Daily bump.
[official-gcc.git] / gcc / reorg.c
blob09c8ea583c5d4ed3fc6f24ed6bf8b4699c5abdca
1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
5 Hacked by Michael Tiemann (tiemann@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 /* Instruction reorganization pass.
26 This pass runs after register allocation and final jump
27 optimization. It should be the last pass to run before peephole.
28 It serves primarily to fill delay slots of insns, typically branch
29 and call insns. Other insns typically involve more complicated
30 interactions of data dependencies and resource constraints, and
31 are better handled by scheduling before register allocation (by the
32 function `schedule_insns').
34 The Branch Penalty is the number of extra cycles that are needed to
35 execute a branch insn. On an ideal machine, branches take a single
36 cycle, and the Branch Penalty is 0. Several RISC machines approach
37 branch delays differently:
39 The MIPS has a single branch delay slot. Most insns
40 (except other branches) can be used to fill this slot. When the
41 slot is filled, two insns execute in two cycles, reducing the
42 branch penalty to zero.
44 The SPARC always has a branch delay slot, but its effects can be
45 annulled when the branch is not taken. This means that failing to
46 find other sources of insns, we can hoist an insn from the branch
47 target that would only be safe to execute knowing that the branch
48 is taken.
50 The HP-PA always has a branch delay slot. For unconditional branches
51 its effects can be annulled when the branch is taken. The effects
52 of the delay slot in a conditional branch can be nullified for forward
53 taken branches, or for untaken backward branches. This means
54 we can hoist insns from the fall-through path for forward branches or
55 steal insns from the target of backward branches.
57 The TMS320C3x and C4x have three branch delay slots. When the three
58 slots are filled, the branch penalty is zero. Most insns can fill the
59 delay slots except jump insns.
61 Three techniques for filling delay slots have been implemented so far:
63 (1) `fill_simple_delay_slots' is the simplest, most efficient way
64 to fill delay slots. This pass first looks for insns which come
65 from before the branch and which are safe to execute after the
66 branch. Then it searches after the insn requiring delay slots or,
67 in the case of a branch, for insns that are after the point at
68 which the branch merges into the fallthrough code, if such a point
69 exists. When such insns are found, the branch penalty decreases
70 and no code expansion takes place.
72 (2) `fill_eager_delay_slots' is more complicated: it is used for
73 scheduling conditional jumps, or for scheduling jumps which cannot
74 be filled using (1). A machine need not have annulled jumps to use
75 this strategy, but it helps (by keeping more options open).
76 `fill_eager_delay_slots' tries to guess the direction the branch
77 will go; if it guesses right 100% of the time, it can reduce the
78 branch penalty as much as `fill_simple_delay_slots' does. If it
79 guesses wrong 100% of the time, it might as well schedule nops. When
80 `fill_eager_delay_slots' takes insns from the fall-through path of
81 the jump, usually there is no code expansion; when it takes insns
82 from the branch target, there is code expansion if it is not the
83 only way to reach that target.
85 (3) `relax_delay_slots' uses a set of rules to simplify code that
86 has been reorganized by (1) and (2). It finds cases where
87 conditional test can be eliminated, jumps can be threaded, extra
88 insns can be eliminated, etc. It is the job of (1) and (2) to do a
89 good job of scheduling locally; `relax_delay_slots' takes care of
90 making the various individual schedules work well together. It is
91 especially tuned to handle the control flow interactions of branch
92 insns. It does nothing for insns with delay slots that do not
93 branch.
95 On machines that use CC0, we are very conservative. We will not make
96 a copy of an insn involving CC0 since we want to maintain a 1-1
97 correspondence between the insn that sets and uses CC0. The insns are
98 allowed to be separated by placing an insn that sets CC0 (but not an insn
99 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
100 delay slot. In that case, we point each insn at the other with REG_CC_USER
101 and REG_CC_SETTER notes. Note that these restrictions affect very few
102 machines because most RISC machines with delay slots will not use CC0
103 (the RT is the only known exception at this point).
105 Not yet implemented:
107 The Acorn Risc Machine can conditionally execute most insns, so
108 it is profitable to move single insns into a position to execute
109 based on the condition code of the previous insn.
111 The HP-PA can conditionally nullify insns, providing a similar
112 effect to the ARM, differing mostly in which insn is "in charge". */
114 #include "config.h"
115 #include "system.h"
116 #include "coretypes.h"
117 #include "tm.h"
118 #include "toplev.h"
119 #include "rtl.h"
120 #include "tm_p.h"
121 #include "expr.h"
122 #include "function.h"
123 #include "insn-config.h"
124 #include "conditions.h"
125 #include "hard-reg-set.h"
126 #include "basic-block.h"
127 #include "regs.h"
128 #include "recog.h"
129 #include "flags.h"
130 #include "output.h"
131 #include "obstack.h"
132 #include "insn-attr.h"
133 #include "resource.h"
134 #include "except.h"
135 #include "params.h"
137 #ifdef DELAY_SLOTS
139 #ifndef ANNUL_IFTRUE_SLOTS
140 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
141 #endif
142 #ifndef ANNUL_IFFALSE_SLOTS
143 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
144 #endif
146 /* Insns which have delay slots that have not yet been filled. */
148 static struct obstack unfilled_slots_obstack;
149 static rtx *unfilled_firstobj;
151 /* Define macros to refer to the first and last slot containing unfilled
152 insns. These are used because the list may move and its address
153 should be recomputed at each use. */
155 #define unfilled_slots_base \
156 ((rtx *) obstack_base (&unfilled_slots_obstack))
158 #define unfilled_slots_next \
159 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
161 /* Points to the label before the end of the function. */
162 static rtx end_of_function_label;
164 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
165 not always monotonically increase. */
166 static int *uid_to_ruid;
168 /* Highest valid index in `uid_to_ruid'. */
169 static int max_uid;
171 static int stop_search_p (rtx, int);
172 static int resource_conflicts_p (struct resources *, struct resources *);
173 static int insn_references_resource_p (rtx, struct resources *, int);
174 static int insn_sets_resource_p (rtx, struct resources *, int);
175 static rtx find_end_label (void);
176 static rtx emit_delay_sequence (rtx, rtx, int);
177 static rtx add_to_delay_list (rtx, rtx);
178 static rtx delete_from_delay_slot (rtx);
179 static void delete_scheduled_jump (rtx);
180 static void note_delay_statistics (int, int);
181 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
182 static rtx optimize_skip (rtx);
183 #endif
184 static int get_jump_flags (rtx, rtx);
185 static int rare_destination (rtx);
186 static int mostly_true_jump (rtx, rtx);
187 static rtx get_branch_condition (rtx, rtx);
188 static int condition_dominates_p (rtx, rtx);
189 static int redirect_with_delay_slots_safe_p (rtx, rtx, rtx);
190 static int redirect_with_delay_list_safe_p (rtx, rtx, rtx);
191 static int check_annul_list_true_false (int, rtx);
192 static rtx steal_delay_list_from_target (rtx, rtx, rtx, rtx,
193 struct resources *,
194 struct resources *,
195 struct resources *,
196 int, int *, int *, rtx *);
197 static rtx steal_delay_list_from_fallthrough (rtx, rtx, rtx, rtx,
198 struct resources *,
199 struct resources *,
200 struct resources *,
201 int, int *, int *);
202 static void try_merge_delay_insns (rtx, rtx);
203 static rtx redundant_insn (rtx, rtx, rtx);
204 static int own_thread_p (rtx, rtx, int);
205 static void update_block (rtx, rtx);
206 static int reorg_redirect_jump (rtx, rtx);
207 static void update_reg_dead_notes (rtx, rtx);
208 static void fix_reg_dead_note (rtx, rtx);
209 static void update_reg_unused_notes (rtx, rtx);
210 static void fill_simple_delay_slots (int);
211 static rtx fill_slots_from_thread (rtx, rtx, rtx, rtx, int, int, int, int,
212 int *, rtx);
213 static void fill_eager_delay_slots (void);
214 static void relax_delay_slots (rtx);
215 #ifdef HAVE_return
216 static void make_return_insns (rtx);
217 #endif
219 /* Return TRUE if this insn should stop the search for insn to fill delay
220 slots. LABELS_P indicates that labels should terminate the search.
221 In all cases, jumps terminate the search. */
223 static int
224 stop_search_p (rtx insn, int labels_p)
226 if (insn == 0)
227 return 1;
229 /* If the insn can throw an exception that is caught within the function,
230 it may effectively perform a jump from the viewpoint of the function.
231 Therefore act like for a jump. */
232 if (can_throw_internal (insn))
233 return 1;
235 switch (GET_CODE (insn))
237 case NOTE:
238 case CALL_INSN:
239 return 0;
241 case CODE_LABEL:
242 return labels_p;
244 case JUMP_INSN:
245 case BARRIER:
246 return 1;
248 case INSN:
249 /* OK unless it contains a delay slot or is an `asm' insn of some type.
250 We don't know anything about these. */
251 return (GET_CODE (PATTERN (insn)) == SEQUENCE
252 || GET_CODE (PATTERN (insn)) == ASM_INPUT
253 || asm_noperands (PATTERN (insn)) >= 0);
255 default:
256 gcc_unreachable ();
260 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
261 resource set contains a volatile memory reference. Otherwise, return FALSE. */
263 static int
264 resource_conflicts_p (struct resources *res1, struct resources *res2)
266 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
267 || (res1->unch_memory && res2->unch_memory)
268 || res1->volatil || res2->volatil)
269 return 1;
271 #ifdef HARD_REG_SET
272 return (res1->regs & res2->regs) != HARD_CONST (0);
273 #else
275 int i;
277 for (i = 0; i < HARD_REG_SET_LONGS; i++)
278 if ((res1->regs[i] & res2->regs[i]) != 0)
279 return 1;
280 return 0;
282 #endif
285 /* Return TRUE if any resource marked in RES, a `struct resources', is
286 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
287 routine is using those resources.
289 We compute this by computing all the resources referenced by INSN and
290 seeing if this conflicts with RES. It might be faster to directly check
291 ourselves, and this is the way it used to work, but it means duplicating
292 a large block of complex code. */
294 static int
295 insn_references_resource_p (rtx insn, struct resources *res,
296 int include_delayed_effects)
298 struct resources insn_res;
300 CLEAR_RESOURCE (&insn_res);
301 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
302 return resource_conflicts_p (&insn_res, res);
305 /* Return TRUE if INSN modifies resources that are marked in RES.
306 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
307 included. CC0 is only modified if it is explicitly set; see comments
308 in front of mark_set_resources for details. */
310 static int
311 insn_sets_resource_p (rtx insn, struct resources *res,
312 int include_delayed_effects)
314 struct resources insn_sets;
316 CLEAR_RESOURCE (&insn_sets);
317 mark_set_resources (insn, &insn_sets, 0, include_delayed_effects);
318 return resource_conflicts_p (&insn_sets, res);
321 /* Find a label at the end of the function or before a RETURN. If there
322 is none, try to make one. If that fails, returns 0.
324 The property of such a label is that it is placed just before the
325 epilogue or a bare RETURN insn, so that another bare RETURN can be
326 turned into a jump to the label unconditionally. In particular, the
327 label cannot be placed before a RETURN insn with a filled delay slot.
329 ??? There may be a problem with the current implementation. Suppose
330 we start with a bare RETURN insn and call find_end_label. It may set
331 end_of_function_label just before the RETURN. Suppose the machinery
332 is able to fill the delay slot of the RETURN insn afterwards. Then
333 end_of_function_label is no longer valid according to the property
334 described above and find_end_label will still return it unmodified.
335 Note that this is probably mitigated by the following observation:
336 once end_of_function_label is made, it is very likely the target of
337 a jump, so filling the delay slot of the RETURN will be much more
338 difficult. */
340 static rtx
341 find_end_label (void)
343 rtx insn;
345 /* If we found one previously, return it. */
346 if (end_of_function_label)
347 return end_of_function_label;
349 /* Otherwise, see if there is a label at the end of the function. If there
350 is, it must be that RETURN insns aren't needed, so that is our return
351 label and we don't have to do anything else. */
353 insn = get_last_insn ();
354 while (NOTE_P (insn)
355 || (NONJUMP_INSN_P (insn)
356 && (GET_CODE (PATTERN (insn)) == USE
357 || GET_CODE (PATTERN (insn)) == CLOBBER)))
358 insn = PREV_INSN (insn);
360 /* When a target threads its epilogue we might already have a
361 suitable return insn. If so put a label before it for the
362 end_of_function_label. */
363 if (BARRIER_P (insn)
364 && JUMP_P (PREV_INSN (insn))
365 && GET_CODE (PATTERN (PREV_INSN (insn))) == RETURN)
367 rtx temp = PREV_INSN (PREV_INSN (insn));
368 end_of_function_label = gen_label_rtx ();
369 LABEL_NUSES (end_of_function_label) = 0;
371 /* Put the label before an USE insns that may precede the RETURN insn. */
372 while (GET_CODE (temp) == USE)
373 temp = PREV_INSN (temp);
375 emit_label_after (end_of_function_label, temp);
378 else if (LABEL_P (insn))
379 end_of_function_label = insn;
380 else
382 end_of_function_label = gen_label_rtx ();
383 LABEL_NUSES (end_of_function_label) = 0;
384 /* If the basic block reorder pass moves the return insn to
385 some other place try to locate it again and put our
386 end_of_function_label there. */
387 while (insn && ! (GET_CODE (insn) == JUMP_INSN
388 && (GET_CODE (PATTERN (insn)) == RETURN)))
389 insn = PREV_INSN (insn);
390 if (insn)
392 insn = PREV_INSN (insn);
394 /* Put the label before an USE insns that may proceed the
395 RETURN insn. */
396 while (GET_CODE (insn) == USE)
397 insn = PREV_INSN (insn);
399 emit_label_after (end_of_function_label, insn);
401 else
403 #ifdef HAVE_epilogue
404 if (HAVE_epilogue
405 #ifdef HAVE_return
406 && ! HAVE_return
407 #endif
410 /* The RETURN insn has its delay slot filled so we cannot
411 emit the label just before it. Since we already have
412 an epilogue and cannot emit a new RETURN, we cannot
413 emit the label at all. */
414 end_of_function_label = NULL_RTX;
415 return end_of_function_label;
417 #endif /* HAVE_epilogue */
419 /* Otherwise, make a new label and emit a RETURN and BARRIER,
420 if needed. */
421 emit_label (end_of_function_label);
422 #ifdef HAVE_return
423 /* We don't bother trying to create a return insn if the
424 epilogue has filled delay-slots; we would have to try and
425 move the delay-slot fillers to the delay-slots for the new
426 return insn or in front of the new return insn. */
427 if (current_function_epilogue_delay_list == NULL
428 && HAVE_return)
430 /* The return we make may have delay slots too. */
431 rtx insn = gen_return ();
432 insn = emit_jump_insn (insn);
433 emit_barrier ();
434 if (num_delay_slots (insn) > 0)
435 obstack_ptr_grow (&unfilled_slots_obstack, insn);
437 #endif
441 /* Show one additional use for this label so it won't go away until
442 we are done. */
443 ++LABEL_NUSES (end_of_function_label);
445 return end_of_function_label;
448 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
449 the pattern of INSN with the SEQUENCE.
