name (B2)
9355 and then Ekind (Entity (B1)) = E_Discriminant
9356 then
9357 return Chars (B1) = Chars (B2);
9359 else
9360 return Fully_Conformant_Expressions (B1, B2);
9361 end if;
9362 end Conforming_Bounds;
9364 -----------------------
9365 -- Conforming_Ranges --
9366 -----------------------
9368 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9369 begin
9370 return
9371 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9372 and then
9373 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9374 end Conforming_Ranges;
9376 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9378 begin
9379 if Nkind (S1) /= Nkind (S2) then
9380 return False;
9382 elsif Is_Entity_Name (S1) then
9383 return Entity (S1) = Entity (S2);
9385 elsif Nkind (S1) = N_Range then
9386 return Conforming_Ranges (S1, S2);
9388 elsif Nkind (S1) = N_Subtype_Indication then
9389 return
9390 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9391 and then
9392 Conforming_Ranges
9393 (Range_Expression (Constraint (S1)),
9394 Range_Expression (Constraint (S2)));
9395 else
9396 return True;
9397 end if;
9398 end Fully_Conformant_Discrete_Subtypes;
9400 --------------------
9401 -- Install_Entity --
9402 --------------------
9404 procedure Install_Entity (E : Entity_Id) is
9405 Prev : constant Entity_Id := Current_Entity (E);
9406 begin
9407 Set_Is_Immediately_Visible (E);
9408 Set_Current_Entity (E);
9409 Set_Homonym (E, Prev);
9410 end Install_Entity;
9412 ---------------------
9413 -- Install_Formals --
9414 ---------------------
9416 procedure Install_Formals (Id : Entity_Id) is
9417 F : Entity_Id;
9418 begin
9419 F := First_Formal (Id);
9420 while Present (F) loop
9421 Install_Entity (F);
9422 Next_Formal (F);
9423 end loop;
9424 end Install_Formals;
9426 -----------------------------
9427 -- Is_Interface_Conformant --
9428 -----------------------------
9430 function Is_Interface_Conformant
9431 (Tagged_Type : Entity_Id;
9432 Iface_Prim : Entity_Id;
9433 Prim : Entity_Id) return Boolean
9435 -- The operation may in fact be an inherited (implicit) operation
9436 -- rather than the original interface primitive, so retrieve the
9437 -- ultimate ancestor.
9439 Iface : constant Entity_Id :=
9440 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9441 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9443 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9444 -- Return the controlling formal of Prim
9446 ------------------------
9447 -- Controlling_Formal --
9448 ------------------------
9450 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9451 E : Entity_Id;
9453 begin
9454 E := First_Entity (Prim);
9455 while Present (E) loop
9456 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9457 return E;
9458 end if;
9460 Next_Entity (E);
9461 end loop;
9463 return Empty;
9464 end Controlling_Formal;
9466 -- Local variables
9468 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9469 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9471 -- Start of processing for Is_Interface_Conformant
9473 begin
9474 pragma Assert (Is_Subprogram (Iface_Prim)
9475 and then Is_Subprogram (Prim)
9476 and then Is_Dispatching_Operation (Iface_Prim)
9477 and then Is_Dispatching_Operation (Prim));
9479 pragma Assert (Is_Interface (Iface)
9480 or else (Present (Alias (Iface_Prim))
9481 and then
9482 Is_Interface
9483 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9485 if Prim = Iface_Prim
9486 or else not Is_Subprogram (Prim)
9487 or else Ekind (Prim) /= Ekind (Iface_Prim)
9488 or else not Is_Dispatching_Operation (Prim)
9489 or else Scope (Prim) /= Scope (Tagged_Type)
9490 or else No (Typ)
9491 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9492 or else not Primitive_Names_Match (Iface_Prim, Prim)
9493 then
9494 return False;
9496 -- The mode of the controlling formals must match
9498 elsif Present (Iface_Ctrl_F)
9499 and then Present (Prim_Ctrl_F)
9500 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9501 then
9502 return False;
9504 -- Case of a procedure, or a function whose result type matches the
9505 -- result type of the interface primitive, or a function that has no
9506 -- controlling result (I or access I).
9508 elsif Ekind (Iface_Prim) = E_Procedure
9509 or else Etype (Prim) = Etype (Iface_Prim)
9510 or else not Has_Controlling_Result (Prim)
9511 then
9512 return Type_Conformant
9513 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9515 -- Case of a function returning an interface, or an access to one. Check
9516 -- that the return types correspond.
9518 elsif Implements_Interface (Typ, Iface) then
9519 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9521 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9522 then
9523 return False;
9524 else
9525 return
9526 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9527 Skip_Controlling_Formals => True);
9528 end if;
9530 else
9531 return False;
9532 end if;
9533 end Is_Interface_Conformant;
9535 ---------------------------------
9536 -- Is_Non_Overriding_Operation --
9537 ---------------------------------
9539 function Is_Non_Overriding_Operation
9540 (Prev_E : Entity_Id;
9541 New_E : Entity_Id) return Boolean
9543 Formal : Entity_Id;
9544 F_Typ : Entity_Id;
9545 G_Typ : Entity_Id := Empty;
9547 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9548 -- If F_Type is a derived type associated with a generic actual subtype,
9549 -- then return its Generic_Parent_Type attribute, else return Empty.
9551 function Types_Correspond
9552 (P_Type : Entity_Id;
9553 N_Type : Entity_Id) return Boolean;
9554 -- Returns true if and only if the types (or designated types in the
9555 -- case of anonymous access types) are the same or N_Type is derived
9556 -- directly or indirectly from P_Type.
9558 -----------------------------
9559 -- Get_Generic_Parent_Type --
9560 -----------------------------
9562 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9563 G_Typ : Entity_Id;
9564 Defn : Node_Id;
9565 Indic : Node_Id;
9567 begin
9568 if Is_Derived_Type (F_Typ)
9569 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9570 then
9571 -- The tree must be traversed to determine the parent subtype in
9572 -- the generic unit, which unfortunately isn't always available
9573 -- via semantic attributes. ??? (Note: The use of Original_Node
9574 -- is needed for cases where a full derived type has been
9575 -- rewritten.)
9577 -- If the parent type is a scalar type, the derivation creates
9578 -- an anonymous base type for it, and the source type is its
9579 -- first subtype.
9581 if Is_Scalar_Type (F_Typ)
9582 and then not Comes_From_Source (F_Typ)
9583 then
9584 Defn :=
9585 Type_Definition
9586 (Original_Node (Parent (First_Subtype (F_Typ))));
9587 else
9588 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9589 end if;
9590 if Nkind (Defn) = N_Derived_Type_Definition then
9591 Indic := Subtype_Indication (Defn);
9593 if Nkind (Indic) = N_Subtype_Indication then
9594 G_Typ := Entity (Subtype_Mark (Indic));
9595 else
9596 G_Typ := Entity (Indic);
9597 end if;
9599 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9600 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9601 then
9602 return Generic_Parent_Type (Parent (G_Typ));
9603 end if;
9604 end if;
9605 end if;
9607 return Empty;
9608 end Get_Generic_Parent_Type;
9610 ----------------------
9611 -- Types_Correspond --
9612 ----------------------
9614 function Types_Correspond
9615 (P_Type : Entity_Id;
9616 N_Type : Entity_Id) return Boolean
9618 Prev_Type : Entity_Id := Base_Type (P_Type);
9619 New_Type : Entity_Id := Base_Type (N_Type);
9621 begin
9622 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9623 Prev_Type := Designated_Type (Prev_Type);
9624 end if;
9626 if Ekind (New_Type) = E_Anonymous_Access_Type then
9627 New_Type := Designated_Type (New_Type);
9628 end if;
9630 if Prev_Type = New_Type then
9631 return True;
9633 elsif not Is_Class_Wide_Type (New_Type) then
9634 while Etype (New_Type) /= New_Type loop
9635 New_Type := Etype (New_Type);
9637 if New_Type = Prev_Type then
9638 return True;
9639 end if;
9640 end loop;
9641 end if;
9642 return False;
9643 end Types_Correspond;
9645 -- Start of processing for Is_Non_Overriding_Operation
9647 begin
9648 -- In the case where both operations are implicit derived subprograms
9649 -- then neither overrides the other. This can only occur in certain
9650 -- obscure cases (e.g., derivation from homographs created in a generic
9651 -- instantiation).
9653 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9654 return True;
9656 elsif Ekind (Current_Scope) = E_Package
9657 and then Is_Generic_Instance (Current_Scope)
9658 and then In_Private_Part (Current_Scope)
9659 and then Comes_From_Source (New_E)
9660 then
9661 -- We examine the formals and result type of the inherited operation,
9662 -- to determine whether their type is derived from (the instance of)
9663 -- a generic type. The first such formal or result type is the one
9664 -- tested.
9666 Formal := First_Formal (Prev_E);
9667 F_Typ := Empty;
9668 while Present (Formal) loop
9669 F_Typ := Base_Type (Etype (Formal));
9671 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9672 F_Typ := Designated_Type (F_Typ);
9673 end if;
9675 G_Typ := Get_Generic_Parent_Type (F_Typ);
9676 exit when Present (G_Typ);
9678 Next_Formal (Formal);
9679 end loop;
9681 -- If the function dispatches on result check the result type
9683 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9684 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9685 end if;
9687 if No (G_Typ) then
9688 return False;
9689 end if;
9691 -- If the generic type is a private type, then the original operation
9692 -- was not overriding in the generic, because there was no primitive
9693 -- operation to override.
9695 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9696 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9697 N_Formal_Private_Type_Definition
9698 then
9699 return True;
9701 -- The generic parent type is the ancestor of a formal derived
9702 -- type declaration. We need to check whether it has a primitive
9703 -- operation that should be overridden by New_E in the generic.
9705 else
9706 declare
9707 P_Formal : Entity_Id;
9708 N_Formal : Entity_Id;
9709 P_Typ : Entity_Id;
9710 N_Typ : Entity_Id;
9711 P_Prim : Entity_Id;
9712 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9714 begin
9715 while Present (Prim_Elt) loop
9716 P_Prim := Node (Prim_Elt);
9718 if Chars (P_Prim) = Chars (New_E)
9719 and then Ekind (P_Prim) = Ekind (New_E)
9720 then
9721 P_Formal := First_Formal (P_Prim);
9722 N_Formal := First_Formal (New_E);
9723 while Present (P_Formal) and then Present (N_Formal) loop
9724 P_Typ := Etype (P_Formal);
9725 N_Typ := Etype (N_Formal);
9727 if not Types_Correspond (P_Typ, N_Typ) then
9728 exit;
9729 end if;
9731 Next_Entity (P_Formal);
9732 Next_Entity (N_Formal);
9733 end loop;
9735 -- Found a matching primitive operation belonging to the
9736 -- formal ancestor type, so the new subprogram is
9737 -- overriding.
9739 if No (P_Formal)
9740 and then No (N_Formal)
9741 and then (Ekind (New_E) /= E_Function
9742 or else
9743 Types_Correspond
9744 (Etype (P_Prim), Etype (New_E)))
9745 then
9746 return False;
9747 end if;
9748 end if;
9750 Next_Elmt (Prim_Elt);
9751 end loop;
9753 -- If no match found, then the new subprogram does not override
9754 -- in the generic (nor in the instance).
