1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Contracts
; use Contracts
;
30 with Debug
; use Debug
;
31 with Elists
; use Elists
;
32 with Einfo
; use Einfo
;
33 with Errout
; use Errout
;
34 with Eval_Fat
; use Eval_Fat
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Ch9
; use Exp_Ch9
;
37 with Exp_Disp
; use Exp_Disp
;
38 with Exp_Dist
; use Exp_Dist
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Exp_Util
; use Exp_Util
;
41 with Freeze
; use Freeze
;
42 with Ghost
; use Ghost
;
43 with Itypes
; use Itypes
;
44 with Layout
; use Layout
;
46 with Lib
.Xref
; use Lib
.Xref
;
47 with Namet
; use Namet
;
48 with Nmake
; use Nmake
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Case
; use Sem_Case
;
56 with Sem_Cat
; use Sem_Cat
;
57 with Sem_Ch6
; use Sem_Ch6
;
58 with Sem_Ch7
; use Sem_Ch7
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Ch13
; use Sem_Ch13
;
61 with Sem_Dim
; use Sem_Dim
;
62 with Sem_Disp
; use Sem_Disp
;
63 with Sem_Dist
; use Sem_Dist
;
64 with Sem_Elab
; use Sem_Elab
;
65 with Sem_Elim
; use Sem_Elim
;
66 with Sem_Eval
; use Sem_Eval
;
67 with Sem_Mech
; use Sem_Mech
;
68 with Sem_Res
; use Sem_Res
;
69 with Sem_Smem
; use Sem_Smem
;
70 with Sem_Type
; use Sem_Type
;
71 with Sem_Util
; use Sem_Util
;
72 with Sem_Warn
; use Sem_Warn
;
73 with Stand
; use Stand
;
74 with Sinfo
; use Sinfo
;
75 with Sinput
; use Sinput
;
76 with Snames
; use Snames
;
77 with Targparm
; use Targparm
;
78 with Tbuild
; use Tbuild
;
79 with Ttypes
; use Ttypes
;
80 with Uintp
; use Uintp
;
81 with Urealp
; use Urealp
;
83 package body Sem_Ch3
is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
94 procedure Build_Derived_Type
96 Parent_Type
: Entity_Id
;
97 Derived_Type
: Entity_Id
;
98 Is_Completion
: Boolean;
99 Derive_Subps
: Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
119 procedure Build_Derived_Access_Type
121 Parent_Type
: Entity_Id
;
122 Derived_Type
: Entity_Id
);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
127 procedure Build_Derived_Array_Type
129 Parent_Type
: Entity_Id
;
130 Derived_Type
: Entity_Id
);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
135 procedure Build_Derived_Concurrent_Type
137 Parent_Type
: Entity_Id
;
138 Derived_Type
: Entity_Id
);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
143 procedure Build_Derived_Enumeration_Type
145 Parent_Type
: Entity_Id
;
146 Derived_Type
: Entity_Id
);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
151 procedure Build_Derived_Numeric_Type
153 Parent_Type
: Entity_Id
;
154 Derived_Type
: Entity_Id
);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
158 procedure Build_Derived_Private_Type
160 Parent_Type
: Entity_Id
;
161 Derived_Type
: Entity_Id
;
162 Is_Completion
: Boolean;
163 Derive_Subps
: Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
168 procedure Build_Derived_Record_Type
170 Parent_Type
: Entity_Id
;
171 Derived_Type
: Entity_Id
;
172 Derive_Subps
: Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
183 procedure Build_Discriminal
(Discrim
: Entity_Id
);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
191 function Build_Discriminant_Constraints
194 Derived_Def
: Boolean := False) return Elist_Id
;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
205 procedure Build_Discriminated_Subtype
209 Related_Nod
: Node_Id
;
210 For_Access
: Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
228 function Build_Scalar_Bound
231 Der_T
: Entity_Id
) return Node_Id
;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
237 procedure Build_Underlying_Full_View
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
249 procedure Check_Access_Discriminant_Requires_Limited
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
256 procedure Check_Anonymous_Access_Components
260 Comp_List
: Node_Id
);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
270 procedure Check_Delta_Expression
(E
: Node_Id
);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
274 procedure Check_Digits_Expression
(E
: Node_Id
);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
278 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
282 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
285 procedure Check_Or_Process_Discriminants
288 Prev
: Entity_Id
:= Empty
);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
295 procedure Check_Real_Bound
(Bound
: Node_Id
);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
299 procedure Constant_Redeclaration
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
307 function Contain_Interface
309 Ifaces
: Elist_Id
) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
312 procedure Convert_Scalar_Bounds
314 Parent_Type
: Entity_Id
;
315 Derived_Type
: Entity_Id
;
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
325 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
329 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
333 procedure Create_Constrained_Components
337 Constraints
: Elist_Id
);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
347 function Constrain_Component_Type
349 Constrained_Typ
: Entity_Id
;
350 Related_Node
: Node_Id
;
352 Constraints
: Elist_Id
) return Entity_Id
;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
361 procedure Constrain_Access
362 (Def_Id
: in out Entity_Id
;
364 Related_Nod
: Node_Id
);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
369 procedure Constrain_Array
370 (Def_Id
: in out Entity_Id
;
372 Related_Nod
: Node_Id
;
373 Related_Id
: Entity_Id
;
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
386 procedure Constrain_Concurrent
387 (Def_Id
: in out Entity_Id
;
389 Related_Nod
: Node_Id
;
390 Related_Id
: Entity_Id
;
392 -- Apply list of discriminant constraints to an unconstrained concurrent
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
404 -- Related_Nod gives the place where this type has to be inserted
407 -- The last two arguments are used to create its external name if needed.
409 function Constrain_Corresponding_Record
410 (Prot_Subt
: Entity_Id
;
411 Corr_Rec
: Entity_Id
;
412 Related_Nod
: Node_Id
) return Entity_Id
;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
416 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
420 procedure Constrain_Discriminated_Type
423 Related_Nod
: Node_Id
;
424 For_Access
: Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
432 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
436 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
440 procedure Constrain_Index
443 Related_Nod
: Node_Id
;
444 Related_Id
: Entity_Id
;
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
453 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
454 -- Build subtype of a signed or modular integer type
456 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
460 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
465 procedure Decimal_Fixed_Point_Type_Declaration
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
471 procedure Complete_Private_Subtype
474 Full_Base
: Entity_Id
;
475 Related_Nod
: Node_Id
);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type
: Entity_Id
;
482 Tagged_Type
: Entity_Id
);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
491 procedure Derived_Standard_Character
493 Parent_Type
: Entity_Id
;
494 Derived_Type
: Entity_Id
);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
498 procedure Derived_Type_Declaration
501 Is_Completion
: Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
508 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
515 function Expand_To_Stored_Constraint
517 Constraint
: Elist_Id
) return Elist_Id
;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
522 function Find_Type_Of_Object
524 Related_Nod
: Node_Id
) return Entity_Id
;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
528 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
529 -- Create a new float and apply the constraint to obtain subtype of it
531 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
537 function Inherit_Components
539 Parent_Base
: Entity_Id
;
540 Derived_Base
: Entity_Id
;
542 Inherit_Discr
: Boolean;
543 Discs
: Elist_Id
) return Elist_Id
;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
549 -- N is the original derived type declaration
551 -- Is_Tagged is set if we are dealing with tagged types
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
563 -- which gets treated as
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
571 -- (Old_Component => New_Component),
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
579 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
583 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
589 function Is_Valid_Constraint_Kind
591 Constraint_Kind
: Node_Kind
) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
595 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
596 -- Create new modular type. Verify that modulus is in bounds
598 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
602 procedure Ordinary_Fixed_Point_Type_Declaration
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
608 procedure Prepare_Private_Subtype_Completion
610 Related_Nod
: Node_Id
);
611 -- Id is a subtype of some private type. Creates the full declaration
612 -- associated with Id whenever possible, i.e. when the full declaration
613 -- of the base type is already known. Records each subtype into
614 -- Private_Dependents of the base type.
616 procedure Process_Incomplete_Dependents
620 -- Process all entities that depend on an incomplete type. There include
621 -- subtypes, subprogram types that mention the incomplete type in their
622 -- profiles, and subprogram with access parameters that designate the
625 -- Inc_T is the defining identifier of an incomplete type declaration, its
626 -- Ekind is E_Incomplete_Type.
628 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
630 -- Full_T is N's defining identifier.
632 -- Subtypes of incomplete types with discriminants are completed when the
633 -- parent type is. This is simpler than private subtypes, because they can
634 -- only appear in the same scope, and there is no need to exchange views.
635 -- Similarly, access_to_subprogram types may have a parameter or a return
636 -- type that is an incomplete type, and that must be replaced with the
639 -- If the full type is tagged, subprogram with access parameters that
640 -- designated the incomplete may be primitive operations of the full type,
641 -- and have to be processed accordingly.
643 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
644 -- Given the type definition for a real type, this procedure processes and
645 -- checks the real range specification of this type definition if one is
646 -- present. If errors are found, error messages are posted, and the
647 -- Real_Range_Specification of Def is reset to Empty.
649 procedure Record_Type_Declaration
653 -- Process a record type declaration (for both untagged and tagged
654 -- records). Parameters T and N are exactly like in procedure
655 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
656 -- for this routine. If this is the completion of an incomplete type
657 -- declaration, Prev is the entity of the incomplete declaration, used for
658 -- cross-referencing. Otherwise Prev = T.
660 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
661 -- This routine is used to process the actual record type definition (both
662 -- for untagged and tagged records). Def is a record type definition node.
663 -- This procedure analyzes the components in this record type definition.
664 -- Prev_T is the entity for the enclosing record type. It is provided so
665 -- that its Has_Task flag can be set if any of the component have Has_Task
666 -- set. If the declaration is the completion of an incomplete type
667 -- declaration, Prev_T is the original incomplete type, whose full view is
670 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
671 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
672 -- build a copy of the declaration tree of the parent, and we create
673 -- independently the list of components for the derived type. Semantic
674 -- information uses the component entities, but record representation
675 -- clauses are validated on the declaration tree. This procedure replaces
676 -- discriminants and components in the declaration with those that have
677 -- been created by Inherit_Components.
679 procedure Set_Fixed_Range
684 -- Build a range node with the given bounds and set it as the Scalar_Range
685 -- of the given fixed-point type entity. Loc is the source location used
686 -- for the constructed range. See body for further details.
688 procedure Set_Scalar_Range_For_Subtype
692 -- This routine is used to set the scalar range field for a subtype given
693 -- Def_Id, the entity for the subtype, and R, the range expression for the
694 -- scalar range. Subt provides the parent subtype to be used to analyze,
695 -- resolve, and check the given range.
697 procedure Set_Default_SSO
(T
: Entity_Id
);
698 -- T is the entity for an array or record being declared. This procedure
699 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
700 -- to the setting of Opt.Default_SSO.
702 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
703 -- Create a new signed integer entity, and apply the constraint to obtain
704 -- the required first named subtype of this type.
706 procedure Set_Stored_Constraint_From_Discriminant_Constraint
708 -- E is some record type. This routine computes E's Stored_Constraint
709 -- from its Discriminant_Constraint.
711 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
712 -- Check that an entity in a list of progenitors is an interface,
713 -- emit error otherwise.
715 -----------------------
716 -- Access_Definition --
717 -----------------------
719 function Access_Definition
720 (Related_Nod
: Node_Id
;
721 N
: Node_Id
) return Entity_Id
723 Anon_Type
: Entity_Id
;
724 Anon_Scope
: Entity_Id
;
725 Desig_Type
: Entity_Id
;
726 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
729 Check_SPARK_05_Restriction
("access type is not allowed", N
);
731 if Is_Entry
(Current_Scope
)
732 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
734 Error_Msg_N
("task entries cannot have access parameters", N
);
738 -- Ada 2005: For an object declaration the corresponding anonymous
739 -- type is declared in the current scope.
741 -- If the access definition is the return type of another access to
742 -- function, scope is the current one, because it is the one of the
743 -- current type declaration, except for the pathological case below.
745 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
746 N_Access_Function_Definition
)
748 Anon_Scope
:= Current_Scope
;
750 -- A pathological case: function returning access functions that
751 -- return access functions, etc. Each anonymous access type created
752 -- is in the enclosing scope of the outermost function.
759 while Nkind_In
(Par
, N_Access_Function_Definition
,
765 if Nkind
(Par
) = N_Function_Specification
then
766 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
770 -- For the anonymous function result case, retrieve the scope of the
771 -- function specification's associated entity rather than using the
772 -- current scope. The current scope will be the function itself if the
773 -- formal part is currently being analyzed, but will be the parent scope
774 -- in the case of a parameterless function, and we always want to use
775 -- the function's parent scope. Finally, if the function is a child
776 -- unit, we must traverse the tree to retrieve the proper entity.
778 elsif Nkind
(Related_Nod
) = N_Function_Specification
779 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
781 -- If the current scope is a protected type, the anonymous access
782 -- is associated with one of the protected operations, and must
783 -- be available in the scope that encloses the protected declaration.
784 -- Otherwise the type is in the scope enclosing the subprogram.
786 -- If the function has formals, The return type of a subprogram
787 -- declaration is analyzed in the scope of the subprogram (see
788 -- Process_Formals) and thus the protected type, if present, is
789 -- the scope of the current function scope.
791 if Ekind
(Current_Scope
) = E_Protected_Type
then
792 Enclosing_Prot_Type
:= Current_Scope
;
794 elsif Ekind
(Current_Scope
) = E_Function
795 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
797 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
800 if Present
(Enclosing_Prot_Type
) then
801 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
804 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
807 -- For an access type definition, if the current scope is a child
808 -- unit it is the scope of the type.
810 elsif Is_Compilation_Unit
(Current_Scope
) then
811 Anon_Scope
:= Current_Scope
;
813 -- For access formals, access components, and access discriminants, the
814 -- scope is that of the enclosing declaration,
817 Anon_Scope
:= Scope
(Current_Scope
);
822 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
825 and then Ada_Version
>= Ada_2005
827 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
830 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
831 -- the corresponding semantic routine
833 if Present
(Access_To_Subprogram_Definition
(N
)) then
835 -- Compiler runtime units are compiled in Ada 2005 mode when building
836 -- the runtime library but must also be compilable in Ada 95 mode
837 -- (when bootstrapping the compiler).
839 Check_Compiler_Unit
("anonymous access to subprogram", N
);
841 Access_Subprogram_Declaration
842 (T_Name
=> Anon_Type
,
843 T_Def
=> Access_To_Subprogram_Definition
(N
));
845 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
847 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
849 Set_Ekind
(Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
852 Set_Can_Use_Internal_Rep
853 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
855 -- If the anonymous access is associated with a protected operation,
856 -- create a reference to it after the enclosing protected definition
857 -- because the itype will be used in the subsequent bodies.
859 -- If the anonymous access itself is protected, a full type
860 -- declaratiton will be created for it, so that the equivalent
861 -- record type can be constructed. For further details, see
862 -- Replace_Anonymous_Access_To_Protected-Subprogram.
864 if Ekind
(Current_Scope
) = E_Protected_Type
865 and then not Protected_Present
(Access_To_Subprogram_Definition
(N
))
867 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
873 Find_Type
(Subtype_Mark
(N
));
874 Desig_Type
:= Entity
(Subtype_Mark
(N
));
876 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
877 Set_Etype
(Anon_Type
, Anon_Type
);
879 -- Make sure the anonymous access type has size and alignment fields
880 -- set, as required by gigi. This is necessary in the case of the
881 -- Task_Body_Procedure.
883 if not Has_Private_Component
(Desig_Type
) then
884 Layout_Type
(Anon_Type
);
887 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
888 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
889 -- the null value is allowed. In Ada 95 the null value is never allowed.
891 if Ada_Version
>= Ada_2005
then
892 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
894 Set_Can_Never_Be_Null
(Anon_Type
, True);
897 -- The anonymous access type is as public as the discriminated type or
898 -- subprogram that defines it. It is imported (for back-end purposes)
899 -- if the designated type is.
901 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
903 -- Ada 2005 (AI-231): Propagate the access-constant attribute
905 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
907 -- The context is either a subprogram declaration, object declaration,
908 -- or an access discriminant, in a private or a full type declaration.
909 -- In the case of a subprogram, if the designated type is incomplete,
910 -- the operation will be a primitive operation of the full type, to be
911 -- updated subsequently. If the type is imported through a limited_with
912 -- clause, the subprogram is not a primitive operation of the type
913 -- (which is declared elsewhere in some other scope).
915 if Ekind
(Desig_Type
) = E_Incomplete_Type
916 and then not From_Limited_With
(Desig_Type
)
917 and then Is_Overloadable
(Current_Scope
)
919 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
920 Set_Has_Delayed_Freeze
(Current_Scope
);
923 -- Ada 2005: If the designated type is an interface that may contain
924 -- tasks, create a Master entity for the declaration. This must be done
925 -- before expansion of the full declaration, because the declaration may
926 -- include an expression that is an allocator, whose expansion needs the
927 -- proper Master for the created tasks.
929 if Nkind
(Related_Nod
) = N_Object_Declaration
and then Expander_Active
931 if Is_Interface
(Desig_Type
) and then Is_Limited_Record
(Desig_Type
)
933 Build_Class_Wide_Master
(Anon_Type
);
935 -- Similarly, if the type is an anonymous access that designates
936 -- tasks, create a master entity for it in the current context.
938 elsif Has_Task
(Desig_Type
) and then Comes_From_Source
(Related_Nod
)
940 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
941 Build_Master_Renaming
(Anon_Type
);
945 -- For a private component of a protected type, it is imperative that
946 -- the back-end elaborate the type immediately after the protected
947 -- declaration, because this type will be used in the declarations
948 -- created for the component within each protected body, so we must
949 -- create an itype reference for it now.
951 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
952 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
954 -- Similarly, if the access definition is the return result of a
955 -- function, create an itype reference for it because it will be used
956 -- within the function body. For a regular function that is not a
957 -- compilation unit, insert reference after the declaration. For a
958 -- protected operation, insert it after the enclosing protected type
959 -- declaration. In either case, do not create a reference for a type
960 -- obtained through a limited_with clause, because this would introduce
961 -- semantic dependencies.
963 -- Similarly, do not create a reference if the designated type is a
964 -- generic formal, because no use of it will reach the backend.
966 elsif Nkind
(Related_Nod
) = N_Function_Specification
967 and then not From_Limited_With
(Desig_Type
)
968 and then not Is_Generic_Type
(Desig_Type
)
970 if Present
(Enclosing_Prot_Type
) then
971 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
973 elsif Is_List_Member
(Parent
(Related_Nod
))
974 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
976 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
979 -- Finally, create an itype reference for an object declaration of an
980 -- anonymous access type. This is strictly necessary only for deferred
981 -- constants, but in any case will avoid out-of-scope problems in the
984 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
985 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
989 end Access_Definition
;
991 -----------------------------------
992 -- Access_Subprogram_Declaration --
993 -----------------------------------
995 procedure Access_Subprogram_Declaration
999 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
1000 -- Check that type T_Name is not used, directly or recursively, as a
1001 -- parameter or a return type in Def. Def is either a subtype, an
1002 -- access_definition, or an access_to_subprogram_definition.
1004 -------------------------------
1005 -- Check_For_Premature_Usage --
1006 -------------------------------
1008 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
1012 -- Check for a subtype mark
1014 if Nkind
(Def
) in N_Has_Etype
then
1015 if Etype
(Def
) = T_Name
then
1017 ("type& cannot be used before end of its declaration", Def
);
1020 -- If this is not a subtype, then this is an access_definition
1022 elsif Nkind
(Def
) = N_Access_Definition
then
1023 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1024 Check_For_Premature_Usage
1025 (Access_To_Subprogram_Definition
(Def
));
1027 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1030 -- The only cases left are N_Access_Function_Definition and
1031 -- N_Access_Procedure_Definition.
1034 if Present
(Parameter_Specifications
(Def
)) then
1035 Param
:= First
(Parameter_Specifications
(Def
));
1036 while Present
(Param
) loop
1037 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1038 Param
:= Next
(Param
);
1042 if Nkind
(Def
) = N_Access_Function_Definition
then
1043 Check_For_Premature_Usage
(Result_Definition
(Def
));
1046 end Check_For_Premature_Usage
;
1050 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1053 Desig_Type
: constant Entity_Id
:=
1054 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1056 -- Start of processing for Access_Subprogram_Declaration
1059 Check_SPARK_05_Restriction
("access type is not allowed", T_Def
);
1061 -- Associate the Itype node with the inner full-type declaration or
1062 -- subprogram spec or entry body. This is required to handle nested
1063 -- anonymous declarations. For example:
1066 -- (X : access procedure
1067 -- (Y : access procedure
1070 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1071 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1072 N_Private_Type_Declaration
,
1073 N_Private_Extension_Declaration
,
1074 N_Procedure_Specification
,
1075 N_Function_Specification
,
1079 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1080 N_Object_Renaming_Declaration
,
1081 N_Formal_Object_Declaration
,
1082 N_Formal_Type_Declaration
,
1083 N_Task_Type_Declaration
,
1084 N_Protected_Type_Declaration
))
1086 D_Ityp
:= Parent
(D_Ityp
);
1087 pragma Assert
(D_Ityp
/= Empty
);
1090 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1092 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1093 N_Function_Specification
)
1095 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1097 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1098 N_Object_Declaration
,
1099 N_Object_Renaming_Declaration
,
1100 N_Formal_Type_Declaration
)
1102 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1105 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1106 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1108 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1111 if Present
(Access_To_Subprogram_Definition
(Acc
))
1113 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1117 Replace_Anonymous_Access_To_Protected_Subprogram
1123 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1128 Analyze
(Result_Definition
(T_Def
));
1131 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1134 -- If a null exclusion is imposed on the result type, then
1135 -- create a null-excluding itype (an access subtype) and use
1136 -- it as the function's Etype.
1138 if Is_Access_Type
(Typ
)
1139 and then Null_Exclusion_In_Return_Present
(T_Def
)
1141 Set_Etype
(Desig_Type
,
1142 Create_Null_Excluding_Itype
1144 Related_Nod
=> T_Def
,
1145 Scope_Id
=> Current_Scope
));
1148 if From_Limited_With
(Typ
) then
1150 -- AI05-151: Incomplete types are allowed in all basic
1151 -- declarations, including access to subprograms.
1153 if Ada_Version
>= Ada_2012
then
1158 ("illegal use of incomplete type&",
1159 Result_Definition
(T_Def
), Typ
);
1162 elsif Ekind
(Current_Scope
) = E_Package
1163 and then In_Private_Part
(Current_Scope
)
1165 if Ekind
(Typ
) = E_Incomplete_Type
then
1166 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1168 elsif Is_Class_Wide_Type
(Typ
)
1169 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1172 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1176 Set_Etype
(Desig_Type
, Typ
);
1181 if not (Is_Type
(Etype
(Desig_Type
))) then
1183 ("expect type in function specification",
1184 Result_Definition
(T_Def
));
1188 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1191 if Present
(Formals
) then
1192 Push_Scope
(Desig_Type
);
1194 -- Some special tests here. These special tests can be removed
1195 -- if and when Itypes always have proper parent pointers to their
1198 -- Special test 1) Link defining_identifier of formals. Required by
1199 -- First_Formal to provide its functionality.
1205 F
:= First
(Formals
);
1207 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1208 -- when it is part of an unconstrained type and subtype expansion
1209 -- is disabled. To avoid back-end problems with shared profiles,
1210 -- use previous subprogram type as the designated type, and then
1211 -- remove scope added above.
1213 if ASIS_Mode
and then Present
(Scope
(Defining_Identifier
(F
)))
1215 Set_Etype
(T_Name
, T_Name
);
1216 Init_Size_Align
(T_Name
);
1217 Set_Directly_Designated_Type
(T_Name
,
1218 Scope
(Defining_Identifier
(F
)));
1223 while Present
(F
) loop
1224 if No
(Parent
(Defining_Identifier
(F
))) then
1225 Set_Parent
(Defining_Identifier
(F
), F
);
1232 Process_Formals
(Formals
, Parent
(T_Def
));
1234 -- Special test 2) End_Scope requires that the parent pointer be set
1235 -- to something reasonable, but Itypes don't have parent pointers. So
1236 -- we set it and then unset it ???
1238 Set_Parent
(Desig_Type
, T_Name
);
1240 Set_Parent
(Desig_Type
, Empty
);
1243 -- Check for premature usage of the type being defined
1245 Check_For_Premature_Usage
(T_Def
);
1247 -- The return type and/or any parameter type may be incomplete. Mark the
1248 -- subprogram_type as depending on the incomplete type, so that it can
1249 -- be updated when the full type declaration is seen. This only applies
1250 -- to incomplete types declared in some enclosing scope, not to limited
1251 -- views from other packages.
1253 -- Prior to Ada 2012, access to functions can only have in_parameters.
1255 if Present
(Formals
) then
1256 Formal
:= First_Formal
(Desig_Type
);
1257 while Present
(Formal
) loop
1258 if Ekind
(Formal
) /= E_In_Parameter
1259 and then Nkind
(T_Def
) = N_Access_Function_Definition
1260 and then Ada_Version
< Ada_2012
1262 Error_Msg_N
("functions can only have IN parameters", Formal
);
1265 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1266 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1268 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1269 Set_Has_Delayed_Freeze
(Desig_Type
);
1272 Next_Formal
(Formal
);
1276 -- Check whether an indirect call without actuals may be possible. This
1277 -- is used when resolving calls whose result is then indexed.
1279 May_Need_Actuals
(Desig_Type
);
1281 -- If the return type is incomplete, this is legal as long as the type
1282 -- is declared in the current scope and will be completed in it (rather
1283 -- than being part of limited view).
1285 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1286 and then not Has_Delayed_Freeze
(Desig_Type
)
1287 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1289 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1290 Set_Has_Delayed_Freeze
(Desig_Type
);
1293 Check_Delayed_Subprogram
(Desig_Type
);
1295 if Protected_Present
(T_Def
) then
1296 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1297 Set_Convention
(Desig_Type
, Convention_Protected
);
1299 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1302 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1304 Set_Etype
(T_Name
, T_Name
);
1305 Init_Size_Align
(T_Name
);
1306 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1308 Generate_Reference_To_Formals
(T_Name
);
1310 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1312 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1314 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1315 end Access_Subprogram_Declaration
;
1317 ----------------------------
1318 -- Access_Type_Declaration --
1319 ----------------------------
1321 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1322 P
: constant Node_Id
:= Parent
(Def
);
1323 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1325 Full_Desig
: Entity_Id
;
1328 Check_SPARK_05_Restriction
("access type is not allowed", Def
);
1330 -- Check for permissible use of incomplete type
1332 if Nkind
(S
) /= N_Subtype_Indication
then
1335 if Present
(Entity
(S
))
1336 and then Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
1338 Set_Directly_Designated_Type
(T
, Entity
(S
));
1340 -- If the designated type is a limited view, we cannot tell if
1341 -- the full view contains tasks, and there is no way to handle
1342 -- that full view in a client. We create a master entity for the
1343 -- scope, which will be used when a client determines that one
1346 if From_Limited_With
(Entity
(S
))
1347 and then not Is_Class_Wide_Type
(Entity
(S
))
1349 Set_Ekind
(T
, E_Access_Type
);
1350 Build_Master_Entity
(T
);
1351 Build_Master_Renaming
(T
);
1355 Set_Directly_Designated_Type
(T
, Process_Subtype
(S
, P
, T
, 'P'));
1358 -- If the access definition is of the form: ACCESS NOT NULL ..
1359 -- the subtype indication must be of an access type. Create
1360 -- a null-excluding subtype of it.
1362 if Null_Excluding_Subtype
(Def
) then
1363 if not Is_Access_Type
(Entity
(S
)) then
1364 Error_Msg_N
("null exclusion must apply to access type", Def
);
1368 Loc
: constant Source_Ptr
:= Sloc
(S
);
1370 Nam
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
1374 Make_Subtype_Declaration
(Loc
,
1375 Defining_Identifier
=> Nam
,
1376 Subtype_Indication
=>
1377 New_Occurrence_Of
(Entity
(S
), Loc
));
1378 Set_Null_Exclusion_Present
(Decl
);
1379 Insert_Before
(Parent
(Def
), Decl
);
1381 Set_Entity
(S
, Nam
);
1387 Set_Directly_Designated_Type
(T
,
1388 Process_Subtype
(S
, P
, T
, 'P'));
1391 if All_Present
(Def
) or Constant_Present
(Def
) then
1392 Set_Ekind
(T
, E_General_Access_Type
);
1394 Set_Ekind
(T
, E_Access_Type
);
1397 Full_Desig
:= Designated_Type
(T
);
1399 if Base_Type
(Full_Desig
) = T
then
1400 Error_Msg_N
("access type cannot designate itself", S
);
1402 -- In Ada 2005, the type may have a limited view through some unit in
1403 -- its own context, allowing the following circularity that cannot be
1404 -- detected earlier.
1406 elsif Is_Class_Wide_Type
(Full_Desig
) and then Etype
(Full_Desig
) = T
1409 ("access type cannot designate its own class-wide type", S
);
1411 -- Clean up indication of tagged status to prevent cascaded errors
1413 Set_Is_Tagged_Type
(T
, False);
1418 -- If the type has appeared already in a with_type clause, it is frozen
1419 -- and the pointer size is already set. Else, initialize.
1421 if not From_Limited_With
(T
) then
1422 Init_Size_Align
(T
);
1425 -- Note that Has_Task is always false, since the access type itself
1426 -- is not a task type. See Einfo for more description on this point.
1427 -- Exactly the same consideration applies to Has_Controlled_Component
1428 -- and to Has_Protected.
1430 Set_Has_Task
(T
, False);
1431 Set_Has_Protected
(T
, False);
1432 Set_Has_Timing_Event
(T
, False);
1433 Set_Has_Controlled_Component
(T
, False);
1435 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1436 -- problems where an incomplete view of this entity has been previously
1437 -- established by a limited with and an overlaid version of this field
1438 -- (Stored_Constraint) was initialized for the incomplete view.
1440 -- This reset is performed in most cases except where the access type
1441 -- has been created for the purposes of allocating or deallocating a
1442 -- build-in-place object. Such access types have explicitly set pools
1443 -- and finalization masters.
1445 if No
(Associated_Storage_Pool
(T
)) then
1446 Set_Finalization_Master
(T
, Empty
);
1449 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1452 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1453 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1454 end Access_Type_Declaration
;
1456 ----------------------------------
1457 -- Add_Interface_Tag_Components --
1458 ----------------------------------
1460 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1461 Loc
: constant Source_Ptr
:= Sloc
(N
);
1465 procedure Add_Tag
(Iface
: Entity_Id
);
1466 -- Add tag for one of the progenitor interfaces
1472 procedure Add_Tag
(Iface
: Entity_Id
) is
1479 pragma Assert
(Is_Tagged_Type
(Iface
) and then Is_Interface
(Iface
));
1481 -- This is a reasonable place to propagate predicates
1483 if Has_Predicates
(Iface
) then
1484 Set_Has_Predicates
(Typ
);
1488 Make_Component_Definition
(Loc
,
1489 Aliased_Present
=> True,
1490 Subtype_Indication
=>
1491 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1493 Tag
:= Make_Temporary
(Loc
, 'V');
1496 Make_Component_Declaration
(Loc
,
1497 Defining_Identifier
=> Tag
,
1498 Component_Definition
=> Def
);
1500 Analyze_Component_Declaration
(Decl
);
1502 Set_Analyzed
(Decl
);
1503 Set_Ekind
(Tag
, E_Component
);
1505 Set_Is_Aliased
(Tag
);
1506 Set_Related_Type
(Tag
, Iface
);
1507 Init_Component_Location
(Tag
);
1509 pragma Assert
(Is_Frozen
(Iface
));
1511 Set_DT_Entry_Count
(Tag
,
1512 DT_Entry_Count
(First_Entity
(Iface
)));
1514 if No
(Last_Tag
) then
1517 Insert_After
(Last_Tag
, Decl
);
1522 -- If the ancestor has discriminants we need to give special support
1523 -- to store the offset_to_top value of the secondary dispatch tables.
1524 -- For this purpose we add a supplementary component just after the
1525 -- field that contains the tag associated with each secondary DT.
1527 if Typ
/= Etype
(Typ
) and then Has_Discriminants
(Etype
(Typ
)) then
1529 Make_Component_Definition
(Loc
,
1530 Subtype_Indication
=>
1531 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1533 Offset
:= Make_Temporary
(Loc
, 'V');
1536 Make_Component_Declaration
(Loc
,
1537 Defining_Identifier
=> Offset
,
1538 Component_Definition
=> Def
);
1540 Analyze_Component_Declaration
(Decl
);
1542 Set_Analyzed
(Decl
);
1543 Set_Ekind
(Offset
, E_Component
);
1544 Set_Is_Aliased
(Offset
);
1545 Set_Related_Type
(Offset
, Iface
);
1546 Init_Component_Location
(Offset
);
1547 Insert_After
(Last_Tag
, Decl
);
1558 -- Start of processing for Add_Interface_Tag_Components
1561 if not RTE_Available
(RE_Interface_Tag
) then
1563 ("(Ada 2005) interface types not supported by this run-time!",
1568 if Ekind
(Typ
) /= E_Record_Type
1569 or else (Is_Concurrent_Record_Type
(Typ
)
1570 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1571 or else (not Is_Concurrent_Record_Type
(Typ
)
1572 and then No
(Interfaces
(Typ
))
1573 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1578 -- Find the current last tag
1580 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1581 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1583 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1584 Ext
:= Type_Definition
(N
);
1589 if not (Present
(Component_List
(Ext
))) then
1590 Set_Null_Present
(Ext
, False);
1592 Set_Component_List
(Ext
,
1593 Make_Component_List
(Loc
,
1594 Component_Items
=> L
,
1595 Null_Present
=> False));
1597 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1598 L
:= Component_Items
1600 (Record_Extension_Part
1601 (Type_Definition
(N
))));
1603 L
:= Component_Items
1605 (Type_Definition
(N
)));
1608 -- Find the last tag component
1611 while Present
(Comp
) loop
1612 if Nkind
(Comp
) = N_Component_Declaration
1613 and then Is_Tag
(Defining_Identifier
(Comp
))
1622 -- At this point L references the list of components and Last_Tag
1623 -- references the current last tag (if any). Now we add the tag
1624 -- corresponding with all the interfaces that are not implemented
1627 if Present
(Interfaces
(Typ
)) then
1628 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1629 while Present
(Elmt
) loop
1630 Add_Tag
(Node
(Elmt
));
1634 end Add_Interface_Tag_Components
;
1636 -------------------------------------
1637 -- Add_Internal_Interface_Entities --
1638 -------------------------------------
1640 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1643 Iface_Elmt
: Elmt_Id
;
1644 Iface_Prim
: Entity_Id
;
1645 Ifaces_List
: Elist_Id
;
1646 New_Subp
: Entity_Id
:= Empty
;
1648 Restore_Scope
: Boolean := False;
1651 pragma Assert
(Ada_Version
>= Ada_2005
1652 and then Is_Record_Type
(Tagged_Type
)
1653 and then Is_Tagged_Type
(Tagged_Type
)
1654 and then Has_Interfaces
(Tagged_Type
)
1655 and then not Is_Interface
(Tagged_Type
));
1657 -- Ensure that the internal entities are added to the scope of the type
1659 if Scope
(Tagged_Type
) /= Current_Scope
then
1660 Push_Scope
(Scope
(Tagged_Type
));
1661 Restore_Scope
:= True;
1664 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1666 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1667 while Present
(Iface_Elmt
) loop
1668 Iface
:= Node
(Iface_Elmt
);
1670 -- Originally we excluded here from this processing interfaces that
1671 -- are parents of Tagged_Type because their primitives are located
1672 -- in the primary dispatch table (and hence no auxiliary internal
1673 -- entities are required to handle secondary dispatch tables in such
1674 -- case). However, these auxiliary entities are also required to
1675 -- handle derivations of interfaces in formals of generics (see
1676 -- Derive_Subprograms).
1678 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1679 while Present
(Elmt
) loop
1680 Iface_Prim
:= Node
(Elmt
);
1682 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1684 Find_Primitive_Covering_Interface
1685 (Tagged_Type
=> Tagged_Type
,
1686 Iface_Prim
=> Iface_Prim
);
1688 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1692 pragma Assert
(Present
(Prim
));
1694 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1695 -- differs from the name of the interface primitive then it is
1696 -- a private primitive inherited from a parent type. In such
1697 -- case, given that Tagged_Type covers the interface, the
1698 -- inherited private primitive becomes visible. For such
1699 -- purpose we add a new entity that renames the inherited
1700 -- private primitive.
1702 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1703 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1705 (New_Subp
=> New_Subp
,
1706 Parent_Subp
=> Iface_Prim
,
1707 Derived_Type
=> Tagged_Type
,
1708 Parent_Type
=> Iface
);
1709 Set_Alias
(New_Subp
, Prim
);
1710 Set_Is_Abstract_Subprogram
1711 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1715 (New_Subp
=> New_Subp
,
1716 Parent_Subp
=> Iface_Prim
,
1717 Derived_Type
=> Tagged_Type
,
1718 Parent_Type
=> Iface
);
1723 if Is_Inherited_Operation
(Prim
)
1724 and then Present
(Alias
(Prim
))
1726 Anc
:= Alias
(Prim
);
1728 Anc
:= Overridden_Operation
(Prim
);
1731 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1732 -- nonconforming preconditions in both an ancestor and
1733 -- a progenitor operation.
1735 -- If the operation is a primitive wrapper it is an explicit
1736 -- (overriding) operqtion and all is fine.
1739 and then Has_Non_Trivial_Precondition
(Anc
)
1740 and then Has_Non_Trivial_Precondition
(Iface_Prim
)
1742 if Is_Abstract_Subprogram
(Prim
)
1744 (Ekind
(Prim
) = E_Procedure
1745 and then Nkind
(Parent
(Prim
)) =
1746 N_Procedure_Specification
1747 and then Null_Present
(Parent
(Prim
)))
1748 or else Is_Primitive_Wrapper
(Prim
)
1752 -- The operation is inherited and must be overridden
1754 elsif not Comes_From_Source
(Prim
) then
1756 ("&inherits non-conforming preconditions and must "
1757 & "be overridden (RM 6.1.1 (10-16)",
1758 Parent
(Tagged_Type
), Prim
);
1763 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1764 -- associated with interface types. These entities are
1765 -- only registered in the list of primitives of its
1766 -- corresponding tagged type because they are only used
1767 -- to fill the contents of the secondary dispatch tables.
1768 -- Therefore they are removed from the homonym chains.
1770 Set_Is_Hidden
(New_Subp
);
1771 Set_Is_Internal
(New_Subp
);
1772 Set_Alias
(New_Subp
, Prim
);
1773 Set_Is_Abstract_Subprogram
1774 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1775 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1777 -- If the returned type is an interface then propagate it to
1778 -- the returned type. Needed by the thunk to generate the code
1779 -- which displaces "this" to reference the corresponding
1780 -- secondary dispatch table in the returned object.
1782 if Is_Interface
(Etype
(Iface_Prim
)) then
1783 Set_Etype
(New_Subp
, Etype
(Iface_Prim
));
1786 -- Internal entities associated with interface types are only
1787 -- registered in the list of primitives of the tagged type.
1788 -- They are only used to fill the contents of the secondary
1789 -- dispatch tables. Therefore they are not needed in the
1792 Remove_Homonym
(New_Subp
);
1794 -- Hidden entities associated with interfaces must have set
1795 -- the Has_Delay_Freeze attribute to ensure that, in case
1796 -- of locally defined tagged types (or compiling with static
1797 -- dispatch tables generation disabled) the corresponding
1798 -- entry of the secondary dispatch table is filled when such
1799 -- an entity is frozen. This is an expansion activity that must
1800 -- be suppressed for ASIS because it leads to gigi elaboration
1801 -- issues in annotate mode.
1803 if not ASIS_Mode
then
1804 Set_Has_Delayed_Freeze
(New_Subp
);
1812 Next_Elmt
(Iface_Elmt
);
1815 if Restore_Scope
then
1818 end Add_Internal_Interface_Entities
;
1820 -----------------------------------
1821 -- Analyze_Component_Declaration --
1822 -----------------------------------
1824 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1825 Loc
: constant Source_Ptr
:= Sloc
(Component_Definition
(N
));
1826 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1827 E
: constant Node_Id
:= Expression
(N
);
1828 Typ
: constant Node_Id
:=
1829 Subtype_Indication
(Component_Definition
(N
));
1833 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1834 -- Determines whether a constraint uses the discriminant of a record
1835 -- type thus becoming a per-object constraint (POC).
1837 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1838 -- Typ is the type of the current component, check whether this type is
1839 -- a limited type. Used to validate declaration against that of
1840 -- enclosing record.
1846 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1848 -- Prevent cascaded errors
1850 if Error_Posted
(Constr
) then
1854 case Nkind
(Constr
) is
1855 when N_Attribute_Reference
=>
1856 return Attribute_Name
(Constr
) = Name_Access
1857 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1859 when N_Discriminant_Association
=>
1860 return Denotes_Discriminant
(Expression
(Constr
));
1862 when N_Identifier
=>
1863 return Denotes_Discriminant
(Constr
);
1865 when N_Index_Or_Discriminant_Constraint
=>
1870 IDC
:= First
(Constraints
(Constr
));
1871 while Present
(IDC
) loop
1873 -- One per-object constraint is sufficient
1875 if Contains_POC
(IDC
) then
1886 return Denotes_Discriminant
(Low_Bound
(Constr
))
1888 Denotes_Discriminant
(High_Bound
(Constr
));
1890 when N_Range_Constraint
=>
1891 return Denotes_Discriminant
(Range_Expression
(Constr
));
1898 ----------------------
1899 -- Is_Known_Limited --
1900 ----------------------
1902 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1903 P
: constant Entity_Id
:= Etype
(Typ
);
1904 R
: constant Entity_Id
:= Root_Type
(Typ
);
1907 if Is_Limited_Record
(Typ
) then
1910 -- If the root type is limited (and not a limited interface)
1911 -- so is the current type
1913 elsif Is_Limited_Record
(R
)
1914 and then (not Is_Interface
(R
) or else not Is_Limited_Interface
(R
))
1918 -- Else the type may have a limited interface progenitor, but a
1919 -- limited record parent.
1921 elsif R
/= P
and then Is_Limited_Record
(P
) then
1927 end Is_Known_Limited
;
1929 -- Start of processing for Analyze_Component_Declaration
1932 Generate_Definition
(Id
);
1935 if Present
(Typ
) then
1936 T
:= Find_Type_Of_Object
1937 (Subtype_Indication
(Component_Definition
(N
)), N
);
1939 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1940 Check_SPARK_05_Restriction
("subtype mark required", Typ
);
1943 -- Ada 2005 (AI-230): Access Definition case
1946 pragma Assert
(Present
1947 (Access_Definition
(Component_Definition
(N
))));
1949 T
:= Access_Definition
1951 N
=> Access_Definition
(Component_Definition
(N
)));
1952 Set_Is_Local_Anonymous_Access
(T
);
1954 -- Ada 2005 (AI-254)
1956 if Present
(Access_To_Subprogram_Definition
1957 (Access_Definition
(Component_Definition
(N
))))
1958 and then Protected_Present
(Access_To_Subprogram_Definition
1960 (Component_Definition
(N
))))
1962 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1966 -- If the subtype is a constrained subtype of the enclosing record,
1967 -- (which must have a partial view) the back-end does not properly
1968 -- handle the recursion. Rewrite the component declaration with an
1969 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1970 -- the tree directly because side effects have already been removed from
1971 -- discriminant constraints.
1973 if Ekind
(T
) = E_Access_Subtype
1974 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1975 and then Comes_From_Source
(T
)
1976 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1977 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1980 (Subtype_Indication
(Component_Definition
(N
)),
1981 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1982 T
:= Find_Type_Of_Object
1983 (Subtype_Indication
(Component_Definition
(N
)), N
);
1986 -- If the component declaration includes a default expression, then we
1987 -- check that the component is not of a limited type (RM 3.7(5)),
1988 -- and do the special preanalysis of the expression (see section on
1989 -- "Handling of Default and Per-Object Expressions" in the spec of
1993 Check_SPARK_05_Restriction
("default expression is not allowed", E
);
1994 Preanalyze_Default_Expression
(E
, T
);
1995 Check_Initialization
(T
, E
);
1997 if Ada_Version
>= Ada_2005
1998 and then Ekind
(T
) = E_Anonymous_Access_Type
1999 and then Etype
(E
) /= Any_Type
2001 -- Check RM 3.9.2(9): "if the expected type for an expression is
2002 -- an anonymous access-to-specific tagged type, then the object
2003 -- designated by the expression shall not be dynamically tagged
2004 -- unless it is a controlling operand in a call on a dispatching
2007 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
2009 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
2011 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
2015 ("access to specific tagged type required (RM 3.9.2(9))", E
);
2018 -- (Ada 2005: AI-230): Accessibility check for anonymous
2021 if Type_Access_Level
(Etype
(E
)) >
2022 Deepest_Type_Access_Level
(T
)
2025 ("expression has deeper access level than component " &
2026 "(RM 3.10.2 (12.2))", E
);
2029 -- The initialization expression is a reference to an access
2030 -- discriminant. The type of the discriminant is always deeper
2031 -- than any access type.
2033 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
2034 and then Is_Entity_Name
(E
)
2035 and then Ekind
(Entity
(E
)) = E_In_Parameter
2036 and then Present
(Discriminal_Link
(Entity
(E
)))
2039 ("discriminant has deeper accessibility level than target",
2045 -- The parent type may be a private view with unknown discriminants,
2046 -- and thus unconstrained. Regular components must be constrained.
2048 if not Is_Definite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
2049 if Is_Class_Wide_Type
(T
) then
2051 ("class-wide subtype with unknown discriminants" &
2052 " in component declaration",
2053 Subtype_Indication
(Component_Definition
(N
)));
2056 ("unconstrained subtype in component declaration",
2057 Subtype_Indication
(Component_Definition
(N
)));
2060 -- Components cannot be abstract, except for the special case of
2061 -- the _Parent field (case of extending an abstract tagged type)
2063 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
2064 Error_Msg_N
("type of a component cannot be abstract", N
);
2068 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
2070 -- The component declaration may have a per-object constraint, set
2071 -- the appropriate flag in the defining identifier of the subtype.
2073 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
2075 Sindic
: constant Node_Id
:=
2076 Subtype_Indication
(Component_Definition
(N
));
2078 if Nkind
(Sindic
) = N_Subtype_Indication
2079 and then Present
(Constraint
(Sindic
))
2080 and then Contains_POC
(Constraint
(Sindic
))
2082 Set_Has_Per_Object_Constraint
(Id
);
2087 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2088 -- out some static checks.
2090 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
2091 Null_Exclusion_Static_Checks
(N
);
2094 -- If this component is private (or depends on a private type), flag the
2095 -- record type to indicate that some operations are not available.
2097 P
:= Private_Component
(T
);
2101 -- Check for circular definitions
2103 if P
= Any_Type
then
2104 Set_Etype
(Id
, Any_Type
);
2106 -- There is a gap in the visibility of operations only if the
2107 -- component type is not defined in the scope of the record type.
2109 elsif Scope
(P
) = Scope
(Current_Scope
) then
2112 elsif Is_Limited_Type
(P
) then
2113 Set_Is_Limited_Composite
(Current_Scope
);
2116 Set_Is_Private_Composite
(Current_Scope
);
2121 and then Is_Limited_Type
(T
)
2122 and then Chars
(Id
) /= Name_uParent
2123 and then Is_Tagged_Type
(Current_Scope
)
2125 if Is_Derived_Type
(Current_Scope
)
2126 and then not Is_Known_Limited
(Current_Scope
)
2129 ("extension of nonlimited type cannot have limited components",
2132 if Is_Interface
(Root_Type
(Current_Scope
)) then
2134 ("\limitedness is not inherited from limited interface", N
);
2135 Error_Msg_N
("\add LIMITED to type indication", N
);
2138 Explain_Limited_Type
(T
, N
);
2139 Set_Etype
(Id
, Any_Type
);
2140 Set_Is_Limited_Composite
(Current_Scope
, False);
2142 elsif not Is_Derived_Type
(Current_Scope
)
2143 and then not Is_Limited_Record
(Current_Scope
)
2144 and then not Is_Concurrent_Type
(Current_Scope
)
2147 ("nonlimited tagged type cannot have limited components", N
);
2148 Explain_Limited_Type
(T
, N
);
2149 Set_Etype
(Id
, Any_Type
);
2150 Set_Is_Limited_Composite
(Current_Scope
, False);
2154 -- If the component is an unconstrained task or protected type with
2155 -- discriminants, the component and the enclosing record are limited
2156 -- and the component is constrained by its default values. Compute
2157 -- its actual subtype, else it may be allocated the maximum size by
2158 -- the backend, and possibly overflow.
2160 if Is_Concurrent_Type
(T
)
2161 and then not Is_Constrained
(T
)
2162 and then Has_Discriminants
(T
)
2163 and then not Has_Discriminants
(Current_Scope
)
2166 Act_T
: constant Entity_Id
:= Build_Default_Subtype
(T
, N
);
2169 Set_Etype
(Id
, Act_T
);
2171 -- Rewrite component definition to use the constrained subtype
2173 Rewrite
(Component_Definition
(N
),
2174 Make_Component_Definition
(Loc
,
2175 Subtype_Indication
=> New_Occurrence_Of
(Act_T
, Loc
)));
2179 Set_Original_Record_Component
(Id
, Id
);
2181 if Has_Aspects
(N
) then
2182 Analyze_Aspect_Specifications
(N
, Id
);
2185 Analyze_Dimension
(N
);
2186 end Analyze_Component_Declaration
;
2188 --------------------------
2189 -- Analyze_Declarations --
2190 --------------------------
2192 procedure Analyze_Declarations
(L
: List_Id
) is
2195 procedure Adjust_Decl
;
2196 -- Adjust Decl not to include implicit label declarations, since these
2197 -- have strange Sloc values that result in elaboration check problems.
2198 -- (They have the sloc of the label as found in the source, and that
2199 -- is ahead of the current declarative part).
2201 procedure Build_Assertion_Bodies
(Decls
: List_Id
; Context
: Node_Id
);
2202 -- Create the subprogram bodies which verify the run-time semantics of
2203 -- the pragmas listed below for each elibigle type found in declarative
2204 -- list Decls. The pragmas are:
2206 -- Default_Initial_Condition
2210 -- Context denotes the owner of the declarative list.
2212 procedure Check_Entry_Contracts
;
2213 -- Perform a pre-analysis of the pre- and postconditions of an entry
2214 -- declaration. This must be done before full resolution and creation
2215 -- of the parameter block, etc. to catch illegal uses within the
2216 -- contract expression. Full analysis of the expression is done when
2217 -- the contract is processed.
2219 function Contains_Lib_Incomplete_Type
(Pkg
: Entity_Id
) return Boolean;
2220 -- Check if a nested package has entities within it that rely on library
2221 -- level private types where the full view has not been completed for
2222 -- the purposes of checking if it is acceptable to freeze an expression
2223 -- function at the point of declaration.
2225 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
);
2226 -- Determine whether Body_Decl denotes the body of a late controlled
2227 -- primitive (either Initialize, Adjust or Finalize). If this is the
2228 -- case, add a proper spec if the body lacks one. The spec is inserted
2229 -- before Body_Decl and immediately analyzed.
2231 procedure Remove_Partial_Visible_Refinements
(Spec_Id
: Entity_Id
);
2232 -- Spec_Id is the entity of a package that may define abstract states,
2233 -- and in the case of a child unit, whose ancestors may define abstract
2234 -- states. If the states have partial visible refinement, remove the
2235 -- partial visibility of each constituent at the end of the package
2236 -- spec and body declarations.
2238 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
);
2239 -- Spec_Id is the entity of a package that may define abstract states.
2240 -- If the states have visible refinement, remove the visibility of each
2241 -- constituent at the end of the package body declaration.
2243 procedure Resolve_Aspects
;
2244 -- Utility to resolve the expressions of aspects at the end of a list of
2245 -- declarations, or before a declaration that freezes previous entities,
2246 -- such as in a subprogram body.
2252 procedure Adjust_Decl
is
2254 while Present
(Prev
(Decl
))
2255 and then Nkind
(Decl
) = N_Implicit_Label_Declaration
2261 ----------------------------
2262 -- Build_Assertion_Bodies --
2263 ----------------------------
2265 procedure Build_Assertion_Bodies
(Decls
: List_Id
; Context
: Node_Id
) is
2266 procedure Build_Assertion_Bodies_For_Type
(Typ
: Entity_Id
);
2267 -- Create the subprogram bodies which verify the run-time semantics
2268 -- of the pragmas listed below for type Typ. The pragmas are:
2270 -- Default_Initial_Condition
2274 -------------------------------------
2275 -- Build_Assertion_Bodies_For_Type --
2276 -------------------------------------
2278 procedure Build_Assertion_Bodies_For_Type
(Typ
: Entity_Id
) is
2280 -- Preanalyze and resolve the Default_Initial_Condition assertion
2281 -- expression at the end of the declarations to catch any errors.
2283 if Has_DIC
(Typ
) then
2284 Build_DIC_Procedure_Body
(Typ
);
2287 if Nkind
(Context
) = N_Package_Specification
then
2289 -- Preanalyze and resolve the class-wide invariants of an
2290 -- interface at the end of whichever declarative part has the
2291 -- interface type. Note that an interface may be declared in
2292 -- any non-package declarative part, but reaching the end of
2293 -- such a declarative part will always freeze the type and
2294 -- generate the invariant procedure (see Freeze_Type).
2296 if Is_Interface
(Typ
) then
2298 -- Interfaces are treated as the partial view of a private
2299 -- type, in order to achieve uniformity with the general
2300 -- case. As a result, an interface receives only a "partial"
2301 -- invariant procedure, which is never called.
2303 if Has_Own_Invariants
(Typ
) then
2304 Build_Invariant_Procedure_Body
2306 Partial_Invariant
=> True);
2309 -- Preanalyze and resolve the invariants of a private type
2310 -- at the end of the visible declarations to catch potential
2311 -- errors. Inherited class-wide invariants are not included
2312 -- because they have already been resolved.
2314 elsif Decls
= Visible_Declarations
(Context
)
2315 and then Ekind_In
(Typ
, E_Limited_Private_Type
,
2317 E_Record_Type_With_Private
)
2318 and then Has_Own_Invariants
(Typ
)
2320 Build_Invariant_Procedure_Body
2322 Partial_Invariant
=> True);
2324 -- Preanalyze and resolve the invariants of a private type's
2325 -- full view at the end of the private declarations to catch
2326 -- potential errors.
2328 elsif Decls
= Private_Declarations
(Context
)
2329 and then not Is_Private_Type
(Typ
)
2330 and then Has_Private_Declaration
(Typ
)
2331 and then Has_Invariants
(Typ
)
2333 Build_Invariant_Procedure_Body
(Typ
);
2336 end Build_Assertion_Bodies_For_Type
;
2341 Decl_Id
: Entity_Id
;
2343 -- Start of processing for Build_Assertion_Bodies
2346 Decl
:= First
(Decls
);
2347 while Present
(Decl
) loop
2348 if Is_Declaration
(Decl
) then
2349 Decl_Id
:= Defining_Entity
(Decl
);
2351 if Is_Type
(Decl_Id
) then
2352 Build_Assertion_Bodies_For_Type
(Decl_Id
);
2358 end Build_Assertion_Bodies
;
2360 ---------------------------
2361 -- Check_Entry_Contracts --
2362 ---------------------------
2364 procedure Check_Entry_Contracts
is
2370 Ent
:= First_Entity
(Current_Scope
);
2371 while Present
(Ent
) loop
2373 -- This only concerns entries with pre/postconditions
2375 if Ekind
(Ent
) = E_Entry
2376 and then Present
(Contract
(Ent
))
2377 and then Present
(Pre_Post_Conditions
(Contract
(Ent
)))
2379 ASN
:= Pre_Post_Conditions
(Contract
(Ent
));
2381 Install_Formals
(Ent
);
2383 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2384 -- is performed on a copy of the pragma expression, to prevent
2385 -- modifying the original expression.
2387 while Present
(ASN
) loop
2388 if Nkind
(ASN
) = N_Pragma
then
2392 (First
(Pragma_Argument_Associations
(ASN
))));
2393 Set_Parent
(Exp
, ASN
);
2395 Preanalyze_Assert_Expression
(Exp
, Standard_Boolean
);
2398 ASN
:= Next_Pragma
(ASN
);
2406 end Check_Entry_Contracts
;
2408 ----------------------------------
2409 -- Contains_Lib_Incomplete_Type --
2410 ----------------------------------
2412 function Contains_Lib_Incomplete_Type
(Pkg
: Entity_Id
) return Boolean is
2416 -- Avoid looking through scopes that do not meet the precondition of
2417 -- Pkg not being within a library unit spec.
2419 if not Is_Compilation_Unit
(Pkg
)
2420 and then not Is_Generic_Instance
(Pkg
)
2421 and then not In_Package_Body
(Enclosing_Lib_Unit_Entity
(Pkg
))
2423 -- Loop through all entities in the current scope to identify
2424 -- an entity that depends on a private type.
2426 Curr
:= First_Entity
(Pkg
);
2428 if Nkind
(Curr
) in N_Entity
2429 and then Depends_On_Private
(Curr
)
2434 exit when Last_Entity
(Current_Scope
) = Curr
;
2435 Curr
:= Next_Entity
(Curr
);
2440 end Contains_Lib_Incomplete_Type
;
2442 --------------------------------------
2443 -- Handle_Late_Controlled_Primitive --
2444 --------------------------------------
2446 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
) is
2447 Body_Spec
: constant Node_Id
:= Specification
(Body_Decl
);
2448 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2449 Loc
: constant Source_Ptr
:= Sloc
(Body_Id
);
2450 Params
: constant List_Id
:=
2451 Parameter_Specifications
(Body_Spec
);
2453 Spec_Id
: Entity_Id
;
2457 -- Consider only procedure bodies whose name matches one of the three
2458 -- controlled primitives.
2460 if Nkind
(Body_Spec
) /= N_Procedure_Specification
2461 or else not Nam_In
(Chars
(Body_Id
), Name_Adjust
,
2467 -- A controlled primitive must have exactly one formal which is not
2468 -- an anonymous access type.
2470 elsif List_Length
(Params
) /= 1 then
2474 Typ
:= Parameter_Type
(First
(Params
));
2476 if Nkind
(Typ
) = N_Access_Definition
then
2482 -- The type of the formal must be derived from [Limited_]Controlled
2484 if not Is_Controlled
(Entity
(Typ
)) then
2488 -- Check whether a specification exists for this body. We do not
2489 -- analyze the spec of the body in full, because it will be analyzed
2490 -- again when the body is properly analyzed, and we cannot create
2491 -- duplicate entries in the formals chain. We look for an explicit
2492 -- specification because the body may be an overriding operation and
2493 -- an inherited spec may be present.
2495 Spec_Id
:= Current_Entity
(Body_Id
);
2497 while Present
(Spec_Id
) loop
2498 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
)
2499 and then Scope
(Spec_Id
) = Current_Scope
2500 and then Present
(First_Formal
(Spec_Id
))
2501 and then No
(Next_Formal
(First_Formal
(Spec_Id
)))
2502 and then Etype
(First_Formal
(Spec_Id
)) = Entity
(Typ
)
2503 and then Comes_From_Source
(Spec_Id
)
2508 Spec_Id
:= Homonym
(Spec_Id
);
2511 -- At this point the body is known to be a late controlled primitive.
2512 -- Generate a matching spec and insert it before the body. Note the
2513 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2514 -- tree in this case.
2516 Spec
:= Copy_Separate_Tree
(Body_Spec
);
2518 -- Ensure that the subprogram declaration does not inherit the null
2519 -- indicator from the body as we now have a proper spec/body pair.
2521 Set_Null_Present
(Spec
, False);
2523 -- Ensure that the freeze node is inserted after the declaration of
2524 -- the primitive since its expansion will freeze the primitive.
2526 Decl
:= Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
);
2528 Insert_Before_And_Analyze
(Body_Decl
, Decl
);
2529 end Handle_Late_Controlled_Primitive
;
2531 ----------------------------------------
2532 -- Remove_Partial_Visible_Refinements --
2533 ----------------------------------------
2535 procedure Remove_Partial_Visible_Refinements
(Spec_Id
: Entity_Id
) is
2536 State_Elmt
: Elmt_Id
;
2538 if Present
(Abstract_States
(Spec_Id
)) then
2539 State_Elmt
:= First_Elmt
(Abstract_States
(Spec_Id
));
2540 while Present
(State_Elmt
) loop
2541 Set_Has_Partial_Visible_Refinement
(Node
(State_Elmt
), False);
2542 Next_Elmt
(State_Elmt
);
2546 -- For a child unit, also hide the partial state refinement from
2547 -- ancestor packages.
2549 if Is_Child_Unit
(Spec_Id
) then
2550 Remove_Partial_Visible_Refinements
(Scope
(Spec_Id
));
2552 end Remove_Partial_Visible_Refinements
;
2554 --------------------------------
2555 -- Remove_Visible_Refinements --
2556 --------------------------------
2558 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
) is
2559 State_Elmt
: Elmt_Id
;
2561 if Present
(Abstract_States
(Spec_Id
)) then
2562 State_Elmt
:= First_Elmt
(Abstract_States
(Spec_Id
));
2563 while Present
(State_Elmt
) loop
2564 Set_Has_Visible_Refinement
(Node
(State_Elmt
), False);
2565 Next_Elmt
(State_Elmt
);
2568 end Remove_Visible_Refinements
;
2570 ---------------------
2571 -- Resolve_Aspects --
2572 ---------------------
2574 procedure Resolve_Aspects
is
2578 E
:= First_Entity
(Current_Scope
);
2579 while Present
(E
) loop
2580 Resolve_Aspect_Expressions
(E
);
2583 end Resolve_Aspects
;
2587 Context
: Node_Id
:= Empty
;
2588 Freeze_From
: Entity_Id
:= Empty
;
2589 Next_Decl
: Node_Id
;
2591 Body_Seen
: Boolean := False;
2592 -- Flag set when the first body [stub] is encountered
2594 -- Start of processing for Analyze_Declarations
2597 if Restriction_Check_Required
(SPARK_05
) then
2598 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2602 while Present
(Decl
) loop
2604 -- Package spec cannot contain a package declaration in SPARK
2606 if Nkind
(Decl
) = N_Package_Declaration
2607 and then Nkind
(Parent
(L
)) = N_Package_Specification
2609 Check_SPARK_05_Restriction
2610 ("package specification cannot contain a package declaration",
2614 -- Complete analysis of declaration
2617 Next_Decl
:= Next
(Decl
);
2619 if No
(Freeze_From
) then
2620 Freeze_From
:= First_Entity
(Current_Scope
);
2623 -- At the end of a declarative part, freeze remaining entities
2624 -- declared in it. The end of the visible declarations of package
2625 -- specification is not the end of a declarative part if private
2626 -- declarations are present. The end of a package declaration is a
2627 -- freezing point only if it a library package. A task definition or
2628 -- protected type definition is not a freeze point either. Finally,
2629 -- we do not freeze entities in generic scopes, because there is no
2630 -- code generated for them and freeze nodes will be generated for
2633 -- The end of a package instantiation is not a freeze point, but
2634 -- for now we make it one, because the generic body is inserted
2635 -- (currently) immediately after. Generic instantiations will not
2636 -- be a freeze point once delayed freezing of bodies is implemented.
2637 -- (This is needed in any case for early instantiations ???).
2639 if No
(Next_Decl
) then
2640 if Nkind
(Parent
(L
)) = N_Component_List
then
2643 elsif Nkind_In
(Parent
(L
), N_Protected_Definition
,
2646 Check_Entry_Contracts
;
2648 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2649 if Nkind
(Parent
(L
)) = N_Package_Body
then
2650 Freeze_From
:= First_Entity
(Current_Scope
);
2653 -- There may have been several freezing points previously,
2654 -- for example object declarations or subprogram bodies, but
2655 -- at the end of a declarative part we check freezing from
2656 -- the beginning, even though entities may already be frozen,
2657 -- in order to perform visibility checks on delayed aspects.
2661 -- If the current scope is a generic subprogram body. Skip the
2662 -- generic formal parameters that are not frozen here.
2664 if Is_Subprogram
(Current_Scope
)
2665 and then Nkind
(Unit_Declaration_Node
(Current_Scope
)) =
2666 N_Generic_Subprogram_Declaration
2667 and then Present
(First_Entity
(Current_Scope
))
2669 while Is_Generic_Formal
(Freeze_From
) loop
2670 Freeze_From
:= Next_Entity
(Freeze_From
);
2673 Freeze_All
(Freeze_From
, Decl
);
2674 Freeze_From
:= Last_Entity
(Current_Scope
);
2677 -- For declarations in a subprogram body there is no issue
2678 -- with name resolution in aspect specifications, but in
2679 -- ASIS mode we need to preanalyze aspect specifications
2680 -- that may otherwise only be analyzed during expansion
2681 -- (e.g. during generation of a related subprogram).
2687 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2688 Freeze_From
:= Last_Entity
(Current_Scope
);
2691 -- Current scope is a package specification
2693 elsif Scope
(Current_Scope
) /= Standard_Standard
2694 and then not Is_Child_Unit
(Current_Scope
)
2695 and then No
(Generic_Parent
(Parent
(L
)))
2697 -- ARM rule 13.1.1(11/3): usage names in aspect definitions are
2698 -- resolved at the end of the immediately enclosing declaration
2699 -- list (AI05-0183-1).
2703 elsif L
/= Visible_Declarations
(Parent
(L
))
2704 or else No
(Private_Declarations
(Parent
(L
)))
2705 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2709 -- End of a package declaration
2711 -- In compilation mode the expansion of freeze node takes care
2712 -- of resolving expressions of all aspects in the list. In ASIS
2713 -- mode this must be done explicitly.
2716 and then Scope
(Current_Scope
) = Standard_Standard
2721 -- This is a freeze point because it is the end of a
2722 -- compilation unit.
2724 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2725 Freeze_From
:= Last_Entity
(Current_Scope
);
2727 -- At the end of the visible declarations the expressions in
2728 -- aspects of all entities declared so far must be resolved.
2729 -- The entities themselves might be frozen later, and the
2730 -- generated pragmas and attribute definition clauses analyzed
2731 -- in full at that point, but name resolution must take place
2733 -- In addition to being the proper semantics, this is mandatory
2734 -- within generic units, because global name capture requires
2735 -- those expressions to be analyzed, given that the generated
2736 -- pragmas do not appear in the original generic tree.
2738 elsif Serious_Errors_Detected
= 0 then
2742 -- If next node is a body then freeze all types before the body.
2743 -- An exception occurs for some expander-generated bodies. If these
2744 -- are generated at places where in general language rules would not
2745 -- allow a freeze point, then we assume that the expander has
2746 -- explicitly checked that all required types are properly frozen,
2747 -- and we do not cause general freezing here. This special circuit
2748 -- is used when the encountered body is marked as having already
2751 -- In all other cases (bodies that come from source, and expander
2752 -- generated bodies that have not been analyzed yet), freeze all
2753 -- types now. Note that in the latter case, the expander must take
2754 -- care to attach the bodies at a proper place in the tree so as to
2755 -- not cause unwanted freezing at that point.
2757 -- It is also necessary to check for a case where both an expression
2758 -- function is used and the current scope depends on an incomplete
2759 -- private type from a library unit, otherwise premature freezing of
2760 -- the private type will occur.
2762 elsif not Analyzed
(Next_Decl
) and then Is_Body
(Next_Decl
)
2763 and then ((Nkind
(Next_Decl
) /= N_Subprogram_Body
2764 or else not Was_Expression_Function
(Next_Decl
))
2765 or else (not Is_Ignored_Ghost_Entity
(Current_Scope
)
2766 and then not Contains_Lib_Incomplete_Type
2769 -- When a controlled type is frozen, the expander generates stream
2770 -- and controlled-type support routines. If the freeze is caused
2771 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2772 -- expander will end up using the wrong version of these routines,
2773 -- as the body has not been processed yet. To remedy this, detect
2774 -- a late controlled primitive and create a proper spec for it.
2775 -- This ensures that the primitive will override its inherited
2776 -- counterpart before the freeze takes place.
2778 -- If the declaration we just processed is a body, do not attempt
2779 -- to examine Next_Decl as the late primitive idiom can only apply
2780 -- to the first encountered body.
2782 -- The spec of the late primitive is not generated in ASIS mode to
2783 -- ensure a consistent list of primitives that indicates the true
2784 -- semantic structure of the program (which is not relevant when
2785 -- generating executable code).
2787 -- ??? A cleaner approach may be possible and/or this solution
2788 -- could be extended to general-purpose late primitives, TBD.
2791 and then not Body_Seen
2792 and then not Is_Body
(Decl
)
2796 if Nkind
(Next_Decl
) = N_Subprogram_Body
then
2797 Handle_Late_Controlled_Primitive
(Next_Decl
);
2801 -- In ASIS mode, if the next declaration is a body, complete
2802 -- the analysis of declarations so far.
2809 -- The generated body of an expression function does not freeze,
2810 -- unless it is a completion, in which case only the expression
2811 -- itself freezes. This is handled when the body itself is
2812 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2814 Freeze_All
(Freeze_From
, Decl
);
2815 Freeze_From
:= Last_Entity
(Current_Scope
);
2821 -- Post-freezing actions
2824 Context
:= Parent
(L
);
2826 -- Certain contract annocations have forward visibility semantics and
2827 -- must be analyzed after all declarative items have been processed.
2828 -- This timing ensures that entities referenced by such contracts are
2831 -- Analyze the contract of an immediately enclosing package spec or
2832 -- body first because other contracts may depend on its information.
2834 if Nkind
(Context
) = N_Package_Body
then
2835 Analyze_Package_Body_Contract
(Defining_Entity
(Context
));
2837 elsif Nkind
(Context
) = N_Package_Specification
then
2838 Analyze_Package_Contract
(Defining_Entity
(Context
));
2841 -- Analyze the contracts of various constructs in the declarative
2844 Analyze_Contracts
(L
);
2846 if Nkind
(Context
) = N_Package_Body
then
2848 -- Ensure that all abstract states and objects declared in the
2849 -- state space of a package body are utilized as constituents.
2851 Check_Unused_Body_States
(Defining_Entity
(Context
));
2853 -- State refinements are visible up to the end of the package body
2854 -- declarations. Hide the state refinements from visibility to
2855 -- restore the original state conditions.
2857 Remove_Visible_Refinements
(Corresponding_Spec
(Context
));
2858 Remove_Partial_Visible_Refinements
(Corresponding_Spec
(Context
));
2860 elsif Nkind
(Context
) = N_Package_Specification
then
2862 -- Partial state refinements are visible up to the end of the
2863 -- package spec declarations. Hide the partial state refinements
2864 -- from visibility to restore the original state conditions.
2866 Remove_Partial_Visible_Refinements
(Defining_Entity
(Context
));
2869 -- Verify that all abstract states found in any package declared in
2870 -- the input declarative list have proper refinements. The check is
2871 -- performed only when the context denotes a block, entry, package,
2872 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2874 Check_State_Refinements
(Context
);
2876 -- Create the subprogram bodies which verify the run-time semantics
2877 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2878 -- types within the current declarative list. This ensures that all
2879 -- assertion expressions are preanalyzed and resolved at the end of
2880 -- the declarative part. Note that the resolution happens even when
2881 -- freezing does not take place.
2883 Build_Assertion_Bodies
(L
, Context
);
2885 end Analyze_Declarations
;
2887 -----------------------------------
2888 -- Analyze_Full_Type_Declaration --
2889 -----------------------------------
2891 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2892 Def
: constant Node_Id
:= Type_Definition
(N
);
2893 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2897 Is_Remote
: constant Boolean :=
2898 (Is_Remote_Types
(Current_Scope
)
2899 or else Is_Remote_Call_Interface
(Current_Scope
))
2900 and then not (In_Private_Part
(Current_Scope
)
2901 or else In_Package_Body
(Current_Scope
));
2903 procedure Check_Nonoverridable_Aspects
;
2904 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2905 -- be overridden, and can only be confirmed on derivation.
2907 procedure Check_Ops_From_Incomplete_Type
;
2908 -- If there is a tagged incomplete partial view of the type, traverse
2909 -- the primitives of the incomplete view and change the type of any
2910 -- controlling formals and result to indicate the full view. The
2911 -- primitives will be added to the full type's primitive operations
2912 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2913 -- is called from Process_Incomplete_Dependents).
2915 ----------------------------------
2916 -- Check_Nonoverridable_Aspects --
2917 ----------------------------------
2919 procedure Check_Nonoverridable_Aspects
is
2920 function Get_Aspect_Spec
2922 Aspect_Name
: Name_Id
) return Node_Id
;
2923 -- Check whether a list of aspect specifications includes an entry
2924 -- for a specific aspect. The list is either that of a partial or
2927 ---------------------
2928 -- Get_Aspect_Spec --
2929 ---------------------
2931 function Get_Aspect_Spec
2933 Aspect_Name
: Name_Id
) return Node_Id
2938 Spec
:= First
(Specs
);
2939 while Present
(Spec
) loop
2940 if Chars
(Identifier
(Spec
)) = Aspect_Name
then
2947 end Get_Aspect_Spec
;
2951 Prev_Aspects
: constant List_Id
:=
2952 Aspect_Specifications
(Parent
(Def_Id
));
2953 Par_Type
: Entity_Id
;
2954 Prev_Aspect
: Node_Id
;
2956 -- Start of processing for Check_Nonoverridable_Aspects
2959 -- Get parent type of derived type. Note that Prev is the entity in
2960 -- the partial declaration, but its contents are now those of full
2961 -- view, while Def_Id reflects the partial view.
2963 if Is_Private_Type
(Def_Id
) then
2964 Par_Type
:= Etype
(Full_View
(Def_Id
));
2966 Par_Type
:= Etype
(Def_Id
);
2969 -- If there is an inherited Implicit_Dereference, verify that it is
2970 -- made explicit in the partial view.
2972 if Has_Discriminants
(Base_Type
(Par_Type
))
2973 and then Nkind
(Parent
(Prev
)) = N_Full_Type_Declaration
2974 and then Present
(Discriminant_Specifications
(Parent
(Prev
)))
2975 and then Present
(Get_Reference_Discriminant
(Par_Type
))
2978 Get_Aspect_Spec
(Prev_Aspects
, Name_Implicit_Dereference
);
2982 (Discriminant_Specifications
2983 (Original_Node
(Parent
(Prev
))))
2986 ("type does not inherit implicit dereference", Prev
);
2989 -- If one of the views has the aspect specified, verify that it
2990 -- is consistent with that of the parent.
2993 Par_Discr
: constant Entity_Id
:=
2994 Get_Reference_Discriminant
(Par_Type
);
2995 Cur_Discr
: constant Entity_Id
:=
2996 Get_Reference_Discriminant
(Prev
);
2999 if Corresponding_Discriminant
(Cur_Discr
) /= Par_Discr
then
3000 Error_Msg_N
("aspect incosistent with that of parent", N
);
3003 -- Check that specification in partial view matches the
3004 -- inherited aspect. Compare names directly because aspect
3005 -- expression may not be analyzed.
3007 if Present
(Prev_Aspect
)
3008 and then Nkind
(Expression
(Prev_Aspect
)) = N_Identifier
3009 and then Chars
(Expression
(Prev_Aspect
)) /=
3013 ("aspect incosistent with that of parent", N
);
3019 -- TBD : other nonoverridable aspects.