451 Chain the insns so that NEXT_INSN of each insn in the sequence points to
452 the next and NEXT_INSN of the last insn in the sequence points to
453 the first insn after the sequence. Similarly for PREV_INSN. This makes
454 it easier to scan all insns.
456 Returns the SEQUENCE that replaces INSN. */
458 static rtx
459 emit_delay_sequence (rtx insn, rtx list, int length)
461 int i = 1;
462 rtx li;
463 int had_barrier = 0;
465 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
466 rtvec seqv = rtvec_alloc (length + 1);
467 rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
468 rtx seq_insn = make_insn_raw (seq);
469 rtx first = get_insns ();
470 rtx last = get_last_insn ();
472 /* Make a copy of the insn having delay slots. */
473 rtx delay_insn = copy_rtx (insn);
475 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
476 confuse further processing. Update LAST in case it was the last insn.
477 We will put the BARRIER back in later. */
478 if (NEXT_INSN (insn) && BARRIER_P (NEXT_INSN (insn)))
480 delete_related_insns (NEXT_INSN (insn));
481 last = get_last_insn ();
482 had_barrier = 1;
485 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
486 NEXT_INSN (seq_insn) = NEXT_INSN (insn);
487 PREV_INSN (seq_insn) = PREV_INSN (insn);
489 if (insn != last)
490 PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
492 if (insn != first)
493 NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
495 /* Note the calls to set_new_first_and_last_insn must occur after
496 SEQ_INSN has been completely spliced into the insn stream.
498 Otherwise CUR_INSN_UID will get set to an incorrect value because
499 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
500 if (insn == last)
501 set_new_first_and_last_insn (first, seq_insn);
503 if (insn == first)
504 set_new_first_and_last_insn (seq_insn, last);
506 /* Build our SEQUENCE and rebuild the insn chain. */
507 XVECEXP (seq, 0, 0) = delay_insn;
508 INSN_DELETED_P (delay_insn) = 0;
509 PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
511 for (li = list; li; li = XEXP (li, 1), i++)
513 rtx tem = XEXP (li, 0);
514 rtx note, next;
516 /* Show that this copy of the insn isn't deleted. */
517 INSN_DELETED_P (tem) = 0;
519 XVECEXP (seq, 0, i) = tem;
520 PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
521 NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
523 /* SPARC assembler, for instance, emit warning when debug info is output
524 into the delay slot. */
525 if (INSN_LOCATOR (tem) && !INSN_LOCATOR (seq_insn))
526 INSN_LOCATOR (seq_insn) = INSN_LOCATOR (tem);
527 INSN_LOCATOR (tem) = 0;
529 for (note = REG_NOTES (tem); note; note = next)
531 next = XEXP (note, 1);
532 switch (REG_NOTE_KIND (note))
534 case REG_DEAD:
535 /* Remove any REG_DEAD notes because we can't rely on them now
536 that the insn has been moved. */
537 remove_note (tem, note);
538 break;
540 case REG_LABEL:
541 /* Keep the label reference count up to date. */
542 if (LABEL_P (XEXP (note, 0)))
543 LABEL_NUSES (XEXP (note, 0)) ++;
544 break;
546 default:
547 break;
552 NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
554 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
555 last insn in that SEQUENCE to point to us. Similarly for the first
556 insn in the following insn if it is a SEQUENCE. */
558 if (PREV_INSN (seq_insn) && NONJUMP_INSN_P (PREV_INSN (seq_insn))
559 && GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
560 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
561 XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
562 = seq_insn;
564 if (NEXT_INSN (seq_insn) && NONJUMP_INSN_P (NEXT_INSN (seq_insn))
565 && GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
566 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
568 /* If there used to be a BARRIER, put it back. */
569 if (had_barrier)
570 emit_barrier_after (seq_insn);
572 gcc_assert (i == length + 1);
574 return seq_insn;
577 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
578 be in the order in which the insns are to be executed. */
580 static rtx
581 add_to_delay_list (rtx insn, rtx delay_list)
583 /* If we have an empty list, just make a new list element. If
584 INSN has its block number recorded, clear it since we may
585 be moving the insn to a new block. */
587 if (delay_list == 0)
589 clear_hashed_info_for_insn (insn);
590 return gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
593 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
594 list. */
595 XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
597 return delay_list;
600 /* Delete INSN from the delay slot of the insn that it is in, which may
601 produce an insn with no delay slots. Return the new insn. */
603 static rtx
604 delete_from_delay_slot (rtx insn)
606 rtx trial, seq_insn, seq, prev;
607 rtx delay_list = 0;
608 int i;
609 int had_barrier = 0;
611 /* We first must find the insn containing the SEQUENCE with INSN in its
612 delay slot. Do this by finding an insn, TRIAL, where
613 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
615 for (trial = insn;
616 PREV_INSN (NEXT_INSN (trial)) == trial;
617 trial = NEXT_INSN (trial))
620 seq_insn = PREV_INSN (NEXT_INSN (trial));
621 seq = PATTERN (seq_insn);
623 if (NEXT_INSN (seq_insn) && BARRIER_P (NEXT_INSN (seq_insn)))
624 had_barrier = 1;
626 /* Create a delay list consisting of all the insns other than the one
627 we are deleting (unless we were the only one). */
628 if (XVECLEN (seq, 0) > 2)
629 for (i = 1; i < XVECLEN (seq, 0); i++)
630 if (XVECEXP (seq, 0, i) != insn)
631 delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
633 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
634 list, and rebuild the delay list if non-empty. */
635 prev = PREV_INSN (seq_insn);
636 trial = XVECEXP (seq, 0, 0);
637 delete_related_insns (seq_insn);
638 add_insn_after (trial, prev);
640 /* If there was a barrier after the old SEQUENCE, remit it. */
641 if (had_barrier)
642 emit_barrier_after (trial);
644 /* If there are any delay insns, remit them. Otherwise clear the
645 annul flag. */
646 if (delay_list)
647 trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
648 else if (INSN_P (trial))
649 INSN_ANNULLED_BRANCH_P (trial) = 0;
651 INSN_FROM_TARGET_P (insn) = 0;
653 /* Show we need to fill this insn again. */
654 obstack_ptr_grow (&unfilled_slots_obstack, trial);
656 return trial;
659 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
660 the insn that sets CC0 for it and delete it too. */
662 static void
663 delete_scheduled_jump (rtx insn)
665 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
666 delete the insn that sets the condition code, but it is hard to find it.
667 Since this case is rare anyway, don't bother trying; there would likely
668 be other insns that became dead anyway, which we wouldn't know to
669 delete. */
671 #ifdef HAVE_cc0
672 if (reg_mentioned_p (cc0_rtx, insn))
674 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
676 /* If a reg-note was found, it points to an insn to set CC0. This
677 insn is in the delay list of some other insn. So delete it from
678 the delay list it was in. */
679 if (note)
681 if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
682 && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
683 delete_from_delay_slot (XEXP (note, 0));
685 else
687 /* The insn setting CC0 is our previous insn, but it may be in
688 a delay slot. It will be the last insn in the delay slot, if
689 it is. */
690 rtx trial = previous_insn (insn);
691 if (NOTE_P (trial))
692 trial = prev_nonnote_insn (trial);
693 if (sets_cc0_p (PATTERN (trial)) != 1
694 || FIND_REG_INC_NOTE (trial, NULL_RTX))
695 return;
696 if (PREV_INSN (NEXT_INSN (trial)) == trial)
697 delete_related_insns (trial);
698 else
699 delete_from_delay_slot (trial);
702 #endif
704 delete_related_insns (insn);
707 /* Counters for delay-slot filling. */
709 #define NUM_REORG_FUNCTIONS 2
710 #define MAX_DELAY_HISTOGRAM 3
711 #define MAX_REORG_PASSES 2
713 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
715 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
717 static int reorg_pass_number;
719 static void
720 note_delay_statistics (int slots_filled, int index)
722 num_insns_needing_delays[index][reorg_pass_number]++;
723 if (slots_filled > MAX_DELAY_HISTOGRAM)
724 slots_filled = MAX_DELAY_HISTOGRAM;
725 num_filled_delays[index][slots_filled][reorg_pass_number]++;
728 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
730 /* Optimize the following cases:
732 1. When a conditional branch skips over only one instruction,
733 use an annulling branch and put that insn in the delay slot.
734 Use either a branch that annuls when the condition if true or
735 invert the test with a branch that annuls when the condition is
736 false. This saves insns, since otherwise we must copy an insn
737 from the L1 target.
739 (orig) (skip) (otherwise)
740 Bcc.n L1 Bcc',a L1 Bcc,a L1'
741 insn insn insn2
742 L1: L1: L1:
743 insn2 insn2 insn2
744 insn3 insn3 L1':
745 insn3
747 2. When a conditional branch skips over only one instruction,
748 and after that, it unconditionally branches somewhere else,
749 perform the similar optimization. This saves executing the
750 second branch in the case where the inverted condition is true.
752 Bcc.n L1 Bcc',a L2
753 insn insn
754 L1: L1:
755 Bra L2 Bra L2
757 INSN is a JUMP_INSN.
759 This should be expanded to skip over N insns, where N is the number
760 of delay slots required. */
762 static rtx
763 optimize_skip (rtx insn)
765 rtx trial = next_nonnote_insn (insn);
766 rtx next_trial = next_active_insn (trial);
767 rtx delay_list = 0;
768 int flags;
770 flags = get_jump_flags (insn, JUMP_LABEL (insn));
772 if (trial == 0
773 || !NONJUMP_INSN_P (trial)
774 || GET_CODE (PATTERN (trial)) == SEQUENCE
775 || recog_memoized (trial) < 0
776 || (! eligible_for_annul_false (insn, 0, trial, flags)
777 && ! eligible_for_annul_true (insn, 0, trial, flags))
778 || can_throw_internal (trial))
779 return 0;
781 /* There are two cases where we are just executing one insn (we assume
782 here that a branch requires only one insn; this should be generalized
783 at some point): Where the branch goes around a single insn or where
784 we have one insn followed by a branch to the same label we branch to.
785 In both of these cases, inverting the jump and annulling the delay
786 slot give the same effect in fewer insns. */
787 if ((next_trial == next_active_insn (JUMP_LABEL (insn))
788 && ! (next_trial == 0 && current_function_epilogue_delay_list != 0))
789 || (next_trial != 0
790 && JUMP_P (next_trial)
791 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)
792 && (simplejump_p (next_trial)
793 || GET_CODE (PATTERN (next_trial)) == RETURN)))
795 if (eligible_for_annul_false (insn, 0, trial, flags))
797 if (invert_jump (insn, JUMP_LABEL (insn), 1))
798 INSN_FROM_TARGET_P (trial) = 1;
799 else if (! eligible_for_annul_true (insn, 0, trial, flags))
800 return 0;
803 delay_list = add_to_delay_list (trial, NULL_RTX);
804 next_trial = next_active_insn (trial);
805 update_block (trial, trial);
806 delete_related_insns (trial);
808 /* Also, if we are targeting an unconditional
809 branch, thread our jump to the target of that branch. Don't
810 change this into a RETURN here, because it may not accept what
811 we have in the delay slot. We'll fix this up later. */
812 if (next_trial && JUMP_P (next_trial)
813 && (simplejump_p (next_trial)
814 || GET_CODE (PATTERN (next_trial)) == RETURN))
816 rtx target_label = JUMP_LABEL (next_trial);
817 if (target_label == 0)
818 target_label = find_end_label ();
820 if (target_label)
822 /* Recompute the flags based on TARGET_LABEL since threading
823 the jump to TARGET_LABEL may change the direction of the
824 jump (which may change the circumstances in which the
825 delay slot is nullified). */
826 flags = get_jump_flags (insn, target_label);
827 if (eligible_for_annul_true (insn, 0, trial, flags))
828 reorg_redirect_jump (insn, target_label);
832 INSN_ANNULLED_BRANCH_P (insn) = 1;
835 return delay_list;
837 #endif
839 /* Encode and return branch direction and prediction information for
840 INSN assuming it will jump to LABEL.
842 Non conditional branches return no direction information and
843 are predicted as very likely taken. */
845 static int
846 get_jump_flags (rtx insn, rtx label)
848 int flags;
850 /* get_jump_flags can be passed any insn with delay slots, these may
851 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
852 direction information, and only if they are conditional jumps.
854 If LABEL is zero, then there is no way to determine the branch
855 direction. */
856 if (JUMP_P (insn)
857 && (condjump_p (insn) || condjump_in_parallel_p (insn))
858 && INSN_UID (insn) <= max_uid
859 && label != 0
860 && INSN_UID (label) <= max_uid)
861 flags
862 = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
863 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
864 /* No valid direction information. */
865 else
866 flags = 0;
868 /* If insn is a conditional branch call mostly_true_jump to get
869 determine the branch prediction.
871 Non conditional branches are predicted as very likely taken. */
872 if (JUMP_P (insn)
873 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
875 int prediction;
877 prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
878 switch (prediction)
880 case 2:
881 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
882 break;
883 case 1:
884 flags |= ATTR_FLAG_likely;
885 break;
886 case 0:
887 flags |= ATTR_FLAG_unlikely;
888 break;
889 case -1:
890 flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
891 break;
893 default:
894 gcc_unreachable ();
897 else
898 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
900 return flags;
903 /* Return 1 if INSN is a destination that will be branched to rarely (the
904 return point of a function); return 2 if DEST will be branched to very
905 rarely (a call to a function that doesn't return). Otherwise,
906 return 0. */
908 static int
909 rare_destination (rtx insn)
911 int jump_count = 0;
912 rtx next;
914 for (; insn; insn = next)
916 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
917 insn = XVECEXP (PATTERN (insn), 0, 0);
919 next = NEXT_INSN (insn);
921 switch (GET_CODE (insn))
923 case CODE_LABEL:
924 return 0;
925 case BARRIER:
926 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
927 don't scan past JUMP_INSNs, so any barrier we find here must
928 have been after a CALL_INSN and hence mean the call doesn't
929 return. */
930 return 2;
931 case JUMP_INSN:
932 if (GET_CODE (PATTERN (insn)) == RETURN)
933 return 1;
934 else if (simplejump_p (insn)
935 && jump_count++ < 10)
936 next = JUMP_LABEL (insn);
937 else
938 return 0;
940 default:
941 break;
945 /* If we got here it means we hit the end of the function. So this
946 is an unlikely destination. */
948 return 1;
951 /* Return truth value of the statement that this branch
952 is mostly taken. If we think that the branch is extremely likely
953 to be taken, we return 2. If the branch is slightly more likely to be
954 taken, return 1. If the branch is slightly less likely to be taken,
955 return 0 and if the branch is highly unlikely to be taken, return -1.
