Daily bump.
[official-gcc.git] / gcc / lambda-code.c
blob6c7fabba810c77bd009a2d30be50c6c536b0228c
1 /* Loop transformation code generation
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "errors.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "basic-block.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "timevar.h"
36 #include "cfgloop.h"
37 #include "expr.h"
38 #include "optabs.h"
39 #include "tree-chrec.h"
40 #include "tree-data-ref.h"
41 #include "tree-pass.h"
42 #include "tree-scalar-evolution.h"
43 #include "vec.h"
44 #include "lambda.h"
46 /* This loop nest code generation is based on non-singular matrix
47 math.
49 A little terminology and a general sketch of the algorithm. See "A singular
50 loop transformation framework based on non-singular matrices" by Wei Li and
51 Keshav Pingali for formal proofs that the various statements below are
52 correct.
54 A loop iteration space represents the points traversed by the loop. A point in the
55 iteration space can be represented by a vector of size <loop depth>. You can
56 therefore represent the iteration space as an integral combinations of a set
57 of basis vectors.
59 A loop iteration space is dense if every integer point between the loop
60 bounds is a point in the iteration space. Every loop with a step of 1
61 therefore has a dense iteration space.
63 for i = 1 to 3, step 1 is a dense iteration space.
65 A loop iteration space is sparse if it is not dense. That is, the iteration
66 space skips integer points that are within the loop bounds.
68 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
69 2 is skipped.
71 Dense source spaces are easy to transform, because they don't skip any
72 points to begin with. Thus we can compute the exact bounds of the target
73 space using min/max and floor/ceil.
75 For a dense source space, we take the transformation matrix, decompose it
76 into a lower triangular part (H) and a unimodular part (U).
77 We then compute the auxiliary space from the unimodular part (source loop
78 nest . U = auxiliary space) , which has two important properties:
79 1. It traverses the iterations in the same lexicographic order as the source
80 space.
81 2. It is a dense space when the source is a dense space (even if the target
82 space is going to be sparse).
84 Given the auxiliary space, we use the lower triangular part to compute the
85 bounds in the target space by simple matrix multiplication.
86 The gaps in the target space (IE the new loop step sizes) will be the
87 diagonals of the H matrix.
89 Sparse source spaces require another step, because you can't directly compute
90 the exact bounds of the auxiliary and target space from the sparse space.
91 Rather than try to come up with a separate algorithm to handle sparse source
92 spaces directly, we just find a legal transformation matrix that gives you
93 the sparse source space, from a dense space, and then transform the dense
94 space.
96 For a regular sparse space, you can represent the source space as an integer
97 lattice, and the base space of that lattice will always be dense. Thus, we
98 effectively use the lattice to figure out the transformation from the lattice
99 base space, to the sparse iteration space (IE what transform was applied to
100 the dense space to make it sparse). We then compose this transform with the
101 transformation matrix specified by the user (since our matrix transformations
102 are closed under composition, this is okay). We can then use the base space
103 (which is dense) plus the composed transformation matrix, to compute the rest
104 of the transform using the dense space algorithm above.
106 In other words, our sparse source space (B) is decomposed into a dense base
107 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
108 We then compute the composition of L and the user transformation matrix (T),
109 so that T is now a transform from A to the result, instead of from B to the
110 result.
111 IE A.(LT) = result instead of B.T = result
112 Since A is now a dense source space, we can use the dense source space
113 algorithm above to compute the result of applying transform (LT) to A.
115 Fourier-Motzkin elimination is used to compute the bounds of the base space
116 of the lattice. */
119 DEF_VEC_GC_P(int);
121 static bool perfect_nestify (struct loops *,
122 struct loop *, VEC (tree) *,
123 VEC (tree) *, VEC (int) *, VEC (tree) *);
124 /* Lattice stuff that is internal to the code generation algorithm. */
126 typedef struct
128 /* Lattice base matrix. */
129 lambda_matrix base;
130 /* Lattice dimension. */
131 int dimension;
132 /* Origin vector for the coefficients. */
133 lambda_vector origin;
134 /* Origin matrix for the invariants. */
135 lambda_matrix origin_invariants;
136 /* Number of invariants. */
137 int invariants;
138 } *lambda_lattice;
140 #define LATTICE_BASE(T) ((T)->base)
141 #define LATTICE_DIMENSION(T) ((T)->dimension)
142 #define LATTICE_ORIGIN(T) ((T)->origin)
143 #define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
144 #define LATTICE_INVARIANTS(T) ((T)->invariants)
146 static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
147 int, int);
148 static lambda_lattice lambda_lattice_new (int, int);
149 static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);
151 static tree find_induction_var_from_exit_cond (struct loop *);
153 /* Create a new lambda body vector. */
155 lambda_body_vector
156 lambda_body_vector_new (int size)
158 lambda_body_vector ret;
160 ret = ggc_alloc (sizeof (*ret));
161 LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
162 LBV_SIZE (ret) = size;
163 LBV_DENOMINATOR (ret) = 1;
164 return ret;
167 /* Compute the new coefficients for the vector based on the
168 *inverse* of the transformation matrix. */
170 lambda_body_vector
171 lambda_body_vector_compute_new (lambda_trans_matrix transform,
172 lambda_body_vector vect)
174 lambda_body_vector temp;
175 int depth;
177 /* Make sure the matrix is square. */
178 gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
180 depth = LTM_ROWSIZE (transform);
182 temp = lambda_body_vector_new (depth);
183 LBV_DENOMINATOR (temp) =
184 LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
185 lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
186 LTM_MATRIX (transform), depth,
187 LBV_COEFFICIENTS (temp));
188 LBV_SIZE (temp) = LBV_SIZE (vect);
189 return temp;
192 /* Print out a lambda body vector. */
194 void
195 print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
197 print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
200 /* Return TRUE if two linear expressions are equal. */
202 static bool
203 lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
204 int depth, int invariants)
206 int i;
208 if (lle1 == NULL || lle2 == NULL)
209 return false;
210 if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
211 return false;
212 if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
213 return false;
214 for (i = 0; i < depth; i++)
215 if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
216 return false;
217 for (i = 0; i < invariants; i++)
218 if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
219 LLE_INVARIANT_COEFFICIENTS (lle2)[i])
220 return false;
221 return true;
224 /* Create a new linear expression with dimension DIM, and total number
225 of invariants INVARIANTS. */
227 lambda_linear_expression
228 lambda_linear_expression_new (int dim, int invariants)
230 lambda_linear_expression ret;
232 ret = ggc_alloc_cleared (sizeof (*ret));
234 LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
235 LLE_CONSTANT (ret) = 0;
236 LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
237 LLE_DENOMINATOR (ret) = 1;
238 LLE_NEXT (ret) = NULL;
240 return ret;
243 /* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
244 The starting letter used for variable names is START. */
246 static void
247 print_linear_expression (FILE * outfile, lambda_vector expr, int size,
248 char start)
250 int i;
251 bool first = true;
252 for (i = 0; i < size; i++)
254 if (expr[i] != 0)
256 if (first)
258 if (expr[i] < 0)
259 fprintf (outfile, "-");
260 first = false;
262 else if (expr[i] > 0)
263 fprintf (outfile, " + ");
264 else
265 fprintf (outfile, " - ");
266 if (abs (expr[i]) == 1)
267 fprintf (outfile, "%c", start + i);
268 else
269 fprintf (outfile, "%d%c", abs (expr[i]), start + i);
274 /* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
275 depth/number of coefficients is given by DEPTH, the number of invariants is
276 given by INVARIANTS, and the character to start variable names with is given
277 by START. */
279 void
280 print_lambda_linear_expression (FILE * outfile,
281 lambda_linear_expression expr,
282 int depth, int invariants, char start)
284 fprintf (outfile, "\tLinear expression: ");
285 print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
286 fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
287 fprintf (outfile, " invariants: ");
288 print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
289 invariants, 'A');
290 fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
293 /* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
294 coefficients is given by DEPTH, the number of invariants is
295 given by INVARIANTS, and the character to start variable names with is given
296 by START. */
298 void
299 print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
300 int invariants, char start)
302 int step;
303 lambda_linear_expression expr;
305 gcc_assert (loop);
307 expr = LL_LINEAR_OFFSET (loop);
308 step = LL_STEP (loop);
309 fprintf (outfile, " step size = %d \n", step);
311 if (expr)
313 fprintf (outfile, " linear offset: \n");
314 print_lambda_linear_expression (outfile, expr, depth, invariants,
315 start);
318 fprintf (outfile, " lower bound: \n");
319 for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
320 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
321 fprintf (outfile, " upper bound: \n");
322 for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
323 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
326 /* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
327 number of invariants. */
329 lambda_loopnest
330 lambda_loopnest_new (int depth, int invariants)
332 lambda_loopnest ret;
333 ret = ggc_alloc (sizeof (*ret));
335 LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
336 LN_DEPTH (ret) = depth;
337 LN_INVARIANTS (ret) = invariants;
339 return ret;
342 /* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
343 character to use for loop names is given by START. */
345 void
346 print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
348 int i;
349 for (i = 0; i < LN_DEPTH (nest); i++)
351 fprintf (outfile, "Loop %c\n", start + i);
352 print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
353 LN_INVARIANTS (nest), 'i');
354 fprintf (outfile, "\n");
358 /* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
359 of invariants. */
361 static lambda_lattice
362 lambda_lattice_new (int depth, int invariants)
364 lambda_lattice ret;
365 ret = ggc_alloc (sizeof (*ret));
366 LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
367 LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
368 LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
369 LATTICE_DIMENSION (ret) = depth;
370 LATTICE_INVARIANTS (ret) = invariants;
371 return ret;
374 /* Compute the lattice base for NEST. The lattice base is essentially a
375 non-singular transform from a dense base space to a sparse iteration space.