3020 end Check_Nonoverridable_Aspects
;
3022 ------------------------------------
3023 -- Check_Ops_From_Incomplete_Type --
3024 ------------------------------------
3026 procedure Check_Ops_From_Incomplete_Type
is
3033 and then Ekind
(Prev
) = E_Incomplete_Type
3034 and then Is_Tagged_Type
(Prev
)
3035 and then Is_Tagged_Type
(T
)
3037 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
3038 while Present
(Elmt
) loop
3041 Formal
:= First_Formal
(Op
);
3042 while Present
(Formal
) loop
3043 if Etype
(Formal
) = Prev
then
3044 Set_Etype
(Formal
, T
);
3047 Next_Formal
(Formal
);
3050 if Etype
(Op
) = Prev
then
3057 end Check_Ops_From_Incomplete_Type
;
3059 -- Start of processing for Analyze_Full_Type_Declaration
3062 Prev
:= Find_Type_Name
(N
);
3064 -- The full view, if present, now points to the current type. If there
3065 -- is an incomplete partial view, set a link to it, to simplify the
3066 -- retrieval of primitive operations of the type.
3068 -- Ada 2005 (AI-50217): If the type was previously decorated when
3069 -- imported through a LIMITED WITH clause, it appears as incomplete
3070 -- but has no full view.
3072 if Ekind
(Prev
) = E_Incomplete_Type
3073 and then Present
(Full_View
(Prev
))
3075 T
:= Full_View
(Prev
);
3076 Set_Incomplete_View
(N
, Parent
(Prev
));
3081 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
3083 -- We set the flag Is_First_Subtype here. It is needed to set the
3084 -- corresponding flag for the Implicit class-wide-type created
3085 -- during tagged types processing.
3087 Set_Is_First_Subtype
(T
, True);
3089 -- Only composite types other than array types are allowed to have
3094 -- For derived types, the rule will be checked once we've figured
3095 -- out the parent type.
3097 when N_Derived_Type_Definition
=>
3100 -- For record types, discriminants are allowed, unless we are in
3103 when N_Record_Definition
=>
3104 if Present
(Discriminant_Specifications
(N
)) then
3105 Check_SPARK_05_Restriction
3106 ("discriminant type is not allowed",
3108 (First
(Discriminant_Specifications
(N
))));
3112 if Present
(Discriminant_Specifications
(N
)) then
3114 ("elementary or array type cannot have discriminants",
3116 (First
(Discriminant_Specifications
(N
))));
3120 -- Elaborate the type definition according to kind, and generate
3121 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3122 -- already done (this happens during the reanalysis that follows a call
3123 -- to the high level optimizer).
3125 if not Analyzed
(T
) then
3128 -- Set the SPARK mode from the current context
3130 Set_SPARK_Pragma
(T
, SPARK_Mode_Pragma
);
3131 Set_SPARK_Pragma_Inherited
(T
);
3134 when N_Access_To_Subprogram_Definition
=>
3135 Access_Subprogram_Declaration
(T
, Def
);
3137 -- If this is a remote access to subprogram, we must create the
3138 -- equivalent fat pointer type, and related subprograms.
3141 Process_Remote_AST_Declaration
(N
);
3144 -- Validate categorization rule against access type declaration
3145 -- usually a violation in Pure unit, Shared_Passive unit.
3147 Validate_Access_Type_Declaration
(T
, N
);
3149 when N_Access_To_Object_Definition
=>
3150 Access_Type_Declaration
(T
, Def
);
3152 -- Validate categorization rule against access type declaration
3153 -- usually a violation in Pure unit, Shared_Passive unit.
3155 Validate_Access_Type_Declaration
(T
, N
);
3157 -- If we are in a Remote_Call_Interface package and define a
3158 -- RACW, then calling stubs and specific stream attributes
3162 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
3164 Add_RACW_Features
(Def_Id
);
3167 when N_Array_Type_Definition
=>
3168 Array_Type_Declaration
(T
, Def
);
3170 when N_Derived_Type_Definition
=>
3171 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
3173 -- Inherit predicates from parent, and protect against illegal
3176 if Is_Type
(T
) and then Has_Predicates
(T
) then
3177 Set_Has_Predicates
(Def_Id
);
3180 -- Save the scenario for examination by the ABE Processing
3183 Record_Elaboration_Scenario
(N
);
3185 when N_Enumeration_Type_Definition
=>
3186 Enumeration_Type_Declaration
(T
, Def
);
3188 when N_Floating_Point_Definition
=>
3189 Floating_Point_Type_Declaration
(T
, Def
);
3191 when N_Decimal_Fixed_Point_Definition
=>
3192 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
3194 when N_Ordinary_Fixed_Point_Definition
=>
3195 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
3197 when N_Signed_Integer_Type_Definition
=>
3198 Signed_Integer_Type_Declaration
(T
, Def
);
3200 when N_Modular_Type_Definition
=>
3201 Modular_Type_Declaration
(T
, Def
);
3203 when N_Record_Definition
=>
3204 Record_Type_Declaration
(T
, N
, Prev
);
3206 -- If declaration has a parse error, nothing to elaborate.
3212 raise Program_Error
;
3216 if Etype
(T
) = Any_Type
then
3220 -- Controlled type is not allowed in SPARK
3222 if Is_Visibly_Controlled
(T
) then
3223 Check_SPARK_05_Restriction
("controlled type is not allowed", N
);
3226 -- Some common processing for all types
3228 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
3229 Check_Ops_From_Incomplete_Type
;
3231 -- Both the declared entity, and its anonymous base type if one was
3232 -- created, need freeze nodes allocated.
3235 B
: constant Entity_Id
:= Base_Type
(T
);
3238 -- In the case where the base type differs from the first subtype, we
3239 -- pre-allocate a freeze node, and set the proper link to the first
3240 -- subtype. Freeze_Entity will use this preallocated freeze node when
3241 -- it freezes the entity.
3243 -- This does not apply if the base type is a generic type, whose
3244 -- declaration is independent of the current derived definition.
3246 if B
/= T
and then not Is_Generic_Type
(B
) then
3247 Ensure_Freeze_Node
(B
);
3248 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
3251 -- A type that is imported through a limited_with clause cannot
3252 -- generate any code, and thus need not be frozen. However, an access
3253 -- type with an imported designated type needs a finalization list,
3254 -- which may be referenced in some other package that has non-limited
3255 -- visibility on the designated type. Thus we must create the
3256 -- finalization list at the point the access type is frozen, to
3257 -- prevent unsatisfied references at link time.
3259 if not From_Limited_With
(T
) or else Is_Access_Type
(T
) then
3260 Set_Has_Delayed_Freeze
(T
);
3264 -- Case where T is the full declaration of some private type which has
3265 -- been swapped in Defining_Identifier (N).
3267 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
3268 Process_Full_View
(N
, T
, Def_Id
);
3270 -- Record the reference. The form of this is a little strange, since
3271 -- the full declaration has been swapped in. So the first parameter
3272 -- here represents the entity to which a reference is made which is
3273 -- the "real" entity, i.e. the one swapped in, and the second
3274 -- parameter provides the reference location.
3276 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3277 -- since we don't want a complaint about the full type being an
3278 -- unwanted reference to the private type
3281 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
3283 Set_Has_Pragma_Unreferenced
(T
, False);
3284 Generate_Reference
(T
, T
, 'c');
3285 Set_Has_Pragma_Unreferenced
(T
, B
);
3288 Set_Completion_Referenced
(Def_Id
);
3290 -- For completion of incomplete type, process incomplete dependents
3291 -- and always mark the full type as referenced (it is the incomplete
3292 -- type that we get for any real reference).
3294 elsif Ekind
(Prev
) = E_Incomplete_Type
then
3295 Process_Incomplete_Dependents
(N
, T
, Prev
);
3296 Generate_Reference
(Prev
, Def_Id
, 'c');
3297 Set_Completion_Referenced
(Def_Id
);
3299 -- If not private type or incomplete type completion, this is a real
3300 -- definition of a new entity, so record it.
3303 Generate_Definition
(Def_Id
);
3306 -- Propagate any pending access types whose finalization masters need to
3307 -- be fully initialized from the partial to the full view. Guard against
3308 -- an illegal full view that remains unanalyzed.
3310 if Is_Type
(Def_Id
) and then Is_Incomplete_Or_Private_Type
(Prev
) then
3311 Set_Pending_Access_Types
(Def_Id
, Pending_Access_Types
(Prev
));
3314 if Chars
(Scope
(Def_Id
)) = Name_System
3315 and then Chars
(Def_Id
) = Name_Address
3316 and then In_Predefined_Unit
(N
)
3318 Set_Is_Descendant_Of_Address
(Def_Id
);
3319 Set_Is_Descendant_Of_Address
(Base_Type
(Def_Id
));
3320 Set_Is_Descendant_Of_Address
(Prev
);
3323 Set_Optimize_Alignment_Flags
(Def_Id
);
3324 Check_Eliminated
(Def_Id
);
3326 -- If the declaration is a completion and aspects are present, apply
3327 -- them to the entity for the type which is currently the partial
3328 -- view, but which is the one that will be frozen.
3330 if Has_Aspects
(N
) then
3332 -- In most cases the partial view is a private type, and both views
3333 -- appear in different declarative parts. In the unusual case where
3334 -- the partial view is incomplete, perform the analysis on the
3335 -- full view, to prevent freezing anomalies with the corresponding
3336 -- class-wide type, which otherwise might be frozen before the
3337 -- dispatch table is built.
3340 and then Ekind
(Prev
) /= E_Incomplete_Type
3342 Analyze_Aspect_Specifications
(N
, Prev
);
3347 Analyze_Aspect_Specifications
(N
, Def_Id
);
3351 if Is_Derived_Type
(Prev
)
3352 and then Def_Id
/= Prev
3354 Check_Nonoverridable_Aspects
;
3356 end Analyze_Full_Type_Declaration
;
3358 ----------------------------------
3359 -- Analyze_Incomplete_Type_Decl --
3360 ----------------------------------
3362 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
3363 F
: constant Boolean := Is_Pure
(Current_Scope
);
3367 Check_SPARK_05_Restriction
("incomplete type is not allowed", N
);
3369 Generate_Definition
(Defining_Identifier
(N
));
3371 -- Process an incomplete declaration. The identifier must not have been
3372 -- declared already in the scope. However, an incomplete declaration may
3373 -- appear in the private part of a package, for a private type that has
3374 -- already been declared.
3376 -- In this case, the discriminants (if any) must match
3378 T
:= Find_Type_Name
(N
);
3380 Set_Ekind
(T
, E_Incomplete_Type
);
3382 Set_Is_First_Subtype
(T
);
3383 Init_Size_Align
(T
);
3385 -- Set the SPARK mode from the current context
3387 Set_SPARK_Pragma
(T
, SPARK_Mode_Pragma
);
3388 Set_SPARK_Pragma_Inherited
(T
);
3390 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3391 -- incomplete types.
3393 if Tagged_Present
(N
) then
3394 Set_Is_Tagged_Type
(T
, True);
3395 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
3396 Make_Class_Wide_Type
(T
);
3397 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
3400 Set_Stored_Constraint
(T
, No_Elist
);
3402 if Present
(Discriminant_Specifications
(N
)) then
3404 Process_Discriminants
(N
);
3408 -- If the type has discriminants, nontrivial subtypes may be declared
3409 -- before the full view of the type. The full views of those subtypes
3410 -- will be built after the full view of the type.
3412 Set_Private_Dependents
(T
, New_Elmt_List
);
3414 end Analyze_Incomplete_Type_Decl
;
3416 -----------------------------------
3417 -- Analyze_Interface_Declaration --
3418 -----------------------------------
3420 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
3421 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
3424 Set_Is_Tagged_Type
(T
);
3425 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
3427 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
3428 or else Task_Present
(Def
)
3429 or else Protected_Present
(Def
)
3430 or else Synchronized_Present
(Def
));
3432 -- Type is abstract if full declaration carries keyword, or if previous
3433 -- partial view did.
3435 Set_Is_Abstract_Type
(T
);
3436 Set_Is_Interface
(T
);
3438 -- Type is a limited interface if it includes the keyword limited, task,
3439 -- protected, or synchronized.
3441 Set_Is_Limited_Interface
3442 (T
, Limited_Present
(Def
)
3443 or else Protected_Present
(Def
)
3444 or else Synchronized_Present
(Def
)
3445 or else Task_Present
(Def
));
3447 Set_Interfaces
(T
, New_Elmt_List
);
3448 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
3450 -- Complete the decoration of the class-wide entity if it was already
3451 -- built (i.e. during the creation of the limited view)
3453 if Present
(CW
) then
3454 Set_Is_Interface
(CW
);
3455 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
3458 -- Check runtime support for synchronized interfaces
3460 if (Is_Task_Interface
(T
)
3461 or else Is_Protected_Interface
(T
)
3462 or else Is_Synchronized_Interface
(T
))
3463 and then not RTE_Available
(RE_Select_Specific_Data
)
3465 Error_Msg_CRT
("synchronized interfaces", T
);
3467 end Analyze_Interface_Declaration
;
3469 -----------------------------
3470 -- Analyze_Itype_Reference --
3471 -----------------------------
3473 -- Nothing to do. This node is placed in the tree only for the benefit of
3474 -- back end processing, and has no effect on the semantic processing.
3476 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
3478 pragma Assert
(Is_Itype
(Itype
(N
)));
3480 end Analyze_Itype_Reference
;
3482 --------------------------------
3483 -- Analyze_Number_Declaration --
3484 --------------------------------
3486 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
3487 E
: constant Node_Id
:= Expression
(N
);
3488 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3489 Index
: Interp_Index
;
3494 Generate_Definition
(Id
);
3497 -- This is an optimization of a common case of an integer literal
3499 if Nkind
(E
) = N_Integer_Literal
then
3500 Set_Is_Static_Expression
(E
, True);
3501 Set_Etype
(E
, Universal_Integer
);
3503 Set_Etype
(Id
, Universal_Integer
);
3504 Set_Ekind
(Id
, E_Named_Integer
);
3505 Set_Is_Frozen
(Id
, True);
3509 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3511 -- Process expression, replacing error by integer zero, to avoid
3512 -- cascaded errors or aborts further along in the processing
3514 -- Replace Error by integer zero, which seems least likely to cause
3518 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
3519 Set_Error_Posted
(E
);
3524 -- Verify that the expression is static and numeric. If
3525 -- the expression is overloaded, we apply the preference
3526 -- rule that favors root numeric types.
3528 if not Is_Overloaded
(E
) then
3530 if Has_Dynamic_Predicate_Aspect
(T
) then
3532 ("subtype has dynamic predicate, "
3533 & "not allowed in number declaration", N
);
3539 Get_First_Interp
(E
, Index
, It
);
3540 while Present
(It
.Typ
) loop
3541 if (Is_Integer_Type
(It
.Typ
) or else Is_Real_Type
(It
.Typ
))
3542 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
3544 if T
= Any_Type
then
3547 elsif It
.Typ
= Universal_Real
3549 It
.Typ
= Universal_Integer
3551 -- Choose universal interpretation over any other
3558 Get_Next_Interp
(Index
, It
);
3562 if Is_Integer_Type
(T
) then
3564 Set_Etype
(Id
, Universal_Integer
);
3565 Set_Ekind
(Id
, E_Named_Integer
);
3567 elsif Is_Real_Type
(T
) then
3569 -- Because the real value is converted to universal_real, this is a
3570 -- legal context for a universal fixed expression.
3572 if T
= Universal_Fixed
then
3574 Loc
: constant Source_Ptr
:= Sloc
(N
);
3575 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
3577 New_Occurrence_Of
(Universal_Real
, Loc
),
3578 Expression
=> Relocate_Node
(E
));
3585 elsif T
= Any_Fixed
then
3586 Error_Msg_N
("illegal context for mixed mode operation", E
);
3588 -- Expression is of the form : universal_fixed * integer. Try to
3589 -- resolve as universal_real.
3591 T
:= Universal_Real
;
3596 Set_Etype
(Id
, Universal_Real
);
3597 Set_Ekind
(Id
, E_Named_Real
);
3600 Wrong_Type
(E
, Any_Numeric
);
3604 Set_Ekind
(Id
, E_Constant
);
3605 Set_Never_Set_In_Source
(Id
, True);
3606 Set_Is_True_Constant
(Id
, True);
3610 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
3611 Set_Etype
(E
, Etype
(Id
));
3614 if not Is_OK_Static_Expression
(E
) then
3615 Flag_Non_Static_Expr
3616 ("non-static expression used in number declaration!", E
);
3617 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
3618 Set_Etype
(E
, Any_Type
);
3621 Analyze_Dimension
(N
);
3622 end Analyze_Number_Declaration
;
3624 --------------------------------
3625 -- Analyze_Object_Declaration --
3626 --------------------------------
3628 -- WARNING: This routine manages Ghost regions. Return statements must be
3629 -- replaced by gotos which jump to the end of the routine and restore the
3632 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
3633 Loc
: constant Source_Ptr
:= Sloc
(N
);
3634 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3638 E
: Node_Id
:= Expression
(N
);
3639 -- E is set to Expression (N) throughout this routine. When Expression
3640 -- (N) is modified, E is changed accordingly.
3642 Prev_Entity
: Entity_Id
:= Empty
;
3644 procedure Check_Dynamic_Object
(Typ
: Entity_Id
);
3645 -- A library-level object with non-static discriminant constraints may
3646 -- require dynamic allocation. The declaration is illegal if the
3647 -- profile includes the restriction No_Implicit_Heap_Allocations.
3649 procedure Check_For_Null_Excluding_Components
3650 (Obj_Typ
: Entity_Id
;
3651 Obj_Decl
: Node_Id
);
3652 -- Verify that each null-excluding component of object declaration
3653 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3654 -- a compile-time warning if this is not the case.
3656 function Count_Tasks
(T
: Entity_Id
) return Uint
;
3657 -- This function is called when a non-generic library level object of a
3658 -- task type is declared. Its function is to count the static number of
3659 -- tasks declared within the type (it is only called if Has_Task is set
3660 -- for T). As a side effect, if an array of tasks with non-static bounds
3661 -- or a variant record type is encountered, Check_Restriction is called
3662 -- indicating the count is unknown.
3664 function Delayed_Aspect_Present
return Boolean;
3665 -- If the declaration has an expression that is an aggregate, and it
3666 -- has aspects that require delayed analysis, the resolution of the
3667 -- aggregate must be deferred to the freeze point of the objet. This
3668 -- special processing was created for address clauses, but it must
3669 -- also apply to Alignment. This must be done before the aspect
3670 -- specifications are analyzed because we must handle the aggregate
3671 -- before the analysis of the object declaration is complete.
3673 -- Any other relevant delayed aspects on object declarations ???
3675 --------------------------
3676 -- Check_Dynamic_Object --
3677 --------------------------
3679 procedure Check_Dynamic_Object
(Typ
: Entity_Id
) is
3681 Obj_Type
: Entity_Id
;
3686 if Is_Private_Type
(Obj_Type
)
3687 and then Present
(Full_View
(Obj_Type
))
3689 Obj_Type
:= Full_View
(Obj_Type
);
3692 if Known_Static_Esize
(Obj_Type
) then
3696 if Restriction_Active
(No_Implicit_Heap_Allocations
)
3697 and then Expander_Active
3698 and then Has_Discriminants
(Obj_Type
)
3700 Comp
:= First_Component
(Obj_Type
);
3701 while Present
(Comp
) loop
3702 if Known_Static_Esize
(Etype
(Comp
))
3703 or else Size_Known_At_Compile_Time
(Etype
(Comp
))
3707 elsif not Discriminated_Size
(Comp
)
3708 and then Comes_From_Source
(Comp
)
3711 ("component& of non-static size will violate restriction "
3712 & "No_Implicit_Heap_Allocation?", N
, Comp
);
3714 elsif Is_Record_Type
(Etype
(Comp
)) then
3715 Check_Dynamic_Object
(Etype
(Comp
));
3718 Next_Component
(Comp
);
3721 end Check_Dynamic_Object
;
3723 -----------------------------------------
3724 -- Check_For_Null_Excluding_Components --
3725 -----------------------------------------
3727 procedure Check_For_Null_Excluding_Components
3728 (Obj_Typ
: Entity_Id
;
3731 procedure Check_Component
3732 (Comp_Typ
: Entity_Id
;
3733 Comp_Decl
: Node_Id
:= Empty
;
3734 Array_Comp
: Boolean := False);
3735 -- Apply a compile-time null-exclusion check on a component denoted
3736 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3737 -- subcomponents (if any).
3739 ---------------------
3740 -- Check_Component --
3741 ---------------------
3743 procedure Check_Component
3744 (Comp_Typ
: Entity_Id
;
3745 Comp_Decl
: Node_Id
:= Empty
;
3746 Array_Comp
: Boolean := False)
3752 -- Do not consider internally-generated components or those that
3753 -- are already initialized.
3755 if Present
(Comp_Decl
)
3756 and then (not Comes_From_Source
(Comp_Decl
)
3757 or else Present
(Expression
(Comp_Decl
)))
3762 if Is_Incomplete_Or_Private_Type
(Comp_Typ
)
3763 and then Present
(Full_View
(Comp_Typ
))
3765 T
:= Full_View
(Comp_Typ
);
3770 -- Verify a component of a null-excluding access type
3772 if Is_Access_Type
(T
)
3773 and then Can_Never_Be_Null
(T
)
3775 if Comp_Decl
= Obj_Decl
then
3776 Null_Exclusion_Static_Checks
3779 Array_Comp
=> Array_Comp
);
3782 Null_Exclusion_Static_Checks
3785 Array_Comp
=> Array_Comp
);
3788 -- Check array components
3790 elsif Is_Array_Type
(T
) then
3792 -- There is no suitable component when the object is of an
3793 -- array type. However, a namable component may appear at some
3794 -- point during the recursive inspection, but not at the top
3795 -- level. At the top level just indicate array component case.
3797 if Comp_Decl
= Obj_Decl
then
3798 Check_Component
(Component_Type
(T
), Array_Comp
=> True);
3800 Check_Component
(Component_Type
(T
), Comp_Decl
);
3803 -- Verify all components of type T
3805 -- Note: No checks are performed on types with discriminants due
3806 -- to complexities involving variants. ???
3808 elsif (Is_Concurrent_Type
(T
)
3809 or else Is_Incomplete_Or_Private_Type
(T
)
3810 or else Is_Record_Type
(T
))
3811 and then not Has_Discriminants
(T
)
3813 Comp
:= First_Component
(T
);
3814 while Present
(Comp
) loop
3815 Check_Component
(Etype
(Comp
), Parent
(Comp
));
3817 Comp
:= Next_Component
(Comp
);
3820 end Check_Component
;
3822 -- Start processing for Check_For_Null_Excluding_Components
3825 Check_Component
(Obj_Typ
, Obj_Decl
);
3826 end Check_For_Null_Excluding_Components
;
3832 function Count_Tasks
(T
: Entity_Id
) return Uint
is
3838 if Is_Task_Type
(T
) then
3841 elsif Is_Record_Type
(T
) then
3842 if Has_Discriminants
(T
) then
3843 Check_Restriction
(Max_Tasks
, N
);
3848 C
:= First_Component
(T
);
3849 while Present
(C
) loop
3850 V
:= V
+ Count_Tasks
(Etype
(C
));
3857 elsif Is_Array_Type
(T
) then
3858 X
:= First_Index
(T
);
3859 V
:= Count_Tasks
(Component_Type
(T
));
3860 while Present
(X
) loop
3863 if not Is_OK_Static_Subtype
(C
) then
3864 Check_Restriction
(Max_Tasks
, N
);
3867 V
:= V
* (UI_Max
(Uint_0
,
3868 Expr_Value
(Type_High_Bound
(C
)) -
3869 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
3882 ----------------------------
3883 -- Delayed_Aspect_Present --
3884 ----------------------------
3886 function Delayed_Aspect_Present
return Boolean is
3891 if Present
(Aspect_Specifications
(N
)) then
3892 A
:= First
(Aspect_Specifications
(N
));
3893 A_Id
:= Get_Aspect_Id
(Chars
(Identifier
(A
)));
3894 while Present
(A
) loop
3895 if A_Id
= Aspect_Alignment
or else A_Id
= Aspect_Address
then
3904 end Delayed_Aspect_Present
;
3908 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
3909 -- Save the Ghost mode to restore on exit
3911 Related_Id
: Entity_Id
;
3913 -- Start of processing for Analyze_Object_Declaration
3916 -- There are three kinds of implicit types generated by an
3917 -- object declaration:
3919 -- 1. Those generated by the original Object Definition
3921 -- 2. Those generated by the Expression
3923 -- 3. Those used to constrain the Object Definition with the
3924 -- expression constraints when the definition is unconstrained.
3926 -- They must be generated in this order to avoid order of elaboration
3927 -- issues. Thus the first step (after entering the name) is to analyze
3928 -- the object definition.
3930 if Constant_Present
(N
) then
3931 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
3933 if Present
(Prev_Entity
)
3935 -- If the homograph is an implicit subprogram, it is overridden
3936 -- by the current declaration.
3938 ((Is_Overloadable
(Prev_Entity
)
3939 and then Is_Inherited_Operation
(Prev_Entity
))
3941 -- The current object is a discriminal generated for an entry
3942 -- family index. Even though the index is a constant, in this
3943 -- particular context there is no true constant redeclaration.
3944 -- Enter_Name will handle the visibility.
3947 (Is_Discriminal
(Id
)
3948 and then Ekind
(Discriminal_Link
(Id
)) =
3949 E_Entry_Index_Parameter
)
3951 -- The current object is the renaming for a generic declared
3952 -- within the instance.
3955 (Ekind
(Prev_Entity
) = E_Package
3956 and then Nkind
(Parent
(Prev_Entity
)) =
3957 N_Package_Renaming_Declaration
3958 and then not Comes_From_Source
(Prev_Entity
)
3960 Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
)))
3962 -- The entity may be a homonym of a private component of the
3963 -- enclosing protected object, for which we create a local
3964 -- renaming declaration. The declaration is legal, even if
3965 -- useless when it just captures that component.
3968 (Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
3969 and then Nkind
(Parent
(Prev_Entity
)) =
3970 N_Object_Renaming_Declaration
))
3972 Prev_Entity
:= Empty
;
3976 if Present
(Prev_Entity
) then
3978 -- The object declaration is Ghost when it completes a deferred Ghost
3981 Mark_And_Set_Ghost_Completion
(N
, Prev_Entity
);
3983 Constant_Redeclaration
(Id
, N
, T
);
3985 Generate_Reference
(Prev_Entity
, Id
, 'c');
3986 Set_Completion_Referenced
(Id
);
3988 if Error_Posted
(N
) then
3990 -- Type mismatch or illegal redeclaration; do not analyze
3991 -- expression to avoid cascaded errors.
3993 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3995 Set_Ekind
(Id
, E_Variable
);
3999 -- In the normal case, enter identifier at the start to catch premature
4000 -- usage in the initialization expression.
4003 Generate_Definition
(Id
);
4006 Mark_Coextensions
(N
, Object_Definition
(N
));
4008 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
4010 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
4012 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
4013 and then Protected_Present
4014 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
4016 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
4019 if Error_Posted
(Id
) then
4021 Set_Ekind
(Id
, E_Variable
);
4026 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
4027 -- out some static checks.
4029 if Ada_Version
>= Ada_2005
then
4031 -- In case of aggregates we must also take care of the correct
4032 -- initialization of nested aggregates bug this is done at the
4033 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
4035 if Can_Never_Be_Null
(T
) then
4036 if Present
(Expression
(N
))
4037 and then Nkind
(Expression
(N
)) = N_Aggregate
4043 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
4045 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
4046 Null_Exclusion_Static_Checks
(N
);
4047 Set_Etype
(Id
, Save_Typ
);
4051 -- We might be dealing with an object of a composite type containing
4052 -- null-excluding components without an aggregate, so we must verify
4053 -- that such components have default initialization.
4056 Check_For_Null_Excluding_Components
(T
, N
);
4060 -- Object is marked pure if it is in a pure scope
4062 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4064 -- If deferred constant, make sure context is appropriate. We detect
4065 -- a deferred constant as a constant declaration with no expression.
4066 -- A deferred constant can appear in a package body if its completion
4067 -- is by means of an interface pragma.
4069 if Constant_Present
(N
) and then No
(E
) then
4071 -- A deferred constant may appear in the declarative part of the
4072 -- following constructs:
4076 -- extended return statements
4079 -- subprogram bodies
4082 -- When declared inside a package spec, a deferred constant must be
4083 -- completed by a full constant declaration or pragma Import. In all
4084 -- other cases, the only proper completion is pragma Import. Extended
4085 -- return statements are flagged as invalid contexts because they do
4086 -- not have a declarative part and so cannot accommodate the pragma.
4088 if Ekind
(Current_Scope
) = E_Return_Statement
then
4090 ("invalid context for deferred constant declaration (RM 7.4)",
4093 ("\declaration requires an initialization expression",
4095 Set_Constant_Present
(N
, False);
4097 -- In Ada 83, deferred constant must be of private type
4099 elsif not Is_Private_Type
(T
) then
4100 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
4102 ("(Ada 83) deferred constant must be private type", N
);
4106 -- If not a deferred constant, then the object declaration freezes
4107 -- its type, unless the object is of an anonymous type and has delayed
4108 -- aspects. In that case the type is frozen when the object itself is.
4111 Check_Fully_Declared
(T
, N
);
4113 if Has_Delayed_Aspects
(Id
)
4114 and then Is_Array_Type
(T
)
4115 and then Is_Itype
(T
)
4117 Set_Has_Delayed_Freeze
(T
);
4119 Freeze_Before
(N
, T
);
4123 -- If the object was created by a constrained array definition, then
4124 -- set the link in both the anonymous base type and anonymous subtype
4125 -- that are built to represent the array type to point to the object.
4127 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
4128 N_Constrained_Array_Definition
4130 Set_Related_Array_Object
(T
, Id
);
4131 Set_Related_Array_Object
(Base_Type
(T
), Id
);
4134 -- Special checks for protected objects not at library level
4136 if Has_Protected
(T
) and then not Is_Library_Level_Entity
(Id
) then
4137 Check_Restriction
(No_Local_Protected_Objects
, Id
);
4139 -- Protected objects with interrupt handlers must be at library level
4141 -- Ada 2005: This test is not needed (and the corresponding clause
4142 -- in the RM is removed) because accessibility checks are sufficient
4143 -- to make handlers not at the library level illegal.
4145 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4146 -- applies to the '95 version of the language as well.
4148 if Is_Protected_Type
(T
)
4149 and then Has_Interrupt_Handler
(T
)
4150 and then Ada_Version
< Ada_95
4153 ("interrupt object can only be declared at library level", Id
);
4157 -- Check for violation of No_Local_Timing_Events
4159 if Has_Timing_Event
(T
) and then not Is_Library_Level_Entity
(Id
) then
4160 Check_Restriction
(No_Local_Timing_Events
, Id
);
4163 -- The actual subtype of the object is the nominal subtype, unless
4164 -- the nominal one is unconstrained and obtained from the expression.
4168 -- These checks should be performed before the initialization expression
4169 -- is considered, so that the Object_Definition node is still the same
4170 -- as in source code.
4172 -- In SPARK, the nominal subtype is always given by a subtype mark
4173 -- and must not be unconstrained. (The only exception to this is the
4174 -- acceptance of declarations of constants of type String.)
4176 if not Nkind_In
(Object_Definition
(N
), N_Expanded_Name
, N_Identifier
)
4178 Check_SPARK_05_Restriction
4179 ("subtype mark required", Object_Definition
(N
));
4181 elsif Is_Array_Type
(T
)
4182 and then not Is_Constrained
(T
)
4183 and then T
/= Standard_String
4185 Check_SPARK_05_Restriction
4186 ("subtype mark of constrained type expected",
4187 Object_Definition
(N
));
4190 if Is_Library_Level_Entity
(Id
) then
4191 Check_Dynamic_Object
(T
);
4194 -- There are no aliased objects in SPARK
4196 if Aliased_Present
(N
) then
4197 Check_SPARK_05_Restriction
("aliased object is not allowed", N
);
4200 -- Process initialization expression if present and not in error
4202 if Present
(E
) and then E
/= Error
then
4204 -- Generate an error in case of CPP class-wide object initialization.
4205 -- Required because otherwise the expansion of the class-wide
4206 -- assignment would try to use 'size to initialize the object
4207 -- (primitive that is not available in CPP tagged types).
4209 if Is_Class_Wide_Type
(Act_T
)
4211 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
4213 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
4215 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
4218 ("predefined assignment not available for 'C'P'P tagged types",
4222 Mark_Coextensions
(N
, E
);
4225 -- In case of errors detected in the analysis of the expression,
4226 -- decorate it with the expected type to avoid cascaded errors
4228 if No
(Etype
(E
)) then
4232 -- If an initialization expression is present, then we set the
4233 -- Is_True_Constant flag. It will be reset if this is a variable
4234 -- and it is indeed modified.
4236 Set_Is_True_Constant
(Id
, True);
4238 -- If we are analyzing a constant declaration, set its completion
4239 -- flag after analyzing and resolving the expression.
4241 if Constant_Present
(N
) then
4242 Set_Has_Completion
(Id
);
4245 -- Set type and resolve (type may be overridden later on). Note:
4246 -- Ekind (Id) must still be E_Void at this point so that incorrect
4247 -- early usage within E is properly diagnosed.
4251 -- If the expression is an aggregate we must look ahead to detect
4252 -- the possible presence of an address clause, and defer resolution
4253 -- and expansion of the aggregate to the freeze point of the entity.
4255 -- This is not always legal because the aggregate may contain other
4256 -- references that need freezing, e.g. references to other entities
4257 -- with address clauses. In any case, when compiling with -gnatI the
4258 -- presence of the address clause must be ignored.
4260 if Comes_From_Source
(N
)
4261 and then Expander_Active
4262 and then Nkind
(E
) = N_Aggregate
4264 ((Present
(Following_Address_Clause
(N
))
4265 and then not Ignore_Rep_Clauses
)
4266 or else Delayed_Aspect_Present
)
4274 -- No further action needed if E is a call to an inlined function
4275 -- which returns an unconstrained type and it has been expanded into
4276 -- a procedure call. In that case N has been replaced by an object
4277 -- declaration without initializing expression and it has been
4278 -- analyzed (see Expand_Inlined_Call).
4280 if Back_End_Inlining
4281 and then Expander_Active
4282 and then Nkind
(E
) = N_Function_Call
4283 and then Nkind
(Name
(E
)) in N_Has_Entity
4284 and then Is_Inlined
(Entity
(Name
(E
)))
4285 and then not Is_Constrained
(Etype
(E
))
4286 and then Analyzed
(N
)
4287 and then No
(Expression
(N
))
4292 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4293 -- node (which was marked already-analyzed), we need to set the type
4294 -- to something other than Any_Access in order to keep gigi happy.
4296 if Etype
(E
) = Any_Access
then
4300 -- If the object is an access to variable, the initialization
4301 -- expression cannot be an access to constant.
4303 if Is_Access_Type
(T
)
4304 and then not Is_Access_Constant
(T
)
4305 and then Is_Access_Type
(Etype
(E
))
4306 and then Is_Access_Constant
(Etype
(E
))
4309 ("access to variable cannot be initialized with an "
4310 & "access-to-constant expression", E
);
4313 if not Assignment_OK
(N
) then
4314 Check_Initialization
(T
, E
);
4317 Check_Unset_Reference
(E
);
4319 -- If this is a variable, then set current value. If this is a
4320 -- declared constant of a scalar type with a static expression,
4321 -- indicate that it is always valid.
4323 if not Constant_Present
(N
) then
4324 if Compile_Time_Known_Value
(E
) then
4325 Set_Current_Value
(Id
, E
);
4328 elsif Is_Scalar_Type
(T
) and then Is_OK_Static_Expression
(E
) then
4329 Set_Is_Known_Valid
(Id
);
4332 -- Deal with setting of null flags
4334 if Is_Access_Type
(T
) then
4335 if Known_Non_Null
(E
) then
4336 Set_Is_Known_Non_Null
(Id
, True);
4337 elsif Known_Null
(E
) and then not Can_Never_Be_Null
(Id
) then
4338 Set_Is_Known_Null
(Id
, True);
4342 -- Check incorrect use of dynamically tagged expressions
4344 if Is_Tagged_Type
(T
) then
4345 Check_Dynamically_Tagged_Expression
4351 Apply_Scalar_Range_Check
(E
, T
);
4352 Apply_Static_Length_Check
(E
, T
);
4354 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
4355 and then Comes_From_Source
(Original_Node
(N
))
4357 -- Only call test if needed
4359 and then Restriction_Check_Required
(SPARK_05
)
4360 and then not Is_SPARK_05_Initialization_Expr
(Original_Node
(E
))
4362 Check_SPARK_05_Restriction
4363 ("initialization expression is not appropriate", E
);
4366 -- A formal parameter of a specific tagged type whose related
4367 -- subprogram is subject to pragma Extensions_Visible with value
4368 -- "False" cannot be implicitly converted to a class-wide type by
4369 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4370 -- not consider internally generated expressions.
4372 if Is_Class_Wide_Type
(T
)
4373 and then Comes_From_Source
(E
)
4374 and then Is_EVF_Expression
(E
)
4377 ("formal parameter cannot be implicitly converted to "
4378 & "class-wide type when Extensions_Visible is False", E
);
4382 -- If the No_Streams restriction is set, check that the type of the
4383 -- object is not, and does not contain, any subtype derived from
4384 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4385 -- Has_Stream just for efficiency reasons. There is no point in
4386 -- spending time on a Has_Stream check if the restriction is not set.
4388 if Restriction_Check_Required
(No_Streams
) then
4389 if Has_Stream
(T
) then
4390 Check_Restriction
(No_Streams
, N
);
4394 -- Deal with predicate check before we start to do major rewriting. It
4395 -- is OK to initialize and then check the initialized value, since the
4396 -- object goes out of scope if we get a predicate failure. Note that we
4397 -- do this in the analyzer and not the expander because the analyzer
4398 -- does some substantial rewriting in some cases.
4400 -- We need a predicate check if the type has predicates that are not
4401 -- ignored, and if either there is an initializing expression, or for
4402 -- default initialization when we have at least one case of an explicit
4403 -- default initial value and then this is not an internal declaration
4404 -- whose initialization comes later (as for an aggregate expansion).
4406 if not Suppress_Assignment_Checks
(N
)
4407 and then Present
(Predicate_Function
(T
))
4408 and then not Predicates_Ignored
(T
)
4409 and then not No_Initialization
(N
)
4413 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
4415 -- If the type has a static predicate and the expression is known at
4416 -- compile time, see if the expression satisfies the predicate.
4419 Check_Expression_Against_Static_Predicate
(E
, T
);
4422 -- If the type is a null record and there is no explicit initial
4423 -- expression, no predicate check applies.
4425 if No
(E
) and then Is_Null_Record_Type
(T
) then
4428 -- Do not generate a predicate check if the initialization expression
4429 -- is a type conversion because the conversion has been subjected to
4430 -- the same check. This is a small optimization which avoid redundant
4433 elsif Present
(E
) and then Nkind
(E
) = N_Type_Conversion
then
4438 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
4442 -- Case of unconstrained type
4444 if not Is_Definite_Subtype
(T
) then
4446 -- In SPARK, a declaration of unconstrained type is allowed
4447 -- only for constants of type string.
4449 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
4450 Check_SPARK_05_Restriction
4451 ("declaration of object of unconstrained type not allowed", N
);
4454 -- Nothing to do in deferred constant case
4456 if Constant_Present
(N
) and then No
(E
) then
4459 -- Case of no initialization present
4462 if No_Initialization
(N
) then
4465 elsif Is_Class_Wide_Type
(T
) then
4467 ("initialization required in class-wide declaration ", N
);
4471 ("unconstrained subtype not allowed (need initialization)",
4472 Object_Definition
(N
));
4474 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
4476 ("\provide initial value or explicit discriminant values",
4477 Object_Definition
(N
));
4480 ("\or give default discriminant values for type&",
4481 Object_Definition
(N
), T
);
4483 elsif Is_Array_Type
(T
) then
4485 ("\provide initial value or explicit array bounds",
4486 Object_Definition
(N
));
4490 -- Case of initialization present but in error. Set initial
4491 -- expression as absent (but do not make above complaints)
4493 elsif E
= Error
then
4494 Set_Expression
(N
, Empty
);
4497 -- Case of initialization present
4500 -- Check restrictions in Ada 83
4502 if not Constant_Present
(N
) then
4504 -- Unconstrained variables not allowed in Ada 83 mode
4506 if Ada_Version
= Ada_83
4507 and then Comes_From_Source
(Object_Definition
(N
))
4510 ("(Ada 83) unconstrained variable not allowed",
4511 Object_Definition
(N
));
4515 -- Now we constrain the variable from the initializing expression
4517 -- If the expression is an aggregate, it has been expanded into
4518 -- individual assignments. Retrieve the actual type from the
4519 -- expanded construct.
4521 if Is_Array_Type
(T
)
4522 and then No_Initialization
(N
)
4523 and then Nkind
(Original_Node
(E
)) = N_Aggregate
4527 -- In case of class-wide interface object declarations we delay
4528 -- the generation of the equivalent record type declarations until
4529 -- its expansion because there are cases in they are not required.
4531 elsif Is_Interface
(T
) then
4534 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4535 -- we should prevent the generation of another Itype with the
4536 -- same name as the one already generated, or we end up with
4537 -- two identical types in GNATprove.
4539 elsif GNATprove_Mode
then
4542 -- If the type is an unchecked union, no subtype can be built from
4543 -- the expression. Rewrite declaration as a renaming, which the
4544 -- back-end can handle properly. This is a rather unusual case,
4545 -- because most unchecked_union declarations have default values
4546 -- for discriminants and are thus not indefinite.
4548 elsif Is_Unchecked_Union
(T
) then
4549 if Constant_Present
(N
) or else Nkind
(E
) = N_Function_Call
then
4550 Set_Ekind
(Id
, E_Constant
);
4552 Set_Ekind
(Id
, E_Variable
);
4556 Make_Object_Renaming_Declaration
(Loc
,
4557 Defining_Identifier
=> Id
,
4558 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
4561 Set_Renamed_Object
(Id
, E
);
4562 Freeze_Before
(N
, T
);
4567 -- Ensure that the generated subtype has a unique external name
4568 -- when the related object is public. This guarantees that the
4569 -- subtype and its bounds will not be affected by switches or
4570 -- pragmas that may offset the internal counter due to extra
4573 if Is_Public
(Id
) then
4576 Related_Id
:= Empty
;
4579 Expand_Subtype_From_Expr
4582 Subtype_Indic
=> Object_Definition
(N
),
4584 Related_Id
=> Related_Id
);
4586 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
4589 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
4591 if Aliased_Present
(N
) then
4592 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
4595 Freeze_Before
(N
, Act_T
);
4596 Freeze_Before
(N
, T
);
4599 elsif Is_Array_Type
(T
)
4600 and then No_Initialization
(N
)
4601 and then (Nkind
(Original_Node
(E
)) = N_Aggregate
4602 or else (Nkind
(Original_Node
(E
)) = N_Qualified_Expression
4603 and then Nkind
(Original_Node
(Expression
4604 (Original_Node
(E
)))) = N_Aggregate
))
4606 if not Is_Entity_Name
(Object_Definition
(N
)) then
4608 Check_Compile_Time_Size
(Act_T
);
4610 if Aliased_Present
(N
) then
4611 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
4615 -- When the given object definition and the aggregate are specified
4616 -- independently, and their lengths might differ do a length check.
4617 -- This cannot happen if the aggregate is of the form (others =>...)
4619 if not Is_Constrained
(T
) then
4622 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
4624 -- Aggregate is statically illegal. Place back in declaration
4626 Set_Expression
(N
, E
);
4627 Set_No_Initialization
(N
, False);
4629 elsif T
= Etype
(E
) then
4632 elsif Nkind
(E
) = N_Aggregate
4633 and then Present
(Component_Associations
(E
))
4634 and then Present
(Choice_List
(First
(Component_Associations
(E
))))
4636 Nkind
(First
(Choice_List
(First
(Component_Associations
(E
))))) =
4642 Apply_Length_Check
(E
, T
);
4645 -- If the type is limited unconstrained with defaulted discriminants and
4646 -- there is no expression, then the object is constrained by the
4647 -- defaults, so it is worthwhile building the corresponding subtype.
4649 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
4650 and then not Is_Constrained
(T
)
4651 and then Has_Discriminants
(T
)
4654 Act_T
:= Build_Default_Subtype
(T
, N
);
4656 -- Ada 2005: A limited object may be initialized by means of an
4657 -- aggregate. If the type has default discriminants it has an
4658 -- unconstrained nominal type, Its actual subtype will be obtained
4659 -- from the aggregate, and not from the default discriminants.
4664 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
4666 elsif Nkind
(E
) = N_Function_Call
4667 and then Constant_Present
(N
)
4668 and then Has_Unconstrained_Elements
(Etype
(E
))
4670 -- The back-end has problems with constants of a discriminated type
4671 -- with defaults, if the initial value is a function call. We
4672 -- generate an intermediate temporary that will receive a reference
4673 -- to the result of the call. The initialization expression then
4674 -- becomes a dereference of that temporary.
4676 Remove_Side_Effects
(E
);
4678 -- If this is a constant declaration of an unconstrained type and
4679 -- the initialization is an aggregate, we can use the subtype of the
4680 -- aggregate for the declared entity because it is immutable.
4682 elsif not Is_Constrained
(T
)
4683 and then Has_Discriminants
(T
)
4684 and then Constant_Present
(N
)
4685 and then not Has_Unchecked_Union
(T
)
4686 and then Nkind
(E
) = N_Aggregate
4691 -- Check No_Wide_Characters restriction
4693 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
4695 -- Indicate this is not set in source. Certainly true for constants, and
4696 -- true for variables so far (will be reset for a variable if and when
4697 -- we encounter a modification in the source).
4699 Set_Never_Set_In_Source
(Id
);
4701 -- Now establish the proper kind and type of the object
4703 if Constant_Present
(N
) then
4704 Set_Ekind
(Id
, E_Constant
);
4705 Set_Is_True_Constant
(Id
);
4708 Set_Ekind
(Id
, E_Variable
);
4710 -- A variable is set as shared passive if it appears in a shared
4711 -- passive package, and is at the outer level. This is not done for
4712 -- entities generated during expansion, because those are always
4713 -- manipulated locally.
4715 if Is_Shared_Passive
(Current_Scope
)
4716 and then Is_Library_Level_Entity
(Id
)
4717 and then Comes_From_Source
(Id
)
4719 Set_Is_Shared_Passive
(Id
);
4720 Check_Shared_Var
(Id
, T
, N
);
4723 -- Set Has_Initial_Value if initializing expression present. Note
4724 -- that if there is no initializing expression, we leave the state
4725 -- of this flag unchanged (usually it will be False, but notably in
4726 -- the case of exception choice variables, it will already be true).
4729 Set_Has_Initial_Value
(Id
);
4733 -- Set the SPARK mode from the current context (may be overwritten later
4734 -- with explicit pragma).
4736 Set_SPARK_Pragma
(Id
, SPARK_Mode_Pragma
);
4737 Set_SPARK_Pragma_Inherited
(Id
);
4739 -- Preserve relevant elaboration-related attributes of the context which
4740 -- are no longer available or very expensive to recompute once analysis,
4741 -- resolution, and expansion are over.
4743 Mark_Elaboration_Attributes
4747 -- Initialize alignment and size and capture alignment setting
4749 Init_Alignment
(Id
);
4751 Set_Optimize_Alignment_Flags
(Id
);
4753 -- Deal with aliased case
4755 if Aliased_Present
(N
) then
4756 Set_Is_Aliased
(Id
);
4758 -- If the object is aliased and the type is unconstrained with
4759 -- defaulted discriminants and there is no expression, then the
4760 -- object is constrained by the defaults, so it is worthwhile
4761 -- building the corresponding subtype.
4763 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4764 -- unconstrained, then only establish an actual subtype if the
4765 -- nominal subtype is indefinite. In definite cases the object is
4766 -- unconstrained in Ada 2005.
4769 and then Is_Record_Type
(T
)
4770 and then not Is_Constrained
(T
)
4771 and then Has_Discriminants
(T
)
4772 and then (Ada_Version
< Ada_2005
4773 or else not Is_Definite_Subtype
(T
))
4775 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
4779 -- Now we can set the type of the object
4781 Set_Etype
(Id
, Act_T
);
4783 -- Non-constant object is marked to be treated as volatile if type is
4784 -- volatile and we clear the Current_Value setting that may have been
4785 -- set above. Doing so for constants isn't required and might interfere
4786 -- with possible uses of the object as a static expression in contexts
4787 -- incompatible with volatility (e.g. as a case-statement alternative).
4789 if Ekind
(Id
) /= E_Constant
and then Treat_As_Volatile
(Etype
(Id
)) then
4790 Set_Treat_As_Volatile
(Id
);
4791 Set_Current_Value
(Id
, Empty
);
4794 -- Deal with controlled types
4796 if Has_Controlled_Component
(Etype
(Id
))
4797 or else Is_Controlled
(Etype
(Id
))
4799 if not Is_Library_Level_Entity
(Id
) then
4800 Check_Restriction
(No_Nested_Finalization
, N
);
4802 Validate_Controlled_Object
(Id
);
4806 if Has_Task
(Etype
(Id
)) then
4807 Check_Restriction
(No_Tasking
, N
);
4809 -- Deal with counting max tasks
4811 -- Nothing to do if inside a generic
4813 if Inside_A_Generic
then
4816 -- If library level entity, then count tasks
4818 elsif Is_Library_Level_Entity
(Id
) then
4819 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
4821 -- If not library level entity, then indicate we don't know max
4822 -- tasks and also check task hierarchy restriction and blocking
4823 -- operation (since starting a task is definitely blocking).
4826 Check_Restriction
(Max_Tasks
, N
);
4827 Check_Restriction
(No_Task_Hierarchy
, N
);
4828 Check_Potentially_Blocking_Operation
(N
);
4831 -- A rather specialized test. If we see two tasks being declared
4832 -- of the same type in the same object declaration, and the task
4833 -- has an entry with an address clause, we know that program error
4834 -- will be raised at run time since we can't have two tasks with
4835 -- entries at the same address.
4837 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
4842 E
:= First_Entity
(Etype
(Id
));
4843 while Present
(E
) loop
4844 if Ekind
(E
) = E_Entry
4845 and then Present
(Get_Attribute_Definition_Clause
4846 (E
, Attribute_Address
))
4848 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4850 ("more than one task with same entry address<<", N
);
4851 Error_Msg_N
("\Program_Error [<<", N
);
4853 Make_Raise_Program_Error
(Loc
,
4854 Reason
=> PE_Duplicated_Entry_Address
));
4864 -- Some simple constant-propagation: if the expression is a constant
4865 -- string initialized with a literal, share the literal. This avoids
4869 and then Is_Entity_Name
(E
)
4870 and then Ekind
(Entity
(E
)) = E_Constant
4871 and then Base_Type
(Etype
(E
)) = Standard_String
4874 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
4876 if Present
(Val
) and then Nkind
(Val
) = N_String_Literal
then
4877 Rewrite
(E
, New_Copy
(Val
));
4882 -- Another optimization: if the nominal subtype is unconstrained and
4883 -- the expression is a function call that returns an unconstrained
4884 -- type, rewrite the declaration as a renaming of the result of the
4885 -- call. The exceptions below are cases where the copy is expected,
4886 -- either by the back end (Aliased case) or by the semantics, as for
4887 -- initializing controlled types or copying tags for class-wide types.
4890 and then Nkind
(E
) = N_Explicit_Dereference
4891 and then Nkind
(Original_Node
(E
)) = N_Function_Call
4892 and then not Is_Library_Level_Entity
(Id
)
4893 and then not Is_Constrained
(Underlying_Type
(T
))
4894 and then not Is_Aliased
(Id
)
4895 and then not Is_Class_Wide_Type
(T
)
4896 and then not Is_Controlled
(T
)
4897 and then not Has_Controlled_Component
(Base_Type
(T
))
4898 and then Expander_Active
4901 Make_Object_Renaming_Declaration
(Loc
,
4902 Defining_Identifier
=> Id
,
4903 Access_Definition
=> Empty
,
4904 Subtype_Mark
=> New_Occurrence_Of
4905 (Base_Type
(Etype
(Id
)), Loc
),
4908 Set_Renamed_Object
(Id
, E
);
4910 -- Force generation of debugging information for the constant and for
4911 -- the renamed function call.
4913 Set_Debug_Info_Needed
(Id
);
4914 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
4917 if Present
(Prev_Entity
)
4918 and then Is_Frozen
(Prev_Entity
)
4919 and then not Error_Posted
(Id
)
4921 Error_Msg_N
("full constant declaration appears too late", N
);
4924 Check_Eliminated
(Id
);
4926 -- Deal with setting In_Private_Part flag if in private part
4928 if Ekind
(Scope
(Id
)) = E_Package
4929 and then In_Private_Part
(Scope
(Id
))
4931 Set_In_Private_Part
(Id
);
4935 -- Initialize the refined state of a variable here because this is a
4936 -- common destination for legal and illegal object declarations.
4938 if Ekind
(Id
) = E_Variable
then
4939 Set_Encapsulating_State
(Id
, Empty
);
4942 if Has_Aspects
(N
) then
4943 Analyze_Aspect_Specifications
(N
, Id
);
4946 Analyze_Dimension
(N
);
4948 -- Verify whether the object declaration introduces an illegal hidden
4949 -- state within a package subject to a null abstract state.
4951 if Ekind
(Id
) = E_Variable
then
4952 Check_No_Hidden_State
(Id
);
4955 Restore_Ghost_Mode
(Saved_GM
);
4956 end Analyze_Object_Declaration
;
4958 ---------------------------
4959 -- Analyze_Others_Choice --
4960 ---------------------------
4962 -- Nothing to do for the others choice node itself, the semantic analysis
4963 -- of the others choice will occur as part of the processing of the parent
4965 procedure Analyze_Others_Choice
(N
: Node_Id
) is
4966 pragma Warnings
(Off
, N
);
4969 end Analyze_Others_Choice
;
4971 -------------------------------------------
4972 -- Analyze_Private_Extension_Declaration --
4973 -------------------------------------------
4975 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
4976 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
4977 T
: constant Entity_Id
:= Defining_Identifier
(N
);
4979 Iface_Elmt
: Elmt_Id
;
4980 Parent_Base
: Entity_Id
;
4981 Parent_Type
: Entity_Id
;
4984 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4986 if Is_Non_Empty_List
(Interface_List
(N
)) then
4992 Intf
:= First
(Interface_List
(N
));
4993 while Present
(Intf
) loop
4994 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
4996 Diagnose_Interface
(Intf
, T
);
5002 Generate_Definition
(T
);
5004 -- For other than Ada 2012, just enter the name in the current scope
5006 if Ada_Version
< Ada_2012
then
5009 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
5010 -- case of private type that completes an incomplete type.
5017 Prev
:= Find_Type_Name
(N
);
5019 pragma Assert
(Prev
= T
5020 or else (Ekind
(Prev
) = E_Incomplete_Type
5021 and then Present
(Full_View
(Prev
))
5022 and then Full_View
(Prev
) = T
));
5026 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
5027 Parent_Base
:= Base_Type
(Parent_Type
);
5029 if Parent_Type
= Any_Type
or else Etype
(Parent_Type
) = Any_Type
then
5030 Set_Ekind
(T
, Ekind
(Parent_Type
));
5031 Set_Etype
(T
, Any_Type
);
5034 elsif not Is_Tagged_Type
(Parent_Type
) then
5036 ("parent of type extension must be a tagged type ", Indic
);
5039 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
5040 Error_Msg_N
("premature derivation of incomplete type", Indic
);
5043 elsif Is_Concurrent_Type
(Parent_Type
) then
5045 ("parent type of a private extension cannot be a synchronized "
5046 & "tagged type (RM 3.9.1 (3/1))", N
);
5048 Set_Etype
(T
, Any_Type
);
5049 Set_Ekind
(T
, E_Limited_Private_Type
);
5050 Set_Private_Dependents
(T
, New_Elmt_List
);
5051 Set_Error_Posted
(T
);
5055 -- Perhaps the parent type should be changed to the class-wide type's
5056 -- specific type in this case to prevent cascading errors ???
5058 if Is_Class_Wide_Type
(Parent_Type
) then
5060 ("parent of type extension must not be a class-wide type", Indic
);
5064 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
5065 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
5066 or else In_Private_Part
(Current_Scope
)
5068 Error_Msg_N
("invalid context for private extension", N
);
5071 -- Set common attributes
5073 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
5074 Set_Scope
(T
, Current_Scope
);
5075 Set_Ekind
(T
, E_Record_Type_With_Private
);
5076 Init_Size_Align
(T
);
5077 Set_Default_SSO
(T
);
5078 Set_No_Reordering
(T
, No_Component_Reordering
);
5080 Set_Etype
(T
, Parent_Base
);
5081 Propagate_Concurrent_Flags
(T
, Parent_Base
);
5083 Set_Convention
(T
, Convention
(Parent_Type
));
5084 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
5085 Set_Is_First_Subtype
(T
);
5086 Make_Class_Wide_Type
(T
);
5088 -- Set the SPARK mode from the current context
5090 Set_SPARK_Pragma
(T
, SPARK_Mode_Pragma
);
5091 Set_SPARK_Pragma_Inherited
(T
);
5093 if Unknown_Discriminants_Present
(N
) then
5094 Set_Discriminant_Constraint
(T
, No_Elist
);
5097 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
5099 -- A private extension inherits the Default_Initial_Condition pragma
5100 -- coming from any parent type within the derivation chain.
5102 if Has_DIC
(Parent_Type
) then
5103 Set_Has_Inherited_DIC
(T
);
5106 -- A private extension inherits any class-wide invariants coming from a
5107 -- parent type or an interface. Note that the invariant procedure of the
5108 -- parent type should not be inherited because the private extension may
5109 -- define invariants of its own.
5111 if Has_Inherited_Invariants
(Parent_Type
)
5112 or else Has_Inheritable_Invariants
(Parent_Type
)
5114 Set_Has_Inherited_Invariants
(T
);
5116 elsif Present
(Interfaces
(T
)) then
5117 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
5118 while Present
(Iface_Elmt
) loop
5119 Iface
:= Node
(Iface_Elmt
);
5121 if Has_Inheritable_Invariants
(Iface
) then
5122 Set_Has_Inherited_Invariants
(T
);
5126 Next_Elmt
(Iface_Elmt
);
5130 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5131 -- synchronized formal derived type.
5133 if Ada_Version
>= Ada_2005
and then Synchronized_Present
(N
) then
5134 Set_Is_Limited_Record
(T
);
5136 -- Formal derived type case
5138 if Is_Generic_Type
(T
) then
5140 -- The parent must be a tagged limited type or a synchronized
5143 if (not Is_Tagged_Type
(Parent_Type
)
5144 or else not Is_Limited_Type
(Parent_Type
))
5146 (not Is_Interface
(Parent_Type
)
5147 or else not Is_Synchronized_Interface
(Parent_Type
))
5150 ("parent type of & must be tagged limited or synchronized",
5154 -- The progenitors (if any) must be limited or synchronized
5157 if Present
(Interfaces
(T
)) then
5158 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
5159 while Present
(Iface_Elmt
) loop
5160 Iface
:= Node
(Iface_Elmt
);
5162 if not Is_Limited_Interface
(Iface
)
5163 and then not Is_Synchronized_Interface
(Iface
)
5166 ("progenitor & must be limited or synchronized",
5170 Next_Elmt
(Iface_Elmt
);
5174 -- Regular derived extension, the parent must be a limited or
5175 -- synchronized interface.
5178 if not Is_Interface
(Parent_Type
)
5179 or else (not Is_Limited_Interface
(Parent_Type
)
5180 and then not Is_Synchronized_Interface
(Parent_Type
))
5183 ("parent type of & must be limited interface", N
, T
);
5187 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5188 -- extension with a synchronized parent must be explicitly declared
5189 -- synchronized, because the full view will be a synchronized type.
5190 -- This must be checked before the check for limited types below,
5191 -- to ensure that types declared limited are not allowed to extend
5192 -- synchronized interfaces.
5194 elsif Is_Interface
(Parent_Type
)
5195 and then Is_Synchronized_Interface
(Parent_Type
)
5196 and then not Synchronized_Present
(N
)
5199 ("private extension of& must be explicitly synchronized",
5202 elsif Limited_Present
(N
) then
5203 Set_Is_Limited_Record
(T
);
5205 if not Is_Limited_Type
(Parent_Type
)
5207 (not Is_Interface
(Parent_Type
)
5208 or else not Is_Limited_Interface
(Parent_Type
))
5210 Error_Msg_NE
("parent type& of limited extension must be limited",
5215 -- Remember that its parent type has a private extension. Used to warn
5216 -- on public primitives of the parent type defined after its private
5217 -- extensions (see Check_Dispatching_Operation).
5219 Set_Has_Private_Extension
(Parent_Type
);
5222 if Has_Aspects
(N
) then
5223 Analyze_Aspect_Specifications
(N
, T
);
5225 end Analyze_Private_Extension_Declaration
;
5227 ---------------------------------
5228 -- Analyze_Subtype_Declaration --
5229 ---------------------------------
5231 procedure Analyze_Subtype_Declaration
5233 Skip
: Boolean := False)
5235 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
5236 R_Checks
: Check_Result
;
5240 Generate_Definition
(Id
);
5241 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
5242 Init_Size_Align
(Id
);
5244 -- The following guard condition on Enter_Name is to handle cases where
5245 -- the defining identifier has already been entered into the scope but
5246 -- the declaration as a whole needs to be analyzed.
5248 -- This case in particular happens for derived enumeration types. The
5249 -- derived enumeration type is processed as an inserted enumeration type
5250 -- declaration followed by a rewritten subtype declaration. The defining
5251 -- identifier, however, is entered into the name scope very early in the
5252 -- processing of the original type declaration and therefore needs to be
5253 -- avoided here, when the created subtype declaration is analyzed. (See
5254 -- Build_Derived_Types)
5256 -- This also happens when the full view of a private type is derived
5257 -- type with constraints. In this case the entity has been introduced
5258 -- in the private declaration.
5260 -- Finally this happens in some complex cases when validity checks are
5261 -- enabled, where the same subtype declaration may be analyzed twice.
5262 -- This can happen if the subtype is created by the pre-analysis of
5263 -- an attribute tht gives the range of a loop statement, and the loop
5264 -- itself appears within an if_statement that will be rewritten during
5268 or else (Present
(Etype
(Id
))
5269 and then (Is_Private_Type
(Etype
(Id
))
5270 or else Is_Task_Type
(Etype
(Id
))
5271 or else Is_Rewrite_Substitution
(N
)))
5275 elsif Current_Entity
(Id
) = Id
then
5282 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
5284 -- Class-wide equivalent types of records with unknown discriminants
5285 -- involve the generation of an itype which serves as the private view
5286 -- of a constrained record subtype. In such cases the base type of the
5287 -- current subtype we are processing is the private itype. Use the full
5288 -- of the private itype when decorating various attributes.
5291 and then Is_Private_Type
(T
)
5292 and then Present
(Full_View
(T
))
5297 -- Inherit common attributes
5299 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
5300 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
5301 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
5302 Set_Convention
(Id
, Convention
(T
));
5304 -- If ancestor has predicates then so does the subtype, and in addition
5305 -- we must delay the freeze to properly arrange predicate inheritance.
5307 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5308 -- in which T = ID, so the above tests and assignments do nothing???
5310 if Has_Predicates
(T
)
5311 or else (Present
(Ancestor_Subtype
(T
))
5312 and then Has_Predicates
(Ancestor_Subtype
(T
)))
5314 Set_Has_Predicates
(Id
);
5315 Set_Has_Delayed_Freeze
(Id
);
5317 -- Generated subtypes inherit the predicate function from the parent
5318 -- (no aspects to examine on the generated declaration).
5320 if not Comes_From_Source
(N
) then
5321 Set_Ekind
(Id
, Ekind
(T
));
5323 if Present
(Predicate_Function
(T
)) then
5324 Set_Predicate_Function
(Id
, Predicate_Function
(T
));
5326 elsif Present
(Ancestor_Subtype
(T
))
5327 and then Has_Predicates
(Ancestor_Subtype
(T
))
5328 and then Present
(Predicate_Function
(Ancestor_Subtype
(T
)))
5330 Set_Predicate_Function
(Id
,
5331 Predicate_Function
(Ancestor_Subtype
(T
)));
5336 -- Subtype of Boolean cannot have a constraint in SPARK
5338 if Is_Boolean_Type
(T
)
5339 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
5341 Check_SPARK_05_Restriction
5342 ("subtype of Boolean cannot have constraint", N
);
5345 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5347 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
5353 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
5354 One_Cstr
:= First
(Constraints
(Cstr
));
5355 while Present
(One_Cstr
) loop
5357 -- Index or discriminant constraint in SPARK must be a
5361 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
5363 Check_SPARK_05_Restriction
5364 ("subtype mark required", One_Cstr
);
5366 -- String subtype must have a lower bound of 1 in SPARK.
5367 -- Note that we do not need to test for the non-static case
5368 -- here, since that was already taken care of in
5369 -- Process_Range_Expr_In_Decl.
5371 elsif Base_Type
(T
) = Standard_String
then
5372 Get_Index_Bounds
(One_Cstr
, Low
, High
);
5374 if Is_OK_Static_Expression
(Low
)
5375 and then Expr_Value
(Low
) /= 1
5377 Check_SPARK_05_Restriction
5378 ("String subtype must have lower bound of 1", N
);
5388 -- In the case where there is no constraint given in the subtype
5389 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5390 -- semantic attributes must be established here.
5392 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
5393 Set_Etype
(Id
, Base_Type
(T
));
5395 -- Subtype of unconstrained array without constraint is not allowed
5398 if Is_Array_Type
(T
) and then not Is_Constrained
(T
) then
5399 Check_SPARK_05_Restriction
5400 ("subtype of unconstrained array must have constraint", N
);
5405 Set_Ekind
(Id
, E_Array_Subtype
);
5406 Copy_Array_Subtype_Attributes
(Id
, T
);
5408 when Decimal_Fixed_Point_Kind
=>
5409 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
5410 Set_Digits_Value
(Id
, Digits_Value
(T
));
5411 Set_Delta_Value
(Id
, Delta_Value
(T
));
5412 Set_Scale_Value
(Id
, Scale_Value
(T
));
5413 Set_Small_Value
(Id
, Small_Value
(T
));
5414 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
5415 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
5416 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5417 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
5418 Set_RM_Size
(Id
, RM_Size
(T
));
5420 when Enumeration_Kind
=>
5421 Set_Ekind
(Id
, E_Enumeration_Subtype
);
5422 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
5423 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
5424 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
5425 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5426 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
5427 Set_RM_Size
(Id
, RM_Size
(T
));
5428 Inherit_Predicate_Flags
(Id
, T
);
5430 when Ordinary_Fixed_Point_Kind
=>
5431 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
5432 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
5433 Set_Small_Value
(Id
, Small_Value
(T
));
5434 Set_Delta_Value
(Id
, Delta_Value
(T
));
5435 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5436 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
5437 Set_RM_Size
(Id
, RM_Size
(T
));
5440 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
5441 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
5442 Set_Digits_Value
(Id
, Digits_Value
(T
));
5443 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5445 -- If the floating point type has dimensions, these will be
5446 -- inherited subsequently when Analyze_Dimensions is called.
5448 when Signed_Integer_Kind
=>
5449 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
5450 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
5451 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5452 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
5453 Set_RM_Size
(Id
, RM_Size
(T
));
5454 Inherit_Predicate_Flags
(Id
, T
);
5456 when Modular_Integer_Kind
=>
5457 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
5458 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
5459 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5460 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
5461 Set_RM_Size
(Id
, RM_Size
(T
));
5462 Inherit_Predicate_Flags
(Id
, T
);
5464 when Class_Wide_Kind
=>
5465 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
5466 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
5467 Set_Cloned_Subtype
(Id
, T
);
5468 Set_Is_Tagged_Type
(Id
, True);
5469 Set_Has_Unknown_Discriminants
5471 Set_No_Tagged_Streams_Pragma
5472 (Id
, No_Tagged_Streams_Pragma
(T
));
5474 if Ekind
(T
) = E_Class_Wide_Subtype
then
5475 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
5478 when E_Record_Subtype
5481 Set_Ekind
(Id
, E_Record_Subtype
);
5483 if Ekind
(T
) = E_Record_Subtype
5484 and then Present
(Cloned_Subtype
(T
))
5486 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
5488 Set_Cloned_Subtype
(Id
, T
);
5491 Set_First_Entity
(Id
, First_Entity
(T
));
5492 Set_Last_Entity
(Id
, Last_Entity
(T
));
5493 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
5494 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5495 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
5496 Set_Has_Implicit_Dereference
5497 (Id
, Has_Implicit_Dereference
(T
));
5498 Set_Has_Unknown_Discriminants
5499 (Id
, Has_Unknown_Discriminants
(T
));
5501 if Has_Discriminants
(T
) then
5502 Set_Discriminant_Constraint
5503 (Id
, Discriminant_Constraint
(T
));
5504 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5506 elsif Has_Unknown_Discriminants
(Id
) then
5507 Set_Discriminant_Constraint
(Id
, No_Elist
);
5510 if Is_Tagged_Type
(T
) then
5511 Set_Is_Tagged_Type
(Id
, True);
5512 Set_No_Tagged_Streams_Pragma
5513 (Id
, No_Tagged_Streams_Pragma
(T
));
5514 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
5515 Set_Direct_Primitive_Operations
5516 (Id
, Direct_Primitive_Operations
(T
));
5517 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
5519 if Is_Interface
(T
) then
5520 Set_Is_Interface
(Id
);
5521 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
5525 when Private_Kind
=>
5526 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
5527 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
5528 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5529 Set_First_Entity
(Id
, First_Entity
(T
));
5530 Set_Last_Entity
(Id
, Last_Entity
(T
));
5531 Set_Private_Dependents
(Id
, New_Elmt_List
);
5532 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
5533 Set_Has_Implicit_Dereference
5534 (Id
, Has_Implicit_Dereference
(T
));
5535 Set_Has_Unknown_Discriminants
5536 (Id
, Has_Unknown_Discriminants
(T
));
5537 Set_Known_To_Have_Preelab_Init
5538 (Id
, Known_To_Have_Preelab_Init
(T
));
5540 if Is_Tagged_Type
(T
) then
5541 Set_Is_Tagged_Type
(Id
);
5542 Set_No_Tagged_Streams_Pragma
(Id
,
5543 No_Tagged_Streams_Pragma
(T
));
5544 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
5545 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
5546 Set_Direct_Primitive_Operations
(Id
,
5547 Direct_Primitive_Operations
(T
));
5550 -- In general the attributes of the subtype of a private type
5551 -- are the attributes of the partial view of parent. However,
5552 -- the full view may be a discriminated type, and the subtype
5553 -- must share the discriminant constraint to generate correct
5554 -- calls to initialization procedures.
5556 if Has_Discriminants
(T
) then
5557 Set_Discriminant_Constraint
5558 (Id
, Discriminant_Constraint
(T
));
5559 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5561 elsif Present
(Full_View
(T
))
5562 and then Has_Discriminants
(Full_View
(T
))
5564 Set_Discriminant_Constraint
5565 (Id
, Discriminant_Constraint
(Full_View
(T
)));
5566 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5568 -- This would seem semantically correct, but apparently
5569 -- generates spurious errors about missing components ???
5571 -- Set_Has_Discriminants (Id);
5574 Prepare_Private_Subtype_Completion
(Id
, N
);
5576 -- If this is the subtype of a constrained private type with
5577 -- discriminants that has got a full view and we also have
5578 -- built a completion just above, show that the completion
5579 -- is a clone of the full view to the back-end.
5581 if Has_Discriminants
(T
)
5582 and then not Has_Unknown_Discriminants
(T
)
5583 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(T
))
5584 and then Present
(Full_View
(T
))
5585 and then Present
(Full_View
(Id
))
5587 Set_Cloned_Subtype
(Full_View
(Id
), Full_View
(T
));
5591 Set_Ekind
(Id
, E_Access_Subtype
);
5592 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5593 Set_Is_Access_Constant
5594 (Id
, Is_Access_Constant
(T
));
5595 Set_Directly_Designated_Type
5596 (Id
, Designated_Type
(T
));
5597 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
5599 -- A Pure library_item must not contain the declaration of a
5600 -- named access type, except within a subprogram, generic
5601 -- subprogram, task unit, or protected unit, or if it has
5602 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5604 if Comes_From_Source
(Id
)
5605 and then In_Pure_Unit
5606 and then not In_Subprogram_Task_Protected_Unit
5607 and then not No_Pool_Assigned
(Id
)
5610 ("named access types not allowed in pure unit", N
);
5613 when Concurrent_Kind
=>
5614 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
5615 Set_Corresponding_Record_Type
(Id
,
5616 Corresponding_Record_Type
(T
));
5617 Set_First_Entity
(Id
, First_Entity
(T
));
5618 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
5619 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
5620 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5621 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
5622 Set_Last_Entity
(Id
, Last_Entity
(T
));
5624 if Is_Tagged_Type
(T
) then
5625 Set_No_Tagged_Streams_Pragma
5626 (Id
, No_Tagged_Streams_Pragma
(T
));
5629 if Has_Discriminants
(T
) then
5630 Set_Discriminant_Constraint
5631 (Id
, Discriminant_Constraint
(T
));
5632 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5635 when Incomplete_Kind
=>
5636 if Ada_Version
>= Ada_2005
then
5638 -- In Ada 2005 an incomplete type can be explicitly tagged:
5639 -- propagate indication. Note that we also have to include
5640 -- subtypes for Ada 2012 extended use of incomplete types.
5642 Set_Ekind
(Id
, E_Incomplete_Subtype
);
5643 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
5644 Set_Private_Dependents
(Id
, New_Elmt_List
);
5646 if Is_Tagged_Type
(Id
) then
5647 Set_No_Tagged_Streams_Pragma
5648 (Id
, No_Tagged_Streams_Pragma
(T
));
5649 Set_Direct_Primitive_Operations
(Id
, New_Elmt_List
);
5652 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5653 -- incomplete type visible through a limited with clause.
5655 if From_Limited_With
(T
)
5656 and then Present
(Non_Limited_View
(T
))
5658 Set_From_Limited_With
(Id
);
5659 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
5661 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5662 -- to the private dependents of the original incomplete
5663 -- type for future transformation.
5666 Append_Elmt
(Id
, Private_Dependents
(T
));
5669 -- If the subtype name denotes an incomplete type an error
5670 -- was already reported by Process_Subtype.
5673 Set_Etype
(Id
, Any_Type
);
5677 raise Program_Error
;
5681 if Etype
(Id
) = Any_Type
then
5685 -- Some common processing on all types
5687 Set_Size_Info
(Id
, T
);
5688 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
5690 -- If the parent type is a generic actual, so is the subtype. This may
5691 -- happen in a nested instance. Why Comes_From_Source test???
5693 if not Comes_From_Source
(N
) then
5694 Set_Is_Generic_Actual_Type
(Id
, Is_Generic_Actual_Type
(T
));
5697 -- If this is a subtype declaration for an actual in an instance,
5698 -- inherit static and dynamic predicates if any.
5700 -- If declaration has no aspect specifications, inherit predicate
5701 -- info as well. Unclear how to handle the case of both specified
5702 -- and inherited predicates ??? Other inherited aspects, such as
5703 -- invariants, should be OK, but the combination with later pragmas
5704 -- may also require special merging.