957 CONDITION, if nonzero, is the condition that JUMP_INSN is testing. */
959 static int
960 mostly_true_jump (rtx jump_insn, rtx condition)
962 rtx target_label = JUMP_LABEL (jump_insn);
963 rtx insn, note;
964 int rare_dest = rare_destination (target_label);
965 int rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
967 /* If branch probabilities are available, then use that number since it
968 always gives a correct answer. */
969 note = find_reg_note (jump_insn, REG_BR_PROB, 0);
970 if (note)
972 int prob = INTVAL (XEXP (note, 0));
974 if (prob >= REG_BR_PROB_BASE * 9 / 10)
975 return 2;
976 else if (prob >= REG_BR_PROB_BASE / 2)
977 return 1;
978 else if (prob >= REG_BR_PROB_BASE / 10)
979 return 0;
980 else
981 return -1;
984 /* ??? Ought to use estimate_probability instead. */
986 /* If this is a branch outside a loop, it is highly unlikely. */
987 if (GET_CODE (PATTERN (jump_insn)) == SET
988 && GET_CODE (SET_SRC (PATTERN (jump_insn))) == IF_THEN_ELSE
989 && ((GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn)), 1)) == LABEL_REF
990 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn)), 1)))
991 || (GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn)), 2)) == LABEL_REF
992 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn)), 2)))))
993 return -1;
995 if (target_label)
997 /* If this is the test of a loop, it is very likely true. We scan
998 backwards from the target label. If we find a NOTE_INSN_LOOP_BEG
999 before the next real insn, we assume the branch is to the top of
1000 the loop. */
1001 for (insn = PREV_INSN (target_label);
1002 insn && NOTE_P (insn);
1003 insn = PREV_INSN (insn))
1004 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1005 return 2;
1008 /* Look at the relative rarities of the fallthrough and destination. If
1009 they differ, we can predict the branch that way. */
1011 switch (rare_fallthrough - rare_dest)
1013 case -2:
1014 return -1;
1015 case -1:
1016 return 0;
1017 case 0:
1018 break;
1019 case 1:
1020 return 1;
1021 case 2:
1022 return 2;
1025 /* If we couldn't figure out what this jump was, assume it won't be
1026 taken. This should be rare. */
1027 if (condition == 0)
1028 return 0;
1030 /* EQ tests are usually false and NE tests are usually true. Also,
1031 most quantities are positive, so we can make the appropriate guesses
1032 about signed comparisons against zero. */
1033 switch (GET_CODE (condition))
1035 case CONST_INT:
1036 /* Unconditional branch. */
1037 return 1;
1038 case EQ:
1039 return 0;
1040 case NE:
1041 return 1;
1042 case LE:
1043 case LT:
1044 if (XEXP (condition, 1) == const0_rtx)
1045 return 0;
1046 break;
1047 case GE:
1048 case GT:
1049 if (XEXP (condition, 1) == const0_rtx)
1050 return 1;
1051 break;
1053 default:
1054 break;
1057 /* Predict backward branches usually take, forward branches usually not. If
1058 we don't know whether this is forward or backward, assume the branch
1059 will be taken, since most are. */
1060 return (target_label == 0 || INSN_UID (jump_insn) > max_uid
1061 || INSN_UID (target_label) > max_uid
1062 || (uid_to_ruid[INSN_UID (jump_insn)]
1063 > uid_to_ruid[INSN_UID (target_label)]));
1066 /* Return the condition under which INSN will branch to TARGET. If TARGET
1067 is zero, return the condition under which INSN will return. If INSN is
1068 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1069 type of jump, or it doesn't go to TARGET, return 0. */
1071 static rtx
1072 get_branch_condition (rtx insn, rtx target)
1074 rtx pat = PATTERN (insn);
1075 rtx src;
1077 if (condjump_in_parallel_p (insn))
1078 pat = XVECEXP (pat, 0, 0);
1080 if (GET_CODE (pat) == RETURN)
1081 return target == 0 ? const_true_rtx : 0;
1083 else if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
1084 return 0;
1086 src = SET_SRC (pat);
1087 if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
1088 return const_true_rtx;
1090 else if (GET_CODE (src) == IF_THEN_ELSE
1091 && ((target == 0 && GET_CODE (XEXP (src, 1)) == RETURN)
1092 || (GET_CODE (XEXP (src, 1)) == LABEL_REF
1093 && XEXP (XEXP (src, 1), 0) == target))
1094 && XEXP (src, 2) == pc_rtx)
1095 return XEXP (src, 0);
1097 else if (GET_CODE (src) == IF_THEN_ELSE
1098 && ((target == 0 && GET_CODE (XEXP (src, 2)) == RETURN)
1099 || (GET_CODE (XEXP (src, 2)) == LABEL_REF
1100 && XEXP (XEXP (src, 2), 0) == target))
1101 && XEXP (src, 1) == pc_rtx)
1103 enum rtx_code rev;
1104 rev = reversed_comparison_code (XEXP (src, 0), insn);
1105 if (rev != UNKNOWN)
1106 return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
1107 XEXP (XEXP (src, 0), 0),
1108 XEXP (XEXP (src, 0), 1));
1111 return 0;
1114 /* Return nonzero if CONDITION is more strict than the condition of
1115 INSN, i.e., if INSN will always branch if CONDITION is true. */
1117 static int
1118 condition_dominates_p (rtx condition, rtx insn)
1120 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
1121 enum rtx_code code = GET_CODE (condition);
1122 enum rtx_code other_code;
1124 if (rtx_equal_p (condition, other_condition)
1125 || other_condition == const_true_rtx)
1126 return 1;
1128 else if (condition == const_true_rtx || other_condition == 0)
1129 return 0;
1131 other_code = GET_CODE (other_condition);
1132 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
1133 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
1134 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
1135 return 0;
1137 return comparison_dominates_p (code, other_code);
1140 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1141 any insns already in the delay slot of JUMP. */
1143 static int
1144 redirect_with_delay_slots_safe_p (rtx jump, rtx newlabel, rtx seq)
1146 int flags, i;
1147 rtx pat = PATTERN (seq);
1149 /* Make sure all the delay slots of this jump would still
1150 be valid after threading the jump. If they are still
1151 valid, then return nonzero. */
1153 flags = get_jump_flags (jump, newlabel);
1154 for (i = 1; i < XVECLEN (pat, 0); i++)
1155 if (! (
1156 #ifdef ANNUL_IFFALSE_SLOTS
1157 (INSN_ANNULLED_BRANCH_P (jump)
1158 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1159 ? eligible_for_annul_false (jump, i - 1,
1160 XVECEXP (pat, 0, i), flags) :
1161 #endif
1162 #ifdef ANNUL_IFTRUE_SLOTS
1163 (INSN_ANNULLED_BRANCH_P (jump)
1164 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1165 ? eligible_for_annul_true (jump, i - 1,
1166 XVECEXP (pat, 0, i), flags) :
1167 #endif
1168 eligible_for_delay (jump, i - 1, XVECEXP (pat, 0, i), flags)))
1169 break;
1171 return (i == XVECLEN (pat, 0));
1174 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1175 any insns we wish to place in the delay slot of JUMP. */
1177 static int
1178 redirect_with_delay_list_safe_p (rtx jump, rtx newlabel, rtx delay_list)
1180 int flags, i;
1181 rtx li;
1183 /* Make sure all the insns in DELAY_LIST would still be
1184 valid after threading the jump. If they are still
1185 valid, then return nonzero. */
1187 flags = get_jump_flags (jump, newlabel);
1188 for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
1189 if (! (
1190 #ifdef ANNUL_IFFALSE_SLOTS
1191 (INSN_ANNULLED_BRANCH_P (jump)
1192 && INSN_FROM_TARGET_P (XEXP (li, 0)))
1193 ? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
1194 #endif
1195 #ifdef ANNUL_IFTRUE_SLOTS
1196 (INSN_ANNULLED_BRANCH_P (jump)
1197 && ! INSN_FROM_TARGET_P (XEXP (li, 0)))
1198 ? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
1199 #endif
1200 eligible_for_delay (jump, i, XEXP (li, 0), flags)))
1201 break;
1203 return (li == NULL);
1206 /* DELAY_LIST is a list of insns that have already been placed into delay
1207 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1208 If not, return 0; otherwise return 1. */
1210 static int
1211 check_annul_list_true_false (int annul_true_p, rtx delay_list)
1213 rtx temp;
1215 if (delay_list)
1217 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1219 rtx trial = XEXP (temp, 0);
1221 if ((annul_true_p && INSN_FROM_TARGET_P (trial))
1222 || (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
1223 return 0;
1227 return 1;
1230 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1231 the condition tested by INSN is CONDITION and the resources shown in
1232 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1233 from SEQ's delay list, in addition to whatever insns it may execute
1234 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1235 needed while searching for delay slot insns. Return the concatenated
1236 delay list if possible, otherwise, return 0.
1238 SLOTS_TO_FILL is the total number of slots required by INSN, and
1239 PSLOTS_FILLED points to the number filled so far (also the number of
1240 insns in DELAY_LIST). It is updated with the number that have been
1241 filled from the SEQUENCE, if any.
1243 PANNUL_P points to a nonzero value if we already know that we need
1244 to annul INSN. If this routine determines that annulling is needed,
1245 it may set that value nonzero.
1247 PNEW_THREAD points to a location that is to receive the place at which
1248 execution should continue. */
1250 static rtx
1251 steal_delay_list_from_target (rtx insn, rtx condition, rtx seq,
1252 rtx delay_list, struct resources *sets,
1253 struct resources *needed,
1254 struct resources *other_needed,
1255 int slots_to_fill, int *pslots_filled,
1256 int *pannul_p, rtx *pnew_thread)
1258 rtx temp;
1259 int slots_remaining = slots_to_fill - *pslots_filled;
1260 int total_slots_filled = *pslots_filled;
1261 rtx new_delay_list = 0;
1262 int must_annul = *pannul_p;
1263 int used_annul = 0;
1264 int i;
1265 struct resources cc_set;
1267 /* We can't do anything if there are more delay slots in SEQ than we
1268 can handle, or if we don't know that it will be a taken branch.
1269 We know that it will be a taken branch if it is either an unconditional
1270 branch or a conditional branch with a stricter branch condition.
1272 Also, exit if the branch has more than one set, since then it is computing
1273 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1274 ??? It may be possible to move other sets into INSN in addition to
1275 moving the instructions in the delay slots.
1277 We can not steal the delay list if one of the instructions in the
1278 current delay_list modifies the condition codes and the jump in the
1279 sequence is a conditional jump. We can not do this because we can
1280 not change the direction of the jump because the condition codes
1281 will effect the direction of the jump in the sequence. */
1283 CLEAR_RESOURCE (&cc_set);
1284 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1286 rtx trial = XEXP (temp, 0);
1288 mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
1289 if (insn_references_resource_p (XVECEXP (seq , 0, 0), &cc_set, 0))
1290 return delay_list;
1293 if (XVECLEN (seq, 0) - 1 > slots_remaining
1294 || ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
1295 || ! single_set (XVECEXP (seq, 0, 0)))
1296 return delay_list;
1298 #ifdef MD_CAN_REDIRECT_BRANCH
1299 /* On some targets, branches with delay slots can have a limited
1300 displacement. Give the back end a chance to tell us we can't do
1301 this. */
1302 if (! MD_CAN_REDIRECT_BRANCH (insn, XVECEXP (seq, 0, 0)))
1303 return delay_list;
1304 #endif
1306 for (i = 1; i < XVECLEN (seq, 0); i++)
1308 rtx trial = XVECEXP (seq, 0, i);
1309 int flags;
1311 if (insn_references_resource_p (trial, sets, 0)
1312 || insn_sets_resource_p (trial, needed, 0)
1313 || insn_sets_resource_p (trial, sets, 0)
1314 #ifdef HAVE_cc0
1315 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1316 delay list. */
1317 || find_reg_note (trial, REG_CC_USER, NULL_RTX)
1318 #endif
1319 /* If TRIAL is from the fallthrough code of an annulled branch insn
1320 in SEQ, we cannot use it. */
1321 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
1322 && ! INSN_FROM_TARGET_P (trial)))
1323 return delay_list;
1325 /* If this insn was already done (usually in a previous delay slot),
1326 pretend we put it in our delay slot. */
1327 if (redundant_insn (trial, insn, new_delay_list))
1328 continue;
1330 /* We will end up re-vectoring this branch, so compute flags
1331 based on jumping to the new label. */
1332 flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
1334 if (! must_annul
1335 && ((condition == const_true_rtx
1336 || (! insn_sets_resource_p (trial, other_needed, 0)
1337 && ! may_trap_p (PATTERN (trial)))))
1338 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1339 : (must_annul || (delay_list == NULL && new_delay_list == NULL))
1340 && (must_annul = 1,
1341 check_annul_list_true_false (0, delay_list)
1342 && check_annul_list_true_false (0, new_delay_list)
1343 && eligible_for_annul_false (insn, total_slots_filled,
1344 trial, flags)))
1346 if (must_annul)
1347 used_annul = 1;
1348 temp = copy_rtx (trial);
1349 INSN_FROM_TARGET_P (temp) = 1;
1350 new_delay_list = add_to_delay_list (temp, new_delay_list);
1351 total_slots_filled++;
1353 if (--slots_remaining == 0)
1354 break;
1356 else
1357 return delay_list;
1360 /* Show the place to which we will be branching. */
1361 *pnew_thread = next_active_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
1363 /* Add any new insns to the delay list and update the count of the
1364 number of slots filled. */
1365 *pslots_filled = total_slots_filled;
1366 if (used_annul)
1367 *pannul_p = 1;
1369 if (delay_list == 0)
1370 return new_delay_list;
1372 for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
1373 delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
1375 return delay_list;
1378 /* Similar to steal_delay_list_from_target except that SEQ is on the
1379 fallthrough path of INSN. Here we only do something if the delay insn
1380 of SEQ is an unconditional branch. In that case we steal its delay slot
1381 for INSN since unconditional branches are much easier to fill. */
1383 static rtx
1384 steal_delay_list_from_fallthrough (rtx insn, rtx condition, rtx seq,
1385 rtx delay_list, struct resources *sets,
1386 struct resources *needed,
1387 struct resources *other_needed,
1388 int slots_to_fill, int *pslots_filled,
1389 int *pannul_p)
1391 int i;
1392 int flags;
1393 int must_annul = *pannul_p;
1394 int used_annul = 0;
1396 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1398 /* We can't do anything if SEQ's delay insn isn't an
1399 unconditional branch. */
1401 if (! simplejump_p (XVECEXP (seq, 0, 0))
1402 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) != RETURN)
1403 return delay_list;
1405 for (i = 1; i < XVECLEN (seq, 0); i++)
1407 rtx trial = XVECEXP (seq, 0, i);
1409 /* If TRIAL sets CC0, stealing it will move it too far from the use
1410 of CC0. */
1411 if (insn_references_resource_p (trial, sets, 0)
1412 || insn_sets_resource_p (trial, needed, 0)
1413 || insn_sets_resource_p (trial, sets, 0)
1414 #ifdef HAVE_cc0
1415 || sets_cc0_p (PATTERN (trial))
1416 #endif
1419 break;
1421 /* If this insn was already done, we don't need it. */
1422 if (redundant_insn (trial, insn, delay_list))
1424 delete_from_delay_slot (trial);
1425 continue;
1428 if (! must_annul
1429 && ((condition == const_true_rtx
1430 || (! insn_sets_resource_p (trial, other_needed, 0)
1431 && ! may_trap_p (PATTERN (trial)))))
1432 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1433 : (must_annul || delay_list == NULL) && (must_annul = 1,
1434 check_annul_list_true_false (1, delay_list)
1435 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1437 if (must_annul)
1438 used_annul = 1;
1439 delete_from_delay_slot (trial);
1440 delay_list = add_to_delay_list (trial, delay_list);
1442 if (++(*pslots_filled) == slots_to_fill)
1443 break;
1445 else
1446 break;
1449 if (used_annul)
1450 *pannul_p = 1;
1451 return delay_list;
1454 /* Try merging insns starting at THREAD which match exactly the insns in
1455 INSN's delay list.
1457 If all insns were matched and the insn was previously annulling, the
1458 annul bit will be cleared.