376 We use it so that we don't have to specially handle the case of a sparse
377 iteration space in other parts of the algorithm. As a result, this routine
378 only does something interesting (IE produce a matrix that isn't the
379 identity matrix) if NEST is a sparse space. */
381 static lambda_lattice
382 lambda_lattice_compute_base (lambda_loopnest nest)
384 lambda_lattice ret;
385 int depth, invariants;
386 lambda_matrix base;
388 int i, j, step;
389 lambda_loop loop;
390 lambda_linear_expression expression;
392 depth = LN_DEPTH (nest);
393 invariants = LN_INVARIANTS (nest);
395 ret = lambda_lattice_new (depth, invariants);
396 base = LATTICE_BASE (ret);
397 for (i = 0; i < depth; i++)
399 loop = LN_LOOPS (nest)[i];
400 gcc_assert (loop);
401 step = LL_STEP (loop);
402 /* If we have a step of 1, then the base is one, and the
403 origin and invariant coefficients are 0. */
404 if (step == 1)
406 for (j = 0; j < depth; j++)
407 base[i][j] = 0;
408 base[i][i] = 1;
409 LATTICE_ORIGIN (ret)[i] = 0;
410 for (j = 0; j < invariants; j++)
411 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
413 else
415 /* Otherwise, we need the lower bound expression (which must
416 be an affine function) to determine the base. */
417 expression = LL_LOWER_BOUND (loop);
418 gcc_assert (expression && !LLE_NEXT (expression)
419 && LLE_DENOMINATOR (expression) == 1);
421 /* The lower triangular portion of the base is going to be the
422 coefficient times the step */
423 for (j = 0; j < i; j++)
424 base[i][j] = LLE_COEFFICIENTS (expression)[j]
425 * LL_STEP (LN_LOOPS (nest)[j]);
426 base[i][i] = step;
427 for (j = i + 1; j < depth; j++)
428 base[i][j] = 0;
430 /* Origin for this loop is the constant of the lower bound
431 expression. */
432 LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
434 /* Coefficient for the invariants are equal to the invariant
435 coefficients in the expression. */
436 for (j = 0; j < invariants; j++)
437 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
438 LLE_INVARIANT_COEFFICIENTS (expression)[j];
441 return ret;
444 /* Compute the greatest common denominator of two numbers (A and B) using
445 Euclid's algorithm. */
447 static int
448 gcd (int a, int b)
451 int x, y, z;
453 x = abs (a);
454 y = abs (b);
456 while (x > 0)
458 z = y % x;
459 y = x;
460 x = z;
463 return (y);
466 /* Compute the greatest common denominator of a VECTOR of SIZE numbers. */
468 static int
469 gcd_vector (lambda_vector vector, int size)
471 int i;
472 int gcd1 = 0;
474 if (size > 0)
476 gcd1 = vector[0];
477 for (i = 1; i < size; i++)
478 gcd1 = gcd (gcd1, vector[i]);
480 return gcd1;
483 /* Compute the least common multiple of two numbers A and B . */
485 static int
486 lcm (int a, int b)
488 return (abs (a) * abs (b) / gcd (a, b));
491 /* Perform Fourier-Motzkin elimination to calculate the bounds of the
492 auxillary nest.
493 Fourier-Motzkin is a way of reducing systems of linear inequalities so that
494 it is easy to calculate the answer and bounds.
495 A sketch of how it works:
496 Given a system of linear inequalities, ai * xj >= bk, you can always
497 rewrite the constraints so they are all of the form
498 a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
499 in b1 ... bk, and some a in a1...ai)
500 You can then eliminate this x from the non-constant inequalities by
501 rewriting these as a <= b, x >= constant, and delete the x variable.
502 You can then repeat this for any remaining x variables, and then we have
503 an easy to use variable <= constant (or no variables at all) form that we
504 can construct our bounds from.
506 In our case, each time we eliminate, we construct part of the bound from
507 the ith variable, then delete the ith variable.
509 Remember the constant are in our vector a, our coefficient matrix is A,
510 and our invariant coefficient matrix is B.
512 SIZE is the size of the matrices being passed.
513 DEPTH is the loop nest depth.
514 INVARIANTS is the number of loop invariants.
515 A, B, and a are the coefficient matrix, invariant coefficient, and a
516 vector of constants, respectively. */
518 static lambda_loopnest
519 compute_nest_using_fourier_motzkin (int size,
520 int depth,
521 int invariants,
522 lambda_matrix A,
523 lambda_matrix B,
524 lambda_vector a)
527 int multiple, f1, f2;
528 int i, j, k;
529 lambda_linear_expression expression;
530 lambda_loop loop;
531 lambda_loopnest auxillary_nest;
532 lambda_matrix swapmatrix, A1, B1;
533 lambda_vector swapvector, a1;
534 int newsize;
536 A1 = lambda_matrix_new (128, depth);
537 B1 = lambda_matrix_new (128, invariants);
538 a1 = lambda_vector_new (128);
540 auxillary_nest = lambda_loopnest_new (depth, invariants);
542 for (i = depth - 1; i >= 0; i--)
544 loop = lambda_loop_new ();
545 LN_LOOPS (auxillary_nest)[i] = loop;
546 LL_STEP (loop) = 1;
548 for (j = 0; j < size; j++)
550 if (A[j][i] < 0)
552 /* Any linear expression in the matrix with a coefficient less
553 than 0 becomes part of the new lower bound. */
554 expression = lambda_linear_expression_new (depth, invariants);
556 for (k = 0; k < i; k++)
557 LLE_COEFFICIENTS (expression)[k] = A[j][k];
559 for (k = 0; k < invariants; k++)
560 LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
562 LLE_DENOMINATOR (expression) = -1 * A[j][i];
563 LLE_CONSTANT (expression) = -1 * a[j];
565 /* Ignore if identical to the existing lower bound. */
566 if (!lle_equal (LL_LOWER_BOUND (loop),
567 expression, depth, invariants))
569 LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
570 LL_LOWER_BOUND (loop) = expression;
574 else if (A[j][i] > 0)
576 /* Any linear expression with a coefficient greater than 0
577 becomes part of the new upper bound. */
578 expression = lambda_linear_expression_new (depth, invariants);
579 for (k = 0; k < i; k++)
580 LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
582 for (k = 0; k < invariants; k++)
583 LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
585 LLE_DENOMINATOR (expression) = A[j][i];
586 LLE_CONSTANT (expression) = a[j];
588 /* Ignore if identical to the existing upper bound. */
589 if (!lle_equal (LL_UPPER_BOUND (loop),
590 expression, depth, invariants))
592 LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
593 LL_UPPER_BOUND (loop) = expression;
599 /* This portion creates a new system of linear inequalities by deleting
600 the i'th variable, reducing the system by one variable. */
601 newsize = 0;
602 for (j = 0; j < size; j++)
604 /* If the coefficient for the i'th variable is 0, then we can just
605 eliminate the variable straightaway. Otherwise, we have to
606 multiply through by the coefficients we are eliminating. */
607 if (A[j][i] == 0)
609 lambda_vector_copy (A[j], A1[newsize], depth);
610 lambda_vector_copy (B[j], B1[newsize], invariants);
611 a1[newsize] = a[j];
612 newsize++;
614 else if (A[j][i] > 0)
616 for (k = 0; k < size; k++)
618 if (A[k][i] < 0)
620 multiple = lcm (A[j][i], A[k][i]);
621 f1 = multiple / A[j][i];
622 f2 = -1 * multiple / A[k][i];
624 lambda_vector_add_mc (A[j], f1, A[k], f2,
625 A1[newsize], depth);
626 lambda_vector_add_mc (B[j], f1, B[k], f2,
627 B1[newsize], invariants);
628 a1[newsize] = f1 * a[j] + f2 * a[k];
629 newsize++;
635 swapmatrix = A;
636 A = A1;
637 A1 = swapmatrix;
639 swapmatrix = B;
640 B = B1;
641 B1 = swapmatrix;
643 swapvector = a;
644 a = a1;
645 a1 = swapvector;
647 size = newsize;
650 return auxillary_nest;
653 /* Compute the loop bounds for the auxiliary space NEST.
654 Input system used is Ax <= b. TRANS is the unimodular transformation.
655 Given the original nest, this function will
656 1. Convert the nest into matrix form, which consists of a matrix for the
657 coefficients, a matrix for the
658 invariant coefficients, and a vector for the constants.
659 2. Use the matrix form to calculate the lattice base for the nest (which is
660 a dense space)
661 3. Compose the dense space transform with the user specified transform, to
662 get a transform we can easily calculate transformed bounds for.
663 4. Multiply the composed transformation matrix times the matrix form of the
664 loop.