5706 if Has_Predicates
(T
)
5707 and then Present
(Predicate_Function
(T
))
5709 ((In_Instance
and then not Comes_From_Source
(N
))
5710 or else No
(Aspect_Specifications
(N
)))
5712 Set_Subprograms_For_Type
(Id
, Subprograms_For_Type
(T
));
5714 if Has_Static_Predicate
(T
) then
5715 Set_Has_Static_Predicate
(Id
);
5716 Set_Static_Discrete_Predicate
(Id
, Static_Discrete_Predicate
(T
));
5720 -- Remaining processing depends on characteristics of base type
5724 Set_Is_Immediately_Visible
(Id
, True);
5725 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
5726 Set_Is_Descendant_Of_Address
(Id
, Is_Descendant_Of_Address
(T
));
5728 if Is_Interface
(T
) then
5729 Set_Is_Interface
(Id
);
5732 if Present
(Generic_Parent_Type
(N
))
5734 (Nkind
(Parent
(Generic_Parent_Type
(N
))) /=
5735 N_Formal_Type_Declaration
5736 or else Nkind
(Formal_Type_Definition
5737 (Parent
(Generic_Parent_Type
(N
)))) /=
5738 N_Formal_Private_Type_Definition
)
5740 if Is_Tagged_Type
(Id
) then
5742 -- If this is a generic actual subtype for a synchronized type,
5743 -- the primitive operations are those of the corresponding record
5744 -- for which there is a separate subtype declaration.
5746 if Is_Concurrent_Type
(Id
) then
5748 elsif Is_Class_Wide_Type
(Id
) then
5749 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
5751 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
5754 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
5755 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
5759 if Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
5760 Conditional_Delay
(Id
, Full_View
(T
));
5762 -- The subtypes of components or subcomponents of protected types
5763 -- do not need freeze nodes, which would otherwise appear in the
5764 -- wrong scope (before the freeze node for the protected type). The
5765 -- proper subtypes are those of the subcomponents of the corresponding
5768 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
5769 and then Present
(Scope
(Scope
(Id
))) -- error defense
5770 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
5772 Conditional_Delay
(Id
, T
);
5775 -- If we have a subtype of an incomplete type whose full type is a
5776 -- derived numeric type, we need to have a freeze node for the subtype.
5777 -- Otherwise gigi will complain while computing the (static) bounds of
5781 and then Is_Elementary_Type
(Id
)
5782 and then Etype
(Id
) /= Id
5785 Partial
: constant Entity_Id
:=
5786 Incomplete_Or_Partial_View
(First_Subtype
(Id
));
5788 if Present
(Partial
)
5789 and then Ekind
(Partial
) = E_Incomplete_Type
5791 Set_Has_Delayed_Freeze
(Id
);
5796 -- Check that Constraint_Error is raised for a scalar subtype indication
5797 -- when the lower or upper bound of a non-null range lies outside the
5798 -- range of the type mark.
5800 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5801 if Is_Scalar_Type
(Etype
(Id
))
5802 and then Scalar_Range
(Id
) /=
5804 (Etype
(Subtype_Mark
(Subtype_Indication
(N
))))
5808 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
5810 -- In the array case, check compatibility for each index
5812 elsif Is_Array_Type
(Etype
(Id
)) and then Present
(First_Index
(Id
))
5814 -- This really should be a subprogram that finds the indications
5818 Subt_Index
: Node_Id
:= First_Index
(Id
);
5819 Target_Index
: Node_Id
:=
5821 (Subtype_Mark
(Subtype_Indication
(N
))));
5822 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
5825 while Present
(Subt_Index
) loop
5826 if ((Nkind
(Subt_Index
) = N_Identifier
5827 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
5828 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
5830 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
5833 Target_Typ
: constant Entity_Id
:=
5834 Etype
(Target_Index
);
5838 (Scalar_Range
(Etype
(Subt_Index
)),
5841 Defining_Identifier
(N
));
5843 -- Reset Has_Dynamic_Range_Check on the subtype to
5844 -- prevent elision of the index check due to a dynamic
5845 -- check generated for a preceding index (needed since
5846 -- Insert_Range_Checks tries to avoid generating
5847 -- redundant checks on a given declaration).
5849 Set_Has_Dynamic_Range_Check
(N
, False);
5855 Sloc
(Defining_Identifier
(N
)));
5857 -- Record whether this index involved a dynamic check
5860 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
5864 Next_Index
(Subt_Index
);
5865 Next_Index
(Target_Index
);
5868 -- Finally, mark whether the subtype involves dynamic checks
5870 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
5875 Set_Optimize_Alignment_Flags
(Id
);
5876 Check_Eliminated
(Id
);
5879 if Has_Aspects
(N
) then
5880 Analyze_Aspect_Specifications
(N
, Id
);
5883 Analyze_Dimension
(N
);
5885 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5886 -- indications on composite types where the constraints are dynamic.
5887 -- Note that object declarations and aggregates generate implicit
5888 -- subtype declarations, which this covers. One special case is that the
5889 -- implicitly generated "=" for discriminated types includes an
5890 -- offending subtype declaration, which is harmless, so we ignore it
5893 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5895 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
5897 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
5898 and then not (Is_Internal
(Id
)
5899 and then Is_TSS
(Scope
(Id
),
5900 TSS_Composite_Equality
))
5901 and then not Within_Init_Proc
5902 and then not All_Composite_Constraints_Static
(Cstr
)
5904 Check_Restriction
(No_Dynamic_Sized_Objects
, Cstr
);
5908 end Analyze_Subtype_Declaration
;
5910 --------------------------------
5911 -- Analyze_Subtype_Indication --
5912 --------------------------------
5914 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
5915 T
: constant Entity_Id
:= Subtype_Mark
(N
);
5916 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
5923 Set_Etype
(N
, Etype
(R
));
5924 Resolve
(R
, Entity
(T
));
5926 Set_Error_Posted
(R
);
5927 Set_Error_Posted
(T
);
5929 end Analyze_Subtype_Indication
;
5931 --------------------------
5932 -- Analyze_Variant_Part --
5933 --------------------------
5935 procedure Analyze_Variant_Part
(N
: Node_Id
) is
5936 Discr_Name
: Node_Id
;
5937 Discr_Type
: Entity_Id
;
5939 procedure Process_Variant
(A
: Node_Id
);
5940 -- Analyze declarations for a single variant
5942 package Analyze_Variant_Choices
is
5943 new Generic_Analyze_Choices
(Process_Variant
);
5944 use Analyze_Variant_Choices
;
5946 ---------------------
5947 -- Process_Variant --
5948 ---------------------
5950 procedure Process_Variant
(A
: Node_Id
) is
5951 CL
: constant Node_Id
:= Component_List
(A
);
5953 if not Null_Present
(CL
) then
5954 Analyze_Declarations
(Component_Items
(CL
));
5956 if Present
(Variant_Part
(CL
)) then
5957 Analyze
(Variant_Part
(CL
));
5960 end Process_Variant
;
5962 -- Start of processing for Analyze_Variant_Part
5965 Discr_Name
:= Name
(N
);
5966 Analyze
(Discr_Name
);
5968 -- If Discr_Name bad, get out (prevent cascaded errors)
5970 if Etype
(Discr_Name
) = Any_Type
then
5974 -- Check invalid discriminant in variant part
5976 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
5977 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
5980 Discr_Type
:= Etype
(Entity
(Discr_Name
));
5982 if not Is_Discrete_Type
(Discr_Type
) then
5984 ("discriminant in a variant part must be of a discrete type",
5989 -- Now analyze the choices, which also analyzes the declarations that
5990 -- are associated with each choice.
5992 Analyze_Choices
(Variants
(N
), Discr_Type
);
5994 -- Note: we used to instantiate and call Check_Choices here to check
5995 -- that the choices covered the discriminant, but it's too early to do
5996 -- that because of statically predicated subtypes, whose analysis may
5997 -- be deferred to their freeze point which may be as late as the freeze
5998 -- point of the containing record. So this call is now to be found in
5999 -- Freeze_Record_Declaration.
6001 end Analyze_Variant_Part
;
6003 ----------------------------
6004 -- Array_Type_Declaration --
6005 ----------------------------
6007 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
6008 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
6009 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
6010 P
: constant Node_Id
:= Parent
(Def
);
6011 Element_Type
: Entity_Id
;
6012 Implicit_Base
: Entity_Id
;
6016 Related_Id
: Entity_Id
:= Empty
;
6019 if Nkind
(Def
) = N_Constrained_Array_Definition
then
6020 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
6022 Index
:= First
(Subtype_Marks
(Def
));
6025 -- Find proper names for the implicit types which may be public. In case
6026 -- of anonymous arrays we use the name of the first object of that type
6030 Related_Id
:= Defining_Identifier
(P
);
6036 while Present
(Index
) loop
6039 -- Test for odd case of trying to index a type by the type itself
6041 if Is_Entity_Name
(Index
) and then Entity
(Index
) = T
then
6042 Error_Msg_N
("type& cannot be indexed by itself", Index
);
6043 Set_Entity
(Index
, Standard_Boolean
);
6044 Set_Etype
(Index
, Standard_Boolean
);
6047 -- Check SPARK restriction requiring a subtype mark
6049 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
6050 Check_SPARK_05_Restriction
("subtype mark required", Index
);
6053 -- Add a subtype declaration for each index of private array type
6054 -- declaration whose etype is also private. For example:
6057 -- type Index is private;
6059 -- type Table is array (Index) of ...
6062 -- This is currently required by the expander for the internally
6063 -- generated equality subprogram of records with variant parts in
6064 -- which the etype of some component is such private type.
6066 if Ekind
(Current_Scope
) = E_Package
6067 and then In_Private_Part
(Current_Scope
)
6068 and then Has_Private_Declaration
(Etype
(Index
))
6071 Loc
: constant Source_Ptr
:= Sloc
(Def
);
6076 New_E
:= Make_Temporary
(Loc
, 'T');
6077 Set_Is_Internal
(New_E
);
6080 Make_Subtype_Declaration
(Loc
,
6081 Defining_Identifier
=> New_E
,
6082 Subtype_Indication
=>
6083 New_Occurrence_Of
(Etype
(Index
), Loc
));
6085 Insert_Before
(Parent
(Def
), Decl
);
6087 Set_Etype
(Index
, New_E
);
6089 -- If the index is a range or a subtype indication it carries
6090 -- no entity. Example:
6093 -- type T is private;
6095 -- type T is new Natural;
6096 -- Table : array (T(1) .. T(10)) of Boolean;
6099 -- Otherwise the type of the reference is its entity.
6101 if Is_Entity_Name
(Index
) then
6102 Set_Entity
(Index
, New_E
);
6107 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
6109 -- Check error of subtype with predicate for index type
6111 Bad_Predicated_Subtype_Use
6112 ("subtype& has predicate, not allowed as index subtype",
6113 Index
, Etype
(Index
));
6115 -- Move to next index
6118 Nb_Index
:= Nb_Index
+ 1;
6121 -- Process subtype indication if one is present
6123 if Present
(Component_Typ
) then
6124 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
6126 Set_Etype
(Component_Typ
, Element_Type
);
6128 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
6129 Check_SPARK_05_Restriction
6130 ("subtype mark required", Component_Typ
);
6133 -- Ada 2005 (AI-230): Access Definition case
6135 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
6137 -- Indicate that the anonymous access type is created by the
6138 -- array type declaration.
6140 Element_Type
:= Access_Definition
6142 N
=> Access_Definition
(Component_Def
));
6143 Set_Is_Local_Anonymous_Access
(Element_Type
);
6145 -- Propagate the parent. This field is needed if we have to generate
6146 -- the master_id associated with an anonymous access to task type
6147 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6149 Set_Parent
(Element_Type
, Parent
(T
));
6151 -- Ada 2005 (AI-230): In case of components that are anonymous access
6152 -- types the level of accessibility depends on the enclosing type
6155 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
6157 -- Ada 2005 (AI-254)
6160 CD
: constant Node_Id
:=
6161 Access_To_Subprogram_Definition
6162 (Access_Definition
(Component_Def
));
6164 if Present
(CD
) and then Protected_Present
(CD
) then
6166 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
6171 -- Constrained array case
6174 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
6177 if Nkind
(Def
) = N_Constrained_Array_Definition
then
6179 -- Establish Implicit_Base as unconstrained base type
6181 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
6183 Set_Etype
(Implicit_Base
, Implicit_Base
);
6184 Set_Scope
(Implicit_Base
, Current_Scope
);
6185 Set_Has_Delayed_Freeze
(Implicit_Base
);
6186 Set_Default_SSO
(Implicit_Base
);
6188 -- The constrained array type is a subtype of the unconstrained one
6190 Set_Ekind
(T
, E_Array_Subtype
);
6191 Init_Size_Align
(T
);
6192 Set_Etype
(T
, Implicit_Base
);
6193 Set_Scope
(T
, Current_Scope
);
6194 Set_Is_Constrained
(T
);
6196 First
(Discrete_Subtype_Definitions
(Def
)));
6197 Set_Has_Delayed_Freeze
(T
);
6199 -- Complete setup of implicit base type
6201 Set_Component_Size
(Implicit_Base
, Uint_0
);
6202 Set_Component_Type
(Implicit_Base
, Element_Type
);
6203 Set_Finalize_Storage_Only
6205 Finalize_Storage_Only
(Element_Type
));
6206 Set_First_Index
(Implicit_Base
, First_Index
(T
));
6207 Set_Has_Controlled_Component
6209 Has_Controlled_Component
(Element_Type
)
6210 or else Is_Controlled
(Element_Type
));
6211 Set_Packed_Array_Impl_Type
6212 (Implicit_Base
, Empty
);
6214 Propagate_Concurrent_Flags
(Implicit_Base
, Element_Type
);
6216 -- Unconstrained array case
6219 Set_Ekind
(T
, E_Array_Type
);
6220 Init_Size_Align
(T
);
6222 Set_Scope
(T
, Current_Scope
);
6223 Set_Component_Size
(T
, Uint_0
);
6224 Set_Is_Constrained
(T
, False);
6225 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
6226 Set_Has_Delayed_Freeze
(T
, True);
6227 Propagate_Concurrent_Flags
(T
, Element_Type
);
6228 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
6231 Is_Controlled
(Element_Type
));
6232 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
6234 Set_Default_SSO
(T
);
6237 -- Common attributes for both cases
6239 Set_Component_Type
(Base_Type
(T
), Element_Type
);
6240 Set_Packed_Array_Impl_Type
(T
, Empty
);
6242 if Aliased_Present
(Component_Definition
(Def
)) then
6243 Check_SPARK_05_Restriction
6244 ("aliased is not allowed", Component_Definition
(Def
));
6245 Set_Has_Aliased_Components
(Etype
(T
));
6248 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6249 -- array type to ensure that objects of this type are initialized.
6251 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(Element_Type
) then
6252 Set_Can_Never_Be_Null
(T
);
6254 if Null_Exclusion_Present
(Component_Definition
(Def
))
6256 -- No need to check itypes because in their case this check was
6257 -- done at their point of creation
6259 and then not Is_Itype
(Element_Type
)
6262 ("`NOT NULL` not allowed (null already excluded)",
6263 Subtype_Indication
(Component_Definition
(Def
)));
6267 Priv
:= Private_Component
(Element_Type
);
6269 if Present
(Priv
) then
6271 -- Check for circular definitions
6273 if Priv
= Any_Type
then
6274 Set_Component_Type
(Etype
(T
), Any_Type
);
6276 -- There is a gap in the visibility of operations on the composite
6277 -- type only if the component type is defined in a different scope.
6279 elsif Scope
(Priv
) = Current_Scope
then
6282 elsif Is_Limited_Type
(Priv
) then
6283 Set_Is_Limited_Composite
(Etype
(T
));
6284 Set_Is_Limited_Composite
(T
);
6286 Set_Is_Private_Composite
(Etype
(T
));
6287 Set_Is_Private_Composite
(T
);
6291 -- A syntax error in the declaration itself may lead to an empty index
6292 -- list, in which case do a minimal patch.
6294 if No
(First_Index
(T
)) then
6295 Error_Msg_N
("missing index definition in array type declaration", T
);
6298 Indexes
: constant List_Id
:=
6299 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
6301 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
6302 Set_First_Index
(T
, First
(Indexes
));
6307 -- Create a concatenation operator for the new type. Internal array
6308 -- types created for packed entities do not need such, they are
6309 -- compatible with the user-defined type.
6311 if Number_Dimensions
(T
) = 1
6312 and then not Is_Packed_Array_Impl_Type
(T
)
6314 New_Concatenation_Op
(T
);
6317 -- In the case of an unconstrained array the parser has already verified
6318 -- that all the indexes are unconstrained but we still need to make sure
6319 -- that the element type is constrained.
6321 if not Is_Definite_Subtype
(Element_Type
) then
6323 ("unconstrained element type in array declaration",
6324 Subtype_Indication
(Component_Def
));
6326 elsif Is_Abstract_Type
(Element_Type
) then
6328 ("the type of a component cannot be abstract",
6329 Subtype_Indication
(Component_Def
));
6332 -- There may be an invariant declared for the component type, but
6333 -- the construction of the component invariant checking procedure
6334 -- takes place during expansion.
6335 end Array_Type_Declaration
;
6337 ------------------------------------------------------
6338 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6339 ------------------------------------------------------
6341 function Replace_Anonymous_Access_To_Protected_Subprogram
6342 (N
: Node_Id
) return Entity_Id
6344 Loc
: constant Source_Ptr
:= Sloc
(N
);
6346 Curr_Scope
: constant Scope_Stack_Entry
:=
6347 Scope_Stack
.Table
(Scope_Stack
.Last
);
6349 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
6352 -- Access definition in declaration
6355 -- Object definition or formal definition with an access definition
6358 -- Declaration of anonymous access to subprogram type
6361 -- Original specification in access to subprogram
6366 Set_Is_Internal
(Anon
);
6369 when N_Constrained_Array_Definition
6370 | N_Component_Declaration
6371 | N_Unconstrained_Array_Definition
6373 Comp
:= Component_Definition
(N
);
6374 Acc
:= Access_Definition
(Comp
);
6376 when N_Discriminant_Specification
=>
6377 Comp
:= Discriminant_Type
(N
);
6380 when N_Parameter_Specification
=>
6381 Comp
:= Parameter_Type
(N
);
6384 when N_Access_Function_Definition
=>
6385 Comp
:= Result_Definition
(N
);
6388 when N_Object_Declaration
=>
6389 Comp
:= Object_Definition
(N
);
6392 when N_Function_Specification
=>
6393 Comp
:= Result_Definition
(N
);
6397 raise Program_Error
;
6400 Spec
:= Access_To_Subprogram_Definition
(Acc
);
6403 Make_Full_Type_Declaration
(Loc
,
6404 Defining_Identifier
=> Anon
,
6405 Type_Definition
=> Copy_Separate_Tree
(Spec
));
6407 Mark_Rewrite_Insertion
(Decl
);
6409 -- In ASIS mode, analyze the profile on the original node, because
6410 -- the separate copy does not provide enough links to recover the
6411 -- original tree. Analysis is limited to type annotations, within
6412 -- a temporary scope that serves as an anonymous subprogram to collect
6413 -- otherwise useless temporaries and itypes.
6417 Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
6420 if Nkind
(Spec
) = N_Access_Function_Definition
then
6421 Set_Ekind
(Typ
, E_Function
);
6423 Set_Ekind
(Typ
, E_Procedure
);
6426 Set_Parent
(Typ
, N
);
6427 Set_Scope
(Typ
, Current_Scope
);
6430 -- Nothing to do if procedure is parameterless
6432 if Present
(Parameter_Specifications
(Spec
)) then
6433 Process_Formals
(Parameter_Specifications
(Spec
), Spec
);
6436 if Nkind
(Spec
) = N_Access_Function_Definition
then
6438 Def
: constant Node_Id
:= Result_Definition
(Spec
);
6441 -- The result might itself be an anonymous access type, so
6444 if Nkind
(Def
) = N_Access_Definition
then
6445 if Present
(Access_To_Subprogram_Definition
(Def
)) then
6448 Replace_Anonymous_Access_To_Protected_Subprogram
6451 Find_Type
(Subtype_Mark
(Def
));
6464 -- Insert the new declaration in the nearest enclosing scope. If the
6465 -- parent is a body and N is its return type, the declaration belongs
6466 -- in the enclosing scope. Likewise if N is the type of a parameter.
6470 if Nkind
(N
) = N_Function_Specification
6471 and then Nkind
(P
) = N_Subprogram_Body
6474 elsif Nkind
(N
) = N_Parameter_Specification
6475 and then Nkind
(P
) in N_Subprogram_Specification
6476 and then Nkind
(Parent
(P
)) = N_Subprogram_Body
6478 P
:= Parent
(Parent
(P
));
6481 while Present
(P
) and then not Has_Declarations
(P
) loop
6485 pragma Assert
(Present
(P
));
6487 if Nkind
(P
) = N_Package_Specification
then
6488 Prepend
(Decl
, Visible_Declarations
(P
));
6490 Prepend
(Decl
, Declarations
(P
));
6493 -- Replace the anonymous type with an occurrence of the new declaration.
6494 -- In all cases the rewritten node does not have the null-exclusion
6495 -- attribute because (if present) it was already inherited by the
6496 -- anonymous entity (Anon). Thus, in case of components we do not
6497 -- inherit this attribute.
6499 if Nkind
(N
) = N_Parameter_Specification
then
6500 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
6501 Set_Etype
(Defining_Identifier
(N
), Anon
);
6502 Set_Null_Exclusion_Present
(N
, False);
6504 elsif Nkind
(N
) = N_Object_Declaration
then
6505 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
6506 Set_Etype
(Defining_Identifier
(N
), Anon
);
6508 elsif Nkind
(N
) = N_Access_Function_Definition
then
6509 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
6511 elsif Nkind
(N
) = N_Function_Specification
then
6512 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
6513 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
6517 Make_Component_Definition
(Loc
,
6518 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
6521 Mark_Rewrite_Insertion
(Comp
);
6523 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
)
6524 or else (Nkind
(Parent
(N
)) = N_Full_Type_Declaration
6525 and then not Is_Type
(Current_Scope
))
6528 -- Declaration can be analyzed in the current scope.
6533 -- Temporarily remove the current scope (record or subprogram) from
6534 -- the stack to add the new declarations to the enclosing scope.
6535 -- The anonymous entity is an Itype with the proper attributes.
6537 Scope_Stack
.Decrement_Last
;
6539 Set_Is_Itype
(Anon
);
6540 Set_Associated_Node_For_Itype
(Anon
, N
);
6541 Scope_Stack
.Append
(Curr_Scope
);
6544 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
6545 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
6547 end Replace_Anonymous_Access_To_Protected_Subprogram
;
6549 -------------------------------
6550 -- Build_Derived_Access_Type --
6551 -------------------------------
6553 procedure Build_Derived_Access_Type
6555 Parent_Type
: Entity_Id
;
6556 Derived_Type
: Entity_Id
)
6558 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
6560 Desig_Type
: Entity_Id
;
6562 Discr_Con_Elist
: Elist_Id
;
6563 Discr_Con_El
: Elmt_Id
;
6567 -- Set the designated type so it is available in case this is an access
6568 -- to a self-referential type, e.g. a standard list type with a next
6569 -- pointer. Will be reset after subtype is built.
6571 Set_Directly_Designated_Type
6572 (Derived_Type
, Designated_Type
(Parent_Type
));
6574 Subt
:= Process_Subtype
(S
, N
);
6576 if Nkind
(S
) /= N_Subtype_Indication
6577 and then Subt
/= Base_Type
(Subt
)
6579 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
6582 if Ekind
(Derived_Type
) = E_Access_Subtype
then
6584 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6585 Ibase
: constant Entity_Id
:=
6586 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
6587 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
6588 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
6591 Copy_Node
(Pbase
, Ibase
);
6593 -- Restore Itype status after Copy_Node
6595 Set_Is_Itype
(Ibase
);
6596 Set_Associated_Node_For_Itype
(Ibase
, N
);
6598 Set_Chars
(Ibase
, Svg_Chars
);
6599 Set_Next_Entity
(Ibase
, Svg_Next_E
);
6600 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
6601 Set_Scope
(Ibase
, Scope
(Derived_Type
));
6602 Set_Freeze_Node
(Ibase
, Empty
);
6603 Set_Is_Frozen
(Ibase
, False);
6604 Set_Comes_From_Source
(Ibase
, False);
6605 Set_Is_First_Subtype
(Ibase
, False);
6607 Set_Etype
(Ibase
, Pbase
);
6608 Set_Etype
(Derived_Type
, Ibase
);
6612 Set_Directly_Designated_Type
6613 (Derived_Type
, Designated_Type
(Subt
));
6615 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
6616 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
6617 Set_Size_Info
(Derived_Type
, Parent_Type
);
6618 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
6619 Set_Depends_On_Private
(Derived_Type
,
6620 Has_Private_Component
(Derived_Type
));
6621 Conditional_Delay
(Derived_Type
, Subt
);
6623 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6624 -- that it is not redundant.
6626 if Null_Exclusion_Present
(Type_Definition
(N
)) then
6627 Set_Can_Never_Be_Null
(Derived_Type
);
6629 elsif Can_Never_Be_Null
(Parent_Type
) then
6630 Set_Can_Never_Be_Null
(Derived_Type
);
6633 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6634 -- the root type for this information.
6636 -- Apply range checks to discriminants for derived record case
6637 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6639 Desig_Type
:= Designated_Type
(Derived_Type
);
6641 if Is_Composite_Type
(Desig_Type
)
6642 and then (not Is_Array_Type
(Desig_Type
))
6643 and then Has_Discriminants
(Desig_Type
)
6644 and then Base_Type
(Desig_Type
) /= Desig_Type
6646 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
6647 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
6649 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
6650 while Present
(Discr_Con_El
) loop
6651 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
6652 Next_Elmt
(Discr_Con_El
);
6653 Next_Discriminant
(Discr
);
6656 end Build_Derived_Access_Type
;
6658 ------------------------------
6659 -- Build_Derived_Array_Type --
6660 ------------------------------
6662 procedure Build_Derived_Array_Type
6664 Parent_Type
: Entity_Id
;
6665 Derived_Type
: Entity_Id
)
6667 Loc
: constant Source_Ptr
:= Sloc
(N
);
6668 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6669 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6670 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6671 Implicit_Base
: Entity_Id
:= Empty
;
6672 New_Indic
: Node_Id
;
6674 procedure Make_Implicit_Base
;
6675 -- If the parent subtype is constrained, the derived type is a subtype
6676 -- of an implicit base type derived from the parent base.
6678 ------------------------
6679 -- Make_Implicit_Base --
6680 ------------------------
6682 procedure Make_Implicit_Base
is
6685 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6687 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6688 Set_Etype
(Implicit_Base
, Parent_Base
);
6690 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
6691 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
6693 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
6694 end Make_Implicit_Base
;
6696 -- Start of processing for Build_Derived_Array_Type
6699 if not Is_Constrained
(Parent_Type
) then
6700 if Nkind
(Indic
) /= N_Subtype_Indication
then
6701 Set_Ekind
(Derived_Type
, E_Array_Type
);
6703 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6704 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
6706 Set_Has_Delayed_Freeze
(Derived_Type
, True);
6710 Set_Etype
(Derived_Type
, Implicit_Base
);
6713 Make_Subtype_Declaration
(Loc
,
6714 Defining_Identifier
=> Derived_Type
,
6715 Subtype_Indication
=>
6716 Make_Subtype_Indication
(Loc
,
6717 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6718 Constraint
=> Constraint
(Indic
)));
6720 Rewrite
(N
, New_Indic
);
6725 if Nkind
(Indic
) /= N_Subtype_Indication
then
6728 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
6729 Set_Etype
(Derived_Type
, Implicit_Base
);
6730 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6733 Error_Msg_N
("illegal constraint on constrained type", Indic
);
6737 -- If parent type is not a derived type itself, and is declared in
6738 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6739 -- the new type's concatenation operator since Derive_Subprograms
6740 -- will not inherit the parent's operator. If the parent type is
6741 -- unconstrained, the operator is of the unconstrained base type.
6743 if Number_Dimensions
(Parent_Type
) = 1
6744 and then not Is_Limited_Type
(Parent_Type
)
6745 and then not Is_Derived_Type
(Parent_Type
)
6746 and then not Is_Package_Or_Generic_Package
6747 (Scope
(Base_Type
(Parent_Type
)))
6749 if not Is_Constrained
(Parent_Type
)
6750 and then Is_Constrained
(Derived_Type
)
6752 New_Concatenation_Op
(Implicit_Base
);
6754 New_Concatenation_Op
(Derived_Type
);
6757 end Build_Derived_Array_Type
;
6759 -----------------------------------
6760 -- Build_Derived_Concurrent_Type --
6761 -----------------------------------
6763 procedure Build_Derived_Concurrent_Type
6765 Parent_Type
: Entity_Id
;
6766 Derived_Type
: Entity_Id
)
6768 Loc
: constant Source_Ptr
:= Sloc
(N
);
6770 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
6771 Corr_Decl
: Node_Id
;
6772 Corr_Decl_Needed
: Boolean;
6773 -- If the derived type has fewer discriminants than its parent, the
6774 -- corresponding record is also a derived type, in order to account for
6775 -- the bound discriminants. We create a full type declaration for it in
6778 Constraint_Present
: constant Boolean :=
6779 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6780 N_Subtype_Indication
;
6782 D_Constraint
: Node_Id
;
6783 New_Constraint
: Elist_Id
:= No_Elist
;
6784 Old_Disc
: Entity_Id
;
6785 New_Disc
: Entity_Id
;
6789 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6790 Corr_Decl_Needed
:= False;
6793 if Present
(Discriminant_Specifications
(N
))
6794 and then Constraint_Present
6796 Old_Disc
:= First_Discriminant
(Parent_Type
);
6797 New_Disc
:= First
(Discriminant_Specifications
(N
));
6798 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
6799 Next_Discriminant
(Old_Disc
);
6804 if Present
(Old_Disc
) and then Expander_Active
then
6806 -- The new type has fewer discriminants, so we need to create a new
6807 -- corresponding record, which is derived from the corresponding
6808 -- record of the parent, and has a stored constraint that captures
6809 -- the values of the discriminant constraints. The corresponding
6810 -- record is needed only if expander is active and code generation is
6813 -- The type declaration for the derived corresponding record has the
6814 -- same discriminant part and constraints as the current declaration.
6815 -- Copy the unanalyzed tree to build declaration.
6817 Corr_Decl_Needed
:= True;
6818 New_N
:= Copy_Separate_Tree
(N
);
6821 Make_Full_Type_Declaration
(Loc
,
6822 Defining_Identifier
=> Corr_Record
,
6823 Discriminant_Specifications
=>
6824 Discriminant_Specifications
(New_N
),
6826 Make_Derived_Type_Definition
(Loc
,
6827 Subtype_Indication
=>
6828 Make_Subtype_Indication
(Loc
,
6831 (Corresponding_Record_Type
(Parent_Type
), Loc
),
6834 (Subtype_Indication
(Type_Definition
(New_N
))))));
6837 -- Copy Storage_Size and Relative_Deadline variables if task case
6839 if Is_Task_Type
(Parent_Type
) then
6840 Set_Storage_Size_Variable
(Derived_Type
,
6841 Storage_Size_Variable
(Parent_Type
));
6842 Set_Relative_Deadline_Variable
(Derived_Type
,
6843 Relative_Deadline_Variable
(Parent_Type
));
6846 if Present
(Discriminant_Specifications
(N
)) then
6847 Push_Scope
(Derived_Type
);
6848 Check_Or_Process_Discriminants
(N
, Derived_Type
);
6850 if Constraint_Present
then
6852 Expand_To_Stored_Constraint
6854 Build_Discriminant_Constraints
6856 Subtype_Indication
(Type_Definition
(N
)), True));
6861 elsif Constraint_Present
then
6863 -- Build constrained subtype, copying the constraint, and derive
6864 -- from it to create a derived constrained type.
6867 Loc
: constant Source_Ptr
:= Sloc
(N
);
6868 Anon
: constant Entity_Id
:=
6869 Make_Defining_Identifier
(Loc
,
6870 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
6875 Make_Subtype_Declaration
(Loc
,
6876 Defining_Identifier
=> Anon
,
6877 Subtype_Indication
=>
6878 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
6879 Insert_Before
(N
, Decl
);
6882 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
6883 New_Occurrence_Of
(Anon
, Loc
));
6884 Set_Analyzed
(Derived_Type
, False);
6890 -- By default, operations and private data are inherited from parent.
6891 -- However, in the presence of bound discriminants, a new corresponding
6892 -- record will be created, see below.
6894 Set_Has_Discriminants
6895 (Derived_Type
, Has_Discriminants
(Parent_Type
));
6896 Set_Corresponding_Record_Type
6897 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
6899 -- Is_Constrained is set according the parent subtype, but is set to
6900 -- False if the derived type is declared with new discriminants.
6904 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
6905 and then not Present
(Discriminant_Specifications
(N
)));
6907 if Constraint_Present
then
6908 if not Has_Discriminants
(Parent_Type
) then
6909 Error_Msg_N
("untagged parent must have discriminants", N
);
6911 elsif Present
(Discriminant_Specifications
(N
)) then
6913 -- Verify that new discriminants are used to constrain old ones
6918 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
6920 Old_Disc
:= First_Discriminant
(Parent_Type
);
6922 while Present
(D_Constraint
) loop
6923 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
6925 -- Positional constraint. If it is a reference to a new
6926 -- discriminant, it constrains the corresponding old one.
6928 if Nkind
(D_Constraint
) = N_Identifier
then
6929 New_Disc
:= First_Discriminant
(Derived_Type
);
6930 while Present
(New_Disc
) loop
6931 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
6932 Next_Discriminant
(New_Disc
);
6935 if Present
(New_Disc
) then
6936 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
6940 Next_Discriminant
(Old_Disc
);
6942 -- if this is a named constraint, search by name for the old
6943 -- discriminants constrained by the new one.
6945 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
6947 -- Find new discriminant with that name
6949 New_Disc
:= First_Discriminant
(Derived_Type
);
6950 while Present
(New_Disc
) loop
6952 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
6953 Next_Discriminant
(New_Disc
);
6956 if Present
(New_Disc
) then
6958 -- Verify that new discriminant renames some discriminant
6959 -- of the parent type, and associate the new discriminant
6960 -- with one or more old ones that it renames.
6966 Selector
:= First
(Selector_Names
(D_Constraint
));
6967 while Present
(Selector
) loop
6968 Old_Disc
:= First_Discriminant
(Parent_Type
);
6969 while Present
(Old_Disc
) loop
6970 exit when Chars
(Old_Disc
) = Chars
(Selector
);
6971 Next_Discriminant
(Old_Disc
);
6974 if Present
(Old_Disc
) then
6975 Set_Corresponding_Discriminant
6976 (New_Disc
, Old_Disc
);
6985 Next
(D_Constraint
);
6988 New_Disc
:= First_Discriminant
(Derived_Type
);
6989 while Present
(New_Disc
) loop
6990 if No
(Corresponding_Discriminant
(New_Disc
)) then
6992 ("new discriminant& must constrain old one", N
, New_Disc
);
6995 Subtypes_Statically_Compatible
6997 Etype
(Corresponding_Discriminant
(New_Disc
)))
7000 ("& not statically compatible with parent discriminant",
7004 Next_Discriminant
(New_Disc
);
7008 elsif Present
(Discriminant_Specifications
(N
)) then
7010 ("missing discriminant constraint in untagged derivation", N
);
7013 -- The entity chain of the derived type includes the new discriminants
7014 -- but shares operations with the parent.
7016 if Present
(Discriminant_Specifications
(N
)) then
7017 Old_Disc
:= First_Discriminant
(Parent_Type
);
7018 while Present
(Old_Disc
) loop
7019 if No
(Next_Entity
(Old_Disc
))
7020 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
7023 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
7027 Next_Discriminant
(Old_Disc
);
7031 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
7032 if Has_Discriminants
(Parent_Type
) then
7033 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
7034 Set_Discriminant_Constraint
(
7035 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
7039 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
7041 Set_Has_Completion
(Derived_Type
);
7043 if Corr_Decl_Needed
then
7044 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
7045 Insert_After
(N
, Corr_Decl
);
7046 Analyze
(Corr_Decl
);
7047 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
7049 end Build_Derived_Concurrent_Type
;
7051 ------------------------------------
7052 -- Build_Derived_Enumeration_Type --
7053 ------------------------------------
7055 procedure Build_Derived_Enumeration_Type
7057 Parent_Type
: Entity_Id
;
7058 Derived_Type
: Entity_Id
)
7060 Loc
: constant Source_Ptr
:= Sloc
(N
);
7061 Def
: constant Node_Id
:= Type_Definition
(N
);
7062 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
7063 Implicit_Base
: Entity_Id
;
7064 Literal
: Entity_Id
;
7065 New_Lit
: Entity_Id
;
7066 Literals_List
: List_Id
;
7067 Type_Decl
: Node_Id
;
7069 Rang_Expr
: Node_Id
;
7072 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
7073 -- not have explicit literals lists we need to process types derived
7074 -- from them specially. This is handled by Derived_Standard_Character.
7075 -- If the parent type is a generic type, there are no literals either,
7076 -- and we construct the same skeletal representation as for the generic
7079 if Is_Standard_Character_Type
(Parent_Type
) then
7080 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
7082 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
7088 if Nkind
(Indic
) /= N_Subtype_Indication
then
7090 Make_Attribute_Reference
(Loc
,
7091 Attribute_Name
=> Name_First
,
7092 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
7093 Set_Etype
(Lo
, Derived_Type
);
7096 Make_Attribute_Reference
(Loc
,
7097 Attribute_Name
=> Name_Last
,
7098 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
7099 Set_Etype
(Hi
, Derived_Type
);
7101 Set_Scalar_Range
(Derived_Type
,
7107 -- Analyze subtype indication and verify compatibility
7108 -- with parent type.
7110 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
7111 Base_Type
(Parent_Type
)
7114 ("illegal constraint for formal discrete type", N
);
7120 -- If a constraint is present, analyze the bounds to catch
7121 -- premature usage of the derived literals.
7123 if Nkind
(Indic
) = N_Subtype_Indication
7124 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
7126 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
7127 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
7130 -- Introduce an implicit base type for the derived type even if there
7131 -- is no constraint attached to it, since this seems closer to the
7132 -- Ada semantics. Build a full type declaration tree for the derived
7133 -- type using the implicit base type as the defining identifier. The
7134 -- build a subtype declaration tree which applies the constraint (if
7135 -- any) have it replace the derived type declaration.
7137 Literal
:= First_Literal
(Parent_Type
);
7138 Literals_List
:= New_List
;
7139 while Present
(Literal
)
7140 and then Ekind
(Literal
) = E_Enumeration_Literal
7142 -- Literals of the derived type have the same representation as
7143 -- those of the parent type, but this representation can be
7144 -- overridden by an explicit representation clause. Indicate
7145 -- that there is no explicit representation given yet. These
7146 -- derived literals are implicit operations of the new type,
7147 -- and can be overridden by explicit ones.
7149 if Nkind
(Literal
) = N_Defining_Character_Literal
then
7151 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
7153 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
7156 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
7157 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
7158 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
7159 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
7160 Set_Alias
(New_Lit
, Literal
);
7161 Set_Is_Known_Valid
(New_Lit
, True);
7163 Append
(New_Lit
, Literals_List
);
7164 Next_Literal
(Literal
);
7168 Make_Defining_Identifier
(Sloc
(Derived_Type
),
7169 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
7171 -- Indicate the proper nature of the derived type. This must be done
7172 -- before analysis of the literals, to recognize cases when a literal
7173 -- may be hidden by a previous explicit function definition (cf.
7176 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
7177 Set_Etype
(Derived_Type
, Implicit_Base
);
7180 Make_Full_Type_Declaration
(Loc
,
7181 Defining_Identifier
=> Implicit_Base
,
7182 Discriminant_Specifications
=> No_List
,
7184 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
7186 Mark_Rewrite_Insertion
(Type_Decl
);
7187 Insert_Before
(N
, Type_Decl
);
7188 Analyze
(Type_Decl
);
7190 -- The anonymous base now has a full declaration, but this base
7191 -- is not a first subtype.
7193 Set_Is_First_Subtype
(Implicit_Base
, False);
7195 -- After the implicit base is analyzed its Etype needs to be changed
7196 -- to reflect the fact that it is derived from the parent type which
7197 -- was ignored during analysis. We also set the size at this point.
7199 Set_Etype
(Implicit_Base
, Parent_Type
);
7201 Set_Size_Info
(Implicit_Base
, Parent_Type
);
7202 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
7203 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
7205 -- Copy other flags from parent type
7207 Set_Has_Non_Standard_Rep
7208 (Implicit_Base
, Has_Non_Standard_Rep
7210 Set_Has_Pragma_Ordered
7211 (Implicit_Base
, Has_Pragma_Ordered
7213 Set_Has_Delayed_Freeze
(Implicit_Base
);
7215 -- Process the subtype indication including a validation check on the
7216 -- constraint, if any. If a constraint is given, its bounds must be
7217 -- implicitly converted to the new type.
7219 if Nkind
(Indic
) = N_Subtype_Indication
then
7221 R
: constant Node_Id
:=
7222 Range_Expression
(Constraint
(Indic
));
7225 if Nkind
(R
) = N_Range
then
7226 Hi
:= Build_Scalar_Bound
7227 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
7228 Lo
:= Build_Scalar_Bound
7229 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
7232 -- Constraint is a Range attribute. Replace with explicit
7233 -- mention of the bounds of the prefix, which must be a
7236 Analyze
(Prefix
(R
));
7238 Convert_To
(Implicit_Base
,
7239 Make_Attribute_Reference
(Loc
,
7240 Attribute_Name
=> Name_Last
,
7242 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
7245 Convert_To
(Implicit_Base
,
7246 Make_Attribute_Reference
(Loc
,
7247 Attribute_Name
=> Name_First
,
7249 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
7256 (Type_High_Bound
(Parent_Type
),
7257 Parent_Type
, Implicit_Base
);
7260 (Type_Low_Bound
(Parent_Type
),
7261 Parent_Type
, Implicit_Base
);
7269 -- If we constructed a default range for the case where no range
7270 -- was given, then the expressions in the range must not freeze
7271 -- since they do not correspond to expressions in the source.
7272 -- However, if the type inherits predicates the expressions will
7273 -- be elaborated earlier and must freeze.
7275 if Nkind
(Indic
) /= N_Subtype_Indication
7276 and then not Has_Predicates
(Derived_Type
)
7278 Set_Must_Not_Freeze
(Lo
);
7279 Set_Must_Not_Freeze
(Hi
);
7280 Set_Must_Not_Freeze
(Rang_Expr
);
7284 Make_Subtype_Declaration
(Loc
,
7285 Defining_Identifier
=> Derived_Type
,
7286 Subtype_Indication
=>
7287 Make_Subtype_Indication
(Loc
,
7288 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
7290 Make_Range_Constraint
(Loc
,
7291 Range_Expression
=> Rang_Expr
))));
7295 -- Propagate the aspects from the original type declaration to the
7296 -- declaration of the implicit base.
7298 Move_Aspects
(From
=> Original_Node
(N
), To
=> Type_Decl
);
7300 -- Apply a range check. Since this range expression doesn't have an
7301 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7304 if Nkind
(Indic
) = N_Subtype_Indication
then
7306 (Range_Expression
(Constraint
(Indic
)), Parent_Type
,
7307 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
7310 end Build_Derived_Enumeration_Type
;
7312 --------------------------------
7313 -- Build_Derived_Numeric_Type --
7314 --------------------------------
7316 procedure Build_Derived_Numeric_Type
7318 Parent_Type
: Entity_Id
;
7319 Derived_Type
: Entity_Id
)
7321 Loc
: constant Source_Ptr
:= Sloc
(N
);
7322 Tdef
: constant Node_Id
:= Type_Definition
(N
);
7323 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
7324 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
7325 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
7326 N_Subtype_Indication
;
7327 Implicit_Base
: Entity_Id
;
7333 -- Process the subtype indication including a validation check on
7334 -- the constraint if any.
7336 Discard_Node
(Process_Subtype
(Indic
, N
));
7338 -- Introduce an implicit base type for the derived type even if there
7339 -- is no constraint attached to it, since this seems closer to the Ada
7343 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
7345 Set_Etype
(Implicit_Base
, Parent_Base
);
7346 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
7347 Set_Size_Info
(Implicit_Base
, Parent_Base
);
7348 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
7349 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
7350 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
7352 -- Set RM Size for discrete type or decimal fixed-point type
7353 -- Ordinary fixed-point is excluded, why???
7355 if Is_Discrete_Type
(Parent_Base
)
7356 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
7358 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
7361 Set_Has_Delayed_Freeze
(Implicit_Base
);
7363 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
7364 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
7366 Set_Scalar_Range
(Implicit_Base
,
7371 if Has_Infinities
(Parent_Base
) then
7372 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
7375 -- The Derived_Type, which is the entity of the declaration, is a
7376 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7377 -- absence of an explicit constraint.
7379 Set_Etype
(Derived_Type
, Implicit_Base
);
7381 -- If we did not have a constraint, then the Ekind is set from the
7382 -- parent type (otherwise Process_Subtype has set the bounds)
7384 if No_Constraint
then
7385 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
7388 -- If we did not have a range constraint, then set the range from the
7389 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7391 if No_Constraint
or else not Has_Range_Constraint
(Indic
) then
7392 Set_Scalar_Range
(Derived_Type
,
7394 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
7395 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
7396 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
7398 if Has_Infinities
(Parent_Type
) then
7399 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
7402 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
7405 Set_Is_Descendant_Of_Address
(Derived_Type
,
7406 Is_Descendant_Of_Address
(Parent_Type
));
7407 Set_Is_Descendant_Of_Address
(Implicit_Base
,
7408 Is_Descendant_Of_Address
(Parent_Type
));
7410 -- Set remaining type-specific fields, depending on numeric type
7412 if Is_Modular_Integer_Type
(Parent_Type
) then
7413 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
7415 Set_Non_Binary_Modulus
7416 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
7419 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
7421 elsif Is_Floating_Point_Type
(Parent_Type
) then
7423 -- Digits of base type is always copied from the digits value of
7424 -- the parent base type, but the digits of the derived type will
7425 -- already have been set if there was a constraint present.
7427 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
7428 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
7430 if No_Constraint
then
7431 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
7434 elsif Is_Fixed_Point_Type
(Parent_Type
) then
7436 -- Small of base type and derived type are always copied from the
7437 -- parent base type, since smalls never change. The delta of the
7438 -- base type is also copied from the parent base type. However the
7439 -- delta of the derived type will have been set already if a
7440 -- constraint was present.
7442 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
7443 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
7444 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
7446 if No_Constraint
then
7447 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
7450 -- The scale and machine radix in the decimal case are always
7451 -- copied from the parent base type.
7453 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
7454 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
7455 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
7457 Set_Machine_Radix_10
7458 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
7459 Set_Machine_Radix_10
7460 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
7462 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
7464 if No_Constraint
then
7465 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
7468 -- the analysis of the subtype_indication sets the
7469 -- digits value of the derived type.
7476 if Is_Integer_Type
(Parent_Type
) then
7477 Set_Has_Shift_Operator
7478 (Implicit_Base
, Has_Shift_Operator
(Parent_Type
));
7481 -- The type of the bounds is that of the parent type, and they
7482 -- must be converted to the derived type.
7484 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
7486 -- The implicit_base should be frozen when the derived type is frozen,
7487 -- but note that it is used in the conversions of the bounds. For fixed
7488 -- types we delay the determination of the bounds until the proper
7489 -- freezing point. For other numeric types this is rejected by GCC, for
7490 -- reasons that are currently unclear (???), so we choose to freeze the
7491 -- implicit base now. In the case of integers and floating point types
7492 -- this is harmless because subsequent representation clauses cannot
7493 -- affect anything, but it is still baffling that we cannot use the
7494 -- same mechanism for all derived numeric types.
7496 -- There is a further complication: actually some representation
7497 -- clauses can affect the implicit base type. For example, attribute
7498 -- definition clauses for stream-oriented attributes need to set the
7499 -- corresponding TSS entries on the base type, and this normally
7500 -- cannot be done after the base type is frozen, so the circuitry in
7501 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7502 -- and not use Set_TSS in this case.
7504 -- There are also consequences for the case of delayed representation
7505 -- aspects for some cases. For example, a Size aspect is delayed and
7506 -- should not be evaluated to the freeze point. This early freezing
7507 -- means that the size attribute evaluation happens too early???
7509 if Is_Fixed_Point_Type
(Parent_Type
) then
7510 Conditional_Delay
(Implicit_Base
, Parent_Type
);
7512 Freeze_Before
(N
, Implicit_Base
);
7514 end Build_Derived_Numeric_Type
;
7516 --------------------------------
7517 -- Build_Derived_Private_Type --
7518 --------------------------------
7520 procedure Build_Derived_Private_Type
7522 Parent_Type
: Entity_Id
;
7523 Derived_Type
: Entity_Id
;
7524 Is_Completion
: Boolean;
7525 Derive_Subps
: Boolean := True)
7527 Loc
: constant Source_Ptr
:= Sloc
(N
);
7528 Par_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
7529 Par_Scope
: constant Entity_Id
:= Scope
(Par_Base
);
7530 Full_N
: constant Node_Id
:= New_Copy_Tree
(N
);
7531 Full_Der
: Entity_Id
:= New_Copy
(Derived_Type
);
7534 procedure Build_Full_Derivation
;
7535 -- Build full derivation, i.e. derive from the full view
7537 procedure Copy_And_Build
;
7538 -- Copy derived type declaration, replace parent with its full view,
7539 -- and build derivation
7541 ---------------------------
7542 -- Build_Full_Derivation --
7543 ---------------------------
7545 procedure Build_Full_Derivation
is
7547 -- If parent scope is not open, install the declarations
7549 if not In_Open_Scopes
(Par_Scope
) then
7550 Install_Private_Declarations
(Par_Scope
);
7551 Install_Visible_Declarations
(Par_Scope
);
7553 Uninstall_Declarations
(Par_Scope
);
7555 -- If parent scope is open and in another unit, and parent has a
7556 -- completion, then the derivation is taking place in the visible
7557 -- part of a child unit. In that case retrieve the full view of
7558 -- the parent momentarily.
7560 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
7561 Full_P
:= Full_View
(Parent_Type
);
7562 Exchange_Declarations
(Parent_Type
);
7564 Exchange_Declarations
(Full_P
);
7566 -- Otherwise it is a local derivation
7571 end Build_Full_Derivation
;
7573 --------------------
7574 -- Copy_And_Build --
7575 --------------------
7577 procedure Copy_And_Build
is
7578 Full_Parent
: Entity_Id
:= Parent_Type
;
7581 -- If the parent is itself derived from another private type,
7582 -- installing the private declarations has not affected its
7583 -- privacy status, so use its own full view explicitly.
7585 if Is_Private_Type
(Full_Parent
)
7586 and then Present
(Full_View
(Full_Parent
))
7588 Full_Parent
:= Full_View
(Full_Parent
);
7591 -- And its underlying full view if necessary
7593 if Is_Private_Type
(Full_Parent
)
7594 and then Present
(Underlying_Full_View
(Full_Parent
))
7596 Full_Parent
:= Underlying_Full_View
(Full_Parent
);
7599 -- For record, access and most enumeration types, derivation from
7600 -- the full view requires a fully-fledged declaration. In the other
7601 -- cases, just use an itype.
7603 if Ekind
(Full_Parent
) in Record_Kind
7604 or else Ekind
(Full_Parent
) in Access_Kind
7606 (Ekind
(Full_Parent
) in Enumeration_Kind
7607 and then not Is_Standard_Character_Type
(Full_Parent
)
7608 and then not Is_Generic_Type
(Root_Type
(Full_Parent
)))
7610 -- Copy and adjust declaration to provide a completion for what
7611 -- is originally a private declaration. Indicate that full view
7612 -- is internally generated.
7614 Set_Comes_From_Source
(Full_N
, False);
7615 Set_Comes_From_Source
(Full_Der
, False);
7616 Set_Parent
(Full_Der
, Full_N
);
7617 Set_Defining_Identifier
(Full_N
, Full_Der
);
7619 -- If there are no constraints, adjust the subtype mark
7621 if Nkind
(Subtype_Indication
(Type_Definition
(Full_N
))) /=
7622 N_Subtype_Indication
7624 Set_Subtype_Indication
7625 (Type_Definition
(Full_N
),
7626 New_Occurrence_Of
(Full_Parent
, Sloc
(Full_N
)));
7629 Insert_After
(N
, Full_N
);
7631 -- Build full view of derived type from full view of parent which
7632 -- is now installed. Subprograms have been derived on the partial
7633 -- view, the completion does not derive them anew.
7635 if Ekind
(Full_Parent
) in Record_Kind
then
7637 -- If parent type is tagged, the completion inherits the proper
7638 -- primitive operations.
7640 if Is_Tagged_Type
(Parent_Type
) then
7641 Build_Derived_Record_Type
7642 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
);
7644 Build_Derived_Record_Type
7645 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
=> False);
7650 (Full_N
, Full_Parent
, Full_Der
,
7651 Is_Completion
=> False, Derive_Subps
=> False);
7654 -- The full declaration has been introduced into the tree and
7655 -- processed in the step above. It should not be analyzed again
7656 -- (when encountered later in the current list of declarations)
7657 -- to prevent spurious name conflicts. The full entity remains
7660 Set_Analyzed
(Full_N
);
7664 Make_Defining_Identifier
(Sloc
(Derived_Type
),
7665 Chars
=> Chars
(Derived_Type
));
7666 Set_Is_Itype
(Full_Der
);
7667 Set_Associated_Node_For_Itype
(Full_Der
, N
);
7668 Set_Parent
(Full_Der
, N
);
7670 (N
, Full_Parent
, Full_Der
,
7671 Is_Completion
=> False, Derive_Subps
=> False);
7674 Set_Has_Private_Declaration
(Full_Der
);
7675 Set_Has_Private_Declaration
(Derived_Type
);
7677 Set_Scope
(Full_Der
, Scope
(Derived_Type
));
7678 Set_Is_First_Subtype
(Full_Der
, Is_First_Subtype
(Derived_Type
));
7679 Set_Has_Size_Clause
(Full_Der
, False);
7680 Set_Has_Alignment_Clause
(Full_Der
, False);
7681 Set_Has_Delayed_Freeze
(Full_Der
);
7682 Set_Is_Frozen
(Full_Der
, False);
7683 Set_Freeze_Node
(Full_Der
, Empty
);
7684 Set_Depends_On_Private
(Full_Der
, Has_Private_Component
(Full_Der
));
7685 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
7687 -- The convention on the base type may be set in the private part
7688 -- and not propagated to the subtype until later, so we obtain the
7689 -- convention from the base type of the parent.
7691 Set_Convention
(Full_Der
, Convention
(Base_Type
(Full_Parent
)));
7694 -- Start of processing for Build_Derived_Private_Type
7697 if Is_Tagged_Type
(Parent_Type
) then
7698 Full_P
:= Full_View
(Parent_Type
);
7700 -- A type extension of a type with unknown discriminants is an
7701 -- indefinite type that the back-end cannot handle directly.
7702 -- We treat it as a private type, and build a completion that is
7703 -- derived from the full view of the parent, and hopefully has
7704 -- known discriminants.
7706 -- If the full view of the parent type has an underlying record view,
7707 -- use it to generate the underlying record view of this derived type
7708 -- (required for chains of derivations with unknown discriminants).
7710 -- Minor optimization: we avoid the generation of useless underlying
7711 -- record view entities if the private type declaration has unknown
7712 -- discriminants but its corresponding full view has no
7715 if Has_Unknown_Discriminants
(Parent_Type
)
7716 and then Present
(Full_P
)
7717 and then (Has_Discriminants
(Full_P
)
7718 or else Present
(Underlying_Record_View
(Full_P
)))
7719 and then not In_Open_Scopes
(Par_Scope
)
7720 and then Expander_Active
7723 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
7724 New_Ext
: constant Node_Id
:=
7726 (Record_Extension_Part
(Type_Definition
(N
)));
7730 Build_Derived_Record_Type
7731 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7733 -- Build anonymous completion, as a derivation from the full
7734 -- view of the parent. This is not a completion in the usual
7735 -- sense, because the current type is not private.
7738 Make_Full_Type_Declaration
(Loc
,
7739 Defining_Identifier
=> Full_Der
,
7741 Make_Derived_Type_Definition
(Loc
,
7742 Subtype_Indication
=>
7744 (Subtype_Indication
(Type_Definition
(N
))),
7745 Record_Extension_Part
=> New_Ext
));
7747 -- If the parent type has an underlying record view, use it
7748 -- here to build the new underlying record view.
7750 if Present
(Underlying_Record_View
(Full_P
)) then
7752 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
7754 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
7755 Underlying_Record_View
(Full_P
));
7758 Install_Private_Declarations
(Par_Scope
);
7759 Install_Visible_Declarations
(Par_Scope
);
7760 Insert_Before
(N
, Decl
);
7762 -- Mark entity as an underlying record view before analysis,
7763 -- to avoid generating the list of its primitive operations
7764 -- (which is not really required for this entity) and thus
7765 -- prevent spurious errors associated with missing overriding
7766 -- of abstract primitives (overridden only for Derived_Type).
7768 Set_Ekind
(Full_Der
, E_Record_Type
);
7769 Set_Is_Underlying_Record_View
(Full_Der
);
7770 Set_Default_SSO
(Full_Der
);
7771 Set_No_Reordering
(Full_Der
, No_Component_Reordering
);
7775 pragma Assert
(Has_Discriminants
(Full_Der
)
7776 and then not Has_Unknown_Discriminants
(Full_Der
));
7778 Uninstall_Declarations
(Par_Scope
);
7780 -- Freeze the underlying record view, to prevent generation of
7781 -- useless dispatching information, which is simply shared with
7782 -- the real derived type.
7784 Set_Is_Frozen
(Full_Der
);
7786 -- If the derived type has access discriminants, create
7787 -- references to their anonymous types now, to prevent
7788 -- back-end problems when their first use is in generated
7789 -- bodies of primitives.
7795 E
:= First_Entity
(Full_Der
);
7797 while Present
(E
) loop
7798 if Ekind
(E
) = E_Discriminant
7799 and then Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
7801 Build_Itype_Reference
(Etype
(E
), Decl
);
7808 -- Set up links between real entity and underlying record view
7810 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
7811 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
7814 -- If discriminants are known, build derived record
7817 Build_Derived_Record_Type
7818 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7823 elsif Has_Discriminants
(Parent_Type
) then
7825 -- Build partial view of derived type from partial view of parent.
7826 -- This must be done before building the full derivation because the
7827 -- second derivation will modify the discriminants of the first and
7828 -- the discriminants are chained with the rest of the components in
7829 -- the full derivation.
7831 Build_Derived_Record_Type
7832 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7834 -- Build the full derivation if this is not the anonymous derived
7835 -- base type created by Build_Derived_Record_Type in the constrained
7836 -- case (see point 5. of its head comment) since we build it for the
7837 -- derived subtype. And skip it for protected types altogether, as
7838 -- gigi does not use these types directly.
7840 if Present
(Full_View
(Parent_Type
))
7841 and then not Is_Itype
(Derived_Type
)
7842 and then not (Ekind
(Full_View
(Parent_Type
)) in Protected_Kind
)
7845 Der_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
7847 Last_Discr
: Entity_Id
;
7850 -- If this is not a completion, construct the implicit full
7851 -- view by deriving from the full view of the parent type.
7852 -- But if this is a completion, the derived private type
7853 -- being built is a full view and the full derivation can
7854 -- only be its underlying full view.
7856 Build_Full_Derivation
;
7858 if not Is_Completion
then
7859 Set_Full_View
(Derived_Type
, Full_Der
);
7861 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7862 Set_Is_Underlying_Full_View
(Full_Der
);
7865 if not Is_Base_Type
(Derived_Type
) then
7866 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
7869 -- Copy the discriminant list from full view to the partial
7870 -- view (base type and its subtype). Gigi requires that the
7871 -- partial and full views have the same discriminants.
7873 -- Note that since the partial view points to discriminants
7874 -- in the full view, their scope will be that of the full
7875 -- view. This might cause some front end problems and need
7878 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
7879 Set_First_Entity
(Der_Base
, Discr
);
7882 Last_Discr
:= Discr
;
7883 Next_Discriminant
(Discr
);
7884 exit when No
(Discr
);
7887 Set_Last_Entity
(Der_Base
, Last_Discr
);
7888 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
7889 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
7893 elsif Present
(Full_View
(Parent_Type
))
7894 and then Has_Discriminants
(Full_View
(Parent_Type
))
7896 if Has_Unknown_Discriminants
(Parent_Type
)
7897 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7898 N_Subtype_Indication
7901 ("cannot constrain type with unknown discriminants",
7902 Subtype_Indication
(Type_Definition
(N
)));
7906 -- If this is not a completion, construct the implicit full view by
7907 -- deriving from the full view of the parent type. But if this is a
7908 -- completion, the derived private type being built is a full view
7909 -- and the full derivation can only be its underlying full view.
7911 Build_Full_Derivation
;
7913 if not Is_Completion
then
7914 Set_Full_View
(Derived_Type
, Full_Der
);
7916 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7917 Set_Is_Underlying_Full_View
(Full_Der
);
7920 -- In any case, the primitive operations are inherited from the
7921 -- parent type, not from the internal full view.
7923 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
7925 if Derive_Subps
then
7926 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7929 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7931 (Derived_Type
, Is_Constrained
(Full_View
(Parent_Type
)));
7934 -- Untagged type, No discriminants on either view
7936 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7937 N_Subtype_Indication
7940 ("illegal constraint on type without discriminants", N
);
7943 if Present
(Discriminant_Specifications
(N
))
7944 and then Present
(Full_View
(Parent_Type
))
7945 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7947 Error_Msg_N
("cannot add discriminants to untagged type", N
);
7950 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7951 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
7953 Set_Is_Controlled_Active
7954 (Derived_Type
, Is_Controlled_Active
(Parent_Type
));
7956 Set_Disable_Controlled
7957 (Derived_Type
, Disable_Controlled
(Parent_Type
));
7959 Set_Has_Controlled_Component
7960 (Derived_Type
, Has_Controlled_Component
(Parent_Type
));
7962 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7964 if not Is_Controlled
(Parent_Type
) then
7965 Set_Finalize_Storage_Only
7966 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
7969 -- If this is not a completion, construct the implicit full view by
7970 -- deriving from the full view of the parent type.
7972 -- ??? If the parent is untagged private and its completion is
7973 -- tagged, this mechanism will not work because we cannot derive from
7974 -- the tagged full view unless we have an extension.
7976 if Present
(Full_View
(Parent_Type
))
7977 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7978 and then not Is_Completion
7980 Build_Full_Derivation
;
7981 Set_Full_View
(Derived_Type
, Full_Der
);
7985 Set_Has_Unknown_Discriminants
(Derived_Type
,
7986 Has_Unknown_Discriminants
(Parent_Type
));
7988 if Is_Private_Type
(Derived_Type
) then
7989 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7992 -- If the parent base type is in scope, add the derived type to its
7993 -- list of private dependents, because its full view may become
7994 -- visible subsequently (in a nested private part, a body, or in a
7995 -- further child unit).
7997 if Is_Private_Type
(Par_Base
) and then In_Open_Scopes
(Par_Scope
) then
7998 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
8000 -- Check for unusual case where a type completed by a private
8001 -- derivation occurs within a package nested in a child unit, and
8002 -- the parent is declared in an ancestor.
8004 if Is_Child_Unit
(Scope
(Current_Scope
))
8005 and then Is_Completion
8006 and then In_Private_Part
(Current_Scope
)
8007 and then Scope
(Parent_Type
) /= Current_Scope
8009 -- Note that if the parent has a completion in the private part,
8010 -- (which is itself a derivation from some other private type)
8011 -- it is that completion that is visible, there is no full view
8012 -- available, and no special processing is needed.
8014 and then Present
(Full_View
(Parent_Type
))
8016 -- In this case, the full view of the parent type will become
8017 -- visible in the body of the enclosing child, and only then will
8018 -- the current type be possibly non-private. Build an underlying
8019 -- full view that will be installed when the enclosing child body
8022 if Present
(Underlying_Full_View
(Derived_Type
)) then
8023 Full_Der
:= Underlying_Full_View
(Derived_Type
);
8025 Build_Full_Derivation
;
8026 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
8027 Set_Is_Underlying_Full_View
(Full_Der
);
8030 -- The full view will be used to swap entities on entry/exit to
8031 -- the body, and must appear in the entity list for the package.
8033 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
8036 end Build_Derived_Private_Type
;
8038 -------------------------------
8039 -- Build_Derived_Record_Type --
8040 -------------------------------
8044 -- Ideally we would like to use the same model of type derivation for
8045 -- tagged and untagged record types. Unfortunately this is not quite
8046 -- possible because the semantics of representation clauses is different
8047 -- for tagged and untagged records under inheritance. Consider the
8050 -- type R (...) is [tagged] record ... end record;
8051 -- type T (...) is new R (...) [with ...];
8053 -- The representation clauses for T can specify a completely different
8054 -- record layout from R's. Hence the same component can be placed in two
8055 -- very different positions in objects of type T and R. If R and T are
8056 -- tagged types, representation clauses for T can only specify the layout
8057 -- of non inherited components, thus components that are common in R and T
8058 -- have the same position in objects of type R and T.
8060 -- This has two implications. The first is that the entire tree for R's
8061 -- declaration needs to be copied for T in the untagged case, so that T
8062 -- can be viewed as a record type of its own with its own representation
8063 -- clauses. The second implication is the way we handle discriminants.
8064 -- Specifically, in the untagged case we need a way to communicate to Gigi
8065 -- what are the real discriminants in the record, while for the semantics
8066 -- we need to consider those introduced by the user to rename the
8067 -- discriminants in the parent type. This is handled by introducing the
8068 -- notion of stored discriminants. See below for more.
8070 -- Fortunately the way regular components are inherited can be handled in
8071 -- the same way in tagged and untagged types.
8073 -- To complicate things a bit more the private view of a private extension
8074 -- cannot be handled in the same way as the full view (for one thing the
8075 -- semantic rules are somewhat different). We will explain what differs
8078 -- 2. DISCRIMINANTS UNDER INHERITANCE
8080 -- The semantic rules governing the discriminants of derived types are
8083 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8084 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8086 -- If parent type has discriminants, then the discriminants that are
8087 -- declared in the derived type are [3.4 (11)]:
8089 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8092 -- o Otherwise, each discriminant of the parent type (implicitly declared
8093 -- in the same order with the same specifications). In this case, the
8094 -- discriminants are said to be "inherited", or if unknown in the parent
8095 -- are also unknown in the derived type.
8097 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8099 -- o The parent subtype must be constrained;
8101 -- o If the parent type is not a tagged type, then each discriminant of
8102 -- the derived type must be used in the constraint defining a parent
8103 -- subtype. [Implementation note: This ensures that the new discriminant
8104 -- can share storage with an existing discriminant.]
8106 -- For the derived type each discriminant of the parent type is either
8107 -- inherited, constrained to equal some new discriminant of the derived
8108 -- type, or constrained to the value of an expression.
8110 -- When inherited or constrained to equal some new discriminant, the
8111 -- parent discriminant and the discriminant of the derived type are said
8114 -- If a discriminant of the parent type is constrained to a specific value
8115 -- in the derived type definition, then the discriminant is said to be
8116 -- "specified" by that derived type definition.
8118 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8120 -- We have spoken about stored discriminants in point 1 (introduction)
8121 -- above. There are two sorts of stored discriminants: implicit and
8122 -- explicit. As long as the derived type inherits the same discriminants as
8123 -- the root record type, stored discriminants are the same as regular
8124 -- discriminants, and are said to be implicit. However, if any discriminant
8125 -- in the root type was renamed in the derived type, then the derived
8126 -- type will contain explicit stored discriminants. Explicit stored
8127 -- discriminants are discriminants in addition to the semantically visible
8128 -- discriminants defined for the derived type. Stored discriminants are
8129 -- used by Gigi to figure out what are the physical discriminants in
8130 -- objects of the derived type (see precise definition in einfo.ads).
8131 -- As an example, consider the following:
8133 -- type R (D1, D2, D3 : Int) is record ... end record;
8134 -- type T1 is new R;
8135 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8136 -- type T3 is new T2;
8137 -- type T4 (Y : Int) is new T3 (Y, 99);
8139 -- The following table summarizes the discriminants and stored
8140 -- discriminants in R and T1 through T4:
8142 -- Type Discrim Stored Discrim Comment
8143 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8144 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8145 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8146 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8147 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8149 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8150 -- find the corresponding discriminant in the parent type, while
8151 -- Original_Record_Component (abbreviated ORC below) the actual physical
8152 -- component that is renamed. Finally the field Is_Completely_Hidden
8153 -- (abbreviated ICH below) is set for all explicit stored discriminants
8154 -- (see einfo.ads for more info). For the above example this gives:
8156 -- Discrim CD ORC ICH
8157 -- ^^^^^^^ ^^ ^^^ ^^^
8158 -- D1 in R empty itself no
8159 -- D2 in R empty itself no
8160 -- D3 in R empty itself no
8162 -- D1 in T1 D1 in R itself no
8163 -- D2 in T1 D2 in R itself no
8164 -- D3 in T1 D3 in R itself no
8166 -- X1 in T2 D3 in T1 D3 in T2 no
8167 -- X2 in T2 D1 in T1 D1 in T2 no
8168 -- D1 in T2 empty itself yes
8169 -- D2 in T2 empty itself yes
8170 -- D3 in T2 empty itself yes
8172 -- X1 in T3 X1 in T2 D3 in T3 no
8173 -- X2 in T3 X2 in T2 D1 in T3 no
8174 -- D1 in T3 empty itself yes
8175 -- D2 in T3 empty itself yes
8176 -- D3 in T3 empty itself yes
8178 -- Y in T4 X1 in T3 D3 in T4 no
8179 -- D1 in T4 empty itself yes
8180 -- D2 in T4 empty itself yes
8181 -- D3 in T4 empty itself yes
8183 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8185 -- Type derivation for tagged types is fairly straightforward. If no
8186 -- discriminants are specified by the derived type, these are inherited
8187 -- from the parent. No explicit stored discriminants are ever necessary.
8188 -- The only manipulation that is done to the tree is that of adding a
8189 -- _parent field with parent type and constrained to the same constraint
8190 -- specified for the parent in the derived type definition. For instance:
8192 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8193 -- type T1 is new R with null record;
8194 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8196 -- are changed into:
8198 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8199 -- _parent : R (D1, D2, D3);
8202 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8203 -- _parent : T1 (X2, 88, X1);
8206 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8207 -- ORC and ICH fields are:
8209 -- Discrim CD ORC ICH
8210 -- ^^^^^^^ ^^ ^^^ ^^^
8211 -- D1 in R empty itself no
8212 -- D2 in R empty itself no
8213 -- D3 in R empty itself no
8215 -- D1 in T1 D1 in R D1 in R no
8216 -- D2 in T1 D2 in R D2 in R no
8217 -- D3 in T1 D3 in R D3 in R no
8219 -- X1 in T2 D3 in T1 D3 in R no
8220 -- X2 in T2 D1 in T1 D1 in R no
8222 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8224 -- Regardless of whether we dealing with a tagged or untagged type
8225 -- we will transform all derived type declarations of the form
8227 -- type T is new R (...) [with ...];
8229 -- subtype S is R (...);
8230 -- type T is new S [with ...];
8232 -- type BT is new R [with ...];
8233 -- subtype T is BT (...);
8235 -- That is, the base derived type is constrained only if it has no
8236 -- discriminants. The reason for doing this is that GNAT's semantic model
8237 -- assumes that a base type with discriminants is unconstrained.
8239 -- Note that, strictly speaking, the above transformation is not always
8240 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8242 -- procedure B34011A is
8243 -- type REC (D : integer := 0) is record
8248 -- type T6 is new Rec;
8249 -- function F return T6;
8254 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8257 -- The definition of Q6.U is illegal. However transforming Q6.U into
8259 -- type BaseU is new T6;
8260 -- subtype U is BaseU (Q6.F.I)
8262 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8263 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8264 -- the transformation described above.
8266 -- There is another instance where the above transformation is incorrect.
8270 -- type Base (D : Integer) is tagged null record;
8271 -- procedure P (X : Base);
8273 -- type Der is new Base (2) with null record;
8274 -- procedure P (X : Der);
8277 -- Then the above transformation turns this into
8279 -- type Der_Base is new Base with null record;
8280 -- -- procedure P (X : Base) is implicitly inherited here
8281 -- -- as procedure P (X : Der_Base).
8283 -- subtype Der is Der_Base (2);
8284 -- procedure P (X : Der);
8285 -- -- The overriding of P (X : Der_Base) is illegal since we
8286 -- -- have a parameter conformance problem.
8288 -- To get around this problem, after having semantically processed Der_Base
8289 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8290 -- Discriminant_Constraint from Der so that when parameter conformance is
8291 -- checked when P is overridden, no semantic errors are flagged.
8293 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8295 -- Regardless of whether we are dealing with a tagged or untagged type
8296 -- we will transform all derived type declarations of the form
8298 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8299 -- type T is new R [with ...];
8301 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8303 -- The reason for such transformation is that it allows us to implement a
8304 -- very clean form of component inheritance as explained below.
8306 -- Note that this transformation is not achieved by direct tree rewriting
8307 -- and manipulation, but rather by redoing the semantic actions that the
8308 -- above transformation will entail. This is done directly in routine
8309 -- Inherit_Components.
8311 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8313 -- In both tagged and untagged derived types, regular non discriminant
8314 -- components are inherited in the derived type from the parent type. In
8315 -- the absence of discriminants component, inheritance is straightforward
8316 -- as components can simply be copied from the parent.
8318 -- If the parent has discriminants, inheriting components constrained with
8319 -- these discriminants requires caution. Consider the following example:
8321 -- type R (D1, D2 : Positive) is [tagged] record
8322 -- S : String (D1 .. D2);
8325 -- type T1 is new R [with null record];
8326 -- type T2 (X : positive) is new R (1, X) [with null record];
8328 -- As explained in 6. above, T1 is rewritten as
8329 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8330 -- which makes the treatment for T1 and T2 identical.
8332 -- What we want when inheriting S, is that references to D1 and D2 in R are
8333 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8334 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8335 -- with either discriminant references in the derived type or expressions.
8336 -- This replacement is achieved as follows: before inheriting R's
8337 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8338 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8339 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8340 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8341 -- by String (1 .. X).
8343 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8345 -- We explain here the rules governing private type extensions relevant to
8346 -- type derivation. These rules are explained on the following example:
8348 -- type D [(...)] is new A [(...)] with private; <-- partial view
8349 -- type D [(...)] is new P [(...)] with null record; <-- full view
8351 -- Type A is called the ancestor subtype of the private extension.
8352 -- Type P is the parent type of the full view of the private extension. It
8353 -- must be A or a type derived from A.
8355 -- The rules concerning the discriminants of private type extensions are
8358 -- o If a private extension inherits known discriminants from the ancestor
8359 -- subtype, then the full view must also inherit its discriminants from
8360 -- the ancestor subtype and the parent subtype of the full view must be
8361 -- constrained if and only if the ancestor subtype is constrained.
8363 -- o If a partial view has unknown discriminants, then the full view may
8364 -- define a definite or an indefinite subtype, with or without
8367 -- o If a partial view has neither known nor unknown discriminants, then
8368 -- the full view must define a definite subtype.
8370 -- o If the ancestor subtype of a private extension has constrained
8371 -- discriminants, then the parent subtype of the full view must impose a
8372 -- statically matching constraint on those discriminants.
8374 -- This means that only the following forms of private extensions are
8377 -- type D is new A with private; <-- partial view
8378 -- type D is new P with null record; <-- full view
8380 -- If A has no discriminants than P has no discriminants, otherwise P must
8381 -- inherit A's discriminants.