1460 For each insn that is merged, if the branch is or will be non-annulling,
1461 we delete the merged insn. */
1463 static void
1464 try_merge_delay_insns (rtx insn, rtx thread)
1466 rtx trial, next_trial;
1467 rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
1468 int annul_p = INSN_ANNULLED_BRANCH_P (delay_insn);
1469 int slot_number = 1;
1470 int num_slots = XVECLEN (PATTERN (insn), 0);
1471 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1472 struct resources set, needed;
1473 rtx merged_insns = 0;
1474 int i;
1475 int flags;
1477 flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1479 CLEAR_RESOURCE (&needed);
1480 CLEAR_RESOURCE (&set);
1482 /* If this is not an annulling branch, take into account anything needed in
1483 INSN's delay slot. This prevents two increments from being incorrectly
1484 folded into one. If we are annulling, this would be the correct
1485 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1486 will essentially disable this optimization. This method is somewhat of
1487 a kludge, but I don't see a better way.) */
1488 if (! annul_p)
1489 for (i = 1 ; i < num_slots; i++)
1490 if (XVECEXP (PATTERN (insn), 0, i))
1491 mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed, 1);
1493 for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1495 rtx pat = PATTERN (trial);
1496 rtx oldtrial = trial;
1498 next_trial = next_nonnote_insn (trial);
1500 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1501 if (NONJUMP_INSN_P (trial)
1502 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1503 continue;
1505 if (GET_CODE (next_to_match) == GET_CODE (trial)
1506 #ifdef HAVE_cc0
1507 /* We can't share an insn that sets cc0. */
1508 && ! sets_cc0_p (pat)
1509 #endif
1510 && ! insn_references_resource_p (trial, &set, 1)
1511 && ! insn_sets_resource_p (trial, &set, 1)
1512 && ! insn_sets_resource_p (trial, &needed, 1)
1513 && (trial = try_split (pat, trial, 0)) != 0
1514 /* Update next_trial, in case try_split succeeded. */
1515 && (next_trial = next_nonnote_insn (trial))
1516 /* Likewise THREAD. */
1517 && (thread = oldtrial == thread ? trial : thread)
1518 && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1519 /* Have to test this condition if annul condition is different
1520 from (and less restrictive than) non-annulling one. */
1521 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1524 if (! annul_p)
1526 update_block (trial, thread);
1527 if (trial == thread)
1528 thread = next_active_insn (thread);
1530 delete_related_insns (trial);
1531 INSN_FROM_TARGET_P (next_to_match) = 0;
1533 else
1534 merged_insns = gen_rtx_INSN_LIST (VOIDmode, trial, merged_insns);
1536 if (++slot_number == num_slots)
1537 break;
1539 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1542 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
1543 mark_referenced_resources (trial, &needed, 1);
1546 /* See if we stopped on a filled insn. If we did, try to see if its
1547 delay slots match. */
1548 if (slot_number != num_slots
1549 && trial && NONJUMP_INSN_P (trial)
1550 && GET_CODE (PATTERN (trial)) == SEQUENCE
1551 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0)))
1553 rtx pat = PATTERN (trial);
1554 rtx filled_insn = XVECEXP (pat, 0, 0);
1556 /* Account for resources set/needed by the filled insn. */
1557 mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
1558 mark_referenced_resources (filled_insn, &needed, 1);
1560 for (i = 1; i < XVECLEN (pat, 0); i++)
1562 rtx dtrial = XVECEXP (pat, 0, i);
1564 if (! insn_references_resource_p (dtrial, &set, 1)
1565 && ! insn_sets_resource_p (dtrial, &set, 1)
1566 && ! insn_sets_resource_p (dtrial, &needed, 1)
1567 #ifdef HAVE_cc0
1568 && ! sets_cc0_p (PATTERN (dtrial))
1569 #endif
1570 && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1571 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1573 if (! annul_p)
1575 rtx new;
1577 update_block (dtrial, thread);
1578 new = delete_from_delay_slot (dtrial);
1579 if (INSN_DELETED_P (thread))
1580 thread = new;
1581 INSN_FROM_TARGET_P (next_to_match) = 0;
1583 else
1584 merged_insns = gen_rtx_INSN_LIST (SImode, dtrial,
1585 merged_insns);
1587 if (++slot_number == num_slots)
1588 break;
1590 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1592 else
1594 /* Keep track of the set/referenced resources for the delay
1595 slots of any trial insns we encounter. */
1596 mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
1597 mark_referenced_resources (dtrial, &needed, 1);
1602 /* If all insns in the delay slot have been matched and we were previously
1603 annulling the branch, we need not any more. In that case delete all the
1604 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1605 the delay list so that we know that it isn't only being used at the
1606 target. */
1607 if (slot_number == num_slots && annul_p)
1609 for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
1611 if (GET_MODE (merged_insns) == SImode)
1613 rtx new;
1615 update_block (XEXP (merged_insns, 0), thread);
1616 new = delete_from_delay_slot (XEXP (merged_insns, 0));
1617 if (INSN_DELETED_P (thread))
1618 thread = new;
1620 else
1622 update_block (XEXP (merged_insns, 0), thread);
1623 delete_related_insns (XEXP (merged_insns, 0));
1627 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1629 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1630 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1634 /* See if INSN is redundant with an insn in front of TARGET. Often this
1635 is called when INSN is a candidate for a delay slot of TARGET.
1636 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1637 of INSN. Often INSN will be redundant with an insn in a delay slot of
1638 some previous insn. This happens when we have a series of branches to the
1639 same label; in that case the first insn at the target might want to go
1640 into each of the delay slots.
1642 If we are not careful, this routine can take up a significant fraction
1643 of the total compilation time (4%), but only wins rarely. Hence we
1644 speed this routine up by making two passes. The first pass goes back
1645 until it hits a label and sees if it finds an insn with an identical
1646 pattern. Only in this (relatively rare) event does it check for
1647 data conflicts.
1649 We do not split insns we encounter. This could cause us not to find a
1650 redundant insn, but the cost of splitting seems greater than the possible
1651 gain in rare cases. */
1653 static rtx
1654 redundant_insn (rtx insn, rtx target, rtx delay_list)
1656 rtx target_main = target;
1657 rtx ipat = PATTERN (insn);
1658 rtx trial, pat;
1659 struct resources needed, set;
1660 int i;
1661 unsigned insns_to_search;
1663 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1664 are allowed to not actually assign to such a register. */
1665 if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
1666 return 0;
1668 /* Scan backwards looking for a match. */
1669 for (trial = PREV_INSN (target),
1670 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1671 trial && insns_to_search > 0;
1672 trial = PREV_INSN (trial), --insns_to_search)
1674 if (LABEL_P (trial))
1675 return 0;
1677 if (! INSN_P (trial))
1678 continue;
1680 pat = PATTERN (trial);
1681 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1682 continue;
1684 if (GET_CODE (pat) == SEQUENCE)
1686 /* Stop for a CALL and its delay slots because it is difficult to
1687 track its resource needs correctly. */
1688 if (CALL_P (XVECEXP (pat, 0, 0)))
1689 return 0;
1691 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1692 slots because it is difficult to track its resource needs
1693 correctly. */
1695 #ifdef INSN_SETS_ARE_DELAYED
1696 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1697 return 0;
1698 #endif
1700 #ifdef INSN_REFERENCES_ARE_DELAYED
1701 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1702 return 0;
1703 #endif
1705 /* See if any of the insns in the delay slot match, updating
1706 resource requirements as we go. */
1707 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1708 if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
1709 && rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat)
1710 && ! find_reg_note (XVECEXP (pat, 0, i), REG_UNUSED, NULL_RTX))
1711 break;
1713 /* If found a match, exit this loop early. */
1714 if (i > 0)
1715 break;
1718 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
1719 && ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
1720 break;
1723 /* If we didn't find an insn that matches, return 0. */
1724 if (trial == 0)
1725 return 0;
1727 /* See what resources this insn sets and needs. If they overlap, or
1728 if this insn references CC0, it can't be redundant. */
1730 CLEAR_RESOURCE (&needed);
1731 CLEAR_RESOURCE (&set);
1732 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1733 mark_referenced_resources (insn, &needed, 1);
1735 /* If TARGET is a SEQUENCE, get the main insn. */
1736 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1737 target_main = XVECEXP (PATTERN (target), 0, 0);
1739 if (resource_conflicts_p (&needed, &set)
1740 #ifdef HAVE_cc0
1741 || reg_mentioned_p (cc0_rtx, ipat)
1742 #endif
1743 /* The insn requiring the delay may not set anything needed or set by
1744 INSN. */
1745 || insn_sets_resource_p (target_main, &needed, 1)
1746 || insn_sets_resource_p (target_main, &set, 1))
1747 return 0;
1749 /* Insns we pass may not set either NEEDED or SET, so merge them for
1750 simpler tests. */
1751 needed.memory |= set.memory;
1752 needed.unch_memory |= set.unch_memory;
1753 IOR_HARD_REG_SET (needed.regs, set.regs);
1755 /* This insn isn't redundant if it conflicts with an insn that either is
1756 or will be in a delay slot of TARGET. */
1758 while (delay_list)
1760 if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, 1))
1761 return 0;
1762 delay_list = XEXP (delay_list, 1);
1765 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1766 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
1767 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed, 1))
1768 return 0;
1770 /* Scan backwards until we reach a label or an insn that uses something
1771 INSN sets or sets something insn uses or sets. */
1773 for (trial = PREV_INSN (target),
1774 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1775 trial && !LABEL_P (trial) && insns_to_search > 0;
1776 trial = PREV_INSN (trial), --insns_to_search)
1778 if (!INSN_P (trial))
1779 continue;
1781 pat = PATTERN (trial);
1782 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1783 continue;
1785 if (GET_CODE (pat) == SEQUENCE)
1787 /* If this is a CALL_INSN and its delay slots, it is hard to track
1788 the resource needs properly, so give up. */
1789 if (CALL_P (XVECEXP (pat, 0, 0)))
1790 return 0;
1792 /* If this is an INSN or JUMP_INSN with delayed effects, it
1793 is hard to track the resource needs properly, so give up. */
1795 #ifdef INSN_SETS_ARE_DELAYED
1796 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1797 return 0;
1798 #endif
1800 #ifdef INSN_REFERENCES_ARE_DELAYED
1801 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1802 return 0;
1803 #endif
1805 /* See if any of the insns in the delay slot match, updating
1806 resource requirements as we go. */
1807 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1809 rtx candidate = XVECEXP (pat, 0, i);
1811 /* If an insn will be annulled if the branch is false, it isn't
1812 considered as a possible duplicate insn. */
1813 if (rtx_equal_p (PATTERN (candidate), ipat)
1814 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1815 && INSN_FROM_TARGET_P (candidate)))
1817 /* Show that this insn will be used in the sequel. */
1818 INSN_FROM_TARGET_P (candidate) = 0;
1819 return candidate;
1822 /* Unless this is an annulled insn from the target of a branch,
1823 we must stop if it sets anything needed or set by INSN. */
1824 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1825 || ! INSN_FROM_TARGET_P (candidate))
1826 && insn_sets_resource_p (candidate, &needed, 1))
1827 return 0;
1830 /* If the insn requiring the delay slot conflicts with INSN, we
1831 must stop. */
1832 if (insn_sets_resource_p (XVECEXP (pat, 0, 0), &needed, 1))
1833 return 0;
1835 else
1837 /* See if TRIAL is the same as INSN. */
1838 pat = PATTERN (trial);
1839 if (rtx_equal_p (pat, ipat))
1840 return trial;
1842 /* Can't go any further if TRIAL conflicts with INSN. */
1843 if (insn_sets_resource_p (trial, &needed, 1))
1844 return 0;
1848 return 0;
1851 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1852 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1853 is nonzero, we are allowed to fall into this thread; otherwise, we are
1854 not.
1856 If LABEL is used more than one or we pass a label other than LABEL before
1857 finding an active insn, we do not own this thread. */
1859 static int
1860 own_thread_p (rtx thread, rtx label, int allow_fallthrough)
1862 rtx active_insn;
1863 rtx insn;
1865 /* We don't own the function end. */
1866 if (thread == 0)
1867 return 0;
1869 /* Get the first active insn, or THREAD, if it is an active insn. */
1870 active_insn = next_active_insn (PREV_INSN (thread));
1872 for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
1873 if (LABEL_P (insn)
1874 && (insn != label || LABEL_NUSES (insn) != 1))
1875 return 0;
1877 if (allow_fallthrough)
1878 return 1;
1880 /* Ensure that we reach a BARRIER before any insn or label. */
1881 for (insn = prev_nonnote_insn (thread);
1882 insn == 0 || !BARRIER_P (insn);
1883 insn = prev_nonnote_insn (insn))
1884 if (insn == 0
1885 || LABEL_P (insn)
1886 || (NONJUMP_INSN_P (insn)
1887 && GET_CODE (PATTERN (insn)) != USE
1888 && GET_CODE (PATTERN (insn)) != CLOBBER))
1889 return 0;
1891 return 1;
1894 /* Called when INSN is being moved from a location near the target of a jump.
1895 We leave a marker of the form (use (INSN)) immediately in front
1896 of WHERE for mark_target_live_regs. These markers will be deleted when
1897 reorg finishes.