665 5. Transform the newly created matrix (from step 4) back into a loop nest
666 using fourier motzkin elimination to figure out the bounds. */
668 static lambda_loopnest
669 lambda_compute_auxillary_space (lambda_loopnest nest,
670 lambda_trans_matrix trans)
672 lambda_matrix A, B, A1, B1;
673 lambda_vector a, a1;
674 lambda_matrix invertedtrans;
675 int determinant, depth, invariants, size;
676 int i, j;
677 lambda_loop loop;
678 lambda_linear_expression expression;
679 lambda_lattice lattice;
681 depth = LN_DEPTH (nest);
682 invariants = LN_INVARIANTS (nest);
684 /* Unfortunately, we can't know the number of constraints we'll have
685 ahead of time, but this should be enough even in ridiculous loop nest
686 cases. We abort if we go over this limit. */
687 A = lambda_matrix_new (128, depth);
688 B = lambda_matrix_new (128, invariants);
689 a = lambda_vector_new (128);
691 A1 = lambda_matrix_new (128, depth);
692 B1 = lambda_matrix_new (128, invariants);
693 a1 = lambda_vector_new (128);
695 /* Store the bounds in the equation matrix A, constant vector a, and
696 invariant matrix B, so that we have Ax <= a + B.
697 This requires a little equation rearranging so that everything is on the
698 correct side of the inequality. */
699 size = 0;
700 for (i = 0; i < depth; i++)
702 loop = LN_LOOPS (nest)[i];
704 /* First we do the lower bound. */
705 if (LL_STEP (loop) > 0)
706 expression = LL_LOWER_BOUND (loop);
707 else
708 expression = LL_UPPER_BOUND (loop);
710 for (; expression != NULL; expression = LLE_NEXT (expression))
712 /* Fill in the coefficient. */
713 for (j = 0; j < i; j++)
714 A[size][j] = LLE_COEFFICIENTS (expression)[j];
716 /* And the invariant coefficient. */
717 for (j = 0; j < invariants; j++)
718 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
720 /* And the constant. */
721 a[size] = LLE_CONSTANT (expression);
723 /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
724 constants and single variables on */
725 A[size][i] = -1 * LLE_DENOMINATOR (expression);
726 a[size] *= -1;
727 for (j = 0; j < invariants; j++)
728 B[size][j] *= -1;
730 size++;
731 /* Need to increase matrix sizes above. */
732 gcc_assert (size <= 127);
736 /* Then do the exact same thing for the upper bounds. */
737 if (LL_STEP (loop) > 0)
738 expression = LL_UPPER_BOUND (loop);
739 else
740 expression = LL_LOWER_BOUND (loop);
742 for (; expression != NULL; expression = LLE_NEXT (expression))
744 /* Fill in the coefficient. */
745 for (j = 0; j < i; j++)
746 A[size][j] = LLE_COEFFICIENTS (expression)[j];
748 /* And the invariant coefficient. */
749 for (j = 0; j < invariants; j++)
750 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
752 /* And the constant. */
753 a[size] = LLE_CONSTANT (expression);
755 /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
756 for (j = 0; j < i; j++)
757 A[size][j] *= -1;
758 A[size][i] = LLE_DENOMINATOR (expression);
759 size++;
760 /* Need to increase matrix sizes above. */
761 gcc_assert (size <= 127);
766 /* Compute the lattice base x = base * y + origin, where y is the
767 base space. */
768 lattice = lambda_lattice_compute_base (nest);
770 /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
772 /* A1 = A * L */
773 lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
775 /* a1 = a - A * origin constant. */
776 lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
777 lambda_vector_add_mc (a, 1, a1, -1, a1, size);
779 /* B1 = B - A * origin invariant. */
780 lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
781 invariants);
782 lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
784 /* Now compute the auxiliary space bounds by first inverting U, multiplying
785 it by A1, then performing fourier motzkin. */
787 invertedtrans = lambda_matrix_new (depth, depth);
789 /* Compute the inverse of U. */
790 determinant = lambda_matrix_inverse (LTM_MATRIX (trans),
791 invertedtrans, depth);
793 /* A = A1 inv(U). */
794 lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
796 return compute_nest_using_fourier_motzkin (size, depth, invariants,
797 A, B1, a1);
800 /* Compute the loop bounds for the target space, using the bounds of
801 the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
802 The target space loop bounds are computed by multiplying the triangular
803 matrix H by the auxillary nest, to get the new loop bounds. The sign of
804 the loop steps (positive or negative) is then used to swap the bounds if
805 the loop counts downwards.
806 Return the target loopnest. */
808 static lambda_loopnest
809 lambda_compute_target_space (lambda_loopnest auxillary_nest,
810 lambda_trans_matrix H, lambda_vector stepsigns)
812 lambda_matrix inverse, H1;
813 int determinant, i, j;
814 int gcd1, gcd2;
815 int factor;
817 lambda_loopnest target_nest;
818 int depth, invariants;
819 lambda_matrix target;
821 lambda_loop auxillary_loop, target_loop;
822 lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
824 depth = LN_DEPTH (auxillary_nest);
825 invariants = LN_INVARIANTS (auxillary_nest);
827 inverse = lambda_matrix_new (depth, depth);
828 determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
830 /* H1 is H excluding its diagonal. */
831 H1 = lambda_matrix_new (depth, depth);
832 lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
834 for (i = 0; i < depth; i++)
835 H1[i][i] = 0;
837 /* Computes the linear offsets of the loop bounds. */
838 target = lambda_matrix_new (depth, depth);
839 lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
841 target_nest = lambda_loopnest_new (depth, invariants);
843 for (i = 0; i < depth; i++)
846 /* Get a new loop structure. */
847 target_loop = lambda_loop_new ();
848 LN_LOOPS (target_nest)[i] = target_loop;
850 /* Computes the gcd of the coefficients of the linear part. */
851 gcd1 = gcd_vector (target[i], i);
853 /* Include the denominator in the GCD. */
854 gcd1 = gcd (gcd1, determinant);
856 /* Now divide through by the gcd. */
857 for (j = 0; j < i; j++)
858 target[i][j] = target[i][j] / gcd1;
860 expression = lambda_linear_expression_new (depth, invariants);
861 lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
862 LLE_DENOMINATOR (expression) = determinant / gcd1;
863 LLE_CONSTANT (expression) = 0;
864 lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
865 invariants);
866 LL_LINEAR_OFFSET (target_loop) = expression;
869 /* For each loop, compute the new bounds from H. */
870 for (i = 0; i < depth; i++)
872 auxillary_loop = LN_LOOPS (auxillary_nest)[i];
873 target_loop = LN_LOOPS (target_nest)[i];
874 LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
875 factor = LTM_MATRIX (H)[i][i];
877 /* First we do the lower bound. */
878 auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
880 for (; auxillary_expr != NULL;
881 auxillary_expr = LLE_NEXT (auxillary_expr))
883 target_expr = lambda_linear_expression_new (depth, invariants);
884 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
885 depth, inverse, depth,
886 LLE_COEFFICIENTS (target_expr));
887 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
888 LLE_COEFFICIENTS (target_expr), depth,
889 factor);
891 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
892 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
893 LLE_INVARIANT_COEFFICIENTS (target_expr),
894 invariants);
895 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
896 LLE_INVARIANT_COEFFICIENTS (target_expr),
897 invariants, factor);
898 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
900 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
902 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
903 * determinant;
904 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
905 (target_expr),
906 LLE_INVARIANT_COEFFICIENTS
907 (target_expr), invariants,
908 determinant);
909 LLE_DENOMINATOR (target_expr) =
910 LLE_DENOMINATOR (target_expr) * determinant;
912 /* Find the gcd and divide by it here, rather than doing it
913 at the tree level. */
914 gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
915 gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
916 invariants);
917 gcd1 = gcd (gcd1, gcd2);
918 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
919 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
920 for (j = 0; j < depth; j++)
921 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
922 for (j = 0; j < invariants; j++)
923 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
924 LLE_CONSTANT (target_expr) /= gcd1;
925 LLE_DENOMINATOR (target_expr) /= gcd1;
926 /* Ignore if identical to existing bound. */
927 if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
928 invariants))
930 LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
931 LL_LOWER_BOUND (target_loop) = target_expr;
934 /* Now do the upper bound. */
935 auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
937 for (; auxillary_expr != NULL;
938 auxillary_expr = LLE_NEXT (auxillary_expr))
940 target_expr = lambda_linear_expression_new (depth, invariants);
941 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
942 depth, inverse, depth,
943 LLE_COEFFICIENTS (target_expr));
944 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
945 LLE_COEFFICIENTS (target_expr), depth,
946 factor);
947 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
948 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
949 LLE_INVARIANT_COEFFICIENTS (target_expr),
950 invariants);
951 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
952 LLE_INVARIANT_COEFFICIENTS (target_expr),
953 invariants, factor);
954 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
956 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
958 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
959 * determinant;
960 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
961 (target_expr),
962 LLE_INVARIANT_COEFFICIENTS
963 (target_expr), invariants,
964 determinant);
965 LLE_DENOMINATOR (target_expr) =
966 LLE_DENOMINATOR (target_expr) * determinant;
968 /* Find the gcd and divide by it here, instead of at the
969 tree level. */
970 gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
971 gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
972 invariants);
973 gcd1 = gcd (gcd1, gcd2);
974 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
975 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
976 for (j = 0; j < depth; j++)
977 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
978 for (j = 0; j < invariants; j++)
979 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
980 LLE_CONSTANT (target_expr) /= gcd1;
981 LLE_DENOMINATOR (target_expr) /= gcd1;
982 /* Ignore if equal to existing bound. */
983 if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
984 invariants))
986 LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
987 LL_UPPER_BOUND (target_loop) = target_expr;
991 for (i = 0; i < depth; i++)
993 target_loop = LN_LOOPS (target_nest)[i];
994 /* If necessary, exchange the upper and lower bounds and negate
995 the step size. */
996 if (stepsigns[i] < 0)
998 LL_STEP (target_loop) *= -1;
999 tmp_expr = LL_LOWER_BOUND (target_loop);
1000 LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
1001 LL_UPPER_BOUND (target_loop) = tmp_expr;
1004 return target_nest;
1007 /* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
1008 result. */
1010 static lambda_vector
1011 lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
1013 lambda_matrix matrix, H;
1014 int size;
1015 lambda_vector newsteps;
1016 int i, j, factor, minimum_column;
1017 int temp;
1019 matrix = LTM_MATRIX (trans);
1020 size = LTM_ROWSIZE (trans);
1021 H = lambda_matrix_new (size, size);
1023 newsteps = lambda_vector_new (size);
1024 lambda_vector_copy (stepsigns, newsteps, size);
1026 lambda_matrix_copy (matrix, H, size, size);
1028 for (j = 0; j < size; j++)
1030 lambda_vector row;
1031 row = H[j];
1032 for (i = j; i < size; i++)
1033 if (row[i] < 0)
1034 lambda_matrix_col_negate (H, size, i);
1035 while (lambda_vector_first_nz (row, size, j + 1) < size)
1037 minimum_column = lambda_vector_min_nz (row, size, j);
1038 lambda_matrix_col_exchange (H, size, j, minimum_column);
1040 temp = newsteps[j];
1041 newsteps[j] = newsteps[minimum_column];
1042 newsteps[minimum_column] = temp;
1044 for (i = j + 1; i < size; i++)
1046 factor = row[i] / row[j];
1047 lambda_matrix_col_add (H, size, j, i, -1 * factor);
1051 return newsteps;
1054 /* Transform NEST according to TRANS, and return the new loopnest.