8383 -- type D is new A (...) with private; <-- partial view
8384 -- type D is new P (:::) with null record; <-- full view
8386 -- P must inherit A's discriminants and (...) and (:::) must statically
8389 -- subtype A is R (...);
8390 -- type D is new A with private; <-- partial view
8391 -- type D is new P with null record; <-- full view
8393 -- P must have inherited R's discriminants and must be derived from A or
8394 -- any of its subtypes.
8396 -- type D (..) is new A with private; <-- partial view
8397 -- type D (..) is new P [(:::)] with null record; <-- full view
8399 -- No specific constraints on P's discriminants or constraint (:::).
8400 -- Note that A can be unconstrained, but the parent subtype P must either
8401 -- be constrained or (:::) must be present.
8403 -- type D (..) is new A [(...)] with private; <-- partial view
8404 -- type D (..) is new P [(:::)] with null record; <-- full view
8406 -- P's constraints on A's discriminants must statically match those
8407 -- imposed by (...).
8409 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8411 -- The full view of a private extension is handled exactly as described
8412 -- above. The model chose for the private view of a private extension is
8413 -- the same for what concerns discriminants (i.e. they receive the same
8414 -- treatment as in the tagged case). However, the private view of the
8415 -- private extension always inherits the components of the parent base,
8416 -- without replacing any discriminant reference. Strictly speaking this is
8417 -- incorrect. However, Gigi never uses this view to generate code so this
8418 -- is a purely semantic issue. In theory, a set of transformations similar
8419 -- to those given in 5. and 6. above could be applied to private views of
8420 -- private extensions to have the same model of component inheritance as
8421 -- for non private extensions. However, this is not done because it would
8422 -- further complicate private type processing. Semantically speaking, this
8423 -- leaves us in an uncomfortable situation. As an example consider:
8426 -- type R (D : integer) is tagged record
8427 -- S : String (1 .. D);
8429 -- procedure P (X : R);
8430 -- type T is new R (1) with private;
8432 -- type T is new R (1) with null record;
8435 -- This is transformed into:
8438 -- type R (D : integer) is tagged record
8439 -- S : String (1 .. D);
8441 -- procedure P (X : R);
8442 -- type T is new R (1) with private;
8444 -- type BaseT is new R with null record;
8445 -- subtype T is BaseT (1);
8448 -- (strictly speaking the above is incorrect Ada)
8450 -- From the semantic standpoint the private view of private extension T
8451 -- should be flagged as constrained since one can clearly have
8455 -- in a unit withing Pack. However, when deriving subprograms for the
8456 -- private view of private extension T, T must be seen as unconstrained
8457 -- since T has discriminants (this is a constraint of the current
8458 -- subprogram derivation model). Thus, when processing the private view of
8459 -- a private extension such as T, we first mark T as unconstrained, we
8460 -- process it, we perform program derivation and just before returning from
8461 -- Build_Derived_Record_Type we mark T as constrained.
8463 -- ??? Are there are other uncomfortable cases that we will have to
8466 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8468 -- Types that are derived from a visible record type and have a private
8469 -- extension present other peculiarities. They behave mostly like private
8470 -- types, but if they have primitive operations defined, these will not
8471 -- have the proper signatures for further inheritance, because other
8472 -- primitive operations will use the implicit base that we define for
8473 -- private derivations below. This affect subprogram inheritance (see
8474 -- Derive_Subprograms for details). We also derive the implicit base from
8475 -- the base type of the full view, so that the implicit base is a record
8476 -- type and not another private type, This avoids infinite loops.
8478 procedure Build_Derived_Record_Type
8480 Parent_Type
: Entity_Id
;
8481 Derived_Type
: Entity_Id
;
8482 Derive_Subps
: Boolean := True)
8484 Discriminant_Specs
: constant Boolean :=
8485 Present
(Discriminant_Specifications
(N
));
8486 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
8487 Loc
: constant Source_Ptr
:= Sloc
(N
);
8488 Private_Extension
: constant Boolean :=
8489 Nkind
(N
) = N_Private_Extension_Declaration
;
8490 Assoc_List
: Elist_Id
;
8491 Constraint_Present
: Boolean;
8493 Discrim
: Entity_Id
;
8495 Inherit_Discrims
: Boolean := False;
8496 Last_Discrim
: Entity_Id
;
8497 New_Base
: Entity_Id
;
8499 New_Discrs
: Elist_Id
;
8500 New_Indic
: Node_Id
;
8501 Parent_Base
: Entity_Id
;
8502 Save_Etype
: Entity_Id
;
8503 Save_Discr_Constr
: Elist_Id
;
8504 Save_Next_Entity
: Entity_Id
;
8507 Discs
: Elist_Id
:= New_Elmt_List
;
8508 -- An empty Discs list means that there were no constraints in the
8509 -- subtype indication or that there was an error processing it.
8512 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
8513 and then Present
(Full_View
(Parent_Type
))
8514 and then Has_Discriminants
(Parent_Type
)
8516 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
8518 Parent_Base
:= Base_Type
(Parent_Type
);
8521 -- AI05-0115: if this is a derivation from a private type in some
8522 -- other scope that may lead to invisible components for the derived
8523 -- type, mark it accordingly.
8525 if Is_Private_Type
(Parent_Type
) then
8526 if Scope
(Parent_Base
) = Scope
(Derived_Type
) then
8529 elsif In_Open_Scopes
(Scope
(Parent_Base
))
8530 and then In_Private_Part
(Scope
(Parent_Base
))
8535 Set_Has_Private_Ancestor
(Derived_Type
);
8539 Set_Has_Private_Ancestor
8540 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
8543 -- Before we start the previously documented transformations, here is
8544 -- little fix for size and alignment of tagged types. Normally when we
8545 -- derive type D from type P, we copy the size and alignment of P as the
8546 -- default for D, and in the absence of explicit representation clauses
8547 -- for D, the size and alignment are indeed the same as the parent.
8549 -- But this is wrong for tagged types, since fields may be added, and
8550 -- the default size may need to be larger, and the default alignment may
8551 -- need to be larger.
8553 -- We therefore reset the size and alignment fields in the tagged case.
8554 -- Note that the size and alignment will in any case be at least as
8555 -- large as the parent type (since the derived type has a copy of the
8556 -- parent type in the _parent field)
8558 -- The type is also marked as being tagged here, which is needed when
8559 -- processing components with a self-referential anonymous access type
8560 -- in the call to Check_Anonymous_Access_Components below. Note that
8561 -- this flag is also set later on for completeness.
8564 Set_Is_Tagged_Type
(Derived_Type
);
8565 Init_Size_Align
(Derived_Type
);
8568 -- STEP 0a: figure out what kind of derived type declaration we have
8570 if Private_Extension
then
8572 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
8573 Set_Default_SSO
(Derived_Type
);
8574 Set_No_Reordering
(Derived_Type
, No_Component_Reordering
);
8577 Type_Def
:= Type_Definition
(N
);
8579 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8580 -- Parent_Base can be a private type or private extension. However,
8581 -- for tagged types with an extension the newly added fields are
8582 -- visible and hence the Derived_Type is always an E_Record_Type.
8583 -- (except that the parent may have its own private fields).
8584 -- For untagged types we preserve the Ekind of the Parent_Base.
8586 if Present
(Record_Extension_Part
(Type_Def
)) then
8587 Set_Ekind
(Derived_Type
, E_Record_Type
);
8588 Set_Default_SSO
(Derived_Type
);
8589 Set_No_Reordering
(Derived_Type
, No_Component_Reordering
);
8591 -- Create internal access types for components with anonymous
8594 if Ada_Version
>= Ada_2005
then
8595 Check_Anonymous_Access_Components
8596 (N
, Derived_Type
, Derived_Type
,
8597 Component_List
(Record_Extension_Part
(Type_Def
)));
8601 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8605 -- Indic can either be an N_Identifier if the subtype indication
8606 -- contains no constraint or an N_Subtype_Indication if the subtype
8607 -- indication has a constraint.
8609 Indic
:= Subtype_Indication
(Type_Def
);
8610 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
8612 -- Check that the type has visible discriminants. The type may be
8613 -- a private type with unknown discriminants whose full view has
8614 -- discriminants which are invisible.
8616 if Constraint_Present
then
8617 if not Has_Discriminants
(Parent_Base
)
8619 (Has_Unknown_Discriminants
(Parent_Base
)
8620 and then Is_Private_Type
(Parent_Base
))
8623 ("invalid constraint: type has no discriminant",
8624 Constraint
(Indic
));
8626 Constraint_Present
:= False;
8627 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
8629 elsif Is_Constrained
(Parent_Type
) then
8631 ("invalid constraint: parent type is already constrained",
8632 Constraint
(Indic
));
8634 Constraint_Present
:= False;
8635 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
8639 -- STEP 0b: If needed, apply transformation given in point 5. above
8641 if not Private_Extension
8642 and then Has_Discriminants
(Parent_Type
)
8643 and then not Discriminant_Specs
8644 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
8646 -- First, we must analyze the constraint (see comment in point 5.)
8647 -- The constraint may come from the subtype indication of the full
8650 if Constraint_Present
then
8651 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8653 -- If there is no explicit constraint, there might be one that is
8654 -- inherited from a constrained parent type. In that case verify that
8655 -- it conforms to the constraint in the partial view. In perverse
8656 -- cases the parent subtypes of the partial and full view can have
8657 -- different constraints.
8659 elsif Present
(Stored_Constraint
(Parent_Type
)) then
8660 New_Discrs
:= Stored_Constraint
(Parent_Type
);
8663 New_Discrs
:= No_Elist
;
8666 if Has_Discriminants
(Derived_Type
)
8667 and then Has_Private_Declaration
(Derived_Type
)
8668 and then Present
(Discriminant_Constraint
(Derived_Type
))
8669 and then Present
(New_Discrs
)
8671 -- Verify that constraints of the full view statically match
8672 -- those given in the partial view.
8678 C1
:= First_Elmt
(New_Discrs
);
8679 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
8680 while Present
(C1
) and then Present
(C2
) loop
8681 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8683 (Is_OK_Static_Expression
(Node
(C1
))
8684 and then Is_OK_Static_Expression
(Node
(C2
))
8686 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
8691 if Constraint_Present
then
8693 ("constraint not conformant to previous declaration",
8697 ("constraint of full view is incompatible "
8698 & "with partial view", N
);
8708 -- Insert and analyze the declaration for the unconstrained base type
8710 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
8713 Make_Full_Type_Declaration
(Loc
,
8714 Defining_Identifier
=> New_Base
,
8716 Make_Derived_Type_Definition
(Loc
,
8717 Abstract_Present
=> Abstract_Present
(Type_Def
),
8718 Limited_Present
=> Limited_Present
(Type_Def
),
8719 Subtype_Indication
=>
8720 New_Occurrence_Of
(Parent_Base
, Loc
),
8721 Record_Extension_Part
=>
8722 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
8723 Interface_List
=> Interface_List
(Type_Def
)));
8725 Set_Parent
(New_Decl
, Parent
(N
));
8726 Mark_Rewrite_Insertion
(New_Decl
);
8727 Insert_Before
(N
, New_Decl
);
8729 -- In the extension case, make sure ancestor is frozen appropriately
8730 -- (see also non-discriminated case below).
8732 if Present
(Record_Extension_Part
(Type_Def
))
8733 or else Is_Interface
(Parent_Base
)
8735 Freeze_Before
(New_Decl
, Parent_Type
);
8738 -- Note that this call passes False for the Derive_Subps parameter
8739 -- because subprogram derivation is deferred until after creating
8740 -- the subtype (see below).
8743 (New_Decl
, Parent_Base
, New_Base
,
8744 Is_Completion
=> False, Derive_Subps
=> False);
8746 -- ??? This needs re-examination to determine whether the
8747 -- above call can simply be replaced by a call to Analyze.
8749 Set_Analyzed
(New_Decl
);
8751 -- Insert and analyze the declaration for the constrained subtype
8753 if Constraint_Present
then
8755 Make_Subtype_Indication
(Loc
,
8756 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8757 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
8761 Constr_List
: constant List_Id
:= New_List
;
8766 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
8767 while Present
(C
) loop
8770 -- It is safe here to call New_Copy_Tree since we called
8771 -- Force_Evaluation on each constraint previously
8772 -- in Build_Discriminant_Constraints.
8774 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
8780 Make_Subtype_Indication
(Loc
,
8781 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8783 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
8788 Make_Subtype_Declaration
(Loc
,
8789 Defining_Identifier
=> Derived_Type
,
8790 Subtype_Indication
=> New_Indic
));
8794 -- Derivation of subprograms must be delayed until the full subtype
8795 -- has been established, to ensure proper overriding of subprograms
8796 -- inherited by full types. If the derivations occurred as part of
8797 -- the call to Build_Derived_Type above, then the check for type
8798 -- conformance would fail because earlier primitive subprograms
8799 -- could still refer to the full type prior the change to the new
8800 -- subtype and hence would not match the new base type created here.
8801 -- Subprograms are not derived, however, when Derive_Subps is False
8802 -- (since otherwise there could be redundant derivations).
8804 if Derive_Subps
then
8805 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8808 -- For tagged types the Discriminant_Constraint of the new base itype
8809 -- is inherited from the first subtype so that no subtype conformance
8810 -- problem arise when the first subtype overrides primitive
8811 -- operations inherited by the implicit base type.
8814 Set_Discriminant_Constraint
8815 (New_Base
, Discriminant_Constraint
(Derived_Type
));
8821 -- If we get here Derived_Type will have no discriminants or it will be
8822 -- a discriminated unconstrained base type.
8824 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8828 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8829 -- The declaration of a specific descendant of an interface type
8830 -- freezes the interface type (RM 13.14).
8832 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
8833 Freeze_Before
(N
, Parent_Type
);
8836 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8837 -- cannot be declared at a deeper level than its parent type is
8838 -- removed. The check on derivation within a generic body is also
8839 -- relaxed, but there's a restriction that a derived tagged type
8840 -- cannot be declared in a generic body if it's derived directly
8841 -- or indirectly from a formal type of that generic.
8843 if Ada_Version
>= Ada_2005
then
8844 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
8846 Ancestor_Type
: Entity_Id
;
8849 -- Check to see if any ancestor of the derived type is a
8852 Ancestor_Type
:= Parent_Type
;
8853 while not Is_Generic_Type
(Ancestor_Type
)
8854 and then Etype
(Ancestor_Type
) /= Ancestor_Type
8856 Ancestor_Type
:= Etype
(Ancestor_Type
);
8859 -- If the derived type does have a formal type as an
8860 -- ancestor, then it's an error if the derived type is
8861 -- declared within the body of the generic unit that
8862 -- declares the formal type in its generic formal part. It's
8863 -- sufficient to check whether the ancestor type is declared
8864 -- inside the same generic body as the derived type (such as
8865 -- within a nested generic spec), in which case the
8866 -- derivation is legal. If the formal type is declared
8867 -- outside of that generic body, then it's guaranteed that
8868 -- the derived type is declared within the generic body of
8869 -- the generic unit declaring the formal type.
8871 if Is_Generic_Type
(Ancestor_Type
)
8872 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
8873 Enclosing_Generic_Body
(Derived_Type
)
8876 ("parent type of& must not be descendant of formal type"
8877 & " of an enclosing generic body",
8878 Indic
, Derived_Type
);
8883 elsif Type_Access_Level
(Derived_Type
) /=
8884 Type_Access_Level
(Parent_Type
)
8885 and then not Is_Generic_Type
(Derived_Type
)
8887 if Is_Controlled
(Parent_Type
) then
8889 ("controlled type must be declared at the library level",
8893 ("type extension at deeper accessibility level than parent",
8899 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
8902 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
8905 ("parent type of& must not be outside generic body"
8907 Indic
, Derived_Type
);
8913 -- Ada 2005 (AI-251)
8915 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
8917 -- "The declaration of a specific descendant of an interface type
8918 -- freezes the interface type" (RM 13.14).
8923 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
8924 Iface
:= First
(Interface_List
(Type_Def
));
8925 while Present
(Iface
) loop
8926 Freeze_Before
(N
, Etype
(Iface
));
8933 -- STEP 1b : preliminary cleanup of the full view of private types
8935 -- If the type is already marked as having discriminants, then it's the
8936 -- completion of a private type or private extension and we need to
8937 -- retain the discriminants from the partial view if the current
8938 -- declaration has Discriminant_Specifications so that we can verify
8939 -- conformance. However, we must remove any existing components that
8940 -- were inherited from the parent (and attached in Copy_And_Swap)
8941 -- because the full type inherits all appropriate components anyway, and
8942 -- we do not want the partial view's components interfering.
8944 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
8945 Discrim
:= First_Discriminant
(Derived_Type
);
8947 Last_Discrim
:= Discrim
;
8948 Next_Discriminant
(Discrim
);
8949 exit when No
(Discrim
);
8952 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
8954 -- In all other cases wipe out the list of inherited components (even
8955 -- inherited discriminants), it will be properly rebuilt here.
8958 Set_First_Entity
(Derived_Type
, Empty
);
8959 Set_Last_Entity
(Derived_Type
, Empty
);
8962 -- STEP 1c: Initialize some flags for the Derived_Type
8964 -- The following flags must be initialized here so that
8965 -- Process_Discriminants can check that discriminants of tagged types do
8966 -- not have a default initial value and that access discriminants are
8967 -- only specified for limited records. For completeness, these flags are
8968 -- also initialized along with all the other flags below.
8970 -- AI-419: Limitedness is not inherited from an interface parent, so to
8971 -- be limited in that case the type must be explicitly declared as
8972 -- limited. However, task and protected interfaces are always limited.
8974 if Limited_Present
(Type_Def
) then
8975 Set_Is_Limited_Record
(Derived_Type
);
8977 elsif Is_Limited_Record
(Parent_Type
)
8978 or else (Present
(Full_View
(Parent_Type
))
8979 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
8981 if not Is_Interface
(Parent_Type
)
8982 or else Is_Synchronized_Interface
(Parent_Type
)
8983 or else Is_Protected_Interface
(Parent_Type
)
8984 or else Is_Task_Interface
(Parent_Type
)
8986 Set_Is_Limited_Record
(Derived_Type
);
8990 -- STEP 2a: process discriminants of derived type if any
8992 Push_Scope
(Derived_Type
);
8994 if Discriminant_Specs
then
8995 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
8997 -- The following call initializes fields Has_Discriminants and
8998 -- Discriminant_Constraint, unless we are processing the completion
8999 -- of a private type declaration.
9001 Check_Or_Process_Discriminants
(N
, Derived_Type
);
9003 -- For untagged types, the constraint on the Parent_Type must be
9004 -- present and is used to rename the discriminants.
9006 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
9007 Error_Msg_N
("untagged parent must have discriminants", Indic
);
9009 elsif not Is_Tagged
and then not Constraint_Present
then
9011 ("discriminant constraint needed for derived untagged records",
9014 -- Otherwise the parent subtype must be constrained unless we have a
9015 -- private extension.
9017 elsif not Constraint_Present
9018 and then not Private_Extension
9019 and then not Is_Constrained
(Parent_Type
)
9022 ("unconstrained type not allowed in this context", Indic
);
9024 elsif Constraint_Present
then
9025 -- The following call sets the field Corresponding_Discriminant
9026 -- for the discriminants in the Derived_Type.
9028 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
9030 -- For untagged types all new discriminants must rename
9031 -- discriminants in the parent. For private extensions new
9032 -- discriminants cannot rename old ones (implied by [7.3(13)]).
9034 Discrim
:= First_Discriminant
(Derived_Type
);
9035 while Present
(Discrim
) loop
9037 and then No
(Corresponding_Discriminant
(Discrim
))
9040 ("new discriminants must constrain old ones", Discrim
);
9042 elsif Private_Extension
9043 and then Present
(Corresponding_Discriminant
(Discrim
))
9046 ("only static constraints allowed for parent"
9047 & " discriminants in the partial view", Indic
);
9051 -- If a new discriminant is used in the constraint, then its
9052 -- subtype must be statically compatible with the parent
9053 -- discriminant's subtype (3.7(15)).
9055 -- However, if the record contains an array constrained by
9056 -- the discriminant but with some different bound, the compiler
9057 -- tries to create a smaller range for the discriminant type.
9058 -- (See exp_ch3.Adjust_Discriminants). In this case, where
9059 -- the discriminant type is a scalar type, the check must use
9060 -- the original discriminant type in the parent declaration.
9063 Corr_Disc
: constant Entity_Id
:=
9064 Corresponding_Discriminant
(Discrim
);
9065 Disc_Type
: constant Entity_Id
:= Etype
(Discrim
);
9066 Corr_Type
: Entity_Id
;
9069 if Present
(Corr_Disc
) then
9070 if Is_Scalar_Type
(Disc_Type
) then
9072 Entity
(Discriminant_Type
(Parent
(Corr_Disc
)));
9074 Corr_Type
:= Etype
(Corr_Disc
);
9078 Subtypes_Statically_Compatible
(Disc_Type
, Corr_Type
)
9081 ("subtype must be compatible "
9082 & "with parent discriminant",
9088 Next_Discriminant
(Discrim
);
9091 -- Check whether the constraints of the full view statically
9092 -- match those imposed by the parent subtype [7.3(13)].
9094 if Present
(Stored_Constraint
(Derived_Type
)) then
9099 C1
:= First_Elmt
(Discs
);
9100 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
9101 while Present
(C1
) and then Present
(C2
) loop
9103 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
9106 ("not conformant with previous declaration",
9117 -- STEP 2b: No new discriminants, inherit discriminants if any
9120 if Private_Extension
then
9121 Set_Has_Unknown_Discriminants
9123 Has_Unknown_Discriminants
(Parent_Type
)
9124 or else Unknown_Discriminants_Present
(N
));
9126 -- The partial view of the parent may have unknown discriminants,
9127 -- but if the full view has discriminants and the parent type is
9128 -- in scope they must be inherited.
9130 elsif Has_Unknown_Discriminants
(Parent_Type
)
9132 (not Has_Discriminants
(Parent_Type
)
9133 or else not In_Open_Scopes
(Scope
(Parent_Base
)))
9135 Set_Has_Unknown_Discriminants
(Derived_Type
);
9138 if not Has_Unknown_Discriminants
(Derived_Type
)
9139 and then not Has_Unknown_Discriminants
(Parent_Base
)
9140 and then Has_Discriminants
(Parent_Type
)
9142 Inherit_Discrims
:= True;
9143 Set_Has_Discriminants
9144 (Derived_Type
, True);
9145 Set_Discriminant_Constraint
9146 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
9149 -- The following test is true for private types (remember
9150 -- transformation 5. is not applied to those) and in an error
9153 if Constraint_Present
then
9154 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
9157 -- For now mark a new derived type as constrained only if it has no
9158 -- discriminants. At the end of Build_Derived_Record_Type we properly
9159 -- set this flag in the case of private extensions. See comments in
9160 -- point 9. just before body of Build_Derived_Record_Type.
9164 not (Inherit_Discrims
9165 or else Has_Unknown_Discriminants
(Derived_Type
)));
9168 -- STEP 3: initialize fields of derived type
9170 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
9171 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
9173 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9174 -- but cannot be interfaces
9176 if not Private_Extension
9177 and then Ekind
(Derived_Type
) /= E_Private_Type
9178 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
9180 if Interface_Present
(Type_Def
) then
9181 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
9184 Set_Interfaces
(Derived_Type
, No_Elist
);
9187 -- Fields inherited from the Parent_Type
9189 Set_Has_Specified_Layout
9190 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
9191 Set_Is_Limited_Composite
9192 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
9193 Set_Is_Private_Composite
9194 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
9196 if Is_Tagged_Type
(Parent_Type
) then
9197 Set_No_Tagged_Streams_Pragma
9198 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
9201 -- Fields inherited from the Parent_Base
9203 Set_Has_Controlled_Component
9204 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
9205 Set_Has_Non_Standard_Rep
9206 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
9207 Set_Has_Primitive_Operations
9208 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
9210 -- Set fields for private derived types
9212 if Is_Private_Type
(Derived_Type
) then
9213 Set_Depends_On_Private
(Derived_Type
, True);
9214 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
9217 -- Inherit fields for non-private types. If this is the completion of a
9218 -- derivation from a private type, the parent itself is private and the
9219 -- attributes come from its full view, which must be present.
9221 if Is_Record_Type
(Derived_Type
) then
9223 Parent_Full
: Entity_Id
;
9226 if Is_Private_Type
(Parent_Base
)
9227 and then not Is_Record_Type
(Parent_Base
)
9229 Parent_Full
:= Full_View
(Parent_Base
);
9231 Parent_Full
:= Parent_Base
;
9234 Set_Component_Alignment
9235 (Derived_Type
, Component_Alignment
(Parent_Full
));
9237 (Derived_Type
, C_Pass_By_Copy
(Parent_Full
));
9238 Set_Has_Complex_Representation
9239 (Derived_Type
, Has_Complex_Representation
(Parent_Full
));
9241 -- For untagged types, inherit the layout by default to avoid
9242 -- costly changes of representation for type conversions.
9244 if not Is_Tagged
then
9245 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Full
));
9246 Set_No_Reordering
(Derived_Type
, No_Reordering
(Parent_Full
));
9251 -- Set fields for tagged types
9254 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
9256 -- All tagged types defined in Ada.Finalization are controlled
9258 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
9259 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
9260 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
9262 Set_Is_Controlled_Active
(Derived_Type
);
9264 Set_Is_Controlled_Active
9265 (Derived_Type
, Is_Controlled_Active
(Parent_Base
));
9268 -- Minor optimization: there is no need to generate the class-wide
9269 -- entity associated with an underlying record view.
9271 if not Is_Underlying_Record_View
(Derived_Type
) then
9272 Make_Class_Wide_Type
(Derived_Type
);
9275 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
9277 if Has_Discriminants
(Derived_Type
)
9278 and then Constraint_Present
9280 Set_Stored_Constraint
9281 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
9284 if Ada_Version
>= Ada_2005
then
9286 Ifaces_List
: Elist_Id
;
9289 -- Checks rules 3.9.4 (13/2 and 14/2)
9291 if Comes_From_Source
(Derived_Type
)
9292 and then not Is_Private_Type
(Derived_Type
)
9293 and then Is_Interface
(Parent_Type
)
9294 and then not Is_Interface
(Derived_Type
)
9296 if Is_Task_Interface
(Parent_Type
) then
9298 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9301 elsif Is_Protected_Interface
(Parent_Type
) then
9303 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9308 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9310 Check_Interfaces
(N
, Type_Def
);
9312 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9313 -- not already in the parents.
9317 Ifaces_List
=> Ifaces_List
,
9318 Exclude_Parents
=> True);
9320 Set_Interfaces
(Derived_Type
, Ifaces_List
);
9322 -- If the derived type is the anonymous type created for
9323 -- a declaration whose parent has a constraint, propagate
9324 -- the interface list to the source type. This must be done
9325 -- prior to the completion of the analysis of the source type
9326 -- because the components in the extension may contain current
9327 -- instances whose legality depends on some ancestor.
9329 if Is_Itype
(Derived_Type
) then
9331 Def
: constant Node_Id
:=
9332 Associated_Node_For_Itype
(Derived_Type
);
9335 and then Nkind
(Def
) = N_Full_Type_Declaration
9338 (Defining_Identifier
(Def
), Ifaces_List
);
9343 -- A type extension is automatically Ghost when one of its
9344 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9345 -- also inherited when the parent type is Ghost, but this is
9346 -- done in Build_Derived_Type as the mechanism also handles
9347 -- untagged derivations.
9349 if Implements_Ghost_Interface
(Derived_Type
) then
9350 Set_Is_Ghost_Entity
(Derived_Type
);
9356 -- STEP 4: Inherit components from the parent base and constrain them.
9357 -- Apply the second transformation described in point 6. above.
9359 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
9360 or else not Has_Discriminants
(Parent_Type
)
9361 or else not Is_Constrained
(Parent_Type
)
9365 Constrs
:= Discriminant_Constraint
(Parent_Type
);
9370 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
9372 -- STEP 5a: Copy the parent record declaration for untagged types
9374 Set_Has_Implicit_Dereference
9375 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
9377 if not Is_Tagged
then
9379 -- Discriminant_Constraint (Derived_Type) has been properly
9380 -- constructed. Save it and temporarily set it to Empty because we
9381 -- do not want the call to New_Copy_Tree below to mess this list.
9383 if Has_Discriminants
(Derived_Type
) then
9384 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
9385 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
9387 Save_Discr_Constr
:= No_Elist
;
9390 -- Save the Etype field of Derived_Type. It is correctly set now,
9391 -- but the call to New_Copy tree may remap it to point to itself,
9392 -- which is not what we want. Ditto for the Next_Entity field.
9394 Save_Etype
:= Etype
(Derived_Type
);
9395 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
9397 -- Assoc_List maps all stored discriminants in the Parent_Base to
9398 -- stored discriminants in the Derived_Type. It is fundamental that
9399 -- no types or itypes with discriminants other than the stored
9400 -- discriminants appear in the entities declared inside
9401 -- Derived_Type, since the back end cannot deal with it.
9405 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
9406 Copy_Dimensions_Of_Components
(Derived_Type
);
9408 -- Restore the fields saved prior to the New_Copy_Tree call
9409 -- and compute the stored constraint.
9411 Set_Etype
(Derived_Type
, Save_Etype
);
9412 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
9414 if Has_Discriminants
(Derived_Type
) then
9415 Set_Discriminant_Constraint
9416 (Derived_Type
, Save_Discr_Constr
);
9417 Set_Stored_Constraint
9418 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
9419 Replace_Components
(Derived_Type
, New_Decl
);
9422 -- Insert the new derived type declaration
9424 Rewrite
(N
, New_Decl
);
9426 -- STEP 5b: Complete the processing for record extensions in generics
9428 -- There is no completion for record extensions declared in the
9429 -- parameter part of a generic, so we need to complete processing for
9430 -- these generic record extensions here. The Record_Type_Definition call
9431 -- will change the Ekind of the components from E_Void to E_Component.
9433 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
9434 Record_Type_Definition
(Empty
, Derived_Type
);
9436 -- STEP 5c: Process the record extension for non private tagged types
9438 elsif not Private_Extension
then
9439 Expand_Record_Extension
(Derived_Type
, Type_Def
);
9441 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9442 -- derived type to propagate some semantic information. This led
9443 -- to other ASIS failures and has been removed.
9445 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9446 -- implemented interfaces if we are in expansion mode
9449 and then Has_Interfaces
(Derived_Type
)
9451 Add_Interface_Tag_Components
(N
, Derived_Type
);
9454 -- Analyze the record extension
9456 Record_Type_Definition
9457 (Record_Extension_Part
(Type_Def
), Derived_Type
);
9462 -- Nothing else to do if there is an error in the derivation.
9463 -- An unusual case: the full view may be derived from a type in an
9464 -- instance, when the partial view was used illegally as an actual
9465 -- in that instance, leading to a circular definition.
9467 if Etype
(Derived_Type
) = Any_Type
9468 or else Etype
(Parent_Type
) = Derived_Type
9473 -- Set delayed freeze and then derive subprograms, we need to do
9474 -- this in this order so that derived subprograms inherit the
9475 -- derived freeze if necessary.
9477 Set_Has_Delayed_Freeze
(Derived_Type
);
9479 if Derive_Subps
then
9480 Derive_Subprograms
(Parent_Type
, Derived_Type
);
9483 -- If we have a private extension which defines a constrained derived
9484 -- type mark as constrained here after we have derived subprograms. See
9485 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9487 if Private_Extension
and then Inherit_Discrims
then
9488 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
9489 Set_Is_Constrained
(Derived_Type
, True);
9490 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
9492 elsif Is_Constrained
(Parent_Type
) then
9494 (Derived_Type
, True);
9495 Set_Discriminant_Constraint
9496 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
9500 -- Update the class-wide type, which shares the now-completed entity
9501 -- list with its specific type. In case of underlying record views,
9502 -- we do not generate the corresponding class wide entity.
9505 and then not Is_Underlying_Record_View
(Derived_Type
)
9508 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
9510 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
9513 Check_Function_Writable_Actuals
(N
);
9514 end Build_Derived_Record_Type
;
9516 ------------------------
9517 -- Build_Derived_Type --
9518 ------------------------
9520 procedure Build_Derived_Type
9522 Parent_Type
: Entity_Id
;
9523 Derived_Type
: Entity_Id
;
9524 Is_Completion
: Boolean;
9525 Derive_Subps
: Boolean := True)
9527 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
9530 -- Set common attributes
9532 Set_Scope
(Derived_Type
, Current_Scope
);
9533 Set_Etype
(Derived_Type
, Parent_Base
);
9534 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
9535 Propagate_Concurrent_Flags
(Derived_Type
, Parent_Base
);
9537 Set_Size_Info
(Derived_Type
, Parent_Type
);
9538 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
9540 Set_Is_Controlled_Active
9541 (Derived_Type
, Is_Controlled_Active
(Parent_Type
));
9543 Set_Disable_Controlled
(Derived_Type
, Disable_Controlled
(Parent_Type
));
9544 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
9545 Set_Is_Volatile
(Derived_Type
, Is_Volatile
(Parent_Type
));
9547 if Is_Tagged_Type
(Derived_Type
) then
9548 Set_No_Tagged_Streams_Pragma
9549 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
9552 -- If the parent has primitive routines, set the derived type link
9554 if Has_Primitive_Operations
(Parent_Type
) then
9555 Set_Derived_Type_Link
(Parent_Base
, Derived_Type
);
9558 -- If the parent type is a private subtype, the convention on the base
9559 -- type may be set in the private part, and not propagated to the
9560 -- subtype until later, so we obtain the convention from the base type.
9562 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
9564 -- Set SSO default for record or array type
9566 if (Is_Array_Type
(Derived_Type
) or else Is_Record_Type
(Derived_Type
))
9567 and then Is_Base_Type
(Derived_Type
)
9569 Set_Default_SSO
(Derived_Type
);
9572 -- A derived type inherits the Default_Initial_Condition pragma coming
9573 -- from any parent type within the derivation chain.
9575 if Has_DIC
(Parent_Type
) then
9576 Set_Has_Inherited_DIC
(Derived_Type
);
9579 -- A derived type inherits any class-wide invariants coming from a
9580 -- parent type or an interface. Note that the invariant procedure of
9581 -- the parent type should not be inherited because the derived type may
9582 -- define invariants of its own.
9584 if not Is_Interface
(Derived_Type
) then
9585 if Has_Inherited_Invariants
(Parent_Type
)
9586 or else Has_Inheritable_Invariants
(Parent_Type
)
9588 Set_Has_Inherited_Invariants
(Derived_Type
);
9590 elsif Is_Concurrent_Type
(Derived_Type
)
9591 or else Is_Tagged_Type
(Derived_Type
)
9596 Iface_Elmt
: Elmt_Id
;
9601 Ifaces_List
=> Ifaces
,
9602 Exclude_Parents
=> True);
9604 if Present
(Ifaces
) then
9605 Iface_Elmt
:= First_Elmt
(Ifaces
);
9606 while Present
(Iface_Elmt
) loop
9607 Iface
:= Node
(Iface_Elmt
);
9609 if Has_Inheritable_Invariants
(Iface
) then
9610 Set_Has_Inherited_Invariants
(Derived_Type
);
9614 Next_Elmt
(Iface_Elmt
);
9621 -- We similarly inherit predicates. Note that for scalar derived types
9622 -- the predicate is inherited from the first subtype, and not from its
9623 -- (anonymous) base type.
9625 if Has_Predicates
(Parent_Type
)
9626 or else Has_Predicates
(First_Subtype
(Parent_Type
))
9628 Set_Has_Predicates
(Derived_Type
);
9631 -- The derived type inherits representation clauses from the parent
9632 -- type, and from any interfaces.
9634 Inherit_Rep_Item_Chain
(Derived_Type
, Parent_Type
);
9637 Iface
: Node_Id
:= First
(Abstract_Interface_List
(Derived_Type
));
9639 while Present
(Iface
) loop
9640 Inherit_Rep_Item_Chain
(Derived_Type
, Entity
(Iface
));
9645 -- If the parent type has delayed rep aspects, then mark the derived
9646 -- type as possibly inheriting a delayed rep aspect.
9648 if Has_Delayed_Rep_Aspects
(Parent_Type
) then
9649 Set_May_Inherit_Delayed_Rep_Aspects
(Derived_Type
);
9652 -- A derived type becomes Ghost when its parent type is also Ghost
9653 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9654 -- directly inherited because the Ghost policy in effect may differ.
9656 if Is_Ghost_Entity
(Parent_Type
) then
9657 Set_Is_Ghost_Entity
(Derived_Type
);
9660 -- Type dependent processing
9662 case Ekind
(Parent_Type
) is
9663 when Numeric_Kind
=>
9664 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
9667 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
9669 when Class_Wide_Kind
9673 Build_Derived_Record_Type
9674 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
9677 when Enumeration_Kind
=>
9678 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
9681 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
9683 when Incomplete_Or_Private_Kind
=>
9684 Build_Derived_Private_Type
9685 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
9687 -- For discriminated types, the derivation includes deriving
9688 -- primitive operations. For others it is done below.
9690 if Is_Tagged_Type
(Parent_Type
)
9691 or else Has_Discriminants
(Parent_Type
)
9692 or else (Present
(Full_View
(Parent_Type
))
9693 and then Has_Discriminants
(Full_View
(Parent_Type
)))
9698 when Concurrent_Kind
=>
9699 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
9702 raise Program_Error
;
9705 -- Nothing more to do if some error occurred
9707 if Etype
(Derived_Type
) = Any_Type
then
9711 -- Set delayed freeze and then derive subprograms, we need to do this
9712 -- in this order so that derived subprograms inherit the derived freeze
9715 Set_Has_Delayed_Freeze
(Derived_Type
);
9717 if Derive_Subps
then
9718 Derive_Subprograms
(Parent_Type
, Derived_Type
);
9721 Set_Has_Primitive_Operations
9722 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
9723 end Build_Derived_Type
;
9725 -----------------------
9726 -- Build_Discriminal --
9727 -----------------------
9729 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
9730 D_Minal
: Entity_Id
;
9731 CR_Disc
: Entity_Id
;
9734 -- A discriminal has the same name as the discriminant
9736 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9738 Set_Ekind
(D_Minal
, E_In_Parameter
);
9739 Set_Mechanism
(D_Minal
, Default_Mechanism
);
9740 Set_Etype
(D_Minal
, Etype
(Discrim
));
9741 Set_Scope
(D_Minal
, Current_Scope
);
9742 Set_Parent
(D_Minal
, Parent
(Discrim
));
9744 Set_Discriminal
(Discrim
, D_Minal
);
9745 Set_Discriminal_Link
(D_Minal
, Discrim
);
9747 -- For task types, build at once the discriminants of the corresponding
9748 -- record, which are needed if discriminants are used in entry defaults
9749 -- and in family bounds.
9751 if Is_Concurrent_Type
(Current_Scope
)
9753 Is_Limited_Type
(Current_Scope
)
9755 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9757 Set_Ekind
(CR_Disc
, E_In_Parameter
);
9758 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
9759 Set_Etype
(CR_Disc
, Etype
(Discrim
));
9760 Set_Scope
(CR_Disc
, Current_Scope
);
9761 Set_Discriminal_Link
(CR_Disc
, Discrim
);
9762 Set_CR_Discriminant
(Discrim
, CR_Disc
);
9764 end Build_Discriminal
;
9766 ------------------------------------
9767 -- Build_Discriminant_Constraints --
9768 ------------------------------------
9770 function Build_Discriminant_Constraints
9773 Derived_Def
: Boolean := False) return Elist_Id
9775 C
: constant Node_Id
:= Constraint
(Def
);
9776 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
9778 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
9779 -- Saves the expression corresponding to a given discriminant in T
9781 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
9782 -- Return the Position number within array Discr_Expr of a discriminant
9783 -- D within the discriminant list of the discriminated type T.
9785 procedure Process_Discriminant_Expression
9788 -- If this is a discriminant constraint on a partial view, do not
9789 -- generate an overflow check on the discriminant expression. The check
9790 -- will be generated when constraining the full view. Otherwise the
9791 -- backend creates duplicate symbols for the temporaries corresponding
9792 -- to the expressions to be checked, causing spurious assembler errors.
9798 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
9802 Disc
:= First_Discriminant
(T
);
9803 for J
in Discr_Expr
'Range loop
9808 Next_Discriminant
(Disc
);
9811 -- Note: Since this function is called on discriminants that are
9812 -- known to belong to the discriminated type, falling through the
9813 -- loop with no match signals an internal compiler error.
9815 raise Program_Error
;
9818 -------------------------------------
9819 -- Process_Discriminant_Expression --
9820 -------------------------------------
9822 procedure Process_Discriminant_Expression
9826 BDT
: constant Entity_Id
:= Base_Type
(Etype
(D
));
9829 -- If this is a discriminant constraint on a partial view, do
9830 -- not generate an overflow on the discriminant expression. The
9831 -- check will be generated when constraining the full view.
9833 if Is_Private_Type
(T
)
9834 and then Present
(Full_View
(T
))
9836 Analyze_And_Resolve
(Expr
, BDT
, Suppress
=> Overflow_Check
);
9838 Analyze_And_Resolve
(Expr
, BDT
);
9840 end Process_Discriminant_Expression
;
9842 -- Declarations local to Build_Discriminant_Constraints
9846 Elist
: constant Elist_Id
:= New_Elmt_List
;
9854 Discrim_Present
: Boolean := False;
9856 -- Start of processing for Build_Discriminant_Constraints
9859 -- The following loop will process positional associations only.
9860 -- For a positional association, the (single) discriminant is
9861 -- implicitly specified by position, in textual order (RM 3.7.2).
9863 Discr
:= First_Discriminant
(T
);
9864 Constr
:= First
(Constraints
(C
));
9865 for D
in Discr_Expr
'Range loop
9866 exit when Nkind
(Constr
) = N_Discriminant_Association
;
9869 Error_Msg_N
("too few discriminants given in constraint", C
);
9870 return New_Elmt_List
;
9872 elsif Nkind
(Constr
) = N_Range
9873 or else (Nkind
(Constr
) = N_Attribute_Reference
9874 and then Attribute_Name
(Constr
) = Name_Range
)
9877 ("a range is not a valid discriminant constraint", Constr
);
9878 Discr_Expr
(D
) := Error
;
9881 Process_Discriminant_Expression
(Constr
, Discr
);
9882 Discr_Expr
(D
) := Constr
;
9885 Next_Discriminant
(Discr
);
9889 if No
(Discr
) and then Present
(Constr
) then
9890 Error_Msg_N
("too many discriminants given in constraint", Constr
);
9891 return New_Elmt_List
;
9894 -- Named associations can be given in any order, but if both positional
9895 -- and named associations are used in the same discriminant constraint,
9896 -- then positional associations must occur first, at their normal
9897 -- position. Hence once a named association is used, the rest of the
9898 -- discriminant constraint must use only named associations.
9900 while Present
(Constr
) loop
9902 -- Positional association forbidden after a named association
9904 if Nkind
(Constr
) /= N_Discriminant_Association
then
9905 Error_Msg_N
("positional association follows named one", Constr
);
9906 return New_Elmt_List
;
9908 -- Otherwise it is a named association
9911 -- E records the type of the discriminants in the named
9912 -- association. All the discriminants specified in the same name
9913 -- association must have the same type.
9917 -- Search the list of discriminants in T to see if the simple name
9918 -- given in the constraint matches any of them.
9920 Id
:= First
(Selector_Names
(Constr
));
9921 while Present
(Id
) loop
9924 -- If Original_Discriminant is present, we are processing a
9925 -- generic instantiation and this is an instance node. We need
9926 -- to find the name of the corresponding discriminant in the
9927 -- actual record type T and not the name of the discriminant in
9928 -- the generic formal. Example:
9931 -- type G (D : int) is private;
9933 -- subtype W is G (D => 1);
9935 -- type Rec (X : int) is record ... end record;
9936 -- package Q is new P (G => Rec);
9938 -- At the point of the instantiation, formal type G is Rec
9939 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9940 -- which really looks like "subtype W is Rec (D => 1);" at
9941 -- the point of instantiation, we want to find the discriminant
9942 -- that corresponds to D in Rec, i.e. X.
9944 if Present
(Original_Discriminant
(Id
))
9945 and then In_Instance
9947 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
9951 Discr
:= First_Discriminant
(T
);
9952 while Present
(Discr
) loop
9953 if Chars
(Discr
) = Chars
(Id
) then
9958 Next_Discriminant
(Discr
);
9962 Error_Msg_N
("& does not match any discriminant", Id
);
9963 return New_Elmt_List
;
9965 -- If the parent type is a generic formal, preserve the
9966 -- name of the discriminant for subsequent instances.
9967 -- see comment at the beginning of this if statement.
9969 elsif Is_Generic_Type
(Root_Type
(T
)) then
9970 Set_Original_Discriminant
(Id
, Discr
);
9974 Position
:= Pos_Of_Discr
(T
, Discr
);
9976 if Present
(Discr_Expr
(Position
)) then
9977 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
9980 -- Each discriminant specified in the same named association
9981 -- must be associated with a separate copy of the
9982 -- corresponding expression.
9984 if Present
(Next
(Id
)) then
9985 Expr
:= New_Copy_Tree
(Expression
(Constr
));
9986 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
9988 Expr
:= Expression
(Constr
);
9991 Discr_Expr
(Position
) := Expr
;
9992 Process_Discriminant_Expression
(Expr
, Discr
);
9995 -- A discriminant association with more than one discriminant
9996 -- name is only allowed if the named discriminants are all of
9997 -- the same type (RM 3.7.1(8)).
10000 E
:= Base_Type
(Etype
(Discr
));
10002 elsif Base_Type
(Etype
(Discr
)) /= E
then
10004 ("all discriminants in an association " &
10005 "must have the same type", Id
);
10015 -- A discriminant constraint must provide exactly one value for each
10016 -- discriminant of the type (RM 3.7.1(8)).
10018 for J
in Discr_Expr
'Range loop
10019 if No
(Discr_Expr
(J
)) then
10020 Error_Msg_N
("too few discriminants given in constraint", C
);
10021 return New_Elmt_List
;
10025 -- Determine if there are discriminant expressions in the constraint
10027 for J
in Discr_Expr
'Range loop
10028 if Denotes_Discriminant
10029 (Discr_Expr
(J
), Check_Concurrent
=> True)
10031 Discrim_Present
:= True;
10035 -- Build an element list consisting of the expressions given in the
10036 -- discriminant constraint and apply the appropriate checks. The list
10037 -- is constructed after resolving any named discriminant associations
10038 -- and therefore the expressions appear in the textual order of the
10041 Discr
:= First_Discriminant
(T
);
10042 for J
in Discr_Expr
'Range loop
10043 if Discr_Expr
(J
) /= Error
then
10044 Append_Elmt
(Discr_Expr
(J
), Elist
);
10046 -- If any of the discriminant constraints is given by a
10047 -- discriminant and we are in a derived type declaration we
10048 -- have a discriminant renaming. Establish link between new
10049 -- and old discriminant. The new discriminant has an implicit
10050 -- dereference if the old one does.
10052 if Denotes_Discriminant
(Discr_Expr
(J
)) then
10053 if Derived_Def
then
10055 New_Discr
: constant Entity_Id
:= Entity
(Discr_Expr
(J
));
10058 Set_Corresponding_Discriminant
(New_Discr
, Discr
);
10059 Set_Has_Implicit_Dereference
(New_Discr
,
10060 Has_Implicit_Dereference
(Discr
));
10064 -- Force the evaluation of non-discriminant expressions.
10065 -- If we have found a discriminant in the constraint 3.4(26)
10066 -- and 3.8(18) demand that no range checks are performed are
10067 -- after evaluation. If the constraint is for a component
10068 -- definition that has a per-object constraint, expressions are
10069 -- evaluated but not checked either. In all other cases perform
10073 if Discrim_Present
then
10076 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
10077 and then Has_Per_Object_Constraint
10078 (Defining_Identifier
(Parent
(Parent
(Def
))))
10082 elsif Is_Access_Type
(Etype
(Discr
)) then
10083 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
10086 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
10089 Force_Evaluation
(Discr_Expr
(J
));
10092 -- Check that the designated type of an access discriminant's
10093 -- expression is not a class-wide type unless the discriminant's
10094 -- designated type is also class-wide.
10096 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
10097 and then not Is_Class_Wide_Type
10098 (Designated_Type
(Etype
(Discr
)))
10099 and then Etype
(Discr_Expr
(J
)) /= Any_Type
10100 and then Is_Class_Wide_Type
10101 (Designated_Type
(Etype
(Discr_Expr
(J
))))
10103 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
10105 elsif Is_Access_Type
(Etype
(Discr
))
10106 and then not Is_Access_Constant
(Etype
(Discr
))
10107 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
10108 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
10111 ("constraint for discriminant& must be access to variable",
10116 Next_Discriminant
(Discr
);
10120 end Build_Discriminant_Constraints
;
10122 ---------------------------------
10123 -- Build_Discriminated_Subtype --
10124 ---------------------------------
10126 procedure Build_Discriminated_Subtype
10128 Def_Id
: Entity_Id
;
10130 Related_Nod
: Node_Id
;
10131 For_Access
: Boolean := False)
10133 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
10134 Constrained
: constant Boolean :=
10136 and then not Is_Empty_Elmt_List
(Elist
)
10137 and then not Is_Class_Wide_Type
(T
))
10138 or else Is_Constrained
(T
);
10141 if Ekind
(T
) = E_Record_Type
then
10143 Set_Ekind
(Def_Id
, E_Private_Subtype
);
10144 Set_Is_For_Access_Subtype
(Def_Id
, True);
10146 Set_Ekind
(Def_Id
, E_Record_Subtype
);
10149 -- Inherit preelaboration flag from base, for types for which it
10150 -- may have been set: records, private types, protected types.
10152 Set_Known_To_Have_Preelab_Init
10153 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
10155 elsif Ekind
(T
) = E_Task_Type
then
10156 Set_Ekind
(Def_Id
, E_Task_Subtype
);
10158 elsif Ekind
(T
) = E_Protected_Type
then
10159 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
10160 Set_Known_To_Have_Preelab_Init
10161 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
10163 elsif Is_Private_Type
(T
) then
10164 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
10165 Set_Known_To_Have_Preelab_Init
10166 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
10168 -- Private subtypes may have private dependents
10170 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
10172 elsif Is_Class_Wide_Type
(T
) then
10173 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
10176 -- Incomplete type. Attach subtype to list of dependents, to be
10177 -- completed with full view of parent type, unless is it the
10178 -- designated subtype of a record component within an init_proc.
10179 -- This last case arises for a component of an access type whose
10180 -- designated type is incomplete (e.g. a Taft Amendment type).
10181 -- The designated subtype is within an inner scope, and needs no
10182 -- elaboration, because only the access type is needed in the
10183 -- initialization procedure.
10185 if Ekind
(T
) = E_Incomplete_Type
then
10186 Set_Ekind
(Def_Id
, E_Incomplete_Subtype
);
10188 Set_Ekind
(Def_Id
, Ekind
(T
));
10191 if For_Access
and then Within_Init_Proc
then
10194 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
10198 Set_Etype
(Def_Id
, T
);
10199 Init_Size_Align
(Def_Id
);
10200 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
10201 Set_Is_Constrained
(Def_Id
, Constrained
);
10203 Set_First_Entity
(Def_Id
, First_Entity
(T
));
10204 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
10205 Set_Has_Implicit_Dereference
10206 (Def_Id
, Has_Implicit_Dereference
(T
));
10207 Set_Has_Pragma_Unreferenced_Objects
10208 (Def_Id
, Has_Pragma_Unreferenced_Objects
(T
));
10210 -- If the subtype is the completion of a private declaration, there may
10211 -- have been representation clauses for the partial view, and they must
10212 -- be preserved. Build_Derived_Type chains the inherited clauses with
10213 -- the ones appearing on the extension. If this comes from a subtype
10214 -- declaration, all clauses are inherited.
10216 if No
(First_Rep_Item
(Def_Id
)) then
10217 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10220 if Is_Tagged_Type
(T
) then
10221 Set_Is_Tagged_Type
(Def_Id
);
10222 Set_No_Tagged_Streams_Pragma
(Def_Id
, No_Tagged_Streams_Pragma
(T
));
10223 Make_Class_Wide_Type
(Def_Id
);
10226 Set_Stored_Constraint
(Def_Id
, No_Elist
);
10229 Set_Discriminant_Constraint
(Def_Id
, Elist
);
10230 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
10233 if Is_Tagged_Type
(T
) then
10235 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10236 -- concurrent record type (which has the list of primitive
10239 if Ada_Version
>= Ada_2005
10240 and then Is_Concurrent_Type
(T
)
10242 Set_Corresponding_Record_Type
(Def_Id
,
10243 Corresponding_Record_Type
(T
));
10245 Set_Direct_Primitive_Operations
(Def_Id
,
10246 Direct_Primitive_Operations
(T
));
10249 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
10252 -- Subtypes introduced by component declarations do not need to be
10253 -- marked as delayed, and do not get freeze nodes, because the semantics
10254 -- verifies that the parents of the subtypes are frozen before the
10255 -- enclosing record is frozen.
10257 if not Is_Type
(Scope
(Def_Id
)) then
10258 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
10260 if Is_Private_Type
(T
)
10261 and then Present
(Full_View
(T
))
10263 Conditional_Delay
(Def_Id
, Full_View
(T
));
10265 Conditional_Delay
(Def_Id
, T
);
10269 if Is_Record_Type
(T
) then
10270 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
10273 and then not Is_Empty_Elmt_List
(Elist
)
10274 and then not For_Access
10276 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
10278 elsif not For_Access
then
10279 Set_Cloned_Subtype
(Def_Id
, T
);
10282 end Build_Discriminated_Subtype
;
10284 ---------------------------
10285 -- Build_Itype_Reference --
10286 ---------------------------
10288 procedure Build_Itype_Reference
10292 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
10295 -- Itype references are only created for use by the back-end
10297 if Inside_A_Generic
then
10300 Set_Itype
(IR
, Ityp
);
10302 -- If Nod is a library unit entity, then Insert_After won't work,
10303 -- because Nod is not a member of any list. Therefore, we use
10304 -- Add_Global_Declaration in this case. This can happen if we have a
10305 -- build-in-place library function.
10307 if (Nkind
(Nod
) in N_Entity
and then Is_Compilation_Unit
(Nod
))
10309 (Nkind
(Nod
) = N_Defining_Program_Unit_Name
10310 and then Is_Compilation_Unit
(Defining_Identifier
(Nod
)))
10312 Add_Global_Declaration
(IR
);
10314 Insert_After
(Nod
, IR
);
10317 end Build_Itype_Reference
;
10319 ------------------------
10320 -- Build_Scalar_Bound --
10321 ------------------------
10323 function Build_Scalar_Bound
10326 Der_T
: Entity_Id
) return Node_Id
10328 New_Bound
: Entity_Id
;
10331 -- Note: not clear why this is needed, how can the original bound
10332 -- be unanalyzed at this point? and if it is, what business do we
10333 -- have messing around with it? and why is the base type of the
10334 -- parent type the right type for the resolution. It probably is
10335 -- not. It is OK for the new bound we are creating, but not for
10336 -- the old one??? Still if it never happens, no problem.
10338 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
10340 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
10341 New_Bound
:= New_Copy
(Bound
);
10342 Set_Etype
(New_Bound
, Der_T
);
10343 Set_Analyzed
(New_Bound
);
10345 elsif Is_Entity_Name
(Bound
) then
10346 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
10348 -- The following is almost certainly wrong. What business do we have
10349 -- relocating a node (Bound) that is presumably still attached to
10350 -- the tree elsewhere???
10353 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
10356 Set_Etype
(New_Bound
, Der_T
);
10358 end Build_Scalar_Bound
;
10360 --------------------------------
10361 -- Build_Underlying_Full_View --
10362 --------------------------------
10364 procedure Build_Underlying_Full_View
10369 Loc
: constant Source_Ptr
:= Sloc
(N
);
10370 Subt
: constant Entity_Id
:=
10371 Make_Defining_Identifier
10372 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
10379 procedure Set_Discriminant_Name
(Id
: Node_Id
);
10380 -- If the derived type has discriminants, they may rename discriminants
10381 -- of the parent. When building the full view of the parent, we need to
10382 -- recover the names of the original discriminants if the constraint is
10383 -- given by named associations.
10385 ---------------------------
10386 -- Set_Discriminant_Name --
10387 ---------------------------
10389 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
10393 Set_Original_Discriminant
(Id
, Empty
);
10395 if Has_Discriminants
(Typ
) then
10396 Disc
:= First_Discriminant
(Typ
);
10397 while Present
(Disc
) loop
10398 if Chars
(Disc
) = Chars
(Id
)
10399 and then Present
(Corresponding_Discriminant
(Disc
))
10401 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
10403 Next_Discriminant
(Disc
);
10406 end Set_Discriminant_Name
;
10408 -- Start of processing for Build_Underlying_Full_View
10411 if Nkind
(N
) = N_Full_Type_Declaration
then
10412 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
10414 elsif Nkind
(N
) = N_Subtype_Declaration
then
10415 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
10417 elsif Nkind
(N
) = N_Component_Declaration
then
10420 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
10423 raise Program_Error
;
10426 C
:= First
(Constraints
(Constr
));
10427 while Present
(C
) loop
10428 if Nkind
(C
) = N_Discriminant_Association
then
10429 Id
:= First
(Selector_Names
(C
));
10430 while Present
(Id
) loop
10431 Set_Discriminant_Name
(Id
);
10440 Make_Subtype_Declaration
(Loc
,
10441 Defining_Identifier
=> Subt
,
10442 Subtype_Indication
=>
10443 Make_Subtype_Indication
(Loc
,
10444 Subtype_Mark
=> New_Occurrence_Of
(Par
, Loc
),
10445 Constraint
=> New_Copy_Tree
(Constr
)));
10447 -- If this is a component subtype for an outer itype, it is not
10448 -- a list member, so simply set the parent link for analysis: if
10449 -- the enclosing type does not need to be in a declarative list,
10450 -- neither do the components.
10452 if Is_List_Member
(N
)
10453 and then Nkind
(N
) /= N_Component_Declaration
10455 Insert_Before
(N
, Indic
);
10457 Set_Parent
(Indic
, Parent
(N
));
10461 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
10462 Set_Is_Underlying_Full_View
(Full_View
(Subt
));
10463 end Build_Underlying_Full_View
;
10465 -------------------------------
10466 -- Check_Abstract_Overriding --
10467 -------------------------------
10469 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
10470 Alias_Subp
: Entity_Id
;
10472 Op_List
: Elist_Id
;
10474 Type_Def
: Node_Id
;
10476 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
10477 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10478 -- which has pragma Implemented already set. Check whether Subp's entity
10479 -- kind conforms to the implementation kind of the overridden routine.
10481 procedure Check_Pragma_Implemented
10483 Iface_Subp
: Entity_Id
);
10484 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10485 -- Iface_Subp and both entities have pragma Implemented already set on
10486 -- them. Check whether the two implementation kinds are conforming.
10488 procedure Inherit_Pragma_Implemented
10490 Iface_Subp
: Entity_Id
);
10491 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10492 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10493 -- Propagate the implementation kind of Iface_Subp to Subp.
10495 ------------------------------
10496 -- Check_Pragma_Implemented --
10497 ------------------------------
10499 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
10500 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
10501 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
10502 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
10503 Contr_Typ
: Entity_Id
;
10504 Impl_Subp
: Entity_Id
;
10507 -- Subp must have an alias since it is a hidden entity used to link
10508 -- an interface subprogram to its overriding counterpart.
10510 pragma Assert
(Present
(Subp_Alias
));
10512 -- Handle aliases to synchronized wrappers
10514 Impl_Subp
:= Subp_Alias
;
10516 if Is_Primitive_Wrapper
(Impl_Subp
) then
10517 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
10520 -- Extract the type of the controlling formal
10522 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
10524 if Is_Concurrent_Record_Type
(Contr_Typ
) then
10525 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
10528 -- An interface subprogram whose implementation kind is By_Entry must
10529 -- be implemented by an entry.
10531 if Impl_Kind
= Name_By_Entry
10532 and then Ekind
(Impl_Subp
) /= E_Entry
10534 Error_Msg_Node_2
:= Iface_Alias
;
10536 ("type & must implement abstract subprogram & with an entry",
10537 Subp_Alias
, Contr_Typ
);
10539 elsif Impl_Kind
= Name_By_Protected_Procedure
then
10541 -- An interface subprogram whose implementation kind is By_
10542 -- Protected_Procedure cannot be implemented by a primitive
10543 -- procedure of a task type.
10545 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
10546 Error_Msg_Node_2
:= Contr_Typ
;
10548 ("interface subprogram & cannot be implemented by a " &
10549 "primitive procedure of task type &", Subp_Alias
,
10552 -- An interface subprogram whose implementation kind is By_
10553 -- Protected_Procedure must be implemented by a procedure.
10555 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
10556 Error_Msg_Node_2
:= Iface_Alias
;
10558 ("type & must implement abstract subprogram & with a " &
10559 "procedure", Subp_Alias
, Contr_Typ
);
10561 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
10562 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
10564 Error_Msg_Name_1
:= Impl_Kind
;
10566 ("overriding operation& must have synchronization%",
10570 -- If primitive has Optional synchronization, overriding operation
10571 -- must match if it has an explicit synchronization..
10573 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
10574 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
10576 Error_Msg_Name_1
:= Impl_Kind
;
10578 ("overriding operation& must have syncrhonization%",
10581 end Check_Pragma_Implemented
;
10583 ------------------------------
10584 -- Check_Pragma_Implemented --
10585 ------------------------------
10587 procedure Check_Pragma_Implemented
10589 Iface_Subp
: Entity_Id
)
10591 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
10592 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
10595 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10596 -- and overriding subprogram are different. In general this is an
10597 -- error except when the implementation kind of the overridden
10598 -- subprograms is By_Any or Optional.
10600 if Iface_Kind
/= Subp_Kind
10601 and then Iface_Kind
/= Name_By_Any
10602 and then Iface_Kind
/= Name_Optional
10604 if Iface_Kind
= Name_By_Entry
then
10606 ("incompatible implementation kind, overridden subprogram " &
10607 "is marked By_Entry", Subp
);
10610 ("incompatible implementation kind, overridden subprogram " &
10611 "is marked By_Protected_Procedure", Subp
);
10614 end Check_Pragma_Implemented
;
10616 --------------------------------
10617 -- Inherit_Pragma_Implemented --
10618 --------------------------------
10620 procedure Inherit_Pragma_Implemented
10622 Iface_Subp
: Entity_Id
)
10624 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
10625 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
10626 Impl_Prag
: Node_Id
;
10629 -- Since the implementation kind is stored as a representation item
10630 -- rather than a flag, create a pragma node.
10634 Chars
=> Name_Implemented
,
10635 Pragma_Argument_Associations
=> New_List
(
10636 Make_Pragma_Argument_Association
(Loc
,
10637 Expression
=> New_Occurrence_Of
(Subp
, Loc
)),
10639 Make_Pragma_Argument_Association
(Loc
,
10640 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
10642 -- The pragma doesn't need to be analyzed because it is internally
10643 -- built. It is safe to directly register it as a rep item since we
10644 -- are only interested in the characters of the implementation kind.
10646 Record_Rep_Item
(Subp
, Impl_Prag
);
10647 end Inherit_Pragma_Implemented
;
10649 -- Start of processing for Check_Abstract_Overriding
10652 Op_List
:= Primitive_Operations
(T
);
10654 -- Loop to check primitive operations
10656 Elmt
:= First_Elmt
(Op_List
);
10657 while Present
(Elmt
) loop
10658 Subp
:= Node
(Elmt
);
10659 Alias_Subp
:= Alias
(Subp
);
10661 -- Inherited subprograms are identified by the fact that they do not
10662 -- come from source, and the associated source location is the
10663 -- location of the first subtype of the derived type.
10665 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10666 -- subprograms that "require overriding".
10668 -- Special exception, do not complain about failure to override the
10669 -- stream routines _Input and _Output, as well as the primitive
10670 -- operations used in dispatching selects since we always provide
10671 -- automatic overridings for these subprograms.
10673 -- The partial view of T may have been a private extension, for
10674 -- which inherited functions dispatching on result are abstract.
10675 -- If the full view is a null extension, there is no need for
10676 -- overriding in Ada 2005, but wrappers need to be built for them
10677 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10679 if Is_Null_Extension
(T
)
10680 and then Has_Controlling_Result
(Subp
)
10681 and then Ada_Version
>= Ada_2005
10682 and then Present
(Alias_Subp
)
10683 and then not Comes_From_Source
(Subp
)
10684 and then not Is_Abstract_Subprogram
(Alias_Subp
)
10685 and then not Is_Access_Type
(Etype
(Subp
))
10689 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10690 -- processing because this check is done with the aliased
10693 elsif Present
(Interface_Alias
(Subp
)) then
10696 elsif (Is_Abstract_Subprogram
(Subp
)
10697 or else Requires_Overriding
(Subp
)
10699 (Has_Controlling_Result
(Subp
)
10700 and then Present
(Alias_Subp
)
10701 and then not Comes_From_Source
(Subp
)
10702 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
10703 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
10704 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
10705 and then not Is_Abstract_Type
(T
)
10706 and then not Is_Predefined_Interface_Primitive
(Subp
)
10708 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10709 -- with abstract interface types because the check will be done
10710 -- with the aliased entity (otherwise we generate a duplicated
10713 and then not Present
(Interface_Alias
(Subp
))
10715 if Present
(Alias_Subp
) then
10717 -- Only perform the check for a derived subprogram when the
10718 -- type has an explicit record extension. This avoids incorrect
10719 -- flagging of abstract subprograms for the case of a type
10720 -- without an extension that is derived from a formal type
10721 -- with a tagged actual (can occur within a private part).
10723 -- Ada 2005 (AI-391): In the case of an inherited function with
10724 -- a controlling result of the type, the rule does not apply if
10725 -- the type is a null extension (unless the parent function
10726 -- itself is abstract, in which case the function must still be
10727 -- be overridden). The expander will generate an overriding
10728 -- wrapper function calling the parent subprogram (see
10729 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10731 Type_Def
:= Type_Definition
(Parent
(T
));
10733 if Nkind
(Type_Def
) = N_Derived_Type_Definition
10734 and then Present
(Record_Extension_Part
(Type_Def
))
10736 (Ada_Version
< Ada_2005
10737 or else not Is_Null_Extension
(T
)
10738 or else Ekind
(Subp
) = E_Procedure
10739 or else not Has_Controlling_Result
(Subp
)
10740 or else Is_Abstract_Subprogram
(Alias_Subp
)
10741 or else Requires_Overriding
(Subp
)
10742 or else Is_Access_Type
(Etype
(Subp
)))
10744 -- Avoid reporting error in case of abstract predefined
10745 -- primitive inherited from interface type because the
10746 -- body of internally generated predefined primitives
10747 -- of tagged types are generated later by Freeze_Type
10749 if Is_Interface
(Root_Type
(T
))
10750 and then Is_Abstract_Subprogram
(Subp
)
10751 and then Is_Predefined_Dispatching_Operation
(Subp
)
10752 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
10756 -- A null extension is not obliged to override an inherited
10757 -- procedure subject to pragma Extensions_Visible with value
10758 -- False and at least one controlling OUT parameter
10759 -- (SPARK RM 6.1.7(6)).
10761 elsif Is_Null_Extension
(T
)
10762 and then Is_EVF_Procedure
(Subp
)
10768 ("type must be declared abstract or & overridden",
10771 -- Traverse the whole chain of aliased subprograms to
10772 -- complete the error notification. This is especially
10773 -- useful for traceability of the chain of entities when
10774 -- the subprogram corresponds with an interface
10775 -- subprogram (which may be defined in another package).
10777 if Present
(Alias_Subp
) then
10783 while Present
(Alias
(E
)) loop
10785 -- Avoid reporting redundant errors on entities
10786 -- inherited from interfaces
10788 if Sloc
(E
) /= Sloc
(T
) then
10789 Error_Msg_Sloc
:= Sloc
(E
);
10791 ("\& has been inherited #", T
, Subp
);
10797 Error_Msg_Sloc
:= Sloc
(E
);
10799 -- AI05-0068: report if there is an overriding
10800 -- non-abstract subprogram that is invisible.
10803 and then not Is_Abstract_Subprogram
(E
)
10806 ("\& subprogram# is not visible",
10809 -- Clarify the case where a non-null extension must
10810 -- override inherited procedure subject to pragma
10811 -- Extensions_Visible with value False and at least
10812 -- one controlling OUT param.
10814 elsif Is_EVF_Procedure
(E
) then
10816 ("\& # is subject to Extensions_Visible False",
10821 ("\& has been inherited from subprogram #",
10828 -- Ada 2005 (AI-345): Protected or task type implementing
10829 -- abstract interfaces.
10831 elsif Is_Concurrent_Record_Type
(T
)
10832 and then Present
(Interfaces
(T
))
10834 -- There is no need to check here RM 9.4(11.9/3) since we
10835 -- are processing the corresponding record type and the
10836 -- mode of the overriding subprograms was verified by
10837 -- Check_Conformance when the corresponding concurrent
10838 -- type declaration was analyzed.
10841 ("interface subprogram & must be overridden", T
, Subp
);
10843 -- Examine primitive operations of synchronized type to find
10844 -- homonyms that have the wrong profile.
10850 Prim
:= First_Entity
(Corresponding_Concurrent_Type
(T
));
10851 while Present
(Prim
) loop
10852 if Chars
(Prim
) = Chars
(Subp
) then
10854 ("profile is not type conformant with prefixed "
10855 & "view profile of inherited operation&",
10859 Next_Entity
(Prim
);
10865 Error_Msg_Node_2
:= T
;
10867 ("abstract subprogram& not allowed for type&", Subp
);
10869 -- Also post unconditional warning on the type (unconditional
10870 -- so that if there are more than one of these cases, we get
10871 -- them all, and not just the first one).
10873 Error_Msg_Node_2
:= Subp
;
10874 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
10877 -- A subprogram subject to pragma Extensions_Visible with value
10878 -- "True" cannot override a subprogram subject to the same pragma
10879 -- with value "False" (SPARK RM 6.1.7(5)).
10881 elsif Extensions_Visible_Status
(Subp
) = Extensions_Visible_True
10882 and then Present
(Overridden_Operation
(Subp
))
10883 and then Extensions_Visible_Status
(Overridden_Operation
(Subp
)) =
10884 Extensions_Visible_False
10886 Error_Msg_Sloc
:= Sloc
(Overridden_Operation
(Subp
));
10888 ("subprogram & with Extensions_Visible True cannot override "
10889 & "subprogram # with Extensions_Visible False", Subp
);
10892 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10894 -- Subp is an expander-generated procedure which maps an interface
10895 -- alias to a protected wrapper. The interface alias is flagged by
10896 -- pragma Implemented. Ensure that Subp is a procedure when the
10897 -- implementation kind is By_Protected_Procedure or an entry when
10900 if Ada_Version
>= Ada_2012
10901 and then Is_Hidden
(Subp
)
10902 and then Present
(Interface_Alias
(Subp
))
10903 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
10905 Check_Pragma_Implemented
(Subp
);
10908 -- Subp is an interface primitive which overrides another interface
10909 -- primitive marked with pragma Implemented.
10911 if Ada_Version
>= Ada_2012
10912 and then Present
(Overridden_Operation
(Subp
))
10913 and then Has_Rep_Pragma
10914 (Overridden_Operation
(Subp
), Name_Implemented
)
10916 -- If the overriding routine is also marked by Implemented, check
10917 -- that the two implementation kinds are conforming.
10919 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
10920 Check_Pragma_Implemented
10922 Iface_Subp
=> Overridden_Operation
(Subp
));
10924 -- Otherwise the overriding routine inherits the implementation
10925 -- kind from the overridden subprogram.
10928 Inherit_Pragma_Implemented
10930 Iface_Subp
=> Overridden_Operation
(Subp
));
10934 -- If the operation is a wrapper for a synchronized primitive, it
10935 -- may be called indirectly through a dispatching select. We assume
10936 -- that it will be referenced elsewhere indirectly, and suppress
10937 -- warnings about an unused entity.
10939 if Is_Primitive_Wrapper
(Subp
)
10940 and then Present
(Wrapped_Entity
(Subp
))
10942 Set_Referenced
(Wrapped_Entity
(Subp
));
10947 end Check_Abstract_Overriding
;
10949 ------------------------------------------------
10950 -- Check_Access_Discriminant_Requires_Limited --
10951 ------------------------------------------------
10953 procedure Check_Access_Discriminant_Requires_Limited
10958 -- A discriminant_specification for an access discriminant shall appear
10959 -- only in the declaration for a task or protected type, or for a type
10960 -- with the reserved word 'limited' in its definition or in one of its
10961 -- ancestors (RM 3.7(10)).
10963 -- AI-0063: The proper condition is that type must be immutably limited,
10964 -- or else be a partial view.
10966 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
10967 if Is_Limited_View
(Current_Scope
)
10969 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
10970 and then Limited_Present
(Parent
(Current_Scope
)))
10976 ("access discriminants allowed only for limited types", Loc
);
10979 end Check_Access_Discriminant_Requires_Limited
;
10981 -----------------------------------
10982 -- Check_Aliased_Component_Types --
10983 -----------------------------------
10985 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
10989 -- ??? Also need to check components of record extensions, but not
10990 -- components of protected types (which are always limited).
10992 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10993 -- types to be unconstrained. This is safe because it is illegal to
10994 -- create access subtypes to such types with explicit discriminant
10997 if not Is_Limited_Type
(T
) then
10998 if Ekind
(T
) = E_Record_Type
then
10999 C
:= First_Component
(T
);
11000 while Present
(C
) loop
11002 and then Has_Discriminants
(Etype
(C
))
11003 and then not Is_Constrained
(Etype
(C
))
11004 and then not In_Instance_Body
11005 and then Ada_Version
< Ada_2005
11008 ("aliased component must be constrained (RM 3.6(11))",
11012 Next_Component
(C
);
11015 elsif Ekind
(T
) = E_Array_Type
then
11016 if Has_Aliased_Components
(T
)
11017 and then Has_Discriminants
(Component_Type
(T
))
11018 and then not Is_Constrained
(Component_Type
(T
))
11019 and then not In_Instance_Body
11020 and then Ada_Version
< Ada_2005
11023 ("aliased component type must be constrained (RM 3.6(11))",
11028 end Check_Aliased_Component_Types
;
11030 ---------------------------------------
11031 -- Check_Anonymous_Access_Components --
11032 ---------------------------------------
11034 procedure Check_Anonymous_Access_Components
11035 (Typ_Decl
: Node_Id
;
11038 Comp_List
: Node_Id
)
11040 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
11041 Anon_Access
: Entity_Id
;
11044 Comp_Def
: Node_Id
;
11046 Type_Def
: Node_Id
;
11048 procedure Build_Incomplete_Type_Declaration
;
11049 -- If the record type contains components that include an access to the
11050 -- current record, then create an incomplete type declaration for the
11051 -- record, to be used as the designated type of the anonymous access.
11052 -- This is done only once, and only if there is no previous partial
11053 -- view of the type.
11055 function Designates_T
(Subt
: Node_Id
) return Boolean;
11056 -- Check whether a node designates the enclosing record type, or 'Class
11059 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
11060 -- Check whether an access definition includes a reference to
11061 -- the enclosing record type. The reference can be a subtype mark
11062 -- in the access definition itself, a 'Class attribute reference, or
11063 -- recursively a reference appearing in a parameter specification
11064 -- or result definition of an access_to_subprogram definition.