1899 We used to try to update the live status of registers if WHERE is at
1900 the start of a basic block, but that can't work since we may remove a
1901 BARRIER in relax_delay_slots. */
1903 static void
1904 update_block (rtx insn, rtx where)
1906 /* Ignore if this was in a delay slot and it came from the target of
1907 a branch. */
1908 if (INSN_FROM_TARGET_P (insn))
1909 return;
1911 emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
1913 /* INSN might be making a value live in a block where it didn't use to
1914 be. So recompute liveness information for this block. */
1916 incr_ticks_for_insn (insn);
1919 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1920 the basic block containing the jump. */
1922 static int
1923 reorg_redirect_jump (rtx jump, rtx nlabel)
1925 incr_ticks_for_insn (jump);
1926 return redirect_jump (jump, nlabel, 1);
1929 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1930 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1931 that reference values used in INSN. If we find one, then we move the
1932 REG_DEAD note to INSN.
1934 This is needed to handle the case where an later insn (after INSN) has a
1935 REG_DEAD note for a register used by INSN, and this later insn subsequently
1936 gets moved before a CODE_LABEL because it is a redundant insn. In this
1937 case, mark_target_live_regs may be confused into thinking the register
1938 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1940 static void
1941 update_reg_dead_notes (rtx insn, rtx delayed_insn)
1943 rtx p, link, next;
1945 for (p = next_nonnote_insn (insn); p != delayed_insn;
1946 p = next_nonnote_insn (p))
1947 for (link = REG_NOTES (p); link; link = next)
1949 next = XEXP (link, 1);
1951 if (REG_NOTE_KIND (link) != REG_DEAD
1952 || !REG_P (XEXP (link, 0)))
1953 continue;
1955 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
1957 /* Move the REG_DEAD note from P to INSN. */
1958 remove_note (p, link);
1959 XEXP (link, 1) = REG_NOTES (insn);
1960 REG_NOTES (insn) = link;
1965 /* Called when an insn redundant with start_insn is deleted. If there
1966 is a REG_DEAD note for the target of start_insn between start_insn
1967 and stop_insn, then the REG_DEAD note needs to be deleted since the
1968 value no longer dies there.
1970 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1971 confused into thinking the register is dead. */
1973 static void
1974 fix_reg_dead_note (rtx start_insn, rtx stop_insn)
1976 rtx p, link, next;
1978 for (p = next_nonnote_insn (start_insn); p != stop_insn;
1979 p = next_nonnote_insn (p))
1980 for (link = REG_NOTES (p); link; link = next)
1982 next = XEXP (link, 1);
1984 if (REG_NOTE_KIND (link) != REG_DEAD
1985 || !REG_P (XEXP (link, 0)))
1986 continue;
1988 if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
1990 remove_note (p, link);
1991 return;
1996 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
1998 This handles the case of udivmodXi4 instructions which optimize their
1999 output depending on whether any REG_UNUSED notes are present.
2000 we must make sure that INSN calculates as many results as REDUNDANT_INSN
2001 does. */
2003 static void
2004 update_reg_unused_notes (rtx insn, rtx redundant_insn)
2006 rtx link, next;
2008 for (link = REG_NOTES (insn); link; link = next)
2010 next = XEXP (link, 1);
2012 if (REG_NOTE_KIND (link) != REG_UNUSED
2013 || !REG_P (XEXP (link, 0)))
2014 continue;
2016 if (! find_regno_note (redundant_insn, REG_UNUSED,
2017 REGNO (XEXP (link, 0))))
2018 remove_note (insn, link);
2022 /* Scan a function looking for insns that need a delay slot and find insns to
2023 put into the delay slot.
2025 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
2026 as calls). We do these first since we don't want jump insns (that are
2027 easier to fill) to get the only insns that could be used for non-jump insns.
2028 When it is zero, only try to fill JUMP_INSNs.
2030 When slots are filled in this manner, the insns (including the
2031 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2032 it is possible to tell whether a delay slot has really been filled
2033 or not. `final' knows how to deal with this, by communicating
2034 through FINAL_SEQUENCE. */
2036 static void
2037 fill_simple_delay_slots (int non_jumps_p)
2039 rtx insn, pat, trial, next_trial;
2040 int i;
2041 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2042 struct resources needed, set;
2043 int slots_to_fill, slots_filled;
2044 rtx delay_list;
2046 for (i = 0; i < num_unfilled_slots; i++)
2048 int flags;
2049 /* Get the next insn to fill. If it has already had any slots assigned,
2050 we can't do anything with it. Maybe we'll improve this later. */
2052 insn = unfilled_slots_base[i];
2053 if (insn == 0
2054 || INSN_DELETED_P (insn)
2055 || (NONJUMP_INSN_P (insn)
2056 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2057 || (JUMP_P (insn) && non_jumps_p)
2058 || (!JUMP_P (insn) && ! non_jumps_p))
2059 continue;
2061 /* It may have been that this insn used to need delay slots, but
2062 now doesn't; ignore in that case. This can happen, for example,
2063 on the HP PA RISC, where the number of delay slots depends on
2064 what insns are nearby. */
2065 slots_to_fill = num_delay_slots (insn);
2067 /* Some machine description have defined instructions to have
2068 delay slots only in certain circumstances which may depend on
2069 nearby insns (which change due to reorg's actions).
2071 For example, the PA port normally has delay slots for unconditional
2072 jumps.
2074 However, the PA port claims such jumps do not have a delay slot
2075 if they are immediate successors of certain CALL_INSNs. This
2076 allows the port to favor filling the delay slot of the call with
2077 the unconditional jump. */
2078 if (slots_to_fill == 0)
2079 continue;
2081 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2082 says how many. After initialization, first try optimizing
2084 call _foo call _foo
2085 nop add %o7,.-L1,%o7
2086 b,a L1
2089 If this case applies, the delay slot of the call is filled with
2090 the unconditional jump. This is done first to avoid having the
2091 delay slot of the call filled in the backward scan. Also, since
2092 the unconditional jump is likely to also have a delay slot, that
2093 insn must exist when it is subsequently scanned.
2095 This is tried on each insn with delay slots as some machines
2096 have insns which perform calls, but are not represented as
2097 CALL_INSNs. */
2099 slots_filled = 0;
2100 delay_list = 0;
2102 if (JUMP_P (insn))
2103 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2104 else
2105 flags = get_jump_flags (insn, NULL_RTX);
2107 if ((trial = next_active_insn (insn))
2108 && JUMP_P (trial)
2109 && simplejump_p (trial)
2110 && eligible_for_delay (insn, slots_filled, trial, flags)
2111 && no_labels_between_p (insn, trial)
2112 && ! can_throw_internal (trial))
2114 rtx *tmp;
2115 slots_filled++;
2116 delay_list = add_to_delay_list (trial, delay_list);
2118 /* TRIAL may have had its delay slot filled, then unfilled. When
2119 the delay slot is unfilled, TRIAL is placed back on the unfilled
2120 slots obstack. Unfortunately, it is placed on the end of the
2121 obstack, not in its original location. Therefore, we must search
2122 from entry i + 1 to the end of the unfilled slots obstack to
2123 try and find TRIAL. */
2124 tmp = &unfilled_slots_base[i + 1];
2125 while (*tmp != trial && tmp != unfilled_slots_next)
2126 tmp++;
2128 /* Remove the unconditional jump from consideration for delay slot
2129 filling and unthread it. */
2130 if (*tmp == trial)
2131 *tmp = 0;
2133 rtx next = NEXT_INSN (trial);
2134 rtx prev = PREV_INSN (trial);
2135 if (prev)
2136 NEXT_INSN (prev) = next;
2137 if (next)
2138 PREV_INSN (next) = prev;
2142 /* Now, scan backwards from the insn to search for a potential
2143 delay-slot candidate. Stop searching when a label or jump is hit.
2145 For each candidate, if it is to go into the delay slot (moved
2146 forward in execution sequence), it must not need or set any resources
2147 that were set by later insns and must not set any resources that
2148 are needed for those insns.
2150 The delay slot insn itself sets resources unless it is a call
2151 (in which case the called routine, not the insn itself, is doing
2152 the setting). */
2154 if (slots_filled < slots_to_fill)
2156 CLEAR_RESOURCE (&needed);
2157 CLEAR_RESOURCE (&set);
2158 mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
2159 mark_referenced_resources (insn, &needed, 0);
2161 for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
2162 trial = next_trial)
2164 next_trial = prev_nonnote_insn (trial);
2166 /* This must be an INSN or CALL_INSN. */
2167 pat = PATTERN (trial);
2169 /* USE and CLOBBER at this level was just for flow; ignore it. */
2170 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2171 continue;
2173 /* Check for resource conflict first, to avoid unnecessary
2174 splitting. */
2175 if (! insn_references_resource_p (trial, &set, 1)
2176 && ! insn_sets_resource_p (trial, &set, 1)
2177 && ! insn_sets_resource_p (trial, &needed, 1)
2178 #ifdef HAVE_cc0
2179 /* Can't separate set of cc0 from its use. */
2180 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2181 #endif
2182 && ! can_throw_internal (trial))
2184 trial = try_split (pat, trial, 1);
2185 next_trial = prev_nonnote_insn (trial);
2186 if (eligible_for_delay (insn, slots_filled, trial, flags))
2188 /* In this case, we are searching backward, so if we
2189 find insns to put on the delay list, we want
2190 to put them at the head, rather than the
2191 tail, of the list. */
2193 update_reg_dead_notes (trial, insn);
2194 delay_list = gen_rtx_INSN_LIST (VOIDmode,
2195 trial, delay_list);
2196 update_block (trial, trial);
2197 delete_related_insns (trial);
2198 if (slots_to_fill == ++slots_filled)
2199 break;
2200 continue;
2204 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2205 mark_referenced_resources (trial, &needed, 1);
2209 /* If all needed slots haven't been filled, we come here. */
2211 /* Try to optimize case of jumping around a single insn. */
2212 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2213 if (slots_filled != slots_to_fill
2214 && delay_list == 0
2215 && JUMP_P (insn)
2216 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
2218 delay_list = optimize_skip (insn);
2219 if (delay_list)
2220 slots_filled += 1;
2222 #endif
2224 /* Try to get insns from beyond the insn needing the delay slot.
2225 These insns can neither set or reference resources set in insns being
2226 skipped, cannot set resources in the insn being skipped, and, if this
2227 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2228 call might not return).
2230 There used to be code which continued past the target label if
2231 we saw all uses of the target label. This code did not work,
2232 because it failed to account for some instructions which were
2233 both annulled and marked as from the target. This can happen as a
2234 result of optimize_skip. Since this code was redundant with
2235 fill_eager_delay_slots anyways, it was just deleted. */
2237 if (slots_filled != slots_to_fill
2238 /* If this instruction could throw an exception which is
2239 caught in the same function, then it's not safe to fill
2240 the delay slot with an instruction from beyond this
2241 point. For example, consider:
2243 int i = 2;
2245 try {
2246 f();
2247 i = 3;
2248 } catch (...) {}
2250 return i;
2252 Even though `i' is a local variable, we must be sure not
2253 to put `i = 3' in the delay slot if `f' might throw an
2254 exception.
2256 Presumably, we should also check to see if we could get
2257 back to this function via `setjmp'. */
2258 && ! can_throw_internal (insn)
2259 && (!JUMP_P (insn)
2260 || ((condjump_p (insn) || condjump_in_parallel_p (insn))
2261 && ! simplejump_p (insn)
2262 && JUMP_LABEL (insn) != 0)))
2264 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2265 label. Otherwise, zero. */
2266 rtx target = 0;
2267 int maybe_never = 0;
2268 rtx pat, trial_delay;
2270 CLEAR_RESOURCE (&needed);
2271 CLEAR_RESOURCE (&set);
2273 if (CALL_P (insn))
2275 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2276 mark_referenced_resources (insn, &needed, 1);
2277 maybe_never = 1;
2279 else
2281 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2282 mark_referenced_resources (insn, &needed, 1);
2283 if (JUMP_P (insn))
2284 target = JUMP_LABEL (insn);
2287 if (target == 0)
2288 for (trial = next_nonnote_insn (insn); trial; trial = next_trial)
2290 next_trial = next_nonnote_insn (trial);
2292 if (LABEL_P (trial)
2293 || BARRIER_P (trial))
2294 break;
2296 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
2297 pat = PATTERN (trial);
2299 /* Stand-alone USE and CLOBBER are just for flow. */
2300 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2301 continue;
2303 /* If this already has filled delay slots, get the insn needing
2304 the delay slots. */
2305 if (GET_CODE (pat) == SEQUENCE)
2306 trial_delay = XVECEXP (pat, 0, 0);
2307 else
2308 trial_delay = trial;
2310 /* Stop our search when seeing an unconditional jump. */
2311 if (JUMP_P (trial_delay))
2312 break;
2314 /* See if we have a resource problem before we try to
2315 split. */
2316 if (GET_CODE (pat) != SEQUENCE
2317 && ! insn_references_resource_p (trial, &set, 1)
2318 && ! insn_sets_resource_p (trial, &set, 1)
2319 && ! insn_sets_resource_p (trial, &needed, 1)
2320 #ifdef HAVE_cc0
2321 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2322 #endif
2323 && ! (maybe_never && may_trap_p (pat))
2324 && (trial = try_split (pat, trial, 0))
2325 && eligible_for_delay (insn, slots_filled, trial, flags)
2326 && ! can_throw_internal(trial))
2328 next_trial = next_nonnote_insn (trial);
2329 delay_list = add_to_delay_list (trial, delay_list);
2331 #ifdef HAVE_cc0
2332 if (reg_mentioned_p (cc0_rtx, pat))
2333 link_cc0_insns (trial);
2334 #endif
2336 delete_related_insns (trial);
2337 if (slots_to_fill == ++slots_filled)
2338 break;
2339 continue;
2342 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2343 mark_referenced_resources (trial, &needed, 1);
2345 /* Ensure we don't put insns between the setting of cc and the
2346 comparison by moving a setting of cc into an earlier delay
2347 slot since these insns could clobber the condition code. */
2348 set.cc = 1;
2350 /* If this is a call or jump, we might not get here. */
2351 if (CALL_P (trial_delay)
2352 || JUMP_P (trial_delay))
2353 maybe_never = 1;
2356 /* If there are slots left to fill and our search was stopped by an
2357 unconditional branch, try the insn at the branch target. We can
2358 redirect the branch if it works.
2360 Don't do this if the insn at the branch target is a branch. */
2361 if (slots_to_fill != slots_filled
2362 && trial
2363 && JUMP_P (trial)
2364 && simplejump_p (trial)
2365 && (target == 0 || JUMP_LABEL (trial) == target)
2366 && (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
2367 && ! (NONJUMP_INSN_P (next_trial)
2368 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
2369 && !JUMP_P (next_trial)
2370 && ! insn_references_resource_p (next_trial, &set, 1)
2371 && ! insn_sets_resource_p (next_trial, &set, 1)
2372 && ! insn_sets_resource_p (next_trial, &needed, 1)
2373 #ifdef HAVE_cc0
2374 && ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
2375 #endif
2376 && ! (maybe_never && may_trap_p (PATTERN (next_trial)))
2377 && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
2378 && eligible_for_delay (insn, slots_filled, next_trial, flags)
2379 && ! can_throw_internal (trial))
2381 /* See comment in relax_delay_slots about necessity of using
2382 next_real_insn here. */
2383 rtx new_label = next_real_insn (next_trial);
2385 if (new_label != 0)
2386 new_label = get_label_before (new_label);
2387 else
2388 new_label = find_end_label ();
2390 if (new_label)
2392 delay_list
2393 = add_to_delay_list (copy_rtx (next_trial), delay_list);
2394 slots_filled++;
2395 reorg_redirect_jump (trial, new_label);
2397 /* If we merged because we both jumped to the same place,
2398 redirect the original insn also. */
2399 if (target)
2400 reorg_redirect_jump (insn, new_label);
2405 /* If this is an unconditional jump, then try to get insns from the
2406 target of the jump. */
2407 if (JUMP_P (insn)
2408 && simplejump_p (insn)
2409 && slots_filled != slots_to_fill)
2410 delay_list
2411 = fill_slots_from_thread (insn, const_true_rtx,
2412 next_active_insn (JUMP_LABEL (insn)),
2413 NULL, 1, 1,
2414 own_thread_p (JUMP_LABEL (insn),
2415 JUMP_LABEL (insn), 0),
2416 slots_to_fill, &slots_filled,
2417 delay_list);
2419 if (delay_list)
2420 unfilled_slots_base[i]
2421 = emit_delay_sequence (insn, delay_list, slots_filled);
2423 if (slots_to_fill == slots_filled)
2424 unfilled_slots_base[i] = 0;
2426 note_delay_statistics (slots_filled, 0);
2429 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2430 /* See if the epilogue needs any delay slots. Try to fill them if so.