9756 -- If the type in question is not abstract, and the subprogram
9757 -- is, this will be an error if the new operation is in the
9758 -- private part of the instance. Emit a warning now, which will
9759 -- make the subsequent error message easier to understand.
9761 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9762 and then Is_Abstract_Subprogram (Prev_E)
9763 and then In_Private_Part (Current_Scope)
9764 then
9765 Error_Msg_Node_2 := F_Typ;
9766 Error_Msg_NE
9767 ("private operation& in generic unit does not override "
9768 & "any primitive operation of& (RM 12.3 (18))??",
9769 New_E, New_E);
9770 end if;
9772 return True;
9773 end;
9774 end if;
9775 else
9776 return False;
9777 end if;
9778 end Is_Non_Overriding_Operation;
9780 -------------------------------------
9781 -- List_Inherited_Pre_Post_Aspects --
9782 -------------------------------------
9784 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9785 begin
9786 if Opt.List_Inherited_Aspects
9787 and then Is_Subprogram_Or_Generic_Subprogram (E)
9788 then
9789 declare
9790 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9791 Items : Node_Id;
9792 Prag : Node_Id;
9794 begin
9795 for Index in Subps'Range loop
9796 Items := Contract (Subps (Index));
9798 if Present (Items) then
9799 Prag := Pre_Post_Conditions (Items);
9800 while Present (Prag) loop
9801 Error_Msg_Sloc := Sloc (Prag);
9803 if Class_Present (Prag)
9804 and then not Split_PPC (Prag)
9805 then
9806 if Pragma_Name (Prag) = Name_Precondition then
9807 Error_Msg_N
9808 ("info: & inherits `Pre''Class` aspect from "
9809 & "#?L?", E);
9810 else
9811 Error_Msg_N
9812 ("info: & inherits `Post''Class` aspect from "
9813 & "#?L?", E);
9814 end if;
9815 end if;
9817 Prag := Next_Pragma (Prag);
9818 end loop;
9819 end if;
9820 end loop;
9821 end;
9822 end if;
9823 end List_Inherited_Pre_Post_Aspects;
9825 ------------------------------
9826 -- Make_Inequality_Operator --
9827 ------------------------------
9829 -- S is the defining identifier of an equality operator. We build a
9830 -- subprogram declaration with the right signature. This operation is
9831 -- intrinsic, because it is always expanded as the negation of the
9832 -- call to the equality function.
9834 procedure Make_Inequality_Operator (S : Entity_Id) is
9835 Loc : constant Source_Ptr := Sloc (S);
9836 Decl : Node_Id;
9837 Formals : List_Id;
9838 Op_Name : Entity_Id;
9840 FF : constant Entity_Id := First_Formal (S);
9841 NF : constant Entity_Id := Next_Formal (FF);
9843 begin
9844 -- Check that equality was properly defined, ignore call if not
9846 if No (NF) then
9847 return;
9848 end if;
9850 declare
9851 A : constant Entity_Id :=
9852 Make_Defining_Identifier (Sloc (FF),
9853 Chars => Chars (FF));
9855 B : constant Entity_Id :=
9856 Make_Defining_Identifier (Sloc (NF),
9857 Chars => Chars (NF));
9859 begin
9860 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9862 Formals := New_List (
9863 Make_Parameter_Specification (Loc,
9864 Defining_Identifier => A,
9865 Parameter_Type =>
9866 New_Occurrence_Of (Etype (First_Formal (S)),
9867 Sloc (Etype (First_Formal (S))))),
9869 Make_Parameter_Specification (Loc,
9870 Defining_Identifier => B,
9871 Parameter_Type =>
9872 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
9873 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9875 Decl :=
9876 Make_Subprogram_Declaration (Loc,
9877 Specification =>
9878 Make_Function_Specification (Loc,
9879 Defining_Unit_Name => Op_Name,
9880 Parameter_Specifications => Formals,
9881 Result_Definition =>
9882 New_Occurrence_Of (Standard_Boolean, Loc)));
9884 -- Insert inequality right after equality if it is explicit or after
9885 -- the derived type when implicit. These entities are created only
9886 -- for visibility purposes, and eventually replaced in the course
9887 -- of expansion, so they do not need to be attached to the tree and
9888 -- seen by the back-end. Keeping them internal also avoids spurious
9889 -- freezing problems. The declaration is inserted in the tree for
9890 -- analysis, and removed afterwards. If the equality operator comes
9891 -- from an explicit declaration, attach the inequality immediately
9892 -- after. Else the equality is inherited from a derived type
9893 -- declaration, so insert inequality after that declaration.
9895 if No (Alias (S)) then
9896 Insert_After (Unit_Declaration_Node (S), Decl);
9897 elsif Is_List_Member (Parent (S)) then
9898 Insert_After (Parent (S), Decl);
9899 else
9900 Insert_After (Parent (Etype (First_Formal (S))), Decl);
9901 end if;
9903 Mark_Rewrite_Insertion (Decl);
9904 Set_Is_Intrinsic_Subprogram (Op_Name);
9905 Analyze (Decl);
9906 Remove (Decl);
9907 Set_Has_Completion (Op_Name);
9908 Set_Corresponding_Equality (Op_Name, S);
9909 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
9910 end;
9911 end Make_Inequality_Operator;
9913 ----------------------
9914 -- May_Need_Actuals --
9915 ----------------------
9917 procedure May_Need_Actuals (Fun : Entity_Id) is
9918 F : Entity_Id;
9919 B : Boolean;
9921 begin
9922 F := First_Formal (Fun);
9923 B := True;
9924 while Present (F) loop
9925 if No (Default_Value (F)) then
9926 B := False;
9927 exit;
9928 end if;
9930 Next_Formal (F);
9931 end loop;
9933 Set_Needs_No_Actuals (Fun, B);
9934 end May_Need_Actuals;
9936 ---------------------
9937 -- Mode_Conformant --
9938 ---------------------
9940 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9941 Result : Boolean;
9942 begin
9943 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
9944 return Result;
9945 end Mode_Conformant;
9947 ---------------------------
9948 -- New_Overloaded_Entity --
9949 ---------------------------
9951 procedure New_Overloaded_Entity
9952 (S : Entity_Id;
9953 Derived_Type : Entity_Id := Empty)
9955 Overridden_Subp : Entity_Id := Empty;
9956 -- Set if the current scope has an operation that is type-conformant
9957 -- with S, and becomes hidden by S.
9959 Is_Primitive_Subp : Boolean;
9960 -- Set to True if the new subprogram is primitive
9962 E : Entity_Id;
9963 -- Entity that S overrides
9965 Prev_Vis : Entity_Id := Empty;
9966 -- Predecessor of E in Homonym chain
9968 procedure Check_For_Primitive_Subprogram
9969 (Is_Primitive : out Boolean;
9970 Is_Overriding : Boolean := False);
9971 -- If the subprogram being analyzed is a primitive operation of the type
9972 -- of a formal or result, set the Has_Primitive_Operations flag on the
9973 -- type, and set Is_Primitive to True (otherwise set to False). Set the
9974 -- corresponding flag on the entity itself for later use.
9976 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
9977 -- True if a) E is a subprogram whose first formal is a concurrent type
9978 -- defined in the scope of E that has some entry or subprogram whose
9979 -- profile matches E, or b) E is an internally built dispatching
9980 -- subprogram of a protected type and there is a matching subprogram
9981 -- defined in the enclosing scope of the protected type, or c) E is
9982 -- an entry of a synchronized type and a matching procedure has been
9983 -- previously defined in the enclosing scope of the synchronized type.
9985 function Is_Private_Declaration (E : Entity_Id) return Boolean;
9986 -- Check that E is declared in the private part of the current package,
9987 -- or in the package body, where it may hide a previous declaration.
9988 -- We can't use In_Private_Part by itself because this flag is also
9989 -- set when freezing entities, so we must examine the place of the
9990 -- declaration in the tree, and recognize wrapper packages as well.
9992 function Is_Overriding_Alias
9993 (Old_E : Entity_Id;
9994 New_E : Entity_Id) return Boolean;
9995 -- Check whether new subprogram and old subprogram are both inherited
9996 -- from subprograms that have distinct dispatch table entries. This can
9997 -- occur with derivations from instances with accidental homonyms. The
9998 -- function is conservative given that the converse is only true within
9999 -- instances that contain accidental overloadings.
10001 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
10002 -- Report conflict between entities S and E
10004 ------------------------------------
10005 -- Check_For_Primitive_Subprogram --
10006 ------------------------------------
10008 procedure Check_For_Primitive_Subprogram
10009 (Is_Primitive : out Boolean;
10010 Is_Overriding : Boolean := False)
10012 Formal : Entity_Id;
10013 F_Typ : Entity_Id;
10014 B_Typ : Entity_Id;
10016 function Visible_Part_Type (T : Entity_Id) return Boolean;
10017 -- Returns true if T is declared in the visible part of the current
10018 -- package scope; otherwise returns false. Assumes that T is declared
10019 -- in a package.
10021 procedure Check_Private_Overriding (T : Entity_Id);
10022 -- Checks that if a primitive abstract subprogram of a visible
10023 -- abstract type is declared in a private part, then it must override
10024 -- an abstract subprogram declared in the visible part. Also checks
10025 -- that if a primitive function with a controlling result is declared
10026 -- in a private part, then it must override a function declared in
10027 -- the visible part.
10029 ------------------------------
10030 -- Check_Private_Overriding --
10031 ------------------------------
10033 procedure Check_Private_Overriding (T : Entity_Id) is
10034 function Overrides_Private_Part_Op return Boolean;
10035 -- This detects the special case where the overriding subprogram
10036 -- is overriding a subprogram that was declared in the same
10037 -- private part. That case is illegal by 3.9.3(10).
10039 function Overrides_Visible_Function
10040 (Partial_View : Entity_Id) return Boolean;
10041 -- True if S overrides a function in the visible part. The
10042 -- overridden function could be explicitly or implicitly declared.
10044 -------------------------------
10045 -- Overrides_Private_Part_Op --
10046 -------------------------------
10048 function Overrides_Private_Part_Op return Boolean is
10049 Over_Decl : constant Node_Id :=
10050 Unit_Declaration_Node (Overridden_Operation (S));
10051 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
10053 begin
10054 pragma Assert (Is_Overriding);
10055 pragma Assert
10056 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
10057 pragma Assert
10058 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
10060 return In_Same_List (Over_Decl, Subp_Decl);
10061 end Overrides_Private_Part_Op;
10063 --------------------------------
10064 -- Overrides_Visible_Function --
10065 --------------------------------
10067 function Overrides_Visible_Function
10068 (Partial_View : Entity_Id) return Boolean
10070 begin
10071 if not Is_Overriding or else not Has_Homonym (S) then
10072 return False;
10073 end if;
10075 if not Present (Partial_View) then
10076 return True;
10077 end if;
10079 -- Search through all the homonyms H of S in the current
10080 -- package spec, and return True if we find one that matches.