1055 This involves
1056 1. Computing a lattice base for the transformation
1057 2. Composing the dense base with the specified transformation (TRANS)
1058 3. Decomposing the combined transformation into a lower triangular portion,
1059 and a unimodular portion.
1060 4. Computing the auxillary nest using the unimodular portion.
1061 5. Computing the target nest using the auxillary nest and the lower
1062 triangular portion. */
1064 lambda_loopnest
1065 lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
1067 lambda_loopnest auxillary_nest, target_nest;
1069 int depth, invariants;
1070 int i, j;
1071 lambda_lattice lattice;
1072 lambda_trans_matrix trans1, H, U;
1073 lambda_loop loop;
1074 lambda_linear_expression expression;
1075 lambda_vector origin;
1076 lambda_matrix origin_invariants;
1077 lambda_vector stepsigns;
1078 int f;
1080 depth = LN_DEPTH (nest);
1081 invariants = LN_INVARIANTS (nest);
1083 /* Keep track of the signs of the loop steps. */
1084 stepsigns = lambda_vector_new (depth);
1085 for (i = 0; i < depth; i++)
1087 if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
1088 stepsigns[i] = 1;
1089 else
1090 stepsigns[i] = -1;
1093 /* Compute the lattice base. */
1094 lattice = lambda_lattice_compute_base (nest);
1095 trans1 = lambda_trans_matrix_new (depth, depth);
1097 /* Multiply the transformation matrix by the lattice base. */
1099 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
1100 LTM_MATRIX (trans1), depth, depth, depth);
1102 /* Compute the Hermite normal form for the new transformation matrix. */
1103 H = lambda_trans_matrix_new (depth, depth);
1104 U = lambda_trans_matrix_new (depth, depth);
1105 lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
1106 LTM_MATRIX (U));
1108 /* Compute the auxiliary loop nest's space from the unimodular
1109 portion. */
1110 auxillary_nest = lambda_compute_auxillary_space (nest, U);
1112 /* Compute the loop step signs from the old step signs and the
1113 transformation matrix. */
1114 stepsigns = lambda_compute_step_signs (trans1, stepsigns);
1116 /* Compute the target loop nest space from the auxiliary nest and
1117 the lower triangular matrix H. */
1118 target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
1119 origin = lambda_vector_new (depth);
1120 origin_invariants = lambda_matrix_new (depth, invariants);
1121 lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
1122 LATTICE_ORIGIN (lattice), origin);
1123 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
1124 origin_invariants, depth, depth, invariants);
1126 for (i = 0; i < depth; i++)
1128 loop = LN_LOOPS (target_nest)[i];
1129 expression = LL_LINEAR_OFFSET (loop);
1130 if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
1131 f = 1;
1132 else
1133 f = LLE_DENOMINATOR (expression);
1135 LLE_CONSTANT (expression) += f * origin[i];
1137 for (j = 0; j < invariants; j++)
1138 LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
1139 f * origin_invariants[i][j];
1142 return target_nest;
1146 /* Convert a gcc tree expression EXPR to a lambda linear expression, and
1147 return the new expression. DEPTH is the depth of the loopnest.
1148 OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1149 in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
1150 is the amount we have to add/subtract from the expression because of the
1151 type of comparison it is used in. */
1153 static lambda_linear_expression
1154 gcc_tree_to_linear_expression (int depth, tree expr,
1155 VEC(tree) *outerinductionvars,
1156 VEC(tree) *invariants, int extra)
1158 lambda_linear_expression lle = NULL;
1159 switch (TREE_CODE (expr))
1161 case INTEGER_CST:
1163 lle = lambda_linear_expression_new (depth, 2 * depth);
1164 LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
1165 if (extra != 0)
1166 LLE_CONSTANT (lle) += extra;
1168 LLE_DENOMINATOR (lle) = 1;
1170 break;
1171 case SSA_NAME:
1173 tree iv, invar;
1174 size_t i;
1175 for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
1176 if (iv != NULL)
1178 if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
1180 lle = lambda_linear_expression_new (depth, 2 * depth);
1181 LLE_COEFFICIENTS (lle)[i] = 1;
1182 if (extra != 0)
1183 LLE_CONSTANT (lle) = extra;
1185 LLE_DENOMINATOR (lle) = 1;
1188 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1189 if (invar != NULL)
1191 if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
1193 lle = lambda_linear_expression_new (depth, 2 * depth);
1194 LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
1195 if (extra != 0)
1196 LLE_CONSTANT (lle) = extra;
1197 LLE_DENOMINATOR (lle) = 1;
1201 break;
1202 default:
1203 return NULL;
1206 return lle;
1209 /* Return the depth of the loopnest NEST */
1211 static int
1212 depth_of_nest (struct loop *nest)
1214 size_t depth = 0;
1215 while (nest)
1217 depth++;
1218 nest = nest->inner;
1220 return depth;
1224 /* Return true if OP is invariant in LOOP and all outer loops. */
1226 static bool
1227 invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
1229 if (is_gimple_min_invariant (op))
1230 return true;
1231 if (loop->depth == 0)
1232 return true;
1233 if (!expr_invariant_in_loop_p (loop, op))
1234 return false;
1235 if (loop->outer
1236 && !invariant_in_loop_and_outer_loops (loop->outer, op))
1237 return false;
1238 return true;
1241 /* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
1242 or NULL if it could not be converted.
