Daily bump.
[official-gcc.git] / gcc / gcse.c
blob467a50aa706af0a890518f24a31ad5d1d8791c16
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
171 #include "timevar.h"
173 /* Propagate flow information through back edges and thus enable PRE's
174 moving loop invariant calculations out of loops.
176 Originally this tended to create worse overall code, but several
177 improvements during the development of PRE seem to have made following
178 back edges generally a win.
180 Note much of the loop invariant code motion done here would normally
181 be done by loop.c, which has more heuristics for when to move invariants
182 out of loops. At some point we might need to move some of those
183 heuristics into gcse.c. */
185 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
186 are a superset of those done by GCSE.
188 We perform the following steps:
190 1) Compute basic block information.
192 2) Compute table of places where registers are set.
194 3) Perform copy/constant propagation.
196 4) Perform global cse using lazy code motion if not optimizing
197 for size, or code hoisting if we are.
199 5) Perform another pass of copy/constant propagation.
201 Two passes of copy/constant propagation are done because the first one
202 enables more GCSE and the second one helps to clean up the copies that
203 GCSE creates. This is needed more for PRE than for Classic because Classic
204 GCSE will try to use an existing register containing the common
205 subexpression rather than create a new one. This is harder to do for PRE
206 because of the code motion (which Classic GCSE doesn't do).
208 Expressions we are interested in GCSE-ing are of the form
209 (set (pseudo-reg) (expression)).
210 Function want_to_gcse_p says what these are.
212 PRE handles moving invariant expressions out of loops (by treating them as
213 partially redundant).
215 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
216 assignment) based GVN (global value numbering). L. T. Simpson's paper
217 (Rice University) on value numbering is a useful reference for this.
219 **********************
221 We used to support multiple passes but there are diminishing returns in
222 doing so. The first pass usually makes 90% of the changes that are doable.
223 A second pass can make a few more changes made possible by the first pass.
224 Experiments show any further passes don't make enough changes to justify
225 the expense.
227 A study of spec92 using an unlimited number of passes:
228 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
229 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
230 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
232 It was found doing copy propagation between each pass enables further
233 substitutions.
235 PRE is quite expensive in complicated functions because the DFA can take
236 a while to converge. Hence we only perform one pass. The parameter
237 max-gcse-passes can be modified if one wants to experiment.
239 **********************
241 The steps for PRE are:
243 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245 2) Perform the data flow analysis for PRE.
247 3) Delete the redundant instructions
249 4) Insert the required copies [if any] that make the partially
250 redundant instructions fully redundant.
252 5) For other reaching expressions, insert an instruction to copy the value
253 to a newly created pseudo that will reach the redundant instruction.
255 The deletion is done first so that when we do insertions we
256 know which pseudo reg to use.
258 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
259 argue it is not. The number of iterations for the algorithm to converge
260 is typically 2-4 so I don't view it as that expensive (relatively speaking).
262 PRE GCSE depends heavily on the second CSE pass to clean up the copies
263 we create. To make an expression reach the place where it's redundant,
264 the result of the expression is copied to a new register, and the redundant
265 expression is deleted by replacing it with this new register. Classic GCSE
266 doesn't have this problem as much as it computes the reaching defs of
267 each register in each block and thus can try to use an existing
268 register. */
270 /* GCSE global vars. */
272 /* -dG dump file. */
273 static FILE *gcse_file;
275 /* Note whether or not we should run jump optimization after gcse. We
276 want to do this for two cases.
278 * If we changed any jumps via cprop.
280 * If we added any labels via edge splitting. */
281 static int run_jump_opt_after_gcse;
283 /* Bitmaps are normally not included in debugging dumps.
284 However it's useful to be able to print them from GDB.
285 We could create special functions for this, but it's simpler to
286 just allow passing stderr to the dump_foo fns. Since stderr can
287 be a macro, we store a copy here. */
288 static FILE *debug_stderr;
290 /* An obstack for our working variables. */
291 static struct obstack gcse_obstack;
293 struct reg_use {rtx reg_rtx; };
295 /* Hash table of expressions. */
297 struct expr
299 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
300 rtx expr;
301 /* Index in the available expression bitmaps. */
302 int bitmap_index;
303 /* Next entry with the same hash. */
304 struct expr *next_same_hash;
305 /* List of anticipatable occurrences in basic blocks in the function.
306 An "anticipatable occurrence" is one that is the first occurrence in the
307 basic block, the operands are not modified in the basic block prior
308 to the occurrence and the output is not used between the start of
309 the block and the occurrence. */
310 struct occr *antic_occr;
311 /* List of available occurrence in basic blocks in the function.
312 An "available occurrence" is one that is the last occurrence in the
313 basic block and the operands are not modified by following statements in
314 the basic block [including this insn]. */
315 struct occr *avail_occr;
316 /* Non-null if the computation is PRE redundant.
317 The value is the newly created pseudo-reg to record a copy of the
318 expression in all the places that reach the redundant copy. */
319 rtx reaching_reg;
322 /* Occurrence of an expression.
323 There is one per basic block. If a pattern appears more than once the
324 last appearance is used [or first for anticipatable expressions]. */
326 struct occr
328 /* Next occurrence of this expression. */
329 struct occr *next;
330 /* The insn that computes the expression. */
331 rtx insn;
332 /* Nonzero if this [anticipatable] occurrence has been deleted. */
333 char deleted_p;
334 /* Nonzero if this [available] occurrence has been copied to
335 reaching_reg. */
336 /* ??? This is mutually exclusive with deleted_p, so they could share
337 the same byte. */
338 char copied_p;
341 /* Expression and copy propagation hash tables.
342 Each hash table is an array of buckets.
343 ??? It is known that if it were an array of entries, structure elements
344 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
345 not clear whether in the final analysis a sufficient amount of memory would
346 be saved as the size of the available expression bitmaps would be larger
347 [one could build a mapping table without holes afterwards though].
348 Someday I'll perform the computation and figure it out. */
350 struct hash_table
352 /* The table itself.
353 This is an array of `expr_hash_table_size' elements. */
354 struct expr **table;
356 /* Size of the hash table, in elements. */
357 unsigned int size;
359 /* Number of hash table elements. */
360 unsigned int n_elems;
362 /* Whether the table is expression of copy propagation one. */
363 int set_p;
366 /* Expression hash table. */
367 static struct hash_table expr_hash_table;
369 /* Copy propagation hash table. */
370 static struct hash_table set_hash_table;
372 /* Mapping of uids to cuids.
373 Only real insns get cuids. */
374 static int *uid_cuid;
376 /* Highest UID in UID_CUID. */
377 static int max_uid;
379 /* Get the cuid of an insn. */
380 #ifdef ENABLE_CHECKING
381 #define INSN_CUID(INSN) \
382 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
383 #else
384 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
385 #endif
387 /* Number of cuids. */
388 static int max_cuid;
390 /* Mapping of cuids to insns. */
391 static rtx *cuid_insn;
393 /* Get insn from cuid. */
394 #define CUID_INSN(CUID) (cuid_insn[CUID])
396 /* Maximum register number in function prior to doing gcse + 1.
397 Registers created during this pass have regno >= max_gcse_regno.
398 This is named with "gcse" to not collide with global of same name. */
399 static unsigned int max_gcse_regno;
401 /* Table of registers that are modified.
403 For each register, each element is a list of places where the pseudo-reg
404 is set.
406 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
407 requires knowledge of which blocks kill which regs [and thus could use
408 a bitmap instead of the lists `reg_set_table' uses].
410 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
411 num-regs) [however perhaps it may be useful to keep the data as is]. One
412 advantage of recording things this way is that `reg_set_table' is fairly
413 sparse with respect to pseudo regs but for hard regs could be fairly dense
414 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
415 up functions like compute_transp since in the case of pseudo-regs we only
416 need to iterate over the number of times a pseudo-reg is set, not over the
417 number of basic blocks [clearly there is a bit of a slow down in the cases
418 where a pseudo is set more than once in a block, however it is believed
419 that the net effect is to speed things up]. This isn't done for hard-regs
420 because recording call-clobbered hard-regs in `reg_set_table' at each
421 function call can consume a fair bit of memory, and iterating over
422 hard-regs stored this way in compute_transp will be more expensive. */
424 typedef struct reg_set
426 /* The next setting of this register. */
427 struct reg_set *next;
428 /* The index of the block where it was set. */
429 int bb_index;
430 } reg_set;
432 static reg_set **reg_set_table;
434 /* Size of `reg_set_table'.
435 The table starts out at max_gcse_regno + slop, and is enlarged as
436 necessary. */
437 static int reg_set_table_size;
439 /* Amount to grow `reg_set_table' by when it's full. */
440 #define REG_SET_TABLE_SLOP 100
442 /* This is a list of expressions which are MEMs and will be used by load
443 or store motion.
444 Load motion tracks MEMs which aren't killed by
445 anything except itself. (i.e., loads and stores to a single location).
446 We can then allow movement of these MEM refs with a little special
447 allowance. (all stores copy the same value to the reaching reg used
448 for the loads). This means all values used to store into memory must have
449 no side effects so we can re-issue the setter value.
450 Store Motion uses this structure as an expression table to track stores
451 which look interesting, and might be moveable towards the exit block. */
453 struct ls_expr
455 struct expr * expr; /* Gcse expression reference for LM. */
456 rtx pattern; /* Pattern of this mem. */
457 rtx pattern_regs; /* List of registers mentioned by the mem. */
458 rtx loads; /* INSN list of loads seen. */
459 rtx stores; /* INSN list of stores seen. */
460 struct ls_expr * next; /* Next in the list. */
461 int invalid; /* Invalid for some reason. */
462 int index; /* If it maps to a bitmap index. */
463 unsigned int hash_index; /* Index when in a hash table. */
464 rtx reaching_reg; /* Register to use when re-writing. */
467 /* Array of implicit set patterns indexed by basic block index. */
468 static rtx *implicit_sets;
470 /* Head of the list of load/store memory refs. */
471 static struct ls_expr * pre_ldst_mems = NULL;
473 /* Bitmap containing one bit for each register in the program.
474 Used when performing GCSE to track which registers have been set since
475 the start of the basic block. */
476 static regset reg_set_bitmap;
478 /* For each block, a bitmap of registers set in the block.
479 This is used by compute_transp.
480 It is computed during hash table computation and not by compute_sets
481 as it includes registers added since the last pass (or between cprop and
482 gcse) and it's currently not easy to realloc sbitmap vectors. */
483 static sbitmap *reg_set_in_block;
485 /* Array, indexed by basic block number for a list of insns which modify
486 memory within that block. */
487 static rtx * modify_mem_list;
488 static bitmap modify_mem_list_set;
490 /* This array parallels modify_mem_list, but is kept canonicalized. */
491 static rtx * canon_modify_mem_list;
493 /* Bitmap indexed by block numbers to record which blocks contain
494 function calls. */
495 static bitmap blocks_with_calls;
497 /* Various variables for statistics gathering. */
499 /* Memory used in a pass.
500 This isn't intended to be absolutely precise. Its intent is only
501 to keep an eye on memory usage. */
502 static int bytes_used;
504 /* GCSE substitutions made. */
505 static int gcse_subst_count;
506 /* Number of copy instructions created. */
507 static int gcse_create_count;
508 /* Number of local constants propagated. */
509 static int local_const_prop_count;
510 /* Number of local copys propagated. */
511 static int local_copy_prop_count;
512 /* Number of global constants propagated. */
513 static int global_const_prop_count;
514 /* Number of global copys propagated. */
515 static int global_copy_prop_count;
517 /* For available exprs */
518 static sbitmap *ae_kill, *ae_gen;
520 static void compute_can_copy (void);
521 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
522 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
523 static void *grealloc (void *, size_t);
524 static void *gcse_alloc (unsigned long);
525 static void alloc_gcse_mem (rtx);
526 static void free_gcse_mem (void);
527 static void alloc_reg_set_mem (int);
528 static void free_reg_set_mem (void);
529 static void record_one_set (int, rtx);
530 static void record_set_info (rtx, rtx, void *);
531 static void compute_sets (rtx);
532 static void hash_scan_insn (rtx, struct hash_table *, int);
533 static void hash_scan_set (rtx, rtx, struct hash_table *);
534 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
535 static void hash_scan_call (rtx, rtx, struct hash_table *);
536 static int want_to_gcse_p (rtx);
537 static bool can_assign_to_reg_p (rtx);
538 static bool gcse_constant_p (rtx);
539 static int oprs_unchanged_p (rtx, rtx, int);
540 static int oprs_anticipatable_p (rtx, rtx);
541 static int oprs_available_p (rtx, rtx);
542 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
543 struct hash_table *);
544 static void insert_set_in_table (rtx, rtx, struct hash_table *);
545 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
546 static unsigned int hash_set (int, int);
547 static int expr_equiv_p (rtx, rtx);
548 static void record_last_reg_set_info (rtx, int);
549 static void record_last_mem_set_info (rtx);
550 static void record_last_set_info (rtx, rtx, void *);
551 static void compute_hash_table (struct hash_table *);
552 static void alloc_hash_table (int, struct hash_table *, int);
553 static void free_hash_table (struct hash_table *);
554 static void compute_hash_table_work (struct hash_table *);
555 static void dump_hash_table (FILE *, const char *, struct hash_table *);
556 static struct expr *lookup_set (unsigned int, struct hash_table *);
557 static struct expr *next_set (unsigned int, struct expr *);
558 static void reset_opr_set_tables (void);
559 static int oprs_not_set_p (rtx, rtx);
560 static void mark_call (rtx);
561 static void mark_set (rtx, rtx);
562 static void mark_clobber (rtx, rtx);
563 static void mark_oprs_set (rtx);
564 static void alloc_cprop_mem (int, int);
565 static void free_cprop_mem (void);
566 static void compute_transp (rtx, int, sbitmap *, int);
567 static void compute_transpout (void);
568 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
569 struct hash_table *);
570 static void compute_cprop_data (void);
571 static void find_used_regs (rtx *, void *);
572 static int try_replace_reg (rtx, rtx, rtx);
573 static struct expr *find_avail_set (int, rtx);
574 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
575 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
576 static int load_killed_in_block_p (basic_block, int, rtx, int);
577 static void canon_list_insert (rtx, rtx, void *);
578 static int cprop_insn (rtx, int);
579 static int cprop (int);
580 static void find_implicit_sets (void);
581 static int one_cprop_pass (int, int, int);
582 static bool constprop_register (rtx, rtx, rtx, int);
583 static struct expr *find_bypass_set (int, int);
584 static bool reg_killed_on_edge (rtx, edge);
585 static int bypass_block (basic_block, rtx, rtx);
586 static int bypass_conditional_jumps (void);
587 static void alloc_pre_mem (int, int);
588 static void free_pre_mem (void);
589 static void compute_pre_data (void);
590 static int pre_expr_reaches_here_p (basic_block, struct expr *,
591 basic_block);
592 static void insert_insn_end_bb (struct expr *, basic_block, int);
593 static void pre_insert_copy_insn (struct expr *, rtx);
594 static void pre_insert_copies (void);
595 static int pre_delete (void);
596 static int pre_gcse (void);
597 static int one_pre_gcse_pass (int);
598 static void add_label_notes (rtx, rtx);
599 static void alloc_code_hoist_mem (int, int);
600 static void free_code_hoist_mem (void);
601 static void compute_code_hoist_vbeinout (void);
602 static void compute_code_hoist_data (void);
603 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
604 static void hoist_code (void);
605 static int one_code_hoisting_pass (void);
606 static rtx process_insert_insn (struct expr *);
607 static int pre_edge_insert (struct edge_list *, struct expr **);
608 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
609 basic_block, char *);
610 static struct ls_expr * ldst_entry (rtx);
611 static void free_ldst_entry (struct ls_expr *);
612 static void free_ldst_mems (void);
613 static void print_ldst_list (FILE *);
614 static struct ls_expr * find_rtx_in_ldst (rtx);
615 static int enumerate_ldsts (void);
616 static inline struct ls_expr * first_ls_expr (void);
617 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
618 static int simple_mem (rtx);
619 static void invalidate_any_buried_refs (rtx);
620 static void compute_ld_motion_mems (void);
621 static void trim_ld_motion_mems (void);
622 static void update_ld_motion_stores (struct expr *);
623 static void reg_set_info (rtx, rtx, void *);
624 static void reg_clear_last_set (rtx, rtx, void *);
625 static bool store_ops_ok (rtx, int *);
626 static rtx extract_mentioned_regs (rtx);
627 static rtx extract_mentioned_regs_helper (rtx, rtx);
628 static void find_moveable_store (rtx, int *, int *);
629 static int compute_store_table (void);
630 static bool load_kills_store (rtx, rtx, int);
631 static bool find_loads (rtx, rtx, int);
632 static bool store_killed_in_insn (rtx, rtx, rtx, int);
633 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
634 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
635 static void build_store_vectors (void);
636 static void insert_insn_start_bb (rtx, basic_block);
637 static int insert_store (struct ls_expr *, edge);
638 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
639 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
640 static void delete_store (struct ls_expr *, basic_block);
641 static void free_store_memory (void);
642 static void store_motion (void);
643 static void free_insn_expr_list_list (rtx *);
644 static void clear_modify_mem_tables (void);
645 static void free_modify_mem_tables (void);
646 static rtx gcse_emit_move_after (rtx, rtx, rtx);
647 static void local_cprop_find_used_regs (rtx *, void *);
648 static bool do_local_cprop (rtx, rtx, int, rtx*);
649 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
650 static void local_cprop_pass (int);
651 static bool is_too_expensive (const char *);
654 /* Entry point for global common subexpression elimination.
655 F is the first instruction in the function. Return nonzero if a
656 change is mode. */
659 gcse_main (rtx f, FILE *file)
661 int changed, pass;
662 /* Bytes used at start of pass. */
663 int initial_bytes_used;
664 /* Maximum number of bytes used by a pass. */
665 int max_pass_bytes;
666 /* Point to release obstack data from for each pass. */
667 char *gcse_obstack_bottom;
669 /* We do not construct an accurate cfg in functions which call
670 setjmp, so just punt to be safe. */
671 if (current_function_calls_setjmp)
672 return 0;
674 /* Assume that we do not need to run jump optimizations after gcse. */
675 run_jump_opt_after_gcse = 0;
677 /* For calling dump_foo fns from gdb. */
678 debug_stderr = stderr;
679 gcse_file = file;
681 /* Identify the basic block information for this function, including
682 successors and predecessors. */
683 max_gcse_regno = max_reg_num ();
685 if (file)
686 dump_flow_info (file);
688 /* Return if there's nothing to do, or it is too expensive. */
689 if (n_basic_blocks <= 1 || is_too_expensive (_("GCSE disabled")))
690 return 0;
692 gcc_obstack_init (&gcse_obstack);
693 bytes_used = 0;
695 /* We need alias. */
696 init_alias_analysis ();
697 /* Record where pseudo-registers are set. This data is kept accurate
698 during each pass. ??? We could also record hard-reg information here
699 [since it's unchanging], however it is currently done during hash table
700 computation.