10081 -- Note that Parent (H) will be the declaration of the
10082 -- partial view of T for a match.
10084 declare
10085 H : Entity_Id := S;
10086 begin
10087 loop
10088 H := Homonym (H);
10089 exit when not Present (H) or else Scope (H) /= Scope (S);
10091 if Nkind_In
10092 (Parent (H),
10093 N_Private_Extension_Declaration,
10094 N_Private_Type_Declaration)
10095 and then Defining_Identifier (Parent (H)) = Partial_View
10096 then
10097 return True;
10098 end if;
10099 end loop;
10100 end;
10102 return False;
10103 end Overrides_Visible_Function;
10105 -- Start of processing for Check_Private_Overriding
10107 begin
10108 if Is_Package_Or_Generic_Package (Current_Scope)
10109 and then In_Private_Part (Current_Scope)
10110 and then Visible_Part_Type (T)
10111 and then not In_Instance
10112 then
10113 if Is_Abstract_Type (T)
10114 and then Is_Abstract_Subprogram (S)
10115 and then (not Is_Overriding
10116 or else not Is_Abstract_Subprogram (E)
10117 or else Overrides_Private_Part_Op)
10118 then
10119 Error_Msg_N
10120 ("abstract subprograms must be visible (RM 3.9.3(10))!",
10123 elsif Ekind (S) = E_Function then
10124 declare
10125 Partial_View : constant Entity_Id :=
10126 Incomplete_Or_Partial_View (T);
10128 begin
10129 if not Overrides_Visible_Function (Partial_View) then
10131 -- Here, S is "function ... return T;" declared in
10132 -- the private part, not overriding some visible
10133 -- operation. That's illegal in the tagged case
10134 -- (but not if the private type is untagged).
10136 if ((Present (Partial_View)
10137 and then Is_Tagged_Type (Partial_View))
10138 or else (not Present (Partial_View)
10139 and then Is_Tagged_Type (T)))
10140 and then T = Base_Type (Etype (S))
10141 then
10142 Error_Msg_N
10143 ("private function with tagged result must"
10144 & " override visible-part function", S);
10145 Error_Msg_N
10146 ("\move subprogram to the visible part"
10147 & " (RM 3.9.3(10))", S);
10149 -- AI05-0073: extend this test to the case of a
10150 -- function with a controlling access result.
10152 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
10153 and then Is_Tagged_Type (Designated_Type (Etype (S)))
10154 and then
10155 not Is_Class_Wide_Type
10156 (Designated_Type (Etype (S)))
10157 and then Ada_Version >= Ada_2012
10158 then
10159 Error_Msg_N
10160 ("private function with controlling access "
10161 & "result must override visible-part function",
10163 Error_Msg_N
10164 ("\move subprogram to the visible part"
10165 & " (RM 3.9.3(10))", S);
10166 end if;
10167 end if;
10168 end;
10169 end if;
10170 end if;
10171 end Check_Private_Overriding;
10173 -----------------------
10174 -- Visible_Part_Type --
10175 -----------------------
10177 function Visible_Part_Type (T : Entity_Id) return Boolean is
10178 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
10180 begin
10181 -- If the entity is a private type, then it must be declared in a
10182 -- visible part.
10184 if Ekind (T) in Private_Kind then
10185 return True;
10187 elsif Is_Type (T) and then Has_Private_Declaration (T) then
10188 return True;
10190 elsif Is_List_Member (Declaration_Node (T))
10191 and then List_Containing (Declaration_Node (T)) =
10192 Visible_Declarations (Specification (P))
10193 then
10194 return True;
10196 else
10197 return False;
10198 end if;
10199 end Visible_Part_Type;
10201 -- Start of processing for Check_For_Primitive_Subprogram
10203 begin
10204 Is_Primitive := False;
10206 if not Comes_From_Source (S) then
10207 null;
10209 -- If subprogram is at library level, it is not primitive operation
10211 elsif Current_Scope = Standard_Standard then
10212 null;
10214 elsif (Is_Package_Or_Generic_Package (Current_Scope)
10215 and then not In_Package_Body (Current_Scope))
10216 or else Is_Overriding
10217 then
10218 -- For function, check return type
10220 if Ekind (S) = E_Function then
10221 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
10222 F_Typ := Designated_Type (Etype (S));
10223 else
10224 F_Typ := Etype (S);
10225 end if;
10227 B_Typ := Base_Type (F_Typ);
10229 if Scope (B_Typ) = Current_Scope
10230 and then not Is_Class_Wide_Type (B_Typ)
10231 and then not Is_Generic_Type (B_Typ)
10232 then
10233 Is_Primitive := True;
10234 Set_Has_Primitive_Operations (B_Typ);
10235 Set_Is_Primitive (S);
10236 Check_Private_Overriding (B_Typ);
10238 -- The Ghost policy in effect at the point of declaration
10239 -- or a tagged type and a primitive operation must match
10240 -- (SPARK RM 6.9(16)).
10242 Check_Ghost_Primitive (S, B_Typ);
10243 end if;
10244 end if;
10246 -- For all subprograms, check formals
10248 Formal := First_Formal (S);
10249 while Present (Formal) loop
10250 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
10251 F_Typ := Designated_Type (Etype (Formal));
10252 else
10253 F_Typ := Etype (Formal);
10254 end if;
10256 B_Typ := Base_Type (F_Typ);
10258 if Ekind (B_Typ) = E_Access_Subtype then
10259 B_Typ := Base_Type (B_Typ);
10260 end if;
10262 if Scope (B_Typ) = Current_Scope
10263 and then not Is_Class_Wide_Type (B_Typ)
10264 and then not Is_Generic_Type (B_Typ)
10265 then
10266 Is_Primitive := True;
10267 Set_Is_Primitive (S);
10268 Set_Has_Primitive_Operations (B_Typ);
10269 Check_Private_Overriding (B_Typ);
10271 -- The Ghost policy in effect at the point of declaration
10272 -- of a tagged type and a primitive operation must match
10273 -- (SPARK RM 6.9(16)).
10275 Check_Ghost_Primitive (S, B_Typ);
10276 end if;
10278 Next_Formal (Formal);
10279 end loop;
10281 -- Special case: An equality function can be redefined for a type
10282 -- occurring in a declarative part, and won't otherwise be treated as
10283 -- a primitive because it doesn't occur in a package spec and doesn't
10284 -- override an inherited subprogram. It's important that we mark it
10285 -- primitive so it can be returned by Collect_Primitive_Operations
10286 -- and be used in composing the equality operation of later types
10287 -- that have a component of the type.
10289 elsif Chars (S) = Name_Op_Eq
10290 and then Etype (S) = Standard_Boolean
10291 then
10292 B_Typ := Base_Type (Etype (First_Formal (S)));
10294 if Scope (B_Typ) = Current_Scope
10295 and then
10296 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10297 and then not Is_Limited_Type (B_Typ)
10298 then
10299 Is_Primitive := True;
10300 Set_Is_Primitive (S);
10301 Set_Has_Primitive_Operations (B_Typ);
10302 Check_Private_Overriding (B_Typ);
10304 -- The Ghost policy in effect at the point of declaration of a
10305 -- tagged type and a primitive operation must match
10306 -- (SPARK RM 6.9(16)).
10308 Check_Ghost_Primitive (S, B_Typ);
10309 end if;
10310 end if;
10311 end Check_For_Primitive_Subprogram;
10313 --------------------------------------
10314 -- Has_Matching_Entry_Or_Subprogram --
10315 --------------------------------------
10317 function Has_Matching_Entry_Or_Subprogram
10318 (E : Entity_Id) return Boolean
10320 function Check_Conforming_Parameters
10321 (E1_Param : Node_Id;
10322 E2_Param : Node_Id) return Boolean;
10323 -- Starting from the given parameters, check that all the parameters
10324 -- of two entries or subprograms are subtype conformant. Used to skip
10325 -- the check on the controlling argument.
10327 function Matching_Entry_Or_Subprogram
10328 (Conc_Typ : Entity_Id;
10329 Subp : Entity_Id) return Entity_Id;
10330 -- Return the first entry or subprogram of the given concurrent type
10331 -- whose name matches the name of Subp and has a profile conformant
10332 -- with Subp; return Empty if not found.
10334 function Matching_Dispatching_Subprogram
10335 (Conc_Typ : Entity_Id;
10336 Ent : Entity_Id) return Entity_Id;
10337 -- Return the first dispatching primitive of Conc_Type defined in the
10338 -- enclosing scope of Conc_Type (i.e. before the full definition of
10339 -- this concurrent type) whose name matches the entry Ent and has a
10340 -- profile conformant with the profile of the corresponding (not yet
10341 -- built) dispatching primitive of Ent; return Empty if not found.
10343 function Matching_Original_Protected_Subprogram
10344 (Prot_Typ : Entity_Id;
10345 Subp : Entity_Id) return Entity_Id;
10346 -- Return the first subprogram defined in the enclosing scope of
10347 -- Prot_Typ (before the full definition of this protected type)
10348 -- whose name matches the original name of Subp and has a profile
10349 -- conformant with the profile of Subp; return Empty if not found.
10351 ---------------------------------
10352 -- Check_Confirming_Parameters --
10353 ---------------------------------
10355 function Check_Conforming_Parameters
10356 (E1_Param : Node_Id;
10357 E2_Param : Node_Id) return Boolean
10359 Param_E1 : Node_Id := E1_Param;
10360 Param_E2 : Node_Id := E2_Param;
10362 begin
10363 while Present (Param_E1) and then Present (Param_E2) loop
10364 if Ekind (Defining_Identifier (Param_E1)) /=
10365 Ekind (Defining_Identifier (Param_E2))
10366 or else not
10367 Conforming_Types
10368 (Find_Parameter_Type (Param_E1),
10369 Find_Parameter_Type (Param_E2),
10370 Subtype_Conformant)
10371 then
10372 return False;
10373 end if;
10375 Next (Param_E1);
10376 Next (Param_E2);
10377 end loop;
10379 -- The candidate is not valid if one of the two lists contains
10380 -- more parameters than the other
10382 return No (Param_E1) and then No (Param_E2);
10383 end Check_Conforming_Parameters;
10385 ----------------------------------
10386 -- Matching_Entry_Or_Subprogram --
10387 ----------------------------------
10389 function Matching_Entry_Or_Subprogram
10390 (Conc_Typ : Entity_Id;
10391 Subp : Entity_Id) return Entity_Id
10393 E : Entity_Id;
10395 begin
10396 E := First_Entity (Conc_Typ);
10397 while Present (E) loop
10398 if Chars (Subp) = Chars (E)
10399 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10400 and then
10401 Check_Conforming_Parameters
10402 (First (Parameter_Specifications (Parent (E))),
10403 Next (First (Parameter_Specifications (Parent (Subp)))))
10404 then
10405 return E;
10406 end if;
10408 Next_Entity (E);
10409 end loop;
10411 return Empty;
10412 end Matching_Entry_Or_Subprogram;
10414 -------------------------------------
10415 -- Matching_Dispatching_Subprogram --
10416 -------------------------------------
10418 function Matching_Dispatching_Subprogram
10419 (Conc_Typ : Entity_Id;
10420 Ent : Entity_Id) return Entity_Id
10422 E : Entity_Id;
10424 begin
10425 -- Search for entities in the enclosing scope of this synchonized
10426 -- type.