1243 DEPTH is the depth of the loop.
1244 INVARIANTS is a pointer to the array of loop invariants.
1245 The induction variable for this loop should be stored in the parameter
1246 OURINDUCTIONVAR.
1247 OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
1249 static lambda_loop
1250 gcc_loop_to_lambda_loop (struct loop *loop, int depth,
1251 VEC (tree) ** invariants,
1252 tree * ourinductionvar,
1253 VEC (tree) * outerinductionvars,
1254 VEC (tree) ** lboundvars,
1255 VEC (tree) ** uboundvars,
1256 VEC (int) ** steps)
1258 tree phi;
1259 tree exit_cond;
1260 tree access_fn, inductionvar;
1261 tree step;
1262 lambda_loop lloop = NULL;
1263 lambda_linear_expression lbound, ubound;
1264 tree test;
1265 int stepint;
1266 int extra = 0;
1267 tree lboundvar, uboundvar, uboundresult;
1268 use_optype uses;
1270 /* Find out induction var and exit condition. */
1271 inductionvar = find_induction_var_from_exit_cond (loop);
1272 exit_cond = get_loop_exit_condition (loop);
1274 if (inductionvar == NULL || exit_cond == NULL)
1276 if (dump_file && (dump_flags & TDF_DETAILS))
1277 fprintf (dump_file,
1278 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1279 return NULL;
1282 test = TREE_OPERAND (exit_cond, 0);
1284 if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
1287 if (dump_file && (dump_flags & TDF_DETAILS))
1288 fprintf (dump_file,
1289 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1291 return NULL;
1294 phi = SSA_NAME_DEF_STMT (inductionvar);
1295 if (TREE_CODE (phi) != PHI_NODE)
1297 get_stmt_operands (phi);
1298 uses = STMT_USE_OPS (phi);
1300 if (!uses)
1303 if (dump_file && (dump_flags & TDF_DETAILS))
1304 fprintf (dump_file,
1305 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1307 return NULL;
1310 phi = USE_OP (uses, 0);
1311 phi = SSA_NAME_DEF_STMT (phi);
1312 if (TREE_CODE (phi) != PHI_NODE)
1315 if (dump_file && (dump_flags & TDF_DETAILS))
1316 fprintf (dump_file,
1317 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1318 return NULL;
1323 /* The induction variable name/version we want to put in the array is the
1324 result of the induction variable phi node. */
1325 *ourinductionvar = PHI_RESULT (phi);
1326 access_fn = instantiate_parameters
1327 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1328 if (access_fn == chrec_dont_know)
1330 if (dump_file && (dump_flags & TDF_DETAILS))
1331 fprintf (dump_file,
1332 "Unable to convert loop: Access function for induction variable phi is unknown\n");
1334 return NULL;
1337 step = evolution_part_in_loop_num (access_fn, loop->num);
1338 if (!step || step == chrec_dont_know)
1340 if (dump_file && (dump_flags & TDF_DETAILS))
1341 fprintf (dump_file,
1342 "Unable to convert loop: Cannot determine step of loop.\n");
1344 return NULL;
1346 if (TREE_CODE (step) != INTEGER_CST)
1349 if (dump_file && (dump_flags & TDF_DETAILS))
1350 fprintf (dump_file,
1351 "Unable to convert loop: Step of loop is not integer.\n");
1352 return NULL;
1355 stepint = TREE_INT_CST_LOW (step);
1357 /* Only want phis for induction vars, which will have two
1358 arguments. */
1359 if (PHI_NUM_ARGS (phi) != 2)
1361 if (dump_file && (dump_flags & TDF_DETAILS))
1362 fprintf (dump_file,
1363 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1364 return NULL;
1367 /* Another induction variable check. One argument's source should be
1368 in the loop, one outside the loop. */
1369 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
1370 && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
1373 if (dump_file && (dump_flags & TDF_DETAILS))
1374 fprintf (dump_file,
1375 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1377 return NULL;
1380 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
1382 lboundvar = PHI_ARG_DEF (phi, 1);
1383 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1384 outerinductionvars, *invariants,
1387 else
1389 lboundvar = PHI_ARG_DEF (phi, 0);
1390 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1391 outerinductionvars, *invariants,
1395 if (!lbound)
1398 if (dump_file && (dump_flags & TDF_DETAILS))
1399 fprintf (dump_file,
1400 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1402 return NULL;
1404 /* One part of the test may be a loop invariant tree. */
1405 if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
1406 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
1407 VEC_safe_push (tree, *invariants, TREE_OPERAND (test, 1));
1408 else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
1409 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
1410 VEC_safe_push (tree, *invariants, TREE_OPERAND (test, 0));
1412 /* The non-induction variable part of the test is the upper bound variable.
1414 if (TREE_OPERAND (test, 0) == inductionvar)
1415 uboundvar = TREE_OPERAND (test, 1);
1416 else
1417 uboundvar = TREE_OPERAND (test, 0);
1420 /* We only size the vectors assuming we have, at max, 2 times as many
1421 invariants as we do loops (one for each bound).
1422 This is just an arbitrary number, but it has to be matched against the
1423 code below. */
1424 gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
1427 /* We might have some leftover. */
1428 if (TREE_CODE (test) == LT_EXPR)
1429 extra = -1 * stepint;
1430 else if (TREE_CODE (test) == NE_EXPR)
1431 extra = -1 * stepint;
1432 else if (TREE_CODE (test) == GT_EXPR)
1433 extra = -1 * stepint;
1434 else if (TREE_CODE (test) == EQ_EXPR)
1435 extra = 1 * stepint;
1437 ubound = gcc_tree_to_linear_expression (depth, uboundvar,
1438 outerinductionvars,
1439 *invariants, extra);
1440 uboundresult = build (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
1441 build_int_cst (TREE_TYPE (uboundvar), extra));
1442 VEC_safe_push (tree, *uboundvars, uboundresult);
1443 VEC_safe_push (tree, *lboundvars, lboundvar);
1444 VEC_safe_push (int, *steps, stepint);
1445 if (!ubound)
1447 if (dump_file && (dump_flags & TDF_DETAILS))
1448 fprintf (dump_file,
1449 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1450 return NULL;
1453 lloop = lambda_loop_new ();
1454 LL_STEP (lloop) = stepint;
1455 LL_LOWER_BOUND (lloop) = lbound;
1456 LL_UPPER_BOUND (lloop) = ubound;
1457 return lloop;
1460 /* Given a LOOP, find the induction variable it is testing against in the exit
1461 condition. Return the induction variable if found, NULL otherwise. */
1463 static tree
1464 find_induction_var_from_exit_cond (struct loop *loop)
1466 tree expr = get_loop_exit_condition (loop);
1467 tree ivarop;
1468 tree test;
1469 if (expr == NULL_TREE)
1470 return NULL_TREE;
1471 if (TREE_CODE (expr) != COND_EXPR)
1472 return NULL_TREE;
1473 test = TREE_OPERAND (expr, 0);
1474 if (!COMPARISON_CLASS_P (test))
1475 return NULL_TREE;
1477 /* Find the side that is invariant in this loop. The ivar must be the other
1478 side. */
1480 if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
1481 ivarop = TREE_OPERAND (test, 1);
1482 else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
1483 ivarop = TREE_OPERAND (test, 0);
1484 else
1485 return NULL_TREE;
1487 if (TREE_CODE (ivarop) != SSA_NAME)
1488 return NULL_TREE;
1489 return ivarop;
1492 DEF_VEC_GC_P(lambda_loop);
1493 /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1494 Return the new loop nest.
1495 INDUCTIONVARS is a pointer to an array of induction variables for the
1496 loopnest that will be filled in during this process.
1497 INVARIANTS is a pointer to an array of invariants that will be filled in
1498 during this process. */
1500 lambda_loopnest
1501 gcc_loopnest_to_lambda_loopnest (struct loops *currloops,
1502 struct loop * loop_nest,
1503 VEC (tree) **inductionvars,
1504 VEC (tree) **invariants,
1505 bool need_perfect_nest)
1507 lambda_loopnest ret;
1508 struct loop *temp;
1509 int depth = 0;
1510 size_t i;
1511 VEC (lambda_loop) *loops = NULL;
1512 VEC (tree) *uboundvars = NULL;
1513 VEC (tree) *lboundvars = NULL;
1514 VEC (int) *steps = NULL;
1515 lambda_loop newloop;
1516 tree inductionvar = NULL;
1518 depth = depth_of_nest (loop_nest);
1519 temp = loop_nest;
1520 while (temp)
1522 newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
1523 &inductionvar, *inductionvars,
1524 &lboundvars, &uboundvars,
1525 &steps);
1526 if (!newloop)
1527 return NULL;
1528 VEC_safe_push (tree, *inductionvars, inductionvar);
1529 VEC_safe_push (lambda_loop, loops, newloop);
1530 temp = temp->inner;
1532 if (need_perfect_nest)
1534 if (!perfect_nestify (currloops, loop_nest,
1535 lboundvars, uboundvars, steps, *inductionvars))
1537 if (dump_file)
1538 fprintf (dump_file, "Not a perfect loop nest and couldn't convert to one.\n");
1539 return NULL;
1541 else if (dump_file)
1542 fprintf (dump_file, "Successfully converted loop nest to perfect loop nest.\n");
1546 ret = lambda_loopnest_new (depth, 2 * depth);
1547 for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
1548 LN_LOOPS (ret)[i] = newloop;
1550 return ret;
1555 /* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1556 STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1557 inserted for us are stored. INDUCTION_VARS is the array of induction
1558 variables for the loop this LBV is from. TYPE is the tree type to use for
1559 the variables and trees involved. */
1561 static tree
1562 lbv_to_gcc_expression (lambda_body_vector lbv,
1563 tree type, VEC (tree) *induction_vars,
1564 tree * stmts_to_insert)
1566 tree stmts, stmt, resvar, name;
1567 tree iv;
1568 size_t i;
1569 tree_stmt_iterator tsi;
1571 /* Create a statement list and a linear expression temporary. */
1572 stmts = alloc_stmt_list ();
1573 resvar = create_tmp_var (type, "lbvtmp");
1574 add_referenced_tmp_var (resvar);
1576 /* Start at 0. */
1577 stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1578 name = make_ssa_name (resvar, stmt);
1579 TREE_OPERAND (stmt, 0) = name;
1580 tsi = tsi_last (stmts);
1581 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1583 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
1585 if (LBV_COEFFICIENTS (lbv)[i] != 0)
1587 tree newname;
1588 tree coeffmult;
1590 /* newname = coefficient * induction_variable */
1591 coeffmult = build_int_cst (type, LBV_COEFFICIENTS (lbv)[i]);
1592 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1593 fold (build (MULT_EXPR, type, iv, coeffmult)));
1595 newname = make_ssa_name (resvar, stmt);
1596 TREE_OPERAND (stmt, 0) = newname;
1597 fold_stmt (&stmt);
1598 tsi = tsi_last (stmts);
1599 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1601 /* name = name + newname */
1602 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1603 build (PLUS_EXPR, type, name, newname));
1604 name = make_ssa_name (resvar, stmt);
1605 TREE_OPERAND (stmt, 0) = name;
1606 fold_stmt (&stmt);
1607 tsi = tsi_last (stmts);
1608 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1613 /* Handle any denominator that occurs. */
1614 if (LBV_DENOMINATOR (lbv) != 1)
1616 tree denominator = build_int_cst (type, LBV_DENOMINATOR (lbv));
1617 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1618 build (CEIL_DIV_EXPR, type, name, denominator));
1619 name = make_ssa_name (resvar, stmt);
1620 TREE_OPERAND (stmt, 0) = name;
1621 fold_stmt (&stmt);
1622 tsi = tsi_last (stmts);
1623 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1625 *stmts_to_insert = stmts;
1626 return name;
1629 /* Convert a linear expression from coefficient and constant form to a
1630 gcc tree.