11066 --------------------------------------
11067 -- Build_Incomplete_Type_Declaration --
11068 --------------------------------------
11070 procedure Build_Incomplete_Type_Declaration
is
11075 -- Is_Tagged indicates whether the type is tagged. It is tagged if
11076 -- it's "is new ... with record" or else "is tagged record ...".
11078 Is_Tagged
: constant Boolean :=
11079 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
11081 Present
(Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
11083 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
11084 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
11087 -- If there is a previous partial view, no need to create a new one
11088 -- If the partial view, given by Prev, is incomplete, If Prev is
11089 -- a private declaration, full declaration is flagged accordingly.
11091 if Prev
/= Typ
then
11093 Make_Class_Wide_Type
(Prev
);
11094 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
11095 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
11100 elsif Has_Private_Declaration
(Typ
) then
11102 -- If we refer to T'Class inside T, and T is the completion of a
11103 -- private type, then make sure the class-wide type exists.
11106 Make_Class_Wide_Type
(Typ
);
11111 -- If there was a previous anonymous access type, the incomplete
11112 -- type declaration will have been created already.
11114 elsif Present
(Current_Entity
(Typ
))
11115 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
11116 and then Full_View
(Current_Entity
(Typ
)) = Typ
11119 and then Comes_From_Source
(Current_Entity
(Typ
))
11120 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
11122 Make_Class_Wide_Type
(Typ
);
11124 ("incomplete view of tagged type should be declared tagged??",
11125 Parent
(Current_Entity
(Typ
)));
11130 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
11131 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
11133 -- Type has already been inserted into the current scope. Remove
11134 -- it, and add incomplete declaration for type, so that subsequent
11135 -- anonymous access types can use it. The entity is unchained from
11136 -- the homonym list and from immediate visibility. After analysis,
11137 -- the entity in the incomplete declaration becomes immediately
11138 -- visible in the record declaration that follows.
11140 H
:= Current_Entity
(Typ
);
11143 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
11146 and then Homonym
(H
) /= Typ
11148 H
:= Homonym
(Typ
);
11151 Set_Homonym
(H
, Homonym
(Typ
));
11154 Insert_Before
(Typ_Decl
, Decl
);
11156 Set_Full_View
(Inc_T
, Typ
);
11160 -- Create a common class-wide type for both views, and set the
11161 -- Etype of the class-wide type to the full view.
11163 Make_Class_Wide_Type
(Inc_T
);
11164 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
11165 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
11168 end Build_Incomplete_Type_Declaration
;
11174 function Designates_T
(Subt
: Node_Id
) return Boolean is
11175 Type_Id
: constant Name_Id
:= Chars
(Typ
);
11177 function Names_T
(Nam
: Node_Id
) return Boolean;
11178 -- The record type has not been introduced in the current scope
11179 -- yet, so we must examine the name of the type itself, either
11180 -- an identifier T, or an expanded name of the form P.T, where
11181 -- P denotes the current scope.
11187 function Names_T
(Nam
: Node_Id
) return Boolean is
11189 if Nkind
(Nam
) = N_Identifier
then
11190 return Chars
(Nam
) = Type_Id
;
11192 elsif Nkind
(Nam
) = N_Selected_Component
then
11193 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
11194 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
11195 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
11197 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
11198 return Chars
(Selector_Name
(Prefix
(Nam
))) =
11199 Chars
(Current_Scope
);
11213 -- Start of processing for Designates_T
11216 if Nkind
(Subt
) = N_Identifier
then
11217 return Chars
(Subt
) = Type_Id
;
11219 -- Reference can be through an expanded name which has not been
11220 -- analyzed yet, and which designates enclosing scopes.
11222 elsif Nkind
(Subt
) = N_Selected_Component
then
11223 if Names_T
(Subt
) then
11226 -- Otherwise it must denote an entity that is already visible.
11227 -- The access definition may name a subtype of the enclosing
11228 -- type, if there is a previous incomplete declaration for it.
11231 Find_Selected_Component
(Subt
);
11233 Is_Entity_Name
(Subt
)
11234 and then Scope
(Entity
(Subt
)) = Current_Scope
11236 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
11238 (Is_Class_Wide_Type
(Entity
(Subt
))
11240 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
11244 -- A reference to the current type may appear as the prefix of
11245 -- a 'Class attribute.
11247 elsif Nkind
(Subt
) = N_Attribute_Reference
11248 and then Attribute_Name
(Subt
) = Name_Class
11250 return Names_T
(Prefix
(Subt
));
11261 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
11262 Param_Spec
: Node_Id
;
11264 Acc_Subprg
: constant Node_Id
:=
11265 Access_To_Subprogram_Definition
(Acc_Def
);
11268 if No
(Acc_Subprg
) then
11269 return Designates_T
(Subtype_Mark
(Acc_Def
));
11272 -- Component is an access_to_subprogram: examine its formals,
11273 -- and result definition in the case of an access_to_function.
11275 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
11276 while Present
(Param_Spec
) loop
11277 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
11278 and then Mentions_T
(Parameter_Type
(Param_Spec
))
11282 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
11289 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
11290 if Nkind
(Result_Definition
(Acc_Subprg
)) =
11291 N_Access_Definition
11293 return Mentions_T
(Result_Definition
(Acc_Subprg
));
11295 return Designates_T
(Result_Definition
(Acc_Subprg
));
11302 -- Start of processing for Check_Anonymous_Access_Components
11305 if No
(Comp_List
) then
11309 Comp
:= First
(Component_Items
(Comp_List
));
11310 while Present
(Comp
) loop
11311 if Nkind
(Comp
) = N_Component_Declaration
11313 (Access_Definition
(Component_Definition
(Comp
)))
11315 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
11317 Comp_Def
:= Component_Definition
(Comp
);
11319 Access_To_Subprogram_Definition
(Access_Definition
(Comp_Def
));
11321 Build_Incomplete_Type_Declaration
;
11322 Anon_Access
:= Make_Temporary
(Loc
, 'S');
11324 -- Create a declaration for the anonymous access type: either
11325 -- an access_to_object or an access_to_subprogram.
11327 if Present
(Acc_Def
) then
11328 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
11330 Make_Access_Function_Definition
(Loc
,
11331 Parameter_Specifications
=>
11332 Parameter_Specifications
(Acc_Def
),
11333 Result_Definition
=> Result_Definition
(Acc_Def
));
11336 Make_Access_Procedure_Definition
(Loc
,
11337 Parameter_Specifications
=>
11338 Parameter_Specifications
(Acc_Def
));
11343 Make_Access_To_Object_Definition
(Loc
,
11344 Subtype_Indication
=>
11346 (Subtype_Mark
(Access_Definition
(Comp_Def
))));
11348 Set_Constant_Present
11349 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
11351 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
11354 Set_Null_Exclusion_Present
11356 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
11359 Make_Full_Type_Declaration
(Loc
,
11360 Defining_Identifier
=> Anon_Access
,
11361 Type_Definition
=> Type_Def
);
11363 Insert_Before
(Typ_Decl
, Decl
);
11366 -- If an access to subprogram, create the extra formals
11368 if Present
(Acc_Def
) then
11369 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
11371 -- If an access to object, preserve entity of designated type,
11372 -- for ASIS use, before rewriting the component definition.
11379 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
11381 -- If the access definition is to the current record,
11382 -- the visible entity at this point is an incomplete
11383 -- type. Retrieve the full view to simplify ASIS queries
11385 if Ekind
(Desig
) = E_Incomplete_Type
then
11386 Desig
:= Full_View
(Desig
);
11390 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
11395 Make_Component_Definition
(Loc
,
11396 Subtype_Indication
=>
11397 New_Occurrence_Of
(Anon_Access
, Loc
)));
11399 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
11400 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
11402 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
11405 Set_Is_Local_Anonymous_Access
(Anon_Access
);
11411 if Present
(Variant_Part
(Comp_List
)) then
11415 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
11416 while Present
(V
) loop
11417 Check_Anonymous_Access_Components
11418 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
11419 Next_Non_Pragma
(V
);
11423 end Check_Anonymous_Access_Components
;
11425 ----------------------
11426 -- Check_Completion --
11427 ----------------------
11429 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
11432 procedure Post_Error
;
11433 -- Post error message for lack of completion for entity E
11439 procedure Post_Error
is
11440 procedure Missing_Body
;
11441 -- Output missing body message
11447 procedure Missing_Body
is
11449 -- Spec is in same unit, so we can post on spec
11451 if In_Same_Source_Unit
(Body_Id
, E
) then
11452 Error_Msg_N
("missing body for &", E
);
11454 -- Spec is in a separate unit, so we have to post on the body
11457 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
11461 -- Start of processing for Post_Error
11464 if not Comes_From_Source
(E
) then
11465 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
11467 -- It may be an anonymous protected type created for a
11468 -- single variable. Post error on variable, if present.
11474 Var
:= First_Entity
(Current_Scope
);
11475 while Present
(Var
) loop
11476 exit when Etype
(Var
) = E
11477 and then Comes_From_Source
(Var
);
11482 if Present
(Var
) then
11489 -- If a generated entity has no completion, then either previous
11490 -- semantic errors have disabled the expansion phase, or else we had
11491 -- missing subunits, or else we are compiling without expansion,
11492 -- or else something is very wrong.
11494 if not Comes_From_Source
(E
) then
11496 (Serious_Errors_Detected
> 0
11497 or else Configurable_Run_Time_Violations
> 0
11498 or else Subunits_Missing
11499 or else not Expander_Active
);
11502 -- Here for source entity
11505 -- Here if no body to post the error message, so we post the error
11506 -- on the declaration that has no completion. This is not really
11507 -- the right place to post it, think about this later ???
11509 if No
(Body_Id
) then
11510 if Is_Type
(E
) then
11512 ("missing full declaration for }", Parent
(E
), E
);
11514 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
11517 -- Package body has no completion for a declaration that appears
11518 -- in the corresponding spec. Post error on the body, with a
11519 -- reference to the non-completed declaration.
11522 Error_Msg_Sloc
:= Sloc
(E
);
11524 if Is_Type
(E
) then
11525 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
11527 elsif Is_Overloadable
(E
)
11528 and then Current_Entity_In_Scope
(E
) /= E
11530 -- It may be that the completion is mistyped and appears as
11531 -- a distinct overloading of the entity.
11534 Candidate
: constant Entity_Id
:=
11535 Current_Entity_In_Scope
(E
);
11536 Decl
: constant Node_Id
:=
11537 Unit_Declaration_Node
(Candidate
);
11540 if Is_Overloadable
(Candidate
)
11541 and then Ekind
(Candidate
) = Ekind
(E
)
11542 and then Nkind
(Decl
) = N_Subprogram_Body
11543 and then Acts_As_Spec
(Decl
)
11545 Check_Type_Conformant
(Candidate
, E
);
11561 Pack_Id
: constant Entity_Id
:= Current_Scope
;
11563 -- Start of processing for Check_Completion
11566 E
:= First_Entity
(Pack_Id
);
11567 while Present
(E
) loop
11568 if Is_Intrinsic_Subprogram
(E
) then
11571 -- The following situation requires special handling: a child unit
11572 -- that appears in the context clause of the body of its parent:
11574 -- procedure Parent.Child (...);
11576 -- with Parent.Child;
11577 -- package body Parent is
11579 -- Here Parent.Child appears as a local entity, but should not be
11580 -- flagged as requiring completion, because it is a compilation
11583 -- Ignore missing completion for a subprogram that does not come from
11584 -- source (including the _Call primitive operation of RAS types,
11585 -- which has to have the flag Comes_From_Source for other purposes):
11586 -- we assume that the expander will provide the missing completion.
11587 -- In case of previous errors, other expansion actions that provide
11588 -- bodies for null procedures with not be invoked, so inhibit message
11591 -- Note that E_Operator is not in the list that follows, because
11592 -- this kind is reserved for predefined operators, that are
11593 -- intrinsic and do not need completion.
11595 elsif Ekind_In
(E
, E_Function
,
11597 E_Generic_Function
,
11598 E_Generic_Procedure
)
11600 if Has_Completion
(E
) then
11603 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
11606 elsif Is_Subprogram
(E
)
11607 and then (not Comes_From_Source
(E
)
11608 or else Chars
(E
) = Name_uCall
)
11613 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
11617 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
11618 and then Null_Present
(Parent
(E
))
11619 and then Serious_Errors_Detected
> 0
11627 elsif Is_Entry
(E
) then
11628 if not Has_Completion
(E
) and then
11629 (Ekind
(Scope
(E
)) = E_Protected_Object
11630 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
11635 elsif Is_Package_Or_Generic_Package
(E
) then
11636 if Unit_Requires_Body
(E
) then
11637 if not Has_Completion
(E
)
11638 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
11644 elsif not Is_Child_Unit
(E
) then
11645 May_Need_Implicit_Body
(E
);
11648 -- A formal incomplete type (Ada 2012) does not require a completion;
11649 -- other incomplete type declarations do.
11651 elsif Ekind
(E
) = E_Incomplete_Type
11652 and then No
(Underlying_Type
(E
))
11653 and then not Is_Generic_Type
(E
)
11657 elsif Ekind_In
(E
, E_Task_Type
, E_Protected_Type
)
11658 and then not Has_Completion
(E
)
11662 -- A single task declared in the current scope is a constant, verify
11663 -- that the body of its anonymous type is in the same scope. If the
11664 -- task is defined elsewhere, this may be a renaming declaration for
11665 -- which no completion is needed.
11667 elsif Ekind
(E
) = E_Constant
11668 and then Ekind
(Etype
(E
)) = E_Task_Type
11669 and then not Has_Completion
(Etype
(E
))
11670 and then Scope
(Etype
(E
)) = Current_Scope
11674 elsif Ekind
(E
) = E_Protected_Object
11675 and then not Has_Completion
(Etype
(E
))
11679 elsif Ekind
(E
) = E_Record_Type
then
11680 if Is_Tagged_Type
(E
) then
11681 Check_Abstract_Overriding
(E
);
11682 Check_Conventions
(E
);
11685 Check_Aliased_Component_Types
(E
);
11687 elsif Ekind
(E
) = E_Array_Type
then
11688 Check_Aliased_Component_Types
(E
);
11694 end Check_Completion
;
11696 ------------------------------------
11697 -- Check_CPP_Type_Has_No_Defaults --
11698 ------------------------------------
11700 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
11701 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
11706 -- Obtain the component list
11708 if Nkind
(Tdef
) = N_Record_Definition
then
11709 Clist
:= Component_List
(Tdef
);
11710 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
11711 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
11714 -- Check all components to ensure no default expressions
11716 if Present
(Clist
) then
11717 Comp
:= First
(Component_Items
(Clist
));
11718 while Present
(Comp
) loop
11719 if Present
(Expression
(Comp
)) then
11721 ("component of imported 'C'P'P type cannot have "
11722 & "default expression", Expression
(Comp
));
11728 end Check_CPP_Type_Has_No_Defaults
;
11730 ----------------------------
11731 -- Check_Delta_Expression --
11732 ----------------------------
11734 procedure Check_Delta_Expression
(E
: Node_Id
) is
11736 if not (Is_Real_Type
(Etype
(E
))) then
11737 Wrong_Type
(E
, Any_Real
);
11739 elsif not Is_OK_Static_Expression
(E
) then
11740 Flag_Non_Static_Expr
11741 ("non-static expression used for delta value!", E
);
11743 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
11744 Error_Msg_N
("delta expression must be positive", E
);
11750 -- If any of above errors occurred, then replace the incorrect
11751 -- expression by the real 0.1, which should prevent further errors.
11754 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
11755 Analyze_And_Resolve
(E
, Standard_Float
);
11756 end Check_Delta_Expression
;
11758 -----------------------------
11759 -- Check_Digits_Expression --
11760 -----------------------------
11762 procedure Check_Digits_Expression
(E
: Node_Id
) is
11764 if not (Is_Integer_Type
(Etype
(E
))) then
11765 Wrong_Type
(E
, Any_Integer
);
11767 elsif not Is_OK_Static_Expression
(E
) then
11768 Flag_Non_Static_Expr
11769 ("non-static expression used for digits value!", E
);
11771 elsif Expr_Value
(E
) <= 0 then
11772 Error_Msg_N
("digits value must be greater than zero", E
);
11778 -- If any of above errors occurred, then replace the incorrect
11779 -- expression by the integer 1, which should prevent further errors.
11781 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
11782 Analyze_And_Resolve
(E
, Standard_Integer
);
11784 end Check_Digits_Expression
;
11786 --------------------------
11787 -- Check_Initialization --
11788 --------------------------
11790 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
11792 -- Special processing for limited types
11794 if Is_Limited_Type
(T
)
11795 and then not In_Instance
11796 and then not In_Inlined_Body
11798 if not OK_For_Limited_Init
(T
, Exp
) then
11800 -- In GNAT mode, this is just a warning, to allow it to be evilly
11801 -- turned off. Otherwise it is a real error.
11805 ("??cannot initialize entities of limited type!", Exp
);
11807 elsif Ada_Version
< Ada_2005
then
11809 -- The side effect removal machinery may generate illegal Ada
11810 -- code to avoid the usage of access types and 'reference in
11811 -- SPARK mode. Since this is legal code with respect to theorem
11812 -- proving, do not emit the error.
11815 and then Nkind
(Exp
) = N_Function_Call
11816 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11817 and then not Comes_From_Source
11818 (Defining_Identifier
(Parent
(Exp
)))
11824 ("cannot initialize entities of limited type", Exp
);
11825 Explain_Limited_Type
(T
, Exp
);
11829 -- Specialize error message according to kind of illegal
11830 -- initial expression.
11832 if Nkind
(Exp
) = N_Type_Conversion
11833 and then Nkind
(Expression
(Exp
)) = N_Function_Call
11835 -- No error for internally-generated object declarations,
11836 -- which can come from build-in-place assignment statements.
11838 if Nkind
(Parent
(Exp
)) = N_Object_Declaration
11839 and then not Comes_From_Source
11840 (Defining_Identifier
(Parent
(Exp
)))
11846 ("illegal context for call to function with limited "
11852 ("initialization of limited object requires aggregate or "
11853 & "function call", Exp
);
11859 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11860 -- set unless we can be sure that no range check is required.
11862 if (GNATprove_Mode
or not Expander_Active
)
11863 and then Is_Scalar_Type
(T
)
11864 and then not Is_In_Range
(Exp
, T
, Assume_Valid
=> True)
11866 Set_Do_Range_Check
(Exp
);
11868 end Check_Initialization
;
11870 ----------------------
11871 -- Check_Interfaces --
11872 ----------------------
11874 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
11875 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
11878 Iface_Def
: Node_Id
;
11879 Iface_Typ
: Entity_Id
;
11880 Parent_Node
: Node_Id
;
11882 Is_Task
: Boolean := False;
11883 -- Set True if parent type or any progenitor is a task interface
11885 Is_Protected
: Boolean := False;
11886 -- Set True if parent type or any progenitor is a protected interface
11888 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
11889 -- Check that a progenitor is compatible with declaration. If an error
11890 -- message is output, it is posted on Error_Node.
11896 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
11897 Iface_Id
: constant Entity_Id
:=
11898 Defining_Identifier
(Parent
(Iface_Def
));
11899 Type_Def
: Node_Id
;
11902 if Nkind
(N
) = N_Private_Extension_Declaration
then
11905 Type_Def
:= Type_Definition
(N
);
11908 if Is_Task_Interface
(Iface_Id
) then
11911 elsif Is_Protected_Interface
(Iface_Id
) then
11912 Is_Protected
:= True;
11915 if Is_Synchronized_Interface
(Iface_Id
) then
11917 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11918 -- extension derived from a synchronized interface must explicitly
11919 -- be declared synchronized, because the full view will be a
11920 -- synchronized type.
11922 if Nkind
(N
) = N_Private_Extension_Declaration
then
11923 if not Synchronized_Present
(N
) then
11925 ("private extension of& must be explicitly synchronized",
11929 -- However, by 3.9.4(16/2), a full type that is a record extension
11930 -- is never allowed to derive from a synchronized interface (note
11931 -- that interfaces must be excluded from this check, because those
11932 -- are represented by derived type definitions in some cases).
11934 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11935 and then not Interface_Present
(Type_Definition
(N
))
11937 Error_Msg_N
("record extension cannot derive from synchronized "
11938 & "interface", Error_Node
);
11942 -- Check that the characteristics of the progenitor are compatible
11943 -- with the explicit qualifier in the declaration.
11944 -- The check only applies to qualifiers that come from source.
11945 -- Limited_Present also appears in the declaration of corresponding
11946 -- records, and the check does not apply to them.
11948 if Limited_Present
(Type_Def
)
11950 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
11952 if Is_Limited_Interface
(Parent_Type
)
11953 and then not Is_Limited_Interface
(Iface_Id
)
11956 ("progenitor & must be limited interface",
11957 Error_Node
, Iface_Id
);
11960 (Task_Present
(Iface_Def
)
11961 or else Protected_Present
(Iface_Def
)
11962 or else Synchronized_Present
(Iface_Def
))
11963 and then Nkind
(N
) /= N_Private_Extension_Declaration
11964 and then not Error_Posted
(N
)
11967 ("progenitor & must be limited interface",
11968 Error_Node
, Iface_Id
);
11971 -- Protected interfaces can only inherit from limited, synchronized
11972 -- or protected interfaces.
11974 elsif Nkind
(N
) = N_Full_Type_Declaration
11975 and then Protected_Present
(Type_Def
)
11977 if Limited_Present
(Iface_Def
)
11978 or else Synchronized_Present
(Iface_Def
)
11979 or else Protected_Present
(Iface_Def
)
11983 elsif Task_Present
(Iface_Def
) then
11984 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11985 & "from task interface", Error_Node
);
11988 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11989 & "from non-limited interface", Error_Node
);
11992 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11993 -- limited and synchronized.
11995 elsif Synchronized_Present
(Type_Def
) then
11996 if Limited_Present
(Iface_Def
)
11997 or else Synchronized_Present
(Iface_Def
)
12001 elsif Protected_Present
(Iface_Def
)
12002 and then Nkind
(N
) /= N_Private_Extension_Declaration
12004 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
12005 & "from protected interface", Error_Node
);
12007 elsif Task_Present
(Iface_Def
)
12008 and then Nkind
(N
) /= N_Private_Extension_Declaration
12010 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
12011 & "from task interface", Error_Node
);
12013 elsif not Is_Limited_Interface
(Iface_Id
) then
12014 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
12015 & "from non-limited interface", Error_Node
);
12018 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
12019 -- synchronized or task interfaces.
12021 elsif Nkind
(N
) = N_Full_Type_Declaration
12022 and then Task_Present
(Type_Def
)
12024 if Limited_Present
(Iface_Def
)
12025 or else Synchronized_Present
(Iface_Def
)
12026 or else Task_Present
(Iface_Def
)
12030 elsif Protected_Present
(Iface_Def
) then
12031 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
12032 & "protected interface", Error_Node
);
12035 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
12036 & "non-limited interface", Error_Node
);
12041 -- Start of processing for Check_Interfaces
12044 if Is_Interface
(Parent_Type
) then
12045 if Is_Task_Interface
(Parent_Type
) then
12048 elsif Is_Protected_Interface
(Parent_Type
) then
12049 Is_Protected
:= True;
12053 if Nkind
(N
) = N_Private_Extension_Declaration
then
12055 -- Check that progenitors are compatible with declaration
12057 Iface
:= First
(Interface_List
(Def
));
12058 while Present
(Iface
) loop
12059 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
12061 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
12062 Iface_Def
:= Type_Definition
(Parent_Node
);
12064 if not Is_Interface
(Iface_Typ
) then
12065 Diagnose_Interface
(Iface
, Iface_Typ
);
12067 Check_Ifaces
(Iface_Def
, Iface
);
12073 if Is_Task
and Is_Protected
then
12075 ("type cannot derive from task and protected interface", N
);
12081 -- Full type declaration of derived type.
12082 -- Check compatibility with parent if it is interface type
12084 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
12085 and then Is_Interface
(Parent_Type
)
12087 Parent_Node
:= Parent
(Parent_Type
);
12089 -- More detailed checks for interface varieties
12092 (Iface_Def
=> Type_Definition
(Parent_Node
),
12093 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
12096 Iface
:= First
(Interface_List
(Def
));
12097 while Present
(Iface
) loop
12098 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
12100 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
12101 Iface_Def
:= Type_Definition
(Parent_Node
);
12103 if not Is_Interface
(Iface_Typ
) then
12104 Diagnose_Interface
(Iface
, Iface_Typ
);
12107 -- "The declaration of a specific descendant of an interface
12108 -- type freezes the interface type" RM 13.14
12110 Freeze_Before
(N
, Iface_Typ
);
12111 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
12117 if Is_Task
and Is_Protected
then
12119 ("type cannot derive from task and protected interface", N
);
12121 end Check_Interfaces
;
12123 ------------------------------------
12124 -- Check_Or_Process_Discriminants --
12125 ------------------------------------
12127 -- If an incomplete or private type declaration was already given for the
12128 -- type, the discriminants may have already been processed if they were
12129 -- present on the incomplete declaration. In this case a full conformance
12130 -- check has been performed in Find_Type_Name, and we then recheck here
12131 -- some properties that can't be checked on the partial view alone.
12132 -- Otherwise we call Process_Discriminants.
12134 procedure Check_Or_Process_Discriminants
12137 Prev
: Entity_Id
:= Empty
)
12140 if Has_Discriminants
(T
) then
12142 -- Discriminants are already set on T if they were already present
12143 -- on the partial view. Make them visible to component declarations.
12147 -- Discriminant on T (full view) referencing expr on partial view
12149 Prev_D
: Entity_Id
;
12150 -- Entity of corresponding discriminant on partial view
12153 -- Discriminant specification for full view, expression is
12154 -- the syntactic copy on full view (which has been checked for
12155 -- conformance with partial view), only used here to post error
12159 D
:= First_Discriminant
(T
);
12160 New_D
:= First
(Discriminant_Specifications
(N
));
12161 while Present
(D
) loop
12162 Prev_D
:= Current_Entity
(D
);
12163 Set_Current_Entity
(D
);
12164 Set_Is_Immediately_Visible
(D
);
12165 Set_Homonym
(D
, Prev_D
);
12167 -- Handle the case where there is an untagged partial view and
12168 -- the full view is tagged: must disallow discriminants with
12169 -- defaults, unless compiling for Ada 2012, which allows a
12170 -- limited tagged type to have defaulted discriminants (see
12171 -- AI05-0214). However, suppress error here if it was already
12172 -- reported on the default expression of the partial view.
12174 if Is_Tagged_Type
(T
)
12175 and then Present
(Expression
(Parent
(D
)))
12176 and then (not Is_Limited_Type
(Current_Scope
)
12177 or else Ada_Version
< Ada_2012
)
12178 and then not Error_Posted
(Expression
(Parent
(D
)))
12180 if Ada_Version
>= Ada_2012
then
12182 ("discriminants of nonlimited tagged type cannot have "
12184 Expression
(New_D
));
12187 ("discriminants of tagged type cannot have defaults",
12188 Expression
(New_D
));
12192 -- Ada 2005 (AI-230): Access discriminant allowed in
12193 -- non-limited record types.
12195 if Ada_Version
< Ada_2005
then
12197 -- This restriction gets applied to the full type here. It
12198 -- has already been applied earlier to the partial view.
12200 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
12203 Next_Discriminant
(D
);
12208 elsif Present
(Discriminant_Specifications
(N
)) then
12209 Process_Discriminants
(N
, Prev
);
12211 end Check_Or_Process_Discriminants
;
12213 ----------------------
12214 -- Check_Real_Bound --
12215 ----------------------
12217 procedure Check_Real_Bound
(Bound
: Node_Id
) is
12219 if not Is_Real_Type
(Etype
(Bound
)) then
12221 ("bound in real type definition must be of real type", Bound
);
12223 elsif not Is_OK_Static_Expression
(Bound
) then
12224 Flag_Non_Static_Expr
12225 ("non-static expression used for real type bound!", Bound
);
12232 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
12234 Resolve
(Bound
, Standard_Float
);
12235 end Check_Real_Bound
;
12237 ------------------------------
12238 -- Complete_Private_Subtype --
12239 ------------------------------
12241 procedure Complete_Private_Subtype
12244 Full_Base
: Entity_Id
;
12245 Related_Nod
: Node_Id
)
12247 Save_Next_Entity
: Entity_Id
;
12248 Save_Homonym
: Entity_Id
;
12251 -- Set semantic attributes for (implicit) private subtype completion.
12252 -- If the full type has no discriminants, then it is a copy of the
12253 -- full view of the base. Otherwise, it is a subtype of the base with
12254 -- a possible discriminant constraint. Save and restore the original
12255 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12256 -- not corrupt the entity chain.
12258 -- Note that the type of the full view is the same entity as the type
12259 -- of the partial view. In this fashion, the subtype has access to the
12260 -- correct view of the parent.
12262 Save_Next_Entity
:= Next_Entity
(Full
);
12263 Save_Homonym
:= Homonym
(Priv
);
12265 case Ekind
(Full_Base
) is
12266 when Class_Wide_Kind
12273 Copy_Node
(Priv
, Full
);
12275 Set_Has_Discriminants
12276 (Full
, Has_Discriminants
(Full_Base
));
12277 Set_Has_Unknown_Discriminants
12278 (Full
, Has_Unknown_Discriminants
(Full_Base
));
12279 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
12280 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
12282 -- If the underlying base type is constrained, we know that the
12283 -- full view of the subtype is constrained as well (the converse
12284 -- is not necessarily true).
12286 if Is_Constrained
(Full_Base
) then
12287 Set_Is_Constrained
(Full
);
12291 Copy_Node
(Full_Base
, Full
);
12293 Set_Chars
(Full
, Chars
(Priv
));
12294 Conditional_Delay
(Full
, Priv
);
12295 Set_Sloc
(Full
, Sloc
(Priv
));
12298 Set_Next_Entity
(Full
, Save_Next_Entity
);
12299 Set_Homonym
(Full
, Save_Homonym
);
12300 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
12302 -- Set common attributes for all subtypes: kind, convention, etc.
12304 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
12305 Set_Convention
(Full
, Convention
(Full_Base
));
12307 -- The Etype of the full view is inconsistent. Gigi needs to see the
12308 -- structural full view, which is what the current scheme gives: the
12309 -- Etype of the full view is the etype of the full base. However, if the
12310 -- full base is a derived type, the full view then looks like a subtype
12311 -- of the parent, not a subtype of the full base. If instead we write:
12313 -- Set_Etype (Full, Full_Base);
12315 -- then we get inconsistencies in the front-end (confusion between
12316 -- views). Several outstanding bugs are related to this ???
12318 Set_Is_First_Subtype
(Full
, False);
12319 Set_Scope
(Full
, Scope
(Priv
));
12320 Set_Size_Info
(Full
, Full_Base
);
12321 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
12322 Set_Is_Itype
(Full
);
12324 -- A subtype of a private-type-without-discriminants, whose full-view
12325 -- has discriminants with default expressions, is not constrained.
12327 if not Has_Discriminants
(Priv
) then
12328 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
12330 if Has_Discriminants
(Full_Base
) then
12331 Set_Discriminant_Constraint
12332 (Full
, Discriminant_Constraint
(Full_Base
));
12334 -- The partial view may have been indefinite, the full view
12337 Set_Has_Unknown_Discriminants
12338 (Full
, Has_Unknown_Discriminants
(Full_Base
));
12342 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
12343 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
12345 -- Freeze the private subtype entity if its parent is delayed, and not
12346 -- already frozen. We skip this processing if the type is an anonymous
12347 -- subtype of a record component, or is the corresponding record of a
12348 -- protected type, since these are processed when the enclosing type
12349 -- is frozen. If the parent type is declared in a nested package then
12350 -- the freezing of the private and full views also happens later.
12352 if not Is_Type
(Scope
(Full
)) then
12354 and then In_Same_Source_Unit
(Full
, Full_Base
)
12355 and then Scope
(Full_Base
) /= Scope
(Full
)
12357 Set_Has_Delayed_Freeze
(Full
);
12358 Set_Has_Delayed_Freeze
(Priv
);
12361 Set_Has_Delayed_Freeze
(Full
,
12362 Has_Delayed_Freeze
(Full_Base
)
12363 and then not Is_Frozen
(Full_Base
));
12367 Set_Freeze_Node
(Full
, Empty
);
12368 Set_Is_Frozen
(Full
, False);
12369 Set_Full_View
(Priv
, Full
);
12371 if Has_Discriminants
(Full
) then
12372 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
12373 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
12375 if Has_Unknown_Discriminants
(Full
) then
12376 Set_Discriminant_Constraint
(Full
, No_Elist
);
12380 if Ekind
(Full_Base
) = E_Record_Type
12381 and then Has_Discriminants
(Full_Base
)
12382 and then Has_Discriminants
(Priv
) -- might not, if errors
12383 and then not Has_Unknown_Discriminants
(Priv
)
12384 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
12386 Create_Constrained_Components
12387 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
12389 -- If the full base is itself derived from private, build a congruent
12390 -- subtype of its underlying type, for use by the back end. For a
12391 -- constrained record component, the declaration cannot be placed on
12392 -- the component list, but it must nevertheless be built an analyzed, to
12393 -- supply enough information for Gigi to compute the size of component.
12395 elsif Ekind
(Full_Base
) in Private_Kind
12396 and then Is_Derived_Type
(Full_Base
)
12397 and then Has_Discriminants
(Full_Base
)
12398 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
12400 if not Is_Itype
(Priv
)
12402 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
12404 Build_Underlying_Full_View
12405 (Parent
(Priv
), Full
, Etype
(Full_Base
));
12407 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
12408 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
12411 elsif Is_Record_Type
(Full_Base
) then
12413 -- Show Full is simply a renaming of Full_Base
12415 Set_Cloned_Subtype
(Full
, Full_Base
);
12418 -- It is unsafe to share the bounds of a scalar type, because the Itype
12419 -- is elaborated on demand, and if a bound is non-static then different
12420 -- orders of elaboration in different units will lead to different
12421 -- external symbols.
12423 if Is_Scalar_Type
(Full_Base
) then
12424 Set_Scalar_Range
(Full
,
12425 Make_Range
(Sloc
(Related_Nod
),
12427 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
12429 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
12431 -- This completion inherits the bounds of the full parent, but if
12432 -- the parent is an unconstrained floating point type, so is the
12435 if Is_Floating_Point_Type
(Full_Base
) then
12436 Set_Includes_Infinities
12437 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
12441 -- ??? It seems that a lot of fields are missing that should be copied
12442 -- from Full_Base to Full. Here are some that are introduced in a
12443 -- non-disruptive way but a cleanup is necessary.
12445 if Is_Tagged_Type
(Full_Base
) then
12446 Set_Is_Tagged_Type
(Full
);
12447 Set_Direct_Primitive_Operations
12448 (Full
, Direct_Primitive_Operations
(Full_Base
));
12449 Set_No_Tagged_Streams_Pragma
12450 (Full
, No_Tagged_Streams_Pragma
(Full_Base
));
12452 -- Inherit class_wide type of full_base in case the partial view was
12453 -- not tagged. Otherwise it has already been created when the private
12454 -- subtype was analyzed.
12456 if No
(Class_Wide_Type
(Full
)) then
12457 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
12460 -- If this is a subtype of a protected or task type, constrain its
12461 -- corresponding record, unless this is a subtype without constraints,
12462 -- i.e. a simple renaming as with an actual subtype in an instance.
12464 elsif Is_Concurrent_Type
(Full_Base
) then
12465 if Has_Discriminants
(Full
)
12466 and then Present
(Corresponding_Record_Type
(Full_Base
))
12468 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
12470 Set_Corresponding_Record_Type
(Full
,
12471 Constrain_Corresponding_Record
12472 (Full
, Corresponding_Record_Type
(Full_Base
), Related_Nod
));
12475 Set_Corresponding_Record_Type
(Full
,
12476 Corresponding_Record_Type
(Full_Base
));
12480 -- Link rep item chain, and also setting of Has_Predicates from private
12481 -- subtype to full subtype, since we will need these on the full subtype
12482 -- to create the predicate function. Note that the full subtype may
12483 -- already have rep items, inherited from the full view of the base
12484 -- type, so we must be sure not to overwrite these entries.
12489 Next_Item
: Node_Id
;
12490 Priv_Item
: Node_Id
;
12493 Item
:= First_Rep_Item
(Full
);
12494 Priv_Item
:= First_Rep_Item
(Priv
);
12496 -- If no existing rep items on full type, we can just link directly
12497 -- to the list of items on the private type, if any exist.. Same if
12498 -- the rep items are only those inherited from the base
12501 or else Nkind
(Item
) /= N_Aspect_Specification
12502 or else Entity
(Item
) = Full_Base
)
12503 and then Present
(First_Rep_Item
(Priv
))
12505 Set_First_Rep_Item
(Full
, Priv_Item
);
12507 -- Otherwise, search to the end of items currently linked to the full
12508 -- subtype and append the private items to the end. However, if Priv
12509 -- and Full already have the same list of rep items, then the append
12510 -- is not done, as that would create a circularity.
12512 -- The partial view may have a predicate and the rep item lists of
12513 -- both views agree when inherited from the same ancestor. In that
12514 -- case, simply propagate the list from one view to the other.
12515 -- A more complex analysis needed here ???
12517 elsif Present
(Priv_Item
)
12518 and then Item
= Next_Rep_Item
(Priv_Item
)
12520 Set_First_Rep_Item
(Full
, Priv_Item
);
12522 elsif Item
/= Priv_Item
then
12525 Next_Item
:= Next_Rep_Item
(Item
);
12526 exit when No
(Next_Item
);
12529 -- If the private view has aspect specifications, the full view
12530 -- inherits them. Since these aspects may already have been
12531 -- attached to the full view during derivation, do not append
12532 -- them if already present.
12534 if Item
= First_Rep_Item
(Priv
) then
12540 -- And link the private type items at the end of the chain
12543 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
12548 -- Make sure Has_Predicates is set on full type if it is set on the
12549 -- private type. Note that it may already be set on the full type and
12550 -- if so, we don't want to unset it. Similarly, propagate information
12551 -- about delayed aspects, because the corresponding pragmas must be
12552 -- analyzed when one of the views is frozen. This last step is needed
12553 -- in particular when the full type is a scalar type for which an
12554 -- anonymous base type is constructed.
12556 -- The predicate functions are generated either at the freeze point
12557 -- of the type or at the end of the visible part, and we must avoid
12558 -- generating them twice.
12560 if Has_Predicates
(Priv
) then
12561 Set_Has_Predicates
(Full
);
12563 if Present
(Predicate_Function
(Priv
))
12564 and then No
(Predicate_Function
(Full
))
12566 Set_Predicate_Function
(Full
, Predicate_Function
(Priv
));
12570 if Has_Delayed_Aspects
(Priv
) then
12571 Set_Has_Delayed_Aspects
(Full
);
12573 end Complete_Private_Subtype
;
12575 ----------------------------
12576 -- Constant_Redeclaration --
12577 ----------------------------
12579 procedure Constant_Redeclaration
12584 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
12585 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
12588 procedure Check_Possible_Deferred_Completion
12589 (Prev_Id
: Entity_Id
;
12590 Prev_Obj_Def
: Node_Id
;
12591 Curr_Obj_Def
: Node_Id
);
12592 -- Determine whether the two object definitions describe the partial
12593 -- and the full view of a constrained deferred constant. Generate
12594 -- a subtype for the full view and verify that it statically matches
12595 -- the subtype of the partial view.
12597 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
12598 -- If deferred constant is an access type initialized with an allocator,
12599 -- check whether there is an illegal recursion in the definition,
12600 -- through a default value of some record subcomponent. This is normally
12601 -- detected when generating init procs, but requires this additional
12602 -- mechanism when expansion is disabled.
12604 ----------------------------------------
12605 -- Check_Possible_Deferred_Completion --
12606 ----------------------------------------
12608 procedure Check_Possible_Deferred_Completion
12609 (Prev_Id
: Entity_Id
;
12610 Prev_Obj_Def
: Node_Id
;
12611 Curr_Obj_Def
: Node_Id
)
12614 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
12615 and then Present
(Constraint
(Prev_Obj_Def
))
12616 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
12617 and then Present
(Constraint
(Curr_Obj_Def
))
12620 Loc
: constant Source_Ptr
:= Sloc
(N
);
12621 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
12622 Decl
: constant Node_Id
:=
12623 Make_Subtype_Declaration
(Loc
,
12624 Defining_Identifier
=> Def_Id
,
12625 Subtype_Indication
=>
12626 Relocate_Node
(Curr_Obj_Def
));
12629 Insert_Before_And_Analyze
(N
, Decl
);
12630 Set_Etype
(Id
, Def_Id
);
12632 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
12633 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
12634 Error_Msg_N
("subtype does not statically match deferred "
12635 & "declaration #", N
);
12639 end Check_Possible_Deferred_Completion
;
12641 ---------------------------------
12642 -- Check_Recursive_Declaration --
12643 ---------------------------------
12645 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
12649 if Is_Record_Type
(Typ
) then
12650 Comp
:= First_Component
(Typ
);
12651 while Present
(Comp
) loop
12652 if Comes_From_Source
(Comp
) then
12653 if Present
(Expression
(Parent
(Comp
)))
12654 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
12655 and then Entity
(Expression
(Parent
(Comp
))) = Prev
12657 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
12659 ("illegal circularity with declaration for & #",
12663 elsif Is_Record_Type
(Etype
(Comp
)) then
12664 Check_Recursive_Declaration
(Etype
(Comp
));
12668 Next_Component
(Comp
);
12671 end Check_Recursive_Declaration
;
12673 -- Start of processing for Constant_Redeclaration
12676 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
12677 if Nkind
(Object_Definition
12678 (Parent
(Prev
))) = N_Subtype_Indication
12680 -- Find type of new declaration. The constraints of the two
12681 -- views must match statically, but there is no point in
12682 -- creating an itype for the full view.
12684 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
12685 Find_Type
(Subtype_Mark
(Obj_Def
));
12686 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
12689 Find_Type
(Obj_Def
);
12690 New_T
:= Entity
(Obj_Def
);
12696 -- The full view may impose a constraint, even if the partial
12697 -- view does not, so construct the subtype.
12699 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
12704 -- Current declaration is illegal, diagnosed below in Enter_Name
12710 -- If previous full declaration or a renaming declaration exists, or if
12711 -- a homograph is present, let Enter_Name handle it, either with an
12712 -- error or with the removal of an overridden implicit subprogram.
12713 -- The previous one is a full declaration if it has an expression
12714 -- (which in the case of an aggregate is indicated by the Init flag).
12716 if Ekind
(Prev
) /= E_Constant
12717 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
12718 or else Present
(Expression
(Parent
(Prev
)))
12719 or else Has_Init_Expression
(Parent
(Prev
))
12720 or else Present
(Full_View
(Prev
))
12724 -- Verify that types of both declarations match, or else that both types
12725 -- are anonymous access types whose designated subtypes statically match
12726 -- (as allowed in Ada 2005 by AI-385).
12728 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
12730 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
12731 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
12732 or else Is_Access_Constant
(Etype
(New_T
)) /=
12733 Is_Access_Constant
(Etype
(Prev
))
12734 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
12735 Can_Never_Be_Null
(Etype
(Prev
))
12736 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
12737 Null_Exclusion_Present
(Parent
(Id
))
12738 or else not Subtypes_Statically_Match
12739 (Designated_Type
(Etype
(Prev
)),
12740 Designated_Type
(Etype
(New_T
))))
12742 Error_Msg_Sloc
:= Sloc
(Prev
);
12743 Error_Msg_N
("type does not match declaration#", N
);
12744 Set_Full_View
(Prev
, Id
);
12745 Set_Etype
(Id
, Any_Type
);
12747 -- A deferred constant whose type is an anonymous array is always
12748 -- illegal (unless imported). A detailed error message might be
12749 -- helpful for Ada beginners.
12751 if Nkind
(Object_Definition
(Parent
(Prev
)))
12752 = N_Constrained_Array_Definition
12753 and then Nkind
(Object_Definition
(N
))
12754 = N_Constrained_Array_Definition
12756 Error_Msg_N
("\each anonymous array is a distinct type", N
);
12757 Error_Msg_N
("a deferred constant must have a named type",
12758 Object_Definition
(Parent
(Prev
)));
12762 Null_Exclusion_Present
(Parent
(Prev
))
12763 and then not Null_Exclusion_Present
(N
)
12765 Error_Msg_Sloc
:= Sloc
(Prev
);
12766 Error_Msg_N
("null-exclusion does not match declaration#", N
);
12767 Set_Full_View
(Prev
, Id
);
12768 Set_Etype
(Id
, Any_Type
);
12770 -- If so, process the full constant declaration
12773 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12774 -- the deferred declaration is constrained, then the subtype defined
12775 -- by the subtype_indication in the full declaration shall match it
12778 Check_Possible_Deferred_Completion
12780 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
12781 Curr_Obj_Def
=> Obj_Def
);
12783 Set_Full_View
(Prev
, Id
);
12784 Set_Is_Public
(Id
, Is_Public
(Prev
));
12785 Set_Is_Internal
(Id
);
12786 Append_Entity
(Id
, Current_Scope
);
12788 -- Check ALIASED present if present before (RM 7.4(7))
12790 if Is_Aliased
(Prev
)
12791 and then not Aliased_Present
(N
)
12793 Error_Msg_Sloc
:= Sloc
(Prev
);
12794 Error_Msg_N
("ALIASED required (see declaration #)", N
);
12797 -- Check that placement is in private part and that the incomplete
12798 -- declaration appeared in the visible part.
12800 if Ekind
(Current_Scope
) = E_Package
12801 and then not In_Private_Part
(Current_Scope
)
12803 Error_Msg_Sloc
:= Sloc
(Prev
);
12805 ("full constant for declaration # must be in private part", N
);
12807 elsif Ekind
(Current_Scope
) = E_Package
12809 List_Containing
(Parent
(Prev
)) /=
12810 Visible_Declarations
(Package_Specification
(Current_Scope
))
12813 ("deferred constant must be declared in visible part",
12817 if Is_Access_Type
(T
)
12818 and then Nkind
(Expression
(N
)) = N_Allocator
12820 Check_Recursive_Declaration
(Designated_Type
(T
));
12823 -- A deferred constant is a visible entity. If type has invariants,
12824 -- verify that the initial value satisfies them. This is not done in
12825 -- GNATprove mode, as GNATprove handles invariant checks itself.
12827 if Has_Invariants
(T
)
12828 and then Present
(Invariant_Procedure
(T
))
12829 and then not GNATprove_Mode
12832 Make_Invariant_Call
(New_Occurrence_Of
(Prev
, Sloc
(N
))));
12835 end Constant_Redeclaration
;
12837 ----------------------
12838 -- Constrain_Access --
12839 ----------------------
12841 procedure Constrain_Access
12842 (Def_Id
: in out Entity_Id
;
12844 Related_Nod
: Node_Id
)
12846 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12847 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
12848 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
12849 Constraint_OK
: Boolean := True;
12852 if Is_Array_Type
(Desig_Type
) then
12853 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
12855 elsif (Is_Record_Type
(Desig_Type
)
12856 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
12857 and then not Is_Constrained
(Desig_Type
)
12859 -- ??? The following code is a temporary bypass to ignore a
12860 -- discriminant constraint on access type if it is constraining
12861 -- the current record. Avoid creating the implicit subtype of the
12862 -- record we are currently compiling since right now, we cannot
12863 -- handle these. For now, just return the access type itself.
12865 if Desig_Type
= Current_Scope
12866 and then No
(Def_Id
)
12868 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
12869 Def_Id
:= Entity
(Subtype_Mark
(S
));
12871 -- This call added to ensure that the constraint is analyzed
12872 -- (needed for a B test). Note that we still return early from
12873 -- this procedure to avoid recursive processing. ???
12875 Constrain_Discriminated_Type
12876 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
12880 -- Enforce rule that the constraint is illegal if there is an
12881 -- unconstrained view of the designated type. This means that the
12882 -- partial view (either a private type declaration or a derivation
12883 -- from a private type) has no discriminants. (Defect Report
12884 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12886 -- Rule updated for Ada 2005: The private type is said to have
12887 -- a constrained partial view, given that objects of the type
12888 -- can be declared. Furthermore, the rule applies to all access
12889 -- types, unlike the rule concerning default discriminants (see
12892 if (Ekind
(T
) = E_General_Access_Type
or else Ada_Version
>= Ada_2005
)
12893 and then Has_Private_Declaration
(Desig_Type
)
12894 and then In_Open_Scopes
(Scope
(Desig_Type
))
12895 and then Has_Discriminants
(Desig_Type
)
12898 Pack
: constant Node_Id
:=
12899 Unit_Declaration_Node
(Scope
(Desig_Type
));
12904 if Nkind
(Pack
) = N_Package_Declaration
then
12905 Decls
:= Visible_Declarations
(Specification
(Pack
));
12906 Decl
:= First
(Decls
);
12907 while Present
(Decl
) loop
12908 if (Nkind
(Decl
) = N_Private_Type_Declaration
12909 and then Chars
(Defining_Identifier
(Decl
)) =
12910 Chars
(Desig_Type
))
12913 (Nkind
(Decl
) = N_Full_Type_Declaration
12915 Chars
(Defining_Identifier
(Decl
)) =
12917 and then Is_Derived_Type
(Desig_Type
)
12919 Has_Private_Declaration
(Etype
(Desig_Type
)))
12921 if No
(Discriminant_Specifications
(Decl
)) then
12923 ("cannot constrain access type if designated "
12924 & "type has constrained partial view", S
);
12936 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
12937 For_Access
=> True);
12939 elsif Is_Concurrent_Type
(Desig_Type
)
12940 and then not Is_Constrained
(Desig_Type
)
12942 Constrain_Concurrent
(Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
12945 Error_Msg_N
("invalid constraint on access type", S
);
12947 -- We simply ignore an invalid constraint
12949 Desig_Subtype
:= Desig_Type
;
12950 Constraint_OK
:= False;
12953 if No
(Def_Id
) then
12954 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
12956 Set_Ekind
(Def_Id
, E_Access_Subtype
);
12959 if Constraint_OK
then
12960 Set_Etype
(Def_Id
, Base_Type
(T
));
12962 if Is_Private_Type
(Desig_Type
) then
12963 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
12966 Set_Etype
(Def_Id
, Any_Type
);
12969 Set_Size_Info
(Def_Id
, T
);
12970 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
12971 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
12972 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12973 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
12975 Conditional_Delay
(Def_Id
, T
);
12977 -- AI-363 : Subtypes of general access types whose designated types have
12978 -- default discriminants are disallowed. In instances, the rule has to
12979 -- be checked against the actual, of which T is the subtype. In a
12980 -- generic body, the rule is checked assuming that the actual type has
12981 -- defaulted discriminants.
12983 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
12984 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
12985 and then Has_Defaulted_Discriminants
(Desig_Type
)
12987 if Ada_Version
< Ada_2005
then
12989 ("access subtype of general access type would not " &
12990 "be allowed in Ada 2005?y?", S
);
12993 ("access subtype of general access type not allowed", S
);
12996 Error_Msg_N
("\discriminants have defaults", S
);
12998 elsif Is_Access_Type
(T
)
12999 and then Is_Generic_Type
(Desig_Type
)
13000 and then Has_Discriminants
(Desig_Type
)
13001 and then In_Package_Body
(Current_Scope
)
13003 if Ada_Version
< Ada_2005
then
13005 ("access subtype would not be allowed in generic body "
13006 & "in Ada 2005?y?", S
);
13009 ("access subtype not allowed in generic body", S
);
13013 ("\designated type is a discriminated formal", S
);
13016 end Constrain_Access
;
13018 ---------------------
13019 -- Constrain_Array --
13020 ---------------------
13022 procedure Constrain_Array
13023 (Def_Id
: in out Entity_Id
;
13025 Related_Nod
: Node_Id
;
13026 Related_Id
: Entity_Id
;
13027 Suffix
: Character)
13029 C
: constant Node_Id
:= Constraint
(SI
);
13030 Number_Of_Constraints
: Nat
:= 0;
13033 Constraint_OK
: Boolean := True;
13036 T
:= Entity
(Subtype_Mark
(SI
));
13038 if Is_Access_Type
(T
) then
13039 T
:= Designated_Type
(T
);
13042 -- If an index constraint follows a subtype mark in a subtype indication
13043 -- then the type or subtype denoted by the subtype mark must not already
13044 -- impose an index constraint. The subtype mark must denote either an
13045 -- unconstrained array type or an access type whose designated type
13046 -- is such an array type... (RM 3.6.1)
13048 if Is_Constrained
(T
) then
13049 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
13050 Constraint_OK
:= False;
13053 S
:= First
(Constraints
(C
));
13054 while Present
(S
) loop
13055 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
13059 -- In either case, the index constraint must provide a discrete
13060 -- range for each index of the array type and the type of each
13061 -- discrete range must be the same as that of the corresponding
13062 -- index. (RM 3.6.1)
13064 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
13065 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
13066 Constraint_OK
:= False;
13069 S
:= First
(Constraints
(C
));
13070 Index
:= First_Index
(T
);
13073 -- Apply constraints to each index type
13075 for J
in 1 .. Number_Of_Constraints
loop
13076 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
13084 if No
(Def_Id
) then
13086 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
13087 Set_Parent
(Def_Id
, Related_Nod
);
13090 Set_Ekind
(Def_Id
, E_Array_Subtype
);
13093 Set_Size_Info
(Def_Id
, (T
));
13094 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13095 Set_Etype
(Def_Id
, Base_Type
(T
));
13097 if Constraint_OK
then
13098 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
13100 Set_First_Index
(Def_Id
, First_Index
(T
));
13103 Set_Is_Constrained
(Def_Id
, True);
13104 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
13105 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
13107 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
13108 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
13110 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13111 -- We need to initialize the attribute because if Def_Id is previously
13112 -- analyzed through a limited_with clause, it will have the attributes
13113 -- of an incomplete type, one of which is an Elist that overlaps the
13114 -- Packed_Array_Impl_Type field.
13116 Set_Packed_Array_Impl_Type
(Def_Id
, Empty
);
13118 -- Build a freeze node if parent still needs one. Also make sure that
13119 -- the Depends_On_Private status is set because the subtype will need
13120 -- reprocessing at the time the base type does, and also we must set a
13121 -- conditional delay.
13123 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
13124 Conditional_Delay
(Def_Id
, T
);
13125 end Constrain_Array
;
13127 ------------------------------
13128 -- Constrain_Component_Type --
13129 ------------------------------
13131 function Constrain_Component_Type
13133 Constrained_Typ
: Entity_Id
;
13134 Related_Node
: Node_Id
;
13136 Constraints
: Elist_Id
) return Entity_Id
13138 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
13139 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
13141 function Build_Constrained_Array_Type
13142 (Old_Type
: Entity_Id
) return Entity_Id
;
13143 -- If Old_Type is an array type, one of whose indexes is constrained
13144 -- by a discriminant, build an Itype whose constraint replaces the
13145 -- discriminant with its value in the constraint.
13147 function Build_Constrained_Discriminated_Type
13148 (Old_Type
: Entity_Id
) return Entity_Id
;
13149 -- Ditto for record components
13151 function Build_Constrained_Access_Type
13152 (Old_Type
: Entity_Id
) return Entity_Id
;
13153 -- Ditto for access types. Makes use of previous two functions, to
13154 -- constrain designated type.
13156 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
13157 -- T is an array or discriminated type, C is a list of constraints
13158 -- that apply to T. This routine builds the constrained subtype.
13160 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
13161 -- Returns True if Expr is a discriminant
13163 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
13164 -- Find the value of discriminant Discrim in Constraint
13166 -----------------------------------
13167 -- Build_Constrained_Access_Type --
13168 -----------------------------------
13170 function Build_Constrained_Access_Type
13171 (Old_Type
: Entity_Id
) return Entity_Id
13173 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
13175 Desig_Subtype
: Entity_Id
;
13179 -- if the original access type was not embedded in the enclosing
13180 -- type definition, there is no need to produce a new access
13181 -- subtype. In fact every access type with an explicit constraint
13182 -- generates an itype whose scope is the enclosing record.
13184 if not Is_Type
(Scope
(Old_Type
)) then
13187 elsif Is_Array_Type
(Desig_Type
) then
13188 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
13190 elsif Has_Discriminants
(Desig_Type
) then
13192 -- This may be an access type to an enclosing record type for
13193 -- which we are constructing the constrained components. Return
13194 -- the enclosing record subtype. This is not always correct,
13195 -- but avoids infinite recursion. ???
13197 Desig_Subtype
:= Any_Type
;
13199 for J
in reverse 0 .. Scope_Stack
.Last
loop
13200 Scop
:= Scope_Stack
.Table
(J
).Entity
;
13203 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
13205 Desig_Subtype
:= Scop
;
13208 exit when not Is_Type
(Scop
);
13211 if Desig_Subtype
= Any_Type
then
13213 Build_Constrained_Discriminated_Type
(Desig_Type
);
13220 if Desig_Subtype
/= Desig_Type
then
13222 -- The Related_Node better be here or else we won't be able
13223 -- to attach new itypes to a node in the tree.
13225 pragma Assert
(Present
(Related_Node
));
13227 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
13229 Set_Etype
(Itype
, Base_Type
(Old_Type
));
13230 Set_Size_Info
(Itype
, (Old_Type
));
13231 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
13232 Set_Depends_On_Private
(Itype
, Has_Private_Component
13234 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
13237 -- The new itype needs freezing when it depends on a not frozen
13238 -- type and the enclosing subtype needs freezing.
13240 if Has_Delayed_Freeze
(Constrained_Typ
)
13241 and then not Is_Frozen
(Constrained_Typ
)
13243 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
13251 end Build_Constrained_Access_Type
;
13253 ----------------------------------
13254 -- Build_Constrained_Array_Type --
13255 ----------------------------------
13257 function Build_Constrained_Array_Type
13258 (Old_Type
: Entity_Id
) return Entity_Id
13262 Old_Index
: Node_Id
;
13263 Range_Node
: Node_Id
;
13264 Constr_List
: List_Id
;
13266 Need_To_Create_Itype
: Boolean := False;
13269 Old_Index
:= First_Index
(Old_Type
);
13270 while Present
(Old_Index
) loop
13271 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
13273 if Is_Discriminant
(Lo_Expr
)
13275 Is_Discriminant
(Hi_Expr
)
13277 Need_To_Create_Itype
:= True;
13280 Next_Index
(Old_Index
);
13283 if Need_To_Create_Itype
then
13284 Constr_List
:= New_List
;
13286 Old_Index
:= First_Index
(Old_Type
);
13287 while Present
(Old_Index
) loop
13288 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
13290 if Is_Discriminant
(Lo_Expr
) then
13291 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
13294 if Is_Discriminant
(Hi_Expr
) then
13295 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
13300 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
13302 Append
(Range_Node
, To
=> Constr_List
);
13304 Next_Index
(Old_Index
);
13307 return Build_Subtype
(Old_Type
, Constr_List
);
13312 end Build_Constrained_Array_Type
;
13314 ------------------------------------------
13315 -- Build_Constrained_Discriminated_Type --
13316 ------------------------------------------
13318 function Build_Constrained_Discriminated_Type
13319 (Old_Type
: Entity_Id
) return Entity_Id
13322 Constr_List
: List_Id
;
13323 Old_Constraint
: Elmt_Id
;
13325 Need_To_Create_Itype
: Boolean := False;
13328 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
13329 while Present
(Old_Constraint
) loop
13330 Expr
:= Node
(Old_Constraint
);
13332 if Is_Discriminant
(Expr
) then
13333 Need_To_Create_Itype
:= True;
13336 Next_Elmt
(Old_Constraint
);
13339 if Need_To_Create_Itype
then
13340 Constr_List
:= New_List
;
13342 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
13343 while Present
(Old_Constraint
) loop
13344 Expr
:= Node
(Old_Constraint
);
13346 if Is_Discriminant
(Expr
) then
13347 Expr
:= Get_Discr_Value
(Expr
);
13350 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
13352 Next_Elmt
(Old_Constraint
);
13355 return Build_Subtype
(Old_Type
, Constr_List
);
13360 end Build_Constrained_Discriminated_Type
;
13362 -------------------
13363 -- Build_Subtype --
13364 -------------------
13366 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
13368 Subtyp_Decl
: Node_Id
;
13369 Def_Id
: Entity_Id
;
13370 Btyp
: Entity_Id
:= Base_Type
(T
);
13373 -- The Related_Node better be here or else we won't be able to
13374 -- attach new itypes to a node in the tree.
13376 pragma Assert
(Present
(Related_Node
));
13378 -- If the view of the component's type is incomplete or private
13379 -- with unknown discriminants, then the constraint must be applied
13380 -- to the full type.
13382 if Has_Unknown_Discriminants
(Btyp
)
13383 and then Present
(Underlying_Type
(Btyp
))
13385 Btyp
:= Underlying_Type
(Btyp
);
13389 Make_Subtype_Indication
(Loc
,
13390 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
13391 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
13393 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
13396 Make_Subtype_Declaration
(Loc
,
13397 Defining_Identifier
=> Def_Id
,
13398 Subtype_Indication
=> Indic
);
13400 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
13402 -- Itypes must be analyzed with checks off (see package Itypes)
13404 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
13409 ---------------------
13410 -- Get_Discr_Value --
13411 ---------------------
13413 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
13418 -- The discriminant may be declared for the type, in which case we
13419 -- find it by iterating over the list of discriminants. If the
13420 -- discriminant is inherited from a parent type, it appears as the
13421 -- corresponding discriminant of the current type. This will be the
13422 -- case when constraining an inherited component whose constraint is
13423 -- given by a discriminant of the parent.
13425 D
:= First_Discriminant
(Typ
);
13426 E
:= First_Elmt
(Constraints
);
13428 while Present
(D
) loop
13429 if D
= Entity
(Discrim
)
13430 or else D
= CR_Discriminant
(Entity
(Discrim
))
13431 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
13436 Next_Discriminant
(D
);
13440 -- The Corresponding_Discriminant mechanism is incomplete, because
13441 -- the correspondence between new and old discriminants is not one
13442 -- to one: one new discriminant can constrain several old ones. In
13443 -- that case, scan sequentially the stored_constraint, the list of
13444 -- discriminants of the parents, and the constraints.
13446 -- Previous code checked for the present of the Stored_Constraint
13447 -- list for the derived type, but did not use it at all. Should it
13448 -- be present when the component is a discriminated task type?
13450 if Is_Derived_Type
(Typ
)
13451 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
13453 D
:= First_Discriminant
(Etype
(Typ
));
13454 E
:= First_Elmt
(Constraints
);
13455 while Present
(D
) loop
13456 if D
= Entity
(Discrim
) then
13460 Next_Discriminant
(D
);
13465 -- Something is wrong if we did not find the value
13467 raise Program_Error
;
13468 end Get_Discr_Value
;
13470 ---------------------
13471 -- Is_Discriminant --
13472 ---------------------
13474 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
13475 Discrim_Scope
: Entity_Id
;
13478 if Denotes_Discriminant
(Expr
) then
13479 Discrim_Scope
:= Scope
(Entity
(Expr
));
13481 -- Either we have a reference to one of Typ's discriminants,
13483 pragma Assert
(Discrim_Scope
= Typ
13485 -- or to the discriminants of the parent type, in the case
13486 -- of a derivation of a tagged type with variants.
13488 or else Discrim_Scope
= Etype
(Typ
)
13489 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
13491 -- or same as above for the case where the discriminants
13492 -- were declared in Typ's private view.
13494 or else (Is_Private_Type
(Discrim_Scope
)
13495 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
13497 -- or else we are deriving from the full view and the
13498 -- discriminant is declared in the private entity.
13500 or else (Is_Private_Type
(Typ
)
13501 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
13503 -- Or we are constrained the corresponding record of a
13504 -- synchronized type that completes a private declaration.
13506 or else (Is_Concurrent_Record_Type
(Typ
)
13508 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
13510 -- or we have a class-wide type, in which case make sure the
13511 -- discriminant found belongs to the root type.
13513 or else (Is_Class_Wide_Type
(Typ
)
13514 and then Etype
(Typ
) = Discrim_Scope
));
13519 -- In all other cases we have something wrong
13522 end Is_Discriminant
;
13524 -- Start of processing for Constrain_Component_Type
13527 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
13528 and then Comes_From_Source
(Parent
(Comp
))
13529 and then Comes_From_Source
13530 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
13533 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
13535 return Compon_Type
;
13537 elsif Is_Array_Type
(Compon_Type
) then
13538 return Build_Constrained_Array_Type
(Compon_Type
);
13540 elsif Has_Discriminants
(Compon_Type
) then
13541 return Build_Constrained_Discriminated_Type
(Compon_Type
);
13543 elsif Is_Access_Type
(Compon_Type
) then
13544 return Build_Constrained_Access_Type
(Compon_Type
);
13547 return Compon_Type
;
13549 end Constrain_Component_Type
;
13551 --------------------------
13552 -- Constrain_Concurrent --
13553 --------------------------
13555 -- For concurrent types, the associated record value type carries the same
13556 -- discriminants, so when we constrain a concurrent type, we must constrain
13557 -- the corresponding record type as well.
13559 procedure Constrain_Concurrent
13560 (Def_Id
: in out Entity_Id
;
13562 Related_Nod
: Node_Id
;
13563 Related_Id
: Entity_Id
;
13564 Suffix
: Character)
13566 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13567 -- case of a private subtype (needed when only doing semantic analysis).
13569 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
13573 if Is_Access_Type
(T_Ent
) then
13574 T_Ent
:= Designated_Type
(T_Ent
);
13577 T_Val
:= Corresponding_Record_Type
(T_Ent
);
13579 if Present
(T_Val
) then
13581 if No
(Def_Id
) then
13582 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
13584 -- Elaborate itype now, as it may be used in a subsequent
13585 -- synchronized operation in another scope.
13587 if Nkind
(Related_Nod
) = N_Full_Type_Declaration
then
13588 Build_Itype_Reference
(Def_Id
, Related_Nod
);
13592 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
13593 Set_First_Private_Entity
(Def_Id
, First_Private_Entity
(T_Ent
));
13595 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
13596 Set_Corresponding_Record_Type
(Def_Id
,
13597 Constrain_Corresponding_Record
(Def_Id
, T_Val
, Related_Nod
));
13600 -- If there is no associated record, expansion is disabled and this
13601 -- is a generic context. Create a subtype in any case, so that
13602 -- semantic analysis can proceed.
13604 if No
(Def_Id
) then
13605 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
13608 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
13610 end Constrain_Concurrent
;
13612 ------------------------------------
13613 -- Constrain_Corresponding_Record --
13614 ------------------------------------
13616 function Constrain_Corresponding_Record
13617 (Prot_Subt
: Entity_Id
;
13618 Corr_Rec
: Entity_Id
;
13619 Related_Nod
: Node_Id
) return Entity_Id
13621 T_Sub
: constant Entity_Id
:=
13622 Create_Itype
(E_Record_Subtype
, Related_Nod
, Corr_Rec
, 'C');
13625 Set_Etype
(T_Sub
, Corr_Rec
);
13626 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
13627 Set_Is_Constrained
(T_Sub
, True);
13628 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
13629 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
13631 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
13632 Set_Discriminant_Constraint
13633 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
13634 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
13635 Create_Constrained_Components
13636 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
13639 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
13641 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
13642 Conditional_Delay
(T_Sub
, Corr_Rec
);
13645 -- This is a component subtype: it will be frozen in the context of
13646 -- the enclosing record's init_proc, so that discriminant references
13647 -- are resolved to discriminals. (Note: we used to skip freezing
13648 -- altogether in that case, which caused errors downstream for
13649 -- components of a bit packed array type).
13651 Set_Has_Delayed_Freeze
(T_Sub
);
13655 end Constrain_Corresponding_Record
;
13657 -----------------------
13658 -- Constrain_Decimal --
13659 -----------------------
13661 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
13662 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13663 C
: constant Node_Id
:= Constraint
(S
);
13664 Loc
: constant Source_Ptr
:= Sloc
(C
);
13665 Range_Expr
: Node_Id
;
13666 Digits_Expr
: Node_Id
;
13671 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
13673 if Nkind
(C
) = N_Range_Constraint
then
13674 Range_Expr
:= Range_Expression
(C
);
13675 Digits_Val
:= Digits_Value
(T
);
13678 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
13680 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
13682 Digits_Expr
:= Digits_Expression
(C
);
13683 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
13685 Check_Digits_Expression
(Digits_Expr
);
13686 Digits_Val
:= Expr_Value
(Digits_Expr
);
13688 if Digits_Val
> Digits_Value
(T
) then
13690 ("digits expression is incompatible with subtype", C
);
13691 Digits_Val
:= Digits_Value
(T
);
13694 if Present
(Range_Constraint
(C
)) then
13695 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
13697 Range_Expr
:= Empty
;
13701 Set_Etype
(Def_Id
, Base_Type
(T
));
13702 Set_Size_Info
(Def_Id
, (T
));
13703 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13704 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
13705 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
13706 Set_Small_Value
(Def_Id
, Small_Value
(T
));
13707 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
13708 Set_Digits_Value
(Def_Id
, Digits_Val
);
13710 -- Manufacture range from given digits value if no range present
13712 if No
(Range_Expr
) then
13713 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
13717 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
13719 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
13722 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
13723 Set_Discrete_RM_Size
(Def_Id
);
13725 -- Unconditionally delay the freeze, since we cannot set size
13726 -- information in all cases correctly until the freeze point.
13728 Set_Has_Delayed_Freeze
(Def_Id
);
13729 end Constrain_Decimal
;
13731 ----------------------------------
13732 -- Constrain_Discriminated_Type --
13733 ----------------------------------
13735 procedure Constrain_Discriminated_Type
13736 (Def_Id
: Entity_Id
;
13738 Related_Nod
: Node_Id
;
13739 For_Access
: Boolean := False)
13741 E
: Entity_Id
:= Entity
(Subtype_Mark
(S
));
13744 procedure Fixup_Bad_Constraint
;
13745 -- Called after finding a bad constraint, and after having posted an
13746 -- appropriate error message. The goal is to leave type Def_Id in as
13747 -- reasonable state as possible.
13749 --------------------------
13750 -- Fixup_Bad_Constraint --
13751 --------------------------
13753 procedure Fixup_Bad_Constraint
is
13755 -- Set a reasonable Ekind for the entity, including incomplete types.
13757 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
13759 -- Set Etype to the known type, to reduce chances of cascaded errors
13761 Set_Etype
(Def_Id
, E
);
13762 Set_Error_Posted
(Def_Id
);
13763 end Fixup_Bad_Constraint
;
13768 Constr
: Elist_Id
:= New_Elmt_List
;
13770 -- Start of processing for Constrain_Discriminated_Type
13773 C
:= Constraint
(S
);
13775 -- A discriminant constraint is only allowed in a subtype indication,
13776 -- after a subtype mark. This subtype mark must denote either a type
13777 -- with discriminants, or an access type whose designated type is a
13778 -- type with discriminants. A discriminant constraint specifies the
13779 -- values of these discriminants (RM 3.7.2(5)).
13781 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
13783 if Is_Access_Type
(T
) then
13784 T
:= Designated_Type
(T
);
13787 -- In an instance it may be necessary to retrieve the full view of a
13788 -- type with unknown discriminants, or a full view with defaulted
13789 -- discriminants. In other contexts the constraint is illegal.
13792 and then Is_Private_Type
(T
)
13793 and then Present
(Full_View
(T
))
13795 (Has_Unknown_Discriminants
(T
)
13797 (not Has_Discriminants
(T
)
13798 and then Has_Discriminants
(Full_View
(T
))
13799 and then Present
(Discriminant_Default_Value
13800 (First_Discriminant
(Full_View
(T
))))))
13802 T
:= Full_View
(T
);
13803 E
:= Full_View
(E
);
13806 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13807 -- generating an error for access-to-incomplete subtypes.
13809 if Ada_Version
>= Ada_2005
13810 and then Ekind
(T
) = E_Incomplete_Type
13811 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
13812 and then not Is_Itype
(Def_Id
)
13814 -- A little sanity check: emit an error message if the type has
13815 -- discriminants to begin with. Type T may be a regular incomplete
13816 -- type or imported via a limited with clause.
13818 if Has_Discriminants
(T
)
13819 or else (From_Limited_With
(T
)
13820 and then Present
(Non_Limited_View
(T
))
13821 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
13822 N_Full_Type_Declaration
13823 and then Present
(Discriminant_Specifications
13824 (Parent
(Non_Limited_View
(T
)))))
13827 ("(Ada 2005) incomplete subtype may not be constrained", C
);
13829 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
13832 Fixup_Bad_Constraint
;
13835 -- Check that the type has visible discriminants. The type may be
13836 -- a private type with unknown discriminants whose full view has
13837 -- discriminants which are invisible.
13839 elsif not Has_Discriminants
(T
)
13841 (Has_Unknown_Discriminants
(T
)
13842 and then Is_Private_Type
(T
))
13844 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
13845 Fixup_Bad_Constraint
;
13848 elsif Is_Constrained
(E
)
13849 or else (Ekind
(E
) = E_Class_Wide_Subtype
13850 and then Present
(Discriminant_Constraint
(E
)))
13852 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
13853 Fixup_Bad_Constraint
;
13857 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13858 -- applies to the base type.
13860 T
:= Base_Type
(T
);
13862 Constr
:= Build_Discriminant_Constraints
(T
, S
);
13864 -- If the list returned was empty we had an error in building the
13865 -- discriminant constraint. We have also already signalled an error
13866 -- in the incomplete type case
13868 if Is_Empty_Elmt_List
(Constr
) then
13869 Fixup_Bad_Constraint
;
13873 Build_Discriminated_Subtype
(T
, Def_Id
, Constr
, Related_Nod
, For_Access
);
13874 end Constrain_Discriminated_Type
;
13876 ---------------------------
13877 -- Constrain_Enumeration --
13878 ---------------------------
13880 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
13881 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13882 C
: constant Node_Id
:= Constraint
(S
);
13885 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13887 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
13889 Set_Etype
(Def_Id
, Base_Type
(T
));
13890 Set_Size_Info
(Def_Id
, (T
));
13891 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13892 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13894 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13896 Set_Discrete_RM_Size
(Def_Id
);
13897 end Constrain_Enumeration
;
13899 ----------------------
13900 -- Constrain_Float --
13901 ----------------------
13903 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
13904 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13910 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
13912 Set_Etype
(Def_Id
, Base_Type
(T
));
13913 Set_Size_Info
(Def_Id
, (T
));
13914 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13916 -- Process the constraint
13918 C
:= Constraint
(S
);
13920 -- Digits constraint present
13922 if Nkind
(C
) = N_Digits_Constraint
then
13924 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
13925 Check_Restriction
(No_Obsolescent_Features
, C
);
13927 if Warn_On_Obsolescent_Feature
then
13929 ("subtype digits constraint is an " &
13930 "obsolescent feature (RM J.3(8))?j?", C
);
13933 D
:= Digits_Expression
(C
);
13934 Analyze_And_Resolve
(D
, Any_Integer
);
13935 Check_Digits_Expression
(D
);
13936 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
13938 -- Check that digits value is in range. Obviously we can do this
13939 -- at compile time, but it is strictly a runtime check, and of
13940 -- course there is an ACVC test that checks this.