10428 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10429 Push_Scope (Scope (Conc_Typ));
10430 E := Current_Entity_In_Scope (Ent);
10431 Pop_Scope;
10433 while Present (E) loop
10434 if Scope (E) = Scope (Conc_Typ)
10435 and then Comes_From_Source (E)
10436 and then Ekind (E) = E_Procedure
10437 and then Present (First_Entity (E))
10438 and then Is_Controlling_Formal (First_Entity (E))
10439 and then Etype (First_Entity (E)) = Conc_Typ
10440 and then
10441 Check_Conforming_Parameters
10442 (First (Parameter_Specifications (Parent (Ent))),
10443 Next (First (Parameter_Specifications (Parent (E)))))
10444 then
10445 return E;
10446 end if;
10448 E := Homonym (E);
10449 end loop;
10451 return Empty;
10452 end Matching_Dispatching_Subprogram;
10454 --------------------------------------------
10455 -- Matching_Original_Protected_Subprogram --
10456 --------------------------------------------
10458 function Matching_Original_Protected_Subprogram
10459 (Prot_Typ : Entity_Id;
10460 Subp : Entity_Id) return Entity_Id
10462 ICF : constant Boolean :=
10463 Is_Controlling_Formal (First_Entity (Subp));
10464 E : Entity_Id;
10466 begin
10467 -- Temporarily decorate the first parameter of Subp as controlling
10468 -- formal, required to invoke Subtype_Conformant.
10470 Set_Is_Controlling_Formal (First_Entity (Subp));
10472 E :=
10473 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10475 while Present (E) loop
10476 if Scope (E) = Scope (Prot_Typ)
10477 and then Comes_From_Source (E)
10478 and then Ekind (Subp) = Ekind (E)
10479 and then Present (First_Entity (E))
10480 and then Is_Controlling_Formal (First_Entity (E))
10481 and then Etype (First_Entity (E)) = Prot_Typ
10482 and then Subtype_Conformant (Subp, E,
10483 Skip_Controlling_Formals => True)
10484 then
10485 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10486 return E;
10487 end if;
10489 E := Homonym (E);
10490 end loop;
10492 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10494 return Empty;
10495 end Matching_Original_Protected_Subprogram;
10497 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10499 begin
10500 -- Case 1: E is a subprogram whose first formal is a concurrent type
10501 -- defined in the scope of E that has an entry or subprogram whose
10502 -- profile matches E.
10504 if Comes_From_Source (E)
10505 and then Is_Subprogram (E)
10506 and then Present (First_Entity (E))
10507 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10508 then
10509 if Scope (E) =
10510 Scope (Corresponding_Concurrent_Type
10511 (Etype (First_Entity (E))))
10512 and then
10513 Present
10514 (Matching_Entry_Or_Subprogram
10515 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10516 Subp => E))
10517 then
10518 Report_Conflict (E,
10519 Matching_Entry_Or_Subprogram
10520 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10521 Subp => E));
10522 return True;
10523 end if;
10525 -- Case 2: E is an internally built dispatching subprogram of a
10526 -- protected type and there is a subprogram defined in the enclosing
10527 -- scope of the protected type that has the original name of E and
10528 -- its profile is conformant with the profile of E. We check the
10529 -- name of the original protected subprogram associated with E since
10530 -- the expander builds dispatching primitives of protected functions
10531 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10533 elsif not Comes_From_Source (E)
10534 and then Is_Subprogram (E)
10535 and then Present (First_Entity (E))
10536 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10537 and then Present (Original_Protected_Subprogram (E))
10538 and then
10539 Present
10540 (Matching_Original_Protected_Subprogram
10541 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10542 Subp => E))
10543 then
10544 Report_Conflict (E,
10545 Matching_Original_Protected_Subprogram
10546 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10547 Subp => E));
10548 return True;
10550 -- Case 3: E is an entry of a synchronized type and a matching
10551 -- procedure has been previously defined in the enclosing scope
10552 -- of the synchronized type.
10554 elsif Comes_From_Source (E)
10555 and then Ekind (E) = E_Entry
10556 and then
10557 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10558 then
10559 Report_Conflict (E,
10560 Matching_Dispatching_Subprogram (Current_Scope, E));
10561 return True;
10562 end if;
10564 return False;
10565 end Has_Matching_Entry_Or_Subprogram;
10567 ----------------------------
10568 -- Is_Private_Declaration --
10569 ----------------------------
10571 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10572 Decl : constant Node_Id := Unit_Declaration_Node (E);
10573 Priv_Decls : List_Id;
10575 begin
10576 if Is_Package_Or_Generic_Package (Current_Scope)
10577 and then In_Private_Part (Current_Scope)
10578 then
10579 Priv_Decls :=
10580 Private_Declarations (Package_Specification (Current_Scope));
10582 return In_Package_Body (Current_Scope)
10583 or else
10584 (Is_List_Member (Decl)
10585 and then List_Containing (Decl) = Priv_Decls)
10586 or else (Nkind (Parent (Decl)) = N_Package_Specification
10587 and then not
10588 Is_Compilation_Unit
10589 (Defining_Entity (Parent (Decl)))
10590 and then List_Containing (Parent (Parent (Decl))) =
10591 Priv_Decls);
10592 else
10593 return False;
10594 end if;
10595 end Is_Private_Declaration;
10597 --------------------------
10598 -- Is_Overriding_Alias --
10599 --------------------------
10601 function Is_Overriding_Alias
10602 (Old_E : Entity_Id;
10603 New_E : Entity_Id) return Boolean
10605 AO : constant Entity_Id := Alias (Old_E);
10606 AN : constant Entity_Id := Alias (New_E);
10608 begin
10609 return Scope (AO) /= Scope (AN)
10610 or else No (DTC_Entity (AO))
10611 or else No (DTC_Entity (AN))
10612 or else DT_Position (AO) = DT_Position (AN);
10613 end Is_Overriding_Alias;
10615 ---------------------
10616 -- Report_Conflict --
10617 ---------------------
10619 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10620 begin
10621 Error_Msg_Sloc := Sloc (E);
10623 -- Generate message, with useful additional warning if in generic
10625 if Is_Generic_Unit (E) then
10626 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10627 Error_Msg_N ("\& conflicts with declaration#", S);
10628 else
10629 Error_Msg_N ("& conflicts with declaration#", S);
10630 end if;
10631 end Report_Conflict;
10633 -- Start of processing for New_Overloaded_Entity
10635 begin
10636 -- We need to look for an entity that S may override. This must be a
10637 -- homonym in the current scope, so we look for the first homonym of
10638 -- S in the current scope as the starting point for the search.
10640 E := Current_Entity_In_Scope (S);
10642 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10643 -- They are directly added to the list of primitive operations of
10644 -- Derived_Type, unless this is a rederivation in the private part
10645 -- of an operation that was already derived in the visible part of
10646 -- the current package.
10648 if Ada_Version >= Ada_2005
10649 and then Present (Derived_Type)
10650 and then Present (Alias (S))
10651 and then Is_Dispatching_Operation (Alias (S))
10652 and then Present (Find_Dispatching_Type (Alias (S)))
10653 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10654 then
10655 -- For private types, when the full-view is processed we propagate to
10656 -- the full view the non-overridden entities whose attribute "alias"
10657 -- references an interface primitive. These entities were added by
10658 -- Derive_Subprograms to ensure that interface primitives are
10659 -- covered.
10661 -- Inside_Freeze_Actions is non zero when S corresponds with an
10662 -- internal entity that links an interface primitive with its
10663 -- covering primitive through attribute Interface_Alias (see
10664 -- Add_Internal_Interface_Entities).
10666 if Inside_Freezing_Actions = 0
10667 and then Is_Package_Or_Generic_Package (Current_Scope)
10668 and then In_Private_Part (Current_Scope)
10669 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10670 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10671 and then Full_View (Defining_Identifier (Parent (E)))
10672 = Defining_Identifier (Parent (S))
10673 and then Alias (E) = Alias (S)
10674 then
10675 Check_Operation_From_Private_View (S, E);
10676 Set_Is_Dispatching_Operation (S);
10678 -- Common case
10680 else
10681 Enter_Overloaded_Entity (S);
10682 Check_Dispatching_Operation (S, Empty);
10683 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10684 end if;
10686 return;
10687 end if;
10689 -- For synchronized types check conflicts of this entity with previously
10690 -- defined entities.
10692 if Ada_Version >= Ada_2005
10693 and then Has_Matching_Entry_Or_Subprogram (S)
10694 then
10695 return;
10696 end if;
10698 -- If there is no homonym then this is definitely not overriding
10700 if No (E) then
10701 Enter_Overloaded_Entity (S);
10702 Check_Dispatching_Operation (S, Empty);
10703 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10705 -- If subprogram has an explicit declaration, check whether it has an
10706 -- overriding indicator.
10708 if Comes_From_Source (S) then
10709 Check_Synchronized_Overriding (S, Overridden_Subp);
10711 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10712 -- it may have overridden some hidden inherited primitive. Update
10713 -- Overridden_Subp to avoid spurious errors when checking the
10714 -- overriding indicator.
10716 if Ada_Version >= Ada_2012
10717 and then No (Overridden_Subp)
10718 and then Is_Dispatching_Operation (S)
10719 and then Present (Overridden_Operation (S))
10720 then
10721 Overridden_Subp := Overridden_Operation (S);
10722 end if;
10724 Check_Overriding_Indicator
10725 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10727 -- The Ghost policy in effect at the point of declaration of a
10728 -- parent subprogram and an overriding subprogram must match
10729 -- (SPARK RM 6.9(17)).
10731 Check_Ghost_Overriding (S, Overridden_Subp);
10732 end if;
10734 -- If there is a homonym that is not overloadable, then we have an
10735 -- error, except for the special cases checked explicitly below.
10737 elsif not Is_Overloadable (E) then
10739 -- Check for spurious conflict produced by a subprogram that has the
10740 -- same name as that of the enclosing generic package. The conflict
10741 -- occurs within an instance, between the subprogram and the renaming
10742 -- declaration for the package. After the subprogram, the package
10743 -- renaming declaration becomes hidden.
10745 if Ekind (E) = E_Package
10746 and then Present (Renamed_Object (E))
10747 and then Renamed_Object (E) = Current_Scope
10748 and then Nkind (Parent (Renamed_Object (E))) =
10749 N_Package_Specification
10750 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10751 then
10752 Set_Is_Hidden (E);
10753 Set_Is_Immediately_Visible (E, False);
10754 Enter_Overloaded_Entity (S);
10755 Set_Homonym (S, Homonym (E));
10756 Check_Dispatching_Operation (S, Empty);
10757 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10759 -- If the subprogram is implicit it is hidden by the previous
10760 -- declaration. However if it is dispatching, it must appear in the
10761 -- dispatch table anyway, because it can be dispatched to even if it
10762 -- cannot be called directly.