1631 Return the tree that represents the final value of the expression.
1632 LLE is the linear expression to convert.
1633 OFFSET is the linear offset to apply to the expression.
1634 TYPE is the tree type to use for the variables and math.
1635 INDUCTION_VARS is a vector of induction variables for the loops.
1636 INVARIANTS is a vector of the loop nest invariants.
1637 WRAP specifies what tree code to wrap the results in, if there is more than
1638 one (it is either MAX_EXPR, or MIN_EXPR).
1639 STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1640 statements that need to be inserted for the linear expression. */
1642 static tree
1643 lle_to_gcc_expression (lambda_linear_expression lle,
1644 lambda_linear_expression offset,
1645 tree type,
1646 VEC(tree) *induction_vars,
1647 VEC(tree) *invariants,
1648 enum tree_code wrap, tree * stmts_to_insert)
1650 tree stmts, stmt, resvar, name;
1651 size_t i;
1652 tree_stmt_iterator tsi;
1653 tree iv, invar;
1654 VEC(tree) *results = NULL;
1656 name = NULL_TREE;
1657 /* Create a statement list and a linear expression temporary. */
1658 stmts = alloc_stmt_list ();
1659 resvar = create_tmp_var (type, "lletmp");
1660 add_referenced_tmp_var (resvar);
1662 /* Build up the linear expressions, and put the variable representing the
1663 result in the results array. */
1664 for (; lle != NULL; lle = LLE_NEXT (lle))
1666 /* Start at name = 0. */
1667 stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1668 name = make_ssa_name (resvar, stmt);
1669 TREE_OPERAND (stmt, 0) = name;
1670 fold_stmt (&stmt);
1671 tsi = tsi_last (stmts);
1672 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1674 /* First do the induction variables.
1675 at the end, name = name + all the induction variables added
1676 together. */
1677 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
1679 if (LLE_COEFFICIENTS (lle)[i] != 0)
1681 tree newname;
1682 tree mult;
1683 tree coeff;
1685 /* mult = induction variable * coefficient. */
1686 if (LLE_COEFFICIENTS (lle)[i] == 1)
1688 mult = VEC_index (tree, induction_vars, i);
1690 else
1692 coeff = build_int_cst (type,
1693 LLE_COEFFICIENTS (lle)[i]);
1694 mult = fold (build (MULT_EXPR, type, iv, coeff));
1697 /* newname = mult */
1698 stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
1699 newname = make_ssa_name (resvar, stmt);
1700 TREE_OPERAND (stmt, 0) = newname;
1701 fold_stmt (&stmt);
1702 tsi = tsi_last (stmts);
1703 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1705 /* name = name + newname */
1706 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1707 build (PLUS_EXPR, type, name, newname));
1708 name = make_ssa_name (resvar, stmt);
1709 TREE_OPERAND (stmt, 0) = name;
1710 fold_stmt (&stmt);
1711 tsi = tsi_last (stmts);
1712 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1716 /* Handle our invariants.
1717 At the end, we have name = name + result of adding all multiplied
1718 invariants. */
1719 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1721 if (LLE_INVARIANT_COEFFICIENTS (lle)[i] != 0)
1723 tree newname;
1724 tree mult;
1725 tree coeff;
1726 int invcoeff = LLE_INVARIANT_COEFFICIENTS (lle)[i];
1727 /* mult = invariant * coefficient */
1728 if (invcoeff == 1)
1730 mult = invar;
1732 else
1734 coeff = build_int_cst (type, invcoeff);
1735 mult = fold (build (MULT_EXPR, type, invar, coeff));
1738 /* newname = mult */
1739 stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
1740 newname = make_ssa_name (resvar, stmt);
1741 TREE_OPERAND (stmt, 0) = newname;
1742 fold_stmt (&stmt);
1743 tsi = tsi_last (stmts);
1744 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1746 /* name = name + newname */
1747 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1748 build (PLUS_EXPR, type, name, newname));
1749 name = make_ssa_name (resvar, stmt);
1750 TREE_OPERAND (stmt, 0) = name;
1751 fold_stmt (&stmt);
1752 tsi = tsi_last (stmts);
1753 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1757 /* Now handle the constant.
1758 name = name + constant. */
1759 if (LLE_CONSTANT (lle) != 0)
1761 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1762 build (PLUS_EXPR, type, name,
1763 build_int_cst (type, LLE_CONSTANT (lle))));
1764 name = make_ssa_name (resvar, stmt);
1765 TREE_OPERAND (stmt, 0) = name;
1766 fold_stmt (&stmt);
1767 tsi = tsi_last (stmts);
1768 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1771 /* Now handle the offset.
1772 name = name + linear offset. */
1773 if (LLE_CONSTANT (offset) != 0)
1775 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1776 build (PLUS_EXPR, type, name,
1777 build_int_cst (type, LLE_CONSTANT (offset))));
1778 name = make_ssa_name (resvar, stmt);
1779 TREE_OPERAND (stmt, 0) = name;
1780 fold_stmt (&stmt);
1781 tsi = tsi_last (stmts);
1782 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1785 /* Handle any denominator that occurs. */
1786 if (LLE_DENOMINATOR (lle) != 1)
1788 if (wrap == MAX_EXPR)
1789 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1790 build (CEIL_DIV_EXPR, type, name,
1791 build_int_cst (type, LLE_DENOMINATOR (lle))));
1792 else if (wrap == MIN_EXPR)
1793 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1794 build (FLOOR_DIV_EXPR, type, name,
1795 build_int_cst (type, LLE_DENOMINATOR (lle))));
1796 else
1797 gcc_unreachable();
1799 /* name = {ceil, floor}(name/denominator) */
1800 name = make_ssa_name (resvar, stmt);
1801 TREE_OPERAND (stmt, 0) = name;
1802 tsi = tsi_last (stmts);
1803 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1805 VEC_safe_push (tree, results, name);
1808 /* Again, out of laziness, we don't handle this case yet. It's not
1809 hard, it just hasn't occurred. */
1810 gcc_assert (VEC_length (tree, results) <= 2);
1812 /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
1813 if (VEC_length (tree, results) > 1)
1815 tree op1 = VEC_index (tree, results, 0);
1816 tree op2 = VEC_index (tree, results, 1);
1817 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1818 build (wrap, type, op1, op2));
1819 name = make_ssa_name (resvar, stmt);
1820 TREE_OPERAND (stmt, 0) = name;
1821 tsi = tsi_last (stmts);
1822 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1825 *stmts_to_insert = stmts;
1826 return name;
1829 /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1830 it, back into gcc code. This changes the
1831 loops, their induction variables, and their bodies, so that they
1832 match the transformed loopnest.
1833 OLD_LOOPNEST is the loopnest before we've replaced it with the new
1834 loopnest.
1835 OLD_IVS is a vector of induction variables from the old loopnest.
1836 INVARIANTS is a vector of loop invariants from the old loopnest.
1837 NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1838 TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1839 NEW_LOOPNEST. */
1841 void
1842 lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
1843 VEC(tree) *old_ivs,
1844 VEC(tree) *invariants,
1845 lambda_loopnest new_loopnest,
1846 lambda_trans_matrix transform)
1849 struct loop *temp;
1850 size_t i = 0;
1851 size_t depth = 0;
1852 VEC(tree) *new_ivs = NULL;
1853 tree oldiv;
1855 block_stmt_iterator bsi;
1857 if (dump_file)
1859 transform = lambda_trans_matrix_inverse (transform);
1860 fprintf (dump_file, "Inverse of transformation matrix:\n");
1861 print_lambda_trans_matrix (dump_file, transform);
1863 depth = depth_of_nest (old_loopnest);
1864 temp = old_loopnest;
1866 while (temp)
1868 lambda_loop newloop;
1869 basic_block bb;
1870 edge exit;
1871 tree ivvar, ivvarinced, exitcond, stmts;
1872 enum tree_code testtype;
1873 tree newupperbound, newlowerbound;
1874 lambda_linear_expression offset;
1875 tree type;
1876 bool insert_after;
1878 oldiv = VEC_index (tree, old_ivs, i);
1879 type = TREE_TYPE (oldiv);
1881 /* First, build the new induction variable temporary */
1883 ivvar = create_tmp_var (type, "lnivtmp");
1884 add_referenced_tmp_var (ivvar);
1886 VEC_safe_push (tree, new_ivs, ivvar);
1888 newloop = LN_LOOPS (new_loopnest)[i];
1890 /* Linear offset is a bit tricky to handle. Punt on the unhandled
1891 cases for now. */
1892 offset = LL_LINEAR_OFFSET (newloop);
1894 gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
1895 lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
1897 /* Now build the new lower bounds, and insert the statements
1898 necessary to generate it on the loop preheader. */
1899 newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
1900 LL_LINEAR_OFFSET (newloop),
1901 type,
1902 new_ivs,
1903 invariants, MAX_EXPR, &stmts);
1904 bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
1905 bsi_commit_edge_inserts ();
1906 /* Build the new upper bound and insert its statements in the
1907 basic block of the exit condition */
1908 newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
1909 LL_LINEAR_OFFSET (newloop),
1910 type,
1911 new_ivs,
1912 invariants, MIN_EXPR, &stmts);
1913 exit = temp->single_exit;
1914 exitcond = get_loop_exit_condition (temp);
1915 bb = bb_for_stmt (exitcond);
1916 bsi = bsi_start (bb);
1917 bsi_insert_after (&bsi, stmts, BSI_NEW_STMT);
1919 /* Create the new iv. */
1921 standard_iv_increment_position (temp, &bsi, &insert_after);
1922 create_iv (newlowerbound,
1923 build_int_cst (type, LL_STEP (newloop)),
1924 ivvar, temp, &bsi, insert_after, &ivvar,
1925 &ivvarinced);
1927 /* Replace the exit condition with the new upper bound
1928 comparison. */
1930 testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
1932 /* We want to build a conditional where true means exit the loop, and
1933 false means continue the loop.