702 It may be tempting to compute MEM set information here too, but MEM sets
703 will be subject to code motion one day and thus we need to compute
704 information about memory sets when we build the hash tables. */
706 alloc_reg_set_mem (max_gcse_regno);
707 compute_sets (f);
709 pass = 0;
710 initial_bytes_used = bytes_used;
711 max_pass_bytes = 0;
712 gcse_obstack_bottom = gcse_alloc (1);
713 changed = 1;
714 while (changed && pass < MAX_GCSE_PASSES)
716 changed = 0;
717 if (file)
718 fprintf (file, "GCSE pass %d\n\n", pass + 1);
720 /* Initialize bytes_used to the space for the pred/succ lists,
721 and the reg_set_table data. */
722 bytes_used = initial_bytes_used;
724 /* Each pass may create new registers, so recalculate each time. */
725 max_gcse_regno = max_reg_num ();
727 alloc_gcse_mem (f);
729 /* Don't allow constant propagation to modify jumps
730 during this pass. */
731 timevar_push (TV_CPROP1);
732 changed = one_cprop_pass (pass + 1, 0, 0);
733 timevar_pop (TV_CPROP1);
735 if (optimize_size)
736 /* Do nothing. */ ;
737 else
739 timevar_push (TV_PRE);
740 changed |= one_pre_gcse_pass (pass + 1);
741 /* We may have just created new basic blocks. Release and
742 recompute various things which are sized on the number of
743 basic blocks. */
744 if (changed)
746 free_modify_mem_tables ();
747 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
748 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
750 free_reg_set_mem ();
751 alloc_reg_set_mem (max_reg_num ());
752 compute_sets (f);
753 run_jump_opt_after_gcse = 1;
754 timevar_pop (TV_PRE);
757 if (max_pass_bytes < bytes_used)
758 max_pass_bytes = bytes_used;
760 /* Free up memory, then reallocate for code hoisting. We can
761 not re-use the existing allocated memory because the tables
762 will not have info for the insns or registers created by
763 partial redundancy elimination. */
764 free_gcse_mem ();
766 /* It does not make sense to run code hoisting unless we are optimizing
767 for code size -- it rarely makes programs faster, and can make
768 them bigger if we did partial redundancy elimination (when optimizing
769 for space, we don't run the partial redundancy algorithms). */
770 if (optimize_size)
772 timevar_push (TV_HOIST);
773 max_gcse_regno = max_reg_num ();
774 alloc_gcse_mem (f);
775 changed |= one_code_hoisting_pass ();
776 free_gcse_mem ();
778 if (max_pass_bytes < bytes_used)
779 max_pass_bytes = bytes_used;
780 timevar_pop (TV_HOIST);
783 if (file)
785 fprintf (file, "\n");
786 fflush (file);
789 obstack_free (&gcse_obstack, gcse_obstack_bottom);
790 pass++;
793 /* Do one last pass of copy propagation, including cprop into
794 conditional jumps. */
796 max_gcse_regno = max_reg_num ();
797 alloc_gcse_mem (f);
798 /* This time, go ahead and allow cprop to alter jumps. */
799 timevar_push (TV_CPROP2);
800 one_cprop_pass (pass + 1, 1, 0);
801 timevar_pop (TV_CPROP2);
802 free_gcse_mem ();
804 if (file)
806 fprintf (file, "GCSE of %s: %d basic blocks, ",
807 current_function_name (), n_basic_blocks);
808 fprintf (file, "%d pass%s, %d bytes\n\n",
809 pass, pass > 1 ? "es" : "", max_pass_bytes);
812 obstack_free (&gcse_obstack, NULL);
813 free_reg_set_mem ();
815 /* We are finished with alias. */
816 end_alias_analysis ();
817 allocate_reg_info (max_reg_num (), FALSE, FALSE);
819 if (!optimize_size && flag_gcse_sm)
821 timevar_push (TV_LSM);
822 store_motion ();
823 timevar_pop (TV_LSM);
826 /* Record where pseudo-registers are set. */
827 return run_jump_opt_after_gcse;
830 /* Misc. utilities. */
832 /* Nonzero for each mode that supports (set (reg) (reg)).
833 This is trivially true for integer and floating point values.
834 It may or may not be true for condition codes. */
835 static char can_copy[(int) NUM_MACHINE_MODES];
837 /* Compute which modes support reg/reg copy operations. */
839 static void
840 compute_can_copy (void)
842 int i;
843 #ifndef AVOID_CCMODE_COPIES
844 rtx reg, insn;
845 #endif
846 memset (can_copy, 0, NUM_MACHINE_MODES);
848 start_sequence ();
849 for (i = 0; i < NUM_MACHINE_MODES; i++)
850 if (GET_MODE_CLASS (i) == MODE_CC)
852 #ifdef AVOID_CCMODE_COPIES
853 can_copy[i] = 0;
854 #else
855 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
856 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
857 if (recog (PATTERN (insn), insn, NULL) >= 0)
858 can_copy[i] = 1;
859 #endif
861 else
862 can_copy[i] = 1;
864 end_sequence ();
867 /* Returns whether the mode supports reg/reg copy operations. */
869 bool
870 can_copy_p (enum machine_mode mode)
872 static bool can_copy_init_p = false;
874 if (! can_copy_init_p)
876 compute_can_copy ();
877 can_copy_init_p = true;
880 return can_copy[mode] != 0;
883 /* Cover function to xmalloc to record bytes allocated. */
885 static void *
886 gmalloc (size_t size)
888 bytes_used += size;
889 return xmalloc (size);
892 /* Cover function to xcalloc to record bytes allocated. */
894 static void *
895 gcalloc (size_t nelem, size_t elsize)
897 bytes_used += nelem * elsize;
898 return xcalloc (nelem, elsize);
901 /* Cover function to xrealloc.
902 We don't record the additional size since we don't know it.
903 It won't affect memory usage stats much anyway. */
905 static void *
906 grealloc (void *ptr, size_t size)
908 return xrealloc (ptr, size);
911 /* Cover function to obstack_alloc. */
913 static void *
914 gcse_alloc (unsigned long size)
916 bytes_used += size;
917 return obstack_alloc (&gcse_obstack, size);
920 /* Allocate memory for the cuid mapping array,
921 and reg/memory set tracking tables.
923 This is called at the start of each pass. */
925 static void
926 alloc_gcse_mem (rtx f)
928 int i;
929 rtx insn;
931 /* Find the largest UID and create a mapping from UIDs to CUIDs.
932 CUIDs are like UIDs except they increase monotonically, have no gaps,
933 and only apply to real insns. */
935 max_uid = get_max_uid ();
936 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
937 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
939 if (INSN_P (insn))
940 uid_cuid[INSN_UID (insn)] = i++;
941 else
942 uid_cuid[INSN_UID (insn)] = i;
945 /* Create a table mapping cuids to insns. */
947 max_cuid = i;
948 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
949 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
950 if (INSN_P (insn))
951 CUID_INSN (i++) = insn;
953 /* Allocate vars to track sets of regs. */
954 reg_set_bitmap = BITMAP_ALLOC (NULL);
956 /* Allocate vars to track sets of regs, memory per block. */
957 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
958 /* Allocate array to keep a list of insns which modify memory in each
959 basic block. */
960 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
961 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
962 modify_mem_list_set = BITMAP_ALLOC (NULL);
963 blocks_with_calls = BITMAP_ALLOC (NULL);
966 /* Free memory allocated by alloc_gcse_mem. */
968 static void
969 free_gcse_mem (void)
971 free (uid_cuid);
972 free (cuid_insn);
974 BITMAP_FREE (reg_set_bitmap);
976 sbitmap_vector_free (reg_set_in_block);
977 free_modify_mem_tables ();
978 BITMAP_FREE (modify_mem_list_set);
979 BITMAP_FREE (blocks_with_calls);
982 /* Compute the local properties of each recorded expression.
984 Local properties are those that are defined by the block, irrespective of
985 other blocks.
987 An expression is transparent in a block if its operands are not modified
988 in the block.
990 An expression is computed (locally available) in a block if it is computed
991 at least once and expression would contain the same value if the
992 computation was moved to the end of the block.
994 An expression is locally anticipatable in a block if it is computed at
995 least once and expression would contain the same value if the computation
996 was moved to the beginning of the block.
998 We call this routine for cprop, pre and code hoisting. They all compute
999 basically the same information and thus can easily share this code.
1001 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1002 properties. If NULL, then it is not necessary to compute or record that
1003 particular property.
1005 TABLE controls which hash table to look at. If it is set hash table,
1006 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1007 ABSALTERED. */
1009 static void
1010 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1011 struct hash_table *table)
1013 unsigned int i;
1015 /* Initialize any bitmaps that were passed in. */
1016 if (transp)
1018 if (table->set_p)
1019 sbitmap_vector_zero (transp, last_basic_block);
1020 else
1021 sbitmap_vector_ones (transp, last_basic_block);
1024 if (comp)
1025 sbitmap_vector_zero (comp, last_basic_block);
1026 if (antloc)
1027 sbitmap_vector_zero (antloc, last_basic_block);
1029 for (i = 0; i < table->size; i++)
1031 struct expr *expr;
1033 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1035 int indx = expr->bitmap_index;
1036 struct occr *occr;
1038 /* The expression is transparent in this block if it is not killed.
1039 We start by assuming all are transparent [none are killed], and
1040 then reset the bits for those that are. */
1041 if (transp)
1042 compute_transp (expr->expr, indx, transp, table->set_p);
1044 /* The occurrences recorded in antic_occr are exactly those that
1045 we want to set to nonzero in ANTLOC. */
1046 if (antloc)
1047 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1049 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1051 /* While we're scanning the table, this is a good place to
1052 initialize this. */
1053 occr->deleted_p = 0;
1056 /* The occurrences recorded in avail_occr are exactly those that
1057 we want to set to nonzero in COMP. */
1058 if (comp)
1059 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1061 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1063 /* While we're scanning the table, this is a good place to
1064 initialize this. */
1065 occr->copied_p = 0;
1068 /* While we're scanning the table, this is a good place to
1069 initialize this. */
1070 expr->reaching_reg = 0;
1075 /* Register set information.
1077 `reg_set_table' records where each register is set or otherwise
1078 modified. */
1080 static struct obstack reg_set_obstack;
1082 static void
1083 alloc_reg_set_mem (int n_regs)
1085 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1086 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1088 gcc_obstack_init (&reg_set_obstack);
1091 static void
1092 free_reg_set_mem (void)
1094 free (reg_set_table);
1095 obstack_free (&reg_set_obstack, NULL);
1098 /* Record REGNO in the reg_set table. */
1100 static void
1101 record_one_set (int regno, rtx insn)
1103 /* Allocate a new reg_set element and link it onto the list. */
1104 struct reg_set *new_reg_info;
1106 /* If the table isn't big enough, enlarge it. */
1107 if (regno >= reg_set_table_size)
1109 int new_size = regno + REG_SET_TABLE_SLOP;
1111 reg_set_table = grealloc (reg_set_table,
1112 new_size * sizeof (struct reg_set *));
1113 memset (reg_set_table + reg_set_table_size, 0,
1114 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1115 reg_set_table_size = new_size;
1118 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1119 bytes_used += sizeof (struct reg_set);
1120 new_reg_info->bb_index = BLOCK_NUM (insn);
1121 new_reg_info->next = reg_set_table[regno];
1122 reg_set_table[regno] = new_reg_info;
1125 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1126 an insn. The DATA is really the instruction in which the SET is
1127 occurring. */
1129 static void
1130 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1132 rtx record_set_insn = (rtx) data;
1134 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1135 record_one_set (REGNO (dest), record_set_insn);
1138 /* Scan the function and record each set of each pseudo-register.
1140 This is called once, at the start of the gcse pass. See the comments for
1141 `reg_set_table' for further documentation. */
1143 static void
1144 compute_sets (rtx f)
1146 rtx insn;
1148 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1149 if (INSN_P (insn))
1150 note_stores (PATTERN (insn), record_set_info, insn);
1153 /* Hash table support. */
1155 struct reg_avail_info
1157 basic_block last_bb;
1158 int first_set;
1159 int last_set;
1162 static struct reg_avail_info *reg_avail_info;
1163 static basic_block current_bb;
1166 /* See whether X, the source of a set, is something we want to consider for
1167 GCSE. */
1169 static int
1170 want_to_gcse_p (rtx x)
1172 switch (GET_CODE (x))
1174 case REG:
1175 case SUBREG:
1176 case CONST_INT:
1177 case CONST_DOUBLE:
1178 case CONST_VECTOR:
1179 case CALL:
1180 return 0;
1182 default:
1183 return can_assign_to_reg_p (x);
1187 /* Used internally by can_assign_to_reg_p. */
1189 static GTY(()) rtx test_insn;
1191 /* Return true if we can assign X to a pseudo register. */
1193 static bool
1194 can_assign_to_reg_p (rtx x)
1196 int num_clobbers = 0;
1197 int icode;
1199 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1200 if (general_operand (x, GET_MODE (x)))
1201 return 1;
1202 else if (GET_MODE (x) == VOIDmode)
1203 return 0;
1205 /* Otherwise, check if we can make a valid insn from it. First initialize
1206 our test insn if we haven't already. */
1207 if (test_insn == 0)
1209 test_insn
1210 = make_insn_raw (gen_rtx_SET (VOIDmode,
1211 gen_rtx_REG (word_mode,
1212 FIRST_PSEUDO_REGISTER * 2),
1213 const0_rtx));
1214 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1217 /* Now make an insn like the one we would make when GCSE'ing and see if
1218 valid. */
1219 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1220 SET_SRC (PATTERN (test_insn)) = x;
1221 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1222 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1225 /* Return nonzero if the operands of expression X are unchanged from the
1226 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1227 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1229 static int
1230 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1232 int i, j;
1233 enum rtx_code code;
1234 const char *fmt;
1236 if (x == 0)
1237 return 1;
1239 code = GET_CODE (x);
1240 switch (code)
1242 case REG:
1244 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1246 if (info->last_bb != current_bb)
1247 return 1;
1248 if (avail_p)
1249 return info->last_set < INSN_CUID (insn);
1250 else
1251 return info->first_set >= INSN_CUID (insn);
1254 case MEM:
1255 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1256 x, avail_p))
1257 return 0;
1258 else
1259 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1261 case PRE_DEC:
1262 case PRE_INC:
1263 case POST_DEC:
1264 case POST_INC:
1265 case PRE_MODIFY:
1266 case POST_MODIFY:
1267 return 0;
1269 case PC:
1270 case CC0: /*FIXME*/
1271 case CONST:
1272 case CONST_INT:
1273 case CONST_DOUBLE:
1274 case CONST_VECTOR:
1275 case SYMBOL_REF:
1276 case LABEL_REF:
1277 case ADDR_VEC:
1278 case ADDR_DIFF_VEC:
1279 return 1;
1281 default:
1282 break;
1285 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1287 if (fmt[i] == 'e')
1289 /* If we are about to do the last recursive call needed at this
1290 level, change it into iteration. This function is called enough
1291 to be worth it. */
1292 if (i == 0)
1293 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1295 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1296 return 0;
1298 else if (fmt[i] == 'E')
1299 for (j = 0; j < XVECLEN (x, i); j++)
1300 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1301 return 0;
1304 return 1;
1307 /* Used for communication between mems_conflict_for_gcse_p and
1308 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1309 conflict between two memory references. */
1310 static int gcse_mems_conflict_p;
1312 /* Used for communication between mems_conflict_for_gcse_p and
1313 load_killed_in_block_p. A memory reference for a load instruction,
1314 mems_conflict_for_gcse_p will see if a memory store conflicts with
1315 this memory load. */
1316 static rtx gcse_mem_operand;
1318 /* DEST is the output of an instruction. If it is a memory reference, and
1319 possibly conflicts with the load found in gcse_mem_operand, then set
1320 gcse_mems_conflict_p to a nonzero value. */
1322 static void
1323 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1324 void *data ATTRIBUTE_UNUSED)
1326 while (GET_CODE (dest) == SUBREG
1327 || GET_CODE (dest) == ZERO_EXTRACT
1328 || GET_CODE (dest) == STRICT_LOW_PART)
1329 dest = XEXP (dest, 0);
1331 /* If DEST is not a MEM, then it will not conflict with the load. Note
1332 that function calls are assumed to clobber memory, but are handled
1333 elsewhere. */
1334 if (! MEM_P (dest))
1335 return;
1337 /* If we are setting a MEM in our list of specially recognized MEMs,
1338 don't mark as killed this time. */
1340 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1342 if (!find_rtx_in_ldst (dest))
1343 gcse_mems_conflict_p = 1;
1344 return;
1347 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1348 rtx_addr_varies_p))
1349 gcse_mems_conflict_p = 1;
1352 /* Return nonzero if the expression in X (a memory reference) is killed
1353 in block BB before or after the insn with the CUID in UID_LIMIT.
1354 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1355 before UID_LIMIT.
1357 To check the entire block, set UID_LIMIT to max_uid + 1 and
1358 AVAIL_P to 0. */
1360 static int
1361 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1363 rtx list_entry = modify_mem_list[bb->index];
1364 while (list_entry)
1366 rtx setter;
1367 /* Ignore entries in the list that do not apply. */
1368 if ((avail_p
1369 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1370 || (! avail_p
1371 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1373 list_entry = XEXP (list_entry, 1);
1374 continue;
1377 setter = XEXP (list_entry, 0);
1379 /* If SETTER is a call everything is clobbered. Note that calls
1380 to pure functions are never put on the list, so we need not
1381 worry about them. */
1382 if (CALL_P (setter))
1383 return 1;
1385 /* SETTER must be an INSN of some kind that sets memory. Call
1386 note_stores to examine each hunk of memory that is modified.