10764 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10765 Set_Scope (S, Current_Scope);
10767 if Is_Dispatching_Operation (Alias (S)) then
10768 Check_Dispatching_Operation (S, Empty);
10769 end if;
10771 return;
10773 else
10774 Report_Conflict (S, E);
10775 return;
10776 end if;
10778 -- E exists and is overloadable
10780 else
10781 Check_Synchronized_Overriding (S, Overridden_Subp);
10783 -- Loop through E and its homonyms to determine if any of them is
10784 -- the candidate for overriding by S.
10786 while Present (E) loop
10788 -- Definitely not interesting if not in the current scope
10790 if Scope (E) /= Current_Scope then
10791 null;
10793 -- A function can overload the name of an abstract state. The
10794 -- state can be viewed as a function with a profile that cannot
10795 -- be matched by anything.
10797 elsif Ekind (S) = E_Function
10798 and then Ekind (E) = E_Abstract_State
10799 then
10800 Enter_Overloaded_Entity (S);
10801 return;
10803 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10804 -- procedures locate the internally generated spec. We enforce
10805 -- mode conformance since a tagged type may inherit from
10806 -- interfaces several null primitives which differ only in
10807 -- the mode of the formals.
10809 elsif not Comes_From_Source (S)
10810 and then Is_Null_Procedure (S)
10811 and then not Mode_Conformant (E, S)
10812 then
10813 null;
10815 -- Check if we have type conformance
10817 elsif Type_Conformant (E, S) then
10819 -- If the old and new entities have the same profile and one
10820 -- is not the body of the other, then this is an error, unless
10821 -- one of them is implicitly declared.
10823 -- There are some cases when both can be implicit, for example
10824 -- when both a literal and a function that overrides it are
10825 -- inherited in a derivation, or when an inherited operation
10826 -- of a tagged full type overrides the inherited operation of
10827 -- a private extension. Ada 83 had a special rule for the
10828 -- literal case. In Ada 95, the later implicit operation hides
10829 -- the former, and the literal is always the former. In the
10830 -- odd case where both are derived operations declared at the
10831 -- same point, both operations should be declared, and in that
10832 -- case we bypass the following test and proceed to the next
10833 -- part. This can only occur for certain obscure cases in
10834 -- instances, when an operation on a type derived from a formal
10835 -- private type does not override a homograph inherited from
10836 -- the actual. In subsequent derivations of such a type, the
10837 -- DT positions of these operations remain distinct, if they
10838 -- have been set.
10840 if Present (Alias (S))
10841 and then (No (Alias (E))
10842 or else Comes_From_Source (E)
10843 or else Is_Abstract_Subprogram (S)
10844 or else
10845 (Is_Dispatching_Operation (E)
10846 and then Is_Overriding_Alias (E, S)))
10847 and then Ekind (E) /= E_Enumeration_Literal
10848 then
10849 -- When an derived operation is overloaded it may be due to
10850 -- the fact that the full view of a private extension
10851 -- re-inherits. It has to be dealt with.
10853 if Is_Package_Or_Generic_Package (Current_Scope)
10854 and then In_Private_Part (Current_Scope)
10855 then
10856 Check_Operation_From_Private_View (S, E);
10857 end if;
10859 -- In any case the implicit operation remains hidden by the
10860 -- existing declaration, which is overriding. Indicate that
10861 -- E overrides the operation from which S is inherited.
10863 if Present (Alias (S)) then
10864 Set_Overridden_Operation (E, Alias (S));
10865 Inherit_Subprogram_Contract (E, Alias (S));
10867 else
10868 Set_Overridden_Operation (E, S);
10869 Inherit_Subprogram_Contract (E, S);
10870 end if;
10872 if Comes_From_Source (E) then
10873 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10875 -- The Ghost policy in effect at the point of declaration
10876 -- of a parent subprogram and an overriding subprogram
10877 -- must match (SPARK RM 6.9(17)).
10879 Check_Ghost_Overriding (E, S);
10880 end if;
10882 return;
10884 -- Within an instance, the renaming declarations for actual
10885 -- subprograms may become ambiguous, but they do not hide each
10886 -- other.
10888 elsif Ekind (E) /= E_Entry
10889 and then not Comes_From_Source (E)
10890 and then not Is_Generic_Instance (E)
10891 and then (Present (Alias (E))
10892 or else Is_Intrinsic_Subprogram (E))
10893 and then (not In_Instance
10894 or else No (Parent (E))
10895 or else Nkind (Unit_Declaration_Node (E)) /=
10896 N_Subprogram_Renaming_Declaration)
10897 then
10898 -- A subprogram child unit is not allowed to override an
10899 -- inherited subprogram (10.1.1(20)).
10901 if Is_Child_Unit (S) then
10902 Error_Msg_N
10903 ("child unit overrides inherited subprogram in parent",
10905 return;
10906 end if;
10908 if Is_Non_Overriding_Operation (E, S) then
10909 Enter_Overloaded_Entity (S);
10911 if No (Derived_Type)
10912 or else Is_Tagged_Type (Derived_Type)
10913 then
10914 Check_Dispatching_Operation (S, Empty);
10915 end if;
10917 return;
10918 end if;
10920 -- E is a derived operation or an internal operator which
10921 -- is being overridden. Remove E from further visibility.
10922 -- Furthermore, if E is a dispatching operation, it must be
10923 -- replaced in the list of primitive operations of its type
10924 -- (see Override_Dispatching_Operation).
10926 Overridden_Subp := E;
10928 declare
10929 Prev : Entity_Id;
10931 begin
10932 Prev := First_Entity (Current_Scope);
10933 while Present (Prev) and then Next_Entity (Prev) /= E loop
10934 Next_Entity (Prev);
10935 end loop;
10937 -- It is possible for E to be in the current scope and
10938 -- yet not in the entity chain. This can only occur in a
10939 -- generic context where E is an implicit concatenation
10940 -- in the formal part, because in a generic body the
10941 -- entity chain starts with the formals.
10943 -- In GNATprove mode, a wrapper for an operation with
10944 -- axiomatization may be a homonym of another declaration
10945 -- for an actual subprogram (needs refinement ???).
10947 if No (Prev) then
10948 if In_Instance
10949 and then GNATprove_Mode
10950 and then
10951 Nkind (Original_Node (Unit_Declaration_Node (S))) =
10952 N_Subprogram_Renaming_Declaration
10953 then
10954 return;
10955 else
10956 pragma Assert (Chars (E) = Name_Op_Concat);
10957 null;
10958 end if;
10959 end if;
10961 -- E must be removed both from the entity_list of the
10962 -- current scope, and from the visibility chain.
10964 if Debug_Flag_E then
10965 Write_Str ("Override implicit operation ");
10966 Write_Int (Int (E));
10967 Write_Eol;
10968 end if;
10970 -- If E is a predefined concatenation, it stands for four
10971 -- different operations. As a result, a single explicit
10972 -- declaration does not hide it. In a possible ambiguous
10973 -- situation, Disambiguate chooses the user-defined op,
10974 -- so it is correct to retain the previous internal one.
10976 if Chars (E) /= Name_Op_Concat
10977 or else Ekind (E) /= E_Operator
10978 then
10979 -- For nondispatching derived operations that are
10980 -- overridden by a subprogram declared in the private
10981 -- part of a package, we retain the derived subprogram
10982 -- but mark it as not immediately visible. If the
10983 -- derived operation was declared in the visible part
10984 -- then this ensures that it will still be visible
10985 -- outside the package with the proper signature
10986 -- (calls from outside must also be directed to this
10987 -- version rather than the overriding one, unlike the
10988 -- dispatching case). Calls from inside the package
10989 -- will still resolve to the overriding subprogram
10990 -- since the derived one is marked as not visible
10991 -- within the package.
10993 -- If the private operation is dispatching, we achieve
10994 -- the overriding by keeping the implicit operation
10995 -- but setting its alias to be the overriding one. In
10996 -- this fashion the proper body is executed in all
10997 -- cases, but the original signature is used outside
10998 -- of the package.
11000 -- If the overriding is not in the private part, we
11001 -- remove the implicit operation altogether.
11003 if Is_Private_Declaration (S) then
11004 if not Is_Dispatching_Operation (E) then
11005 Set_Is_Immediately_Visible (E, False);
11006 else
11007 -- Work done in Override_Dispatching_Operation,
11008 -- so nothing else needs to be done here.
11010 null;
11011 end if;
11013 else
11014 -- Find predecessor of E in Homonym chain
11016 if E = Current_Entity (E) then
11017 Prev_Vis := Empty;
11018 else
11019 Prev_Vis := Current_Entity (E);
11020 while Homonym (Prev_Vis) /= E loop
11021 Prev_Vis := Homonym (Prev_Vis);
11022 end loop;
11023 end if;
11025 if Prev_Vis /= Empty then
11027 -- Skip E in the visibility chain
11029 Set_Homonym (Prev_Vis, Homonym (E));
11031 else
11032 Set_Name_Entity_Id (Chars (E), Homonym (E));
11033 end if;
11035 Set_Next_Entity (Prev, Next_Entity (E));
11037 if No (Next_Entity (Prev)) then
11038 Set_Last_Entity (Current_Scope, Prev);
11039 end if;
11040 end if;
11041 end if;
11043 Enter_Overloaded_Entity (S);
11045 -- For entities generated by Derive_Subprograms the
11046 -- overridden operation is the inherited primitive
11047 -- (which is available through the attribute alias).
11049 if not (Comes_From_Source (E))
11050 and then Is_Dispatching_Operation (E)
11051 and then Find_Dispatching_Type (E) =
11052 Find_Dispatching_Type (S)
11053 and then Present (Alias (E))
11054 and then Comes_From_Source (Alias (E))
11055 then
11056 Set_Overridden_Operation (S, Alias (E));
11057 Inherit_Subprogram_Contract (S, Alias (E));
11059 -- Normal case of setting entity as overridden
11061 -- Note: Static_Initialization and Overridden_Operation
11062 -- attributes use the same field in subprogram entities.
11063 -- Static_Initialization is only defined for internal
11064 -- initialization procedures, where Overridden_Operation
11065 -- is irrelevant. Therefore the setting of this attribute
11066 -- must check whether the target is an init_proc.
11068 elsif not Is_Init_Proc (S) then
11069 Set_Overridden_Operation (S, E);
11070 Inherit_Subprogram_Contract (S, E);
11071 end if;
11073 Check_Overriding_Indicator (S, E, Is_Primitive => True);
11075 -- The Ghost policy in effect at the point of declaration
11076 -- of a parent subprogram and an overriding subprogram
11077 -- must match (SPARK RM 6.9(17)).
11079 Check_Ghost_Overriding (S, E);
11081 -- If S is a user-defined subprogram or a null procedure
11082 -- expanded to override an inherited null procedure, or a
11083 -- predefined dispatching primitive then indicate that E
11084 -- overrides the operation from which S is inherited.