13942 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
13943 Error_Msg_Uint_1
:= Digits_Value
(T
);
13944 Error_Msg_N
("??digits value is too large, maximum is ^", D
);
13946 Make_Raise_Constraint_Error
(Sloc
(D
),
13947 Reason
=> CE_Range_Check_Failed
);
13948 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13951 C
:= Range_Constraint
(C
);
13953 -- No digits constraint present
13956 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
13959 -- Range constraint present
13961 if Nkind
(C
) = N_Range_Constraint
then
13962 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13964 -- No range constraint present
13967 pragma Assert
(No
(C
));
13968 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13971 Set_Is_Constrained
(Def_Id
);
13972 end Constrain_Float
;
13974 ---------------------
13975 -- Constrain_Index --
13976 ---------------------
13978 procedure Constrain_Index
13981 Related_Nod
: Node_Id
;
13982 Related_Id
: Entity_Id
;
13983 Suffix
: Character;
13984 Suffix_Index
: Nat
)
13986 Def_Id
: Entity_Id
;
13987 R
: Node_Id
:= Empty
;
13988 T
: constant Entity_Id
:= Etype
(Index
);
13992 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
13993 Set_Etype
(Def_Id
, Base_Type
(T
));
13995 if Nkind
(S
) = N_Range
13997 (Nkind
(S
) = N_Attribute_Reference
13998 and then Attribute_Name
(S
) = Name_Range
)
14000 -- A Range attribute will be transformed into N_Range by Resolve
14006 Process_Range_Expr_In_Decl
(R
, T
);
14008 if not Error_Posted
(S
)
14010 (Nkind
(S
) /= N_Range
14011 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
14012 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
14014 if Base_Type
(T
) /= Any_Type
14015 and then Etype
(Low_Bound
(S
)) /= Any_Type
14016 and then Etype
(High_Bound
(S
)) /= Any_Type
14018 Error_Msg_N
("range expected", S
);
14022 elsif Nkind
(S
) = N_Subtype_Indication
then
14024 -- The parser has verified that this is a discrete indication
14026 Resolve_Discrete_Subtype_Indication
(S
, T
);
14027 Bad_Predicated_Subtype_Use
14028 ("subtype& has predicate, not allowed in index constraint",
14029 S
, Entity
(Subtype_Mark
(S
)));
14031 R
:= Range_Expression
(Constraint
(S
));
14033 -- Capture values of bounds and generate temporaries for them if
14034 -- needed, since checks may cause duplication of the expressions
14035 -- which must not be reevaluated.
14037 -- The forced evaluation removes side effects from expressions, which
14038 -- should occur also in GNATprove mode. Otherwise, we end up with
14039 -- unexpected insertions of actions at places where this is not
14040 -- supposed to occur, e.g. on default parameters of a call.
14042 if Expander_Active
or GNATprove_Mode
then
14044 (Low_Bound
(R
), Related_Id
=> Def_Id
, Is_Low_Bound
=> True);
14046 (High_Bound
(R
), Related_Id
=> Def_Id
, Is_High_Bound
=> True);
14049 elsif Nkind
(S
) = N_Discriminant_Association
then
14051 -- Syntactically valid in subtype indication
14053 Error_Msg_N
("invalid index constraint", S
);
14054 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
14057 -- Subtype_Mark case, no anonymous subtypes to construct
14062 if Is_Entity_Name
(S
) then
14063 if not Is_Type
(Entity
(S
)) then
14064 Error_Msg_N
("expect subtype mark for index constraint", S
);
14066 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
14067 Wrong_Type
(S
, Base_Type
(T
));
14069 -- Check error of subtype with predicate in index constraint
14072 Bad_Predicated_Subtype_Use
14073 ("subtype& has predicate, not allowed in index constraint",
14080 Error_Msg_N
("invalid index constraint", S
);
14081 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
14086 -- Complete construction of the Itype
14088 if Is_Modular_Integer_Type
(T
) then
14089 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
14091 elsif Is_Integer_Type
(T
) then
14092 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
14095 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
14096 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
14097 Set_First_Literal
(Def_Id
, First_Literal
(T
));
14100 Set_Size_Info
(Def_Id
, (T
));
14101 Set_RM_Size
(Def_Id
, RM_Size
(T
));
14102 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
14104 Set_Scalar_Range
(Def_Id
, R
);
14106 Set_Etype
(S
, Def_Id
);
14107 Set_Discrete_RM_Size
(Def_Id
);
14108 end Constrain_Index
;
14110 -----------------------
14111 -- Constrain_Integer --
14112 -----------------------
14114 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
14115 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
14116 C
: constant Node_Id
:= Constraint
(S
);
14119 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
14121 if Is_Modular_Integer_Type
(T
) then
14122 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
14124 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
14127 Set_Etype
(Def_Id
, Base_Type
(T
));
14128 Set_Size_Info
(Def_Id
, (T
));
14129 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
14130 Set_Discrete_RM_Size
(Def_Id
);
14131 end Constrain_Integer
;
14133 ------------------------------
14134 -- Constrain_Ordinary_Fixed --
14135 ------------------------------
14137 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
14138 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
14144 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
14145 Set_Etype
(Def_Id
, Base_Type
(T
));
14146 Set_Size_Info
(Def_Id
, (T
));
14147 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
14148 Set_Small_Value
(Def_Id
, Small_Value
(T
));
14150 -- Process the constraint
14152 C
:= Constraint
(S
);
14154 -- Delta constraint present
14156 if Nkind
(C
) = N_Delta_Constraint
then
14158 Check_SPARK_05_Restriction
("delta constraint is not allowed", S
);
14159 Check_Restriction
(No_Obsolescent_Features
, C
);
14161 if Warn_On_Obsolescent_Feature
then
14163 ("subtype delta constraint is an " &
14164 "obsolescent feature (RM J.3(7))?j?");
14167 D
:= Delta_Expression
(C
);
14168 Analyze_And_Resolve
(D
, Any_Real
);
14169 Check_Delta_Expression
(D
);
14170 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
14172 -- Check that delta value is in range. Obviously we can do this
14173 -- at compile time, but it is strictly a runtime check, and of
14174 -- course there is an ACVC test that checks this.
14176 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
14177 Error_Msg_N
("??delta value is too small", D
);
14179 Make_Raise_Constraint_Error
(Sloc
(D
),
14180 Reason
=> CE_Range_Check_Failed
);
14181 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
14184 C
:= Range_Constraint
(C
);
14186 -- No delta constraint present
14189 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
14192 -- Range constraint present
14194 if Nkind
(C
) = N_Range_Constraint
then
14195 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
14197 -- No range constraint present
14200 pragma Assert
(No
(C
));
14201 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
14204 Set_Discrete_RM_Size
(Def_Id
);
14206 -- Unconditionally delay the freeze, since we cannot set size
14207 -- information in all cases correctly until the freeze point.
14209 Set_Has_Delayed_Freeze
(Def_Id
);
14210 end Constrain_Ordinary_Fixed
;
14212 -----------------------
14213 -- Contain_Interface --
14214 -----------------------
14216 function Contain_Interface
14217 (Iface
: Entity_Id
;
14218 Ifaces
: Elist_Id
) return Boolean
14220 Iface_Elmt
: Elmt_Id
;
14223 if Present
(Ifaces
) then
14224 Iface_Elmt
:= First_Elmt
(Ifaces
);
14225 while Present
(Iface_Elmt
) loop
14226 if Node
(Iface_Elmt
) = Iface
then
14230 Next_Elmt
(Iface_Elmt
);
14235 end Contain_Interface
;
14237 ---------------------------
14238 -- Convert_Scalar_Bounds --
14239 ---------------------------
14241 procedure Convert_Scalar_Bounds
14243 Parent_Type
: Entity_Id
;
14244 Derived_Type
: Entity_Id
;
14247 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
14254 -- Defend against previous errors
14256 if No
(Scalar_Range
(Derived_Type
)) then
14257 Check_Error_Detected
;
14261 Lo
:= Build_Scalar_Bound
14262 (Type_Low_Bound
(Derived_Type
),
14263 Parent_Type
, Implicit_Base
);
14265 Hi
:= Build_Scalar_Bound
14266 (Type_High_Bound
(Derived_Type
),
14267 Parent_Type
, Implicit_Base
);
14274 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
14276 Set_Parent
(Rng
, N
);
14277 Set_Scalar_Range
(Derived_Type
, Rng
);
14279 -- Analyze the bounds
14281 Analyze_And_Resolve
(Lo
, Implicit_Base
);
14282 Analyze_And_Resolve
(Hi
, Implicit_Base
);
14284 -- Analyze the range itself, except that we do not analyze it if
14285 -- the bounds are real literals, and we have a fixed-point type.
14286 -- The reason for this is that we delay setting the bounds in this
14287 -- case till we know the final Small and Size values (see circuit
14288 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14290 if Is_Fixed_Point_Type
(Parent_Type
)
14291 and then Nkind
(Lo
) = N_Real_Literal
14292 and then Nkind
(Hi
) = N_Real_Literal
14296 -- Here we do the analysis of the range
14298 -- Note: we do this manually, since if we do a normal Analyze and
14299 -- Resolve call, there are problems with the conversions used for
14300 -- the derived type range.
14303 Set_Etype
(Rng
, Implicit_Base
);
14304 Set_Analyzed
(Rng
, True);
14306 end Convert_Scalar_Bounds
;
14308 -------------------
14309 -- Copy_And_Swap --
14310 -------------------
14312 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
14314 -- Initialize new full declaration entity by copying the pertinent
14315 -- fields of the corresponding private declaration entity.
14317 -- We temporarily set Ekind to a value appropriate for a type to
14318 -- avoid assert failures in Einfo from checking for setting type
14319 -- attributes on something that is not a type. Ekind (Priv) is an
14320 -- appropriate choice, since it allowed the attributes to be set
14321 -- in the first place. This Ekind value will be modified later.
14323 Set_Ekind
(Full
, Ekind
(Priv
));
14325 -- Also set Etype temporarily to Any_Type, again, in the absence
14326 -- of errors, it will be properly reset, and if there are errors,
14327 -- then we want a value of Any_Type to remain.
14329 Set_Etype
(Full
, Any_Type
);
14331 -- Now start copying attributes
14333 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
14335 if Has_Discriminants
(Full
) then
14336 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
14337 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
14340 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
14341 Set_Homonym
(Full
, Homonym
(Priv
));
14342 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
14343 Set_Is_Public
(Full
, Is_Public
(Priv
));
14344 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
14345 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
14346 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
14347 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
14348 Set_Has_Pragma_Unreferenced_Objects
14349 (Full
, Has_Pragma_Unreferenced_Objects
14352 Conditional_Delay
(Full
, Priv
);
14354 if Is_Tagged_Type
(Full
) then
14355 Set_Direct_Primitive_Operations
14356 (Full
, Direct_Primitive_Operations
(Priv
));
14357 Set_No_Tagged_Streams_Pragma
14358 (Full
, No_Tagged_Streams_Pragma
(Priv
));
14360 if Is_Base_Type
(Priv
) then
14361 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
14365 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
14366 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
14367 Set_Scope
(Full
, Scope
(Priv
));
14368 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
14369 Set_First_Entity
(Full
, First_Entity
(Priv
));
14370 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
14372 -- If access types have been recorded for later handling, keep them in
14373 -- the full view so that they get handled when the full view freeze
14374 -- node is expanded.
14376 if Present
(Freeze_Node
(Priv
))
14377 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
14379 Ensure_Freeze_Node
(Full
);
14380 Set_Access_Types_To_Process
14381 (Freeze_Node
(Full
),
14382 Access_Types_To_Process
(Freeze_Node
(Priv
)));
14385 -- Swap the two entities. Now Private is the full type entity and Full
14386 -- is the private one. They will be swapped back at the end of the
14387 -- private part. This swapping ensures that the entity that is visible
14388 -- in the private part is the full declaration.
14390 Exchange_Entities
(Priv
, Full
);
14391 Append_Entity
(Full
, Scope
(Full
));
14394 -------------------------------------
14395 -- Copy_Array_Base_Type_Attributes --
14396 -------------------------------------
14398 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
14400 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
14401 Set_Component_Type
(T1
, Component_Type
(T2
));
14402 Set_Component_Size
(T1
, Component_Size
(T2
));
14403 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
14404 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
14405 Propagate_Concurrent_Flags
(T1
, T2
);
14406 Set_Is_Packed
(T1
, Is_Packed
(T2
));
14407 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
14408 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
14409 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
14410 end Copy_Array_Base_Type_Attributes
;
14412 -----------------------------------
14413 -- Copy_Array_Subtype_Attributes --
14414 -----------------------------------
14416 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
14418 Set_Size_Info
(T1
, T2
);
14420 Set_First_Index
(T1
, First_Index
(T2
));
14421 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
14422 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
14423 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
14424 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
14425 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
14426 Inherit_Rep_Item_Chain
(T1
, T2
);
14427 Set_Convention
(T1
, Convention
(T2
));
14428 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
14429 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
14430 Set_Packed_Array_Impl_Type
(T1
, Packed_Array_Impl_Type
(T2
));
14431 end Copy_Array_Subtype_Attributes
;
14433 -----------------------------------
14434 -- Create_Constrained_Components --
14435 -----------------------------------
14437 procedure Create_Constrained_Components
14439 Decl_Node
: Node_Id
;
14441 Constraints
: Elist_Id
)
14443 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
14444 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
14445 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
14446 Assoc_List
: constant List_Id
:= New_List
;
14447 Discr_Val
: Elmt_Id
;
14451 Is_Static
: Boolean := True;
14453 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
14454 -- Collect parent type components that do not appear in a variant part
14456 procedure Create_All_Components
;
14457 -- Iterate over Comp_List to create the components of the subtype
14459 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
14460 -- Creates a new component from Old_Compon, copying all the fields from
14461 -- it, including its Etype, inserts the new component in the Subt entity
14462 -- chain and returns the new component.
14464 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
14465 -- If true, and discriminants are static, collect only components from
14466 -- variants selected by discriminant values.
14468 ------------------------------
14469 -- Collect_Fixed_Components --
14470 ------------------------------
14472 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
14474 -- Build association list for discriminants, and find components of the
14475 -- variant part selected by the values of the discriminants.
14477 Old_C
:= First_Discriminant
(Typ
);
14478 Discr_Val
:= First_Elmt
(Constraints
);
14479 while Present
(Old_C
) loop
14480 Append_To
(Assoc_List
,
14481 Make_Component_Association
(Loc
,
14482 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
14483 Expression
=> New_Copy
(Node
(Discr_Val
))));
14485 Next_Elmt
(Discr_Val
);
14486 Next_Discriminant
(Old_C
);
14489 -- The tag and the possible parent component are unconditionally in
14492 if Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
14493 Old_C
:= First_Component
(Typ
);
14494 while Present
(Old_C
) loop
14495 if Nam_In
(Chars
(Old_C
), Name_uTag
, Name_uParent
) then
14496 Append_Elmt
(Old_C
, Comp_List
);
14499 Next_Component
(Old_C
);
14502 end Collect_Fixed_Components
;
14504 ---------------------------
14505 -- Create_All_Components --
14506 ---------------------------
14508 procedure Create_All_Components
is
14512 Comp
:= First_Elmt
(Comp_List
);
14513 while Present
(Comp
) loop
14514 Old_C
:= Node
(Comp
);
14515 New_C
:= Create_Component
(Old_C
);
14519 Constrain_Component_Type
14520 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
14521 Set_Is_Public
(New_C
, Is_Public
(Subt
));
14525 end Create_All_Components
;
14527 ----------------------
14528 -- Create_Component --
14529 ----------------------
14531 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
14532 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
14535 if Ekind
(Old_Compon
) = E_Discriminant
14536 and then Is_Completely_Hidden
(Old_Compon
)
14538 -- This is a shadow discriminant created for a discriminant of
14539 -- the parent type, which needs to be present in the subtype.
14540 -- Give the shadow discriminant an internal name that cannot
14541 -- conflict with that of visible components.
14543 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
14546 -- Set the parent so we have a proper link for freezing etc. This is
14547 -- not a real parent pointer, since of course our parent does not own
14548 -- up to us and reference us, we are an illegitimate child of the
14549 -- original parent.
14551 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
14553 -- We do not want this node marked as Comes_From_Source, since
14554 -- otherwise it would get first class status and a separate cross-
14555 -- reference line would be generated. Illegitimate children do not
14556 -- rate such recognition.
14558 Set_Comes_From_Source
(New_Compon
, False);
14560 -- But it is a real entity, and a birth certificate must be properly
14561 -- registered by entering it into the entity list.
14563 Enter_Name
(New_Compon
);
14566 end Create_Component
;
14568 -----------------------
14569 -- Is_Variant_Record --
14570 -----------------------
14572 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
14574 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
14575 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
14576 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
14579 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
14580 end Is_Variant_Record
;
14582 -- Start of processing for Create_Constrained_Components
14585 pragma Assert
(Subt
/= Base_Type
(Subt
));
14586 pragma Assert
(Typ
= Base_Type
(Typ
));
14588 Set_First_Entity
(Subt
, Empty
);
14589 Set_Last_Entity
(Subt
, Empty
);
14591 -- Check whether constraint is fully static, in which case we can
14592 -- optimize the list of components.
14594 Discr_Val
:= First_Elmt
(Constraints
);
14595 while Present
(Discr_Val
) loop
14596 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
14597 Is_Static
:= False;
14601 Next_Elmt
(Discr_Val
);
14604 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
14608 -- Inherit the discriminants of the parent type
14610 Add_Discriminants
: declare
14616 Old_C
:= First_Discriminant
(Typ
);
14618 while Present
(Old_C
) loop
14619 Num_Disc
:= Num_Disc
+ 1;
14620 New_C
:= Create_Component
(Old_C
);
14621 Set_Is_Public
(New_C
, Is_Public
(Subt
));
14622 Next_Discriminant
(Old_C
);
14625 -- For an untagged derived subtype, the number of discriminants may
14626 -- be smaller than the number of inherited discriminants, because
14627 -- several of them may be renamed by a single new discriminant or
14628 -- constrained. In this case, add the hidden discriminants back into
14629 -- the subtype, because they need to be present if the optimizer of
14630 -- the GCC 4.x back-end decides to break apart assignments between
14631 -- objects using the parent view into member-wise assignments.
14635 if Is_Derived_Type
(Typ
)
14636 and then not Is_Tagged_Type
(Typ
)
14638 Old_C
:= First_Stored_Discriminant
(Typ
);
14640 while Present
(Old_C
) loop
14641 Num_Gird
:= Num_Gird
+ 1;
14642 Next_Stored_Discriminant
(Old_C
);
14646 if Num_Gird
> Num_Disc
then
14648 -- Find out multiple uses of new discriminants, and add hidden
14649 -- components for the extra renamed discriminants. We recognize
14650 -- multiple uses through the Corresponding_Discriminant of a
14651 -- new discriminant: if it constrains several old discriminants,
14652 -- this field points to the last one in the parent type. The
14653 -- stored discriminants of the derived type have the same name
14654 -- as those of the parent.
14658 New_Discr
: Entity_Id
;
14659 Old_Discr
: Entity_Id
;
14662 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
14663 Old_Discr
:= First_Stored_Discriminant
(Typ
);
14664 while Present
(Constr
) loop
14665 if Is_Entity_Name
(Node
(Constr
))
14666 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
14668 New_Discr
:= Entity
(Node
(Constr
));
14670 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
14673 -- The new discriminant has been used to rename a
14674 -- subsequent old discriminant. Introduce a shadow
14675 -- component for the current old discriminant.
14677 New_C
:= Create_Component
(Old_Discr
);
14678 Set_Original_Record_Component
(New_C
, Old_Discr
);
14682 -- The constraint has eliminated the old discriminant.
14683 -- Introduce a shadow component.
14685 New_C
:= Create_Component
(Old_Discr
);
14686 Set_Original_Record_Component
(New_C
, Old_Discr
);
14689 Next_Elmt
(Constr
);
14690 Next_Stored_Discriminant
(Old_Discr
);
14694 end Add_Discriminants
;
14697 and then Is_Variant_Record
(Typ
)
14699 Collect_Fixed_Components
(Typ
);
14701 Gather_Components
(
14703 Component_List
(Type_Definition
(Parent
(Typ
))),
14704 Governed_By
=> Assoc_List
,
14706 Report_Errors
=> Errors
);
14707 pragma Assert
(not Errors
14708 or else Serious_Errors_Detected
> 0);
14710 Create_All_Components
;
14712 -- If the subtype declaration is created for a tagged type derivation
14713 -- with constraints, we retrieve the record definition of the parent
14714 -- type to select the components of the proper variant.
14717 and then Is_Tagged_Type
(Typ
)
14718 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
14720 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
14721 and then Is_Variant_Record
(Parent_Type
)
14723 Collect_Fixed_Components
(Typ
);
14727 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
14728 Governed_By
=> Assoc_List
,
14730 Report_Errors
=> Errors
);
14732 -- Note: previously there was a check at this point that no errors
14733 -- were detected. As a consequence of AI05-220 there may be an error
14734 -- if an inherited discriminant that controls a variant has a non-
14735 -- static constraint.
14737 -- If the tagged derivation has a type extension, collect all the
14738 -- new components therein.
14740 if Present
(Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
14742 Old_C
:= First_Component
(Typ
);
14743 while Present
(Old_C
) loop
14744 if Original_Record_Component
(Old_C
) = Old_C
14745 and then Chars
(Old_C
) /= Name_uTag
14746 and then Chars
(Old_C
) /= Name_uParent
14748 Append_Elmt
(Old_C
, Comp_List
);
14751 Next_Component
(Old_C
);
14755 Create_All_Components
;
14758 -- If discriminants are not static, or if this is a multi-level type
14759 -- extension, we have to include all components of the parent type.
14761 Old_C
:= First_Component
(Typ
);
14762 while Present
(Old_C
) loop
14763 New_C
:= Create_Component
(Old_C
);
14767 Constrain_Component_Type
14768 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
14769 Set_Is_Public
(New_C
, Is_Public
(Subt
));
14771 Next_Component
(Old_C
);
14776 end Create_Constrained_Components
;
14778 ------------------------------------------
14779 -- Decimal_Fixed_Point_Type_Declaration --
14780 ------------------------------------------
14782 procedure Decimal_Fixed_Point_Type_Declaration
14786 Loc
: constant Source_Ptr
:= Sloc
(Def
);
14787 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
14788 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
14789 Implicit_Base
: Entity_Id
;
14796 Check_SPARK_05_Restriction
14797 ("decimal fixed point type is not allowed", Def
);
14798 Check_Restriction
(No_Fixed_Point
, Def
);
14800 -- Create implicit base type
14803 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
14804 Set_Etype
(Implicit_Base
, Implicit_Base
);
14806 -- Analyze and process delta expression
14808 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
14810 Check_Delta_Expression
(Delta_Expr
);
14811 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
14813 -- Check delta is power of 10, and determine scale value from it
14819 Scale_Val
:= Uint_0
;
14822 if Val
< Ureal_1
then
14823 while Val
< Ureal_1
loop
14824 Val
:= Val
* Ureal_10
;
14825 Scale_Val
:= Scale_Val
+ 1;
14828 if Scale_Val
> 18 then
14829 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
14830 Scale_Val
:= UI_From_Int
(+18);
14834 while Val
> Ureal_1
loop
14835 Val
:= Val
/ Ureal_10
;
14836 Scale_Val
:= Scale_Val
- 1;
14839 if Scale_Val
< -18 then
14840 Error_Msg_N
("scale is less than minimum value of -18", Def
);
14841 Scale_Val
:= UI_From_Int
(-18);
14845 if Val
/= Ureal_1
then
14846 Error_Msg_N
("delta expression must be a power of 10", Def
);
14847 Delta_Val
:= Ureal_10
** (-Scale_Val
);
14851 -- Set delta, scale and small (small = delta for decimal type)
14853 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
14854 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
14855 Set_Small_Value
(Implicit_Base
, Delta_Val
);
14857 -- Analyze and process digits expression
14859 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
14860 Check_Digits_Expression
(Digs_Expr
);
14861 Digs_Val
:= Expr_Value
(Digs_Expr
);
14863 if Digs_Val
> 18 then
14864 Digs_Val
:= UI_From_Int
(+18);
14865 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
14868 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
14869 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
14871 -- Set range of base type from digits value for now. This will be
14872 -- expanded to represent the true underlying base range by Freeze.
14874 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
14876 -- Note: We leave size as zero for now, size will be set at freeze
14877 -- time. We have to do this for ordinary fixed-point, because the size
14878 -- depends on the specified small, and we might as well do the same for
14879 -- decimal fixed-point.
14881 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
14883 -- If there are bounds given in the declaration use them as the
14884 -- bounds of the first named subtype.
14886 if Present
(Real_Range_Specification
(Def
)) then
14888 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
14889 Low
: constant Node_Id
:= Low_Bound
(RRS
);
14890 High
: constant Node_Id
:= High_Bound
(RRS
);
14895 Analyze_And_Resolve
(Low
, Any_Real
);
14896 Analyze_And_Resolve
(High
, Any_Real
);
14897 Check_Real_Bound
(Low
);
14898 Check_Real_Bound
(High
);
14899 Low_Val
:= Expr_Value_R
(Low
);
14900 High_Val
:= Expr_Value_R
(High
);
14902 if Low_Val
< (-Bound_Val
) then
14904 ("range low bound too small for digits value", Low
);
14905 Low_Val
:= -Bound_Val
;
14908 if High_Val
> Bound_Val
then
14910 ("range high bound too large for digits value", High
);
14911 High_Val
:= Bound_Val
;
14914 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
14917 -- If no explicit range, use range that corresponds to given
14918 -- digits value. This will end up as the final range for the
14922 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
14925 -- Complete entity for first subtype. The inheritance of the rep item
14926 -- chain ensures that SPARK-related pragmas are not clobbered when the
14927 -- decimal fixed point type acts as a full view of a private type.
14929 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
14930 Set_Etype
(T
, Implicit_Base
);
14931 Set_Size_Info
(T
, Implicit_Base
);
14932 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
14933 Set_Digits_Value
(T
, Digs_Val
);
14934 Set_Delta_Value
(T
, Delta_Val
);
14935 Set_Small_Value
(T
, Delta_Val
);
14936 Set_Scale_Value
(T
, Scale_Val
);
14937 Set_Is_Constrained
(T
);
14938 end Decimal_Fixed_Point_Type_Declaration
;
14940 -----------------------------------
14941 -- Derive_Progenitor_Subprograms --
14942 -----------------------------------
14944 procedure Derive_Progenitor_Subprograms
14945 (Parent_Type
: Entity_Id
;
14946 Tagged_Type
: Entity_Id
)
14951 Iface_Elmt
: Elmt_Id
;
14952 Iface_Subp
: Entity_Id
;
14953 New_Subp
: Entity_Id
:= Empty
;
14954 Prim_Elmt
: Elmt_Id
;
14959 pragma Assert
(Ada_Version
>= Ada_2005
14960 and then Is_Record_Type
(Tagged_Type
)
14961 and then Is_Tagged_Type
(Tagged_Type
)
14962 and then Has_Interfaces
(Tagged_Type
));
14964 -- Step 1: Transfer to the full-view primitives associated with the
14965 -- partial-view that cover interface primitives. Conceptually this
14966 -- work should be done later by Process_Full_View; done here to
14967 -- simplify its implementation at later stages. It can be safely
14968 -- done here because interfaces must be visible in the partial and
14969 -- private view (RM 7.3(7.3/2)).
14971 -- Small optimization: This work is only required if the parent may
14972 -- have entities whose Alias attribute reference an interface primitive.
14973 -- Such a situation may occur if the parent is an abstract type and the
14974 -- primitive has not been yet overridden or if the parent is a generic
14975 -- formal type covering interfaces.
14977 -- If the tagged type is not abstract, it cannot have abstract
14978 -- primitives (the only entities in the list of primitives of
14979 -- non-abstract tagged types that can reference abstract primitives
14980 -- through its Alias attribute are the internal entities that have
14981 -- attribute Interface_Alias, and these entities are generated later
14982 -- by Add_Internal_Interface_Entities).
14984 if In_Private_Part
(Current_Scope
)
14985 and then (Is_Abstract_Type
(Parent_Type
)
14987 Is_Generic_Type
(Parent_Type
))
14989 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
14990 while Present
(Elmt
) loop
14991 Subp
:= Node
(Elmt
);
14993 -- At this stage it is not possible to have entities in the list
14994 -- of primitives that have attribute Interface_Alias.
14996 pragma Assert
(No
(Interface_Alias
(Subp
)));
14998 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
15000 if Is_Interface
(Typ
) then
15001 E
:= Find_Primitive_Covering_Interface
15002 (Tagged_Type
=> Tagged_Type
,
15003 Iface_Prim
=> Subp
);
15006 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
15008 Replace_Elmt
(Elmt
, E
);
15009 Remove_Homonym
(Subp
);
15017 -- Step 2: Add primitives of progenitors that are not implemented by
15018 -- parents of Tagged_Type.
15020 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
15021 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
15022 while Present
(Iface_Elmt
) loop
15023 Iface
:= Node
(Iface_Elmt
);
15025 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
15026 while Present
(Prim_Elmt
) loop
15027 Iface_Subp
:= Node
(Prim_Elmt
);
15029 -- Exclude derivation of predefined primitives except those
15030 -- that come from source, or are inherited from one that comes
15031 -- from source. Required to catch declarations of equality
15032 -- operators of interfaces. For example:
15034 -- type Iface is interface;
15035 -- function "=" (Left, Right : Iface) return Boolean;
15037 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
15038 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
15040 E
:= Find_Primitive_Covering_Interface
15041 (Tagged_Type
=> Tagged_Type
,
15042 Iface_Prim
=> Iface_Subp
);
15044 -- If not found we derive a new primitive leaving its alias
15045 -- attribute referencing the interface primitive.
15049 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
15051 -- Ada 2012 (AI05-0197): If the covering primitive's name
15052 -- differs from the name of the interface primitive then it
15053 -- is a private primitive inherited from a parent type. In
15054 -- such case, given that Tagged_Type covers the interface,
15055 -- the inherited private primitive becomes visible. For such
15056 -- purpose we add a new entity that renames the inherited
15057 -- private primitive.
15059 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
15060 pragma Assert
(Has_Suffix
(E
, 'P'));
15062 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
15063 Set_Alias
(New_Subp
, E
);
15064 Set_Is_Abstract_Subprogram
(New_Subp
,
15065 Is_Abstract_Subprogram
(E
));
15067 -- Propagate to the full view interface entities associated
15068 -- with the partial view.
15070 elsif In_Private_Part
(Current_Scope
)
15071 and then Present
(Alias
(E
))
15072 and then Alias
(E
) = Iface_Subp
15074 List_Containing
(Parent
(E
)) /=
15075 Private_Declarations
15077 (Unit_Declaration_Node
(Current_Scope
)))
15079 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
15083 Next_Elmt
(Prim_Elmt
);
15086 Next_Elmt
(Iface_Elmt
);
15089 end Derive_Progenitor_Subprograms
;
15091 -----------------------
15092 -- Derive_Subprogram --
15093 -----------------------
15095 procedure Derive_Subprogram
15096 (New_Subp
: out Entity_Id
;
15097 Parent_Subp
: Entity_Id
;
15098 Derived_Type
: Entity_Id
;
15099 Parent_Type
: Entity_Id
;
15100 Actual_Subp
: Entity_Id
:= Empty
)
15102 Formal
: Entity_Id
;
15103 -- Formal parameter of parent primitive operation
15105 Formal_Of_Actual
: Entity_Id
;
15106 -- Formal parameter of actual operation, when the derivation is to
15107 -- create a renaming for a primitive operation of an actual in an
15110 New_Formal
: Entity_Id
;
15111 -- Formal of inherited operation
15113 Visible_Subp
: Entity_Id
:= Parent_Subp
;
15115 function Is_Private_Overriding
return Boolean;
15116 -- If Subp is a private overriding of a visible operation, the inherited
15117 -- operation derives from the overridden op (even though its body is the
15118 -- overriding one) and the inherited operation is visible now. See
15119 -- sem_disp to see the full details of the handling of the overridden
15120 -- subprogram, which is removed from the list of primitive operations of
15121 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15122 -- and used to diagnose abstract operations that need overriding in the
15125 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
15126 -- When the type is an anonymous access type, create a new access type
15127 -- designating the derived type.
15129 procedure Set_Derived_Name
;
15130 -- This procedure sets the appropriate Chars name for New_Subp. This
15131 -- is normally just a copy of the parent name. An exception arises for
15132 -- type support subprograms, where the name is changed to reflect the
15133 -- name of the derived type, e.g. if type foo is derived from type bar,
15134 -- then a procedure barDA is derived with a name fooDA.
15136 ---------------------------
15137 -- Is_Private_Overriding --
15138 ---------------------------
15140 function Is_Private_Overriding
return Boolean is
15144 -- If the parent is not a dispatching operation there is no
15145 -- need to investigate overridings
15147 if not Is_Dispatching_Operation
(Parent_Subp
) then
15151 -- The visible operation that is overridden is a homonym of the
15152 -- parent subprogram. We scan the homonym chain to find the one
15153 -- whose alias is the subprogram we are deriving.
15155 Prev
:= Current_Entity
(Parent_Subp
);
15156 while Present
(Prev
) loop
15157 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
15158 and then Alias
(Prev
) = Parent_Subp
15159 and then Scope
(Parent_Subp
) = Scope
(Prev
)
15160 and then not Is_Hidden
(Prev
)
15162 Visible_Subp
:= Prev
;
15166 Prev
:= Homonym
(Prev
);
15170 end Is_Private_Overriding
;
15176 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
15177 Id_Type
: constant Entity_Id
:= Etype
(Id
);
15178 Acc_Type
: Entity_Id
;
15179 Par
: constant Node_Id
:= Parent
(Derived_Type
);
15182 -- When the type is an anonymous access type, create a new access
15183 -- type designating the derived type. This itype must be elaborated
15184 -- at the point of the derivation, not on subsequent calls that may
15185 -- be out of the proper scope for Gigi, so we insert a reference to
15186 -- it after the derivation.
15188 if Ekind
(Id_Type
) = E_Anonymous_Access_Type
then
15190 Desig_Typ
: Entity_Id
:= Designated_Type
(Id_Type
);
15193 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
15194 and then Present
(Full_View
(Desig_Typ
))
15195 and then not Is_Private_Type
(Parent_Type
)
15197 Desig_Typ
:= Full_View
(Desig_Typ
);
15200 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
15202 -- Ada 2005 (AI-251): Handle also derivations of abstract
15203 -- interface primitives.
15205 or else (Is_Interface
(Desig_Typ
)
15206 and then not Is_Class_Wide_Type
(Desig_Typ
))
15208 Acc_Type
:= New_Copy
(Id_Type
);
15209 Set_Etype
(Acc_Type
, Acc_Type
);
15210 Set_Scope
(Acc_Type
, New_Subp
);
15212 -- Set size of anonymous access type. If we have an access
15213 -- to an unconstrained array, this is a fat pointer, so it
15214 -- is sizes at twice addtress size.
15216 if Is_Array_Type
(Desig_Typ
)
15217 and then not Is_Constrained
(Desig_Typ
)
15219 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
15221 -- Other cases use a thin pointer
15224 Init_Size
(Acc_Type
, System_Address_Size
);
15227 -- Set remaining characterstics of anonymous access type
15229 Init_Alignment
(Acc_Type
);
15230 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
15232 Set_Etype
(New_Id
, Acc_Type
);
15233 Set_Scope
(New_Id
, New_Subp
);
15235 -- Create a reference to it
15237 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
15240 Set_Etype
(New_Id
, Id_Type
);
15244 -- In Ada2012, a formal may have an incomplete type but the type
15245 -- derivation that inherits the primitive follows the full view.
15247 elsif Base_Type
(Id_Type
) = Base_Type
(Parent_Type
)
15249 (Ekind
(Id_Type
) = E_Record_Type_With_Private
15250 and then Present
(Full_View
(Id_Type
))
15252 Base_Type
(Full_View
(Id_Type
)) = Base_Type
(Parent_Type
))
15254 (Ada_Version
>= Ada_2012
15255 and then Ekind
(Id_Type
) = E_Incomplete_Type
15256 and then Full_View
(Id_Type
) = Parent_Type
)
15258 -- Constraint checks on formals are generated during expansion,
15259 -- based on the signature of the original subprogram. The bounds
15260 -- of the derived type are not relevant, and thus we can use
15261 -- the base type for the formals. However, the return type may be
15262 -- used in a context that requires that the proper static bounds
15263 -- be used (a case statement, for example) and for those cases
15264 -- we must use the derived type (first subtype), not its base.
15266 -- If the derived_type_definition has no constraints, we know that
15267 -- the derived type has the same constraints as the first subtype
15268 -- of the parent, and we can also use it rather than its base,
15269 -- which can lead to more efficient code.
15271 if Etype
(Id
) = Parent_Type
then
15272 if Is_Scalar_Type
(Parent_Type
)
15274 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
15276 Set_Etype
(New_Id
, Derived_Type
);
15278 elsif Nkind
(Par
) = N_Full_Type_Declaration
15280 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
15283 (Subtype_Indication
(Type_Definition
(Par
)))
15285 Set_Etype
(New_Id
, Derived_Type
);
15288 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
15292 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
15296 Set_Etype
(New_Id
, Etype
(Id
));
15300 ----------------------
15301 -- Set_Derived_Name --
15302 ----------------------
15304 procedure Set_Derived_Name
is
15305 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
15307 if Nm
= TSS_Null
then
15308 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
15310 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
15312 end Set_Derived_Name
;
15314 -- Start of processing for Derive_Subprogram
15317 New_Subp
:= New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
15318 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
15320 -- Check whether the inherited subprogram is a private operation that
15321 -- should be inherited but not yet made visible. Such subprograms can
15322 -- become visible at a later point (e.g., the private part of a public
15323 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15324 -- following predicate is true, then this is not such a private
15325 -- operation and the subprogram simply inherits the name of the parent
15326 -- subprogram. Note the special check for the names of controlled
15327 -- operations, which are currently exempted from being inherited with
15328 -- a hidden name because they must be findable for generation of
15329 -- implicit run-time calls.
15331 if not Is_Hidden
(Parent_Subp
)
15332 or else Is_Internal
(Parent_Subp
)
15333 or else Is_Private_Overriding
15334 or else Is_Internal_Name
(Chars
(Parent_Subp
))
15335 or else (Is_Controlled
(Parent_Type
)
15336 and then Nam_In
(Chars
(Parent_Subp
), Name_Adjust
,
15342 -- An inherited dispatching equality will be overridden by an internally
15343 -- generated one, or by an explicit one, so preserve its name and thus
15344 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15345 -- private operation it may become invisible if the full view has
15346 -- progenitors, and the dispatch table will be malformed.
15347 -- We check that the type is limited to handle the anomalous declaration
15348 -- of Limited_Controlled, which is derived from a non-limited type, and
15349 -- which is handled specially elsewhere as well.
15351 elsif Chars
(Parent_Subp
) = Name_Op_Eq
15352 and then Is_Dispatching_Operation
(Parent_Subp
)
15353 and then Etype
(Parent_Subp
) = Standard_Boolean
15354 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
15356 Etype
(First_Formal
(Parent_Subp
)) =
15357 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
15361 -- If parent is hidden, this can be a regular derivation if the
15362 -- parent is immediately visible in a non-instantiating context,
15363 -- or if we are in the private part of an instance. This test
15364 -- should still be refined ???
15366 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15367 -- operation as a non-visible operation in cases where the parent
15368 -- subprogram might not be visible now, but was visible within the
15369 -- original generic, so it would be wrong to make the inherited
15370 -- subprogram non-visible now. (Not clear if this test is fully
15371 -- correct; are there any cases where we should declare the inherited
15372 -- operation as not visible to avoid it being overridden, e.g., when
15373 -- the parent type is a generic actual with private primitives ???)
15375 -- (they should be treated the same as other private inherited
15376 -- subprograms, but it's not clear how to do this cleanly). ???
15378 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
15379 and then Is_Immediately_Visible
(Parent_Subp
)
15380 and then not In_Instance
)
15381 or else In_Instance_Not_Visible
15385 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15386 -- overrides an interface primitive because interface primitives
15387 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15389 elsif Ada_Version
>= Ada_2005
15390 and then Is_Dispatching_Operation
(Parent_Subp
)
15391 and then Present
(Covered_Interface_Op
(Parent_Subp
))
15395 -- Otherwise, the type is inheriting a private operation, so enter it
15396 -- with a special name so it can't be overridden.
15399 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
15402 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
15404 if Present
(Actual_Subp
) then
15405 Replace_Type
(Actual_Subp
, New_Subp
);
15407 Replace_Type
(Parent_Subp
, New_Subp
);
15410 Conditional_Delay
(New_Subp
, Parent_Subp
);
15412 -- If we are creating a renaming for a primitive operation of an
15413 -- actual of a generic derived type, we must examine the signature
15414 -- of the actual primitive, not that of the generic formal, which for
15415 -- example may be an interface. However the name and initial value
15416 -- of the inherited operation are those of the formal primitive.
15418 Formal
:= First_Formal
(Parent_Subp
);
15420 if Present
(Actual_Subp
) then
15421 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
15423 Formal_Of_Actual
:= Empty
;
15426 while Present
(Formal
) loop
15427 New_Formal
:= New_Copy
(Formal
);
15429 -- Normally we do not go copying parents, but in the case of
15430 -- formals, we need to link up to the declaration (which is the
15431 -- parameter specification), and it is fine to link up to the
15432 -- original formal's parameter specification in this case.
15434 Set_Parent
(New_Formal
, Parent
(Formal
));
15435 Append_Entity
(New_Formal
, New_Subp
);
15437 if Present
(Formal_Of_Actual
) then
15438 Replace_Type
(Formal_Of_Actual
, New_Formal
);
15439 Next_Formal
(Formal_Of_Actual
);
15441 Replace_Type
(Formal
, New_Formal
);
15444 Next_Formal
(Formal
);
15447 -- If this derivation corresponds to a tagged generic actual, then
15448 -- primitive operations rename those of the actual. Otherwise the
15449 -- primitive operations rename those of the parent type, If the parent
15450 -- renames an intrinsic operator, so does the new subprogram. We except
15451 -- concatenation, which is always properly typed, and does not get
15452 -- expanded as other intrinsic operations.
15454 if No
(Actual_Subp
) then
15455 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
15456 Set_Is_Intrinsic_Subprogram
(New_Subp
);
15458 if Present
(Alias
(Parent_Subp
))
15459 and then Chars
(Parent_Subp
) /= Name_Op_Concat
15461 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
15463 Set_Alias
(New_Subp
, Parent_Subp
);
15467 Set_Alias
(New_Subp
, Parent_Subp
);
15471 Set_Alias
(New_Subp
, Actual_Subp
);
15474 -- Derived subprograms of a tagged type must inherit the convention
15475 -- of the parent subprogram (a requirement of AI-117). Derived
15476 -- subprograms of untagged types simply get convention Ada by default.
15478 -- If the derived type is a tagged generic formal type with unknown
15479 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15481 -- However, if the type is derived from a generic formal, the further
15482 -- inherited subprogram has the convention of the non-generic ancestor.
15483 -- Otherwise there would be no way to override the operation.
15484 -- (This is subject to forthcoming ARG discussions).
15486 if Is_Tagged_Type
(Derived_Type
) then
15487 if Is_Generic_Type
(Derived_Type
)
15488 and then Has_Unknown_Discriminants
(Derived_Type
)
15490 Set_Convention
(New_Subp
, Convention_Intrinsic
);
15493 if Is_Generic_Type
(Parent_Type
)
15494 and then Has_Unknown_Discriminants
(Parent_Type
)
15496 Set_Convention
(New_Subp
, Convention
(Alias
(Parent_Subp
)));
15498 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
15503 -- Predefined controlled operations retain their name even if the parent
15504 -- is hidden (see above), but they are not primitive operations if the
15505 -- ancestor is not visible, for example if the parent is a private
15506 -- extension completed with a controlled extension. Note that a full
15507 -- type that is controlled can break privacy: the flag Is_Controlled is
15508 -- set on both views of the type.
15510 if Is_Controlled
(Parent_Type
)
15511 and then Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
15514 and then Is_Hidden
(Parent_Subp
)
15515 and then not Is_Visibly_Controlled
(Parent_Type
)
15517 Set_Is_Hidden
(New_Subp
);
15520 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
15521 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
15523 if Ekind
(Parent_Subp
) = E_Procedure
then
15524 Set_Is_Valued_Procedure
15525 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
15527 Set_Has_Controlling_Result
15528 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
15531 -- No_Return must be inherited properly. If this is overridden in the
15532 -- case of a dispatching operation, then a check is made in Sem_Disp
15533 -- that the overriding operation is also No_Return (no such check is
15534 -- required for the case of non-dispatching operation.
15536 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
15538 -- A derived function with a controlling result is abstract. If the
15539 -- Derived_Type is a nonabstract formal generic derived type, then
15540 -- inherited operations are not abstract: the required check is done at
15541 -- instantiation time. If the derivation is for a generic actual, the
15542 -- function is not abstract unless the actual is.
15544 if Is_Generic_Type
(Derived_Type
)
15545 and then not Is_Abstract_Type
(Derived_Type
)
15549 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15550 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15552 -- A subprogram subject to pragma Extensions_Visible with value False
15553 -- requires overriding if the subprogram has at least one controlling
15554 -- OUT parameter (SPARK RM 6.1.7(6)).
15556 elsif Ada_Version
>= Ada_2005
15557 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
15558 or else (Is_Tagged_Type
(Derived_Type
)
15559 and then Etype
(New_Subp
) = Derived_Type
15560 and then not Is_Null_Extension
(Derived_Type
))
15561 or else (Is_Tagged_Type
(Derived_Type
)
15562 and then Ekind
(Etype
(New_Subp
)) =
15563 E_Anonymous_Access_Type
15564 and then Designated_Type
(Etype
(New_Subp
)) =
15566 and then not Is_Null_Extension
(Derived_Type
))
15567 or else (Comes_From_Source
(Alias
(New_Subp
))
15568 and then Is_EVF_Procedure
(Alias
(New_Subp
))))
15569 and then No
(Actual_Subp
)
15571 if not Is_Tagged_Type
(Derived_Type
)
15572 or else Is_Abstract_Type
(Derived_Type
)
15573 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
15575 Set_Is_Abstract_Subprogram
(New_Subp
);
15577 Set_Requires_Overriding
(New_Subp
);
15580 elsif Ada_Version
< Ada_2005
15581 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
15582 or else (Is_Tagged_Type
(Derived_Type
)
15583 and then Etype
(New_Subp
) = Derived_Type
15584 and then No
(Actual_Subp
)))
15586 Set_Is_Abstract_Subprogram
(New_Subp
);
15588 -- AI05-0097 : an inherited operation that dispatches on result is
15589 -- abstract if the derived type is abstract, even if the parent type
15590 -- is concrete and the derived type is a null extension.
15592 elsif Has_Controlling_Result
(Alias
(New_Subp
))
15593 and then Is_Abstract_Type
(Etype
(New_Subp
))
15595 Set_Is_Abstract_Subprogram
(New_Subp
);
15597 -- Finally, if the parent type is abstract we must verify that all
15598 -- inherited operations are either non-abstract or overridden, or that
15599 -- the derived type itself is abstract (this check is performed at the
15600 -- end of a package declaration, in Check_Abstract_Overriding). A
15601 -- private overriding in the parent type will not be visible in the
15602 -- derivation if we are not in an inner package or in a child unit of
15603 -- the parent type, in which case the abstractness of the inherited
15604 -- operation is carried to the new subprogram.
15606 elsif Is_Abstract_Type
(Parent_Type
)
15607 and then not In_Open_Scopes
(Scope
(Parent_Type
))
15608 and then Is_Private_Overriding
15609 and then Is_Abstract_Subprogram
(Visible_Subp
)
15611 if No
(Actual_Subp
) then
15612 Set_Alias
(New_Subp
, Visible_Subp
);
15613 Set_Is_Abstract_Subprogram
(New_Subp
, True);
15616 -- If this is a derivation for an instance of a formal derived
15617 -- type, abstractness comes from the primitive operation of the
15618 -- actual, not from the operation inherited from the ancestor.
15620 Set_Is_Abstract_Subprogram
15621 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
15625 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
15627 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15628 -- preconditions and the derived type is abstract, the derived operation
15629 -- is abstract as well if parent subprogram is not abstract or null.
15631 if Is_Abstract_Type
(Derived_Type
)
15632 and then Has_Non_Trivial_Precondition
(Parent_Subp
)
15633 and then Present
(Interfaces
(Derived_Type
))
15636 -- Add useful attributes of subprogram before the freeze point,
15637 -- in case freezing is delayed or there are previous errors.
15639 Set_Is_Dispatching_Operation
(New_Subp
);
15642 Iface_Prim
: constant Entity_Id
:= Covered_Interface_Op
(New_Subp
);
15645 if Present
(Iface_Prim
)
15646 and then Has_Non_Trivial_Precondition
(Iface_Prim
)
15648 Set_Is_Abstract_Subprogram
(New_Subp
);
15653 -- Check for case of a derived subprogram for the instantiation of a
15654 -- formal derived tagged type, if so mark the subprogram as dispatching
15655 -- and inherit the dispatching attributes of the actual subprogram. The
15656 -- derived subprogram is effectively renaming of the actual subprogram,
15657 -- so it needs to have the same attributes as the actual.
15659 if Present
(Actual_Subp
)
15660 and then Is_Dispatching_Operation
(Actual_Subp
)
15662 Set_Is_Dispatching_Operation
(New_Subp
);
15664 if Present
(DTC_Entity
(Actual_Subp
)) then
15665 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
15666 Set_DT_Position_Value
(New_Subp
, DT_Position
(Actual_Subp
));
15670 -- Indicate that a derived subprogram does not require a body and that
15671 -- it does not require processing of default expressions.
15673 Set_Has_Completion
(New_Subp
);
15674 Set_Default_Expressions_Processed
(New_Subp
);
15676 if Ekind
(New_Subp
) = E_Function
then
15677 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
15679 end Derive_Subprogram
;
15681 ------------------------
15682 -- Derive_Subprograms --
15683 ------------------------
15685 procedure Derive_Subprograms
15686 (Parent_Type
: Entity_Id
;
15687 Derived_Type
: Entity_Id
;
15688 Generic_Actual
: Entity_Id
:= Empty
)
15690 Op_List
: constant Elist_Id
:=
15691 Collect_Primitive_Operations
(Parent_Type
);
15693 function Check_Derived_Type
return Boolean;
15694 -- Check that all the entities derived from Parent_Type are found in
15695 -- the list of primitives of Derived_Type exactly in the same order.
15697 procedure Derive_Interface_Subprogram
15698 (New_Subp
: out Entity_Id
;
15700 Actual_Subp
: Entity_Id
);
15701 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15702 -- (which is an interface primitive). If Generic_Actual is present then
15703 -- Actual_Subp is the actual subprogram corresponding with the generic
15704 -- subprogram Subp.
15706 ------------------------
15707 -- Check_Derived_Type --
15708 ------------------------
15710 function Check_Derived_Type
return Boolean is
15714 New_Subp
: Entity_Id
;
15719 -- Traverse list of entities in the current scope searching for
15720 -- an incomplete type whose full-view is derived type.
15722 E
:= First_Entity
(Scope
(Derived_Type
));
15723 while Present
(E
) and then E
/= Derived_Type
loop
15724 if Ekind
(E
) = E_Incomplete_Type
15725 and then Present
(Full_View
(E
))
15726 and then Full_View
(E
) = Derived_Type
15728 -- Disable this test if Derived_Type completes an incomplete
15729 -- type because in such case more primitives can be added
15730 -- later to the list of primitives of Derived_Type by routine
15731 -- Process_Incomplete_Dependents
15736 E
:= Next_Entity
(E
);
15739 List
:= Collect_Primitive_Operations
(Derived_Type
);
15740 Elmt
:= First_Elmt
(List
);
15742 Op_Elmt
:= First_Elmt
(Op_List
);
15743 while Present
(Op_Elmt
) loop
15744 Subp
:= Node
(Op_Elmt
);
15745 New_Subp
:= Node
(Elmt
);
15747 -- At this early stage Derived_Type has no entities with attribute
15748 -- Interface_Alias. In addition, such primitives are always
15749 -- located at the end of the list of primitives of Parent_Type.
15750 -- Therefore, if found we can safely stop processing pending
15753 exit when Present
(Interface_Alias
(Subp
));
15755 -- Handle hidden entities
15757 if not Is_Predefined_Dispatching_Operation
(Subp
)
15758 and then Is_Hidden
(Subp
)
15760 if Present
(New_Subp
)
15761 and then Primitive_Names_Match
(Subp
, New_Subp
)
15767 if not Present
(New_Subp
)
15768 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
15769 or else not Primitive_Names_Match
(Subp
, New_Subp
)
15777 Next_Elmt
(Op_Elmt
);
15781 end Check_Derived_Type
;
15783 ---------------------------------
15784 -- Derive_Interface_Subprogram --
15785 ---------------------------------
15787 procedure Derive_Interface_Subprogram
15788 (New_Subp
: out Entity_Id
;
15790 Actual_Subp
: Entity_Id
)
15792 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
15793 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
15796 pragma Assert
(Is_Interface
(Iface_Type
));
15799 (New_Subp
=> New_Subp
,
15800 Parent_Subp
=> Iface_Subp
,
15801 Derived_Type
=> Derived_Type
,
15802 Parent_Type
=> Iface_Type
,
15803 Actual_Subp
=> Actual_Subp
);
15805 -- Given that this new interface entity corresponds with a primitive
15806 -- of the parent that was not overridden we must leave it associated
15807 -- with its parent primitive to ensure that it will share the same
15808 -- dispatch table slot when overridden. We must set the Alias to Subp
15809 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15810 -- (in case we inherited Subp from Iface_Type via a nonabstract
15811 -- generic formal type).
15813 if No
(Actual_Subp
) then
15814 Set_Alias
(New_Subp
, Subp
);
15817 T
: Entity_Id
:= Find_Dispatching_Type
(Subp
);
15819 while Etype
(T
) /= T
loop
15820 if Is_Generic_Type
(T
) and then not Is_Abstract_Type
(T
) then
15821 Set_Is_Abstract_Subprogram
(New_Subp
, False);
15829 -- For instantiations this is not needed since the previous call to
15830 -- Derive_Subprogram leaves the entity well decorated.
15833 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
15836 end Derive_Interface_Subprogram
;
15840 Alias_Subp
: Entity_Id
;
15841 Act_List
: Elist_Id
;
15842 Act_Elmt
: Elmt_Id
;
15843 Act_Subp
: Entity_Id
:= Empty
;
15845 Need_Search
: Boolean := False;
15846 New_Subp
: Entity_Id
:= Empty
;
15847 Parent_Base
: Entity_Id
;
15850 -- Start of processing for Derive_Subprograms
15853 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
15854 and then Has_Discriminants
(Parent_Type
)
15855 and then Present
(Full_View
(Parent_Type
))
15857 Parent_Base
:= Full_View
(Parent_Type
);
15859 Parent_Base
:= Parent_Type
;
15862 if Present
(Generic_Actual
) then
15863 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
15864 Act_Elmt
:= First_Elmt
(Act_List
);
15866 Act_List
:= No_Elist
;
15867 Act_Elmt
:= No_Elmt
;
15870 -- Derive primitives inherited from the parent. Note that if the generic
15871 -- actual is present, this is not really a type derivation, it is a
15872 -- completion within an instance.
15874 -- Case 1: Derived_Type does not implement interfaces
15876 if not Is_Tagged_Type
(Derived_Type
)
15877 or else (not Has_Interfaces
(Derived_Type
)
15878 and then not (Present
(Generic_Actual
)
15879 and then Has_Interfaces
(Generic_Actual
)))
15881 Elmt
:= First_Elmt
(Op_List
);
15882 while Present
(Elmt
) loop
15883 Subp
:= Node
(Elmt
);
15885 -- Literals are derived earlier in the process of building the
15886 -- derived type, and are skipped here.
15888 if Ekind
(Subp
) = E_Enumeration_Literal
then
15891 -- The actual is a direct descendant and the common primitive
15892 -- operations appear in the same order.
15894 -- If the generic parent type is present, the derived type is an
15895 -- instance of a formal derived type, and within the instance its
15896 -- operations are those of the actual. We derive from the formal
15897 -- type but make the inherited operations aliases of the
15898 -- corresponding operations of the actual.
15901 pragma Assert
(No
(Node
(Act_Elmt
))
15902 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
15905 (Subp
, Node
(Act_Elmt
),
15906 Skip_Controlling_Formals
=> True)));
15909 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
15911 if Present
(Act_Elmt
) then
15912 Next_Elmt
(Act_Elmt
);
15919 -- Case 2: Derived_Type implements interfaces
15922 -- If the parent type has no predefined primitives we remove
15923 -- predefined primitives from the list of primitives of generic
15924 -- actual to simplify the complexity of this algorithm.
15926 if Present
(Generic_Actual
) then
15928 Has_Predefined_Primitives
: Boolean := False;
15931 -- Check if the parent type has predefined primitives
15933 Elmt
:= First_Elmt
(Op_List
);
15934 while Present
(Elmt
) loop
15935 Subp
:= Node
(Elmt
);
15937 if Is_Predefined_Dispatching_Operation
(Subp
)
15938 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
15940 Has_Predefined_Primitives
:= True;
15947 -- Remove predefined primitives of Generic_Actual. We must use
15948 -- an auxiliary list because in case of tagged types the value
15949 -- returned by Collect_Primitive_Operations is the value stored
15950 -- in its Primitive_Operations attribute (and we don't want to
15951 -- modify its current contents).
15953 if not Has_Predefined_Primitives
then
15955 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
15958 Elmt
:= First_Elmt
(Act_List
);
15959 while Present
(Elmt
) loop
15960 Subp
:= Node
(Elmt
);
15962 if not Is_Predefined_Dispatching_Operation
(Subp
)
15963 or else Comes_From_Source
(Subp
)
15965 Append_Elmt
(Subp
, Aux_List
);
15971 Act_List
:= Aux_List
;
15975 Act_Elmt
:= First_Elmt
(Act_List
);
15976 Act_Subp
:= Node
(Act_Elmt
);
15980 -- Stage 1: If the generic actual is not present we derive the
15981 -- primitives inherited from the parent type. If the generic parent
15982 -- type is present, the derived type is an instance of a formal
15983 -- derived type, and within the instance its operations are those of
15984 -- the actual. We derive from the formal type but make the inherited
15985 -- operations aliases of the corresponding operations of the actual.
15987 Elmt
:= First_Elmt
(Op_List
);
15988 while Present
(Elmt
) loop
15989 Subp
:= Node
(Elmt
);
15990 Alias_Subp
:= Ultimate_Alias
(Subp
);
15992 -- Do not derive internal entities of the parent that link
15993 -- interface primitives with their covering primitive. These
15994 -- entities will be added to this type when frozen.
15996 if Present
(Interface_Alias
(Subp
)) then
16000 -- If the generic actual is present find the corresponding
16001 -- operation in the generic actual. If the parent type is a
16002 -- direct ancestor of the derived type then, even if it is an
16003 -- interface, the operations are inherited from the primary
16004 -- dispatch table and are in the proper order. If we detect here
16005 -- that primitives are not in the same order we traverse the list
16006 -- of primitive operations of the actual to find the one that
16007 -- implements the interface primitive.
16011 (Present
(Generic_Actual
)
16012 and then Present
(Act_Subp
)
16014 (Primitive_Names_Match
(Subp
, Act_Subp
)
16016 Type_Conformant
(Subp
, Act_Subp
,
16017 Skip_Controlling_Formals
=> True)))
16019 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
16020 Use_Full_View
=> True));
16022 -- Remember that we need searching for all pending primitives
16024 Need_Search
:= True;
16026 -- Handle entities associated with interface primitives
16028 if Present
(Alias_Subp
)
16029 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
16030 and then not Is_Predefined_Dispatching_Operation
(Subp
)
16032 -- Search for the primitive in the homonym chain
16035 Find_Primitive_Covering_Interface
16036 (Tagged_Type
=> Generic_Actual
,
16037 Iface_Prim
=> Alias_Subp
);
16039 -- Previous search may not locate primitives covering
16040 -- interfaces defined in generics units or instantiations.
16041 -- (it fails if the covering primitive has formals whose
16042 -- type is also defined in generics or instantiations).
16043 -- In such case we search in the list of primitives of the
16044 -- generic actual for the internal entity that links the
16045 -- interface primitive and the covering primitive.
16048 and then Is_Generic_Type
(Parent_Type
)
16050 -- This code has been designed to handle only generic
16051 -- formals that implement interfaces that are defined
16052 -- in a generic unit or instantiation. If this code is
16053 -- needed for other cases we must review it because
16054 -- (given that it relies on Original_Location to locate
16055 -- the primitive of Generic_Actual that covers the
16056 -- interface) it could leave linked through attribute
16057 -- Alias entities of unrelated instantiations).
16061 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
16063 Instantiation_Depth
16064 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
16067 Iface_Prim_Loc
: constant Source_Ptr
:=
16068 Original_Location
(Sloc
(Alias_Subp
));
16075 First_Elmt
(Primitive_Operations
(Generic_Actual
));
16077 Search
: while Present
(Elmt
) loop
16078 Prim
:= Node
(Elmt
);
16080 if Present
(Interface_Alias
(Prim
))
16081 and then Original_Location
16082 (Sloc
(Interface_Alias
(Prim
))) =
16085 Act_Subp
:= Alias
(Prim
);
16094 pragma Assert
(Present
(Act_Subp
)
16095 or else Is_Abstract_Type
(Generic_Actual
)
16096 or else Serious_Errors_Detected
> 0);
16098 -- Handle predefined primitives plus the rest of user-defined
16102 Act_Elmt
:= First_Elmt
(Act_List
);
16103 while Present
(Act_Elmt
) loop
16104 Act_Subp
:= Node
(Act_Elmt
);
16106 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
16107 and then Type_Conformant
16109 Skip_Controlling_Formals
=> True)
16110 and then No
(Interface_Alias
(Act_Subp
));
16112 Next_Elmt
(Act_Elmt
);
16115 if No
(Act_Elmt
) then
16121 -- Case 1: If the parent is a limited interface then it has the
16122 -- predefined primitives of synchronized interfaces. However, the
16123 -- actual type may be a non-limited type and hence it does not
16124 -- have such primitives.
16126 if Present
(Generic_Actual
)
16127 and then not Present
(Act_Subp
)
16128 and then Is_Limited_Interface
(Parent_Base
)
16129 and then Is_Predefined_Interface_Primitive
(Subp
)
16133 -- Case 2: Inherit entities associated with interfaces that were
16134 -- not covered by the parent type. We exclude here null interface
16135 -- primitives because they do not need special management.
16137 -- We also exclude interface operations that are renamings. If the
16138 -- subprogram is an explicit renaming of an interface primitive,
16139 -- it is a regular primitive operation, and the presence of its
16140 -- alias is not relevant: it has to be derived like any other
16143 elsif Present
(Alias
(Subp
))
16144 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
16145 N_Subprogram_Renaming_Declaration
16146 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
16148 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
16149 and then Null_Present
(Parent
(Alias_Subp
)))
16151 -- If this is an abstract private type then we transfer the
16152 -- derivation of the interface primitive from the partial view
16153 -- to the full view. This is safe because all the interfaces
16154 -- must be visible in the partial view. Done to avoid adding
16155 -- a new interface derivation to the private part of the
16156 -- enclosing package; otherwise this new derivation would be
16157 -- decorated as hidden when the analysis of the enclosing
16158 -- package completes.
16160 if Is_Abstract_Type
(Derived_Type
)
16161 and then In_Private_Part
(Current_Scope
)
16162 and then Has_Private_Declaration
(Derived_Type
)
16165 Partial_View
: Entity_Id
;
16170 Partial_View
:= First_Entity
(Current_Scope
);
16172 exit when No
(Partial_View
)
16173 or else (Has_Private_Declaration
(Partial_View
)
16175 Full_View
(Partial_View
) = Derived_Type
);
16177 Next_Entity
(Partial_View
);
16180 -- If the partial view was not found then the source code
16181 -- has errors and the derivation is not needed.
16183 if Present
(Partial_View
) then
16185 First_Elmt
(Primitive_Operations
(Partial_View
));
16186 while Present
(Elmt
) loop
16187 Ent
:= Node
(Elmt
);
16189 if Present
(Alias
(Ent
))
16190 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
16193 (Ent
, Primitive_Operations
(Derived_Type
));
16200 -- If the interface primitive was not found in the
16201 -- partial view then this interface primitive was
16202 -- overridden. We add a derivation to activate in
16203 -- Derive_Progenitor_Subprograms the machinery to
16207 Derive_Interface_Subprogram
16208 (New_Subp
=> New_Subp
,
16210 Actual_Subp
=> Act_Subp
);
16215 Derive_Interface_Subprogram
16216 (New_Subp
=> New_Subp
,
16218 Actual_Subp
=> Act_Subp
);
16221 -- Case 3: Common derivation
16225 (New_Subp
=> New_Subp
,
16226 Parent_Subp
=> Subp
,
16227 Derived_Type
=> Derived_Type
,
16228 Parent_Type
=> Parent_Base
,
16229 Actual_Subp
=> Act_Subp
);
16232 -- No need to update Act_Elm if we must search for the
16233 -- corresponding operation in the generic actual
16236 and then Present
(Act_Elmt
)
16238 Next_Elmt
(Act_Elmt
);
16239 Act_Subp
:= Node
(Act_Elmt
);
16246 -- Inherit additional operations from progenitors. If the derived
16247 -- type is a generic actual, there are not new primitive operations
16248 -- for the type because it has those of the actual, and therefore
16249 -- nothing needs to be done. The renamings generated above are not
16250 -- primitive operations, and their purpose is simply to make the
16251 -- proper operations visible within an instantiation.
16253 if No
(Generic_Actual
) then
16254 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
16258 -- Final check: Direct descendants must have their primitives in the
16259 -- same order. We exclude from this test untagged types and instances
16260 -- of formal derived types. We skip this test if we have already
16261 -- reported serious errors in the sources.
16263 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
16264 or else Present
(Generic_Actual
)
16265 or else Serious_Errors_Detected
> 0
16266 or else Check_Derived_Type
);
16267 end Derive_Subprograms
;
16269 --------------------------------
16270 -- Derived_Standard_Character --
16271 --------------------------------
16273 procedure Derived_Standard_Character
16275 Parent_Type
: Entity_Id
;
16276 Derived_Type
: Entity_Id
)
16278 Loc
: constant Source_Ptr
:= Sloc
(N
);
16279 Def
: constant Node_Id
:= Type_Definition
(N
);
16280 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
16281 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
16282 Implicit_Base
: constant Entity_Id
:=
16284 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
16290 Discard_Node
(Process_Subtype
(Indic
, N
));
16292 Set_Etype
(Implicit_Base
, Parent_Base
);
16293 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
16294 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
16296 Set_Is_Character_Type
(Implicit_Base
, True);
16297 Set_Has_Delayed_Freeze
(Implicit_Base
);
16299 -- The bounds of the implicit base are the bounds of the parent base.
16300 -- Note that their type is the parent base.
16302 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
16303 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
16305 Set_Scalar_Range
(Implicit_Base
,
16308 High_Bound
=> Hi
));
16310 Conditional_Delay
(Derived_Type
, Parent_Type
);
16312 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
16313 Set_Etype
(Derived_Type
, Implicit_Base
);
16314 Set_Size_Info
(Derived_Type
, Parent_Type
);
16316 if Unknown_RM_Size
(Derived_Type
) then
16317 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
16320 Set_Is_Character_Type
(Derived_Type
, True);
16322 if Nkind
(Indic
) /= N_Subtype_Indication
then
16324 -- If no explicit constraint, the bounds are those
16325 -- of the parent type.
16327 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
16328 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
16329 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
16332 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
16334 -- Because the implicit base is used in the conversion of the bounds, we
16335 -- have to freeze it now. This is similar to what is done for numeric
16336 -- types, and it equally suspicious, but otherwise a non-static bound
16337 -- will have a reference to an unfrozen type, which is rejected by Gigi
16338 -- (???). This requires specific care for definition of stream
16339 -- attributes. For details, see comments at the end of
16340 -- Build_Derived_Numeric_Type.
16342 Freeze_Before
(N
, Implicit_Base
);
16343 end Derived_Standard_Character
;
16345 ------------------------------
16346 -- Derived_Type_Declaration --
16347 ------------------------------
16349 procedure Derived_Type_Declaration
16352 Is_Completion
: Boolean)
16354 Parent_Type
: Entity_Id
;
16356 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
16357 -- Check whether the parent type is a generic formal, or derives
16358 -- directly or indirectly from one.
16360 ------------------------
16361 -- Comes_From_Generic --
16362 ------------------------
16364 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
16366 if Is_Generic_Type
(Typ
) then
16369 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
16372 elsif Is_Private_Type
(Typ
)
16373 and then Present
(Full_View
(Typ
))
16374 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
16378 elsif Is_Generic_Actual_Type
(Typ
) then
16384 end Comes_From_Generic
;
16388 Def
: constant Node_Id
:= Type_Definition
(N
);
16389 Iface_Def
: Node_Id
;
16390 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
16391 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
16392 Parent_Node
: Node_Id
;
16395 -- Start of processing for Derived_Type_Declaration
16398 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
16401 and then Is_Tagged_Type
(Parent_Type
)
16404 Partial_View
: constant Entity_Id
:=
16405 Incomplete_Or_Partial_View
(Parent_Type
);
16408 -- If the partial view was not found then the parent type is not
16409 -- a private type. Otherwise check if the partial view is a tagged
16412 if Present
(Partial_View
)
16413 and then Is_Private_Type
(Partial_View
)
16414 and then not Is_Tagged_Type
(Partial_View
)
16417 ("cannot derive from & declared as untagged private "
16418 & "(SPARK RM 3.4(1))", N
, Partial_View
);
16423 -- Ada 2005 (AI-251): In case of interface derivation check that the
16424 -- parent is also an interface.
16426 if Interface_Present
(Def
) then
16427 Check_SPARK_05_Restriction
("interface is not allowed", Def
);
16429 if not Is_Interface
(Parent_Type
) then
16430 Diagnose_Interface
(Indic
, Parent_Type
);
16433 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
16434 Iface_Def
:= Type_Definition
(Parent_Node
);
16436 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16437 -- other limited interfaces.
16439 if Limited_Present
(Def
) then
16440 if Limited_Present
(Iface_Def
) then
16443 elsif Protected_Present
(Iface_Def
) then
16445 ("descendant of & must be declared as a protected "
16446 & "interface", N
, Parent_Type
);
16448 elsif Synchronized_Present
(Iface_Def
) then
16450 ("descendant of & must be declared as a synchronized "
16451 & "interface", N
, Parent_Type
);
16453 elsif Task_Present
(Iface_Def
) then
16455 ("descendant of & must be declared as a task interface",
16460 ("(Ada 2005) limited interface cannot inherit from "
16461 & "non-limited interface", Indic
);
16464 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16465 -- from non-limited or limited interfaces.
16467 elsif not Protected_Present
(Def
)
16468 and then not Synchronized_Present
(Def
)
16469 and then not Task_Present
(Def
)
16471 if Limited_Present
(Iface_Def
) then
16474 elsif Protected_Present
(Iface_Def
) then
16476 ("descendant of & must be declared as a protected "
16477 & "interface", N
, Parent_Type
);
16479 elsif Synchronized_Present
(Iface_Def
) then
16481 ("descendant of & must be declared as a synchronized "
16482 & "interface", N
, Parent_Type
);
16484 elsif Task_Present
(Iface_Def
) then
16486 ("descendant of & must be declared as a task interface",
16495 if Is_Tagged_Type
(Parent_Type
)
16496 and then Is_Concurrent_Type
(Parent_Type
)
16497 and then not Is_Interface
(Parent_Type
)
16500 ("parent type of a record extension cannot be a synchronized "
16501 & "tagged type (RM 3.9.1 (3/1))", N
);
16502 Set_Etype
(T
, Any_Type
);
16506 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16509 if Is_Tagged_Type
(Parent_Type
)
16510 and then Is_Non_Empty_List
(Interface_List
(Def
))
16517 Intf
:= First
(Interface_List
(Def
));
16518 while Present
(Intf
) loop
16519 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
16521 if not Is_Interface
(T
) then
16522 Diagnose_Interface
(Intf
, T
);
16524 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16525 -- a limited type from having a nonlimited progenitor.
16527 elsif (Limited_Present
(Def
)
16528 or else (not Is_Interface
(Parent_Type
)
16529 and then Is_Limited_Type
(Parent_Type
)))
16530 and then not Is_Limited_Interface
(T
)
16533 ("progenitor interface& of limited type must be limited",
16542 if Parent_Type
= Any_Type
16543 or else Etype
(Parent_Type
) = Any_Type
16544 or else (Is_Class_Wide_Type
(Parent_Type
)
16545 and then Etype
(Parent_Type
) = T
)
16547 -- If Parent_Type is undefined or illegal, make new type into a
16548 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16549 -- errors. If this is a self-definition, emit error now.
16551 if T
= Parent_Type
or else T
= Etype
(Parent_Type
) then
16552 Error_Msg_N
("type cannot be used in its own definition", Indic
);
16555 Set_Ekind
(T
, Ekind
(Parent_Type
));
16556 Set_Etype
(T
, Any_Type
);
16557 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
16559 if Is_Tagged_Type
(T
)
16560 and then Is_Record_Type
(T
)
16562 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
16568 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16569 -- an interface is special because the list of interfaces in the full
16570 -- view can be given in any order. For example:
16572 -- type A is interface;
16573 -- type B is interface and A;
16574 -- type D is new B with private;
16576 -- type D is new A and B with null record; -- 1 --
16578 -- In this case we perform the following transformation of -1-:
16580 -- type D is new B and A with null record;
16582 -- If the parent of the full-view covers the parent of the partial-view
16583 -- we have two possible cases:
16585 -- 1) They have the same parent
16586 -- 2) The parent of the full-view implements some further interfaces
16588 -- In both cases we do not need to perform the transformation. In the
16589 -- first case the source program is correct and the transformation is
16590 -- not needed; in the second case the source program does not fulfill
16591 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16594 -- This transformation not only simplifies the rest of the analysis of
16595 -- this type declaration but also simplifies the correct generation of
16596 -- the object layout to the expander.
16598 if In_Private_Part
(Current_Scope
)
16599 and then Is_Interface
(Parent_Type
)
16603 Partial_View
: Entity_Id
;
16604 Partial_View_Parent
: Entity_Id
;
16605 New_Iface
: Node_Id
;
16608 -- Look for the associated private type declaration
16610 Partial_View
:= Incomplete_Or_Partial_View
(T
);
16612 -- If the partial view was not found then the source code has
16613 -- errors and the transformation is not needed.
16615 if Present
(Partial_View
) then
16616 Partial_View_Parent
:= Etype
(Partial_View
);
16618 -- If the parent of the full-view covers the parent of the
16619 -- partial-view we have nothing else to do.
16621 if Interface_Present_In_Ancestor
16622 (Parent_Type
, Partial_View_Parent
)
16626 -- Traverse the list of interfaces of the full-view to look
16627 -- for the parent of the partial-view and perform the tree
16631 Iface
:= First
(Interface_List
(Def
));
16632 while Present
(Iface
) loop
16633 if Etype
(Iface
) = Etype
(Partial_View
) then
16634 Rewrite
(Subtype_Indication
(Def
),
16635 New_Copy
(Subtype_Indication
16636 (Parent
(Partial_View
))));
16639 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
16640 Append
(New_Iface
, Interface_List
(Def
));
16642 -- Analyze the transformed code
16644 Derived_Type_Declaration
(T
, N
, Is_Completion
);
16655 -- Only composite types other than array types are allowed to have
16658 if Present
(Discriminant_Specifications
(N
)) then
16659 if (Is_Elementary_Type
(Parent_Type
)
16661 Is_Array_Type
(Parent_Type
))
16662 and then not Error_Posted
(N
)
16665 ("elementary or array type cannot have discriminants",
16666 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
16667 Set_Has_Discriminants
(T
, False);
16669 -- The type is allowed to have discriminants
16672 Check_SPARK_05_Restriction
("discriminant type is not allowed", N
);
16676 -- In Ada 83, a derived type defined in a package specification cannot
16677 -- be used for further derivation until the end of its visible part.