2431 The only thing we can do is scan backwards from the end of the
2432 function. If we did this in a previous pass, it is incorrect to do it
2433 again. */
2434 if (current_function_epilogue_delay_list)
2435 return;
2437 slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
2438 if (slots_to_fill == 0)
2439 return;
2441 slots_filled = 0;
2442 CLEAR_RESOURCE (&set);
2444 /* The frame pointer and stack pointer are needed at the beginning of
2445 the epilogue, so instructions setting them can not be put in the
2446 epilogue delay slot. However, everything else needed at function
2447 end is safe, so we don't want to use end_of_function_needs here. */
2448 CLEAR_RESOURCE (&needed);
2449 if (frame_pointer_needed)
2451 SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
2452 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2453 SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
2454 #endif
2455 if (! EXIT_IGNORE_STACK
2456 || current_function_sp_is_unchanging)
2457 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2459 else
2460 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2462 #ifdef EPILOGUE_USES
2463 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2465 if (EPILOGUE_USES (i))
2466 SET_HARD_REG_BIT (needed.regs, i);
2468 #endif
2470 for (trial = get_last_insn (); ! stop_search_p (trial, 1);
2471 trial = PREV_INSN (trial))
2473 if (NOTE_P (trial))
2474 continue;
2475 pat = PATTERN (trial);
2476 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2477 continue;
2479 if (! insn_references_resource_p (trial, &set, 1)
2480 && ! insn_sets_resource_p (trial, &needed, 1)
2481 && ! insn_sets_resource_p (trial, &set, 1)
2482 #ifdef HAVE_cc0
2483 /* Don't want to mess with cc0 here. */
2484 && ! reg_mentioned_p (cc0_rtx, pat)
2485 #endif
2486 && ! can_throw_internal (trial))
2488 trial = try_split (pat, trial, 1);
2489 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
2491 /* Here as well we are searching backward, so put the
2492 insns we find on the head of the list. */
2494 current_function_epilogue_delay_list
2495 = gen_rtx_INSN_LIST (VOIDmode, trial,
2496 current_function_epilogue_delay_list);
2497 mark_end_of_function_resources (trial, 1);
2498 update_block (trial, trial);
2499 delete_related_insns (trial);
2501 /* Clear deleted bit so final.c will output the insn. */
2502 INSN_DELETED_P (trial) = 0;
2504 if (slots_to_fill == ++slots_filled)
2505 break;
2506 continue;
2510 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2511 mark_referenced_resources (trial, &needed, 1);
2514 note_delay_statistics (slots_filled, 0);
2515 #endif
2518 /* Try to find insns to place in delay slots.
2520 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2521 or is an unconditional branch if CONDITION is const_true_rtx.
2522 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2524 THREAD is a flow-of-control, either the insns to be executed if the
2525 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2527 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2528 to see if any potential delay slot insns set things needed there.
2530 LIKELY is nonzero if it is extremely likely that the branch will be
2531 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2532 end of a loop back up to the top.
2534 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2535 thread. I.e., it is the fallthrough code of our jump or the target of the
2536 jump when we are the only jump going there.
2538 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2539 case, we can only take insns from the head of the thread for our delay
2540 slot. We then adjust the jump to point after the insns we have taken. */
2542 static rtx
2543 fill_slots_from_thread (rtx insn, rtx condition, rtx thread,
2544 rtx opposite_thread, int likely, int thread_if_true,
2545 int own_thread, int slots_to_fill,
2546 int *pslots_filled, rtx delay_list)
2548 rtx new_thread;
2549 struct resources opposite_needed, set, needed;
2550 rtx trial;
2551 int lose = 0;
2552 int must_annul = 0;
2553 int flags;
2555 /* Validate our arguments. */
2556 gcc_assert(condition != const_true_rtx || thread_if_true);
2557 gcc_assert(own_thread || thread_if_true);
2559 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2561 /* If our thread is the end of subroutine, we can't get any delay
2562 insns from that. */
2563 if (thread == 0)
2564 return delay_list;
2566 /* If this is an unconditional branch, nothing is needed at the
2567 opposite thread. Otherwise, compute what is needed there. */
2568 if (condition == const_true_rtx)
2569 CLEAR_RESOURCE (&opposite_needed);
2570 else
2571 mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
2573 /* If the insn at THREAD can be split, do it here to avoid having to
2574 update THREAD and NEW_THREAD if it is done in the loop below. Also
2575 initialize NEW_THREAD. */
2577 new_thread = thread = try_split (PATTERN (thread), thread, 0);
2579 /* Scan insns at THREAD. We are looking for an insn that can be removed
2580 from THREAD (it neither sets nor references resources that were set
2581 ahead of it and it doesn't set anything needs by the insns ahead of
2582 it) and that either can be placed in an annulling insn or aren't
2583 needed at OPPOSITE_THREAD. */
2585 CLEAR_RESOURCE (&needed);
2586 CLEAR_RESOURCE (&set);
2588 /* If we do not own this thread, we must stop as soon as we find
2589 something that we can't put in a delay slot, since all we can do
2590 is branch into THREAD at a later point. Therefore, labels stop
2591 the search if this is not the `true' thread. */
2593 for (trial = thread;
2594 ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
2595 trial = next_nonnote_insn (trial))
2597 rtx pat, old_trial;
2599 /* If we have passed a label, we no longer own this thread. */
2600 if (LABEL_P (trial))
2602 own_thread = 0;
2603 continue;
2606 pat = PATTERN (trial);
2607 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2608 continue;
2610 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2611 don't separate or copy insns that set and use CC0. */
2612 if (! insn_references_resource_p (trial, &set, 1)
2613 && ! insn_sets_resource_p (trial, &set, 1)
2614 && ! insn_sets_resource_p (trial, &needed, 1)
2615 #ifdef HAVE_cc0
2616 && ! (reg_mentioned_p (cc0_rtx, pat)
2617 && (! own_thread || ! sets_cc0_p (pat)))
2618 #endif
2619 && ! can_throw_internal (trial))
2621 rtx prior_insn;
2623 /* If TRIAL is redundant with some insn before INSN, we don't
2624 actually need to add it to the delay list; we can merely pretend
2625 we did. */
2626 if ((prior_insn = redundant_insn (trial, insn, delay_list)))
2628 fix_reg_dead_note (prior_insn, insn);
2629 if (own_thread)
2631 update_block (trial, thread);
2632 if (trial == thread)
2634 thread = next_active_insn (thread);
2635 if (new_thread == trial)
2636 new_thread = thread;
2639 delete_related_insns (trial);
2641 else
2643 update_reg_unused_notes (prior_insn, trial);
2644 new_thread = next_active_insn (trial);
2647 continue;
2650 /* There are two ways we can win: If TRIAL doesn't set anything
2651 needed at the opposite thread and can't trap, or if it can
2652 go into an annulled delay slot. */
2653 if (!must_annul
2654 && (condition == const_true_rtx
2655 || (! insn_sets_resource_p (trial, &opposite_needed, 1)
2656 && ! may_trap_p (pat))))
2658 old_trial = trial;
2659 trial = try_split (pat, trial, 0);
2660 if (new_thread == old_trial)
2661 new_thread = trial;
2662 if (thread == old_trial)
2663 thread = trial;
2664 pat = PATTERN (trial);
2665 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
2666 goto winner;
2668 else if (0
2669 #ifdef ANNUL_IFTRUE_SLOTS
2670 || ! thread_if_true
2671 #endif
2672 #ifdef ANNUL_IFFALSE_SLOTS
2673 || thread_if_true
2674 #endif
2677 old_trial = trial;
2678 trial = try_split (pat, trial, 0);
2679 if (new_thread == old_trial)
2680 new_thread = trial;
2681 if (thread == old_trial)
2682 thread = trial;
2683 pat = PATTERN (trial);
2684 if ((must_annul || delay_list == NULL) && (thread_if_true
2685 ? check_annul_list_true_false (0, delay_list)
2686 && eligible_for_annul_false (insn, *pslots_filled, trial, flags)
2687 : check_annul_list_true_false (1, delay_list)
2688 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
2690 rtx temp;
2692 must_annul = 1;
2693 winner:
2695 #ifdef HAVE_cc0
2696 if (reg_mentioned_p (cc0_rtx, pat))
2697 link_cc0_insns (trial);
2698 #endif
2700 /* If we own this thread, delete the insn. If this is the
2701 destination of a branch, show that a basic block status
2702 may have been updated. In any case, mark the new
2703 starting point of this thread. */
2704 if (own_thread)
2706 rtx note;
2708 update_block (trial, thread);
2709 if (trial == thread)
2711 thread = next_active_insn (thread);
2712 if (new_thread == trial)
2713 new_thread = thread;
2716 /* We are moving this insn, not deleting it. We must
2717 temporarily increment the use count on any referenced
2718 label lest it be deleted by delete_related_insns. */
2719 note = find_reg_note (trial, REG_LABEL, 0);
2720 /* REG_LABEL could be NOTE_INSN_DELETED_LABEL too. */
2721 if (note && LABEL_P (XEXP (note, 0)))
2722 LABEL_NUSES (XEXP (note, 0))++;
2724 delete_related_insns (trial);
2726 if (note && LABEL_P (XEXP (note, 0)))
2727 LABEL_NUSES (XEXP (note, 0))--;
2729 else
2730 new_thread = next_active_insn (trial);
2732 temp = own_thread ? trial : copy_rtx (trial);
2733 if (thread_if_true)
2734 INSN_FROM_TARGET_P (temp) = 1;
2736 delay_list = add_to_delay_list (temp, delay_list);
2738 if (slots_to_fill == ++(*pslots_filled))
2740 /* Even though we have filled all the slots, we
2741 may be branching to a location that has a
2742 redundant insn. Skip any if so. */
2743 while (new_thread && ! own_thread
2744 && ! insn_sets_resource_p (new_thread, &set, 1)
2745 && ! insn_sets_resource_p (new_thread, &needed, 1)
2746 && ! insn_references_resource_p (new_thread,
2747 &set, 1)
2748 && (prior_insn
2749 = redundant_insn (new_thread, insn,
2750 delay_list)))
2752 /* We know we do not own the thread, so no need
2753 to call update_block and delete_insn. */
2754 fix_reg_dead_note (prior_insn, insn);
2755 update_reg_unused_notes (prior_insn, new_thread);
2756 new_thread = next_active_insn (new_thread);
2758 break;
2761 continue;
2766 /* This insn can't go into a delay slot. */
2767 lose = 1;
2768 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2769 mark_referenced_resources (trial, &needed, 1);
2771 /* Ensure we don't put insns between the setting of cc and the comparison
2772 by moving a setting of cc into an earlier delay slot since these insns
2773 could clobber the condition code. */
2774 set.cc = 1;
2776 /* If this insn is a register-register copy and the next insn has
2777 a use of our destination, change it to use our source. That way,
2778 it will become a candidate for our delay slot the next time
2779 through this loop. This case occurs commonly in loops that
2780 scan a list.
2782 We could check for more complex cases than those tested below,
2783 but it doesn't seem worth it. It might also be a good idea to try
2784 to swap the two insns. That might do better.