11086 if Comes_From_Source (S)
11087 or else
11088 (Present (Parent (S))
11089 and then
11090 Nkind (Parent (S)) = N_Procedure_Specification
11091 and then
11092 Null_Present (Parent (S)))
11093 or else
11094 (Present (Alias (E))
11095 and then
11096 Is_Predefined_Dispatching_Operation (Alias (E)))
11097 then
11098 if Present (Alias (E)) then
11099 Set_Overridden_Operation (S, Alias (E));
11100 Inherit_Subprogram_Contract (S, Alias (E));
11101 end if;
11102 end if;
11104 if Is_Dispatching_Operation (E) then
11106 -- An overriding dispatching subprogram inherits the
11107 -- convention of the overridden subprogram (AI-117).
11109 Set_Convention (S, Convention (E));
11110 Check_Dispatching_Operation (S, E);
11112 else
11113 Check_Dispatching_Operation (S, Empty);
11114 end if;
11116 Check_For_Primitive_Subprogram
11117 (Is_Primitive_Subp, Is_Overriding => True);
11118 goto Check_Inequality;
11119 end;
11121 -- Apparent redeclarations in instances can occur when two
11122 -- formal types get the same actual type. The subprograms in
11123 -- in the instance are legal, even if not callable from the
11124 -- outside. Calls from within are disambiguated elsewhere.
11125 -- For dispatching operations in the visible part, the usual
11126 -- rules apply, and operations with the same profile are not
11127 -- legal (B830001).
11129 elsif (In_Instance_Visible_Part
11130 and then not Is_Dispatching_Operation (E))
11131 or else In_Instance_Not_Visible
11132 then
11133 null;
11135 -- Here we have a real error (identical profile)
11137 else
11138 Error_Msg_Sloc := Sloc (E);
11140 -- Avoid cascaded errors if the entity appears in
11141 -- subsequent calls.
11143 Set_Scope (S, Current_Scope);
11145 -- Generate error, with extra useful warning for the case
11146 -- of a generic instance with no completion.
11148 if Is_Generic_Instance (S)
11149 and then not Has_Completion (E)
11150 then
11151 Error_Msg_N
11152 ("instantiation cannot provide body for&", S);
11153 Error_Msg_N ("\& conflicts with declaration#", S);
11154 else
11155 Error_Msg_N ("& conflicts with declaration#", S);
11156 end if;
11158 return;
11159 end if;
11161 else
11162 -- If one subprogram has an access parameter and the other
11163 -- a parameter of an access type, calls to either might be
11164 -- ambiguous. Verify that parameters match except for the
11165 -- access parameter.
11167 if May_Hide_Profile then
11168 declare
11169 F1 : Entity_Id;
11170 F2 : Entity_Id;
11172 begin
11173 F1 := First_Formal (S);
11174 F2 := First_Formal (E);
11175 while Present (F1) and then Present (F2) loop
11176 if Is_Access_Type (Etype (F1)) then
11177 if not Is_Access_Type (Etype (F2))
11178 or else not Conforming_Types
11179 (Designated_Type (Etype (F1)),
11180 Designated_Type (Etype (F2)),
11181 Type_Conformant)
11182 then
11183 May_Hide_Profile := False;
11184 end if;
11186 elsif
11187 not Conforming_Types
11188 (Etype (F1), Etype (F2), Type_Conformant)
11189 then
11190 May_Hide_Profile := False;
11191 end if;
11193 Next_Formal (F1);
11194 Next_Formal (F2);
11195 end loop;
11197 if May_Hide_Profile
11198 and then No (F1)
11199 and then No (F2)
11200 then
11201 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
11202 end if;
11203 end;
11204 end if;
11205 end if;
11207 E := Homonym (E);
11208 end loop;
11210 -- On exit, we know that S is a new entity
11212 Enter_Overloaded_Entity (S);
11213 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
11214 Check_Overriding_Indicator
11215 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
11217 -- The Ghost policy in effect at the point of declaration of a parent
11218 -- subprogram and an overriding subprogram must match
11219 -- (SPARK RM 6.9(17)).
11221 Check_Ghost_Overriding (S, Overridden_Subp);
11223 -- Overloading is not allowed in SPARK, except for operators
11225 if Nkind (S) /= N_Defining_Operator_Symbol then
11226 Error_Msg_Sloc := Sloc (Homonym (S));
11227 Check_SPARK_05_Restriction
11228 ("overloading not allowed with entity#", S);
11229 end if;
11231 -- If S is a derived operation for an untagged type then by
11232 -- definition it's not a dispatching operation (even if the parent
11233 -- operation was dispatching), so Check_Dispatching_Operation is not
11234 -- called in that case.
11236 if No (Derived_Type)
11237 or else Is_Tagged_Type (Derived_Type)
11238 then
11239 Check_Dispatching_Operation (S, Empty);
11240 end if;
11241 end if;
11243 -- If this is a user-defined equality operator that is not a derived
11244 -- subprogram, create the corresponding inequality. If the operation is
11245 -- dispatching, the expansion is done elsewhere, and we do not create
11246 -- an explicit inequality operation.
11248 <<Check_Inequality>>
11249 if Chars (S) = Name_Op_Eq
11250 and then Etype (S) = Standard_Boolean
11251 and then Present (Parent (S))
11252 and then not Is_Dispatching_Operation (S)
11253 then
11254 Make_Inequality_Operator (S);
11255 Check_Untagged_Equality (S);
11256 end if;
11257 end New_Overloaded_Entity;
11259 ---------------------
11260 -- Process_Formals --
11261 ---------------------
11263 procedure Process_Formals
11264 (T : List_Id;
11265 Related_Nod : Node_Id)
11267 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
11268 -- Determine whether an access type designates a type coming from a
11269 -- limited view.
11271 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
11272 -- Check whether the default has a class-wide type. After analysis the
11273 -- default has the type of the formal, so we must also check explicitly
11274 -- for an access attribute.
11276 ----------------------------------
11277 -- Designates_From_Limited_With --
11278 ----------------------------------
11280 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11281 Desig : Entity_Id := Typ;
11283 begin
11284 if Is_Access_Type (Desig) then
11285 Desig := Directly_Designated_Type (Desig);
11286 end if;
11288 if Is_Class_Wide_Type (Desig) then
11289 Desig := Root_Type (Desig);
11290 end if;
11292 return
11293 Ekind (Desig) = E_Incomplete_Type
11294 and then From_Limited_With (Desig);
11295 end Designates_From_Limited_With;
11297 ---------------------------
11298 -- Is_Class_Wide_Default --
11299 ---------------------------
11301 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11302 begin
11303 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11304 or else (Nkind (D) = N_Attribute_Reference
11305 and then Attribute_Name (D) = Name_Access
11306 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11307 end Is_Class_Wide_Default;
11309 -- Local variables
11311 Context : constant Node_Id := Parent (Parent (T));
11312 Default : Node_Id;
11313 Formal : Entity_Id;
11314 Formal_Type : Entity_Id;
11315 Param_Spec : Node_Id;
11316 Ptype : Entity_Id;
11318 Num_Out_Params : Nat := 0;
11319 First_Out_Param : Entity_Id := Empty;
11320 -- Used for setting Is_Only_Out_Parameter
11322 -- Start of processing for Process_Formals
11324 begin
11325 -- In order to prevent premature use of the formals in the same formal
11326 -- part, the Ekind is left undefined until all default expressions are
11327 -- analyzed. The Ekind is established in a separate loop at the end.
11329 Param_Spec := First (T);
11330 while Present (Param_Spec) loop
11331 Formal := Defining_Identifier (Param_Spec);
11332 Set_Never_Set_In_Source (Formal, True);
11333 Enter_Name (Formal);
11335 -- Case of ordinary parameters
11337 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11338 Find_Type (Parameter_Type (Param_Spec));
11339 Ptype := Parameter_Type (Param_Spec);
11341 if Ptype = Error then
11342 goto Continue;
11343 end if;
11345 Formal_Type := Entity (Ptype);
11347 if Is_Incomplete_Type (Formal_Type)
11348 or else
11349 (Is_Class_Wide_Type (Formal_Type)
11350 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11351 then
11352 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11353 -- primitive operations, as long as their completion is
11354 -- in the same declarative part. If in the private part
11355 -- this means that the type cannot be a Taft-amendment type.
11356 -- Check is done on package exit. For access to subprograms,
11357 -- the use is legal for Taft-amendment types.
11359 -- Ada 2012: tagged incomplete types are allowed as generic
11360 -- formal types. They do not introduce dependencies and the
11361 -- corresponding generic subprogram does not have a delayed
11362 -- freeze, because it does not need a freeze node. However,
11363 -- it is still the case that untagged incomplete types cannot
11364 -- be Taft-amendment types and must be completed in private
11365 -- part, so the subprogram must appear in the list of private
11366 -- dependents of the type.
11368 if Is_Tagged_Type (Formal_Type)
11369 or else (Ada_Version >= Ada_2012
11370 and then not From_Limited_With (Formal_Type)
11371 and then not Is_Generic_Type (Formal_Type))
11372 then
11373 if Ekind (Scope (Current_Scope)) = E_Package
11374 and then not Is_Generic_Type (Formal_Type)
11375 and then not Is_Class_Wide_Type (Formal_Type)
11376 then
11377 if not Nkind_In
11378 (Parent (T), N_Access_Function_Definition,
11379 N_Access_Procedure_Definition)
11380 then
11381 Append_Elmt (Current_Scope,
11382 Private_Dependents (Base_Type (Formal_Type)));
11384 -- Freezing is delayed to ensure that Register_Prim
11385 -- will get called for this operation, which is needed
11386 -- in cases where static dispatch tables aren't built.
11387 -- (Note that the same is done for controlling access
11388 -- parameter cases in function Access_Definition.)
11390 if not Is_Thunk (Current_Scope) then
11391 Set_Has_Delayed_Freeze (Current_Scope);
11392 end if;
11393 end if;
11394 end if;
11396 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11397 N_Access_Procedure_Definition)
11398 then
11399 -- AI05-0151: Tagged incomplete types are allowed in all
11400 -- formal parts. Untagged incomplete types are not allowed
11401 -- in bodies. Limited views of either kind are not allowed
11402 -- if there is no place at which the non-limited view can
11403 -- become available.
11405 -- Incomplete formal untagged types are not allowed in
11406 -- subprogram bodies (but are legal in their declarations).
11407 -- This excludes bodies created for null procedures, which
11408 -- are basic declarations.
11410 if Is_Generic_Type (Formal_Type)
11411 and then not Is_Tagged_Type (Formal_Type)
11412 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11413 then
11414 Error_Msg_N
11415 ("invalid use of formal incomplete type", Param_Spec);
11417 elsif Ada_Version >= Ada_2012 then
11418 if Is_Tagged_Type (Formal_Type)
11419 and then (not From_Limited_With (Formal_Type)
11420 or else not In_Package_Body)
11421 then
11422 null;
11424 elsif Nkind_In (Context, N_Accept_Statement,
11425 N_Accept_Alternative,
11426 N_Entry_Body)
11427 or else (Nkind (Context) = N_Subprogram_Body
11428 and then Comes_From_Source (Context))
11429 then
11430 Error_Msg_NE
11431 ("invalid use of untagged incomplete type &",
11432 Ptype, Formal_Type);
11433 end if;
11435 else
11436 Error_Msg_NE
11437 ("invalid use of incomplete type&",
11438 Param_Spec, Formal_Type);
11440 -- Further checks on the legality of incomplete types
11441 -- in formal parts are delayed until the freeze point
11442 -- of the enclosing subprogram or access to subprogram.