1388 The note_stores interface is pretty limited, so we have to
1389 communicate via global variables. Yuk. */
1390 gcse_mem_operand = x;
1391 gcse_mems_conflict_p = 0;
1392 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1393 if (gcse_mems_conflict_p)
1394 return 1;
1395 list_entry = XEXP (list_entry, 1);
1397 return 0;
1400 /* Return nonzero if the operands of expression X are unchanged from
1401 the start of INSN's basic block up to but not including INSN. */
1403 static int
1404 oprs_anticipatable_p (rtx x, rtx insn)
1406 return oprs_unchanged_p (x, insn, 0);
1409 /* Return nonzero if the operands of expression X are unchanged from
1410 INSN to the end of INSN's basic block. */
1412 static int
1413 oprs_available_p (rtx x, rtx insn)
1415 return oprs_unchanged_p (x, insn, 1);
1418 /* Hash expression X.
1420 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1421 indicating if a volatile operand is found or if the expression contains
1422 something we don't want to insert in the table. HASH_TABLE_SIZE is
1423 the current size of the hash table to be probed. */
1425 static unsigned int
1426 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1427 int hash_table_size)
1429 unsigned int hash;
1431 *do_not_record_p = 0;
1433 hash = hash_rtx (x, mode, do_not_record_p,
1434 NULL, /*have_reg_qty=*/false);
1435 return hash % hash_table_size;
1438 /* Hash a set of register REGNO.
1440 Sets are hashed on the register that is set. This simplifies the PRE copy
1441 propagation code.
1443 ??? May need to make things more elaborate. Later, as necessary. */
1445 static unsigned int
1446 hash_set (int regno, int hash_table_size)
1448 unsigned int hash;
1450 hash = regno;
1451 return hash % hash_table_size;
1454 /* Return nonzero if exp1 is equivalent to exp2. */
1456 static int
1457 expr_equiv_p (rtx x, rtx y)
1459 return exp_equiv_p (x, y, 0, true);
1462 /* Insert expression X in INSN in the hash TABLE.
1463 If it is already present, record it as the last occurrence in INSN's
1464 basic block.
1466 MODE is the mode of the value X is being stored into.
1467 It is only used if X is a CONST_INT.
1469 ANTIC_P is nonzero if X is an anticipatable expression.
1470 AVAIL_P is nonzero if X is an available expression. */
1472 static void
1473 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1474 int avail_p, struct hash_table *table)
1476 int found, do_not_record_p;
1477 unsigned int hash;
1478 struct expr *cur_expr, *last_expr = NULL;
1479 struct occr *antic_occr, *avail_occr;
1481 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1483 /* Do not insert expression in table if it contains volatile operands,
1484 or if hash_expr determines the expression is something we don't want
1485 to or can't handle. */
1486 if (do_not_record_p)
1487 return;
1489 cur_expr = table->table[hash];
1490 found = 0;
1492 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1494 /* If the expression isn't found, save a pointer to the end of
1495 the list. */
1496 last_expr = cur_expr;
1497 cur_expr = cur_expr->next_same_hash;
1500 if (! found)
1502 cur_expr = gcse_alloc (sizeof (struct expr));
1503 bytes_used += sizeof (struct expr);
1504 if (table->table[hash] == NULL)
1505 /* This is the first pattern that hashed to this index. */
1506 table->table[hash] = cur_expr;
1507 else
1508 /* Add EXPR to end of this hash chain. */
1509 last_expr->next_same_hash = cur_expr;
1511 /* Set the fields of the expr element. */
1512 cur_expr->expr = x;
1513 cur_expr->bitmap_index = table->n_elems++;
1514 cur_expr->next_same_hash = NULL;
1515 cur_expr->antic_occr = NULL;
1516 cur_expr->avail_occr = NULL;
1519 /* Now record the occurrence(s). */
1520 if (antic_p)
1522 antic_occr = cur_expr->antic_occr;
1524 if (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1525 antic_occr = NULL;
1527 if (antic_occr)
1528 /* Found another instance of the expression in the same basic block.
1529 Prefer the currently recorded one. We want the first one in the
1530 block and the block is scanned from start to end. */
1531 ; /* nothing to do */
1532 else
1534 /* First occurrence of this expression in this basic block. */
1535 antic_occr = gcse_alloc (sizeof (struct occr));
1536 bytes_used += sizeof (struct occr);
1537 antic_occr->insn = insn;
1538 antic_occr->next = cur_expr->antic_occr;
1539 antic_occr->deleted_p = 0;
1540 cur_expr->antic_occr = antic_occr;
1544 if (avail_p)
1546 avail_occr = cur_expr->avail_occr;
1548 if (avail_occr && BLOCK_NUM (avail_occr->insn) == BLOCK_NUM (insn))
1550 /* Found another instance of the expression in the same basic block.
1551 Prefer this occurrence to the currently recorded one. We want
1552 the last one in the block and the block is scanned from start
1553 to end. */
1554 avail_occr->insn = insn;
1556 else
1558 /* First occurrence of this expression in this basic block. */
1559 avail_occr = gcse_alloc (sizeof (struct occr));
1560 bytes_used += sizeof (struct occr);
1561 avail_occr->insn = insn;
1562 avail_occr->next = cur_expr->avail_occr;
1563 avail_occr->deleted_p = 0;
1564 cur_expr->avail_occr = avail_occr;
1569 /* Insert pattern X in INSN in the hash table.
1570 X is a SET of a reg to either another reg or a constant.
1571 If it is already present, record it as the last occurrence in INSN's
1572 basic block. */
1574 static void
1575 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1577 int found;
1578 unsigned int hash;
1579 struct expr *cur_expr, *last_expr = NULL;
1580 struct occr *cur_occr;
1582 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1584 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1586 cur_expr = table->table[hash];
1587 found = 0;
1589 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1591 /* If the expression isn't found, save a pointer to the end of
1592 the list. */
1593 last_expr = cur_expr;
1594 cur_expr = cur_expr->next_same_hash;
1597 if (! found)
1599 cur_expr = gcse_alloc (sizeof (struct expr));
1600 bytes_used += sizeof (struct expr);
1601 if (table->table[hash] == NULL)
1602 /* This is the first pattern that hashed to this index. */
1603 table->table[hash] = cur_expr;
1604 else
1605 /* Add EXPR to end of this hash chain. */
1606 last_expr->next_same_hash = cur_expr;
1608 /* Set the fields of the expr element.
1609 We must copy X because it can be modified when copy propagation is
1610 performed on its operands. */
1611 cur_expr->expr = copy_rtx (x);
1612 cur_expr->bitmap_index = table->n_elems++;
1613 cur_expr->next_same_hash = NULL;
1614 cur_expr->antic_occr = NULL;
1615 cur_expr->avail_occr = NULL;
1618 /* Now record the occurrence. */
1619 cur_occr = cur_expr->avail_occr;
1621 if (cur_occr && BLOCK_NUM (cur_occr->insn) == BLOCK_NUM (insn))
1623 /* Found another instance of the expression in the same basic block.
1624 Prefer this occurrence to the currently recorded one. We want
1625 the last one in the block and the block is scanned from start
1626 to end. */
1627 cur_occr->insn = insn;
1629 else
1631 /* First occurrence of this expression in this basic block. */
1632 cur_occr = gcse_alloc (sizeof (struct occr));
1633 bytes_used += sizeof (struct occr);
1635 cur_occr->insn = insn;
1636 cur_occr->next = cur_expr->avail_occr;
1637 cur_occr->deleted_p = 0;
1638 cur_expr->avail_occr = cur_occr;
1642 /* Determine whether the rtx X should be treated as a constant for
1643 the purposes of GCSE's constant propagation. */
1645 static bool
1646 gcse_constant_p (rtx x)
1648 /* Consider a COMPARE of two integers constant. */
1649 if (GET_CODE (x) == COMPARE
1650 && GET_CODE (XEXP (x, 0)) == CONST_INT
1651 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1652 return true;
1654 /* Consider a COMPARE of the same registers is a constant
1655 if they are not floating point registers. */
1656 if (GET_CODE(x) == COMPARE
1657 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1658 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1659 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1660 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1661 return true;
1663 return CONSTANT_P (x);
1666 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1667 expression one). */
1669 static void
1670 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1672 rtx src = SET_SRC (pat);
1673 rtx dest = SET_DEST (pat);
1674 rtx note;
1676 if (GET_CODE (src) == CALL)
1677 hash_scan_call (src, insn, table);
1679 else if (REG_P (dest))
1681 unsigned int regno = REGNO (dest);
1682 rtx tmp;
1684 /* If this is a single set and we are doing constant propagation,
1685 see if a REG_NOTE shows this equivalent to a constant. */
1686 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
1687 && gcse_constant_p (XEXP (note, 0)))
1688 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1690 /* Only record sets of pseudo-regs in the hash table. */
1691 if (! table->set_p
1692 && regno >= FIRST_PSEUDO_REGISTER
1693 /* Don't GCSE something if we can't do a reg/reg copy. */
1694 && can_copy_p (GET_MODE (dest))
1695 /* GCSE commonly inserts instruction after the insn. We can't
1696 do that easily for EH_REGION notes so disable GCSE on these
1697 for now. */
1698 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1699 /* Is SET_SRC something we want to gcse? */
1700 && want_to_gcse_p (src)
1701 /* Don't CSE a nop. */
1702 && ! set_noop_p (pat)
1703 /* Don't GCSE if it has attached REG_EQUIV note.
1704 At this point this only function parameters should have
1705 REG_EQUIV notes and if the argument slot is used somewhere
1706 explicitly, it means address of parameter has been taken,
1707 so we should not extend the lifetime of the pseudo. */
1708 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1709 || ! MEM_P (XEXP (note, 0))))
1711 /* An expression is not anticipatable if its operands are
1712 modified before this insn or if this is not the only SET in
1713 this insn. */
1714 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1715 /* An expression is not available if its operands are
1716 subsequently modified, including this insn. It's also not
1717 available if this is a branch, because we can't insert
1718 a set after the branch. */
1719 int avail_p = (oprs_available_p (src, insn)
1720 && ! JUMP_P (insn));
1722 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1725 /* Record sets for constant/copy propagation. */
1726 else if (table->set_p
1727 && regno >= FIRST_PSEUDO_REGISTER
1728 && ((REG_P (src)
1729 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1730 && can_copy_p (GET_MODE (dest))
1731 && REGNO (src) != regno)
1732 || gcse_constant_p (src))
1733 /* A copy is not available if its src or dest is subsequently
1734 modified. Here we want to search from INSN+1 on, but
1735 oprs_available_p searches from INSN on. */
1736 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1737 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1738 && oprs_available_p (pat, tmp))))
1739 insert_set_in_table (pat, insn, table);
1741 /* In case of store we want to consider the memory value as available in
1742 the REG stored in that memory. This makes it possible to remove
1743 redundant loads from due to stores to the same location. */
1744 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1746 unsigned int regno = REGNO (src);
1748 /* Do not do this for constant/copy propagation. */
1749 if (! table->set_p
1750 /* Only record sets of pseudo-regs in the hash table. */
1751 && regno >= FIRST_PSEUDO_REGISTER
1752 /* Don't GCSE something if we can't do a reg/reg copy. */
1753 && can_copy_p (GET_MODE (src))
1754 /* GCSE commonly inserts instruction after the insn. We can't
1755 do that easily for EH_REGION notes so disable GCSE on these
1756 for now. */
1757 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1758 /* Is SET_DEST something we want to gcse? */
1759 && want_to_gcse_p (dest)
1760 /* Don't CSE a nop. */
1761 && ! set_noop_p (pat)
1762 /* Don't GCSE if it has attached REG_EQUIV note.
1763 At this point this only function parameters should have
1764 REG_EQUIV notes and if the argument slot is used somewhere
1765 explicitly, it means address of parameter has been taken,
1766 so we should not extend the lifetime of the pseudo. */
1767 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1768 || ! MEM_P (XEXP (note, 0))))
1770 /* Stores are never anticipatable. */
1771 int antic_p = 0;
1772 /* An expression is not available if its operands are
1773 subsequently modified, including this insn. It's also not
1774 available if this is a branch, because we can't insert
1775 a set after the branch. */
1776 int avail_p = oprs_available_p (dest, insn)
1777 && ! JUMP_P (insn);
1779 /* Record the memory expression (DEST) in the hash table. */
1780 insert_expr_in_table (dest, GET_MODE (dest), insn,
1781 antic_p, avail_p, table);
1786 static void
1787 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1788 struct hash_table *table ATTRIBUTE_UNUSED)
1790 /* Currently nothing to do. */
1793 static void
1794 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1795 struct hash_table *table ATTRIBUTE_UNUSED)
1797 /* Currently nothing to do. */
1800 /* Process INSN and add hash table entries as appropriate.
1802 Only available expressions that set a single pseudo-reg are recorded.
1804 Single sets in a PARALLEL could be handled, but it's an extra complication
1805 that isn't dealt with right now. The trick is handling the CLOBBERs that
1806 are also in the PARALLEL. Later.
1808 If SET_P is nonzero, this is for the assignment hash table,
1809 otherwise it is for the expression hash table.
1810 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1811 not record any expressions. */
1813 static void
1814 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1816 rtx pat = PATTERN (insn);
1817 int i;
1819 if (in_libcall_block)
1820 return;
1822 /* Pick out the sets of INSN and for other forms of instructions record
1823 what's been modified. */
1825 if (GET_CODE (pat) == SET)
1826 hash_scan_set (pat, insn, table);
1827 else if (GET_CODE (pat) == PARALLEL)
1828 for (i = 0; i < XVECLEN (pat, 0); i++)
1830 rtx x = XVECEXP (pat, 0, i);
1832 if (GET_CODE (x) == SET)
1833 hash_scan_set (x, insn, table);
1834 else if (GET_CODE (x) == CLOBBER)
1835 hash_scan_clobber (x, insn, table);
1836 else if (GET_CODE (x) == CALL)
1837 hash_scan_call (x, insn, table);
1840 else if (GET_CODE (pat) == CLOBBER)
1841 hash_scan_clobber (pat, insn, table);
1842 else if (GET_CODE (pat) == CALL)
1843 hash_scan_call (pat, insn, table);
1846 static void
1847 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1849 int i;
1850 /* Flattened out table, so it's printed in proper order. */
1851 struct expr **flat_table;
1852 unsigned int *hash_val;
1853 struct expr *expr;
1855 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1856 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1858 for (i = 0; i < (int) table->size; i++)
1859 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1861 flat_table[expr->bitmap_index] = expr;
1862 hash_val[expr->bitmap_index] = i;
1865 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1866 name, table->size, table->n_elems);
1868 for (i = 0; i < (int) table->n_elems; i++)
1869 if (flat_table[i] != 0)
1871 expr = flat_table[i];
1872 fprintf (file, "Index %d (hash value %d)\n ",
1873 expr->bitmap_index, hash_val[i]);
1874 print_rtl (file, expr->expr);
1875 fprintf (file, "\n");
1878 fprintf (file, "\n");
1880 free (flat_table);
1881 free (hash_val);
1884 /* Record register first/last/block set information for REGNO in INSN.
1886 first_set records the first place in the block where the register
1887 is set and is used to compute "anticipatability".
1889 last_set records the last place in the block where the register
1890 is set and is used to compute "availability".
1892 last_bb records the block for which first_set and last_set are
1893 valid, as a quick test to invalidate them.
1895 reg_set_in_block records whether the register is set in the block
1896 and is used to compute "transparency". */
1898 static void
1899 record_last_reg_set_info (rtx insn, int regno)
1901 struct reg_avail_info *info = &reg_avail_info[regno];
1902 int cuid = INSN_CUID (insn);
1904 info->last_set = cuid;
1905 if (info->last_bb != current_bb)
1907 info->last_bb = current_bb;
1908 info->first_set = cuid;
1909 SET_BIT (reg_set_in_block[current_bb->index], regno);
1914 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1915 Note we store a pair of elements in the list, so they have to be
1916 taken off pairwise. */
1918 static void
1919 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1920 void * v_insn)
1922 rtx dest_addr, insn;
1923 int bb;
1925 while (GET_CODE (dest) == SUBREG
1926 || GET_CODE (dest) == ZERO_EXTRACT
1927 || GET_CODE (dest) == STRICT_LOW_PART)
1928 dest = XEXP (dest, 0);
1930 /* If DEST is not a MEM, then it will not conflict with a load. Note
1931 that function calls are assumed to clobber memory, but are handled
1932 elsewhere. */
1934 if (! MEM_P (dest))
1935 return;
1937 dest_addr = get_addr (XEXP (dest, 0));
1938 dest_addr = canon_rtx (dest_addr);
1939 insn = (rtx) v_insn;
1940 bb = BLOCK_NUM (insn);
1942 canon_modify_mem_list[bb] =
1943 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1944 canon_modify_mem_list[bb] =
1945 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1948 /* Record memory modification information for INSN. We do not actually care
1949 about the memory location(s) that are set, or even how they are set (consider
1950 a CALL_INSN). We merely need to record which insns modify memory. */
1952 static void
1953 record_last_mem_set_info (rtx insn)
1955 int bb = BLOCK_NUM (insn);
1957 /* load_killed_in_block_p will handle the case of calls clobbering
1958 everything. */
1959 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1960 bitmap_set_bit (modify_mem_list_set, bb);
1962 if (CALL_P (insn))
1964 /* Note that traversals of this loop (other than for free-ing)
1965 will break after encountering a CALL_INSN. So, there's no
1966 need to insert a pair of items, as canon_list_insert does. */
1967 canon_modify_mem_list[bb] =
1968 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1969 bitmap_set_bit (blocks_with_calls, bb);
1971 else
1972 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1975 /* Called from compute_hash_table via note_stores to handle one
1976 SET or CLOBBER in an insn. DATA is really the instruction in which
1977 the SET is taking place. */
1979 static void
1980 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1982 rtx last_set_insn = (rtx) data;
1984 if (GET_CODE (dest) == SUBREG)
1985 dest = SUBREG_REG (dest);
1987 if (REG_P (dest))
1988 record_last_reg_set_info (last_set_insn, REGNO (dest));
1989 else if (MEM_P (dest)
1990 /* Ignore pushes, they clobber nothing. */
1991 && ! push_operand (dest, GET_MODE (dest)))
1992 record_last_mem_set_info (last_set_insn);
1995 /* Top level function to create an expression or assignment hash table.
1997 Expression entries are placed in the hash table if
1998 - they are of the form (set (pseudo-reg) src),
1999 - src is something we want to perform GCSE on,
2000 - none of the operands are subsequently modified in the block
2002 Assignment entries are placed in the hash table if
2003 - they are of the form (set (pseudo-reg) src),
2004 - src is something we want to perform const/copy propagation on,
2005 - none of the operands or target are subsequently modified in the block
2007 Currently src must be a pseudo-reg or a const_int.
2009 TABLE is the table computed. */
2011 static void
2012 compute_hash_table_work (struct hash_table *table)
2014 unsigned int i;
2016 /* While we compute the hash table we also compute a bit array of which
2017 registers are set in which blocks.