2786 We can't do this if the next insn modifies our destination, because
2787 that would make the replacement into the insn invalid. We also can't
2788 do this if it modifies our source, because it might be an earlyclobber
2789 operand. This latter test also prevents updating the contents of
2790 a PRE_INC. We also can't do this if there's overlap of source and
2791 destination. Overlap may happen for larger-than-register-size modes. */
2793 if (NONJUMP_INSN_P (trial) && GET_CODE (pat) == SET
2794 && REG_P (SET_SRC (pat))
2795 && REG_P (SET_DEST (pat))
2796 && !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
2798 rtx next = next_nonnote_insn (trial);
2800 if (next && NONJUMP_INSN_P (next)
2801 && GET_CODE (PATTERN (next)) != USE
2802 && ! reg_set_p (SET_DEST (pat), next)
2803 && ! reg_set_p (SET_SRC (pat), next)
2804 && reg_referenced_p (SET_DEST (pat), PATTERN (next))
2805 && ! modified_in_p (SET_DEST (pat), next))
2806 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
2810 /* If we stopped on a branch insn that has delay slots, see if we can
2811 steal some of the insns in those slots. */
2812 if (trial && NONJUMP_INSN_P (trial)
2813 && GET_CODE (PATTERN (trial)) == SEQUENCE
2814 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0)))
2816 /* If this is the `true' thread, we will want to follow the jump,
2817 so we can only do this if we have taken everything up to here. */
2818 if (thread_if_true && trial == new_thread)
2820 delay_list
2821 = steal_delay_list_from_target (insn, condition, PATTERN (trial),
2822 delay_list, &set, &needed,
2823 &opposite_needed, slots_to_fill,
2824 pslots_filled, &must_annul,
2825 &new_thread);
2826 /* If we owned the thread and are told that it branched
2827 elsewhere, make sure we own the thread at the new location. */
2828 if (own_thread && trial != new_thread)
2829 own_thread = own_thread_p (new_thread, new_thread, 0);
2831 else if (! thread_if_true)
2832 delay_list
2833 = steal_delay_list_from_fallthrough (insn, condition,
2834 PATTERN (trial),
2835 delay_list, &set, &needed,
2836 &opposite_needed, slots_to_fill,
2837 pslots_filled, &must_annul);
2840 /* If we haven't found anything for this delay slot and it is very
2841 likely that the branch will be taken, see if the insn at our target
2842 increments or decrements a register with an increment that does not
2843 depend on the destination register. If so, try to place the opposite
2844 arithmetic insn after the jump insn and put the arithmetic insn in the
2845 delay slot. If we can't do this, return. */
2846 if (delay_list == 0 && likely && new_thread
2847 && NONJUMP_INSN_P (new_thread)
2848 && GET_CODE (PATTERN (new_thread)) != ASM_INPUT
2849 && asm_noperands (PATTERN (new_thread)) < 0)
2851 rtx pat = PATTERN (new_thread);
2852 rtx dest;
2853 rtx src;
2855 trial = new_thread;
2856 pat = PATTERN (trial);
2858 if (!NONJUMP_INSN_P (trial)
2859 || GET_CODE (pat) != SET
2860 || ! eligible_for_delay (insn, 0, trial, flags)
2861 || can_throw_internal (trial))
2862 return 0;
2864 dest = SET_DEST (pat), src = SET_SRC (pat);
2865 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
2866 && rtx_equal_p (XEXP (src, 0), dest)
2867 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
2868 && ! side_effects_p (pat))
2870 rtx other = XEXP (src, 1);
2871 rtx new_arith;
2872 rtx ninsn;
2874 /* If this is a constant adjustment, use the same code with
2875 the negated constant. Otherwise, reverse the sense of the
2876 arithmetic. */
2877 if (GET_CODE (other) == CONST_INT)
2878 new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
2879 negate_rtx (GET_MODE (src), other));
2880 else
2881 new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
2882 GET_MODE (src), dest, other);
2884 ninsn = emit_insn_after (gen_rtx_SET (VOIDmode, dest, new_arith),
2885 insn);
2887 if (recog_memoized (ninsn) < 0
2888 || (extract_insn (ninsn), ! constrain_operands (1)))
2890 delete_related_insns (ninsn);
2891 return 0;
2894 if (own_thread)
2896 update_block (trial, thread);
2897 if (trial == thread)
2899 thread = next_active_insn (thread);
2900 if (new_thread == trial)
2901 new_thread = thread;
2903 delete_related_insns (trial);
2905 else
2906 new_thread = next_active_insn (trial);
2908 ninsn = own_thread ? trial : copy_rtx (trial);
2909 if (thread_if_true)
2910 INSN_FROM_TARGET_P (ninsn) = 1;
2912 delay_list = add_to_delay_list (ninsn, NULL_RTX);
2913 (*pslots_filled)++;
2917 if (delay_list && must_annul)
2918 INSN_ANNULLED_BRANCH_P (insn) = 1;
2920 /* If we are to branch into the middle of this thread, find an appropriate
2921 label or make a new one if none, and redirect INSN to it. If we hit the
2922 end of the function, use the end-of-function label. */
2923 if (new_thread != thread)
2925 rtx label;
2927 gcc_assert (thread_if_true);
2929 if (new_thread && JUMP_P (new_thread)
2930 && (simplejump_p (new_thread)
2931 || GET_CODE (PATTERN (new_thread)) == RETURN)
2932 && redirect_with_delay_list_safe_p (insn,
2933 JUMP_LABEL (new_thread),
2934 delay_list))
2935 new_thread = follow_jumps (JUMP_LABEL (new_thread));
2937 if (new_thread == 0)
2938 label = find_end_label ();
2939 else if (LABEL_P (new_thread))
2940 label = new_thread;
2941 else
2942 label = get_label_before (new_thread);
2944 if (label)
2945 reorg_redirect_jump (insn, label);
2948 return delay_list;
2951 /* Make another attempt to find insns to place in delay slots.
2953 We previously looked for insns located in front of the delay insn
2954 and, for non-jump delay insns, located behind the delay insn.
2956 Here only try to schedule jump insns and try to move insns from either
2957 the target or the following insns into the delay slot. If annulling is
2958 supported, we will be likely to do this. Otherwise, we can do this only
2959 if safe. */
2961 static void
2962 fill_eager_delay_slots (void)
2964 rtx insn;
2965 int i;
2966 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2968 for (i = 0; i < num_unfilled_slots; i++)
2970 rtx condition;
2971 rtx target_label, insn_at_target, fallthrough_insn;
2972 rtx delay_list = 0;
2973 int own_target;
2974 int own_fallthrough;
2975 int prediction, slots_to_fill, slots_filled;
2977 insn = unfilled_slots_base[i];
2978 if (insn == 0
2979 || INSN_DELETED_P (insn)
2980 || !JUMP_P (insn)
2981 || ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
2982 continue;
2984 slots_to_fill = num_delay_slots (insn);
2985 /* Some machine description have defined instructions to have
2986 delay slots only in certain circumstances which may depend on
2987 nearby insns (which change due to reorg's actions).
2989 For example, the PA port normally has delay slots for unconditional
2990 jumps.
2992 However, the PA port claims such jumps do not have a delay slot
2993 if they are immediate successors of certain CALL_INSNs. This
2994 allows the port to favor filling the delay slot of the call with
2995 the unconditional jump. */
2996 if (slots_to_fill == 0)
2997 continue;
2999 slots_filled = 0;
3000 target_label = JUMP_LABEL (insn);
3001 condition = get_branch_condition (insn, target_label);
3003 if (condition == 0)
3004 continue;
3006 /* Get the next active fallthrough and target insns and see if we own
3007 them. Then see whether the branch is likely true. We don't need
3008 to do a lot of this for unconditional branches. */
3010 insn_at_target = next_active_insn (target_label);
3011 own_target = own_thread_p (target_label, target_label, 0);
3013 if (condition == const_true_rtx)
3015 own_fallthrough = 0;
3016 fallthrough_insn = 0;
3017 prediction = 2;
3019 else
3021 fallthrough_insn = next_active_insn (insn);
3022 own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
3023 prediction = mostly_true_jump (insn, condition);
3026 /* If this insn is expected to branch, first try to get insns from our
3027 target, then our fallthrough insns. If it is not expected to branch,
3028 try the other order. */
3030 if (prediction > 0)
3032 delay_list
3033 = fill_slots_from_thread (insn, condition, insn_at_target,
3034 fallthrough_insn, prediction == 2, 1,
3035 own_target,
3036 slots_to_fill, &slots_filled, delay_list);
3038 if (delay_list == 0 && own_fallthrough)
3040 /* Even though we didn't find anything for delay slots,
3041 we might have found a redundant insn which we deleted
3042 from the thread that was filled. So we have to recompute
3043 the next insn at the target. */
3044 target_label = JUMP_LABEL (insn);
3045 insn_at_target = next_active_insn (target_label);
3047 delay_list
3048 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3049 insn_at_target, 0, 0,
3050 own_fallthrough,
3051 slots_to_fill, &slots_filled,
3052 delay_list);
3055 else
3057 if (own_fallthrough)
3058 delay_list
3059 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3060 insn_at_target, 0, 0,
3061 own_fallthrough,
3062 slots_to_fill, &slots_filled,
3063 delay_list);
3065 if (delay_list == 0)
3066 delay_list
3067 = fill_slots_from_thread (insn, condition, insn_at_target,
3068 next_active_insn (insn), 0, 1,
3069 own_target,
3070 slots_to_fill, &slots_filled,
3071 delay_list);
3074 if (delay_list)
3075 unfilled_slots_base[i]
3076 = emit_delay_sequence (insn, delay_list, slots_filled);
3078 if (slots_to_fill == slots_filled)
3079 unfilled_slots_base[i] = 0;
3081 note_delay_statistics (slots_filled, 1);
3085 /* Once we have tried two ways to fill a delay slot, make a pass over the
3086 code to try to improve the results and to do such things as more jump
3087 threading. */
3089 static void
3090 relax_delay_slots (rtx first)
3092 rtx insn, next, pat;
3093 rtx trial, delay_insn, target_label;
3095 /* Look at every JUMP_INSN and see if we can improve it. */
3096 for (insn = first; insn; insn = next)
3098 rtx other;
3100 next = next_active_insn (insn);
3102 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3103 the next insn, or jumps to a label that is not the last of a
3104 group of consecutive labels. */
3105 if (JUMP_P (insn)
3106 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3107 && (target_label = JUMP_LABEL (insn)) != 0)
3109 target_label = skip_consecutive_labels (follow_jumps (target_label));
3110 if (target_label == 0)
3111 target_label = find_end_label ();
3113 if (target_label && next_active_insn (target_label) == next
3114 && ! condjump_in_parallel_p (insn))
3116 delete_jump (insn);
3117 continue;
3120 if (target_label && target_label != JUMP_LABEL (insn))
3121 reorg_redirect_jump (insn, target_label);
3123 /* See if this jump branches around an unconditional jump.
3124 If so, invert this jump and point it to the target of the
3125 second jump. */
3126 if (next && JUMP_P (next)
3127 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3128 && target_label
3129 && next_active_insn (target_label) == next_active_insn (next)
3130 && no_labels_between_p (insn, next))
3132 rtx label = JUMP_LABEL (next);
3134 /* Be careful how we do this to avoid deleting code or
3135 labels that are momentarily dead. See similar optimization
3136 in jump.c.
3138 We also need to ensure we properly handle the case when
3139 invert_jump fails. */
3141 ++LABEL_NUSES (target_label);
3142 if (label)
3143 ++LABEL_NUSES (label);
3145 if (invert_jump (insn, label, 1))
3147 delete_related_insns (next);
3148 next = insn;
3151 if (label)
3152 --LABEL_NUSES (label);
3154 if (--LABEL_NUSES (target_label) == 0)
3155 delete_related_insns (target_label);
3157 continue;
3161 /* If this is an unconditional jump and the previous insn is a
3162 conditional jump, try reversing the condition of the previous
3163 insn and swapping our targets. The next pass might be able to
3164 fill the slots.
3166 Don't do this if we expect the conditional branch to be true, because
3167 we would then be making the more common case longer. */
3169 if (JUMP_P (insn)
3170 && (simplejump_p (insn) || GET_CODE (PATTERN (insn)) == RETURN)
3171 && (other = prev_active_insn (insn)) != 0
3172 && (condjump_p (other) || condjump_in_parallel_p (other))
3173 && no_labels_between_p (other, insn)
3174 && 0 > mostly_true_jump (other,
3175 get_branch_condition (other,
3176 JUMP_LABEL (other))))
3178 rtx other_target = JUMP_LABEL (other);
3179 target_label = JUMP_LABEL (insn);
3181 if (invert_jump (other, target_label, 0))
3182 reorg_redirect_jump (insn, other_target);
3185 /* Now look only at cases where we have filled a delay slot. */
3186 if (!NONJUMP_INSN_P (insn)
3187 || GET_CODE (PATTERN (insn)) != SEQUENCE)
3188 continue;
3190 pat = PATTERN (insn);
3191 delay_insn = XVECEXP (pat, 0, 0);
3193 /* See if the first insn in the delay slot is redundant with some
3194 previous insn. Remove it from the delay slot if so; then set up
3195 to reprocess this insn. */
3196 if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
3198 delete_from_delay_slot (XVECEXP (pat, 0, 1));
3199 next = prev_active_insn (next);
3200 continue;
3203 /* See if we have a RETURN insn with a filled delay slot followed
3204 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3205 the first RETURN (but not its delay insn). This gives the same
3206 effect in fewer instructions.
3208 Only do so if optimizing for size since this results in slower, but
3209 smaller code. */
3210 if (optimize_size
3211 && GET_CODE (PATTERN (delay_insn)) == RETURN
3212 && next
3213 && JUMP_P (next)
3214 && GET_CODE (PATTERN (next)) == RETURN)
3216 rtx after;
3217 int i;
3219 /* Delete the RETURN and just execute the delay list insns.
3221 We do this by deleting the INSN containing the SEQUENCE, then
3222 re-emitting the insns separately, and then deleting the RETURN.
3223 This allows the count of the jump target to be properly
3224 decremented. */
3226 /* Clear the from target bit, since these insns are no longer
3227 in delay slots. */
3228 for (i = 0; i < XVECLEN (pat, 0); i++)
3229 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3231 trial = PREV_INSN (insn);
3232 delete_related_insns (insn);
3233 gcc_assert (GET_CODE (pat) == SEQUENCE);
3234 after = trial;
3235 for (i = 0; i < XVECLEN (pat, 0); i++)
3237 rtx this_insn = XVECEXP (pat, 0, i);
3238 add_insn_after (this_insn, after);
3239 after = this_insn;
3241 delete_scheduled_jump (delay_insn);
3242 continue;
3245 /* Now look only at the cases where we have a filled JUMP_INSN. */
3246 if (!JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
3247 || ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
3248 || condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
3249 continue;
3251 target_label = JUMP_LABEL (delay_insn);
3253 if (target_label)
3255 /* If this jump goes to another unconditional jump, thread it, but
3256 don't convert a jump into a RETURN here. */
3257 trial = skip_consecutive_labels (follow_jumps (target_label));
3258 if (trial == 0)
3259 trial = find_end_label ();
3261 if (trial && trial != target_label
3262 && redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
3264 reorg_redirect_jump (delay_insn, trial);
3265 target_label = trial;
3268 /* If the first insn at TARGET_LABEL is redundant with a previous
3269 insn, redirect the jump to the following insn process again. */
3270 trial = next_active_insn (target_label);
3271 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
3272 && redundant_insn (trial, insn, 0)
3273 && ! can_throw_internal (trial))
3275 /* Figure out where to emit the special USE insn so we don't
3276 later incorrectly compute register live/death info. */
3277 rtx tmp = next_active_insn (trial);
3278 if (tmp == 0)
3279 tmp = find_end_label ();
3281 if (tmp)
3283 /* Insert the special USE insn and update dataflow info. */
3284 update_block (trial, tmp);
3286 /* Now emit a label before the special USE insn, and
3287 redirect our jump to the new label. */
3288 target_label = get_label_before (PREV_INSN (tmp));
3289 reorg_redirect_jump (delay_insn, target_label);
3290 next = insn;
3291 continue;
3295 /* Similarly, if it is an unconditional jump with one insn in its
3296 delay list and that insn is redundant, thread the jump. */
3297 if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
3298 && XVECLEN (PATTERN (trial), 0) == 2
3299 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
3300 && (simplejump_p (XVECEXP (PATTERN (trial), 0, 0))
3301 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial), 0, 0))) == RETURN)
3302 && redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
3304 target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
3305 if (target_label == 0)
3306 target_label = find_end_label ();
3308 if (target_label
3309 && redirect_with_delay_slots_safe_p (delay_insn, target_label,
3310 insn))
3312 reorg_redirect_jump (delay_insn, target_label);
3313 next = insn;
3314 continue;
3319 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3320 && prev_active_insn (target_label) == insn
3321 && ! condjump_in_parallel_p (delay_insn)
3322 #ifdef HAVE_cc0
3323 /* If the last insn in the delay slot sets CC0 for some insn,
3324 various code assumes that it is in a delay slot. We could
3325 put it back where it belonged and delete the register notes,
3326 but it doesn't seem worthwhile in this uncommon case. */
3327 && ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
3328 REG_CC_USER, NULL_RTX)
3329 #endif
3332 rtx after;
3333 int i;
3335 /* All this insn does is execute its delay list and jump to the
3336 following insn. So delete the jump and just execute the delay
3337 list insns.
3339 We do this by deleting the INSN containing the SEQUENCE, then
3340 re-emitting the insns separately, and then deleting the jump.