11443 end if;
11444 end if;
11446 elsif Ekind (Formal_Type) = E_Void then
11447 Error_Msg_NE
11448 ("premature use of&",
11449 Parameter_Type (Param_Spec), Formal_Type);
11450 end if;
11452 -- Ada 2012 (AI-142): Handle aliased parameters
11454 if Ada_Version >= Ada_2012
11455 and then Aliased_Present (Param_Spec)
11456 then
11457 Set_Is_Aliased (Formal);
11458 end if;
11460 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11461 -- declaration corresponding to the null-excluding type of the
11462 -- formal in the enclosing scope. Finally, replace the parameter
11463 -- type of the formal with the internal subtype.
11465 if Ada_Version >= Ada_2005
11466 and then Null_Exclusion_Present (Param_Spec)
11467 then
11468 if not Is_Access_Type (Formal_Type) then
11469 Error_Msg_N
11470 ("`NOT NULL` allowed only for an access type", Param_Spec);
11472 else
11473 if Can_Never_Be_Null (Formal_Type)
11474 and then Comes_From_Source (Related_Nod)
11475 then
11476 Error_Msg_NE
11477 ("`NOT NULL` not allowed (& already excludes null)",
11478 Param_Spec, Formal_Type);
11479 end if;
11481 Formal_Type :=
11482 Create_Null_Excluding_Itype
11483 (T => Formal_Type,
11484 Related_Nod => Related_Nod,
11485 Scope_Id => Scope (Current_Scope));
11487 -- If the designated type of the itype is an itype that is
11488 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11489 -- on the access subtype, to prevent order-of-elaboration
11490 -- issues in the backend.
11492 -- Example:
11493 -- type T is access procedure;
11494 -- procedure Op (O : not null T);
11496 if Is_Itype (Directly_Designated_Type (Formal_Type))
11497 and then
11498 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11499 then
11500 Set_Has_Delayed_Freeze (Formal_Type);
11501 end if;
11502 end if;
11503 end if;
11505 -- An access formal type
11507 else
11508 Formal_Type :=
11509 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11511 -- No need to continue if we already notified errors
11513 if not Present (Formal_Type) then
11514 return;
11515 end if;
11517 -- Ada 2005 (AI-254)
11519 declare
11520 AD : constant Node_Id :=
11521 Access_To_Subprogram_Definition
11522 (Parameter_Type (Param_Spec));
11523 begin
11524 if Present (AD) and then Protected_Present (AD) then
11525 Formal_Type :=
11526 Replace_Anonymous_Access_To_Protected_Subprogram
11527 (Param_Spec);
11528 end if;
11529 end;
11530 end if;
11532 Set_Etype (Formal, Formal_Type);
11534 -- Deal with default expression if present
11536 Default := Expression (Param_Spec);
11538 if Present (Default) then
11539 Check_SPARK_05_Restriction
11540 ("default expression is not allowed", Default);
11542 if Out_Present (Param_Spec) then
11543 Error_Msg_N
11544 ("default initialization only allowed for IN parameters",
11545 Param_Spec);
11546 end if;
11548 -- Do the special preanalysis of the expression (see section on
11549 -- "Handling of Default Expressions" in the spec of package Sem).
11551 Preanalyze_Spec_Expression (Default, Formal_Type);
11553 -- An access to constant cannot be the default for
11554 -- an access parameter that is an access to variable.
11556 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11557 and then not Is_Access_Constant (Formal_Type)
11558 and then Is_Access_Type (Etype (Default))
11559 and then Is_Access_Constant (Etype (Default))
11560 then
11561 Error_Msg_N
11562 ("formal that is access to variable cannot be initialized "
11563 & "with an access-to-constant expression", Default);
11564 end if;
11566 -- Check that the designated type of an access parameter's default
11567 -- is not a class-wide type unless the parameter's designated type
11568 -- is also class-wide.
11570 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11571 and then not Designates_From_Limited_With (Formal_Type)
11572 and then Is_Class_Wide_Default (Default)
11573 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11574 then
11575 Error_Msg_N
11576 ("access to class-wide expression not allowed here", Default);
11577 end if;
11579 -- Check incorrect use of dynamically tagged expressions
11581 if Is_Tagged_Type (Formal_Type) then
11582 Check_Dynamically_Tagged_Expression
11583 (Expr => Default,
11584 Typ => Formal_Type,
11585 Related_Nod => Default);
11586 end if;
11587 end if;
11589 -- Ada 2005 (AI-231): Static checks
11591 if Ada_Version >= Ada_2005
11592 and then Is_Access_Type (Etype (Formal))
11593 and then Can_Never_Be_Null (Etype (Formal))
11594 then
11595 Null_Exclusion_Static_Checks (Param_Spec);
11596 end if;
11598 -- The following checks are relevant only when SPARK_Mode is on as
11599 -- these are not standard Ada legality rules.
11601 if SPARK_Mode = On then
11602 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11604 -- A function cannot have a parameter of mode IN OUT or OUT
11605 -- (SPARK RM 6.1).
11607 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11608 Error_Msg_N
11609 ("function cannot have parameter of mode `OUT` or "
11610 & "`IN OUT`", Formal);
11611 end if;
11613 -- A procedure cannot have an effectively volatile formal
11614 -- parameter of mode IN because it behaves as a constant
11615 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11617 elsif Ekind (Scope (Formal)) = E_Procedure
11618 and then Ekind (Formal) = E_In_Parameter
11619 and then Is_Effectively_Volatile (Formal)
11620 then
11621 Error_Msg_N
11622 ("formal parameter of mode `IN` cannot be volatile", Formal);
11623 end if;
11624 end if;
11626 <<Continue>>
11627 Next (Param_Spec);
11628 end loop;
11630 -- If this is the formal part of a function specification, analyze the
11631 -- subtype mark in the context where the formals are visible but not
11632 -- yet usable, and may hide outer homographs.
11634 if Nkind (Related_Nod) = N_Function_Specification then
11635 Analyze_Return_Type (Related_Nod);
11636 end if;
11638 -- Now set the kind (mode) of each formal
11640 Param_Spec := First (T);
11641 while Present (Param_Spec) loop
11642 Formal := Defining_Identifier (Param_Spec);
11643 Set_Formal_Mode (Formal);
11645 if Ekind (Formal) = E_In_Parameter then
11646 Set_Default_Value (Formal, Expression (Param_Spec));
11648 if Present (Expression (Param_Spec)) then
11649 Default := Expression (Param_Spec);
11651 if Is_Scalar_Type (Etype (Default)) then
11652 if Nkind (Parameter_Type (Param_Spec)) /=
11653 N_Access_Definition
11654 then
11655 Formal_Type := Entity (Parameter_Type (Param_Spec));
11656 else
11657 Formal_Type :=
11658 Access_Definition
11659 (Related_Nod, Parameter_Type (Param_Spec));
11660 end if;
11662 Apply_Scalar_Range_Check (Default, Formal_Type);
11663 end if;
11664 end if;
11666 elsif Ekind (Formal) = E_Out_Parameter then
11667 Num_Out_Params := Num_Out_Params + 1;
11669 if Num_Out_Params = 1 then
11670 First_Out_Param := Formal;
11671 end if;
11673 elsif Ekind (Formal) = E_In_Out_Parameter then
11674 Num_Out_Params := Num_Out_Params + 1;
11675 end if;
11677 -- Skip remaining processing if formal type was in error
11679 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11680 goto Next_Parameter;
11681 end if;
11683 -- Force call by reference if aliased
11685 declare
11686 Conv : constant Convention_Id := Convention (Etype (Formal));
11687 begin
11688 if Is_Aliased (Formal) then
11689 Set_Mechanism (Formal, By_Reference);
11691 -- Warn if user asked this to be passed by copy
11693 if Conv = Convention_Ada_Pass_By_Copy then
11694 Error_Msg_N
11695 ("cannot pass aliased parameter & by copy??", Formal);
11696 end if;
11698 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11700 elsif Conv = Convention_Ada_Pass_By_Copy then
11701 Set_Mechanism (Formal, By_Copy);
11703 elsif Conv = Convention_Ada_Pass_By_Reference then
11704 Set_Mechanism (Formal, By_Reference);
11705 end if;
11706 end;
11708 <<Next_Parameter>>
11709 Next (Param_Spec);
11710 end loop;
11712 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11713 Set_Is_Only_Out_Parameter (First_Out_Param);
11714 end if;
11715 end Process_Formals;
11717 ----------------------------
11718 -- Reference_Body_Formals --
11719 ----------------------------
11721 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11722 Fs : Entity_Id;
11723 Fb : Entity_Id;
11725 begin
11726 if Error_Posted (Spec) then
11727 return;
11728 end if;
11730 -- Iterate over both lists. They may be of different lengths if the two
11731 -- specs are not conformant.
11733 Fs := First_Formal (Spec);
11734 Fb := First_Formal (Bod);
11735 while Present (Fs) and then Present (Fb) loop
11736 Generate_Reference (Fs, Fb, 'b');
11738 if Style_Check then
11739 Style.Check_Identifier (Fb, Fs);
11740 end if;
11742 Set_Spec_Entity (Fb, Fs);
11743 Set_Referenced (Fs, False);
11744 Next_Formal (Fs);
11745 Next_Formal (Fb);
11746 end loop;
11747 end Reference_Body_Formals;
11749 -------------------------
11750 -- Set_Actual_Subtypes --
11751 -------------------------
11753 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11754 Decl : Node_Id;
11755 Formal : Entity_Id;
11756 T : Entity_Id;
11757 First_Stmt : Node_Id := Empty;
11758 AS_Needed : Boolean;
11760 begin
11761 -- If this is an empty initialization procedure, no need to create
11762 -- actual subtypes (small optimization).
11764 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11765 return;
11767 -- Within a predicate function we do not want to generate local
11768 -- subtypes that may generate nested predicate functions.
11770 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
11771 return;
11772 end if;
11774 -- The subtype declarations may freeze the formals. The body generated
11775 -- for an expression function is not a freeze point, so do not emit
11776 -- these declarations (small loss of efficiency in rare cases).
11778 if Nkind (N) = N_Subprogram_Body
11779 and then Was_Expression_Function (N)
11780 then
11781 return;
11782 end if;
11784 Formal := First_Formal (Subp);
11785 while Present (Formal) loop
11786 T := Etype (Formal);
11788 -- We never need an actual subtype for a constrained formal
11790 if Is_Constrained (T) then
11791 AS_Needed := False;
11793 -- If we have unknown discriminants, then we do not need an actual
11794 -- subtype, or more accurately we cannot figure it out. Note that
11795 -- all class-wide types have unknown discriminants.