2018 ??? This isn't needed during const/copy propagation, but it's cheap to
2019 compute. Later. */
2020 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2022 /* re-Cache any INSN_LIST nodes we have allocated. */
2023 clear_modify_mem_tables ();
2024 /* Some working arrays used to track first and last set in each block. */
2025 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2027 for (i = 0; i < max_gcse_regno; ++i)
2028 reg_avail_info[i].last_bb = NULL;
2030 FOR_EACH_BB (current_bb)
2032 rtx insn;
2033 unsigned int regno;
2034 int in_libcall_block;
2036 /* First pass over the instructions records information used to
2037 determine when registers and memory are first and last set.
2038 ??? hard-reg reg_set_in_block computation
2039 could be moved to compute_sets since they currently don't change. */
2041 for (insn = BB_HEAD (current_bb);
2042 insn && insn != NEXT_INSN (BB_END (current_bb));
2043 insn = NEXT_INSN (insn))
2045 if (! INSN_P (insn))
2046 continue;
2048 if (CALL_P (insn))
2050 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2051 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2052 record_last_reg_set_info (insn, regno);
2054 mark_call (insn);
2057 note_stores (PATTERN (insn), record_last_set_info, insn);
2060 /* Insert implicit sets in the hash table. */
2061 if (table->set_p
2062 && implicit_sets[current_bb->index] != NULL_RTX)
2063 hash_scan_set (implicit_sets[current_bb->index],
2064 BB_HEAD (current_bb), table);
2066 /* The next pass builds the hash table. */
2068 for (insn = BB_HEAD (current_bb), in_libcall_block = 0;
2069 insn && insn != NEXT_INSN (BB_END (current_bb));
2070 insn = NEXT_INSN (insn))
2071 if (INSN_P (insn))
2073 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2074 in_libcall_block = 1;
2075 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2076 in_libcall_block = 0;
2077 hash_scan_insn (insn, table, in_libcall_block);
2078 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2079 in_libcall_block = 0;
2083 free (reg_avail_info);
2084 reg_avail_info = NULL;
2087 /* Allocate space for the set/expr hash TABLE.
2088 N_INSNS is the number of instructions in the function.
2089 It is used to determine the number of buckets to use.
2090 SET_P determines whether set or expression table will
2091 be created. */
2093 static void
2094 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2096 int n;
2098 table->size = n_insns / 4;
2099 if (table->size < 11)
2100 table->size = 11;
2102 /* Attempt to maintain efficient use of hash table.
2103 Making it an odd number is simplest for now.
2104 ??? Later take some measurements. */
2105 table->size |= 1;
2106 n = table->size * sizeof (struct expr *);
2107 table->table = gmalloc (n);
2108 table->set_p = set_p;
2111 /* Free things allocated by alloc_hash_table. */
2113 static void
2114 free_hash_table (struct hash_table *table)
2116 free (table->table);
2119 /* Compute the hash TABLE for doing copy/const propagation or
2120 expression hash table. */
2122 static void
2123 compute_hash_table (struct hash_table *table)
2125 /* Initialize count of number of entries in hash table. */
2126 table->n_elems = 0;
2127 memset (table->table, 0, table->size * sizeof (struct expr *));
2129 compute_hash_table_work (table);
2132 /* Expression tracking support. */
2134 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2135 table entry, or NULL if not found. */
2137 static struct expr *
2138 lookup_set (unsigned int regno, struct hash_table *table)
2140 unsigned int hash = hash_set (regno, table->size);
2141 struct expr *expr;
2143 expr = table->table[hash];
2145 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2146 expr = expr->next_same_hash;
2148 return expr;
2151 /* Return the next entry for REGNO in list EXPR. */
2153 static struct expr *
2154 next_set (unsigned int regno, struct expr *expr)
2157 expr = expr->next_same_hash;
2158 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2160 return expr;
2163 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2164 types may be mixed. */
2166 static void
2167 free_insn_expr_list_list (rtx *listp)
2169 rtx list, next;
2171 for (list = *listp; list ; list = next)
2173 next = XEXP (list, 1);
2174 if (GET_CODE (list) == EXPR_LIST)
2175 free_EXPR_LIST_node (list);
2176 else
2177 free_INSN_LIST_node (list);
2180 *listp = NULL;
2183 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2184 static void
2185 clear_modify_mem_tables (void)
2187 unsigned i;
2188 bitmap_iterator bi;
2190 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2192 free_INSN_LIST_list (modify_mem_list + i);
2193 free_insn_expr_list_list (canon_modify_mem_list + i);
2195 bitmap_clear (modify_mem_list_set);
2196 bitmap_clear (blocks_with_calls);
2199 /* Release memory used by modify_mem_list_set. */
2201 static void
2202 free_modify_mem_tables (void)
2204 clear_modify_mem_tables ();
2205 free (modify_mem_list);
2206 free (canon_modify_mem_list);
2207 modify_mem_list = 0;
2208 canon_modify_mem_list = 0;
2211 /* Reset tables used to keep track of what's still available [since the
2212 start of the block]. */
2214 static void
2215 reset_opr_set_tables (void)
2217 /* Maintain a bitmap of which regs have been set since beginning of
2218 the block. */
2219 CLEAR_REG_SET (reg_set_bitmap);
2221 /* Also keep a record of the last instruction to modify memory.
2222 For now this is very trivial, we only record whether any memory
2223 location has been modified. */
2224 clear_modify_mem_tables ();
2227 /* Return nonzero if the operands of X are not set before INSN in
2228 INSN's basic block. */
2230 static int
2231 oprs_not_set_p (rtx x, rtx insn)
2233 int i, j;
2234 enum rtx_code code;
2235 const char *fmt;
2237 if (x == 0)
2238 return 1;
2240 code = GET_CODE (x);
2241 switch (code)
2243 case PC:
2244 case CC0:
2245 case CONST:
2246 case CONST_INT:
2247 case CONST_DOUBLE:
2248 case CONST_VECTOR:
2249 case SYMBOL_REF:
2250 case LABEL_REF:
2251 case ADDR_VEC:
2252 case ADDR_DIFF_VEC:
2253 return 1;
2255 case MEM:
2256 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2257 INSN_CUID (insn), x, 0))
2258 return 0;
2259 else
2260 return oprs_not_set_p (XEXP (x, 0), insn);
2262 case REG:
2263 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2265 default:
2266 break;
2269 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2271 if (fmt[i] == 'e')
2273 /* If we are about to do the last recursive call
2274 needed at this level, change it into iteration.
2275 This function is called enough to be worth it. */
2276 if (i == 0)
2277 return oprs_not_set_p (XEXP (x, i), insn);
2279 if (! oprs_not_set_p (XEXP (x, i), insn))
2280 return 0;
2282 else if (fmt[i] == 'E')
2283 for (j = 0; j < XVECLEN (x, i); j++)
2284 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2285 return 0;
2288 return 1;
2291 /* Mark things set by a CALL. */
2293 static void
2294 mark_call (rtx insn)
2296 if (! CONST_OR_PURE_CALL_P (insn))
2297 record_last_mem_set_info (insn);
2300 /* Mark things set by a SET. */
2302 static void
2303 mark_set (rtx pat, rtx insn)
2305 rtx dest = SET_DEST (pat);
2307 while (GET_CODE (dest) == SUBREG
2308 || GET_CODE (dest) == ZERO_EXTRACT
2309 || GET_CODE (dest) == STRICT_LOW_PART)
2310 dest = XEXP (dest, 0);
2312 if (REG_P (dest))
2313 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2314 else if (MEM_P (dest))
2315 record_last_mem_set_info (insn);
2317 if (GET_CODE (SET_SRC (pat)) == CALL)
2318 mark_call (insn);
2321 /* Record things set by a CLOBBER. */
2323 static void
2324 mark_clobber (rtx pat, rtx insn)
2326 rtx clob = XEXP (pat, 0);
2328 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2329 clob = XEXP (clob, 0);
2331 if (REG_P (clob))
2332 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2333 else
2334 record_last_mem_set_info (insn);
2337 /* Record things set by INSN.
2338 This data is used by oprs_not_set_p. */
2340 static void
2341 mark_oprs_set (rtx insn)
2343 rtx pat = PATTERN (insn);
2344 int i;
2346 if (GET_CODE (pat) == SET)
2347 mark_set (pat, insn);
2348 else if (GET_CODE (pat) == PARALLEL)
2349 for (i = 0; i < XVECLEN (pat, 0); i++)
2351 rtx x = XVECEXP (pat, 0, i);
2353 if (GET_CODE (x) == SET)
2354 mark_set (x, insn);
2355 else if (GET_CODE (x) == CLOBBER)
2356 mark_clobber (x, insn);
2357 else if (GET_CODE (x) == CALL)
2358 mark_call (insn);
2361 else if (GET_CODE (pat) == CLOBBER)
2362 mark_clobber (pat, insn);
2363 else if (GET_CODE (pat) == CALL)
2364 mark_call (insn);
2368 /* Compute copy/constant propagation working variables. */
2370 /* Local properties of assignments. */
2371 static sbitmap *cprop_pavloc;
2372 static sbitmap *cprop_absaltered;
2374 /* Global properties of assignments (computed from the local properties). */
2375 static sbitmap *cprop_avin;
2376 static sbitmap *cprop_avout;
2378 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2379 basic blocks. N_SETS is the number of sets. */
2381 static void
2382 alloc_cprop_mem (int n_blocks, int n_sets)
2384 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2385 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2387 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2388 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2391 /* Free vars used by copy/const propagation. */
2393 static void
2394 free_cprop_mem (void)
2396 sbitmap_vector_free (cprop_pavloc);
2397 sbitmap_vector_free (cprop_absaltered);
2398 sbitmap_vector_free (cprop_avin);
2399 sbitmap_vector_free (cprop_avout);
2402 /* For each block, compute whether X is transparent. X is either an
2403 expression or an assignment [though we don't care which, for this context
2404 an assignment is treated as an expression]. For each block where an
2405 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2406 bit in BMAP. */
2408 static void
2409 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2411 int i, j;
2412 basic_block bb;
2413 enum rtx_code code;
2414 reg_set *r;
2415 const char *fmt;
2417 /* repeat is used to turn tail-recursion into iteration since GCC
2418 can't do it when there's no return value. */
2419 repeat:
2421 if (x == 0)
2422 return;
2424 code = GET_CODE (x);
2425 switch (code)
2427 case REG:
2428 if (set_p)
2430 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2432 FOR_EACH_BB (bb)
2433 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2434 SET_BIT (bmap[bb->index], indx);
2436 else
2438 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2439 SET_BIT (bmap[r->bb_index], indx);
2442 else
2444 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2446 FOR_EACH_BB (bb)
2447 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2448 RESET_BIT (bmap[bb->index], indx);
2450 else
2452 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2453 RESET_BIT (bmap[r->bb_index], indx);
2457 return;
2459 case MEM:
2461 bitmap_iterator bi;
2462 unsigned bb_index;
2464 /* First handle all the blocks with calls. We don't need to
2465 do any list walking for them. */
2466 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2468 if (set_p)
2469 SET_BIT (bmap[bb_index], indx);
2470 else
2471 RESET_BIT (bmap[bb_index], indx);
2474 /* Now iterate over the blocks which have memory modifications
2475 but which do not have any calls. */
2476 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set, blocks_with_calls,
2477 0, bb_index, bi)
2479 rtx list_entry = canon_modify_mem_list[bb_index];
2481 while (list_entry)
2483 rtx dest, dest_addr;
2485 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2486 Examine each hunk of memory that is modified. */
2488 dest = XEXP (list_entry, 0);
2489 list_entry = XEXP (list_entry, 1);
2490 dest_addr = XEXP (list_entry, 0);
2492 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2493 x, rtx_addr_varies_p))
2495 if (set_p)
2496 SET_BIT (bmap[bb_index], indx);
2497 else
2498 RESET_BIT (bmap[bb_index], indx);
2499 break;
2501 list_entry = XEXP (list_entry, 1);
2506 x = XEXP (x, 0);
2507 goto repeat;
2509 case PC:
2510 case CC0: /*FIXME*/
2511 case CONST:
2512 case CONST_INT:
2513 case CONST_DOUBLE:
2514 case CONST_VECTOR:
2515 case SYMBOL_REF:
2516 case LABEL_REF:
2517 case ADDR_VEC:
2518 case ADDR_DIFF_VEC:
2519 return;
2521 default:
2522 break;
2525 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2527 if (fmt[i] == 'e')
2529 /* If we are about to do the last recursive call
2530 needed at this level, change it into iteration.
2531 This function is called enough to be worth it. */
2532 if (i == 0)
2534 x = XEXP (x, i);
2535 goto repeat;
2538 compute_transp (XEXP (x, i), indx, bmap, set_p);
2540 else if (fmt[i] == 'E')
2541 for (j = 0; j < XVECLEN (x, i); j++)
2542 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2546 /* Top level routine to do the dataflow analysis needed by copy/const
2547 propagation. */
2549 static void
2550 compute_cprop_data (void)
2552 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2553 compute_available (cprop_pavloc, cprop_absaltered,
2554 cprop_avout, cprop_avin);
2557 /* Copy/constant propagation. */
2559 /* Maximum number of register uses in an insn that we handle. */
2560 #define MAX_USES 8
2562 /* Table of uses found in an insn.
2563 Allocated statically to avoid alloc/free complexity and overhead. */
2564 static struct reg_use reg_use_table[MAX_USES];
2566 /* Index into `reg_use_table' while building it. */
2567 static int reg_use_count;
2569 /* Set up a list of register numbers used in INSN. The found uses are stored
2570 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2571 and contains the number of uses in the table upon exit.
2573 ??? If a register appears multiple times we will record it multiple times.
2574 This doesn't hurt anything but it will slow things down. */
2576 static void
2577 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2579 int i, j;
2580 enum rtx_code code;
2581 const char *fmt;
2582 rtx x = *xptr;
2584 /* repeat is used to turn tail-recursion into iteration since GCC
2585 can't do it when there's no return value. */
2586 repeat:
2587 if (x == 0)
2588 return;
2590 code = GET_CODE (x);
2591 if (REG_P (x))
2593 if (reg_use_count == MAX_USES)
2594 return;
2596 reg_use_table[reg_use_count].reg_rtx = x;
2597 reg_use_count++;
2600 /* Recursively scan the operands of this expression. */
2602 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2604 if (fmt[i] == 'e')
2606 /* If we are about to do the last recursive call
2607 needed at this level, change it into iteration.
2608 This function is called enough to be worth it. */
2609 if (i == 0)
2611 x = XEXP (x, 0);
2612 goto repeat;
2615 find_used_regs (&XEXP (x, i), data);
2617 else if (fmt[i] == 'E')
2618 for (j = 0; j < XVECLEN (x, i); j++)
2619 find_used_regs (&XVECEXP (x, i, j), data);
2623 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2624 Returns nonzero is successful. */
2626 static int
2627 try_replace_reg (rtx from, rtx to, rtx insn)
2629 rtx note = find_reg_equal_equiv_note (insn);
2630 rtx src = 0;
2631 int success = 0;
2632 rtx set = single_set (insn);
2634 validate_replace_src_group (from, to, insn);
2635 if (num_changes_pending () && apply_change_group ())
2636 success = 1;
2638 /* Try to simplify SET_SRC if we have substituted a constant. */
2639 if (success && set && CONSTANT_P (to))
2641 src = simplify_rtx (SET_SRC (set));
2643 if (src)
2644 validate_change (insn, &SET_SRC (set), src, 0);
2647 /* If there is already a NOTE, update the expression in it with our
2648 replacement. */
2649 if (note != 0)
2650 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2652 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2654 /* If above failed and this is a single set, try to simplify the source of
2655 the set given our substitution. We could perhaps try this for multiple
2656 SETs, but it probably won't buy us anything. */
2657 src = simplify_replace_rtx (SET_SRC (set), from, to);
2659 if (!rtx_equal_p (src, SET_SRC (set))
2660 && validate_change (insn, &SET_SRC (set), src, 0))
2661 success = 1;
2663 /* If we've failed to do replacement, have a single SET, don't already
2664 have a note, and have no special SET, add a REG_EQUAL note to not
2665 lose information. */
2666 if (!success && note == 0 && set != 0
2667 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT)
2668 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2671 /* REG_EQUAL may get simplified into register.
2672 We don't allow that. Remove that note. This code ought
2673 not to happen, because previous code ought to synthesize
2674 reg-reg move, but be on the safe side. */
2675 if (note && REG_P (XEXP (note, 0)))
2676 remove_note (insn, note);
2678 return success;
2681 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2682 NULL no such set is found. */
2684 static struct expr *
2685 find_avail_set (int regno, rtx insn)
2687 /* SET1 contains the last set found that can be returned to the caller for
2688 use in a substitution. */
2689 struct expr *set1 = 0;
2691 /* Loops are not possible here. To get a loop we would need two sets
2692 available at the start of the block containing INSN. i.e. we would
2693 need two sets like this available at the start of the block:
2695 (set (reg X) (reg Y))
2696 (set (reg Y) (reg X))
2698 This can not happen since the set of (reg Y) would have killed the
2699 set of (reg X) making it unavailable at the start of this block. */
2700 while (1)
2702 rtx src;
2703 struct expr *set = lookup_set (regno, &set_hash_table);
2705 /* Find a set that is available at the start of the block
2706 which contains INSN. */
2707 while (set)
2709 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2710 break;
2711 set = next_set (regno, set);
2714 /* If no available set was found we've reached the end of the
2715 (possibly empty) copy chain. */
2716 if (set == 0)
2717 break;
2719 gcc_assert (GET_CODE (set->expr) == SET);
2721 src = SET_SRC (set->expr);
2723 /* We know the set is available.
2724 Now check that SRC is ANTLOC (i.e. none of the source operands
2725 have changed since the start of the block).