1934 So swap the testtype if this isn't the way things are.*/
1936 if (exit->flags & EDGE_FALSE_VALUE)
1937 testtype = swap_tree_comparison (testtype);
1939 COND_EXPR_COND (exitcond) = build (testtype,
1940 boolean_type_node,
1941 newupperbound, ivvarinced);
1942 modify_stmt (exitcond);
1943 VEC_replace (tree, new_ivs, i, ivvar);
1945 i++;
1946 temp = temp->inner;
1949 /* Rewrite uses of the old ivs so that they are now specified in terms of
1950 the new ivs. */
1952 for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
1954 int j;
1955 dataflow_t imm = get_immediate_uses (SSA_NAME_DEF_STMT (oldiv));
1956 for (j = 0; j < num_immediate_uses (imm); j++)
1958 tree stmt = immediate_use (imm, j);
1959 use_operand_p use_p;
1960 ssa_op_iter iter;
1961 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1962 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1964 if (USE_FROM_PTR (use_p) == oldiv)
1966 tree newiv, stmts;
1967 lambda_body_vector lbv, newlbv;
1968 /* Compute the new expression for the induction
1969 variable. */
1970 depth = VEC_length (tree, new_ivs);
1971 lbv = lambda_body_vector_new (depth);
1972 LBV_COEFFICIENTS (lbv)[i] = 1;
1974 newlbv = lambda_body_vector_compute_new (transform, lbv);
1976 newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
1977 new_ivs, &stmts);
1978 bsi = bsi_for_stmt (stmt);
1979 /* Insert the statements to build that
1980 expression. */
1981 bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
1982 propagate_value (use_p, newiv);
1983 modify_stmt (stmt);
1992 /* Returns true when the vector V is lexicographically positive, in
1993 other words, when the first nonzero element is positive. */
1995 static bool
1996 lambda_vector_lexico_pos (lambda_vector v,
1997 unsigned n)
1999 unsigned i;
2000 for (i = 0; i < n; i++)
2002 if (v[i] == 0)
2003 continue;
2004 if (v[i] < 0)
2005 return false;
2006 if (v[i] > 0)
2007 return true;
2009 return true;
2013 /* Return TRUE if this is not interesting statement from the perspective of
2014 determining if we have a perfect loop nest. */
2016 static bool
2017 not_interesting_stmt (tree stmt)
2019 /* Note that COND_EXPR's aren't interesting because if they were exiting the
2020 loop, we would have already failed the number of exits tests. */
2021 if (TREE_CODE (stmt) == LABEL_EXPR
2022 || TREE_CODE (stmt) == GOTO_EXPR
2023 || TREE_CODE (stmt) == COND_EXPR)
2024 return true;
2025 return false;
2028 /* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
2030 static bool
2031 phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
2033 int i;
2034 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
2035 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, i)->src))
2036 if (PHI_ARG_DEF (phi, i) == def)
2037 return true;
2038 return false;
2041 /* Return TRUE if STMT is a use of PHI_RESULT. */
2043 static bool
2044 stmt_uses_phi_result (tree stmt, tree phi_result)
2046 use_optype uses = STMT_USE_OPS (stmt);
2048 /* This is conservatively true, because we only want SIMPLE bumpers
2049 of the form x +- constant for our pass. */
2050 if (NUM_USES (uses) != 1)
2051 return false;
2052 if (USE_OP (uses, 0) == phi_result)
2053 return true;
2055 return false;
2058 /* STMT is a bumper stmt for LOOP if the version it defines is used in the
2059 in-loop-edge in a phi node, and the operand it uses is the result of that
2060 phi node.
2061 I.E. i_29 = i_3 + 1
2062 i_3 = PHI (0, i_29); */
2064 static bool
2065 stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
2067 tree use;
2068 tree def;
2069 def_optype defs = STMT_DEF_OPS (stmt);
2070 dataflow_t imm;
2071 int i;
2073 if (NUM_DEFS (defs) != 1)
2074 return false;
2075 def = DEF_OP (defs, 0);
2076 imm = get_immediate_uses (stmt);
2077 for (i = 0; i < num_immediate_uses (imm); i++)
2079 use = immediate_use (imm, i);
2080 if (TREE_CODE (use) == PHI_NODE)
2082 if (phi_loop_edge_uses_def (loop, use, def))
2083 if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
2084 return true;
2087 return false;
2091 /* Return true if LOOP is a perfect loop nest.
2092 Perfect loop nests are those loop nests where all code occurs in the
2093 innermost loop body.
2094 If S is a program statement, then
2096 i.e.
2097 DO I = 1, 20
2099 DO J = 1, 20
2101 END DO
2102 END DO
2103 is not a perfect loop nest because of S1.
2105 DO I = 1, 20
2106 DO J = 1, 20
2109 END DO
2110 END DO
2111 is a perfect loop nest.
2113 Since we don't have high level loops anymore, we basically have to walk our
2114 statements and ignore those that are there because the loop needs them (IE
2115 the induction variable increment, and jump back to the top of the loop). */
2117 bool
2118 perfect_nest_p (struct loop *loop)
2120 basic_block *bbs;
2121 size_t i;
2122 tree exit_cond;
2124 if (!loop->inner)
2125 return true;
2126 bbs = get_loop_body (loop);
2127 exit_cond = get_loop_exit_condition (loop);
2128 for (i = 0; i < loop->num_nodes; i++)
2130 if (bbs[i]->loop_father == loop)
2132 block_stmt_iterator bsi;
2133 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2135 tree stmt = bsi_stmt (bsi);
2136 if (stmt == exit_cond
2137 || not_interesting_stmt (stmt)
2138 || stmt_is_bumper_for_loop (loop, stmt))
2139 continue;
2140 free (bbs);
2141 return false;
2145 free (bbs);
2146 /* See if the inner loops are perfectly nested as well. */
2147 if (loop->inner)
2148 return perfect_nest_p (loop->inner);
2149 return true;
2152 /* Replace the USES of tree X in STMT with tree Y */
2154 static void
2155 replace_uses_of_x_with_y (tree stmt, tree x, tree y)
2157 use_optype uses = STMT_USE_OPS (stmt);
2158 size_t i;
2159 for (i = 0; i < NUM_USES (uses); i++)
2161 if (USE_OP (uses, i) == x)
2162 SET_USE_OP (uses, i, y);
2166 /* Return TRUE if STMT uses tree OP in it's uses. */
2168 static bool
2169 stmt_uses_op (tree stmt, tree op)
2171 use_optype uses = STMT_USE_OPS (stmt);
2172 size_t i;
2173 for (i = 0; i < NUM_USES (uses); i++)
2175 if (USE_OP (uses, i) == op)
2176 return true;
2178 return false;
2181 /* Return TRUE if LOOP is an imperfect nest that we can convert to a perfect
2182 one. LOOPIVS is a vector of induction variables, one per loop.
2183 ATM, we only handle imperfect nests of depth 2, where all of the statements
2184 occur after the inner loop. */
2186 static bool
2187 can_convert_to_perfect_nest (struct loop *loop,
2188 VEC (tree) *loopivs)
2190 basic_block *bbs;
2191 tree exit_condition, phi;
2192 size_t i;
2193 block_stmt_iterator bsi;
2194 basic_block exitdest;
2196 /* Can't handle triply nested+ loops yet. */
2197 if (!loop->inner || loop->inner->inner)
2198 return false;
2200 /* We only handle moving the after-inner-body statements right now, so make
2201 sure all the statements we need to move are located in that position. */
2202 bbs = get_loop_body (loop);
2203 exit_condition = get_loop_exit_condition (loop);
2204 for (i = 0; i < loop->num_nodes; i++)
2206 if (bbs[i]->loop_father == loop)
2208 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2210 size_t j;
2211 tree stmt = bsi_stmt (bsi);
2212 if (stmt == exit_condition
2213 || not_interesting_stmt (stmt)
2214 || stmt_is_bumper_for_loop (loop, stmt))
2215 continue;
2216 /* If the statement uses inner loop ivs, we == screwed. */
2217 for (j = 1; j < VEC_length (tree, loopivs); j++)
2218 if (stmt_uses_op (stmt, VEC_index (tree, loopivs, j)))
2220 free (bbs);
2221 return false;
2224 /* If the bb of a statement we care about isn't dominated by
2225 the header of the inner loop, then we are also screwed. */
2226 if (!dominated_by_p (CDI_DOMINATORS,
2227 bb_for_stmt (stmt),
2228 loop->inner->header))
2230 free (bbs);
2231 return false;
2237 /* We also need to make sure the loop exit only has simple copy phis in it,
2238 otherwise we don't know how to transform it into a perfect nest right
2239 now. */
2240 exitdest = loop->single_exit->dest;
2242 for (phi = phi_nodes (exitdest); phi; phi = PHI_CHAIN (phi))
2243 if (PHI_NUM_ARGS (phi) != 1)
2244 return false;
2246 return true;
2249 /* Transform the loop nest into a perfect nest, if possible.