3341 This allows the count of the jump target to be properly
3342 decremented. */
3344 /* Clear the from target bit, since these insns are no longer
3345 in delay slots. */
3346 for (i = 0; i < XVECLEN (pat, 0); i++)
3347 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3349 trial = PREV_INSN (insn);
3350 delete_related_insns (insn);
3351 gcc_assert (GET_CODE (pat) == SEQUENCE);
3352 after = trial;
3353 for (i = 0; i < XVECLEN (pat, 0); i++)
3355 rtx this_insn = XVECEXP (pat, 0, i);
3356 add_insn_after (this_insn, after);
3357 after = this_insn;
3359 delete_scheduled_jump (delay_insn);
3360 continue;
3363 /* See if this is an unconditional jump around a single insn which is
3364 identical to the one in its delay slot. In this case, we can just
3365 delete the branch and the insn in its delay slot. */
3366 if (next && NONJUMP_INSN_P (next)
3367 && prev_label (next_active_insn (next)) == target_label
3368 && simplejump_p (insn)
3369 && XVECLEN (pat, 0) == 2
3370 && rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
3372 delete_related_insns (insn);
3373 continue;
3376 /* See if this jump (with its delay slots) branches around another
3377 jump (without delay slots). If so, invert this jump and point
3378 it to the target of the second jump. We cannot do this for
3379 annulled jumps, though. Again, don't convert a jump to a RETURN
3380 here. */
3381 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3382 && any_condjump_p (delay_insn)
3383 && next && JUMP_P (next)
3384 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3385 && next_active_insn (target_label) == next_active_insn (next)
3386 && no_labels_between_p (insn, next))
3388 rtx label = JUMP_LABEL (next);
3389 rtx old_label = JUMP_LABEL (delay_insn);
3391 if (label == 0)
3392 label = find_end_label ();
3394 /* find_end_label can generate a new label. Check this first. */
3395 if (label
3396 && no_labels_between_p (insn, next)
3397 && redirect_with_delay_slots_safe_p (delay_insn, label, insn))
3399 /* Be careful how we do this to avoid deleting code or labels
3400 that are momentarily dead. See similar optimization in
3401 jump.c */
3402 if (old_label)
3403 ++LABEL_NUSES (old_label);
3405 if (invert_jump (delay_insn, label, 1))
3407 int i;
3409 /* Must update the INSN_FROM_TARGET_P bits now that
3410 the branch is reversed, so that mark_target_live_regs
3411 will handle the delay slot insn correctly. */
3412 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
3414 rtx slot = XVECEXP (PATTERN (insn), 0, i);
3415 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
3418 delete_related_insns (next);
3419 next = insn;
3422 if (old_label && --LABEL_NUSES (old_label) == 0)
3423 delete_related_insns (old_label);
3424 continue;
3428 /* If we own the thread opposite the way this insn branches, see if we
3429 can merge its delay slots with following insns. */
3430 if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3431 && own_thread_p (NEXT_INSN (insn), 0, 1))
3432 try_merge_delay_insns (insn, next);
3433 else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3434 && own_thread_p (target_label, target_label, 0))
3435 try_merge_delay_insns (insn, next_active_insn (target_label));
3437 /* If we get here, we haven't deleted INSN. But we may have deleted
3438 NEXT, so recompute it. */
3439 next = next_active_insn (insn);
3443 #ifdef HAVE_return
3445 /* Look for filled jumps to the end of function label. We can try to convert
3446 them into RETURN insns if the insns in the delay slot are valid for the
3447 RETURN as well. */
3449 static void
3450 make_return_insns (rtx first)
3452 rtx insn, jump_insn, pat;
3453 rtx real_return_label = end_of_function_label;
3454 int slots, i;
3456 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3457 /* If a previous pass filled delay slots in the epilogue, things get a
3458 bit more complicated, as those filler insns would generally (without
3459 data flow analysis) have to be executed after any existing branch
3460 delay slot filler insns. It is also unknown whether such a
3461 transformation would actually be profitable. Note that the existing
3462 code only cares for branches with (some) filled delay slots. */
3463 if (current_function_epilogue_delay_list != NULL)
3464 return;
3465 #endif
3467 /* See if there is a RETURN insn in the function other than the one we
3468 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3469 into a RETURN to jump to it. */
3470 for (insn = first; insn; insn = NEXT_INSN (insn))
3471 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
3473 real_return_label = get_label_before (insn);
3474 break;
3477 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3478 was equal to END_OF_FUNCTION_LABEL. */
3479 LABEL_NUSES (real_return_label)++;
3481 /* Clear the list of insns to fill so we can use it. */
3482 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3484 for (insn = first; insn; insn = NEXT_INSN (insn))
3486 int flags;
3488 /* Only look at filled JUMP_INSNs that go to the end of function
3489 label. */
3490 if (!NONJUMP_INSN_P (insn)
3491 || GET_CODE (PATTERN (insn)) != SEQUENCE
3492 || !JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
3493 || JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) != end_of_function_label)
3494 continue;
3496 pat = PATTERN (insn);
3497 jump_insn = XVECEXP (pat, 0, 0);
3499 /* If we can't make the jump into a RETURN, try to redirect it to the best
3500 RETURN and go on to the next insn. */
3501 if (! reorg_redirect_jump (jump_insn, NULL_RTX))
3503 /* Make sure redirecting the jump will not invalidate the delay
3504 slot insns. */
3505 if (redirect_with_delay_slots_safe_p (jump_insn,
3506 real_return_label,
3507 insn))
3508 reorg_redirect_jump (jump_insn, real_return_label);
3509 continue;
3512 /* See if this RETURN can accept the insns current in its delay slot.
3513 It can if it has more or an equal number of slots and the contents
3514 of each is valid. */
3516 flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
3517 slots = num_delay_slots (jump_insn);
3518 if (slots >= XVECLEN (pat, 0) - 1)
3520 for (i = 1; i < XVECLEN (pat, 0); i++)
3521 if (! (
3522 #ifdef ANNUL_IFFALSE_SLOTS
3523 (INSN_ANNULLED_BRANCH_P (jump_insn)
3524 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3525 ? eligible_for_annul_false (jump_insn, i - 1,
3526 XVECEXP (pat, 0, i), flags) :
3527 #endif
3528 #ifdef ANNUL_IFTRUE_SLOTS
3529 (INSN_ANNULLED_BRANCH_P (jump_insn)
3530 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3531 ? eligible_for_annul_true (jump_insn, i - 1,
3532 XVECEXP (pat, 0, i), flags) :
3533 #endif
3534 eligible_for_delay (jump_insn, i - 1,
3535 XVECEXP (pat, 0, i), flags)))
3536 break;
3538 else
3539 i = 0;
3541 if (i == XVECLEN (pat, 0))
3542 continue;
3544 /* We have to do something with this insn. If it is an unconditional
3545 RETURN, delete the SEQUENCE and output the individual insns,
3546 followed by the RETURN. Then set things up so we try to find
3547 insns for its delay slots, if it needs some. */
3548 if (GET_CODE (PATTERN (jump_insn)) == RETURN)
3550 rtx prev = PREV_INSN (insn);
3552 delete_related_insns (insn);
3553 for (i = 1; i < XVECLEN (pat, 0); i++)
3554 prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
3556 insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
3557 emit_barrier_after (insn);
3559 if (slots)
3560 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3562 else
3563 /* It is probably more efficient to keep this with its current
3564 delay slot as a branch to a RETURN. */
3565 reorg_redirect_jump (jump_insn, real_return_label);
3568 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3569 new delay slots we have created. */
3570 if (--LABEL_NUSES (real_return_label) == 0)
3571 delete_related_insns (real_return_label);
3573 fill_simple_delay_slots (1);
3574 fill_simple_delay_slots (0);
3576 #endif
3578 /* Try to find insns to place in delay slots. */
3580 void
3581 dbr_schedule (rtx first, FILE *file)
3583 rtx insn, next, epilogue_insn = 0;
3584 int i;
3585 #if 0
3586 int old_flag_no_peephole = flag_no_peephole;
3588 /* Execute `final' once in prescan mode to delete any insns that won't be
3589 used. Don't let final try to do any peephole optimization--it will
3590 ruin dataflow information for this pass. */
3592 flag_no_peephole = 1;
3593 final (first, 0, NO_DEBUG, 1, 1);
3594 flag_no_peephole = old_flag_no_peephole;
3595 #endif
3597 /* If the current function has no insns other than the prologue and
3598 epilogue, then do not try to fill any delay slots. */
3599 if (n_basic_blocks == 0)
3600 return;
3602 /* Find the highest INSN_UID and allocate and initialize our map from
3603 INSN_UID's to position in code. */
3604 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
3606 if (INSN_UID (insn) > max_uid)
3607 max_uid = INSN_UID (insn);
3608 if (NOTE_P (insn)
3609 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
3610 epilogue_insn = insn;
3613 uid_to_ruid = xmalloc ((max_uid + 1) * sizeof (int));
3614 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
3615 uid_to_ruid[INSN_UID (insn)] = i;
3617 /* Initialize the list of insns that need filling. */
3618 if (unfilled_firstobj == 0)
3620 gcc_obstack_init (&unfilled_slots_obstack);
3621 unfilled_firstobj = obstack_alloc (&unfilled_slots_obstack, 0);
3624 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
3626 rtx target;
3628 INSN_ANNULLED_BRANCH_P (insn) = 0;
3629 INSN_FROM_TARGET_P (insn) = 0;
3631 /* Skip vector tables. We can't get attributes for them. */
3632 if (JUMP_P (insn)
3633 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
3634 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
3635 continue;
3637 if (num_delay_slots (insn) > 0)
3638 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3640 /* Ensure all jumps go to the last of a set of consecutive labels. */
3641 if (JUMP_P (insn)
3642 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3643 && JUMP_LABEL (insn) != 0
3644 && ((target = skip_consecutive_labels (JUMP_LABEL (insn)))
3645 != JUMP_LABEL (insn)))
3646 redirect_jump (insn, target, 1);
3649 init_resource_info (epilogue_insn);
3651 /* Show we haven't computed an end-of-function label yet. */
3652 end_of_function_label = 0;
3654 /* Initialize the statistics for this function. */
3655 memset (num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
3656 memset (num_filled_delays, 0, sizeof num_filled_delays);
3658 /* Now do the delay slot filling. Try everything twice in case earlier
3659 changes make more slots fillable. */
3661 for (reorg_pass_number = 0;
3662 reorg_pass_number < MAX_REORG_PASSES;
3663 reorg_pass_number++)
3665 fill_simple_delay_slots (1);
3666 fill_simple_delay_slots (0);
3667 fill_eager_delay_slots ();
3668 relax_delay_slots (first);
3671 /* Delete any USE insns made by update_block; subsequent passes don't need
3672 them or know how to deal with them. */
3673 for (insn = first; insn; insn = next)
3675 next = NEXT_INSN (insn);
3677 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
3678 && INSN_P (XEXP (PATTERN (insn), 0)))
3679 next = delete_related_insns (insn);
3682 /* If we made an end of function label, indicate that it is now
3683 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3684 If it is now unused, delete it. */
3685 if (end_of_function_label && --LABEL_NUSES (end_of_function_label) == 0)
3686 delete_related_insns (end_of_function_label);
3688 #ifdef HAVE_return
3689 if (HAVE_return && end_of_function_label != 0)
3690 make_return_insns (first);
3691 #endif
3693 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3695 /* It is not clear why the line below is needed, but it does seem to be. */
3696 unfilled_firstobj = obstack_alloc (&unfilled_slots_obstack, 0);
3698 if (file)
3700 int i, j, need_comma;
3701 int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
3702 int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
3704 for (reorg_pass_number = 0;
3705 reorg_pass_number < MAX_REORG_PASSES;
3706 reorg_pass_number++)
3708 fprintf (file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
3709 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
3711 need_comma = 0;
3712 fprintf (file, ";; Reorg function #%d\n", i);
3714 fprintf (file, ";; %d insns needing delay slots\n;; ",
3715 num_insns_needing_delays[i][reorg_pass_number]);
3717 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3718 if (num_filled_delays[i][j][reorg_pass_number])
3720 if (need_comma)
3721 fprintf (file, ", ");
3722 need_comma = 1;
3723 fprintf (file, "%d got %d delays",
3724 num_filled_delays[i][j][reorg_pass_number], j);
3726 fprintf (file, "\n");
3729 memset (total_delay_slots, 0, sizeof total_delay_slots);
3730 memset (total_annul_slots, 0, sizeof total_annul_slots);
3731 for (insn = first; insn; insn = NEXT_INSN (insn))
3733 if (! INSN_DELETED_P (insn)
3734 && NONJUMP_INSN_P (insn)
3735 && GET_CODE (PATTERN (insn)) != USE
3736 && GET_CODE (PATTERN (insn)) != CLOBBER)
3738 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
3740 j = XVECLEN (PATTERN (insn), 0) - 1;
3741 if (j > MAX_DELAY_HISTOGRAM)
3742 j = MAX_DELAY_HISTOGRAM;
3743 if (INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (insn), 0, 0)))
3744 total_annul_slots[j]++;
3745 else
3746 total_delay_slots[j]++;
3748 else if (num_delay_slots (insn) > 0)
3749 total_delay_slots[0]++;
3752 fprintf (file, ";; Reorg totals: ");
3753 need_comma = 0;
3754 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3756 if (total_delay_slots[j])
3758 if (need_comma)
3759 fprintf (file, ", ");
3760 need_comma = 1;
3761 fprintf (file, "%d got %d delays", total_delay_slots[j], j);
3764 fprintf (file, "\n");
3765 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3766 fprintf (file, ";; Reorg annuls: ");
3767 need_comma = 0;
3768 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3770 if (total_annul_slots[j])
3772 if (need_comma)
3773 fprintf (file, ", ");
3774 need_comma = 1;
3775 fprintf (file, "%d got %d delays", total_annul_slots[j], j);
3778 fprintf (file, "\n");
3779 #endif
3780 fprintf (file, "\n");
3783 /* For all JUMP insns, fill in branch prediction notes, so that during
3784 assembler output a target can set branch prediction bits in the code.
3785 We have to do this now, as up until this point the destinations of
3786 JUMPS can be moved around and changed, but past right here that cannot
3787 happen. */
3788 for (insn = first; insn; insn = NEXT_INSN (insn))
3790 int pred_flags;
3792 if (NONJUMP_INSN_P (insn))
3794 rtx pat = PATTERN (insn);
3796 if (GET_CODE (pat) == SEQUENCE)
3797 insn = XVECEXP (pat, 0, 0);
3799 if (!JUMP_P (insn))
3800 continue;
3802 pred_flags = get_jump_flags (insn, JUMP_LABEL (insn));
3803 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_BR_PRED,
3804 GEN_INT (pred_flags),
3805 REG_NOTES (insn));
3807 free_resource_info ();
3808 free (uid_to_ruid);
3809 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3810 /* SPARC assembler, for instance, emit warning when debug info is output
3811 into the delay slot. */
3813 rtx link;
3815 for (link = current_function_epilogue_delay_list;
3816 link;
3817 link = XEXP (link, 1))
3818 INSN_LOCATOR (XEXP (link, 0)) = 0;
3820 #endif
3822 #endif /* DELAY_SLOTS */