2727 If the source operand changed, we may still use it for the next
2728 iteration of this loop, but we may not use it for substitutions. */
2730 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2731 set1 = set;
2733 /* If the source of the set is anything except a register, then
2734 we have reached the end of the copy chain. */
2735 if (! REG_P (src))
2736 break;
2738 /* Follow the copy chain, i.e. start another iteration of the loop
2739 and see if we have an available copy into SRC. */
2740 regno = REGNO (src);
2743 /* SET1 holds the last set that was available and anticipatable at
2744 INSN. */
2745 return set1;
2748 /* Subroutine of cprop_insn that tries to propagate constants into
2749 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2750 it is the instruction that immediately precedes JUMP, and must be a
2751 single SET of a register. FROM is what we will try to replace,
2752 SRC is the constant we will try to substitute for it. Returns nonzero
2753 if a change was made. */
2755 static int
2756 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2758 rtx new, set_src, note_src;
2759 rtx set = pc_set (jump);
2760 rtx note = find_reg_equal_equiv_note (jump);
2762 if (note)
2764 note_src = XEXP (note, 0);
2765 if (GET_CODE (note_src) == EXPR_LIST)
2766 note_src = NULL_RTX;
2768 else note_src = NULL_RTX;
2770 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2771 set_src = note_src ? note_src : SET_SRC (set);
2773 /* First substitute the SETCC condition into the JUMP instruction,
2774 then substitute that given values into this expanded JUMP. */
2775 if (setcc != NULL_RTX
2776 && !modified_between_p (from, setcc, jump)
2777 && !modified_between_p (src, setcc, jump))
2779 rtx setcc_src;
2780 rtx setcc_set = single_set (setcc);
2781 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2782 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2783 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2784 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2785 setcc_src);
2787 else
2788 setcc = NULL_RTX;
2790 new = simplify_replace_rtx (set_src, from, src);
2792 /* If no simplification can be made, then try the next register. */
2793 if (rtx_equal_p (new, SET_SRC (set)))
2794 return 0;
2796 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2797 if (new == pc_rtx)
2798 delete_insn (jump);
2799 else
2801 /* Ensure the value computed inside the jump insn to be equivalent
2802 to one computed by setcc. */
2803 if (setcc && modified_in_p (new, setcc))
2804 return 0;
2805 if (! validate_change (jump, &SET_SRC (set), new, 0))
2807 /* When (some) constants are not valid in a comparison, and there
2808 are two registers to be replaced by constants before the entire
2809 comparison can be folded into a constant, we need to keep
2810 intermediate information in REG_EQUAL notes. For targets with
2811 separate compare insns, such notes are added by try_replace_reg.
2812 When we have a combined compare-and-branch instruction, however,
2813 we need to attach a note to the branch itself to make this
2814 optimization work. */
2816 if (!rtx_equal_p (new, note_src))
2817 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2818 return 0;
2821 /* Remove REG_EQUAL note after simplification. */
2822 if (note_src)
2823 remove_note (jump, note);
2825 /* If this has turned into an unconditional jump,
2826 then put a barrier after it so that the unreachable
2827 code will be deleted. */
2828 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2829 emit_barrier_after (jump);
2832 #ifdef HAVE_cc0
2833 /* Delete the cc0 setter. */
2834 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2835 delete_insn (setcc);
2836 #endif
2838 run_jump_opt_after_gcse = 1;
2840 global_const_prop_count++;
2841 if (gcse_file != NULL)
2843 fprintf (gcse_file,
2844 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2845 REGNO (from), INSN_UID (jump));
2846 print_rtl (gcse_file, src);
2847 fprintf (gcse_file, "\n");
2849 purge_dead_edges (bb);
2851 return 1;
2854 static bool
2855 constprop_register (rtx insn, rtx from, rtx to, int alter_jumps)
2857 rtx sset;
2859 /* Check for reg or cc0 setting instructions followed by
2860 conditional branch instructions first. */
2861 if (alter_jumps
2862 && (sset = single_set (insn)) != NULL
2863 && NEXT_INSN (insn)
2864 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2866 rtx dest = SET_DEST (sset);
2867 if ((REG_P (dest) || CC0_P (dest))
2868 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2869 return 1;
2872 /* Handle normal insns next. */
2873 if (NONJUMP_INSN_P (insn)
2874 && try_replace_reg (from, to, insn))
2875 return 1;
2877 /* Try to propagate a CONST_INT into a conditional jump.
2878 We're pretty specific about what we will handle in this
2879 code, we can extend this as necessary over time.
2881 Right now the insn in question must look like
2882 (set (pc) (if_then_else ...)) */
2883 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2884 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2885 return 0;
2888 /* Perform constant and copy propagation on INSN.
2889 The result is nonzero if a change was made. */
2891 static int
2892 cprop_insn (rtx insn, int alter_jumps)
2894 struct reg_use *reg_used;
2895 int changed = 0;
2896 rtx note;
2898 if (!INSN_P (insn))
2899 return 0;
2901 reg_use_count = 0;
2902 note_uses (&PATTERN (insn), find_used_regs, NULL);
2904 note = find_reg_equal_equiv_note (insn);
2906 /* We may win even when propagating constants into notes. */
2907 if (note)
2908 find_used_regs (&XEXP (note, 0), NULL);
2910 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2911 reg_used++, reg_use_count--)
2913 unsigned int regno = REGNO (reg_used->reg_rtx);
2914 rtx pat, src;
2915 struct expr *set;
2917 /* Ignore registers created by GCSE.
2918 We do this because ... */
2919 if (regno >= max_gcse_regno)
2920 continue;
2922 /* If the register has already been set in this block, there's
2923 nothing we can do. */
2924 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2925 continue;
2927 /* Find an assignment that sets reg_used and is available
2928 at the start of the block. */
2929 set = find_avail_set (regno, insn);
2930 if (! set)
2931 continue;
2933 pat = set->expr;
2934 /* ??? We might be able to handle PARALLELs. Later. */
2935 gcc_assert (GET_CODE (pat) == SET);
2937 src = SET_SRC (pat);
2939 /* Constant propagation. */
2940 if (gcse_constant_p (src))
2942 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
2944 changed = 1;
2945 global_const_prop_count++;
2946 if (gcse_file != NULL)
2948 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2949 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
2950 print_rtl (gcse_file, src);
2951 fprintf (gcse_file, "\n");
2953 if (INSN_DELETED_P (insn))
2954 return 1;
2957 else if (REG_P (src)
2958 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2959 && REGNO (src) != regno)
2961 if (try_replace_reg (reg_used->reg_rtx, src, insn))
2963 changed = 1;
2964 global_copy_prop_count++;
2965 if (gcse_file != NULL)
2967 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2968 regno, INSN_UID (insn));
2969 fprintf (gcse_file, " with reg %d\n", REGNO (src));
2972 /* The original insn setting reg_used may or may not now be
2973 deletable. We leave the deletion to flow. */
2974 /* FIXME: If it turns out that the insn isn't deletable,
2975 then we may have unnecessarily extended register lifetimes
2976 and made things worse. */
2981 return changed;
2984 /* Like find_used_regs, but avoid recording uses that appear in
2985 input-output contexts such as zero_extract or pre_dec. This
2986 restricts the cases we consider to those for which local cprop
2987 can legitimately make replacements. */
2989 static void
2990 local_cprop_find_used_regs (rtx *xptr, void *data)
2992 rtx x = *xptr;
2994 if (x == 0)
2995 return;
2997 switch (GET_CODE (x))
2999 case ZERO_EXTRACT:
3000 case SIGN_EXTRACT:
3001 case STRICT_LOW_PART:
3002 return;
3004 case PRE_DEC:
3005 case PRE_INC:
3006 case POST_DEC:
3007 case POST_INC:
3008 case PRE_MODIFY:
3009 case POST_MODIFY:
3010 /* Can only legitimately appear this early in the context of
3011 stack pushes for function arguments, but handle all of the
3012 codes nonetheless. */
3013 return;
3015 case SUBREG:
3016 /* Setting a subreg of a register larger than word_mode leaves
3017 the non-written words unchanged. */
3018 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3019 return;
3020 break;
3022 default:
3023 break;
3026 find_used_regs (xptr, data);
3029 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3030 their REG_EQUAL notes need updating. */
3032 static bool
3033 do_local_cprop (rtx x, rtx insn, int alter_jumps, rtx *libcall_sp)
3035 rtx newreg = NULL, newcnst = NULL;
3037 /* Rule out USE instructions and ASM statements as we don't want to
3038 change the hard registers mentioned. */
3039 if (REG_P (x)
3040 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3041 || (GET_CODE (PATTERN (insn)) != USE
3042 && asm_noperands (PATTERN (insn)) < 0)))
3044 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3045 struct elt_loc_list *l;
3047 if (!val)
3048 return false;
3049 for (l = val->locs; l; l = l->next)
3051 rtx this_rtx = l->loc;
3052 rtx note;
3054 /* Don't CSE non-constant values out of libcall blocks. */
3055 if (l->in_libcall && ! CONSTANT_P (this_rtx))
3056 continue;
3058 if (gcse_constant_p (this_rtx))
3059 newcnst = this_rtx;
3060 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3061 /* Don't copy propagate if it has attached REG_EQUIV note.
3062 At this point this only function parameters should have
3063 REG_EQUIV notes and if the argument slot is used somewhere
3064 explicitly, it means address of parameter has been taken,
3065 so we should not extend the lifetime of the pseudo. */
3066 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3067 || ! MEM_P (XEXP (note, 0))))
3068 newreg = this_rtx;
3070 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3072 /* If we find a case where we can't fix the retval REG_EQUAL notes
3073 match the new register, we either have to abandon this replacement
3074 or fix delete_trivially_dead_insns to preserve the setting insn,
3075 or make it delete the REG_EUAQL note, and fix up all passes that
3076 require the REG_EQUAL note there. */
3077 bool adjusted;
3079 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3080 gcc_assert (adjusted);
3082 if (gcse_file != NULL)
3084 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3085 REGNO (x));
3086 fprintf (gcse_file, "insn %d with constant ",
3087 INSN_UID (insn));
3088 print_rtl (gcse_file, newcnst);
3089 fprintf (gcse_file, "\n");
3091 local_const_prop_count++;
3092 return true;
3094 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3096 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3097 if (gcse_file != NULL)
3099 fprintf (gcse_file,
3100 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3101 REGNO (x), INSN_UID (insn));
3102 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
3104 local_copy_prop_count++;
3105 return true;
3108 return false;
3111 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3112 their REG_EQUAL notes need updating to reflect that OLDREG has been
3113 replaced with NEWVAL in INSN. Return true if all substitutions could
3114 be made. */
3115 static bool
3116 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3118 rtx end;
3120 while ((end = *libcall_sp++))
3122 rtx note = find_reg_equal_equiv_note (end);
3124 if (! note)
3125 continue;
3127 if (REG_P (newval))
3129 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3133 note = find_reg_equal_equiv_note (end);
3134 if (! note)
3135 continue;
3136 if (reg_mentioned_p (newval, XEXP (note, 0)))
3137 return false;
3139 while ((end = *libcall_sp++));
3140 return true;
3143 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3144 insn = end;
3146 return true;
3149 #define MAX_NESTED_LIBCALLS 9
3151 static void
3152 local_cprop_pass (int alter_jumps)
3154 rtx insn;
3155 struct reg_use *reg_used;
3156 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3157 bool changed = false;
3159 cselib_init (false);
3160 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3161 *libcall_sp = 0;
3162 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3164 if (INSN_P (insn))
3166 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3168 if (note)
3170 gcc_assert (libcall_sp != libcall_stack);
3171 *--libcall_sp = XEXP (note, 0);
3173 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3174 if (note)
3175 libcall_sp++;
3176 note = find_reg_equal_equiv_note (insn);
3179 reg_use_count = 0;
3180 note_uses (&PATTERN (insn), local_cprop_find_used_regs, NULL);
3181 if (note)
3182 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3184 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3185 reg_used++, reg_use_count--)
3186 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3187 libcall_sp))
3189 changed = true;
3190 break;
3192 if (INSN_DELETED_P (insn))
3193 break;
3195 while (reg_use_count);
3197 cselib_process_insn (insn);
3199 cselib_finish ();
3200 /* Global analysis may get into infinite loops for unreachable blocks. */
3201 if (changed && alter_jumps)
3203 delete_unreachable_blocks ();
3204 free_reg_set_mem ();
3205 alloc_reg_set_mem (max_reg_num ());
3206 compute_sets (get_insns ());
3210 /* Forward propagate copies. This includes copies and constants. Return
3211 nonzero if a change was made. */
3213 static int
3214 cprop (int alter_jumps)
3216 int changed;
3217 basic_block bb;
3218 rtx insn;
3220 /* Note we start at block 1. */
3221 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3223 if (gcse_file != NULL)
3224 fprintf (gcse_file, "\n");
3225 return 0;
3228 changed = 0;
3229 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3231 /* Reset tables used to keep track of what's still valid [since the
3232 start of the block]. */
3233 reset_opr_set_tables ();
3235 for (insn = BB_HEAD (bb);
3236 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3237 insn = NEXT_INSN (insn))
3238 if (INSN_P (insn))
3240 changed |= cprop_insn (insn, alter_jumps);
3242 /* Keep track of everything modified by this insn. */
3243 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3244 call mark_oprs_set if we turned the insn into a NOTE. */
3245 if (! NOTE_P (insn))
3246 mark_oprs_set (insn);
3250 if (gcse_file != NULL)
3251 fprintf (gcse_file, "\n");
3253 return changed;
3256 /* Similar to get_condition, only the resulting condition must be
3257 valid at JUMP, instead of at EARLIEST.
3259 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3260 settle for the condition variable in the jump instruction being integral.
3261 We prefer to be able to record the value of a user variable, rather than
3262 the value of a temporary used in a condition. This could be solved by
3263 recording the value of *every* register scaned by canonicalize_condition,
3264 but this would require some code reorganization. */
3267 fis_get_condition (rtx jump)
3269 return get_condition (jump, NULL, false, true);
3272 /* Check the comparison COND to see if we can safely form an implicit set from
3273 it. COND is either an EQ or NE comparison. */
3275 static bool
3276 implicit_set_cond_p (rtx cond)
3278 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3279 rtx cst = XEXP (cond, 1);
3281 /* We can't perform this optimization if either operand might be or might
3282 contain a signed zero. */
3283 if (HONOR_SIGNED_ZEROS (mode))
3285 /* It is sufficient to check if CST is or contains a zero. We must
3286 handle float, complex, and vector. If any subpart is a zero, then
3287 the optimization can't be performed. */
3288 /* ??? The complex and vector checks are not implemented yet. We just
3289 always return zero for them. */
3290 if (GET_CODE (cst) == CONST_DOUBLE)
3292 REAL_VALUE_TYPE d;
3293 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3294 if (REAL_VALUES_EQUAL (d, dconst0))
3295 return 0;
3297 else
3298 return 0;
3301 return gcse_constant_p (cst);
3304 /* Find the implicit sets of a function. An "implicit set" is a constraint
3305 on the value of a variable, implied by a conditional jump. For example,
3306 following "if (x == 2)", the then branch may be optimized as though the
3307 conditional performed an "explicit set", in this example, "x = 2". This
3308 function records the set patterns that are implicit at the start of each
3309 basic block. */
3311 static void
3312 find_implicit_sets (void)
3314 basic_block bb, dest;
3315 unsigned int count;
3316 rtx cond, new;
3318 count = 0;
3319 FOR_EACH_BB (bb)
3320 /* Check for more than one successor. */
3321 if (EDGE_COUNT (bb->succs) > 1)
3323 cond = fis_get_condition (BB_END (bb));
3325 if (cond
3326 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3327 && REG_P (XEXP (cond, 0))
3328 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3329 && implicit_set_cond_p (cond))
3331 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3332 : FALLTHRU_EDGE (bb)->dest;
3334 if (dest && single_pred_p (dest)
3335 && dest != EXIT_BLOCK_PTR)
3337 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3338 XEXP (cond, 1));
3339 implicit_sets[dest->index] = new;
3340 if (gcse_file)
3342 fprintf(gcse_file, "Implicit set of reg %d in ",
3343 REGNO (XEXP (cond, 0)));
3344 fprintf(gcse_file, "basic block %d\n", dest->index);
3346 count++;
3351 if (gcse_file)
3352 fprintf (gcse_file, "Found %d implicit sets\n", count);
3355 /* Perform one copy/constant propagation pass.
3356 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3357 propagation into conditional jumps. If BYPASS_JUMPS is true,
3358 perform conditional jump bypassing optimizations. */
3360 static int
3361 one_cprop_pass (int pass, int cprop_jumps, int bypass_jumps)
3363 int changed = 0;
3365 global_const_prop_count = local_const_prop_count = 0;
3366 global_copy_prop_count = local_copy_prop_count = 0;
3368 local_cprop_pass (cprop_jumps);
3370 /* Determine implicit sets. */
3371 implicit_sets = xcalloc (last_basic_block, sizeof (rtx));
3372 find_implicit_sets ();
3374 alloc_hash_table (max_cuid, &set_hash_table, 1);
3375 compute_hash_table (&set_hash_table);
3377 /* Free implicit_sets before peak usage. */
3378 free (implicit_sets);
3379 implicit_sets = NULL;
3381 if (gcse_file)
3382 dump_hash_table (gcse_file, "SET", &set_hash_table);
3383 if (set_hash_table.n_elems > 0)
3385 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3386 compute_cprop_data ();
3387 changed = cprop (cprop_jumps);
3388 if (bypass_jumps)
3389 changed |= bypass_conditional_jumps ();
3390 free_cprop_mem ();
3393 free_hash_table (&set_hash_table);
3395 if (gcse_file)
3397 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
3398 current_function_name (), pass, bytes_used);
3399 fprintf (gcse_file, "%d local const props, %d local copy props\n\n",
3400 local_const_prop_count, local_copy_prop_count);
3401 fprintf (gcse_file, "%d global const props, %d global copy props\n\n",
3402 global_const_prop_count, global_copy_prop_count);
3404 /* Global analysis may get into infinite loops for unreachable blocks. */
3405 if (changed && cprop_jumps)
3406 delete_unreachable_blocks ();
3408 return changed;
3411 /* Bypass conditional jumps. */
3413 /* The value of last_basic_block at the beginning of the jump_bypass
3414 pass. The use of redirect_edge_and_branch_force may introduce new
3415 basic blocks, but the data flow analysis is only valid for basic
3416 block indices less than bypass_last_basic_block. */
3418 static int bypass_last_basic_block;
3420 /* Find a set of REGNO to a constant that is available at the end of basic
3421 block BB. Returns NULL if no such set is found. Based heavily upon
3422 find_avail_set. */
3424 static struct expr *
3425 find_bypass_set (int regno, int bb)
3427 struct expr *result = 0;
3429 for (;;)
3431 rtx src;
3432 struct expr *set = lookup_set (regno, &set_hash_table);
3434 while (set)
3436 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3437 break;
3438 set = next_set (regno, set);
3441 if (set == 0)
3442 break;
3444 gcc_assert (GET_CODE (set->expr) == SET);
3446 src = SET_SRC (set->expr);
3447 if (gcse_constant_p (src))
3448 result = set;
3450 if (! REG_P (src))
3451 break;
3453 regno = REGNO (src);
3455 return result;
3459 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3460 any of the instructions inserted on an edge. Jump bypassing places
3461 condition code setters on CFG edges using insert_insn_on_edge. This
3462 function is required to check that our data flow analysis is still
3463 valid prior to commit_edge_insertions. */
3465 static bool
3466 reg_killed_on_edge (rtx reg, edge e)
3468 rtx insn;
3470 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3471 if (INSN_P (insn) && reg_set_p (reg, insn))
3472 return true;
3474 return false;
3477 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3478 basic block BB which has more than one predecessor. If not NULL, SETCC
3479 is the first instruction of BB, which is immediately followed by JUMP_INSN
3480 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3481 Returns nonzero if a change was made.