11797 elsif Has_Unknown_Discriminants (T) then
11798 AS_Needed := False;
11800 -- At this stage we have an unconstrained type that may need an
11801 -- actual subtype. For sure the actual subtype is needed if we have
11802 -- an unconstrained array type. However, in an instance, the type
11803 -- may appear as a subtype of the full view, while the actual is
11804 -- in fact private (in which case no actual subtype is needed) so
11805 -- check the kind of the base type.
11807 elsif Is_Array_Type (Base_Type (T)) then
11808 AS_Needed := True;
11810 -- The only other case needing an actual subtype is an unconstrained
11811 -- record type which is an IN parameter (we cannot generate actual
11812 -- subtypes for the OUT or IN OUT case, since an assignment can
11813 -- change the discriminant values. However we exclude the case of
11814 -- initialization procedures, since discriminants are handled very
11815 -- specially in this context, see the section entitled "Handling of
11816 -- Discriminants" in Einfo.
11818 -- We also exclude the case of Discrim_SO_Functions (functions used
11819 -- in front-end layout mode for size/offset values), since in such
11820 -- functions only discriminants are referenced, and not only are such
11821 -- subtypes not needed, but they cannot always be generated, because
11822 -- of order of elaboration issues.
11824 elsif Is_Record_Type (T)
11825 and then Ekind (Formal) = E_In_Parameter
11826 and then Chars (Formal) /= Name_uInit
11827 and then not Is_Unchecked_Union (T)
11828 and then not Is_Discrim_SO_Function (Subp)
11829 then
11830 AS_Needed := True;
11832 -- All other cases do not need an actual subtype
11834 else
11835 AS_Needed := False;
11836 end if;
11838 -- Generate actual subtypes for unconstrained arrays and
11839 -- unconstrained discriminated records.
11841 if AS_Needed then
11842 if Nkind (N) = N_Accept_Statement then
11844 -- If expansion is active, the formal is replaced by a local
11845 -- variable that renames the corresponding entry of the
11846 -- parameter block, and it is this local variable that may
11847 -- require an actual subtype.
11849 if Expander_Active then
11850 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11851 else
11852 Decl := Build_Actual_Subtype (T, Formal);
11853 end if;
11855 if Present (Handled_Statement_Sequence (N)) then
11856 First_Stmt :=
11857 First (Statements (Handled_Statement_Sequence (N)));
11858 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11859 Mark_Rewrite_Insertion (Decl);
11860 else
11861 -- If the accept statement has no body, there will be no
11862 -- reference to the actuals, so no need to compute actual
11863 -- subtypes.
11865 return;
11866 end if;
11868 else
11869 Decl := Build_Actual_Subtype (T, Formal);
11870 Prepend (Decl, Declarations (N));
11871 Mark_Rewrite_Insertion (Decl);
11872 end if;
11874 -- The declaration uses the bounds of an existing object, and
11875 -- therefore needs no constraint checks.
11877 Analyze (Decl, Suppress => All_Checks);
11878 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
11880 -- We need to freeze manually the generated type when it is
11881 -- inserted anywhere else than in a declarative part.
11883 if Present (First_Stmt) then
11884 Insert_List_Before_And_Analyze (First_Stmt,
11885 Freeze_Entity (Defining_Identifier (Decl), N));
11887 -- Ditto if the type has a dynamic predicate, because the
11888 -- generated function will mention the actual subtype. The
11889 -- predicate may come from an explicit aspect of be inherited.
11891 elsif Has_Predicates (T) then
11892 Insert_List_Before_And_Analyze (Decl,
11893 Freeze_Entity (Defining_Identifier (Decl), N));
11894 end if;
11896 if Nkind (N) = N_Accept_Statement
11897 and then Expander_Active
11898 then
11899 Set_Actual_Subtype (Renamed_Object (Formal),
11900 Defining_Identifier (Decl));
11901 else
11902 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
11903 end if;
11904 end if;
11906 Next_Formal (Formal);
11907 end loop;
11908 end Set_Actual_Subtypes;
11910 ---------------------
11911 -- Set_Formal_Mode --
11912 ---------------------
11914 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
11915 Spec : constant Node_Id := Parent (Formal_Id);
11916 Id : constant Entity_Id := Scope (Formal_Id);
11918 begin
11919 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11920 -- since we ensure that corresponding actuals are always valid at the
11921 -- point of the call.
11923 if Out_Present (Spec) then
11924 if Ekind_In (Id, E_Entry, E_Entry_Family)
11925 or else Is_Subprogram_Or_Generic_Subprogram (Id)
11926 then
11927 Set_Has_Out_Or_In_Out_Parameter (Id, True);
11928 end if;
11930 if Ekind_In (Id, E_Function, E_Generic_Function) then
11932 -- [IN] OUT parameters allowed for functions in Ada 2012
11934 if Ada_Version >= Ada_2012 then
11936 -- Even in Ada 2012 operators can only have IN parameters
11938 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11939 Error_Msg_N ("operators can only have IN parameters", Spec);
11940 end if;
11942 if In_Present (Spec) then
11943 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11944 else
11945 Set_Ekind (Formal_Id, E_Out_Parameter);
11946 end if;
11948 -- But not in earlier versions of Ada
11950 else
11951 Error_Msg_N ("functions can only have IN parameters", Spec);
11952 Set_Ekind (Formal_Id, E_In_Parameter);
11953 end if;
11955 elsif In_Present (Spec) then
11956 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11958 else
11959 Set_Ekind (Formal_Id, E_Out_Parameter);
11960 Set_Never_Set_In_Source (Formal_Id, True);
11961 Set_Is_True_Constant (Formal_Id, False);
11962 Set_Current_Value (Formal_Id, Empty);
11963 end if;
11965 else
11966 Set_Ekind (Formal_Id, E_In_Parameter);
11967 end if;
11969 -- Set Is_Known_Non_Null for access parameters since the language
11970 -- guarantees that access parameters are always non-null. We also set
11971 -- Can_Never_Be_Null, since there is no way to change the value.
11973 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
11975 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
11976 -- null; In Ada 2005, only if then null_exclusion is explicit.
11978 if Ada_Version < Ada_2005
11979 or else Can_Never_Be_Null (Etype (Formal_Id))
11980 then
11981 Set_Is_Known_Non_Null (Formal_Id);
11982 Set_Can_Never_Be_Null (Formal_Id);
11983 end if;
11985 -- Ada 2005 (AI-231): Null-exclusion access subtype
11987 elsif Is_Access_Type (Etype (Formal_Id))
11988 and then Can_Never_Be_Null (Etype (Formal_Id))
11989 then
11990 Set_Is_Known_Non_Null (Formal_Id);
11992 -- We can also set Can_Never_Be_Null (thus preventing some junk
11993 -- access checks) for the case of an IN parameter, which cannot
11994 -- be changed, or for an IN OUT parameter, which can be changed but
11995 -- not to a null value. But for an OUT parameter, the initial value
11996 -- passed in can be null, so we can't set this flag in that case.
11998 if Ekind (Formal_Id) /= E_Out_Parameter then
11999 Set_Can_Never_Be_Null (Formal_Id);
12000 end if;
12001 end if;
12003 Set_Mechanism (Formal_Id, Default_Mechanism);
12004 Set_Formal_Validity (Formal_Id);
12005 end Set_Formal_Mode;
12007 -------------------------
12008 -- Set_Formal_Validity --
12009 -------------------------
12011 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
12012 begin
12013 -- If no validity checking, then we cannot assume anything about the
12014 -- validity of parameters, since we do not know there is any checking
12015 -- of the validity on the call side.
12017 if not Validity_Checks_On then
12018 return;
12020 -- If validity checking for parameters is enabled, this means we are
12021 -- not supposed to make any assumptions about argument values.
12023 elsif Validity_Check_Parameters then
12024 return;
12026 -- If we are checking in parameters, we will assume that the caller is
12027 -- also checking parameters, so we can assume the parameter is valid.
12029 elsif Ekind (Formal_Id) = E_In_Parameter
12030 and then Validity_Check_In_Params
12031 then
12032 Set_Is_Known_Valid (Formal_Id, True);
12034 -- Similar treatment for IN OUT parameters
12036 elsif Ekind (Formal_Id) = E_In_Out_Parameter
12037 and then Validity_Check_In_Out_Params
12038 then
12039 Set_Is_Known_Valid (Formal_Id, True);
12040 end if;
12041 end Set_Formal_Validity;
12043 ------------------------
12044 -- Subtype_Conformant --
12045 ------------------------
12047 function Subtype_Conformant
12048 (New_Id : Entity_Id;
12049 Old_Id : Entity_Id;
12050 Skip_Controlling_Formals : Boolean := False) return Boolean
12052 Result : Boolean;
12053 begin
12054 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
12055 Skip_Controlling_Formals => Skip_Controlling_Formals);
12056 return Result;
12057 end Subtype_Conformant;
12059 ---------------------
12060 -- Type_Conformant --
12061 ---------------------
12063 function Type_Conformant
12064 (New_Id : Entity_Id;
12065 Old_Id : Entity_Id;
12066 Skip_Controlling_Formals : Boolean := False) return Boolean
12068 Result : Boolean;
12069 begin
12070 May_Hide_Profile := False;
12071 Check_Conformance
12072 (New_Id, Old_Id, Type_Conformant, False, Result,
12073 Skip_Controlling_Formals => Skip_Controlling_Formals);
12074 return Result;
12075 end Type_Conformant;
12077 -------------------------------
12078 -- Valid_Operator_Definition --
12079 -------------------------------
12081 procedure Valid_Operator_Definition (Designator : Entity_Id) is
12082 N : Integer := 0;
12083 F : Entity_Id;
12084 Id : constant Name_Id := Chars (Designator);
12085 N_OK : Boolean;
12087 begin
12088 F := First_Formal (Designator);
12089 while Present (F) loop
12090 N := N + 1;
12092 if Present (Default_Value (F)) then
12093 Error_Msg_N
12094 ("default values not allowed for operator parameters",
12095 Parent (F));
12097 -- For function instantiations that are operators, we must check
12098 -- separately that the corresponding generic only has in-parameters.
12099 -- For subprogram declarations this is done in Set_Formal_Mode. Such
12100 -- an error could not arise in earlier versions of the language.
12102 elsif Ekind (F) /= E_In_Parameter then
12103 Error_Msg_N ("operators can only have IN parameters", F);
12104 end if;
12106 Next_Formal (F);
12107 end loop;
12109 -- Verify that user-defined operators have proper number of arguments
12110 -- First case of operators which can only be unary
12112 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
12113 N_OK := (N = 1);
12115 -- Case of operators which can be unary or binary
12117 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
12118 N_OK := (N in 1 .. 2);
12120 -- All other operators can only be binary
12122 else
12123 N_OK := (N = 2);
12124 end if;
12126 if not N_OK then
12127 Error_Msg_N
12128 ("incorrect number of arguments for operator", Designator);
12129 end if;
12131 if Id = Name_Op_Ne
12132 and then Base_Type (Etype (Designator)) = Standard_Boolean
12133 and then not Is_Intrinsic_Subprogram (Designator)
12134 then
12135 Error_Msg_N
12136 ("explicit definition of inequality not allowed", Designator);
12137 end if;
12138 end Valid_Operator_Definition;
12140 end Sem_Ch6;