16678 -- Note that derivation in the private part of the package is allowed.
16680 if Ada_Version
= Ada_83
16681 and then Is_Derived_Type
(Parent_Type
)
16682 and then In_Visible_Part
(Scope
(Parent_Type
))
16684 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
16686 ("(Ada 83): premature use of type for derivation", Indic
);
16690 -- Check for early use of incomplete or private type
16692 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
16693 Error_Msg_N
("premature derivation of incomplete type", Indic
);
16696 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
16697 and then not Comes_From_Generic
(Parent_Type
))
16698 or else Has_Private_Component
(Parent_Type
)
16700 -- The ancestor type of a formal type can be incomplete, in which
16701 -- case only the operations of the partial view are available in the
16702 -- generic. Subsequent checks may be required when the full view is
16703 -- analyzed to verify that a derivation from a tagged type has an
16706 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
16709 elsif No
(Underlying_Type
(Parent_Type
))
16710 or else Has_Private_Component
(Parent_Type
)
16713 ("premature derivation of derived or private type", Indic
);
16715 -- Flag the type itself as being in error, this prevents some
16716 -- nasty problems with subsequent uses of the malformed type.
16718 Set_Error_Posted
(T
);
16720 -- Check that within the immediate scope of an untagged partial
16721 -- view it's illegal to derive from the partial view if the
16722 -- full view is tagged. (7.3(7))
16724 -- We verify that the Parent_Type is a partial view by checking
16725 -- that it is not a Full_Type_Declaration (i.e. a private type or
16726 -- private extension declaration), to distinguish a partial view
16727 -- from a derivation from a private type which also appears as
16728 -- E_Private_Type. If the parent base type is not declared in an
16729 -- enclosing scope there is no need to check.
16731 elsif Present
(Full_View
(Parent_Type
))
16732 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
16733 and then not Is_Tagged_Type
(Parent_Type
)
16734 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
16735 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
16738 ("premature derivation from type with tagged full view",
16743 -- Check that form of derivation is appropriate
16745 Taggd
:= Is_Tagged_Type
(Parent_Type
);
16747 -- Set the parent type to the class-wide type's specific type in this
16748 -- case to prevent cascading errors
16750 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
16751 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
16752 Set_Etype
(T
, Etype
(Parent_Type
));
16756 if Present
(Extension
) and then not Taggd
then
16758 ("type derived from untagged type cannot have extension", Indic
);
16760 elsif No
(Extension
) and then Taggd
then
16762 -- If this declaration is within a private part (or body) of a
16763 -- generic instantiation then the derivation is allowed (the parent
16764 -- type can only appear tagged in this case if it's a generic actual
16765 -- type, since it would otherwise have been rejected in the analysis
16766 -- of the generic template).
16768 if not Is_Generic_Actual_Type
(Parent_Type
)
16769 or else In_Visible_Part
(Scope
(Parent_Type
))
16771 if Is_Class_Wide_Type
(Parent_Type
) then
16773 ("parent type must not be a class-wide type", Indic
);
16775 -- Use specific type to prevent cascaded errors.
16777 Parent_Type
:= Etype
(Parent_Type
);
16781 ("type derived from tagged type must have extension", Indic
);
16786 -- AI-443: Synchronized formal derived types require a private
16787 -- extension. There is no point in checking the ancestor type or
16788 -- the progenitors since the construct is wrong to begin with.
16790 if Ada_Version
>= Ada_2005
16791 and then Is_Generic_Type
(T
)
16792 and then Present
(Original_Node
(N
))
16795 Decl
: constant Node_Id
:= Original_Node
(N
);
16798 if Nkind
(Decl
) = N_Formal_Type_Declaration
16799 and then Nkind
(Formal_Type_Definition
(Decl
)) =
16800 N_Formal_Derived_Type_Definition
16801 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
16802 and then No
(Extension
)
16804 -- Avoid emitting a duplicate error message
16806 and then not Error_Posted
(Indic
)
16809 ("synchronized derived type must have extension", N
);
16814 if Null_Exclusion_Present
(Def
)
16815 and then not Is_Access_Type
(Parent_Type
)
16817 Error_Msg_N
("null exclusion can only apply to an access type", N
);
16820 -- Avoid deriving parent primitives of underlying record views
16822 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
16823 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
16825 -- AI-419: The parent type of an explicitly limited derived type must
16826 -- be a limited type or a limited interface.
16828 if Limited_Present
(Def
) then
16829 Set_Is_Limited_Record
(T
);
16831 if Is_Interface
(T
) then
16832 Set_Is_Limited_Interface
(T
);
16835 if not Is_Limited_Type
(Parent_Type
)
16837 (not Is_Interface
(Parent_Type
)
16838 or else not Is_Limited_Interface
(Parent_Type
))
16840 -- AI05-0096: a derivation in the private part of an instance is
16841 -- legal if the generic formal is untagged limited, and the actual
16844 if Is_Generic_Actual_Type
(Parent_Type
)
16845 and then In_Private_Part
(Current_Scope
)
16848 (Generic_Parent_Type
(Parent
(Parent_Type
)))
16854 ("parent type& of limited type must be limited",
16860 -- In SPARK, there are no derived type definitions other than type
16861 -- extensions of tagged record types.
16863 if No
(Extension
) then
16864 Check_SPARK_05_Restriction
16865 ("derived type is not allowed", Original_Node
(N
));
16867 end Derived_Type_Declaration
;
16869 ------------------------
16870 -- Diagnose_Interface --
16871 ------------------------
16873 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
16875 if not Is_Interface
(E
) and then E
/= Any_Type
then
16876 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
16878 end Diagnose_Interface
;
16880 ----------------------------------
16881 -- Enumeration_Type_Declaration --
16882 ----------------------------------
16884 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16891 -- Create identifier node representing lower bound
16893 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16894 L
:= First
(Literals
(Def
));
16895 Set_Chars
(B_Node
, Chars
(L
));
16896 Set_Entity
(B_Node
, L
);
16897 Set_Etype
(B_Node
, T
);
16898 Set_Is_Static_Expression
(B_Node
, True);
16900 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
16901 Set_Low_Bound
(R_Node
, B_Node
);
16903 Set_Ekind
(T
, E_Enumeration_Type
);
16904 Set_First_Literal
(T
, L
);
16906 Set_Is_Constrained
(T
);
16910 -- Loop through literals of enumeration type setting pos and rep values
16911 -- except that if the Ekind is already set, then it means the literal
16912 -- was already constructed (case of a derived type declaration and we
16913 -- should not disturb the Pos and Rep values.
16915 while Present
(L
) loop
16916 if Ekind
(L
) /= E_Enumeration_Literal
then
16917 Set_Ekind
(L
, E_Enumeration_Literal
);
16918 Set_Enumeration_Pos
(L
, Ev
);
16919 Set_Enumeration_Rep
(L
, Ev
);
16920 Set_Is_Known_Valid
(L
, True);
16924 New_Overloaded_Entity
(L
);
16925 Generate_Definition
(L
);
16926 Set_Convention
(L
, Convention_Intrinsic
);
16928 -- Case of character literal
16930 if Nkind
(L
) = N_Defining_Character_Literal
then
16931 Set_Is_Character_Type
(T
, True);
16933 -- Check violation of No_Wide_Characters
16935 if Restriction_Check_Required
(No_Wide_Characters
) then
16936 Get_Name_String
(Chars
(L
));
16938 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
16939 Check_Restriction
(No_Wide_Characters
, L
);
16948 -- Now create a node representing upper bound
16950 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16951 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
16952 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
16953 Set_Etype
(B_Node
, T
);
16954 Set_Is_Static_Expression
(B_Node
, True);
16956 Set_High_Bound
(R_Node
, B_Node
);
16958 -- Initialize various fields of the type. Some of this information
16959 -- may be overwritten later through rep.clauses.
16961 Set_Scalar_Range
(T
, R_Node
);
16962 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
16963 Set_Enum_Esize
(T
);
16964 Set_Enum_Pos_To_Rep
(T
, Empty
);
16966 -- Set Discard_Names if configuration pragma set, or if there is
16967 -- a parameterless pragma in the current declarative region
16969 if Global_Discard_Names
or else Discard_Names
(Scope
(T
)) then
16970 Set_Discard_Names
(T
);
16973 -- Process end label if there is one
16975 if Present
(Def
) then
16976 Process_End_Label
(Def
, 'e', T
);
16978 end Enumeration_Type_Declaration
;
16980 ---------------------------------
16981 -- Expand_To_Stored_Constraint --
16982 ---------------------------------
16984 function Expand_To_Stored_Constraint
16986 Constraint
: Elist_Id
) return Elist_Id
16988 Explicitly_Discriminated_Type
: Entity_Id
;
16989 Expansion
: Elist_Id
;
16990 Discriminant
: Entity_Id
;
16992 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
16993 -- Find the nearest type that actually specifies discriminants
16995 ---------------------------------
16996 -- Type_With_Explicit_Discrims --
16997 ---------------------------------
16999 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
17000 Typ
: constant E
:= Base_Type
(Id
);
17003 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
17004 if Present
(Full_View
(Typ
)) then
17005 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
17009 if Has_Discriminants
(Typ
) then
17014 if Etype
(Typ
) = Typ
then
17016 elsif Has_Discriminants
(Typ
) then
17019 return Type_With_Explicit_Discrims
(Etype
(Typ
));
17022 end Type_With_Explicit_Discrims
;
17024 -- Start of processing for Expand_To_Stored_Constraint
17027 if No
(Constraint
) or else Is_Empty_Elmt_List
(Constraint
) then
17031 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
17033 if No
(Explicitly_Discriminated_Type
) then
17037 Expansion
:= New_Elmt_List
;
17040 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
17041 while Present
(Discriminant
) loop
17043 (Get_Discriminant_Value
17044 (Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
17046 Next_Stored_Discriminant
(Discriminant
);
17050 end Expand_To_Stored_Constraint
;
17052 ---------------------------
17053 -- Find_Hidden_Interface --
17054 ---------------------------
17056 function Find_Hidden_Interface
17058 Dest
: Elist_Id
) return Entity_Id
17061 Iface_Elmt
: Elmt_Id
;
17064 if Present
(Src
) and then Present
(Dest
) then
17065 Iface_Elmt
:= First_Elmt
(Src
);
17066 while Present
(Iface_Elmt
) loop
17067 Iface
:= Node
(Iface_Elmt
);
17069 if Is_Interface
(Iface
)
17070 and then not Contain_Interface
(Iface
, Dest
)
17075 Next_Elmt
(Iface_Elmt
);
17080 end Find_Hidden_Interface
;
17082 --------------------
17083 -- Find_Type_Name --
17084 --------------------
17086 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
17087 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
17088 New_Id
: Entity_Id
;
17090 Prev_Par
: Node_Id
;
17092 procedure Check_Duplicate_Aspects
;
17093 -- Check that aspects specified in a completion have not been specified
17094 -- already in the partial view.
17096 procedure Tag_Mismatch
;
17097 -- Diagnose a tagged partial view whose full view is untagged. We post
17098 -- the message on the full view, with a reference to the previous
17099 -- partial view. The partial view can be private or incomplete, and
17100 -- these are handled in a different manner, so we determine the position
17101 -- of the error message from the respective slocs of both.
17103 -----------------------------
17104 -- Check_Duplicate_Aspects --
17105 -----------------------------
17107 procedure Check_Duplicate_Aspects
is
17108 function Get_Partial_View_Aspect
(Asp
: Node_Id
) return Node_Id
;
17109 -- Return the corresponding aspect of the partial view which matches
17110 -- the aspect id of Asp. Return Empty is no such aspect exists.
17112 -----------------------------
17113 -- Get_Partial_View_Aspect --
17114 -----------------------------
17116 function Get_Partial_View_Aspect
(Asp
: Node_Id
) return Node_Id
is
17117 Asp_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Asp
);
17118 Prev_Asps
: constant List_Id
:= Aspect_Specifications
(Prev_Par
);
17119 Prev_Asp
: Node_Id
;
17122 if Present
(Prev_Asps
) then
17123 Prev_Asp
:= First
(Prev_Asps
);
17124 while Present
(Prev_Asp
) loop
17125 if Get_Aspect_Id
(Prev_Asp
) = Asp_Id
then
17134 end Get_Partial_View_Aspect
;
17138 Full_Asps
: constant List_Id
:= Aspect_Specifications
(N
);
17139 Full_Asp
: Node_Id
;
17140 Part_Asp
: Node_Id
;
17142 -- Start of processing for Check_Duplicate_Aspects
17145 if Present
(Full_Asps
) then
17146 Full_Asp
:= First
(Full_Asps
);
17147 while Present
(Full_Asp
) loop
17148 Part_Asp
:= Get_Partial_View_Aspect
(Full_Asp
);
17150 -- An aspect and its class-wide counterpart are two distinct
17151 -- aspects and may apply to both views of an entity.
17153 if Present
(Part_Asp
)
17154 and then Class_Present
(Part_Asp
) = Class_Present
(Full_Asp
)
17157 ("aspect already specified in private declaration",
17164 if Has_Discriminants
(Prev
)
17165 and then not Has_Unknown_Discriminants
(Prev
)
17166 and then Get_Aspect_Id
(Full_Asp
) =
17167 Aspect_Implicit_Dereference
17170 ("cannot specify aspect if partial view has known "
17171 & "discriminants", Full_Asp
);
17177 end Check_Duplicate_Aspects
;
17183 procedure Tag_Mismatch
is
17185 if Sloc
(Prev
) < Sloc
(Id
) then
17186 if Ada_Version
>= Ada_2012
17187 and then Nkind
(N
) = N_Private_Type_Declaration
17190 ("declaration of private } must be a tagged type ", Id
, Prev
);
17193 ("full declaration of } must be a tagged type ", Id
, Prev
);
17197 if Ada_Version
>= Ada_2012
17198 and then Nkind
(N
) = N_Private_Type_Declaration
17201 ("declaration of private } must be a tagged type ", Prev
, Id
);
17204 ("full declaration of } must be a tagged type ", Prev
, Id
);
17209 -- Start of processing for Find_Type_Name
17212 -- Find incomplete declaration, if one was given
17214 Prev
:= Current_Entity_In_Scope
(Id
);
17216 -- New type declaration
17222 -- Previous declaration exists
17225 Prev_Par
:= Parent
(Prev
);
17227 -- Error if not incomplete/private case except if previous
17228 -- declaration is implicit, etc. Enter_Name will emit error if
17231 if not Is_Incomplete_Or_Private_Type
(Prev
) then
17235 -- Check invalid completion of private or incomplete type
17237 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
17238 N_Task_Type_Declaration
,
17239 N_Protected_Type_Declaration
)
17241 (Ada_Version
< Ada_2012
17242 or else not Is_Incomplete_Type
(Prev
)
17243 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
17244 N_Private_Extension_Declaration
))
17246 -- Completion must be a full type declarations (RM 7.3(4))
17248 Error_Msg_Sloc
:= Sloc
(Prev
);
17249 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
17251 -- Set scope of Id to avoid cascaded errors. Entity is never
17252 -- examined again, except when saving globals in generics.
17254 Set_Scope
(Id
, Current_Scope
);
17257 -- If this is a repeated incomplete declaration, no further
17258 -- checks are possible.
17260 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
17264 -- Case of full declaration of incomplete type
17266 elsif Ekind
(Prev
) = E_Incomplete_Type
17267 and then (Ada_Version
< Ada_2012
17268 or else No
(Full_View
(Prev
))
17269 or else not Is_Private_Type
(Full_View
(Prev
)))
17271 -- Indicate that the incomplete declaration has a matching full
17272 -- declaration. The defining occurrence of the incomplete
17273 -- declaration remains the visible one, and the procedure
17274 -- Get_Full_View dereferences it whenever the type is used.
17276 if Present
(Full_View
(Prev
)) then
17277 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
17280 Set_Full_View
(Prev
, Id
);
17281 Append_Entity
(Id
, Current_Scope
);
17282 Set_Is_Public
(Id
, Is_Public
(Prev
));
17283 Set_Is_Internal
(Id
);
17286 -- If the incomplete view is tagged, a class_wide type has been
17287 -- created already. Use it for the private type as well, in order
17288 -- to prevent multiple incompatible class-wide types that may be
17289 -- created for self-referential anonymous access components.
17291 if Is_Tagged_Type
(Prev
)
17292 and then Present
(Class_Wide_Type
(Prev
))
17294 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
17295 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
17297 -- Type of the class-wide type is the current Id. Previously
17298 -- this was not done for private declarations because of order-
17299 -- of-elaboration issues in the back end, but gigi now handles
17302 Set_Etype
(Class_Wide_Type
(Id
), Id
);
17305 -- Case of full declaration of private type
17308 -- If the private type was a completion of an incomplete type then
17309 -- update Prev to reference the private type
17311 if Ada_Version
>= Ada_2012
17312 and then Ekind
(Prev
) = E_Incomplete_Type
17313 and then Present
(Full_View
(Prev
))
17314 and then Is_Private_Type
(Full_View
(Prev
))
17316 Prev
:= Full_View
(Prev
);
17317 Prev_Par
:= Parent
(Prev
);
17320 if Nkind
(N
) = N_Full_Type_Declaration
17322 (Type_Definition
(N
), N_Record_Definition
,
17323 N_Derived_Type_Definition
)
17324 and then Interface_Present
(Type_Definition
(N
))
17327 ("completion of private type cannot be an interface", N
);
17330 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
17331 if Etype
(Prev
) /= Prev
then
17333 -- Prev is a private subtype or a derived type, and needs
17336 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
17339 elsif Ekind
(Prev
) = E_Private_Type
17340 and then Nkind_In
(N
, N_Task_Type_Declaration
,
17341 N_Protected_Type_Declaration
)
17344 ("completion of nonlimited type cannot be limited", N
);
17346 elsif Ekind
(Prev
) = E_Record_Type_With_Private
17347 and then Nkind_In
(N
, N_Task_Type_Declaration
,
17348 N_Protected_Type_Declaration
)
17350 if not Is_Limited_Record
(Prev
) then
17352 ("completion of nonlimited type cannot be limited", N
);
17354 elsif No
(Interface_List
(N
)) then
17356 ("completion of tagged private type must be tagged",
17361 -- Ada 2005 (AI-251): Private extension declaration of a task
17362 -- type or a protected type. This case arises when covering
17363 -- interface types.
17365 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
17366 N_Protected_Type_Declaration
)
17370 elsif Nkind
(N
) /= N_Full_Type_Declaration
17371 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
17374 ("full view of private extension must be an extension", N
);
17376 elsif not (Abstract_Present
(Parent
(Prev
)))
17377 and then Abstract_Present
(Type_Definition
(N
))
17380 ("full view of non-abstract extension cannot be abstract", N
);
17383 if not In_Private_Part
(Current_Scope
) then
17385 ("declaration of full view must appear in private part", N
);
17388 if Ada_Version
>= Ada_2012
then
17389 Check_Duplicate_Aspects
;
17392 Copy_And_Swap
(Prev
, Id
);
17393 Set_Has_Private_Declaration
(Prev
);
17394 Set_Has_Private_Declaration
(Id
);
17396 -- AI12-0133: Indicate whether we have a partial view with
17397 -- unknown discriminants, in which case initialization of objects
17398 -- of the type do not receive an invariant check.
17400 Set_Partial_View_Has_Unknown_Discr
17401 (Prev
, Has_Unknown_Discriminants
(Id
));
17403 -- Preserve aspect and iterator flags that may have been set on
17404 -- the partial view.
17406 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
17407 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
17409 -- If no error, propagate freeze_node from private to full view.
17410 -- It may have been generated for an early operational item.
17412 if Present
(Freeze_Node
(Id
))
17413 and then Serious_Errors_Detected
= 0
17414 and then No
(Full_View
(Id
))
17416 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
17417 Set_Freeze_Node
(Id
, Empty
);
17418 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
17421 Set_Full_View
(Id
, Prev
);
17425 -- Verify that full declaration conforms to partial one
17427 if Is_Incomplete_Or_Private_Type
(Prev
)
17428 and then Present
(Discriminant_Specifications
(Prev_Par
))
17430 if Present
(Discriminant_Specifications
(N
)) then
17431 if Ekind
(Prev
) = E_Incomplete_Type
then
17432 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
17434 Check_Discriminant_Conformance
(N
, Prev
, Id
);
17439 ("missing discriminants in full type declaration", N
);
17441 -- To avoid cascaded errors on subsequent use, share the
17442 -- discriminants of the partial view.
17444 Set_Discriminant_Specifications
(N
,
17445 Discriminant_Specifications
(Prev_Par
));
17449 -- A prior untagged partial view can have an associated class-wide
17450 -- type due to use of the class attribute, and in this case the full
17451 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17452 -- of incomplete tagged declarations, but we check for it.
17455 and then (Is_Tagged_Type
(Prev
)
17456 or else Present
(Class_Wide_Type
(Prev
)))
17458 -- Ada 2012 (AI05-0162): A private type may be the completion of
17459 -- an incomplete type.
17461 if Ada_Version
>= Ada_2012
17462 and then Is_Incomplete_Type
(Prev
)
17463 and then Nkind_In
(N
, N_Private_Type_Declaration
,
17464 N_Private_Extension_Declaration
)
17466 -- No need to check private extensions since they are tagged
17468 if Nkind
(N
) = N_Private_Type_Declaration
17469 and then not Tagged_Present
(N
)
17474 -- The full declaration is either a tagged type (including
17475 -- a synchronized type that implements interfaces) or a
17476 -- type extension, otherwise this is an error.
17478 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
17479 N_Protected_Type_Declaration
)
17481 if No
(Interface_List
(N
)) and then not Error_Posted
(N
) then
17485 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
17487 -- Indicate that the previous declaration (tagged incomplete
17488 -- or private declaration) requires the same on the full one.
17490 if not Tagged_Present
(Type_Definition
(N
)) then
17492 Set_Is_Tagged_Type
(Id
);
17495 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
17496 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
17498 ("full declaration of } must be a record extension",
17501 -- Set some attributes to produce a usable full view
17503 Set_Is_Tagged_Type
(Id
);
17512 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
17513 and then Present
(Premature_Use
(Parent
(Prev
)))
17515 Error_Msg_Sloc
:= Sloc
(N
);
17517 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
17522 end Find_Type_Name
;
17524 -------------------------
17525 -- Find_Type_Of_Object --
17526 -------------------------
17528 function Find_Type_Of_Object
17529 (Obj_Def
: Node_Id
;
17530 Related_Nod
: Node_Id
) return Entity_Id
17532 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
17533 P
: Node_Id
:= Parent
(Obj_Def
);
17538 -- If the parent is a component_definition node we climb to the
17539 -- component_declaration node
17541 if Nkind
(P
) = N_Component_Definition
then
17545 -- Case of an anonymous array subtype
17547 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
17548 N_Unconstrained_Array_Definition
)
17551 Array_Type_Declaration
(T
, Obj_Def
);
17553 -- Create an explicit subtype whenever possible
17555 elsif Nkind
(P
) /= N_Component_Declaration
17556 and then Def_Kind
= N_Subtype_Indication
17558 -- Base name of subtype on object name, which will be unique in
17559 -- the current scope.
17561 -- If this is a duplicate declaration, return base type, to avoid
17562 -- generating duplicate anonymous types.
17564 if Error_Posted
(P
) then
17565 Analyze
(Subtype_Mark
(Obj_Def
));
17566 return Entity
(Subtype_Mark
(Obj_Def
));
17571 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
17573 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
17575 Insert_Action
(Obj_Def
,
17576 Make_Subtype_Declaration
(Sloc
(P
),
17577 Defining_Identifier
=> T
,
17578 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
17580 -- This subtype may need freezing, and this will not be done
17581 -- automatically if the object declaration is not in declarative
17582 -- part. Since this is an object declaration, the type cannot always
17583 -- be frozen here. Deferred constants do not freeze their type
17584 -- (which often enough will be private).
17586 if Nkind
(P
) = N_Object_Declaration
17587 and then Constant_Present
(P
)
17588 and then No
(Expression
(P
))
17592 -- Here we freeze the base type of object type to catch premature use
17593 -- of discriminated private type without a full view.
17596 Insert_Actions
(Obj_Def
, Freeze_Entity
(Base_Type
(T
), P
));
17599 -- Ada 2005 AI-406: the object definition in an object declaration
17600 -- can be an access definition.
17602 elsif Def_Kind
= N_Access_Definition
then
17603 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
17605 Set_Is_Local_Anonymous_Access
17607 V
=> (Ada_Version
< Ada_2012
)
17608 or else (Nkind
(P
) /= N_Object_Declaration
)
17609 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
17611 -- Otherwise, the object definition is just a subtype_mark
17614 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
17616 -- If expansion is disabled an object definition that is an aggregate
17617 -- will not get expanded and may lead to scoping problems in the back
17618 -- end, if the object is referenced in an inner scope. In that case
17619 -- create an itype reference for the object definition now. This
17620 -- may be redundant in some cases, but harmless.
17623 and then Nkind
(Related_Nod
) = N_Object_Declaration
17626 Build_Itype_Reference
(T
, Related_Nod
);
17631 end Find_Type_Of_Object
;
17633 --------------------------------
17634 -- Find_Type_Of_Subtype_Indic --
17635 --------------------------------
17637 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
17641 -- Case of subtype mark with a constraint
17643 if Nkind
(S
) = N_Subtype_Indication
then
17644 Find_Type
(Subtype_Mark
(S
));
17645 Typ
:= Entity
(Subtype_Mark
(S
));
17648 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
17651 ("incorrect constraint for this kind of type", Constraint
(S
));
17652 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
17655 -- Otherwise we have a subtype mark without a constraint
17657 elsif Error_Posted
(S
) then
17658 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
17666 -- Check No_Wide_Characters restriction
17668 Check_Wide_Character_Restriction
(Typ
, S
);
17671 end Find_Type_Of_Subtype_Indic
;
17673 -------------------------------------
17674 -- Floating_Point_Type_Declaration --
17675 -------------------------------------
17677 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
17678 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
17679 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
17681 Base_Typ
: Entity_Id
;
17682 Implicit_Base
: Entity_Id
;
17685 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
17686 -- Find if given digits value, and possibly a specified range, allows
17687 -- derivation from specified type
17689 function Find_Base_Type
return Entity_Id
;
17690 -- Find a predefined base type that Def can derive from, or generate
17691 -- an error and substitute Long_Long_Float if none exists.
17693 ---------------------
17694 -- Can_Derive_From --
17695 ---------------------
17697 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
17698 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
17701 -- Check specified "digits" constraint
17703 if Digs_Val
> Digits_Value
(E
) then
17707 -- Check for matching range, if specified
17709 if Present
(Spec
) then
17710 if Expr_Value_R
(Type_Low_Bound
(E
)) >
17711 Expr_Value_R
(Low_Bound
(Spec
))
17716 if Expr_Value_R
(Type_High_Bound
(E
)) <
17717 Expr_Value_R
(High_Bound
(Spec
))
17724 end Can_Derive_From
;
17726 --------------------
17727 -- Find_Base_Type --
17728 --------------------
17730 function Find_Base_Type
return Entity_Id
is
17731 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
17734 -- Iterate over the predefined types in order, returning the first
17735 -- one that Def can derive from.
17737 while Present
(Choice
) loop
17738 if Can_Derive_From
(Node
(Choice
)) then
17739 return Node
(Choice
);
17742 Next_Elmt
(Choice
);
17745 -- If we can't derive from any existing type, use Long_Long_Float
17746 -- and give appropriate message explaining the problem.
17748 if Digs_Val
> Max_Digs_Val
then
17749 -- It might be the case that there is a type with the requested
17750 -- range, just not the combination of digits and range.
17753 ("no predefined type has requested range and precision",
17754 Real_Range_Specification
(Def
));
17758 ("range too large for any predefined type",
17759 Real_Range_Specification
(Def
));
17762 return Standard_Long_Long_Float
;
17763 end Find_Base_Type
;
17765 -- Start of processing for Floating_Point_Type_Declaration
17768 Check_Restriction
(No_Floating_Point
, Def
);
17770 -- Create an implicit base type
17773 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
17775 -- Analyze and verify digits value
17777 Analyze_And_Resolve
(Digs
, Any_Integer
);
17778 Check_Digits_Expression
(Digs
);
17779 Digs_Val
:= Expr_Value
(Digs
);
17781 -- Process possible range spec and find correct type to derive from
17783 Process_Real_Range_Specification
(Def
);
17785 -- Check that requested number of digits is not too high.
17787 if Digs_Val
> Max_Digs_Val
then
17789 -- The check for Max_Base_Digits may be somewhat expensive, as it
17790 -- requires reading System, so only do it when necessary.
17793 Max_Base_Digits
: constant Uint
:=
17796 (Parent
(RTE
(RE_Max_Base_Digits
))));
17799 if Digs_Val
> Max_Base_Digits
then
17800 Error_Msg_Uint_1
:= Max_Base_Digits
;
17801 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
17803 elsif No
(Real_Range_Specification
(Def
)) then
17804 Error_Msg_Uint_1
:= Max_Digs_Val
;
17805 Error_Msg_N
("types with more than ^ digits need range spec "
17806 & "(RM 3.5.7(6))", Digs
);
17811 -- Find a suitable type to derive from or complain and use a substitute
17813 Base_Typ
:= Find_Base_Type
;
17815 -- If there are bounds given in the declaration use them as the bounds
17816 -- of the type, otherwise use the bounds of the predefined base type
17817 -- that was chosen based on the Digits value.
17819 if Present
(Real_Range_Specification
(Def
)) then
17820 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
17821 Set_Is_Constrained
(T
);
17823 -- The bounds of this range must be converted to machine numbers
17824 -- in accordance with RM 4.9(38).
17826 Bound
:= Type_Low_Bound
(T
);
17828 if Nkind
(Bound
) = N_Real_Literal
then
17830 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
17831 Set_Is_Machine_Number
(Bound
);
17834 Bound
:= Type_High_Bound
(T
);
17836 if Nkind
(Bound
) = N_Real_Literal
then
17838 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
17839 Set_Is_Machine_Number
(Bound
);
17843 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
17846 -- Complete definition of implicit base and declared first subtype. The
17847 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17848 -- are not clobbered when the floating point type acts as a full view of
17851 Set_Etype
(Implicit_Base
, Base_Typ
);
17852 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
17853 Set_Size_Info
(Implicit_Base
, Base_Typ
);
17854 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
17855 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
17856 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
17857 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
17859 Set_Ekind
(T
, E_Floating_Point_Subtype
);
17860 Set_Etype
(T
, Implicit_Base
);
17861 Set_Size_Info
(T
, Implicit_Base
);
17862 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
17863 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
17864 Set_Digits_Value
(T
, Digs_Val
);
17865 end Floating_Point_Type_Declaration
;
17867 ----------------------------
17868 -- Get_Discriminant_Value --
17869 ----------------------------
17871 -- This is the situation:
17873 -- There is a non-derived type
17875 -- type T0 (Dx, Dy, Dz...)
17877 -- There are zero or more levels of derivation, with each derivation
17878 -- either purely inheriting the discriminants, or defining its own.
17880 -- type Ti is new Ti-1
17882 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17884 -- subtype Ti is ...
17886 -- The subtype issue is avoided by the use of Original_Record_Component,
17887 -- and the fact that derived subtypes also derive the constraints.
17889 -- This chain leads back from
17891 -- Typ_For_Constraint
17893 -- Typ_For_Constraint has discriminants, and the value for each
17894 -- discriminant is given by its corresponding Elmt of Constraints.
17896 -- Discriminant is some discriminant in this hierarchy
17898 -- We need to return its value
17900 -- We do this by recursively searching each level, and looking for
17901 -- Discriminant. Once we get to the bottom, we start backing up
17902 -- returning the value for it which may in turn be a discriminant
17903 -- further up, so on the backup we continue the substitution.
17905 function Get_Discriminant_Value
17906 (Discriminant
: Entity_Id
;
17907 Typ_For_Constraint
: Entity_Id
;
17908 Constraint
: Elist_Id
) return Node_Id
17910 function Root_Corresponding_Discriminant
17911 (Discr
: Entity_Id
) return Entity_Id
;
17912 -- Given a discriminant, traverse the chain of inherited discriminants
17913 -- and return the topmost discriminant.
17915 function Search_Derivation_Levels
17917 Discrim_Values
: Elist_Id
;
17918 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
17919 -- This is the routine that performs the recursive search of levels
17920 -- as described above.
17922 -------------------------------------
17923 -- Root_Corresponding_Discriminant --
17924 -------------------------------------
17926 function Root_Corresponding_Discriminant
17927 (Discr
: Entity_Id
) return Entity_Id
17933 while Present
(Corresponding_Discriminant
(D
)) loop
17934 D
:= Corresponding_Discriminant
(D
);
17938 end Root_Corresponding_Discriminant
;
17940 ------------------------------
17941 -- Search_Derivation_Levels --
17942 ------------------------------
17944 function Search_Derivation_Levels
17946 Discrim_Values
: Elist_Id
;
17947 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
17951 Result
: Node_Or_Entity_Id
;
17952 Result_Entity
: Node_Id
;
17955 -- If inappropriate type, return Error, this happens only in
17956 -- cascaded error situations, and we want to avoid a blow up.
17958 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
17962 -- Look deeper if possible. Use Stored_Constraints only for
17963 -- untagged types. For tagged types use the given constraint.
17964 -- This asymmetry needs explanation???
17966 if not Stored_Discrim_Values
17967 and then Present
(Stored_Constraint
(Ti
))
17968 and then not Is_Tagged_Type
(Ti
)
17971 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
17974 Td
: constant Entity_Id
:= Etype
(Ti
);
17978 Result
:= Discriminant
;
17981 if Present
(Stored_Constraint
(Ti
)) then
17983 Search_Derivation_Levels
17984 (Td
, Stored_Constraint
(Ti
), True);
17987 Search_Derivation_Levels
17988 (Td
, Discrim_Values
, Stored_Discrim_Values
);
17994 -- Extra underlying places to search, if not found above. For
17995 -- concurrent types, the relevant discriminant appears in the
17996 -- corresponding record. For a type derived from a private type
17997 -- without discriminant, the full view inherits the discriminants
17998 -- of the full view of the parent.
18000 if Result
= Discriminant
then
18001 if Is_Concurrent_Type
(Ti
)
18002 and then Present
(Corresponding_Record_Type
(Ti
))
18005 Search_Derivation_Levels
(
18006 Corresponding_Record_Type
(Ti
),
18008 Stored_Discrim_Values
);
18010 elsif Is_Private_Type
(Ti
)
18011 and then not Has_Discriminants
(Ti
)
18012 and then Present
(Full_View
(Ti
))
18013 and then Etype
(Full_View
(Ti
)) /= Ti
18016 Search_Derivation_Levels
(
18019 Stored_Discrim_Values
);
18023 -- If Result is not a (reference to a) discriminant, return it,
18024 -- otherwise set Result_Entity to the discriminant.
18026 if Nkind
(Result
) = N_Defining_Identifier
then
18027 pragma Assert
(Result
= Discriminant
);
18028 Result_Entity
:= Result
;
18031 if not Denotes_Discriminant
(Result
) then
18035 Result_Entity
:= Entity
(Result
);
18038 -- See if this level of derivation actually has discriminants because
18039 -- tagged derivations can add them, hence the lower levels need not
18042 if not Has_Discriminants
(Ti
) then
18046 -- Scan Ti's discriminants for Result_Entity, and return its
18047 -- corresponding value, if any.
18049 Result_Entity
:= Original_Record_Component
(Result_Entity
);
18051 Assoc
:= First_Elmt
(Discrim_Values
);
18053 if Stored_Discrim_Values
then
18054 Disc
:= First_Stored_Discriminant
(Ti
);
18056 Disc
:= First_Discriminant
(Ti
);
18059 while Present
(Disc
) loop
18061 -- If no further associations return the discriminant, value will
18062 -- be found on the second pass.
18068 if Original_Record_Component
(Disc
) = Result_Entity
then
18069 return Node
(Assoc
);
18074 if Stored_Discrim_Values
then
18075 Next_Stored_Discriminant
(Disc
);
18077 Next_Discriminant
(Disc
);
18081 -- Could not find it
18084 end Search_Derivation_Levels
;
18088 Result
: Node_Or_Entity_Id
;
18090 -- Start of processing for Get_Discriminant_Value
18093 -- ??? This routine is a gigantic mess and will be deleted. For the
18094 -- time being just test for the trivial case before calling recurse.
18096 -- We are now celebrating the 20th anniversary of this comment!
18098 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
18104 D
:= First_Discriminant
(Typ_For_Constraint
);
18105 E
:= First_Elmt
(Constraint
);
18106 while Present
(D
) loop
18107 if Chars
(D
) = Chars
(Discriminant
) then
18111 Next_Discriminant
(D
);
18117 Result
:= Search_Derivation_Levels
18118 (Typ_For_Constraint
, Constraint
, False);
18120 -- ??? hack to disappear when this routine is gone
18122 if Nkind
(Result
) = N_Defining_Identifier
then
18128 D
:= First_Discriminant
(Typ_For_Constraint
);
18129 E
:= First_Elmt
(Constraint
);
18130 while Present
(D
) loop
18131 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
18135 Next_Discriminant
(D
);
18141 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
18143 end Get_Discriminant_Value
;
18145 --------------------------
18146 -- Has_Range_Constraint --
18147 --------------------------
18149 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
18150 C
: constant Node_Id
:= Constraint
(N
);
18153 if Nkind
(C
) = N_Range_Constraint
then
18156 elsif Nkind
(C
) = N_Digits_Constraint
then
18158 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
18159 or else Present
(Range_Constraint
(C
));
18161 elsif Nkind
(C
) = N_Delta_Constraint
then
18162 return Present
(Range_Constraint
(C
));
18167 end Has_Range_Constraint
;
18169 ------------------------
18170 -- Inherit_Components --
18171 ------------------------
18173 function Inherit_Components
18175 Parent_Base
: Entity_Id
;
18176 Derived_Base
: Entity_Id
;
18177 Is_Tagged
: Boolean;
18178 Inherit_Discr
: Boolean;
18179 Discs
: Elist_Id
) return Elist_Id
18181 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
18183 procedure Inherit_Component
18184 (Old_C
: Entity_Id
;
18185 Plain_Discrim
: Boolean := False;
18186 Stored_Discrim
: Boolean := False);
18187 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18188 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18189 -- True, Old_C is a stored discriminant. If they are both false then
18190 -- Old_C is a regular component.
18192 -----------------------
18193 -- Inherit_Component --
18194 -----------------------
18196 procedure Inherit_Component
18197 (Old_C
: Entity_Id
;
18198 Plain_Discrim
: Boolean := False;
18199 Stored_Discrim
: Boolean := False)
18201 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
18202 -- Id denotes the entity of an access discriminant or anonymous
18203 -- access component. Set the type of Id to either the same type of
18204 -- Old_C or create a new one depending on whether the parent and
18205 -- the child types are in the same scope.
18207 ------------------------
18208 -- Set_Anonymous_Type --
18209 ------------------------
18211 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
18212 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
18215 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
18216 Set_Etype
(Id
, Old_Typ
);
18218 -- The parent and the derived type are in two different scopes.
18219 -- Reuse the type of the original discriminant / component by
18220 -- copying it in order to preserve all attributes.
18224 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
18227 Set_Etype
(Id
, Typ
);
18229 -- Since we do not generate component declarations for
18230 -- inherited components, associate the itype with the
18233 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
18234 Set_Scope
(Typ
, Derived_Base
);
18237 end Set_Anonymous_Type
;
18239 -- Local variables and constants
18241 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
18243 Corr_Discrim
: Entity_Id
;
18244 Discrim
: Entity_Id
;
18246 -- Start of processing for Inherit_Component
18249 pragma Assert
(not Is_Tagged
or not Stored_Discrim
);
18251 Set_Parent
(New_C
, Parent
(Old_C
));
18253 -- Regular discriminants and components must be inserted in the scope
18254 -- of the Derived_Base. Do it here.
18256 if not Stored_Discrim
then
18257 Enter_Name
(New_C
);
18260 -- For tagged types the Original_Record_Component must point to
18261 -- whatever this field was pointing to in the parent type. This has
18262 -- already been achieved by the call to New_Copy above.
18264 if not Is_Tagged
then
18265 Set_Original_Record_Component
(New_C
, New_C
);
18266 Set_Corresponding_Record_Component
(New_C
, Old_C
);
18269 -- Set the proper type of an access discriminant
18271 if Ekind
(New_C
) = E_Discriminant
18272 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
18274 Set_Anonymous_Type
(New_C
);
18277 -- If we have inherited a component then see if its Etype contains
18278 -- references to Parent_Base discriminants. In this case, replace
18279 -- these references with the constraints given in Discs. We do not
18280 -- do this for the partial view of private types because this is
18281 -- not needed (only the components of the full view will be used
18282 -- for code generation) and cause problem. We also avoid this
18283 -- transformation in some error situations.
18285 if Ekind
(New_C
) = E_Component
then
18287 -- Set the proper type of an anonymous access component
18289 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
18290 Set_Anonymous_Type
(New_C
);
18292 elsif (Is_Private_Type
(Derived_Base
)
18293 and then not Is_Generic_Type
(Derived_Base
))
18294 or else (Is_Empty_Elmt_List
(Discs
)
18295 and then not Expander_Active
)
18297 Set_Etype
(New_C
, Etype
(Old_C
));
18300 -- The current component introduces a circularity of the
18303 -- limited with Pack_2;
18304 -- package Pack_1 is
18305 -- type T_1 is tagged record
18306 -- Comp : access Pack_2.T_2;
18312 -- package Pack_2 is
18313 -- type T_2 is new Pack_1.T_1 with ...;
18318 Constrain_Component_Type
18319 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
18323 -- In derived tagged types it is illegal to reference a non
18324 -- discriminant component in the parent type. To catch this, mark
18325 -- these components with an Ekind of E_Void. This will be reset in
18326 -- Record_Type_Definition after processing the record extension of
18327 -- the derived type.
18329 -- If the declaration is a private extension, there is no further
18330 -- record extension to process, and the components retain their
18331 -- current kind, because they are visible at this point.
18333 if Is_Tagged
and then Ekind
(New_C
) = E_Component
18334 and then Nkind
(N
) /= N_Private_Extension_Declaration
18336 Set_Ekind
(New_C
, E_Void
);
18339 if Plain_Discrim
then
18340 Set_Corresponding_Discriminant
(New_C
, Old_C
);
18341 Build_Discriminal
(New_C
);
18343 -- If we are explicitly inheriting a stored discriminant it will be
18344 -- completely hidden.
18346 elsif Stored_Discrim
then
18347 Set_Corresponding_Discriminant
(New_C
, Empty
);
18348 Set_Discriminal
(New_C
, Empty
);
18349 Set_Is_Completely_Hidden
(New_C
);
18351 -- Set the Original_Record_Component of each discriminant in the
18352 -- derived base to point to the corresponding stored that we just
18355 Discrim
:= First_Discriminant
(Derived_Base
);
18356 while Present
(Discrim
) loop
18357 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
18359 -- Corr_Discrim could be missing in an error situation
18361 if Present
(Corr_Discrim
)
18362 and then Original_Record_Component
(Corr_Discrim
) = Old_C
18364 Set_Original_Record_Component
(Discrim
, New_C
);
18365 Set_Corresponding_Record_Component
(Discrim
, Empty
);
18368 Next_Discriminant
(Discrim
);
18371 Append_Entity
(New_C
, Derived_Base
);
18374 if not Is_Tagged
then
18375 Append_Elmt
(Old_C
, Assoc_List
);
18376 Append_Elmt
(New_C
, Assoc_List
);
18378 end Inherit_Component
;
18380 -- Variables local to Inherit_Component
18382 Loc
: constant Source_Ptr
:= Sloc
(N
);
18384 Parent_Discrim
: Entity_Id
;
18385 Stored_Discrim
: Entity_Id
;
18387 Component
: Entity_Id
;
18389 -- Start of processing for Inherit_Components
18392 if not Is_Tagged
then
18393 Append_Elmt
(Parent_Base
, Assoc_List
);
18394 Append_Elmt
(Derived_Base
, Assoc_List
);
18397 -- Inherit parent discriminants if needed
18399 if Inherit_Discr
then
18400 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
18401 while Present
(Parent_Discrim
) loop
18402 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
18403 Next_Discriminant
(Parent_Discrim
);
18407 -- Create explicit stored discrims for untagged types when necessary
18409 if not Has_Unknown_Discriminants
(Derived_Base
)
18410 and then Has_Discriminants
(Parent_Base
)
18411 and then not Is_Tagged
18414 or else First_Discriminant
(Parent_Base
) /=
18415 First_Stored_Discriminant
(Parent_Base
))
18417 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
18418 while Present
(Stored_Discrim
) loop
18419 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
18420 Next_Stored_Discriminant
(Stored_Discrim
);
18424 -- See if we can apply the second transformation for derived types, as
18425 -- explained in point 6. in the comments above Build_Derived_Record_Type
18426 -- This is achieved by appending Derived_Base discriminants into Discs,
18427 -- which has the side effect of returning a non empty Discs list to the
18428 -- caller of Inherit_Components, which is what we want. This must be
18429 -- done for private derived types if there are explicit stored
18430 -- discriminants, to ensure that we can retrieve the values of the
18431 -- constraints provided in the ancestors.
18434 and then Is_Empty_Elmt_List
(Discs
)
18435 and then Present
(First_Discriminant
(Derived_Base
))
18437 (not Is_Private_Type
(Derived_Base
)
18438 or else Is_Completely_Hidden
18439 (First_Stored_Discriminant
(Derived_Base
))
18440 or else Is_Generic_Type
(Derived_Base
))
18442 D
:= First_Discriminant
(Derived_Base
);
18443 while Present
(D
) loop
18444 Append_Elmt
(New_Occurrence_Of
(D
, Loc
), Discs
);
18445 Next_Discriminant
(D
);
18449 -- Finally, inherit non-discriminant components unless they are not
18450 -- visible because defined or inherited from the full view of the
18451 -- parent. Don't inherit the _parent field of the parent type.
18453 Component
:= First_Entity
(Parent_Base
);
18454 while Present
(Component
) loop
18456 -- Ada 2005 (AI-251): Do not inherit components associated with
18457 -- secondary tags of the parent.
18459 if Ekind
(Component
) = E_Component
18460 and then Present
(Related_Type
(Component
))
18464 elsif Ekind
(Component
) /= E_Component
18465 or else Chars
(Component
) = Name_uParent
18469 -- If the derived type is within the parent type's declarative
18470 -- region, then the components can still be inherited even though
18471 -- they aren't visible at this point. This can occur for cases
18472 -- such as within public child units where the components must
18473 -- become visible upon entering the child unit's private part.
18475 elsif not Is_Visible_Component
(Component
)
18476 and then not In_Open_Scopes
(Scope
(Parent_Base
))
18480 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
18481 E_Limited_Private_Type
)
18486 Inherit_Component
(Component
);
18489 Next_Entity
(Component
);
18492 -- For tagged derived types, inherited discriminants cannot be used in
18493 -- component declarations of the record extension part. To achieve this
18494 -- we mark the inherited discriminants as not visible.
18496 if Is_Tagged
and then Inherit_Discr
then
18497 D
:= First_Discriminant
(Derived_Base
);
18498 while Present
(D
) loop
18499 Set_Is_Immediately_Visible
(D
, False);
18500 Next_Discriminant
(D
);
18505 end Inherit_Components
;
18507 -----------------------------
18508 -- Inherit_Predicate_Flags --
18509 -----------------------------
18511 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
) is
18513 Set_Has_Predicates
(Subt
, Has_Predicates
(Par
));
18514 Set_Has_Static_Predicate_Aspect
18515 (Subt
, Has_Static_Predicate_Aspect
(Par
));
18516 Set_Has_Dynamic_Predicate_Aspect
18517 (Subt
, Has_Dynamic_Predicate_Aspect
(Par
));
18519 -- A named subtype does not inherit the predicate function of its
18520 -- parent but an itype declared for a loop index needs the discrete
18521 -- predicate information of its parent to execute the loop properly.
18523 if Is_Itype
(Subt
) and then Present
(Predicate_Function
(Par
)) then
18524 Set_Subprograms_For_Type
(Subt
, Subprograms_For_Type
(Par
));
18526 if Has_Static_Predicate
(Par
) then
18527 Set_Static_Discrete_Predicate
18528 (Subt
, Static_Discrete_Predicate
(Par
));
18531 end Inherit_Predicate_Flags
;
18533 ----------------------
18534 -- Is_EVF_Procedure --
18535 ----------------------
18537 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean is
18538 Formal
: Entity_Id
;
18541 -- Examine the formals of an Extensions_Visible False procedure looking
18542 -- for a controlling OUT parameter.
18544 if Ekind
(Subp
) = E_Procedure
18545 and then Extensions_Visible_Status
(Subp
) = Extensions_Visible_False
18547 Formal
:= First_Formal
(Subp
);
18548 while Present
(Formal
) loop
18549 if Ekind
(Formal
) = E_Out_Parameter
18550 and then Is_Controlling_Formal
(Formal
)
18555 Next_Formal
(Formal
);
18560 end Is_EVF_Procedure
;
18562 -----------------------
18563 -- Is_Null_Extension --
18564 -----------------------
18566 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
18567 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
18568 Comp_List
: Node_Id
;
18572 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
18573 or else not Is_Tagged_Type
(T
)
18574 or else Nkind
(Type_Definition
(Type_Decl
)) /=
18575 N_Derived_Type_Definition
18576 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
18582 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
18584 if Present
(Discriminant_Specifications
(Type_Decl
)) then
18587 elsif Present
(Comp_List
)
18588 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
18590 Comp
:= First
(Component_Items
(Comp_List
));
18592 -- Only user-defined components are relevant. The component list
18593 -- may also contain a parent component and internal components
18594 -- corresponding to secondary tags, but these do not determine
18595 -- whether this is a null extension.
18597 while Present
(Comp
) loop
18598 if Comes_From_Source
(Comp
) then
18610 end Is_Null_Extension
;
18612 ------------------------------
18613 -- Is_Valid_Constraint_Kind --
18614 ------------------------------
18616 function Is_Valid_Constraint_Kind
18617 (T_Kind
: Type_Kind
;
18618 Constraint_Kind
: Node_Kind
) return Boolean
18622 when Enumeration_Kind
18625 return Constraint_Kind
= N_Range_Constraint
;
18627 when Decimal_Fixed_Point_Kind
=>
18628 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
18629 N_Range_Constraint
);
18631 when Ordinary_Fixed_Point_Kind
=>
18632 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
18633 N_Range_Constraint
);
18636 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
18637 N_Range_Constraint
);
18644 | E_Incomplete_Type
18648 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
18651 return True; -- Error will be detected later
18653 end Is_Valid_Constraint_Kind
;
18655 --------------------------
18656 -- Is_Visible_Component --
18657 --------------------------
18659 function Is_Visible_Component
18661 N
: Node_Id
:= Empty
) return Boolean
18663 Original_Comp
: Entity_Id
:= Empty
;
18664 Original_Type
: Entity_Id
;
18665 Type_Scope
: Entity_Id
;
18667 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
18668 -- Check whether parent type of inherited component is declared locally,
18669 -- possibly within a nested package or instance. The current scope is
18670 -- the derived record itself.
18672 -------------------
18673 -- Is_Local_Type --
18674 -------------------
18676 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
18680 Scop
:= Scope
(Typ
);
18681 while Present
(Scop
)
18682 and then Scop
/= Standard_Standard
18684 if Scop
= Scope
(Current_Scope
) then
18688 Scop
:= Scope
(Scop
);
18694 -- Start of processing for Is_Visible_Component
18697 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
18698 Original_Comp
:= Original_Record_Component
(C
);
18701 if No
(Original_Comp
) then
18703 -- Premature usage, or previous error
18708 Original_Type
:= Scope
(Original_Comp
);
18709 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
18712 -- This test only concerns tagged types
18714 if not Is_Tagged_Type
(Original_Type
) then
18717 -- If it is _Parent or _Tag, there is no visibility issue
18719 elsif not Comes_From_Source
(Original_Comp
) then
18722 -- Discriminants are visible unless the (private) type has unknown
18723 -- discriminants. If the discriminant reference is inserted for a
18724 -- discriminant check on a full view it is also visible.
18726 elsif Ekind
(Original_Comp
) = E_Discriminant
18728 (not Has_Unknown_Discriminants
(Original_Type
)
18729 or else (Present
(N
)
18730 and then Nkind
(N
) = N_Selected_Component
18731 and then Nkind
(Prefix
(N
)) = N_Type_Conversion
18732 and then not Comes_From_Source
(Prefix
(N
))))
18736 -- In the body of an instantiation, check the visibility of a component
18737 -- in case it has a homograph that is a primitive operation of a private
18738 -- type which was not visible in the generic unit.
18740 -- Should Is_Prefixed_Call be propagated from template to instance???
18742 elsif In_Instance_Body
then
18743 if not Is_Tagged_Type
(Original_Type
)
18744 or else not Is_Private_Type
(Original_Type
)
18750 Subp_Elmt
: Elmt_Id
;
18753 Subp_Elmt
:= First_Elmt
(Primitive_Operations
(Original_Type
));
18754 while Present
(Subp_Elmt
) loop
18756 -- The component is hidden by a primitive operation
18758 if Chars
(Node
(Subp_Elmt
)) = Chars
(C
) then
18762 Next_Elmt
(Subp_Elmt
);
18769 -- If the component has been declared in an ancestor which is currently
18770 -- a private type, then it is not visible. The same applies if the
18771 -- component's containing type is not in an open scope and the original
18772 -- component's enclosing type is a visible full view of a private type
18773 -- (which can occur in cases where an attempt is being made to reference
18774 -- a component in a sibling package that is inherited from a visible
18775 -- component of a type in an ancestor package; the component in the
18776 -- sibling package should not be visible even though the component it
18777 -- inherited from is visible). This does not apply however in the case
18778 -- where the scope of the type is a private child unit, or when the
18779 -- parent comes from a local package in which the ancestor is currently
18780 -- visible. The latter suppression of visibility is needed for cases
18781 -- that are tested in B730006.
18783 elsif Is_Private_Type
(Original_Type
)
18785 (not Is_Private_Descendant
(Type_Scope
)
18786 and then not In_Open_Scopes
(Type_Scope
)
18787 and then Has_Private_Declaration
(Original_Type
))
18789 -- If the type derives from an entity in a formal package, there
18790 -- are no additional visible components.
18792 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
18793 N_Formal_Package_Declaration
18797 -- if we are not in the private part of the current package, there
18798 -- are no additional visible components.
18800 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
18801 and then not In_Private_Part
(Scope
(Current_Scope
))
18806 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
18807 and then In_Open_Scopes
(Scope
(Original_Type
))
18808 and then Is_Local_Type
(Type_Scope
);
18811 -- There is another weird way in which a component may be invisible when
18812 -- the private and the full view are not derived from the same ancestor.
18813 -- Here is an example :
18815 -- type A1 is tagged record F1 : integer; end record;
18816 -- type A2 is new A1 with record F2 : integer; end record;
18817 -- type T is new A1 with private;
18819 -- type T is new A2 with null record;
18821 -- In this case, the full view of T inherits F1 and F2 but the private
18822 -- view inherits only F1
18826 Ancestor
: Entity_Id
:= Scope
(C
);
18830 if Ancestor
= Original_Type
then
18833 -- The ancestor may have a partial view of the original type,
18834 -- but if the full view is in scope, as in a child body, the
18835 -- component is visible.
18837 elsif In_Private_Part
(Scope
(Original_Type
))
18838 and then Full_View
(Ancestor
) = Original_Type
18842 elsif Ancestor
= Etype
(Ancestor
) then
18844 -- No further ancestors to examine
18849 Ancestor
:= Etype
(Ancestor
);
18853 end Is_Visible_Component
;
18855 --------------------------
18856 -- Make_Class_Wide_Type --
18857 --------------------------
18859 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
18860 CW_Type
: Entity_Id
;
18862 Next_E
: Entity_Id
;
18865 if Present
(Class_Wide_Type
(T
)) then
18867 -- The class-wide type is a partially decorated entity created for a
18868 -- unanalyzed tagged type referenced through a limited with clause.
18869 -- When the tagged type is analyzed, its class-wide type needs to be
18870 -- redecorated. Note that we reuse the entity created by Decorate_
18871 -- Tagged_Type in order to preserve all links.
18873 if Materialize_Entity
(Class_Wide_Type
(T
)) then
18874 CW_Type
:= Class_Wide_Type
(T
);
18875 Set_Materialize_Entity
(CW_Type
, False);
18877 -- The class wide type can have been defined by the partial view, in
18878 -- which case everything is already done.
18884 -- Default case, we need to create a new class-wide type
18888 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
18891 -- Inherit root type characteristics
18893 CW_Name
:= Chars
(CW_Type
);
18894 Next_E
:= Next_Entity
(CW_Type
);
18895 Copy_Node
(T
, CW_Type
);
18896 Set_Comes_From_Source
(CW_Type
, False);
18897 Set_Chars
(CW_Type
, CW_Name
);
18898 Set_Parent
(CW_Type
, Parent
(T
));
18899 Set_Next_Entity
(CW_Type
, Next_E
);
18901 -- Ensure we have a new freeze node for the class-wide type. The partial
18902 -- view may have freeze action of its own, requiring a proper freeze
18903 -- node, and the same freeze node cannot be shared between the two
18906 Set_Has_Delayed_Freeze
(CW_Type
);
18907 Set_Freeze_Node
(CW_Type
, Empty
);
18909 -- Customize the class-wide type: It has no prim. op., it cannot be
18910 -- abstract, its Etype points back to the specific root type, and it
18911 -- cannot have any invariants.
18913 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
18914 Set_Is_Tagged_Type
(CW_Type
, True);
18915 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
18916 Set_Is_Abstract_Type
(CW_Type
, False);
18917 Set_Is_Constrained
(CW_Type
, False);
18918 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
18919 Set_Default_SSO
(CW_Type
);
18920 Set_Has_Inheritable_Invariants
(CW_Type
, False);
18921 Set_Has_Inherited_Invariants
(CW_Type
, False);
18922 Set_Has_Own_Invariants
(CW_Type
, False);
18924 if Ekind
(T
) = E_Class_Wide_Subtype
then
18925 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
18927 Set_Etype
(CW_Type
, T
);
18930 Set_No_Tagged_Streams_Pragma
(CW_Type
, No_Tagged_Streams
);
18932 -- If this is the class_wide type of a constrained subtype, it does
18933 -- not have discriminants.
18935 Set_Has_Discriminants
(CW_Type
,
18936 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
18938 Set_Has_Unknown_Discriminants
(CW_Type
, True);
18939 Set_Class_Wide_Type
(T
, CW_Type
);
18940 Set_Equivalent_Type
(CW_Type
, Empty
);
18942 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18944 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
18945 end Make_Class_Wide_Type
;
18951 procedure Make_Index
18953 Related_Nod
: Node_Id
;
18954 Related_Id
: Entity_Id
:= Empty
;
18955 Suffix_Index
: Nat
:= 1;
18956 In_Iter_Schm
: Boolean := False)
18960 Def_Id
: Entity_Id
:= Empty
;
18961 Found
: Boolean := False;
18964 -- For a discrete range used in a constrained array definition and
18965 -- defined by a range, an implicit conversion to the predefined type
18966 -- INTEGER is assumed if each bound is either a numeric literal, a named
18967 -- number, or an attribute, and the type of both bounds (prior to the
18968 -- implicit conversion) is the type universal_integer. Otherwise, both
18969 -- bounds must be of the same discrete type, other than universal
18970 -- integer; this type must be determinable independently of the
18971 -- context, but using the fact that the type must be discrete and that
18972 -- both bounds must have the same type.
18974 -- Character literals also have a universal type in the absence of
18975 -- of additional context, and are resolved to Standard_Character.
18977 if Nkind
(N
) = N_Range
then
18979 -- The index is given by a range constraint. The bounds are known
18980 -- to be of a consistent type.
18982 if not Is_Overloaded
(N
) then
18985 -- For universal bounds, choose the specific predefined type
18987 if T
= Universal_Integer
then
18988 T
:= Standard_Integer
;
18990 elsif T
= Any_Character
then
18991 Ambiguous_Character
(Low_Bound
(N
));
18993 T
:= Standard_Character
;
18996 -- The node may be overloaded because some user-defined operators
18997 -- are available, but if a universal interpretation exists it is
18998 -- also the selected one.
19000 elsif Universal_Interpretation
(N
) = Universal_Integer
then
19001 T
:= Standard_Integer
;
19007 Ind
: Interp_Index
;
19011 Get_First_Interp
(N
, Ind
, It
);
19012 while Present
(It
.Typ
) loop
19013 if Is_Discrete_Type
(It
.Typ
) then
19016 and then not Covers
(It
.Typ
, T
)
19017 and then not Covers
(T
, It
.Typ
)
19019 Error_Msg_N
("ambiguous bounds in discrete range", N
);
19027 Get_Next_Interp
(Ind
, It
);
19030 if T
= Any_Type
then
19031 Error_Msg_N
("discrete type required for range", N
);
19032 Set_Etype
(N
, Any_Type
);
19035 elsif T
= Universal_Integer
then
19036 T
:= Standard_Integer
;
19041 if not Is_Discrete_Type
(T
) then
19042 Error_Msg_N
("discrete type required for range", N
);
19043 Set_Etype
(N
, Any_Type
);
19047 if Nkind
(Low_Bound
(N
)) = N_Attribute_Reference
19048 and then Attribute_Name
(Low_Bound
(N
)) = Name_First
19049 and then Is_Entity_Name
(Prefix
(Low_Bound
(N
)))
19050 and then Is_Type
(Entity
(Prefix
(Low_Bound
(N
))))
19051 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(N
))))
19053 -- The type of the index will be the type of the prefix, as long
19054 -- as the upper bound is 'Last of the same type.
19056 Def_Id
:= Entity
(Prefix
(Low_Bound
(N
)));
19058 if Nkind
(High_Bound
(N
)) /= N_Attribute_Reference
19059 or else Attribute_Name
(High_Bound
(N
)) /= Name_Last
19060 or else not Is_Entity_Name
(Prefix
(High_Bound
(N
)))
19061 or else Entity
(Prefix
(High_Bound
(N
))) /= Def_Id
19068 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
19070 elsif Nkind
(N
) = N_Subtype_Indication
then
19072 -- The index is given by a subtype with a range constraint
19074 T
:= Base_Type
(Entity
(Subtype_Mark
(N
)));
19076 if not Is_Discrete_Type
(T
) then
19077 Error_Msg_N
("discrete type required for range", N
);
19078 Set_Etype
(N
, Any_Type
);
19082 R
:= Range_Expression
(Constraint
(N
));
19085 Process_Range_Expr_In_Decl
19086 (R
, Entity
(Subtype_Mark
(N
)), In_Iter_Schm
=> In_Iter_Schm
);
19088 elsif Nkind
(N
) = N_Attribute_Reference
then
19090 -- Catch beginner's error (use of attribute other than 'Range)
19092 if Attribute_Name
(N
) /= Name_Range
then
19093 Error_Msg_N
("expect attribute ''Range", N
);
19094 Set_Etype
(N
, Any_Type
);
19098 -- If the node denotes the range of a type mark, that is also the
19099 -- resulting type, and we do not need to create an Itype for it.
19101 if Is_Entity_Name
(Prefix
(N
))
19102 and then Comes_From_Source
(N
)
19103 and then Is_Type
(Entity
(Prefix
(N
)))
19104 and then Is_Discrete_Type
(Entity
(Prefix
(N
)))
19106 Def_Id
:= Entity
(Prefix
(N
));
19109 Analyze_And_Resolve
(N
);
19113 -- If none of the above, must be a subtype. We convert this to a
19114 -- range attribute reference because in the case of declared first
19115 -- named subtypes, the types in the range reference can be different
19116 -- from the type of the entity. A range attribute normalizes the
19117 -- reference and obtains the correct types for the bounds.
19119 -- This transformation is in the nature of an expansion, is only
19120 -- done if expansion is active. In particular, it is not done on
19121 -- formal generic types, because we need to retain the name of the
19122 -- original index for instantiation purposes.
19125 if not Is_Entity_Name
(N
) or else not Is_Type
(Entity
(N
)) then
19126 Error_Msg_N
("invalid subtype mark in discrete range ", N
);
19127 Set_Etype
(N
, Any_Integer
);
19131 -- The type mark may be that of an incomplete type. It is only
19132 -- now that we can get the full view, previous analysis does
19133 -- not look specifically for a type mark.
19135 Set_Entity
(N
, Get_Full_View
(Entity
(N
)));
19136 Set_Etype
(N
, Entity
(N
));
19137 Def_Id
:= Entity
(N
);
19139 if not Is_Discrete_Type
(Def_Id
) then
19140 Error_Msg_N
("discrete type required for index", N
);
19141 Set_Etype
(N
, Any_Type
);
19146 if Expander_Active
then
19148 Make_Attribute_Reference
(Sloc
(N
),
19149 Attribute_Name
=> Name_Range
,
19150 Prefix
=> Relocate_Node
(N
)));
19152 -- The original was a subtype mark that does not freeze. This
19153 -- means that the rewritten version must not freeze either.
19155 Set_Must_Not_Freeze
(N
);
19156 Set_Must_Not_Freeze
(Prefix
(N
));
19157 Analyze_And_Resolve
(N
);
19161 -- If expander is inactive, type is legal, nothing else to construct
19168 if not Is_Discrete_Type
(T
) then
19169 Error_Msg_N
("discrete type required for range", N
);
19170 Set_Etype
(N
, Any_Type
);
19173 elsif T
= Any_Type
then
19174 Set_Etype
(N
, Any_Type
);
19178 -- We will now create the appropriate Itype to describe the range, but
19179 -- first a check. If we originally had a subtype, then we just label
19180 -- the range with this subtype. Not only is there no need to construct
19181 -- a new subtype, but it is wrong to do so for two reasons:
19183 -- 1. A legality concern, if we have a subtype, it must not freeze,
19184 -- and the Itype would cause freezing incorrectly
19186 -- 2. An efficiency concern, if we created an Itype, it would not be
19187 -- recognized as the same type for the purposes of eliminating
19188 -- checks in some circumstances.
19190 -- We signal this case by setting the subtype entity in Def_Id
19192 if No
(Def_Id
) then
19194 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
19195 Set_Etype
(Def_Id
, Base_Type
(T
));
19197 if Is_Signed_Integer_Type
(T
) then
19198 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
19200 elsif Is_Modular_Integer_Type
(T
) then
19201 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
19204 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
19205 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
19206 Set_First_Literal
(Def_Id
, First_Literal
(T
));
19209 Set_Size_Info
(Def_Id
, (T
));
19210 Set_RM_Size
(Def_Id
, RM_Size
(T
));
19211 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
19213 Set_Scalar_Range
(Def_Id
, R
);
19214 Conditional_Delay
(Def_Id
, T
);
19216 if Nkind
(N
) = N_Subtype_Indication
then
19217 Inherit_Predicate_Flags
(Def_Id
, Entity
(Subtype_Mark
(N
)));
19220 -- In the subtype indication case, if the immediate parent of the
19221 -- new subtype is non-static, then the subtype we create is non-
19222 -- static, even if its bounds are static.
19224 if Nkind
(N
) = N_Subtype_Indication
19225 and then not Is_OK_Static_Subtype
(Entity
(Subtype_Mark
(N
)))
19227 Set_Is_Non_Static_Subtype
(Def_Id
);
19231 -- Final step is to label the index with this constructed type
19233 Set_Etype
(N
, Def_Id
);
19236 ------------------------------
19237 -- Modular_Type_Declaration --
19238 ------------------------------
19240 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
19241 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
19244 procedure Set_Modular_Size
(Bits
: Int
);
19245 -- Sets RM_Size to Bits, and Esize to normal word size above this
19247 ----------------------
19248 -- Set_Modular_Size --
19249 ----------------------
19251 procedure Set_Modular_Size
(Bits
: Int
) is
19253 Set_RM_Size
(T
, UI_From_Int
(Bits
));
19258 elsif Bits
<= 16 then
19259 Init_Esize
(T
, 16);
19261 elsif Bits
<= 32 then
19262 Init_Esize
(T
, 32);
19265 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
19268 if not Non_Binary_Modulus
(T
) and then Esize
(T
) = RM_Size
(T
) then
19269 Set_Is_Known_Valid
(T
);
19271 end Set_Modular_Size
;
19273 -- Start of processing for Modular_Type_Declaration
19276 -- If the mod expression is (exactly) 2 * literal, where literal is
19277 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19279 if Warn_On_Suspicious_Modulus_Value
19280 and then Nkind
(Mod_Expr
) = N_Op_Multiply
19281 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
19282 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
19283 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
19284 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
19287 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr
);
19290 -- Proceed with analysis of mod expression
19292 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
19294 Set_Ekind
(T
, E_Modular_Integer_Type
);
19295 Init_Alignment
(T
);
19296 Set_Is_Constrained
(T
);
19298 if not Is_OK_Static_Expression
(Mod_Expr
) then
19299 Flag_Non_Static_Expr
19300 ("non-static expression used for modular type bound!", Mod_Expr
);
19301 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
19303 M_Val
:= Expr_Value
(Mod_Expr
);
19307 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
19308 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
19311 if M_Val
> 2 ** Standard_Long_Integer_Size
then
19312 Check_Restriction
(No_Long_Long_Integers
, Mod_Expr
);
19315 Set_Modulus
(T
, M_Val
);
19317 -- Create bounds for the modular type based on the modulus given in
19318 -- the type declaration and then analyze and resolve those bounds.
19320 Set_Scalar_Range
(T
,
19321 Make_Range
(Sloc
(Mod_Expr
),
19322 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
19323 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
19325 -- Properly analyze the literals for the range. We do this manually
19326 -- because we can't go calling Resolve, since we are resolving these
19327 -- bounds with the type, and this type is certainly not complete yet.
19329 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
19330 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
19331 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
19332 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
19334 -- Loop through powers of two to find number of bits required
19336 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
19340 if M_Val
= 2 ** Bits
then
19341 Set_Modular_Size
(Bits
);
19346 elsif M_Val
< 2 ** Bits
then
19347 Check_SPARK_05_Restriction
("modulus should be a power of 2", T
);
19348 Set_Non_Binary_Modulus
(T
);
19350 if Bits
> System_Max_Nonbinary_Modulus_Power
then
19351 Error_Msg_Uint_1
:=
19352 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
19354 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
19355 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
19359 -- In the nonbinary case, set size as per RM 13.3(55)
19361 Set_Modular_Size
(Bits
);
19368 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19369 -- so we just signal an error and set the maximum size.
19371 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
19372 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
19374 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
19375 Init_Alignment
(T
);
19377 end Modular_Type_Declaration
;
19379 --------------------------
19380 -- New_Concatenation_Op --
19381 --------------------------
19383 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
19384 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
19387 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
19388 -- Create abbreviated declaration for the formal of a predefined
19389 -- Operator 'Op' of type 'Typ'
19391 --------------------
19392 -- Make_Op_Formal --
19393 --------------------
19395 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
19396 Formal
: Entity_Id
;
19398 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
19399 Set_Etype
(Formal
, Typ
);
19400 Set_Mechanism
(Formal
, Default_Mechanism
);
19402 end Make_Op_Formal
;
19404 -- Start of processing for New_Concatenation_Op
19407 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
19409 Set_Ekind
(Op
, E_Operator
);
19410 Set_Scope
(Op
, Current_Scope
);
19411 Set_Etype
(Op
, Typ
);
19412 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
19413 Set_Is_Immediately_Visible
(Op
);
19414 Set_Is_Intrinsic_Subprogram
(Op
);
19415 Set_Has_Completion
(Op
);
19416 Append_Entity
(Op
, Current_Scope
);
19418 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
19420 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
19421 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
19422 end New_Concatenation_Op
;
19424 -------------------------
19425 -- OK_For_Limited_Init --
19426 -------------------------
19428 -- ???Check all calls of this, and compare the conditions under which it's
19431 function OK_For_Limited_Init
19433 Exp
: Node_Id
) return Boolean
19436 return Is_CPP_Constructor_Call
(Exp
)
19437 or else (Ada_Version
>= Ada_2005
19438 and then not Debug_Flag_Dot_L
19439 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
19440 end OK_For_Limited_Init
;
19442 -------------------------------
19443 -- OK_For_Limited_Init_In_05 --
19444 -------------------------------
19446 function OK_For_Limited_Init_In_05
19448 Exp
: Node_Id
) return Boolean
19451 -- An object of a limited interface type can be initialized with any
19452 -- expression of a nonlimited descendant type. However this does not
19453 -- apply if this is a view conversion of some other expression. This
19454 -- is checked below.
19456 if Is_Class_Wide_Type
(Typ
)
19457 and then Is_Limited_Interface
(Typ
)
19458 and then not Is_Limited_Type
(Etype
(Exp
))
19459 and then Nkind
(Exp
) /= N_Type_Conversion
19464 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19465 -- case of limited aggregates (including extension aggregates), and
19466 -- function calls. The function call may have been given in prefixed
19467 -- notation, in which case the original node is an indexed component.
19468 -- If the function is parameterless, the original node was an explicit
19469 -- dereference. The function may also be parameterless, in which case
19470 -- the source node is just an identifier.
19472 -- A branch of a conditional expression may have been removed if the
19473 -- condition is statically known. This happens during expansion, and
19474 -- thus will not happen if previous errors were encountered. The check
19475 -- will have been performed on the chosen branch, which replaces the
19476 -- original conditional expression.
19482 case Nkind
(Original_Node
(Exp
)) is
19484 | N_Extension_Aggregate
19490 when N_Identifier
=>
19491 return Present
(Entity
(Original_Node
(Exp
)))
19492 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
19494 when N_Qualified_Expression
=>
19496 OK_For_Limited_Init_In_05
19497 (Typ
, Expression
(Original_Node
(Exp
)));
19499 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19500 -- with a function call, the expander has rewritten the call into an
19501 -- N_Type_Conversion node to force displacement of the pointer to
19502 -- reference the component containing the secondary dispatch table.
19503 -- Otherwise a type conversion is not a legal context.
19504 -- A return statement for a build-in-place function returning a
19505 -- synchronized type also introduces an unchecked conversion.
19507 when N_Type_Conversion
19508 | N_Unchecked_Type_Conversion
19510 return not Comes_From_Source
(Exp
)
19512 OK_For_Limited_Init_In_05
19513 (Typ
, Expression
(Original_Node
(Exp
)));
19515 when N_Explicit_Dereference
19516 | N_Indexed_Component
19517 | N_Selected_Component
19519 return Nkind
(Exp
) = N_Function_Call
;
19521 -- A use of 'Input is a function call, hence allowed. Normally the
19522 -- attribute will be changed to a call, but the attribute by itself
19523 -- can occur with -gnatc.
19525 when N_Attribute_Reference
=>
19526 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
19528 -- "return raise ..." is OK
19530 when N_Raise_Expression
=>
19533 -- For a case expression, all dependent expressions must be legal
19535 when N_Case_Expression
=>
19540 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
19541 while Present
(Alt
) loop
19542 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
19552 -- For an if expression, all dependent expressions must be legal
19554 when N_If_Expression
=>
19556 Then_Expr
: constant Node_Id
:=
19557 Next
(First
(Expressions
(Original_Node
(Exp
))));
19558 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
19560 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
19562 OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
19568 end OK_For_Limited_Init_In_05
;
19570 -------------------------------------------
19571 -- Ordinary_Fixed_Point_Type_Declaration --
19572 -------------------------------------------
19574 procedure Ordinary_Fixed_Point_Type_Declaration
19578 Loc
: constant Source_Ptr
:= Sloc
(Def
);
19579 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
19580 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
19581 Implicit_Base
: Entity_Id
;
19588 Check_Restriction
(No_Fixed_Point
, Def
);
19590 -- Create implicit base type
19593 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
19594 Set_Etype
(Implicit_Base
, Implicit_Base
);
19596 -- Analyze and process delta expression
19598 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
19600 Check_Delta_Expression
(Delta_Expr
);
19601 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
19603 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
19605 -- Compute default small from given delta, which is the largest power
19606 -- of two that does not exceed the given delta value.