3483 During the jump bypassing pass, we may place copies of SETCC instructions
3484 on CFG edges. The following routine must be careful to pay attention to
3485 these inserted insns when performing its transformations. */
3487 static int
3488 bypass_block (basic_block bb, rtx setcc, rtx jump)
3490 rtx insn, note;
3491 edge e, edest;
3492 int i, change;
3493 int may_be_loop_header;
3494 unsigned removed_p;
3495 edge_iterator ei;
3497 insn = (setcc != NULL) ? setcc : jump;
3499 /* Determine set of register uses in INSN. */
3500 reg_use_count = 0;
3501 note_uses (&PATTERN (insn), find_used_regs, NULL);
3502 note = find_reg_equal_equiv_note (insn);
3503 if (note)
3504 find_used_regs (&XEXP (note, 0), NULL);
3506 may_be_loop_header = false;
3507 FOR_EACH_EDGE (e, ei, bb->preds)
3508 if (e->flags & EDGE_DFS_BACK)
3510 may_be_loop_header = true;
3511 break;
3514 change = 0;
3515 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3517 removed_p = 0;
3519 if (e->flags & EDGE_COMPLEX)
3521 ei_next (&ei);
3522 continue;
3525 /* We can't redirect edges from new basic blocks. */
3526 if (e->src->index >= bypass_last_basic_block)
3528 ei_next (&ei);
3529 continue;
3532 /* The irreducible loops created by redirecting of edges entering the
3533 loop from outside would decrease effectiveness of some of the following
3534 optimizations, so prevent this. */
3535 if (may_be_loop_header
3536 && !(e->flags & EDGE_DFS_BACK))
3538 ei_next (&ei);
3539 continue;
3542 for (i = 0; i < reg_use_count; i++)
3544 struct reg_use *reg_used = &reg_use_table[i];
3545 unsigned int regno = REGNO (reg_used->reg_rtx);
3546 basic_block dest, old_dest;
3547 struct expr *set;
3548 rtx src, new;
3550 if (regno >= max_gcse_regno)
3551 continue;
3553 set = find_bypass_set (regno, e->src->index);
3555 if (! set)
3556 continue;
3558 /* Check the data flow is valid after edge insertions. */
3559 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3560 continue;
3562 src = SET_SRC (pc_set (jump));
3564 if (setcc != NULL)
3565 src = simplify_replace_rtx (src,
3566 SET_DEST (PATTERN (setcc)),
3567 SET_SRC (PATTERN (setcc)));
3569 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3570 SET_SRC (set->expr));
3572 /* Jump bypassing may have already placed instructions on
3573 edges of the CFG. We can't bypass an outgoing edge that
3574 has instructions associated with it, as these insns won't
3575 get executed if the incoming edge is redirected. */
3577 if (new == pc_rtx)
3579 edest = FALLTHRU_EDGE (bb);
3580 dest = edest->insns.r ? NULL : edest->dest;
3582 else if (GET_CODE (new) == LABEL_REF)
3584 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3585 /* Don't bypass edges containing instructions. */
3586 edest = find_edge (bb, dest);
3587 if (edest && edest->insns.r)
3588 dest = NULL;
3590 else
3591 dest = NULL;
3593 /* Avoid unification of the edge with other edges from original
3594 branch. We would end up emitting the instruction on "both"
3595 edges. */
3597 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3598 && find_edge (e->src, dest))
3599 dest = NULL;
3601 old_dest = e->dest;
3602 if (dest != NULL
3603 && dest != old_dest
3604 && dest != EXIT_BLOCK_PTR)
3606 redirect_edge_and_branch_force (e, dest);
3608 /* Copy the register setter to the redirected edge.
3609 Don't copy CC0 setters, as CC0 is dead after jump. */
3610 if (setcc)
3612 rtx pat = PATTERN (setcc);
3613 if (!CC0_P (SET_DEST (pat)))
3614 insert_insn_on_edge (copy_insn (pat), e);
3617 if (gcse_file != NULL)
3619 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d "
3620 "in jump_insn %d equals constant ",
3621 regno, INSN_UID (jump));
3622 print_rtl (gcse_file, SET_SRC (set->expr));
3623 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
3624 e->src->index, old_dest->index, dest->index);
3626 change = 1;
3627 removed_p = 1;
3628 break;
3631 if (!removed_p)
3632 ei_next (&ei);
3634 return change;
3637 /* Find basic blocks with more than one predecessor that only contain a
3638 single conditional jump. If the result of the comparison is known at
3639 compile-time from any incoming edge, redirect that edge to the
3640 appropriate target. Returns nonzero if a change was made.
3642 This function is now mis-named, because we also handle indirect jumps. */
3644 static int
3645 bypass_conditional_jumps (void)
3647 basic_block bb;
3648 int changed;
3649 rtx setcc;
3650 rtx insn;
3651 rtx dest;
3653 /* Note we start at block 1. */
3654 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3655 return 0;
3657 bypass_last_basic_block = last_basic_block;
3658 mark_dfs_back_edges ();
3660 changed = 0;
3661 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3662 EXIT_BLOCK_PTR, next_bb)
3664 /* Check for more than one predecessor. */
3665 if (!single_pred_p (bb))
3667 setcc = NULL_RTX;
3668 for (insn = BB_HEAD (bb);
3669 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3670 insn = NEXT_INSN (insn))
3671 if (NONJUMP_INSN_P (insn))
3673 if (setcc)
3674 break;
3675 if (GET_CODE (PATTERN (insn)) != SET)
3676 break;
3678 dest = SET_DEST (PATTERN (insn));
3679 if (REG_P (dest) || CC0_P (dest))
3680 setcc = insn;
3681 else
3682 break;
3684 else if (JUMP_P (insn))
3686 if ((any_condjump_p (insn) || computed_jump_p (insn))
3687 && onlyjump_p (insn))
3688 changed |= bypass_block (bb, setcc, insn);
3689 break;
3691 else if (INSN_P (insn))
3692 break;
3696 /* If we bypassed any register setting insns, we inserted a
3697 copy on the redirected edge. These need to be committed. */
3698 if (changed)
3699 commit_edge_insertions();
3701 return changed;
3704 /* Compute PRE+LCM working variables. */
3706 /* Local properties of expressions. */
3707 /* Nonzero for expressions that are transparent in the block. */
3708 static sbitmap *transp;
3710 /* Nonzero for expressions that are transparent at the end of the block.
3711 This is only zero for expressions killed by abnormal critical edge
3712 created by a calls. */
3713 static sbitmap *transpout;
3715 /* Nonzero for expressions that are computed (available) in the block. */
3716 static sbitmap *comp;
3718 /* Nonzero for expressions that are locally anticipatable in the block. */
3719 static sbitmap *antloc;
3721 /* Nonzero for expressions where this block is an optimal computation
3722 point. */
3723 static sbitmap *pre_optimal;
3725 /* Nonzero for expressions which are redundant in a particular block. */
3726 static sbitmap *pre_redundant;
3728 /* Nonzero for expressions which should be inserted on a specific edge. */
3729 static sbitmap *pre_insert_map;
3731 /* Nonzero for expressions which should be deleted in a specific block. */
3732 static sbitmap *pre_delete_map;
3734 /* Contains the edge_list returned by pre_edge_lcm. */
3735 static struct edge_list *edge_list;
3737 /* Redundant insns. */
3738 static sbitmap pre_redundant_insns;
3740 /* Allocate vars used for PRE analysis. */
3742 static void
3743 alloc_pre_mem (int n_blocks, int n_exprs)
3745 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3746 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3747 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3749 pre_optimal = NULL;
3750 pre_redundant = NULL;
3751 pre_insert_map = NULL;
3752 pre_delete_map = NULL;
3753 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3755 /* pre_insert and pre_delete are allocated later. */
3758 /* Free vars used for PRE analysis. */
3760 static void
3761 free_pre_mem (void)
3763 sbitmap_vector_free (transp);
3764 sbitmap_vector_free (comp);
3766 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3768 if (pre_optimal)
3769 sbitmap_vector_free (pre_optimal);
3770 if (pre_redundant)
3771 sbitmap_vector_free (pre_redundant);
3772 if (pre_insert_map)
3773 sbitmap_vector_free (pre_insert_map);
3774 if (pre_delete_map)
3775 sbitmap_vector_free (pre_delete_map);
3777 transp = comp = NULL;
3778 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3781 /* Top level routine to do the dataflow analysis needed by PRE. */
3783 static void
3784 compute_pre_data (void)
3786 sbitmap trapping_expr;
3787 basic_block bb;
3788 unsigned int ui;
3790 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3791 sbitmap_vector_zero (ae_kill, last_basic_block);
3793 /* Collect expressions which might trap. */
3794 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3795 sbitmap_zero (trapping_expr);
3796 for (ui = 0; ui < expr_hash_table.size; ui++)
3798 struct expr *e;
3799 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3800 if (may_trap_p (e->expr))
3801 SET_BIT (trapping_expr, e->bitmap_index);
3804 /* Compute ae_kill for each basic block using:
3806 ~(TRANSP | COMP)
3809 FOR_EACH_BB (bb)
3811 edge e;
3812 edge_iterator ei;
3814 /* If the current block is the destination of an abnormal edge, we
3815 kill all trapping expressions because we won't be able to properly
3816 place the instruction on the edge. So make them neither
3817 anticipatable nor transparent. This is fairly conservative. */
3818 FOR_EACH_EDGE (e, ei, bb->preds)
3819 if (e->flags & EDGE_ABNORMAL)
3821 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3822 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3823 break;
3826 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3827 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3830 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
3831 ae_kill, &pre_insert_map, &pre_delete_map);
3832 sbitmap_vector_free (antloc);
3833 antloc = NULL;
3834 sbitmap_vector_free (ae_kill);
3835 ae_kill = NULL;
3836 sbitmap_free (trapping_expr);
3839 /* PRE utilities */
3841 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3842 block BB.
3844 VISITED is a pointer to a working buffer for tracking which BB's have
3845 been visited. It is NULL for the top-level call.
3847 We treat reaching expressions that go through blocks containing the same
3848 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3849 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3850 2 as not reaching. The intent is to improve the probability of finding
3851 only one reaching expression and to reduce register lifetimes by picking
3852 the closest such expression. */
3854 static int
3855 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3857 edge pred;
3858 edge_iterator ei;
3860 FOR_EACH_EDGE (pred, ei, bb->preds)
3862 basic_block pred_bb = pred->src;
3864 if (pred->src == ENTRY_BLOCK_PTR
3865 /* Has predecessor has already been visited? */
3866 || visited[pred_bb->index])
3867 ;/* Nothing to do. */
3869 /* Does this predecessor generate this expression? */
3870 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3872 /* Is this the occurrence we're looking for?
3873 Note that there's only one generating occurrence per block
3874 so we just need to check the block number. */
3875 if (occr_bb == pred_bb)
3876 return 1;
3878 visited[pred_bb->index] = 1;
3880 /* Ignore this predecessor if it kills the expression. */
3881 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3882 visited[pred_bb->index] = 1;
3884 /* Neither gen nor kill. */
3885 else
3887 visited[pred_bb->index] = 1;
3888 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3889 return 1;
3893 /* All paths have been checked. */
3894 return 0;
3897 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3898 memory allocated for that function is returned. */
3900 static int
3901 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3903 int rval;
3904 char *visited = xcalloc (last_basic_block, 1);
3906 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3908 free (visited);
3909 return rval;
3913 /* Given an expr, generate RTL which we can insert at the end of a BB,
3914 or on an edge. Set the block number of any insns generated to
3915 the value of BB. */
3917 static rtx
3918 process_insert_insn (struct expr *expr)
3920 rtx reg = expr->reaching_reg;
3921 rtx exp = copy_rtx (expr->expr);
3922 rtx pat;
3924 start_sequence ();
3926 /* If the expression is something that's an operand, like a constant,
3927 just copy it to a register. */
3928 if (general_operand (exp, GET_MODE (reg)))
3929 emit_move_insn (reg, exp);
3931 /* Otherwise, make a new insn to compute this expression and make sure the
3932 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3933 expression to make sure we don't have any sharing issues. */
3934 else
3936 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3938 if (insn_invalid_p (insn))
3939 gcc_unreachable ();
3943 pat = get_insns ();
3944 end_sequence ();
3946 return pat;
3949 /* Add EXPR to the end of basic block BB.
3951 This is used by both the PRE and code hoisting.
3953 For PRE, we want to verify that the expr is either transparent
3954 or locally anticipatable in the target block. This check makes
3955 no sense for code hoisting. */
3957 static void
3958 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
3960 rtx insn = BB_END (bb);
3961 rtx new_insn;
3962 rtx reg = expr->reaching_reg;
3963 int regno = REGNO (reg);
3964 rtx pat, pat_end;
3966 pat = process_insert_insn (expr);
3967 gcc_assert (pat && INSN_P (pat));
3969 pat_end = pat;
3970 while (NEXT_INSN (pat_end) != NULL_RTX)
3971 pat_end = NEXT_INSN (pat_end);
3973 /* If the last insn is a jump, insert EXPR in front [taking care to
3974 handle cc0, etc. properly]. Similarly we need to care trapping
3975 instructions in presence of non-call exceptions. */
3977 if (JUMP_P (insn)
3978 || (NONJUMP_INSN_P (insn)
3979 && (!single_succ_p (bb)
3980 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
3982 #ifdef HAVE_cc0
3983 rtx note;
3984 #endif
3985 /* It should always be the case that we can put these instructions
3986 anywhere in the basic block with performing PRE optimizations.
3987 Check this. */
3988 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
3989 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
3990 || TEST_BIT (transp[bb->index], expr->bitmap_index));
3992 /* If this is a jump table, then we can't insert stuff here. Since
3993 we know the previous real insn must be the tablejump, we insert
3994 the new instruction just before the tablejump. */
3995 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
3996 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
3997 insn = prev_real_insn (insn);
3999 #ifdef HAVE_cc0
4000 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4001 if cc0 isn't set. */
4002 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4003 if (note)
4004 insn = XEXP (note, 0);
4005 else
4007 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4008 if (maybe_cc0_setter
4009 && INSN_P (maybe_cc0_setter)
4010 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4011 insn = maybe_cc0_setter;
4013 #endif
4014 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4015 new_insn = emit_insn_before_noloc (pat, insn);
4018 /* Likewise if the last insn is a call, as will happen in the presence
4019 of exception handling. */
4020 else if (CALL_P (insn)
4021 && (!single_succ_p (bb)
4022 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
4024 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4025 we search backward and place the instructions before the first
4026 parameter is loaded. Do this for everyone for consistency and a
4027 presumption that we'll get better code elsewhere as well.
4029 It should always be the case that we can put these instructions
4030 anywhere in the basic block with performing PRE optimizations.
4031 Check this. */
4033 gcc_assert (!pre
4034 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4035 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4037 /* Since different machines initialize their parameter registers
4038 in different orders, assume nothing. Collect the set of all
4039 parameter registers. */
4040 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4042 /* If we found all the parameter loads, then we want to insert
4043 before the first parameter load.
4045 If we did not find all the parameter loads, then we might have
4046 stopped on the head of the block, which could be a CODE_LABEL.
4047 If we inserted before the CODE_LABEL, then we would be putting
4048 the insn in the wrong basic block. In that case, put the insn
4049 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4050 while (LABEL_P (insn)
4051 || NOTE_INSN_BASIC_BLOCK_P (insn))
4052 insn = NEXT_INSN (insn);
4054 new_insn = emit_insn_before_noloc (pat, insn);
4056 else
4057 new_insn = emit_insn_after_noloc (pat, insn);
4059 while (1)
4061 if (INSN_P (pat))
4063 add_label_notes (PATTERN (pat), new_insn);
4064 note_stores (PATTERN (pat), record_set_info, pat);
4066 if (pat == pat_end)
4067 break;
4068 pat = NEXT_INSN (pat);
4071 gcse_create_count++;
4073 if (gcse_file)
4075 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4076 bb->index, INSN_UID (new_insn));
4077 fprintf (gcse_file, "copying expression %d to reg %d\n",
4078 expr->bitmap_index, regno);
4082 /* Insert partially redundant expressions on edges in the CFG to make
4083 the expressions fully redundant. */
4085 static int
4086 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4088 int e, i, j, num_edges, set_size, did_insert = 0;
4089 sbitmap *inserted;
4091 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4092 if it reaches any of the deleted expressions. */
4094 set_size = pre_insert_map[0]->size;
4095 num_edges = NUM_EDGES (edge_list);
4096 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4097 sbitmap_vector_zero (inserted, num_edges);
4099 for (e = 0; e < num_edges; e++)
4101 int indx;
4102 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4104 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4106 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4108 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4109 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4111 struct expr *expr = index_map[j];
4112 struct occr *occr;
4114 /* Now look at each deleted occurrence of this expression. */
4115 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4117 if (! occr->deleted_p)
4118 continue;
4120 /* Insert this expression on this edge if it would
4121 reach the deleted occurrence in BB. */
4122 if (!TEST_BIT (inserted[e], j))
4124 rtx insn;
4125 edge eg = INDEX_EDGE (edge_list, e);
4127 /* We can't insert anything on an abnormal and
4128 critical edge, so we insert the insn at the end of
4129 the previous block. There are several alternatives
4130 detailed in Morgans book P277 (sec 10.5) for
4131 handling this situation. This one is easiest for
4132 now. */
4134 if (eg->flags & EDGE_ABNORMAL)
4135 insert_insn_end_bb (index_map[j], bb, 0);
4136 else
4138 insn = process_insert_insn (index_map[j]);
4139 insert_insn_on_edge (insn, eg);
4142 if (gcse_file)
4144 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4145 bb->index,
4146 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4147 fprintf (gcse_file, "copy expression %d\n",
4148 expr->bitmap_index);
4151 update_ld_motion_stores (expr);
4152 SET_BIT (inserted[e], j);
4153 did_insert = 1;
4154 gcse_create_count++;
4161 sbitmap_vector_free (inserted);
4162 return did_insert;
4165 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4166 Given "old_reg <- expr" (INSN), instead of adding after it
4167 reaching_reg <- old_reg
4168 it's better to do the following:
4169 reaching_reg <- expr
4170 old_reg <- reaching_reg
4171 because this way copy propagation can discover additional PRE
4172 opportunities. But if this fails, we try the old way.