2250 LOOPS is the current struct loops *
2251 LOOP is the loop nest to transform into a perfect nest
2252 LBOUNDS are the lower bounds for the loops to transform
2253 UBOUNDS are the upper bounds for the loops to transform
2254 STEPS is the STEPS for the loops to transform.
2255 LOOPIVS is the induction variables for the loops to transform.
2257 Basically, for the case of
2259 FOR (i = 0; i < 50; i++)
2261 FOR (j =0; j < 50; j++)
2263 <whatever>
2265 <some code>
2268 This function will transform it into a perfect loop nest by splitting the
2269 outer loop into two loops, like so:
2271 FOR (i = 0; i < 50; i++)
2273 FOR (j = 0; j < 50; j++)
2275 <whatever>
2279 FOR (i = 0; i < 50; i ++)
2281 <some code>
2284 Return FALSE if we can't make this loop into a perfect nest. */
2285 static bool
2286 perfect_nestify (struct loops *loops,
2287 struct loop *loop,
2288 VEC (tree) *lbounds,
2289 VEC (tree) *ubounds,
2290 VEC (int) *steps,
2291 VEC (tree) *loopivs)
2293 basic_block *bbs;
2294 tree exit_condition;
2295 tree then_label, else_label, cond_stmt;
2296 basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
2297 size_t i;
2298 block_stmt_iterator bsi;
2299 bool insert_after;
2300 edge e;
2301 struct loop *newloop;
2302 tree phi;
2303 tree uboundvar;
2304 tree stmt;
2305 tree oldivvar, ivvar, ivvarinced;
2306 VEC (tree) *phis = NULL;
2308 if (!can_convert_to_perfect_nest (loop, loopivs))
2309 return false;
2311 /* Create the new loop */
2313 olddest = loop->single_exit->dest;
2314 preheaderbb = loop_split_edge_with (loop->single_exit, NULL);
2315 headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2317 /* Push the exit phi nodes that we are moving. */
2318 for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
2320 VEC_safe_push (tree, phis, PHI_RESULT (phi));
2321 VEC_safe_push (tree, phis, PHI_ARG_DEF (phi, 0));
2323 e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
2325 /* Remove the exit phis from the old basic block. Make sure to set
2326 PHI_RESULT to null so it doesn't get released. */
2327 while (phi_nodes (olddest) != NULL)
2329 SET_PHI_RESULT (phi_nodes (olddest), NULL);
2330 remove_phi_node (phi_nodes (olddest), NULL);
2333 /* and add them back to the new basic block. */
2334 while (VEC_length (tree, phis) != 0)
2336 tree def;
2337 tree phiname;
2338 def = VEC_pop (tree, phis);
2339 phiname = VEC_pop (tree, phis);
2340 phi = create_phi_node (phiname, preheaderbb);
2341 add_phi_arg (phi, def, single_pred_edge (preheaderbb));
2343 flush_pending_stmts (e);
2345 bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2346 latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2347 make_edge (headerbb, bodybb, EDGE_FALLTHRU);
2348 then_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (latchbb));
2349 else_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (olddest));
2350 cond_stmt = build (COND_EXPR, void_type_node,
2351 build (NE_EXPR, boolean_type_node,
2352 integer_one_node,
2353 integer_zero_node),
2354 then_label, else_label);
2355 bsi = bsi_start (bodybb);
2356 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
2357 e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
2358 make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
2359 make_edge (latchbb, headerbb, EDGE_FALLTHRU);
2361 /* Update the loop structures. */
2362 newloop = duplicate_loop (loops, loop, olddest->loop_father);
2363 newloop->header = headerbb;
2364 newloop->latch = latchbb;
2365 newloop->single_exit = e;
2366 add_bb_to_loop (latchbb, newloop);
2367 add_bb_to_loop (bodybb, newloop);
2368 add_bb_to_loop (headerbb, newloop);
2369 add_bb_to_loop (preheaderbb, olddest->loop_father);
2370 set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
2371 set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
2372 set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
2373 loop->single_exit->src);
2374 set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
2375 set_immediate_dominator (CDI_DOMINATORS, olddest, bodybb);
2376 /* Create the new iv. */
2377 ivvar = create_tmp_var (integer_type_node, "perfectiv");
2378 add_referenced_tmp_var (ivvar);
2379 standard_iv_increment_position (newloop, &bsi, &insert_after);
2380 create_iv (VEC_index (tree, lbounds, 0),
2381 build_int_cst (integer_type_node, VEC_index (int, steps, 0)),
2382 ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
2384 /* Create the new upper bound. This may be not just a variable, so we copy
2385 it to one just in case. */
2387 exit_condition = get_loop_exit_condition (newloop);
2388 uboundvar = create_tmp_var (integer_type_node, "uboundvar");
2389 add_referenced_tmp_var (uboundvar);
2390 stmt = build (MODIFY_EXPR, void_type_node, uboundvar,
2391 VEC_index (tree, ubounds, 0));
2392 uboundvar = make_ssa_name (uboundvar, stmt);
2393 TREE_OPERAND (stmt, 0) = uboundvar;
2395 if (insert_after)
2396 bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
2397 else
2398 bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
2400 COND_EXPR_COND (exit_condition) = build (GE_EXPR,
2401 boolean_type_node,
2402 uboundvar,
2403 ivvarinced);
2405 bbs = get_loop_body (loop);
2406 /* Now replace the induction variable in the moved statements with the
2407 correct loop induction variable. */
2408 oldivvar = VEC_index (tree, loopivs, 0);
2409 for (i = 0; i < loop->num_nodes; i++)
2411 block_stmt_iterator tobsi = bsi_last (bodybb);
2412 if (bbs[i]->loop_father == loop)
2414 /* Note that the bsi only needs to be explicitly incremented
2415 when we don't move something, since it is automatically
2416 incremented when we do. */
2417 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2419 tree stmt = bsi_stmt (bsi);
2420 if (stmt == exit_condition
2421 || not_interesting_stmt (stmt)
2422 || stmt_is_bumper_for_loop (loop, stmt))
2424 bsi_next (&bsi);
2425 continue;
2427 replace_uses_of_x_with_y (stmt, oldivvar, ivvar);
2428 bsi_move_before (&bsi, &tobsi);
2432 free (bbs);
2433 return perfect_nest_p (loop);
2436 /* Return true if TRANS is a legal transformation matrix that respects
2437 the dependence vectors in DISTS and DIRS. The conservative answer
2438 is false.
2440 "Wolfe proves that a unimodular transformation represented by the
2441 matrix T is legal when applied to a loop nest with a set of
2442 lexicographically non-negative distance vectors RDG if and only if
2443 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
2444 i.e.: if and only if it transforms the lexicographically positive
2445 distance vectors to lexicographically positive vectors. Note that
2446 a unimodular matrix must transform the zero vector (and only it) to
2447 the zero vector." S.Muchnick. */
2449 bool
2450 lambda_transform_legal_p (lambda_trans_matrix trans,
2451 int nb_loops,
2452 varray_type dependence_relations)
2454 unsigned int i;
2455 lambda_vector distres;
2456 struct data_dependence_relation *ddr;
2458 #if defined ENABLE_CHECKING
2459 if (LTM_COLSIZE (trans) != nb_loops
2460 || LTM_ROWSIZE (trans) != nb_loops)
2461 abort ();
2462 #endif
2464 /* When there is an unknown relation in the dependence_relations, we
2465 know that it is no worth looking at this loop nest: give up. */
2466 ddr = (struct data_dependence_relation *)
2467 VARRAY_GENERIC_PTR (dependence_relations, 0);
2468 if (ddr == NULL)
2469 return true;
2470 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2471 return false;
2473 distres = lambda_vector_new (nb_loops);
2475 /* For each distance vector in the dependence graph. */
2476 for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
2478 ddr = (struct data_dependence_relation *)
2479 VARRAY_GENERIC_PTR (dependence_relations, i);
2481 /* Don't care about relations for which we know that there is no
2482 dependence, nor about read-read (aka. output-dependences):
2483 these data accesses can happen in any order. */
2484 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
2485 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
2486 continue;
2488 /* Conservatively answer: "this transformation is not valid". */
2489 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2490 return false;
2492 /* If the dependence could not be captured by a distance vector,
2493 conservatively answer that the transform is not valid. */
2494 if (DDR_DIST_VECT (ddr) == NULL)
2495 return false;
2497 /* Compute trans.dist_vect */
2498 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
2499 DDR_DIST_VECT (ddr), distres);
2501 if (!lambda_vector_lexico_pos (distres, nb_loops))
2502 return false;
2504 return true;