19616 if Delta_Val
< Ureal_1
then
19617 while Delta_Val
< Tmp
loop
19618 Tmp
:= Tmp
/ Ureal_2
;
19619 Scale
:= Scale
+ 1;
19624 Tmp
:= Tmp
* Ureal_2
;
19625 exit when Tmp
> Delta_Val
;
19626 Scale
:= Scale
- 1;
19630 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
19633 Set_Small_Value
(Implicit_Base
, Small_Val
);
19635 -- If no range was given, set a dummy range
19637 if RRS
<= Empty_Or_Error
then
19638 Low_Val
:= -Small_Val
;
19639 High_Val
:= Small_Val
;
19641 -- Otherwise analyze and process given range
19645 Low
: constant Node_Id
:= Low_Bound
(RRS
);
19646 High
: constant Node_Id
:= High_Bound
(RRS
);
19649 Analyze_And_Resolve
(Low
, Any_Real
);
19650 Analyze_And_Resolve
(High
, Any_Real
);
19651 Check_Real_Bound
(Low
);
19652 Check_Real_Bound
(High
);
19654 -- Obtain and set the range
19656 Low_Val
:= Expr_Value_R
(Low
);
19657 High_Val
:= Expr_Value_R
(High
);
19659 if Low_Val
> High_Val
then
19660 Error_Msg_NE
("??fixed point type& has null range", Def
, T
);
19665 -- The range for both the implicit base and the declared first subtype
19666 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19667 -- set a temporary range in place. Note that the bounds of the base
19668 -- type will be widened to be symmetrical and to fill the available
19669 -- bits when the type is frozen.
19671 -- We could do this with all discrete types, and probably should, but
19672 -- we absolutely have to do it for fixed-point, since the end-points
19673 -- of the range and the size are determined by the small value, which
19674 -- could be reset before the freeze point.
19676 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
19677 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
19679 -- Complete definition of first subtype. The inheritance of the rep item
19680 -- chain ensures that SPARK-related pragmas are not clobbered when the
19681 -- ordinary fixed point type acts as a full view of a private type.
19683 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
19684 Set_Etype
(T
, Implicit_Base
);
19685 Init_Size_Align
(T
);
19686 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
19687 Set_Small_Value
(T
, Small_Val
);
19688 Set_Delta_Value
(T
, Delta_Val
);
19689 Set_Is_Constrained
(T
);
19690 end Ordinary_Fixed_Point_Type_Declaration
;
19692 ----------------------------------
19693 -- Preanalyze_Assert_Expression --
19694 ----------------------------------
19696 procedure Preanalyze_Assert_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19698 In_Assertion_Expr
:= In_Assertion_Expr
+ 1;
19699 Preanalyze_Spec_Expression
(N
, T
);
19700 In_Assertion_Expr
:= In_Assertion_Expr
- 1;
19701 end Preanalyze_Assert_Expression
;
19703 -----------------------------------
19704 -- Preanalyze_Default_Expression --
19705 -----------------------------------
19707 procedure Preanalyze_Default_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19708 Save_In_Default_Expr
: constant Boolean := In_Default_Expr
;
19710 In_Default_Expr
:= True;
19711 Preanalyze_Spec_Expression
(N
, T
);
19712 In_Default_Expr
:= Save_In_Default_Expr
;
19713 end Preanalyze_Default_Expression
;
19715 --------------------------------
19716 -- Preanalyze_Spec_Expression --
19717 --------------------------------
19719 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19720 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
19722 In_Spec_Expression
:= True;
19723 Preanalyze_And_Resolve
(N
, T
);
19724 In_Spec_Expression
:= Save_In_Spec_Expression
;
19725 end Preanalyze_Spec_Expression
;
19727 ----------------------------------------
19728 -- Prepare_Private_Subtype_Completion --
19729 ----------------------------------------
19731 procedure Prepare_Private_Subtype_Completion
19733 Related_Nod
: Node_Id
)
19735 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
19736 Full_B
: Entity_Id
:= Full_View
(Id_B
);
19740 if Present
(Full_B
) then
19742 -- Get to the underlying full view if necessary
19744 if Is_Private_Type
(Full_B
)
19745 and then Present
(Underlying_Full_View
(Full_B
))
19747 Full_B
:= Underlying_Full_View
(Full_B
);
19750 -- The Base_Type is already completed, we can complete the subtype
19751 -- now. We have to create a new entity with the same name, Thus we
19752 -- can't use Create_Itype.
19754 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
19755 Set_Is_Itype
(Full
);
19756 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
19757 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
19760 -- The parent subtype may be private, but the base might not, in some
19761 -- nested instances. In that case, the subtype does not need to be
19762 -- exchanged. It would still be nice to make private subtypes and their
19763 -- bases consistent at all times ???
19765 if Is_Private_Type
(Id_B
) then
19766 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
19768 end Prepare_Private_Subtype_Completion
;
19770 ---------------------------
19771 -- Process_Discriminants --
19772 ---------------------------
19774 procedure Process_Discriminants
19776 Prev
: Entity_Id
:= Empty
)
19778 Elist
: constant Elist_Id
:= New_Elmt_List
;
19781 Discr_Number
: Uint
;
19782 Discr_Type
: Entity_Id
;
19783 Default_Present
: Boolean := False;
19784 Default_Not_Present
: Boolean := False;
19787 -- A composite type other than an array type can have discriminants.
19788 -- On entry, the current scope is the composite type.
19790 -- The discriminants are initially entered into the scope of the type
19791 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19792 -- use, as explained at the end of this procedure.
19794 Discr
:= First
(Discriminant_Specifications
(N
));
19795 while Present
(Discr
) loop
19796 Enter_Name
(Defining_Identifier
(Discr
));
19798 -- For navigation purposes we add a reference to the discriminant
19799 -- in the entity for the type. If the current declaration is a
19800 -- completion, place references on the partial view. Otherwise the
19801 -- type is the current scope.
19803 if Present
(Prev
) then
19805 -- The references go on the partial view, if present. If the
19806 -- partial view has discriminants, the references have been
19807 -- generated already.
19809 if not Has_Discriminants
(Prev
) then
19810 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
19814 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
19817 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
19818 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
19820 -- Ada 2005 (AI-254)
19822 if Present
(Access_To_Subprogram_Definition
19823 (Discriminant_Type
(Discr
)))
19824 and then Protected_Present
(Access_To_Subprogram_Definition
19825 (Discriminant_Type
(Discr
)))
19828 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
19832 Find_Type
(Discriminant_Type
(Discr
));
19833 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
19835 if Error_Posted
(Discriminant_Type
(Discr
)) then
19836 Discr_Type
:= Any_Type
;
19840 -- Handling of discriminants that are access types
19842 if Is_Access_Type
(Discr_Type
) then
19844 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19845 -- limited record types
19847 if Ada_Version
< Ada_2005
then
19848 Check_Access_Discriminant_Requires_Limited
19849 (Discr
, Discriminant_Type
(Discr
));
19852 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
19854 ("(Ada 83) access discriminant not allowed", Discr
);
19857 -- If not access type, must be a discrete type
19859 elsif not Is_Discrete_Type
(Discr_Type
) then
19861 ("discriminants must have a discrete or access type",
19862 Discriminant_Type
(Discr
));
19865 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
19867 -- If a discriminant specification includes the assignment compound
19868 -- delimiter followed by an expression, the expression is the default
19869 -- expression of the discriminant; the default expression must be of
19870 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19871 -- a default expression, we do the special preanalysis, since this
19872 -- expression does not freeze (see section "Handling of Default and
19873 -- Per-Object Expressions" in spec of package Sem).
19875 if Present
(Expression
(Discr
)) then
19876 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
19880 if Nkind
(N
) = N_Formal_Type_Declaration
then
19882 ("discriminant defaults not allowed for formal type",
19883 Expression
(Discr
));
19885 -- Flag an error for a tagged type with defaulted discriminants,
19886 -- excluding limited tagged types when compiling for Ada 2012
19887 -- (see AI05-0214).
19889 elsif Is_Tagged_Type
(Current_Scope
)
19890 and then (not Is_Limited_Type
(Current_Scope
)
19891 or else Ada_Version
< Ada_2012
)
19892 and then Comes_From_Source
(N
)
19894 -- Note: see similar test in Check_Or_Process_Discriminants, to
19895 -- handle the (illegal) case of the completion of an untagged
19896 -- view with discriminants with defaults by a tagged full view.
19897 -- We skip the check if Discr does not come from source, to
19898 -- account for the case of an untagged derived type providing
19899 -- defaults for a renamed discriminant from a private untagged
19900 -- ancestor with a tagged full view (ACATS B460006).
19902 if Ada_Version
>= Ada_2012
then
19904 ("discriminants of nonlimited tagged type cannot have"
19906 Expression
(Discr
));
19909 ("discriminants of tagged type cannot have defaults",
19910 Expression
(Discr
));
19914 Default_Present
:= True;
19915 Append_Elmt
(Expression
(Discr
), Elist
);
19917 -- Tag the defining identifiers for the discriminants with
19918 -- their corresponding default expressions from the tree.
19920 Set_Discriminant_Default_Value
19921 (Defining_Identifier
(Discr
), Expression
(Discr
));
19924 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19925 -- gets set unless we can be sure that no range check is required.
19927 if (GNATprove_Mode
or not Expander_Active
)
19930 (Expression
(Discr
), Discr_Type
, Assume_Valid
=> True)
19932 Set_Do_Range_Check
(Expression
(Discr
));
19935 -- No default discriminant value given
19938 Default_Not_Present
:= True;
19941 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19942 -- Discr_Type but with the null-exclusion attribute
19944 if Ada_Version
>= Ada_2005
then
19946 -- Ada 2005 (AI-231): Static checks
19948 if Can_Never_Be_Null
(Discr_Type
) then
19949 Null_Exclusion_Static_Checks
(Discr
);
19951 elsif Is_Access_Type
(Discr_Type
)
19952 and then Null_Exclusion_Present
(Discr
)
19954 -- No need to check itypes because in their case this check
19955 -- was done at their point of creation
19957 and then not Is_Itype
(Discr_Type
)
19959 if Can_Never_Be_Null
(Discr_Type
) then
19961 ("`NOT NULL` not allowed (& already excludes null)",
19966 Set_Etype
(Defining_Identifier
(Discr
),
19967 Create_Null_Excluding_Itype
19969 Related_Nod
=> Discr
));
19971 -- Check for improper null exclusion if the type is otherwise
19972 -- legal for a discriminant.
19974 elsif Null_Exclusion_Present
(Discr
)
19975 and then Is_Discrete_Type
(Discr_Type
)
19978 ("null exclusion can only apply to an access type", Discr
);
19981 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19982 -- can't have defaults. Synchronized types, or types that are
19983 -- explicitly limited are fine, but special tests apply to derived
19984 -- types in generics: in a generic body we have to assume the
19985 -- worst, and therefore defaults are not allowed if the parent is
19986 -- a generic formal private type (see ACATS B370001).
19988 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
19989 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
19990 or else Is_Limited_Record
(Current_Scope
)
19991 or else Is_Concurrent_Type
(Current_Scope
)
19992 or else Is_Concurrent_Record_Type
(Current_Scope
)
19993 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
19995 if not Is_Derived_Type
(Current_Scope
)
19996 or else not Is_Generic_Type
(Etype
(Current_Scope
))
19997 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
19998 or else Limited_Present
19999 (Type_Definition
(Parent
(Current_Scope
)))
20005 ("access discriminants of nonlimited types cannot "
20006 & "have defaults", Expression
(Discr
));
20009 elsif Present
(Expression
(Discr
)) then
20011 ("(Ada 2005) access discriminants of nonlimited types "
20012 & "cannot have defaults", Expression
(Discr
));
20017 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
20018 -- This check is relevant only when SPARK_Mode is on as it is not a
20019 -- standard Ada legality rule.
20022 and then Is_Effectively_Volatile
(Defining_Identifier
(Discr
))
20024 Error_Msg_N
("discriminant cannot be volatile", Discr
);
20030 -- An element list consisting of the default expressions of the
20031 -- discriminants is constructed in the above loop and used to set
20032 -- the Discriminant_Constraint attribute for the type. If an object
20033 -- is declared of this (record or task) type without any explicit
20034 -- discriminant constraint given, this element list will form the
20035 -- actual parameters for the corresponding initialization procedure
20038 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
20039 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
20041 -- Default expressions must be provided either for all or for none
20042 -- of the discriminants of a discriminant part. (RM 3.7.1)
20044 if Default_Present
and then Default_Not_Present
then
20046 ("incomplete specification of defaults for discriminants", N
);
20049 -- The use of the name of a discriminant is not allowed in default
20050 -- expressions of a discriminant part if the specification of the
20051 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
20053 -- To detect this, the discriminant names are entered initially with an
20054 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
20055 -- attempt to use a void entity (for example in an expression that is
20056 -- type-checked) produces the error message: premature usage. Now after
20057 -- completing the semantic analysis of the discriminant part, we can set
20058 -- the Ekind of all the discriminants appropriately.
20060 Discr
:= First
(Discriminant_Specifications
(N
));
20061 Discr_Number
:= Uint_1
;
20062 while Present
(Discr
) loop
20063 Id
:= Defining_Identifier
(Discr
);
20064 Set_Ekind
(Id
, E_Discriminant
);
20065 Init_Component_Location
(Id
);
20067 Set_Discriminant_Number
(Id
, Discr_Number
);
20069 -- Make sure this is always set, even in illegal programs
20071 Set_Corresponding_Discriminant
(Id
, Empty
);
20073 -- Initialize the Original_Record_Component to the entity itself.
20074 -- Inherit_Components will propagate the right value to
20075 -- discriminants in derived record types.
20077 Set_Original_Record_Component
(Id
, Id
);
20079 -- Create the discriminal for the discriminant
20081 Build_Discriminal
(Id
);
20084 Discr_Number
:= Discr_Number
+ 1;
20087 Set_Has_Discriminants
(Current_Scope
);
20088 end Process_Discriminants
;
20090 -----------------------
20091 -- Process_Full_View --
20092 -----------------------
20094 -- WARNING: This routine manages Ghost regions. Return statements must be
20095 -- replaced by gotos which jump to the end of the routine and restore the
20098 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
20099 procedure Collect_Implemented_Interfaces
20101 Ifaces
: Elist_Id
);
20102 -- Ada 2005: Gather all the interfaces that Typ directly or
20103 -- inherently implements. Duplicate entries are not added to
20104 -- the list Ifaces.
20106 ------------------------------------
20107 -- Collect_Implemented_Interfaces --
20108 ------------------------------------
20110 procedure Collect_Implemented_Interfaces
20115 Iface_Elmt
: Elmt_Id
;
20118 -- Abstract interfaces are only associated with tagged record types
20120 if not Is_Tagged_Type
(Typ
) or else not Is_Record_Type
(Typ
) then
20124 -- Recursively climb to the ancestors
20126 if Etype
(Typ
) /= Typ
20128 -- Protect the frontend against wrong cyclic declarations like:
20130 -- type B is new A with private;
20131 -- type C is new A with private;
20133 -- type B is new C with null record;
20134 -- type C is new B with null record;
20136 and then Etype
(Typ
) /= Priv_T
20137 and then Etype
(Typ
) /= Full_T
20139 -- Keep separate the management of private type declarations
20141 if Ekind
(Typ
) = E_Record_Type_With_Private
then
20143 -- Handle the following illegal usage:
20144 -- type Private_Type is tagged private;
20146 -- type Private_Type is new Type_Implementing_Iface;
20148 if Present
(Full_View
(Typ
))
20149 and then Etype
(Typ
) /= Full_View
(Typ
)
20151 if Is_Interface
(Etype
(Typ
)) then
20152 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
20155 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
20158 -- Non-private types
20161 if Is_Interface
(Etype
(Typ
)) then
20162 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
20165 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
20169 -- Handle entities in the list of abstract interfaces
20171 if Present
(Interfaces
(Typ
)) then
20172 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
20173 while Present
(Iface_Elmt
) loop
20174 Iface
:= Node
(Iface_Elmt
);
20176 pragma Assert
(Is_Interface
(Iface
));
20178 if not Contain_Interface
(Iface
, Ifaces
) then
20179 Append_Elmt
(Iface
, Ifaces
);
20180 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
20183 Next_Elmt
(Iface_Elmt
);
20186 end Collect_Implemented_Interfaces
;
20190 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
20192 Full_Indic
: Node_Id
;
20193 Full_Parent
: Entity_Id
;
20194 Priv_Parent
: Entity_Id
;
20196 -- Start of processing for Process_Full_View
20199 Mark_And_Set_Ghost_Completion
(N
, Priv_T
);
20201 -- First some sanity checks that must be done after semantic
20202 -- decoration of the full view and thus cannot be placed with other
20203 -- similar checks in Find_Type_Name
20205 if not Is_Limited_Type
(Priv_T
)
20206 and then (Is_Limited_Type
(Full_T
)
20207 or else Is_Limited_Composite
(Full_T
))
20209 if In_Instance
then
20213 ("completion of nonlimited type cannot be limited", Full_T
);
20214 Explain_Limited_Type
(Full_T
, Full_T
);
20217 elsif Is_Abstract_Type
(Full_T
)
20218 and then not Is_Abstract_Type
(Priv_T
)
20221 ("completion of nonabstract type cannot be abstract", Full_T
);
20223 elsif Is_Tagged_Type
(Priv_T
)
20224 and then Is_Limited_Type
(Priv_T
)
20225 and then not Is_Limited_Type
(Full_T
)
20227 -- If pragma CPP_Class was applied to the private declaration
20228 -- propagate the limitedness to the full-view
20230 if Is_CPP_Class
(Priv_T
) then
20231 Set_Is_Limited_Record
(Full_T
);
20233 -- GNAT allow its own definition of Limited_Controlled to disobey
20234 -- this rule in order in ease the implementation. This test is safe
20235 -- because Root_Controlled is defined in a child of System that
20236 -- normal programs are not supposed to use.
20238 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
20239 Set_Is_Limited_Composite
(Full_T
);
20242 ("completion of limited tagged type must be limited", Full_T
);
20245 elsif Is_Generic_Type
(Priv_T
) then
20246 Error_Msg_N
("generic type cannot have a completion", Full_T
);
20249 -- Check that ancestor interfaces of private and full views are
20250 -- consistent. We omit this check for synchronized types because
20251 -- they are performed on the corresponding record type when frozen.
20253 if Ada_Version
>= Ada_2005
20254 and then Is_Tagged_Type
(Priv_T
)
20255 and then Is_Tagged_Type
(Full_T
)
20256 and then not Is_Concurrent_Type
(Full_T
)
20260 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
20261 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
20264 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
20265 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
20267 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20268 -- an interface type if and only if the full type is descendant
20269 -- of the interface type (AARM 7.3 (7.3/2)).
20271 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
20273 if Present
(Iface
) then
20275 ("interface in partial view& not implemented by full type "
20276 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
20279 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
20281 if Present
(Iface
) then
20283 ("interface & not implemented by partial view "
20284 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
20289 if Is_Tagged_Type
(Priv_T
)
20290 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
20291 and then Is_Derived_Type
(Full_T
)
20293 Priv_Parent
:= Etype
(Priv_T
);
20295 -- The full view of a private extension may have been transformed
20296 -- into an unconstrained derived type declaration and a subtype
20297 -- declaration (see build_derived_record_type for details).
20299 if Nkind
(N
) = N_Subtype_Declaration
then
20300 Full_Indic
:= Subtype_Indication
(N
);
20301 Full_Parent
:= Etype
(Base_Type
(Full_T
));
20303 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
20304 Full_Parent
:= Etype
(Full_T
);
20307 -- Check that the parent type of the full type is a descendant of
20308 -- the ancestor subtype given in the private extension. If either
20309 -- entity has an Etype equal to Any_Type then we had some previous
20310 -- error situation [7.3(8)].
20312 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
20315 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20316 -- any order. Therefore we don't have to check that its parent must
20317 -- be a descendant of the parent of the private type declaration.
20319 elsif Is_Interface
(Priv_Parent
)
20320 and then Is_Interface
(Full_Parent
)
20324 -- Ada 2005 (AI-251): If the parent of the private type declaration
20325 -- is an interface there is no need to check that it is an ancestor
20326 -- of the associated full type declaration. The required tests for
20327 -- this case are performed by Build_Derived_Record_Type.
20329 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
20330 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
20333 ("parent of full type must descend from parent of private "
20334 & "extension", Full_Indic
);
20336 -- First check a formal restriction, and then proceed with checking
20337 -- Ada rules. Since the formal restriction is not a serious error, we
20338 -- don't prevent further error detection for this check, hence the
20342 -- In formal mode, when completing a private extension the type
20343 -- named in the private part must be exactly the same as that
20344 -- named in the visible part.
20346 if Priv_Parent
/= Full_Parent
then
20347 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
20348 Check_SPARK_05_Restriction
("% expected", Full_Indic
);
20351 -- Check the rules of 7.3(10): if the private extension inherits
20352 -- known discriminants, then the full type must also inherit those
20353 -- discriminants from the same (ancestor) type, and the parent
20354 -- subtype of the full type must be constrained if and only if
20355 -- the ancestor subtype of the private extension is constrained.
20357 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
20358 and then not Has_Unknown_Discriminants
(Priv_T
)
20359 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
20362 Priv_Indic
: constant Node_Id
:=
20363 Subtype_Indication
(Parent
(Priv_T
));
20365 Priv_Constr
: constant Boolean :=
20366 Is_Constrained
(Priv_Parent
)
20368 Nkind
(Priv_Indic
) = N_Subtype_Indication
20370 Is_Constrained
(Entity
(Priv_Indic
));
20372 Full_Constr
: constant Boolean :=
20373 Is_Constrained
(Full_Parent
)
20375 Nkind
(Full_Indic
) = N_Subtype_Indication
20377 Is_Constrained
(Entity
(Full_Indic
));
20379 Priv_Discr
: Entity_Id
;
20380 Full_Discr
: Entity_Id
;
20383 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
20384 Full_Discr
:= First_Discriminant
(Full_Parent
);
20385 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
20386 if Original_Record_Component
(Priv_Discr
) =
20387 Original_Record_Component
(Full_Discr
)
20389 Corresponding_Discriminant
(Priv_Discr
) =
20390 Corresponding_Discriminant
(Full_Discr
)
20397 Next_Discriminant
(Priv_Discr
);
20398 Next_Discriminant
(Full_Discr
);
20401 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
20403 ("full view must inherit discriminants of the parent "
20404 & "type used in the private extension", Full_Indic
);
20406 elsif Priv_Constr
and then not Full_Constr
then
20408 ("parent subtype of full type must be constrained",
20411 elsif Full_Constr
and then not Priv_Constr
then
20413 ("parent subtype of full type must be unconstrained",
20418 -- Check the rules of 7.3(12): if a partial view has neither
20419 -- known or unknown discriminants, then the full type
20420 -- declaration shall define a definite subtype.
20422 elsif not Has_Unknown_Discriminants
(Priv_T
)
20423 and then not Has_Discriminants
(Priv_T
)
20424 and then not Is_Constrained
(Full_T
)
20427 ("full view must define a constrained type if partial view "
20428 & "has no discriminants", Full_T
);
20431 -- ??????? Do we implement the following properly ?????
20432 -- If the ancestor subtype of a private extension has constrained
20433 -- discriminants, then the parent subtype of the full view shall
20434 -- impose a statically matching constraint on those discriminants
20439 -- For untagged types, verify that a type without discriminants is
20440 -- not completed with an unconstrained type. A separate error message
20441 -- is produced if the full type has defaulted discriminants.
20443 if Is_Definite_Subtype
(Priv_T
)
20444 and then not Is_Definite_Subtype
(Full_T
)
20446 Error_Msg_Sloc
:= Sloc
(Parent
(Priv_T
));
20448 ("full view of& not compatible with declaration#",
20451 if not Is_Tagged_Type
(Full_T
) then
20453 ("\one is constrained, the other unconstrained", Full_T
);
20458 -- AI-419: verify that the use of "limited" is consistent
20461 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
20464 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
20465 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
20467 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
20469 if not Limited_Present
(Parent
(Priv_T
))
20470 and then not Synchronized_Present
(Parent
(Priv_T
))
20471 and then Limited_Present
(Type_Definition
(Orig_Decl
))
20474 ("full view of non-limited extension cannot be limited", N
);
20476 -- Conversely, if the partial view carries the limited keyword,
20477 -- the full view must as well, even if it may be redundant.
20479 elsif Limited_Present
(Parent
(Priv_T
))
20480 and then not Limited_Present
(Type_Definition
(Orig_Decl
))
20483 ("full view of limited extension must be explicitly limited",
20489 -- Ada 2005 (AI-443): A synchronized private extension must be
20490 -- completed by a task or protected type.
20492 if Ada_Version
>= Ada_2005
20493 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
20494 and then Synchronized_Present
(Parent
(Priv_T
))
20495 and then not Is_Concurrent_Type
(Full_T
)
20497 Error_Msg_N
("full view of synchronized extension must " &
20498 "be synchronized type", N
);
20501 -- Ada 2005 AI-363: if the full view has discriminants with
20502 -- defaults, it is illegal to declare constrained access subtypes
20503 -- whose designated type is the current type. This allows objects
20504 -- of the type that are declared in the heap to be unconstrained.
20506 if not Has_Unknown_Discriminants
(Priv_T
)
20507 and then not Has_Discriminants
(Priv_T
)
20508 and then Has_Discriminants
(Full_T
)
20510 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
20512 Set_Has_Constrained_Partial_View
(Full_T
);
20513 Set_Has_Constrained_Partial_View
(Priv_T
);
20516 -- Create a full declaration for all its subtypes recorded in
20517 -- Private_Dependents and swap them similarly to the base type. These
20518 -- are subtypes that have been define before the full declaration of
20519 -- the private type. We also swap the entry in Private_Dependents list
20520 -- so we can properly restore the private view on exit from the scope.
20523 Priv_Elmt
: Elmt_Id
;
20524 Priv_Scop
: Entity_Id
;
20529 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
20530 while Present
(Priv_Elmt
) loop
20531 Priv
:= Node
(Priv_Elmt
);
20532 Priv_Scop
:= Scope
(Priv
);
20534 if Ekind_In
(Priv
, E_Private_Subtype
,
20535 E_Limited_Private_Subtype
,
20536 E_Record_Subtype_With_Private
)
20538 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
20539 Set_Is_Itype
(Full
);
20540 Set_Parent
(Full
, Parent
(Priv
));
20541 Set_Associated_Node_For_Itype
(Full
, N
);
20543 -- Now we need to complete the private subtype, but since the
20544 -- base type has already been swapped, we must also swap the
20545 -- subtypes (and thus, reverse the arguments in the call to
20546 -- Complete_Private_Subtype). Also note that we may need to
20547 -- re-establish the scope of the private subtype.
20549 Copy_And_Swap
(Priv
, Full
);
20551 if not In_Open_Scopes
(Priv_Scop
) then
20552 Push_Scope
(Priv_Scop
);
20555 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20557 Priv_Scop
:= Empty
;
20560 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
20562 if Present
(Priv_Scop
) then
20566 Replace_Elmt
(Priv_Elmt
, Full
);
20569 Next_Elmt
(Priv_Elmt
);
20573 -- If the private view was tagged, copy the new primitive operations
20574 -- from the private view to the full view.
20576 if Is_Tagged_Type
(Full_T
) then
20578 Disp_Typ
: Entity_Id
;
20579 Full_List
: Elist_Id
;
20581 Prim_Elmt
: Elmt_Id
;
20582 Priv_List
: Elist_Id
;
20586 L
: Elist_Id
) return Boolean;
20587 -- Determine whether list L contains element E
20595 L
: Elist_Id
) return Boolean
20597 List_Elmt
: Elmt_Id
;
20600 List_Elmt
:= First_Elmt
(L
);
20601 while Present
(List_Elmt
) loop
20602 if Node
(List_Elmt
) = E
then
20606 Next_Elmt
(List_Elmt
);
20612 -- Start of processing
20615 if Is_Tagged_Type
(Priv_T
) then
20616 Priv_List
:= Primitive_Operations
(Priv_T
);
20617 Prim_Elmt
:= First_Elmt
(Priv_List
);
20619 -- In the case of a concurrent type completing a private tagged
20620 -- type, primitives may have been declared in between the two
20621 -- views. These subprograms need to be wrapped the same way
20622 -- entries and protected procedures are handled because they
20623 -- cannot be directly shared by the two views.
20625 if Is_Concurrent_Type
(Full_T
) then
20627 Conc_Typ
: constant Entity_Id
:=
20628 Corresponding_Record_Type
(Full_T
);
20629 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
20630 Wrap_Spec
: Node_Id
;
20633 while Present
(Prim_Elmt
) loop
20634 Prim
:= Node
(Prim_Elmt
);
20636 if Comes_From_Source
(Prim
)
20637 and then not Is_Abstract_Subprogram
(Prim
)
20640 Make_Subprogram_Declaration
(Sloc
(Prim
),
20644 Obj_Typ
=> Conc_Typ
,
20646 Parameter_Specifications
20649 Insert_After
(Curr_Nod
, Wrap_Spec
);
20650 Curr_Nod
:= Wrap_Spec
;
20652 Analyze
(Wrap_Spec
);
20654 -- Remove the wrapper from visibility to avoid
20655 -- spurious conflict with the wrapped entity.
20657 Set_Is_Immediately_Visible
20658 (Defining_Entity
(Specification
(Wrap_Spec
)),
20662 Next_Elmt
(Prim_Elmt
);
20668 -- For non-concurrent types, transfer explicit primitives, but
20669 -- omit those inherited from the parent of the private view
20670 -- since they will be re-inherited later on.
20673 Full_List
:= Primitive_Operations
(Full_T
);
20675 while Present
(Prim_Elmt
) loop
20676 Prim
:= Node
(Prim_Elmt
);
20678 if Comes_From_Source
(Prim
)
20679 and then not Contains
(Prim
, Full_List
)
20681 Append_Elmt
(Prim
, Full_List
);
20684 Next_Elmt
(Prim_Elmt
);
20688 -- Untagged private view
20691 Full_List
:= Primitive_Operations
(Full_T
);
20693 -- In this case the partial view is untagged, so here we locate
20694 -- all of the earlier primitives that need to be treated as
20695 -- dispatching (those that appear between the two views). Note
20696 -- that these additional operations must all be new operations
20697 -- (any earlier operations that override inherited operations
20698 -- of the full view will already have been inserted in the
20699 -- primitives list, marked by Check_Operation_From_Private_View
20700 -- as dispatching. Note that implicit "/=" operators are
20701 -- excluded from being added to the primitives list since they
20702 -- shouldn't be treated as dispatching (tagged "/=" is handled
20705 Prim
:= Next_Entity
(Full_T
);
20706 while Present
(Prim
) and then Prim
/= Priv_T
loop
20707 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
20708 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
20710 if Disp_Typ
= Full_T
20711 and then (Chars
(Prim
) /= Name_Op_Ne
20712 or else Comes_From_Source
(Prim
))
20714 Check_Controlling_Formals
(Full_T
, Prim
);
20716 if not Is_Dispatching_Operation
(Prim
) then
20717 Append_Elmt
(Prim
, Full_List
);
20718 Set_Is_Dispatching_Operation
(Prim
, True);
20719 Set_DT_Position_Value
(Prim
, No_Uint
);
20722 elsif Is_Dispatching_Operation
(Prim
)
20723 and then Disp_Typ
/= Full_T
20726 -- Verify that it is not otherwise controlled by a
20727 -- formal or a return value of type T.
20729 Check_Controlling_Formals
(Disp_Typ
, Prim
);
20733 Next_Entity
(Prim
);
20737 -- For the tagged case, the two views can share the same primitive
20738 -- operations list and the same class-wide type. Update attributes
20739 -- of the class-wide type which depend on the full declaration.
20741 if Is_Tagged_Type
(Priv_T
) then
20742 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
20743 Set_Class_Wide_Type
20744 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
20746 Propagate_Concurrent_Flags
(Class_Wide_Type
(Priv_T
), Full_T
);
20751 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20753 if Known_To_Have_Preelab_Init
(Priv_T
) then
20755 -- Case where there is a pragma Preelaborable_Initialization. We
20756 -- always allow this in predefined units, which is cheating a bit,
20757 -- but it means we don't have to struggle to meet the requirements in
20758 -- the RM for having Preelaborable Initialization. Otherwise we
20759 -- require that the type meets the RM rules. But we can't check that
20760 -- yet, because of the rule about overriding Initialize, so we simply
20761 -- set a flag that will be checked at freeze time.
20763 if not In_Predefined_Unit
(Full_T
) then
20764 Set_Must_Have_Preelab_Init
(Full_T
);
20768 -- If pragma CPP_Class was applied to the private type declaration,
20769 -- propagate it now to the full type declaration.
20771 if Is_CPP_Class
(Priv_T
) then
20772 Set_Is_CPP_Class
(Full_T
);
20773 Set_Convention
(Full_T
, Convention_CPP
);
20775 -- Check that components of imported CPP types do not have default
20778 Check_CPP_Type_Has_No_Defaults
(Full_T
);
20781 -- If the private view has user specified stream attributes, then so has
20784 -- Why the test, how could these flags be already set in Full_T ???
20786 if Has_Specified_Stream_Read
(Priv_T
) then
20787 Set_Has_Specified_Stream_Read
(Full_T
);
20790 if Has_Specified_Stream_Write
(Priv_T
) then
20791 Set_Has_Specified_Stream_Write
(Full_T
);
20794 if Has_Specified_Stream_Input
(Priv_T
) then
20795 Set_Has_Specified_Stream_Input
(Full_T
);
20798 if Has_Specified_Stream_Output
(Priv_T
) then
20799 Set_Has_Specified_Stream_Output
(Full_T
);
20802 -- Propagate Default_Initial_Condition-related attributes from the
20803 -- partial view to the full view and its base type.
20805 Propagate_DIC_Attributes
(Full_T
, From_Typ
=> Priv_T
);
20806 Propagate_DIC_Attributes
(Base_Type
(Full_T
), From_Typ
=> Priv_T
);
20808 -- Propagate invariant-related attributes from the partial view to the
20809 -- full view and its base type.
20811 Propagate_Invariant_Attributes
(Full_T
, From_Typ
=> Priv_T
);
20812 Propagate_Invariant_Attributes
(Base_Type
(Full_T
), From_Typ
=> Priv_T
);
20814 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20815 -- in the full view without advertising the inheritance in the partial
20816 -- view. This can only occur when the partial view has no parent type
20817 -- and the full view has an interface as a parent. Any other scenarios
20818 -- are illegal because implemented interfaces must match between the
20821 if Is_Tagged_Type
(Priv_T
) and then Is_Tagged_Type
(Full_T
) then
20823 Full_Par
: constant Entity_Id
:= Etype
(Full_T
);
20824 Priv_Par
: constant Entity_Id
:= Etype
(Priv_T
);
20827 if not Is_Interface
(Priv_Par
)
20828 and then Is_Interface
(Full_Par
)
20829 and then Has_Inheritable_Invariants
(Full_Par
)
20832 ("hidden inheritance of class-wide type invariants not "
20838 -- Propagate predicates to full type, and predicate function if already
20839 -- defined. It is not clear that this can actually happen? the partial
20840 -- view cannot be frozen yet, and the predicate function has not been
20841 -- built. Still it is a cheap check and seems safer to make it.
20843 if Has_Predicates
(Priv_T
) then
20844 Set_Has_Predicates
(Full_T
);
20846 if Present
(Predicate_Function
(Priv_T
)) then
20847 Set_Predicate_Function
(Full_T
, Predicate_Function
(Priv_T
));
20852 Restore_Ghost_Mode
(Saved_GM
);
20853 end Process_Full_View
;
20855 -----------------------------------
20856 -- Process_Incomplete_Dependents --
20857 -----------------------------------
20859 procedure Process_Incomplete_Dependents
20861 Full_T
: Entity_Id
;
20864 Inc_Elmt
: Elmt_Id
;
20865 Priv_Dep
: Entity_Id
;
20866 New_Subt
: Entity_Id
;
20868 Disc_Constraint
: Elist_Id
;
20871 if No
(Private_Dependents
(Inc_T
)) then
20875 -- Itypes that may be generated by the completion of an incomplete
20876 -- subtype are not used by the back-end and not attached to the tree.
20877 -- They are created only for constraint-checking purposes.
20879 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
20880 while Present
(Inc_Elmt
) loop
20881 Priv_Dep
:= Node
(Inc_Elmt
);
20883 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
20885 -- An Access_To_Subprogram type may have a return type or a
20886 -- parameter type that is incomplete. Replace with the full view.
20888 if Etype
(Priv_Dep
) = Inc_T
then
20889 Set_Etype
(Priv_Dep
, Full_T
);
20893 Formal
: Entity_Id
;
20896 Formal
:= First_Formal
(Priv_Dep
);
20897 while Present
(Formal
) loop
20898 if Etype
(Formal
) = Inc_T
then
20899 Set_Etype
(Formal
, Full_T
);
20902 Next_Formal
(Formal
);
20906 elsif Is_Overloadable
(Priv_Dep
) then
20908 -- If a subprogram in the incomplete dependents list is primitive
20909 -- for a tagged full type then mark it as a dispatching operation,
20910 -- check whether it overrides an inherited subprogram, and check
20911 -- restrictions on its controlling formals. Note that a protected
20912 -- operation is never dispatching: only its wrapper operation
20913 -- (which has convention Ada) is.
20915 if Is_Tagged_Type
(Full_T
)
20916 and then Is_Primitive
(Priv_Dep
)
20917 and then Convention
(Priv_Dep
) /= Convention_Protected
20919 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
20920 Set_Is_Dispatching_Operation
(Priv_Dep
);
20921 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
20924 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
20926 -- Can happen during processing of a body before the completion
20927 -- of a TA type. Ignore, because spec is also on dependent list.
20931 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20932 -- corresponding subtype of the full view.
20934 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
20935 and then Comes_From_Source
(Priv_Dep
)
20937 Set_Subtype_Indication
20938 (Parent
(Priv_Dep
), New_Occurrence_Of
(Full_T
, Sloc
(Priv_Dep
)));
20939 Set_Etype
(Priv_Dep
, Full_T
);
20940 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
20941 Set_Analyzed
(Parent
(Priv_Dep
), False);
20943 -- Reanalyze the declaration, suppressing the call to Enter_Name
20944 -- to avoid duplicate names.
20946 Analyze_Subtype_Declaration
20947 (N
=> Parent
(Priv_Dep
),
20950 -- Dependent is a subtype
20953 -- We build a new subtype indication using the full view of the
20954 -- incomplete parent. The discriminant constraints have been
20955 -- elaborated already at the point of the subtype declaration.
20957 New_Subt
:= Create_Itype
(E_Void
, N
);
20959 if Has_Discriminants
(Full_T
) then
20960 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
20962 Disc_Constraint
:= No_Elist
;
20965 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
20966 Set_Full_View
(Priv_Dep
, New_Subt
);
20969 Next_Elmt
(Inc_Elmt
);
20971 end Process_Incomplete_Dependents
;
20973 --------------------------------
20974 -- Process_Range_Expr_In_Decl --
20975 --------------------------------
20977 procedure Process_Range_Expr_In_Decl
20980 Subtyp
: Entity_Id
:= Empty
;
20981 Check_List
: List_Id
:= Empty_List
;
20982 R_Check_Off
: Boolean := False;
20983 In_Iter_Schm
: Boolean := False)
20986 R_Checks
: Check_Result
;
20987 Insert_Node
: Node_Id
;
20988 Def_Id
: Entity_Id
;
20991 Analyze_And_Resolve
(R
, Base_Type
(T
));
20993 if Nkind
(R
) = N_Range
then
20995 -- In SPARK, all ranges should be static, with the exception of the
20996 -- discrete type definition of a loop parameter specification.
20998 if not In_Iter_Schm
20999 and then not Is_OK_Static_Range
(R
)
21001 Check_SPARK_05_Restriction
("range should be static", R
);
21004 Lo
:= Low_Bound
(R
);
21005 Hi
:= High_Bound
(R
);
21007 -- Validity checks on the range of a quantified expression are
21008 -- delayed until the construct is transformed into a loop.
21010 if Nkind
(Parent
(R
)) = N_Loop_Parameter_Specification
21011 and then Nkind
(Parent
(Parent
(R
))) = N_Quantified_Expression
21015 -- We need to ensure validity of the bounds here, because if we
21016 -- go ahead and do the expansion, then the expanded code will get
21017 -- analyzed with range checks suppressed and we miss the check.
21019 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
21020 -- the temporaries generated by routine Remove_Side_Effects by means
21021 -- of validity checks must use the same names. When a range appears
21022 -- in the parent of a generic, the range is processed with checks
21023 -- disabled as part of the generic context and with checks enabled
21024 -- for code generation purposes. This leads to link issues as the
21025 -- generic contains references to xxx_FIRST/_LAST, but the inlined
21026 -- template sees the temporaries generated by Remove_Side_Effects.
21029 Validity_Check_Range
(R
, Subtyp
);
21032 -- If there were errors in the declaration, try and patch up some
21033 -- common mistakes in the bounds. The cases handled are literals
21034 -- which are Integer where the expected type is Real and vice versa.
21035 -- These corrections allow the compilation process to proceed further
21036 -- along since some basic assumptions of the format of the bounds
21039 if Etype
(R
) = Any_Type
then
21040 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
21042 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
21044 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
21046 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
21048 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
21050 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
21052 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
21054 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
21061 -- If the bounds of the range have been mistakenly given as string
21062 -- literals (perhaps in place of character literals), then an error
21063 -- has already been reported, but we rewrite the string literal as a
21064 -- bound of the range's type to avoid blowups in later processing
21065 -- that looks at static values.
21067 if Nkind
(Lo
) = N_String_Literal
then
21069 Make_Attribute_Reference
(Sloc
(Lo
),
21070 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Lo
)),
21071 Attribute_Name
=> Name_First
));
21072 Analyze_And_Resolve
(Lo
);
21075 if Nkind
(Hi
) = N_String_Literal
then
21077 Make_Attribute_Reference
(Sloc
(Hi
),
21078 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Hi
)),
21079 Attribute_Name
=> Name_First
));
21080 Analyze_And_Resolve
(Hi
);
21083 -- If bounds aren't scalar at this point then exit, avoiding
21084 -- problems with further processing of the range in this procedure.
21086 if not Is_Scalar_Type
(Etype
(Lo
)) then
21090 -- Resolve (actually Sem_Eval) has checked that the bounds are in
21091 -- then range of the base type. Here we check whether the bounds
21092 -- are in the range of the subtype itself. Note that if the bounds
21093 -- represent the null range the Constraint_Error exception should
21096 -- ??? The following code should be cleaned up as follows
21098 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
21099 -- is done in the call to Range_Check (R, T); below
21101 -- 2. The use of R_Check_Off should be investigated and possibly
21102 -- removed, this would clean up things a bit.
21104 if Is_Null_Range
(Lo
, Hi
) then
21108 -- Capture values of bounds and generate temporaries for them
21109 -- if needed, before applying checks, since checks may cause
21110 -- duplication of the expression without forcing evaluation.
21112 -- The forced evaluation removes side effects from expressions,
21113 -- which should occur also in GNATprove mode. Otherwise, we end up
21114 -- with unexpected insertions of actions at places where this is
21115 -- not supposed to occur, e.g. on default parameters of a call.
21117 if Expander_Active
or GNATprove_Mode
then
21119 -- Call Force_Evaluation to create declarations as needed to
21120 -- deal with side effects, and also create typ_FIRST/LAST
21121 -- entities for bounds if we have a subtype name.
21123 -- Note: we do this transformation even if expansion is not
21124 -- active if we are in GNATprove_Mode since the transformation
21125 -- is in general required to ensure that the resulting tree has
21126 -- proper Ada semantics.
21129 (Lo
, Related_Id
=> Subtyp
, Is_Low_Bound
=> True);
21131 (Hi
, Related_Id
=> Subtyp
, Is_High_Bound
=> True);
21134 -- We use a flag here instead of suppressing checks on the type
21135 -- because the type we check against isn't necessarily the place
21136 -- where we put the check.
21138 if not R_Check_Off
then
21139 R_Checks
:= Get_Range_Checks
(R
, T
);
21141 -- Look up tree to find an appropriate insertion point. We
21142 -- can't just use insert_actions because later processing
21143 -- depends on the insertion node. Prior to Ada 2012 the
21144 -- insertion point could only be a declaration or a loop, but
21145 -- quantified expressions can appear within any context in an
21146 -- expression, and the insertion point can be any statement,
21147 -- pragma, or declaration.
21149 Insert_Node
:= Parent
(R
);
21150 while Present
(Insert_Node
) loop
21152 Nkind
(Insert_Node
) in N_Declaration
21155 (Insert_Node
, N_Component_Declaration
,
21156 N_Loop_Parameter_Specification
,
21157 N_Function_Specification
,
21158 N_Procedure_Specification
);
21160 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
21161 or else Nkind
(Insert_Node
) in
21162 N_Statement_Other_Than_Procedure_Call
21163 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
21166 Insert_Node
:= Parent
(Insert_Node
);
21169 -- Why would Type_Decl not be present??? Without this test,
21170 -- short regression tests fail.
21172 if Present
(Insert_Node
) then
21174 -- Case of loop statement. Verify that the range is part
21175 -- of the subtype indication of the iteration scheme.
21177 if Nkind
(Insert_Node
) = N_Loop_Statement
then
21182 Indic
:= Parent
(R
);
21183 while Present
(Indic
)
21184 and then Nkind
(Indic
) /= N_Subtype_Indication
21186 Indic
:= Parent
(Indic
);
21189 if Present
(Indic
) then
21190 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
21192 Insert_Range_Checks
21196 Sloc
(Insert_Node
),
21198 Do_Before
=> True);
21202 -- Insertion before a declaration. If the declaration
21203 -- includes discriminants, the list of applicable checks
21204 -- is given by the caller.
21206 elsif Nkind
(Insert_Node
) in N_Declaration
then
21207 Def_Id
:= Defining_Identifier
(Insert_Node
);
21209 if (Ekind
(Def_Id
) = E_Record_Type
21210 and then Depends_On_Discriminant
(R
))
21212 (Ekind
(Def_Id
) = E_Protected_Type
21213 and then Has_Discriminants
(Def_Id
))
21215 Append_Range_Checks
21217 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
21220 Insert_Range_Checks
21222 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
21226 -- Insertion before a statement. Range appears in the
21227 -- context of a quantified expression. Insertion will
21228 -- take place when expression is expanded.
21237 -- Case of other than an explicit N_Range node
21239 -- The forced evaluation removes side effects from expressions, which
21240 -- should occur also in GNATprove mode. Otherwise, we end up with
21241 -- unexpected insertions of actions at places where this is not
21242 -- supposed to occur, e.g. on default parameters of a call.
21244 elsif Expander_Active
or GNATprove_Mode
then
21245 Get_Index_Bounds
(R
, Lo
, Hi
);
21246 Force_Evaluation
(Lo
);
21247 Force_Evaluation
(Hi
);
21249 end Process_Range_Expr_In_Decl
;
21251 --------------------------------------
21252 -- Process_Real_Range_Specification --
21253 --------------------------------------
21255 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
21256 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
21259 Err
: Boolean := False;
21261 procedure Analyze_Bound
(N
: Node_Id
);
21262 -- Analyze and check one bound
21264 -------------------
21265 -- Analyze_Bound --
21266 -------------------
21268 procedure Analyze_Bound
(N
: Node_Id
) is
21270 Analyze_And_Resolve
(N
, Any_Real
);
21272 if not Is_OK_Static_Expression
(N
) then
21273 Flag_Non_Static_Expr
21274 ("bound in real type definition is not static!", N
);
21279 -- Start of processing for Process_Real_Range_Specification
21282 if Present
(Spec
) then
21283 Lo
:= Low_Bound
(Spec
);
21284 Hi
:= High_Bound
(Spec
);
21285 Analyze_Bound
(Lo
);
21286 Analyze_Bound
(Hi
);
21288 -- If error, clear away junk range specification
21291 Set_Real_Range_Specification
(Def
, Empty
);
21294 end Process_Real_Range_Specification
;
21296 ---------------------
21297 -- Process_Subtype --
21298 ---------------------
21300 function Process_Subtype
21302 Related_Nod
: Node_Id
;
21303 Related_Id
: Entity_Id
:= Empty
;
21304 Suffix
: Character := ' ') return Entity_Id
21307 Def_Id
: Entity_Id
;
21308 Error_Node
: Node_Id
;
21309 Full_View_Id
: Entity_Id
;
21310 Subtype_Mark_Id
: Entity_Id
;
21312 May_Have_Null_Exclusion
: Boolean;
21314 procedure Check_Incomplete
(T
: Node_Id
);
21315 -- Called to verify that an incomplete type is not used prematurely
21317 ----------------------
21318 -- Check_Incomplete --
21319 ----------------------
21321 procedure Check_Incomplete
(T
: Node_Id
) is
21323 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21325 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
21327 not (Ada_Version
>= Ada_2005
21329 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
21330 or else (Nkind
(Parent
(T
)) = N_Subtype_Indication
21331 and then Nkind
(Parent
(Parent
(T
))) =
21332 N_Subtype_Declaration
)))
21334 Error_Msg_N
("invalid use of type before its full declaration", T
);
21336 end Check_Incomplete
;
21338 -- Start of processing for Process_Subtype
21341 -- Case of no constraints present
21343 if Nkind
(S
) /= N_Subtype_Indication
then
21346 -- No way to proceed if the subtype indication is malformed. This
21347 -- will happen for example when the subtype indication in an object
21348 -- declaration is missing altogether and the expression is analyzed
21349 -- as if it were that indication.
21351 if not Is_Entity_Name
(S
) then
21355 Check_Incomplete
(S
);
21358 -- Ada 2005 (AI-231): Static check
21360 if Ada_Version
>= Ada_2005
21361 and then Present
(P
)
21362 and then Null_Exclusion_Present
(P
)
21363 and then Nkind
(P
) /= N_Access_To_Object_Definition
21364 and then not Is_Access_Type
(Entity
(S
))
21366 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
21369 -- The following is ugly, can't we have a range or even a flag???
21371 May_Have_Null_Exclusion
:=
21372 Nkind_In
(P
, N_Access_Definition
,
21373 N_Access_Function_Definition
,
21374 N_Access_Procedure_Definition
,
21375 N_Access_To_Object_Definition
,
21377 N_Component_Definition
)
21379 Nkind_In
(P
, N_Derived_Type_Definition
,
21380 N_Discriminant_Specification
,
21381 N_Formal_Object_Declaration
,
21382 N_Object_Declaration
,
21383 N_Object_Renaming_Declaration
,
21384 N_Parameter_Specification
,
21385 N_Subtype_Declaration
);
21387 -- Create an Itype that is a duplicate of Entity (S) but with the
21388 -- null-exclusion attribute.
21390 if May_Have_Null_Exclusion
21391 and then Is_Access_Type
(Entity
(S
))
21392 and then Null_Exclusion_Present
(P
)
21394 -- No need to check the case of an access to object definition.
21395 -- It is correct to define double not-null pointers.
21398 -- type Not_Null_Int_Ptr is not null access Integer;
21399 -- type Acc is not null access Not_Null_Int_Ptr;
21401 and then Nkind
(P
) /= N_Access_To_Object_Definition
21403 if Can_Never_Be_Null
(Entity
(S
)) then
21404 case Nkind
(Related_Nod
) is
21405 when N_Full_Type_Declaration
=>
21406 if Nkind
(Type_Definition
(Related_Nod
))
21407 in N_Array_Type_Definition
21411 (Component_Definition
21412 (Type_Definition
(Related_Nod
)));
21415 Subtype_Indication
(Type_Definition
(Related_Nod
));
21418 when N_Subtype_Declaration
=>
21419 Error_Node
:= Subtype_Indication
(Related_Nod
);
21421 when N_Object_Declaration
=>
21422 Error_Node
:= Object_Definition
(Related_Nod
);
21424 when N_Component_Declaration
=>
21426 Subtype_Indication
(Component_Definition
(Related_Nod
));
21428 when N_Allocator
=>
21429 Error_Node
:= Expression
(Related_Nod
);
21432 pragma Assert
(False);
21433 Error_Node
:= Related_Nod
;
21437 ("`NOT NULL` not allowed (& already excludes null)",
21443 Create_Null_Excluding_Itype
21445 Related_Nod
=> P
));
21446 Set_Entity
(S
, Etype
(S
));
21451 -- Case of constraint present, so that we have an N_Subtype_Indication
21452 -- node (this node is created only if constraints are present).
21455 Find_Type
(Subtype_Mark
(S
));
21457 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
21459 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
21460 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
21462 Check_Incomplete
(Subtype_Mark
(S
));
21466 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
21468 -- Explicit subtype declaration case
21470 if Nkind
(P
) = N_Subtype_Declaration
then
21471 Def_Id
:= Defining_Identifier
(P
);
21473 -- Explicit derived type definition case
21475 elsif Nkind
(P
) = N_Derived_Type_Definition
then
21476 Def_Id
:= Defining_Identifier
(Parent
(P
));
21478 -- Implicit case, the Def_Id must be created as an implicit type.
21479 -- The one exception arises in the case of concurrent types, array
21480 -- and access types, where other subsidiary implicit types may be
21481 -- created and must appear before the main implicit type. In these
21482 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21483 -- has not yet been called to create Def_Id.
21486 if Is_Array_Type
(Subtype_Mark_Id
)
21487 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
21488 or else Is_Access_Type
(Subtype_Mark_Id
)
21492 -- For the other cases, we create a new unattached Itype,
21493 -- and set the indication to ensure it gets attached later.
21497 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
21501 -- If the kind of constraint is invalid for this kind of type,
21502 -- then give an error, and then pretend no constraint was given.
21504 if not Is_Valid_Constraint_Kind
21505 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
21508 ("incorrect constraint for this kind of type", Constraint
(S
));
21510 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
21512 -- Set Ekind of orphan itype, to prevent cascaded errors
21514 if Present
(Def_Id
) then
21515 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
21518 -- Make recursive call, having got rid of the bogus constraint
21520 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
21523 -- Remaining processing depends on type. Select on Base_Type kind to
21524 -- ensure getting to the concrete type kind in the case of a private
21525 -- subtype (needed when only doing semantic analysis).
21527 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
21528 when Access_Kind
=>
21530 -- If this is a constraint on a class-wide type, discard it.
21531 -- There is currently no way to express a partial discriminant
21532 -- constraint on a type with unknown discriminants. This is
21533 -- a pathology that the ACATS wisely decides not to test.
21535 if Is_Class_Wide_Type
(Designated_Type
(Subtype_Mark_Id
)) then
21536 if Comes_From_Source
(S
) then
21538 ("constraint on class-wide type ignored??",
21542 if Nkind
(P
) = N_Subtype_Declaration
then
21543 Set_Subtype_Indication
(P
,
21544 New_Occurrence_Of
(Subtype_Mark_Id
, Sloc
(S
)));
21547 return Subtype_Mark_Id
;
21550 Constrain_Access
(Def_Id
, S
, Related_Nod
);
21553 and then Is_Itype
(Designated_Type
(Def_Id
))
21554 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
21555 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
21557 Build_Itype_Reference
21558 (Designated_Type
(Def_Id
), Related_Nod
);
21562 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
21564 when Decimal_Fixed_Point_Kind
=>
21565 Constrain_Decimal
(Def_Id
, S
);
21567 when Enumeration_Kind
=>
21568 Constrain_Enumeration
(Def_Id
, S
);
21569 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
21571 when Ordinary_Fixed_Point_Kind
=>
21572 Constrain_Ordinary_Fixed
(Def_Id
, S
);
21575 Constrain_Float
(Def_Id
, S
);
21577 when Integer_Kind
=>
21578 Constrain_Integer
(Def_Id
, S
);
21579 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
21581 when Class_Wide_Kind
21582 | E_Incomplete_Type
21586 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
21588 if Ekind
(Def_Id
) = E_Incomplete_Type
then
21589 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
21592 when Private_Kind
=>
21593 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
21595 -- The base type may be private but Def_Id may be a full view
21598 if Is_Private_Type
(Def_Id
) then
21599 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
21602 -- In case of an invalid constraint prevent further processing
21603 -- since the type constructed is missing expected fields.
21605 if Etype
(Def_Id
) = Any_Type
then
21609 -- If the full view is that of a task with discriminants,
21610 -- we must constrain both the concurrent type and its
21611 -- corresponding record type. Otherwise we will just propagate
21612 -- the constraint to the full view, if available.
21614 if Present
(Full_View
(Subtype_Mark_Id
))
21615 and then Has_Discriminants
(Subtype_Mark_Id
)
21616 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
21619 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
21621 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
21622 Constrain_Concurrent
(Full_View_Id
, S
,
21623 Related_Nod
, Related_Id
, Suffix
);
21624 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
21625 Set_Full_View
(Def_Id
, Full_View_Id
);
21627 -- Introduce an explicit reference to the private subtype,
21628 -- to prevent scope anomalies in gigi if first use appears
21629 -- in a nested context, e.g. a later function body.
21630 -- Should this be generated in other contexts than a full
21631 -- type declaration?
21633 if Is_Itype
(Def_Id
)
21635 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
21637 Build_Itype_Reference
(Def_Id
, Parent
(P
));
21641 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
21644 when Concurrent_Kind
=>
21645 Constrain_Concurrent
(Def_Id
, S
,
21646 Related_Nod
, Related_Id
, Suffix
);
21649 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
21652 -- Size, Alignment, Representation aspects and Convention are always
21653 -- inherited from the base type.
21655 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
21656 Set_Rep_Info
(Def_Id
, (Subtype_Mark_Id
));
21657 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
21661 end Process_Subtype
;
21663 -----------------------------
21664 -- Record_Type_Declaration --
21665 -----------------------------
21667 procedure Record_Type_Declaration
21672 Def
: constant Node_Id
:= Type_Definition
(N
);
21673 Is_Tagged
: Boolean;
21674 Tag_Comp
: Entity_Id
;
21677 -- These flags must be initialized before calling Process_Discriminants
21678 -- because this routine makes use of them.
21680 Set_Ekind
(T
, E_Record_Type
);
21682 Init_Size_Align
(T
);
21683 Set_Interfaces
(T
, No_Elist
);
21684 Set_Stored_Constraint
(T
, No_Elist
);
21685 Set_Default_SSO
(T
);
21686 Set_No_Reordering
(T
, No_Component_Reordering
);
21690 if Ada_Version
< Ada_2005
or else not Interface_Present
(Def
) then
21691 if Limited_Present
(Def
) then
21692 Check_SPARK_05_Restriction
("limited is not allowed", N
);
21695 if Abstract_Present
(Def
) then
21696 Check_SPARK_05_Restriction
("abstract is not allowed", N
);
21699 -- The flag Is_Tagged_Type might have already been set by
21700 -- Find_Type_Name if it detected an error for declaration T. This
21701 -- arises in the case of private tagged types where the full view
21702 -- omits the word tagged.
21705 Tagged_Present
(Def
)
21706 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
21708 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
21711 Set_Is_Tagged_Type
(T
, True);
21712 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
21715 -- Type is abstract if full declaration carries keyword, or if
21716 -- previous partial view did.
21718 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
21719 or else Abstract_Present
(Def
));
21722 Check_SPARK_05_Restriction
("interface is not allowed", N
);
21725 Analyze_Interface_Declaration
(T
, Def
);
21727 if Present
(Discriminant_Specifications
(N
)) then
21729 ("interface types cannot have discriminants",
21730 Defining_Identifier
21731 (First
(Discriminant_Specifications
(N
))));
21735 -- First pass: if there are self-referential access components,
21736 -- create the required anonymous access type declarations, and if
21737 -- need be an incomplete type declaration for T itself.
21739 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
21741 if Ada_Version
>= Ada_2005
21742 and then Present
(Interface_List
(Def
))
21744 Check_Interfaces
(N
, Def
);
21747 Ifaces_List
: Elist_Id
;
21750 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21751 -- already in the parents.
21755 Ifaces_List
=> Ifaces_List
,
21756 Exclude_Parents
=> True);
21758 Set_Interfaces
(T
, Ifaces_List
);
21762 -- Records constitute a scope for the component declarations within.
21763 -- The scope is created prior to the processing of these declarations.
21764 -- Discriminants are processed first, so that they are visible when
21765 -- processing the other components. The Ekind of the record type itself
21766 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21768 -- Enter record scope
21772 -- If an incomplete or private type declaration was already given for
21773 -- the type, then this scope already exists, and the discriminants have
21774 -- been declared within. We must verify that the full declaration
21775 -- matches the incomplete one.
21777 Check_Or_Process_Discriminants
(N
, T
, Prev
);
21779 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
21780 Set_Has_Delayed_Freeze
(T
, True);
21782 -- For tagged types add a manually analyzed component corresponding
21783 -- to the component _tag, the corresponding piece of tree will be
21784 -- expanded as part of the freezing actions if it is not a CPP_Class.
21788 -- Do not add the tag unless we are in expansion mode
21790 if Expander_Active
then
21791 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
21792 Enter_Name
(Tag_Comp
);
21794 Set_Ekind
(Tag_Comp
, E_Component
);
21795 Set_Is_Tag
(Tag_Comp
);
21796 Set_Is_Aliased
(Tag_Comp
);
21797 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
21798 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
21799 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
21800 Init_Component_Location
(Tag_Comp
);
21802 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21803 -- implemented interfaces.
21805 if Has_Interfaces
(T
) then
21806 Add_Interface_Tag_Components
(N
, T
);
21810 Make_Class_Wide_Type
(T
);
21811 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
21814 -- We must suppress range checks when processing record components in
21815 -- the presence of discriminants, since we don't want spurious checks to
21816 -- be generated during their analysis, but Suppress_Range_Checks flags
21817 -- must be reset the after processing the record definition.
21819 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21820 -- couldn't we just use the normal range check suppression method here.
21821 -- That would seem cleaner ???
21823 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
21824 Set_Kill_Range_Checks
(T
, True);
21825 Record_Type_Definition
(Def
, Prev
);
21826 Set_Kill_Range_Checks
(T
, False);
21828 Record_Type_Definition
(Def
, Prev
);
21831 -- Exit from record scope
21835 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21836 -- the implemented interfaces and associate them an aliased entity.
21839 and then not Is_Empty_List
(Interface_List
(Def
))
21841 Derive_Progenitor_Subprograms
(T
, T
);
21844 Check_Function_Writable_Actuals
(N
);
21845 end Record_Type_Declaration
;
21847 ----------------------------
21848 -- Record_Type_Definition --
21849 ----------------------------
21851 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
21852 Component
: Entity_Id
;
21853 Ctrl_Components
: Boolean := False;
21854 Final_Storage_Only
: Boolean;
21858 if Ekind
(Prev_T
) = E_Incomplete_Type
then
21859 T
:= Full_View
(Prev_T
);
21864 -- In SPARK, tagged types and type extensions may only be declared in
21865 -- the specification of library unit packages.
21867 if Present
(Def
) and then Is_Tagged_Type
(T
) then
21873 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
21874 Typ
:= Parent
(Def
);
21877 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
21878 Typ
:= Parent
(Parent
(Def
));
21881 Ctxt
:= Parent
(Typ
);
21883 if Nkind
(Ctxt
) = N_Package_Body
21884 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
21886 Check_SPARK_05_Restriction
21887 ("type should be defined in package specification", Typ
);
21889 elsif Nkind
(Ctxt
) /= N_Package_Specification
21890 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
21892 Check_SPARK_05_Restriction
21893 ("type should be defined in library unit package", Typ
);
21898 Final_Storage_Only
:= not Is_Controlled
(T
);
21900 -- Ada 2005: Check whether an explicit Limited is present in a derived
21901 -- type declaration.
21903 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
21904 and then Limited_Present
(Parent
(Def
))
21906 Set_Is_Limited_Record
(T
);
21909 -- If the component list of a record type is defined by the reserved
21910 -- word null and there is no discriminant part, then the record type has
21911 -- no components and all records of the type are null records (RM 3.7)
21912 -- This procedure is also called to process the extension part of a
21913 -- record extension, in which case the current scope may have inherited
21917 or else No
(Component_List
(Def
))
21918 or else Null_Present
(Component_List
(Def
))
21920 if not Is_Tagged_Type
(T
) then
21921 Check_SPARK_05_Restriction
("untagged record cannot be null", Def
);
21925 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
21927 if Present
(Variant_Part
(Component_List
(Def
))) then
21928 Check_SPARK_05_Restriction
("variant part is not allowed", Def
);
21929 Analyze
(Variant_Part
(Component_List
(Def
)));
21933 -- After completing the semantic analysis of the record definition,
21934 -- record components, both new and inherited, are accessible. Set their
21935 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21936 -- whose Ekind may be void.
21938 Component
:= First_Entity
(Current_Scope
);
21939 while Present
(Component
) loop
21940 if Ekind
(Component
) = E_Void
21941 and then not Is_Itype
(Component
)
21943 Set_Ekind
(Component
, E_Component
);
21944 Init_Component_Location
(Component
);
21947 Propagate_Concurrent_Flags
(T
, Etype
(Component
));
21949 if Ekind
(Component
) /= E_Component
then
21952 -- Do not set Has_Controlled_Component on a class-wide equivalent
21953 -- type. See Make_CW_Equivalent_Type.
21955 elsif not Is_Class_Wide_Equivalent_Type
(T
)
21956 and then (Has_Controlled_Component
(Etype
(Component
))
21957 or else (Chars
(Component
) /= Name_uParent
21958 and then Is_Controlled
(Etype
(Component
))))
21960 Set_Has_Controlled_Component
(T
, True);
21961 Final_Storage_Only
:=
21963 and then Finalize_Storage_Only
(Etype
(Component
));
21964 Ctrl_Components
:= True;
21967 Next_Entity
(Component
);
21970 -- A Type is Finalize_Storage_Only only if all its controlled components
21973 if Ctrl_Components
then
21974 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
21977 -- Place reference to end record on the proper entity, which may
21978 -- be a partial view.
21980 if Present
(Def
) then
21981 Process_End_Label
(Def
, 'e', Prev_T
);
21983 end Record_Type_Definition
;
21985 ------------------------
21986 -- Replace_Components --
21987 ------------------------
21989 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
21990 function Process
(N
: Node_Id
) return Traverse_Result
;
21996 function Process
(N
: Node_Id
) return Traverse_Result
is
22000 if Nkind
(N
) = N_Discriminant_Specification
then
22001 Comp
:= First_Discriminant
(Typ
);
22002 while Present
(Comp
) loop
22003 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
22004 Set_Defining_Identifier
(N
, Comp
);
22008 Next_Discriminant
(Comp
);
22011 elsif Nkind
(N
) = N_Variant_Part
then
22012 Comp
:= First_Discriminant
(Typ
);
22013 while Present
(Comp
) loop
22014 if Chars
(Comp
) = Chars
(Name
(N
)) then
22015 Set_Entity
(Name
(N
), Comp
);
22019 Next_Discriminant
(Comp
);
22022 elsif Nkind
(N
) = N_Component_Declaration
then
22023 Comp
:= First_Component
(Typ
);
22024 while Present
(Comp
) loop
22025 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
22026 Set_Defining_Identifier
(N
, Comp
);
22030 Next_Component
(Comp
);
22037 procedure Replace
is new Traverse_Proc
(Process
);
22039 -- Start of processing for Replace_Components
22043 end Replace_Components
;
22045 -------------------------------
22046 -- Set_Completion_Referenced --
22047 -------------------------------
22049 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
22051 -- If in main unit, mark entity that is a completion as referenced,
22052 -- warnings go on the partial view when needed.
22054 if In_Extended_Main_Source_Unit
(E
) then
22055 Set_Referenced
(E
);
22057 end Set_Completion_Referenced
;
22059 ---------------------
22060 -- Set_Default_SSO --
22061 ---------------------
22063 procedure Set_Default_SSO
(T
: Entity_Id
) is
22065 case Opt
.Default_SSO
is
22069 Set_SSO_Set_Low_By_Default
(T
, True);
22071 Set_SSO_Set_High_By_Default
(T
, True);
22073 raise Program_Error
;
22075 end Set_Default_SSO
;
22077 ---------------------
22078 -- Set_Fixed_Range --
22079 ---------------------
22081 -- The range for fixed-point types is complicated by the fact that we
22082 -- do not know the exact end points at the time of the declaration. This
22083 -- is true for three reasons:
22085 -- A size clause may affect the fudging of the end-points.
22086 -- A small clause may affect the values of the end-points.
22087 -- We try to include the end-points if it does not affect the size.
22089 -- This means that the actual end-points must be established at the
22090 -- point when the type is frozen. Meanwhile, we first narrow the range
22091 -- as permitted (so that it will fit if necessary in a small specified
22092 -- size), and then build a range subtree with these narrowed bounds.
22093 -- Set_Fixed_Range constructs the range from real literal values, and
22094 -- sets the range as the Scalar_Range of the given fixed-point type entity.
22096 -- The parent of this range is set to point to the entity so that it is
22097 -- properly hooked into the tree (unlike normal Scalar_Range entries for
22098 -- other scalar types, which are just pointers to the range in the
22099 -- original tree, this would otherwise be an orphan).
22101 -- The tree is left unanalyzed. When the type is frozen, the processing
22102 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
22103 -- analyzed, and uses this as an indication that it should complete
22104 -- work on the range (it will know the final small and size values).
22106 procedure Set_Fixed_Range
22112 S
: constant Node_Id
:=
22114 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
22115 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
22117 Set_Scalar_Range
(E
, S
);
22120 -- Before the freeze point, the bounds of a fixed point are universal
22121 -- and carry the corresponding type.
22123 Set_Etype
(Low_Bound
(S
), Universal_Real
);
22124 Set_Etype
(High_Bound
(S
), Universal_Real
);
22125 end Set_Fixed_Range
;
22127 ----------------------------------
22128 -- Set_Scalar_Range_For_Subtype --
22129 ----------------------------------
22131 procedure Set_Scalar_Range_For_Subtype
22132 (Def_Id
: Entity_Id
;
22136 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
22139 -- Defend against previous error
22141 if Nkind
(R
) = N_Error
then
22145 Set_Scalar_Range
(Def_Id
, R
);
22147 -- We need to link the range into the tree before resolving it so
22148 -- that types that are referenced, including importantly the subtype
22149 -- itself, are properly frozen (Freeze_Expression requires that the
22150 -- expression be properly linked into the tree). Of course if it is
22151 -- already linked in, then we do not disturb the current link.
22153 if No
(Parent
(R
)) then
22154 Set_Parent
(R
, Def_Id
);
22157 -- Reset the kind of the subtype during analysis of the range, to
22158 -- catch possible premature use in the bounds themselves.
22160 Set_Ekind
(Def_Id
, E_Void
);
22161 Process_Range_Expr_In_Decl
(R
, Subt
, Subtyp
=> Def_Id
);
22162 Set_Ekind
(Def_Id
, Kind
);
22163 end Set_Scalar_Range_For_Subtype
;
22165 --------------------------------------------------------
22166 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22167 --------------------------------------------------------
22169 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22173 -- Make sure set if encountered during Expand_To_Stored_Constraint
22175 Set_Stored_Constraint
(E
, No_Elist
);
22177 -- Give it the right value
22179 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
22180 Set_Stored_Constraint
(E
,
22181 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
22183 end Set_Stored_Constraint_From_Discriminant_Constraint
;
22185 -------------------------------------
22186 -- Signed_Integer_Type_Declaration --
22187 -------------------------------------
22189 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
22190 Implicit_Base
: Entity_Id
;
22191 Base_Typ
: Entity_Id
;
22194 Errs
: Boolean := False;
22198 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
22199 -- Determine whether given bounds allow derivation from specified type
22201 procedure Check_Bound
(Expr
: Node_Id
);
22202 -- Check bound to make sure it is integral and static. If not, post
22203 -- appropriate error message and set Errs flag
22205 ---------------------
22206 -- Can_Derive_From --
22207 ---------------------
22209 -- Note we check both bounds against both end values, to deal with
22210 -- strange types like ones with a range of 0 .. -12341234.
22212 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
22213 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
22214 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
22216 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
22218 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
22219 end Can_Derive_From
;
22225 procedure Check_Bound
(Expr
: Node_Id
) is
22227 -- If a range constraint is used as an integer type definition, each
22228 -- bound of the range must be defined by a static expression of some
22229 -- integer type, but the two bounds need not have the same integer
22230 -- type (Negative bounds are allowed.) (RM 3.5.4)
22232 if not Is_Integer_Type
(Etype
(Expr
)) then
22234 ("integer type definition bounds must be of integer type", Expr
);
22237 elsif not Is_OK_Static_Expression
(Expr
) then
22238 Flag_Non_Static_Expr
22239 ("non-static expression used for integer type bound!", Expr
);
22242 -- The bounds are folded into literals, and we set their type to be
22243 -- universal, to avoid typing difficulties: we cannot set the type
22244 -- of the literal to the new type, because this would be a forward
22245 -- reference for the back end, and if the original type is user-
22246 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22249 if Is_Entity_Name
(Expr
) then
22250 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
22253 Set_Etype
(Expr
, Universal_Integer
);
22257 -- Start of processing for Signed_Integer_Type_Declaration
22260 -- Create an anonymous base type
22263 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
22265 -- Analyze and check the bounds, they can be of any integer type
22267 Lo
:= Low_Bound
(Def
);
22268 Hi
:= High_Bound
(Def
);
22270 -- Arbitrarily use Integer as the type if either bound had an error
22272 if Hi
= Error
or else Lo
= Error
then
22273 Base_Typ
:= Any_Integer
;
22274 Set_Error_Posted
(T
, True);
22276 -- Here both bounds are OK expressions
22279 Analyze_And_Resolve
(Lo
, Any_Integer
);
22280 Analyze_And_Resolve
(Hi
, Any_Integer
);
22286 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
22287 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
22290 -- Find type to derive from
22292 Lo_Val
:= Expr_Value
(Lo
);
22293 Hi_Val
:= Expr_Value
(Hi
);
22295 if Can_Derive_From
(Standard_Short_Short_Integer
) then
22296 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
22298 elsif Can_Derive_From
(Standard_Short_Integer
) then
22299 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
22301 elsif Can_Derive_From
(Standard_Integer
) then
22302 Base_Typ
:= Base_Type
(Standard_Integer
);
22304 elsif Can_Derive_From
(Standard_Long_Integer
) then
22305 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
22307 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
22308 Check_Restriction
(No_Long_Long_Integers
, Def
);
22309 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
22312 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
22313 Error_Msg_N
("integer type definition bounds out of range", Def
);
22314 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
22315 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
22319 -- Complete both implicit base and declared first subtype entities. The
22320 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22321 -- are not clobbered when the signed integer type acts as a full view of
22324 Set_Etype
(Implicit_Base
, Base_Typ
);
22325 Set_Size_Info
(Implicit_Base
, Base_Typ
);
22326 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
22327 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
22328 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
22330 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
22331 Set_Etype
(T
, Implicit_Base
);
22332 Set_Size_Info
(T
, Implicit_Base
);
22333 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
22334 Set_Scalar_Range
(T
, Def
);
22335 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
22336 Set_Is_Constrained
(T
);
22337 end Signed_Integer_Type_Declaration
;