4173 When "expr" is a store, i.e.
4174 given "MEM <- old_reg", instead of adding after it
4175 reaching_reg <- old_reg
4176 it's better to add it before as follows:
4177 reaching_reg <- old_reg
4178 MEM <- reaching_reg. */
4180 static void
4181 pre_insert_copy_insn (struct expr *expr, rtx insn)
4183 rtx reg = expr->reaching_reg;
4184 int regno = REGNO (reg);
4185 int indx = expr->bitmap_index;
4186 rtx pat = PATTERN (insn);
4187 rtx set, new_insn;
4188 rtx old_reg;
4189 int i;
4191 /* This block matches the logic in hash_scan_insn. */
4192 switch (GET_CODE (pat))
4194 case SET:
4195 set = pat;
4196 break;
4198 case PARALLEL:
4199 /* Search through the parallel looking for the set whose
4200 source was the expression that we're interested in. */
4201 set = NULL_RTX;
4202 for (i = 0; i < XVECLEN (pat, 0); i++)
4204 rtx x = XVECEXP (pat, 0, i);
4205 if (GET_CODE (x) == SET
4206 && expr_equiv_p (SET_SRC (x), expr->expr))
4208 set = x;
4209 break;
4212 break;
4214 default:
4215 gcc_unreachable ();
4218 if (REG_P (SET_DEST (set)))
4220 old_reg = SET_DEST (set);
4221 /* Check if we can modify the set destination in the original insn. */
4222 if (validate_change (insn, &SET_DEST (set), reg, 0))
4224 new_insn = gen_move_insn (old_reg, reg);
4225 new_insn = emit_insn_after (new_insn, insn);
4227 /* Keep register set table up to date. */
4228 record_one_set (regno, insn);
4230 else
4232 new_insn = gen_move_insn (reg, old_reg);
4233 new_insn = emit_insn_after (new_insn, insn);
4235 /* Keep register set table up to date. */
4236 record_one_set (regno, new_insn);
4239 else /* This is possible only in case of a store to memory. */
4241 old_reg = SET_SRC (set);
4242 new_insn = gen_move_insn (reg, old_reg);
4244 /* Check if we can modify the set source in the original insn. */
4245 if (validate_change (insn, &SET_SRC (set), reg, 0))
4246 new_insn = emit_insn_before (new_insn, insn);
4247 else
4248 new_insn = emit_insn_after (new_insn, insn);
4250 /* Keep register set table up to date. */
4251 record_one_set (regno, new_insn);
4254 gcse_create_count++;
4256 if (gcse_file)
4257 fprintf (gcse_file,
4258 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4259 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4260 INSN_UID (insn), regno);
4263 /* Copy available expressions that reach the redundant expression
4264 to `reaching_reg'. */
4266 static void
4267 pre_insert_copies (void)
4269 unsigned int i, added_copy;
4270 struct expr *expr;
4271 struct occr *occr;
4272 struct occr *avail;
4274 /* For each available expression in the table, copy the result to
4275 `reaching_reg' if the expression reaches a deleted one.
4277 ??? The current algorithm is rather brute force.
4278 Need to do some profiling. */
4280 for (i = 0; i < expr_hash_table.size; i++)
4281 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4283 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4284 we don't want to insert a copy here because the expression may not
4285 really be redundant. So only insert an insn if the expression was
4286 deleted. This test also avoids further processing if the
4287 expression wasn't deleted anywhere. */
4288 if (expr->reaching_reg == NULL)
4289 continue;
4291 /* Set when we add a copy for that expression. */
4292 added_copy = 0;
4294 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4296 if (! occr->deleted_p)
4297 continue;
4299 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4301 rtx insn = avail->insn;
4303 /* No need to handle this one if handled already. */
4304 if (avail->copied_p)
4305 continue;
4307 /* Don't handle this one if it's a redundant one. */
4308 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4309 continue;
4311 /* Or if the expression doesn't reach the deleted one. */
4312 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4313 expr,
4314 BLOCK_FOR_INSN (occr->insn)))
4315 continue;
4317 added_copy = 1;
4319 /* Copy the result of avail to reaching_reg. */
4320 pre_insert_copy_insn (expr, insn);
4321 avail->copied_p = 1;
4325 if (added_copy)
4326 update_ld_motion_stores (expr);
4330 /* Emit move from SRC to DEST noting the equivalence with expression computed
4331 in INSN. */
4332 static rtx
4333 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4335 rtx new;
4336 rtx set = single_set (insn), set2;
4337 rtx note;
4338 rtx eqv;
4340 /* This should never fail since we're creating a reg->reg copy
4341 we've verified to be valid. */
4343 new = emit_insn_after (gen_move_insn (dest, src), insn);
4345 /* Note the equivalence for local CSE pass. */
4346 set2 = single_set (new);
4347 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4348 return new;
4349 if ((note = find_reg_equal_equiv_note (insn)))
4350 eqv = XEXP (note, 0);
4351 else
4352 eqv = SET_SRC (set);
4354 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4356 return new;
4359 /* Delete redundant computations.
4360 Deletion is done by changing the insn to copy the `reaching_reg' of
4361 the expression into the result of the SET. It is left to later passes
4362 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4364 Returns nonzero if a change is made. */
4366 static int
4367 pre_delete (void)
4369 unsigned int i;
4370 int changed;
4371 struct expr *expr;
4372 struct occr *occr;
4374 changed = 0;
4375 for (i = 0; i < expr_hash_table.size; i++)
4376 for (expr = expr_hash_table.table[i];
4377 expr != NULL;
4378 expr = expr->next_same_hash)
4380 int indx = expr->bitmap_index;
4382 /* We only need to search antic_occr since we require
4383 ANTLOC != 0. */
4385 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4387 rtx insn = occr->insn;
4388 rtx set;
4389 basic_block bb = BLOCK_FOR_INSN (insn);
4391 /* We only delete insns that have a single_set. */
4392 if (TEST_BIT (pre_delete_map[bb->index], indx)
4393 && (set = single_set (insn)) != 0)
4395 /* Create a pseudo-reg to store the result of reaching
4396 expressions into. Get the mode for the new pseudo from
4397 the mode of the original destination pseudo. */
4398 if (expr->reaching_reg == NULL)
4399 expr->reaching_reg
4400 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4402 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4403 delete_insn (insn);
4404 occr->deleted_p = 1;
4405 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4406 changed = 1;
4407 gcse_subst_count++;
4409 if (gcse_file)
4411 fprintf (gcse_file,
4412 "PRE: redundant insn %d (expression %d) in ",
4413 INSN_UID (insn), indx);
4414 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4415 bb->index, REGNO (expr->reaching_reg));
4421 return changed;
4424 /* Perform GCSE optimizations using PRE.
4425 This is called by one_pre_gcse_pass after all the dataflow analysis
4426 has been done.
4428 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4429 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4430 Compiler Design and Implementation.
4432 ??? A new pseudo reg is created to hold the reaching expression. The nice
4433 thing about the classical approach is that it would try to use an existing
4434 reg. If the register can't be adequately optimized [i.e. we introduce
4435 reload problems], one could add a pass here to propagate the new register
4436 through the block.
4438 ??? We don't handle single sets in PARALLELs because we're [currently] not
4439 able to copy the rest of the parallel when we insert copies to create full
4440 redundancies from partial redundancies. However, there's no reason why we
4441 can't handle PARALLELs in the cases where there are no partial
4442 redundancies. */
4444 static int
4445 pre_gcse (void)
4447 unsigned int i;
4448 int did_insert, changed;
4449 struct expr **index_map;
4450 struct expr *expr;
4452 /* Compute a mapping from expression number (`bitmap_index') to
4453 hash table entry. */
4455 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4456 for (i = 0; i < expr_hash_table.size; i++)
4457 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4458 index_map[expr->bitmap_index] = expr;
4460 /* Reset bitmap used to track which insns are redundant. */
4461 pre_redundant_insns = sbitmap_alloc (max_cuid);
4462 sbitmap_zero (pre_redundant_insns);
4464 /* Delete the redundant insns first so that
4465 - we know what register to use for the new insns and for the other
4466 ones with reaching expressions
4467 - we know which insns are redundant when we go to create copies */
4469 changed = pre_delete ();
4471 did_insert = pre_edge_insert (edge_list, index_map);
4473 /* In other places with reaching expressions, copy the expression to the
4474 specially allocated pseudo-reg that reaches the redundant expr. */
4475 pre_insert_copies ();
4476 if (did_insert)
4478 commit_edge_insertions ();
4479 changed = 1;
4482 free (index_map);
4483 sbitmap_free (pre_redundant_insns);
4484 return changed;
4487 /* Top level routine to perform one PRE GCSE pass.
4489 Return nonzero if a change was made. */
4491 static int
4492 one_pre_gcse_pass (int pass)
4494 int changed = 0;
4496 gcse_subst_count = 0;
4497 gcse_create_count = 0;
4499 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4500 add_noreturn_fake_exit_edges ();
4501 if (flag_gcse_lm)
4502 compute_ld_motion_mems ();
4504 compute_hash_table (&expr_hash_table);
4505 trim_ld_motion_mems ();
4506 if (gcse_file)
4507 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
4509 if (expr_hash_table.n_elems > 0)
4511 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4512 compute_pre_data ();
4513 changed |= pre_gcse ();
4514 free_edge_list (edge_list);
4515 free_pre_mem ();
4518 free_ldst_mems ();
4519 remove_fake_exit_edges ();
4520 free_hash_table (&expr_hash_table);
4522 if (gcse_file)
4524 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4525 current_function_name (), pass, bytes_used);
4526 fprintf (gcse_file, "%d substs, %d insns created\n",
4527 gcse_subst_count, gcse_create_count);
4530 return changed;
4533 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4534 If notes are added to an insn which references a CODE_LABEL, the
4535 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4536 because the following loop optimization pass requires them. */
4538 /* ??? This is very similar to the loop.c add_label_notes function. We
4539 could probably share code here. */
4541 /* ??? If there was a jump optimization pass after gcse and before loop,
4542 then we would not need to do this here, because jump would add the
4543 necessary REG_LABEL notes. */
4545 static void
4546 add_label_notes (rtx x, rtx insn)
4548 enum rtx_code code = GET_CODE (x);
4549 int i, j;
4550 const char *fmt;
4552 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4554 /* This code used to ignore labels that referred to dispatch tables to
4555 avoid flow generating (slightly) worse code.
4557 We no longer ignore such label references (see LABEL_REF handling in
4558 mark_jump_label for additional information). */
4560 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4561 REG_NOTES (insn));
4562 if (LABEL_P (XEXP (x, 0)))
4563 LABEL_NUSES (XEXP (x, 0))++;
4564 return;
4567 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4569 if (fmt[i] == 'e')
4570 add_label_notes (XEXP (x, i), insn);
4571 else if (fmt[i] == 'E')
4572 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4573 add_label_notes (XVECEXP (x, i, j), insn);
4577 /* Compute transparent outgoing information for each block.
4579 An expression is transparent to an edge unless it is killed by
4580 the edge itself. This can only happen with abnormal control flow,
4581 when the edge is traversed through a call. This happens with
4582 non-local labels and exceptions.
4584 This would not be necessary if we split the edge. While this is
4585 normally impossible for abnormal critical edges, with some effort
4586 it should be possible with exception handling, since we still have
4587 control over which handler should be invoked. But due to increased
4588 EH table sizes, this may not be worthwhile. */
4590 static void
4591 compute_transpout (void)
4593 basic_block bb;
4594 unsigned int i;
4595 struct expr *expr;
4597 sbitmap_vector_ones (transpout, last_basic_block);
4599 FOR_EACH_BB (bb)
4601 /* Note that flow inserted a nop a the end of basic blocks that
4602 end in call instructions for reasons other than abnormal
4603 control flow. */
4604 if (! CALL_P (BB_END (bb)))
4605 continue;
4607 for (i = 0; i < expr_hash_table.size; i++)
4608 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4609 if (MEM_P (expr->expr))
4611 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4612 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4613 continue;
4615 /* ??? Optimally, we would use interprocedural alias
4616 analysis to determine if this mem is actually killed
4617 by this call. */
4618 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4623 /* Code Hoisting variables and subroutines. */
4625 /* Very busy expressions. */
4626 static sbitmap *hoist_vbein;
4627 static sbitmap *hoist_vbeout;
4629 /* Hoistable expressions. */
4630 static sbitmap *hoist_exprs;
4632 /* ??? We could compute post dominators and run this algorithm in
4633 reverse to perform tail merging, doing so would probably be
4634 more effective than the tail merging code in jump.c.
4636 It's unclear if tail merging could be run in parallel with
4637 code hoisting. It would be nice. */
4639 /* Allocate vars used for code hoisting analysis. */
4641 static void
4642 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4644 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4645 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4646 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4648 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4649 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4650 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4651 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4654 /* Free vars used for code hoisting analysis. */
4656 static void
4657 free_code_hoist_mem (void)
4659 sbitmap_vector_free (antloc);
4660 sbitmap_vector_free (transp);
4661 sbitmap_vector_free (comp);
4663 sbitmap_vector_free (hoist_vbein);
4664 sbitmap_vector_free (hoist_vbeout);
4665 sbitmap_vector_free (hoist_exprs);
4666 sbitmap_vector_free (transpout);
4668 free_dominance_info (CDI_DOMINATORS);
4671 /* Compute the very busy expressions at entry/exit from each block.
4673 An expression is very busy if all paths from a given point
4674 compute the expression. */
4676 static void
4677 compute_code_hoist_vbeinout (void)
4679 int changed, passes;
4680 basic_block bb;
4682 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4683 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4685 passes = 0;
4686 changed = 1;
4688 while (changed)
4690 changed = 0;
4692 /* We scan the blocks in the reverse order to speed up
4693 the convergence. */
4694 FOR_EACH_BB_REVERSE (bb)
4696 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4697 hoist_vbeout[bb->index], transp[bb->index]);
4698 if (bb->next_bb != EXIT_BLOCK_PTR)
4699 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4702 passes++;
4705 if (gcse_file)
4706 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
4709 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4711 static void
4712 compute_code_hoist_data (void)
4714 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4715 compute_transpout ();
4716 compute_code_hoist_vbeinout ();
4717 calculate_dominance_info (CDI_DOMINATORS);
4718 if (gcse_file)
4719 fprintf (gcse_file, "\n");
4722 /* Determine if the expression identified by EXPR_INDEX would
4723 reach BB unimpared if it was placed at the end of EXPR_BB.
4725 It's unclear exactly what Muchnick meant by "unimpared". It seems
4726 to me that the expression must either be computed or transparent in
4727 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4728 would allow the expression to be hoisted out of loops, even if
4729 the expression wasn't a loop invariant.
4731 Contrast this to reachability for PRE where an expression is
4732 considered reachable if *any* path reaches instead of *all*
4733 paths. */
4735 static int
4736 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4738 edge pred;
4739 edge_iterator ei;
4740 int visited_allocated_locally = 0;
4743 if (visited == NULL)
4745 visited_allocated_locally = 1;
4746 visited = xcalloc (last_basic_block, 1);
4749 FOR_EACH_EDGE (pred, ei, bb->preds)
4751 basic_block pred_bb = pred->src;
4753 if (pred->src == ENTRY_BLOCK_PTR)
4754 break;
4755 else if (pred_bb == expr_bb)
4756 continue;
4757 else if (visited[pred_bb->index])
4758 continue;
4760 /* Does this predecessor generate this expression? */
4761 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4762 break;
4763 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4764 break;
4766 /* Not killed. */
4767 else
4769 visited[pred_bb->index] = 1;
4770 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4771 pred_bb, visited))
4772 break;
4775 if (visited_allocated_locally)
4776 free (visited);
4778 return (pred == NULL);
4781 /* Actually perform code hoisting. */
4783 static void
4784 hoist_code (void)
4786 basic_block bb, dominated;
4787 basic_block *domby;
4788 unsigned int domby_len;
4789 unsigned int i,j;
4790 struct expr **index_map;
4791 struct expr *expr;
4793 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4795 /* Compute a mapping from expression number (`bitmap_index') to
4796 hash table entry. */
4798 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4799 for (i = 0; i < expr_hash_table.size; i++)
4800 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4801 index_map[expr->bitmap_index] = expr;
4803 /* Walk over each basic block looking for potentially hoistable
4804 expressions, nothing gets hoisted from the entry block. */
4805 FOR_EACH_BB (bb)
4807 int found = 0;
4808 int insn_inserted_p;
4810 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4811 /* Examine each expression that is very busy at the exit of this
4812 block. These are the potentially hoistable expressions. */
4813 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4815 int hoistable = 0;
4817 if (TEST_BIT (hoist_vbeout[bb->index], i)
4818 && TEST_BIT (transpout[bb->index], i))
4820 /* We've found a potentially hoistable expression, now
4821 we look at every block BB dominates to see if it
4822 computes the expression. */
4823 for (j = 0; j < domby_len; j++)
4825 dominated = domby[j];
4826 /* Ignore self dominance. */
4827 if (bb == dominated)
4828 continue;
4829 /* We've found a dominated block, now see if it computes
4830 the busy expression and whether or not moving that
4831 expression to the "beginning" of that block is safe. */
4832 if (!TEST_BIT (antloc[dominated->index], i))
4833 continue;
4835 /* Note if the expression would reach the dominated block
4836 unimpared if it was placed at the end of BB.
4838 Keep track of how many times this expression is hoistable
4839 from a dominated block into BB. */
4840 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4841 hoistable++;
4844 /* If we found more than one hoistable occurrence of this
4845 expression, then note it in the bitmap of expressions to
4846 hoist. It makes no sense to hoist things which are computed
4847 in only one BB, and doing so tends to pessimize register
4848 allocation. One could increase this value to try harder
4849 to avoid any possible code expansion due to register
4850 allocation issues; however experiments have shown that
4851 the vast majority of hoistable expressions are only movable
4852 from two successors, so raising this threshold is likely
4853 to nullify any benefit we get from code hoisting. */
4854 if (hoistable > 1)
4856 SET_BIT (hoist_exprs[bb->index], i);
4857 found = 1;
4861 /* If we found nothing to hoist, then quit now. */
4862 if (! found)
4864 free (domby);
4865 continue;
4868 /* Loop over all the hoistable expressions. */
4869 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4871 /* We want to insert the expression into BB only once, so
4872 note when we've inserted it. */
4873 insn_inserted_p = 0;
4875 /* These tests should be the same as the tests above. */
4876 if (TEST_BIT (hoist_vbeout[bb->index], i))
4878 /* We've found a potentially hoistable expression, now
4879 we look at every block BB dominates to see if it
4880 computes the expression. */
4881 for (j = 0; j < domby_len; j++)
4883 dominated = domby[j];
4884 /* Ignore self dominance. */
4885 if (bb == dominated)
4886 continue;
4888 /* We've found a dominated block, now see if it computes
4889 the busy expression and whether or not moving that
4890 expression to the "beginning" of that block is safe. */
4891 if (!TEST_BIT (antloc[dominated->index], i))
4892 continue;
4894 /* The expression is computed in the dominated block and
4895 it would be safe to compute it at the start of the
4896 dominated block. Now we have to determine if the
4897 expression would reach the dominated block if it was
4898 placed at the end of BB. */
4899 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4901 struct expr *expr = index_map[i];
4902 struct occr *occr = expr->antic_occr;
4903 rtx insn;
4904 rtx set;
4906 /* Find the right occurrence of this expression. */
4907 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4908 occr = occr->next;
4910 gcc_assert (occr);
4911 insn = occr->insn;
4912 set = single_set (insn);
4913 gcc_assert (set);
4915 /* Create a pseudo-reg to store the result of reaching
4916 expressions into. Get the mode for the new pseudo
4917 from the mode of the original destination pseudo. */
4918 if (expr->reaching_reg == NULL)
4919 expr->reaching_reg
4920 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4922 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4923 delete_insn (insn);
4924 occr->deleted_p = 1;
4925 if (!insn_inserted_p)
4927 insert_insn_end_bb (index_map[i], bb, 0);
4928 insn_inserted_p = 1;
4934 free (domby);
4937 free (index_map);
4940 /* Top level routine to perform one code hoisting (aka unification) pass
4942 Return nonzero if a change was made. */
4944 static int
4945 one_code_hoisting_pass (void)
4947 int changed = 0;
4949 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4950 compute_hash_table (&expr_hash_table);
4951 if (gcse_file)
4952 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
4954 if (expr_hash_table.n_elems > 0)
4956 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
4957 compute_code_hoist_data ();
4958 hoist_code ();
4959 free_code_hoist_mem ();
4962 free_hash_table (&expr_hash_table);
4964 return changed;
4967 /* Here we provide the things required to do store motion towards
4968 the exit. In order for this to be effective, gcse also needed to
4969 be taught how to move a load when it is kill only by a store to itself.
4971 int i;
4972 float a[10];
4974 void foo(float scale)
4976 for (i=0; i<10; i++)
4977 a[i] *= scale;
4980 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
4981 the load out since its live around the loop, and stored at the bottom
4982 of the loop.
4984 The 'Load Motion' referred to and implemented in this file is
4985 an enhancement to gcse which when using edge based lcm, recognizes
4986 this situation and allows gcse to move the load out of the loop.
4988 Once gcse has hoisted the load, store motion can then push this
4989 load towards the exit, and we end up with no loads or stores of 'i'
4990 in the loop. */
4992 /* This will search the ldst list for a matching expression. If it
4993 doesn't find one, we create one and initialize it. */
4995 static struct ls_expr *
4996 ldst_entry (rtx x)
4998 int do_not_record_p = 0;
4999 struct ls_expr * ptr;
5000 unsigned int hash;
5002 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5003 NULL, /*have_reg_qty=*/false);
5005 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5006 if (ptr->hash_index == hash && expr_equiv_p (ptr->pattern, x))
5007 return ptr;
5009 ptr = xmalloc (sizeof (struct ls_expr));
5011 ptr->next = pre_ldst_mems;
5012 ptr->expr = NULL;
5013 ptr->pattern = x;
5014 ptr->pattern_regs = NULL_RTX;
5015 ptr->loads = NULL_RTX;
5016 ptr->stores = NULL_RTX;
5017 ptr->reaching_reg = NULL_RTX;
5018 ptr->invalid = 0;
5019 ptr->index = 0;
5020 ptr->hash_index = hash;
5021 pre_ldst_mems = ptr;
5023 return ptr;
5026 /* Free up an individual ldst entry. */
5028 static void
5029 free_ldst_entry (struct ls_expr * ptr)
5031 free_INSN_LIST_list (& ptr->loads);
5032 free_INSN_LIST_list (& ptr->stores);
5034 free (ptr);
5037 /* Free up all memory associated with the ldst list. */
5039 static void
5040 free_ldst_mems (void)
5042 while (pre_ldst_mems)
5044 struct ls_expr * tmp = pre_ldst_mems;
5046 pre_ldst_mems = pre_ldst_mems->next;
5048 free_ldst_entry (tmp);
5051 pre_ldst_mems = NULL;
5054 /* Dump debugging info about the ldst list. */
5056 static void
5057 print_ldst_list (FILE * file)
5059 struct ls_expr * ptr;
5061 fprintf (file, "LDST list: \n");
5063 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5065 fprintf (file, " Pattern (%3d): ", ptr->index);
5067 print_rtl (file, ptr->pattern);
5069 fprintf (file, "\n Loads : ");
5071 if (ptr->loads)
5072 print_rtl (file, ptr->loads);
5073 else
5074 fprintf (file, "(nil)");
5076 fprintf (file, "\n Stores : ");
5078 if (ptr->stores)
5079 print_rtl (file, ptr->stores);
5080 else
5081 fprintf (file, "(nil)");
5083 fprintf (file, "\n\n");
5086 fprintf (file, "\n");
5089 /* Returns 1 if X is in the list of ldst only expressions. */
5091 static struct ls_expr *
5092 find_rtx_in_ldst (rtx x)
5094 struct ls_expr * ptr;
5096 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5097 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
5098 return ptr;
5100 return NULL;
5103 /* Assign each element of the list of mems a monotonically increasing value. */
5105 static int
5106 enumerate_ldsts (void)
5108 struct ls_expr * ptr;
5109 int n = 0;
5111 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5112 ptr->index = n++;
5114 return n;
5117 /* Return first item in the list. */
5119 static inline struct ls_expr *
5120 first_ls_expr (void)
5122 return pre_ldst_mems;
5125 /* Return the next item in the list after the specified one. */
5127 static inline struct ls_expr *
5128 next_ls_expr (struct ls_expr * ptr)
5130 return ptr->next;
5133 /* Load Motion for loads which only kill themselves. */
5135 /* Return true if x is a simple MEM operation, with no registers or
5136 side effects. These are the types of loads we consider for the
5137 ld_motion list, otherwise we let the usual aliasing take care of it. */
5139 static int
5140 simple_mem (rtx x)
5142 if (! MEM_P (x))
5143 return 0;
5145 if (MEM_VOLATILE_P (x))
5146 return 0;
5148 if (GET_MODE (x) == BLKmode)
5149 return 0;
5151 /* If we are handling exceptions, we must be careful with memory references
5152 that may trap. If we are not, the behavior is undefined, so we may just
5153 continue. */
5154 if (flag_non_call_exceptions && may_trap_p (x))
5155 return 0;
5157 if (side_effects_p (x))
5158 return 0;
5160 /* Do not consider function arguments passed on stack. */
5161 if (reg_mentioned_p (stack_pointer_rtx, x))
5162 return 0;
5164 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5165 return 0;
5167 return 1;
5170 /* Make sure there isn't a buried reference in this pattern anywhere.
5171 If there is, invalidate the entry for it since we're not capable
5172 of fixing it up just yet.. We have to be sure we know about ALL
5173 loads since the aliasing code will allow all entries in the
5174 ld_motion list to not-alias itself. If we miss a load, we will get
5175 the wrong value since gcse might common it and we won't know to
5176 fix it up. */
5178 static void
5179 invalidate_any_buried_refs (rtx x)
5181 const char * fmt;
5182 int i, j;
5183 struct ls_expr * ptr;
5185 /* Invalidate it in the list. */
5186 if (MEM_P (x) && simple_mem (x))
5188 ptr = ldst_entry (x);
5189 ptr->invalid = 1;
5192 /* Recursively process the insn. */
5193 fmt = GET_RTX_FORMAT (GET_CODE (x));
5195 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5197 if (fmt[i] == 'e')
5198 invalidate_any_buried_refs (XEXP (x, i));
5199 else if (fmt[i] == 'E')
5200 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5201 invalidate_any_buried_refs (XVECEXP (x, i, j));
5205 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5206 being defined as MEM loads and stores to symbols, with no side effects
5207 and no registers in the expression. For a MEM destination, we also
5208 check that the insn is still valid if we replace the destination with a
5209 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5210 which don't match this criteria, they are invalidated and trimmed out
5211 later. */
5213 static void
5214 compute_ld_motion_mems (void)
5216 struct ls_expr * ptr;
5217 basic_block bb;
5218 rtx insn;
5220 pre_ldst_mems = NULL;
5222 FOR_EACH_BB (bb)
5224 for (insn = BB_HEAD (bb);
5225 insn && insn != NEXT_INSN (BB_END (bb));
5226 insn = NEXT_INSN (insn))
5228 if (INSN_P (insn))
5230 if (GET_CODE (PATTERN (insn)) == SET)
5232 rtx src = SET_SRC (PATTERN (insn));
5233 rtx dest = SET_DEST (PATTERN (insn));
5235 /* Check for a simple LOAD... */
5236 if (MEM_P (src) && simple_mem (src))
5238 ptr = ldst_entry (src);
5239 if (REG_P (dest))
5240 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5241 else
5242 ptr->invalid = 1;
5244 else
5246 /* Make sure there isn't a buried load somewhere. */
5247 invalidate_any_buried_refs (src);
5250 /* Check for stores. Don't worry about aliased ones, they
5251 will block any movement we might do later. We only care
5252 about this exact pattern since those are the only
5253 circumstance that we will ignore the aliasing info. */
5254 if (MEM_P (dest) && simple_mem (dest))
5256 ptr = ldst_entry (dest);
5258 if (! MEM_P (src)
5259 && GET_CODE (src) != ASM_OPERANDS
5260 /* Check for REG manually since want_to_gcse_p
5261 returns 0 for all REGs. */
5262 && can_assign_to_reg_p (src))
5263 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5264 else
5265 ptr->invalid = 1;
5268 else
5269 invalidate_any_buried_refs (PATTERN (insn));
5275 /* Remove any references that have been either invalidated or are not in the
5276 expression list for pre gcse. */
5278 static void
5279 trim_ld_motion_mems (void)
5281 struct ls_expr * * last = & pre_ldst_mems;
5282 struct ls_expr * ptr = pre_ldst_mems;
5284 while (ptr != NULL)
5286 struct expr * expr;
5288 /* Delete if entry has been made invalid. */
5289 if (! ptr->invalid)
5291 /* Delete if we cannot find this mem in the expression list. */
5292 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5294 for (expr = expr_hash_table.table[hash];
5295 expr != NULL;
5296 expr = expr->next_same_hash)
5297 if (expr_equiv_p (expr->expr, ptr->pattern))
5298 break;
5300 else
5301 expr = (struct expr *) 0;
5303 if (expr)
5305 /* Set the expression field if we are keeping it. */
5306 ptr->expr = expr;
5307 last = & ptr->next;
5308 ptr = ptr->next;
5310 else
5312 *last = ptr->next;
5313 free_ldst_entry (ptr);
5314 ptr = * last;
5318 /* Show the world what we've found. */
5319 if (gcse_file && pre_ldst_mems != NULL)
5320 print_ldst_list (gcse_file);
5323 /* This routine will take an expression which we are replacing with
5324 a reaching register, and update any stores that are needed if
5325 that expression is in the ld_motion list. Stores are updated by
5326 copying their SRC to the reaching register, and then storing
5327 the reaching register into the store location. These keeps the
5328 correct value in the reaching register for the loads. */
5330 static void
5331 update_ld_motion_stores (struct expr * expr)
5333 struct ls_expr * mem_ptr;
5335 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5337 /* We can try to find just the REACHED stores, but is shouldn't
5338 matter to set the reaching reg everywhere... some might be
5339 dead and should be eliminated later. */
5341 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5342 where reg is the reaching reg used in the load. We checked in
5343 compute_ld_motion_mems that we can replace (set mem expr) with
5344 (set reg expr) in that insn. */
5345 rtx list = mem_ptr->stores;
5347 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5349 rtx insn = XEXP (list, 0);
5350 rtx pat = PATTERN (insn);
5351 rtx src = SET_SRC (pat);
5352 rtx reg = expr->reaching_reg;
5353 rtx copy, new;
5355 /* If we've already copied it, continue. */
5356 if (expr->reaching_reg == src)
5357 continue;
5359 if (gcse_file)
5361 fprintf (gcse_file, "PRE: store updated with reaching reg ");
5362 print_rtl (gcse_file, expr->reaching_reg);
5363 fprintf (gcse_file, ":\n ");
5364 print_inline_rtx (gcse_file, insn, 8);
5365 fprintf (gcse_file, "\n");
5368 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5369 new = emit_insn_before (copy, insn);
5370 record_one_set (REGNO (reg), new);
5371 SET_SRC (pat) = reg;
5373 /* un-recognize this pattern since it's probably different now. */
5374 INSN_CODE (insn) = -1;
5375 gcse_create_count++;
5380 /* Store motion code. */
5382 #define ANTIC_STORE_LIST(x) ((x)->loads)
5383 #define AVAIL_STORE_LIST(x) ((x)->stores)
5384 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5386 /* This is used to communicate the target bitvector we want to use in the
5387 reg_set_info routine when called via the note_stores mechanism. */
5388 static int * regvec;
5390 /* And current insn, for the same routine. */
5391 static rtx compute_store_table_current_insn;
5393 /* Used in computing the reverse edge graph bit vectors. */
5394 static sbitmap * st_antloc;
5396 /* Global holding the number of store expressions we are dealing with. */
5397 static int num_stores;
5399 /* Checks to set if we need to mark a register set. Called from
5400 note_stores. */
5402 static void
5403 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5404 void *data)
5406 sbitmap bb_reg = data;
5408 if (GET_CODE (dest) == SUBREG)
5409 dest = SUBREG_REG (dest);
5411 if (REG_P (dest))
5413 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5414 if (bb_reg)
5415 SET_BIT (bb_reg, REGNO (dest));
5419 /* Clear any mark that says that this insn sets dest. Called from
5420 note_stores. */
5422 static void
5423 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5424 void *data)
5426 int *dead_vec = data;
5428 if (GET_CODE (dest) == SUBREG)
5429 dest = SUBREG_REG (dest);
5431 if (REG_P (dest) &&
5432 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5433 dead_vec[REGNO (dest)] = 0;
5436 /* Return zero if some of the registers in list X are killed
5437 due to set of registers in bitmap REGS_SET. */
5439 static bool
5440 store_ops_ok (rtx x, int *regs_set)
5442 rtx reg;
5444 for (; x; x = XEXP (x, 1))
5446 reg = XEXP (x, 0);
5447 if (regs_set[REGNO(reg)])
5448 return false;
5451 return true;
5454 /* Returns a list of registers mentioned in X. */
5455 static rtx
5456 extract_mentioned_regs (rtx x)
5458 return extract_mentioned_regs_helper (x, NULL_RTX);
5461 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5462 registers. */
5463 static rtx
5464 extract_mentioned_regs_helper (rtx x, rtx accum)
5466 int i;
5467 enum rtx_code code;
5468 const char * fmt;
5470 /* Repeat is used to turn tail-recursion into iteration. */
5471 repeat:
5473 if (x == 0)
5474 return accum;
5476 code = GET_CODE (x);
5477 switch (code)
5479 case REG:
5480 return alloc_EXPR_LIST (0, x, accum);
5482 case MEM:
5483 x = XEXP (x, 0);
5484 goto repeat;
5486 case PRE_DEC:
5487 case PRE_INC:
5488 case POST_DEC:
5489 case POST_INC:
5490 /* We do not run this function with arguments having side effects. */
5491 gcc_unreachable ();
5493 case PC:
5494 case CC0: /*FIXME*/
5495 case CONST:
5496 case CONST_INT:
5497 case CONST_DOUBLE:
5498 case CONST_VECTOR:
5499 case SYMBOL_REF:
5500 case LABEL_REF:
5501 case ADDR_VEC:
5502 case ADDR_DIFF_VEC:
5503 return accum;
5505 default:
5506 break;
5509 i = GET_RTX_LENGTH (code) - 1;
5510 fmt = GET_RTX_FORMAT (code);
5512 for (; i >= 0; i--)
5514 if (fmt[i] == 'e')
5516 rtx tem = XEXP (x, i);
5518 /* If we are about to do the last recursive call
5519 needed at this level, change it into iteration. */
5520 if (i == 0)
5522 x = tem;
5523 goto repeat;
5526 accum = extract_mentioned_regs_helper (tem, accum);
5528 else if (fmt[i] == 'E')
5530 int j;
5532 for (j = 0; j < XVECLEN (x, i); j++)
5533 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5537 return accum;
5540 /* Determine whether INSN is MEM store pattern that we will consider moving.
5541 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5542 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5543 including) the insn in this basic block. We must be passing through BB from
5544 head to end, as we are using this fact to speed things up.
5546 The results are stored this way:
5548 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5549 -- if the processed expression is not anticipatable, NULL_RTX is added
5550 there instead, so that we can use it as indicator that no further
5551 expression of this type may be anticipatable
5552 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5553 consequently, all of them but this head are dead and may be deleted.
5554 -- if the expression is not available, the insn due to that it fails to be
5555 available is stored in reaching_reg.
5557 The things are complicated a bit by fact that there already may be stores
5558 to the same MEM from other blocks; also caller must take care of the
5559 necessary cleanup of the temporary markers after end of the basic block.
5562 static void
5563 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5565 struct ls_expr * ptr;
5566 rtx dest, set, tmp;
5567 int check_anticipatable, check_available;
5568 basic_block bb = BLOCK_FOR_INSN (insn);
5570 set = single_set (insn);
5571 if (!set)
5572 return;
5574 dest = SET_DEST (set);
5576 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5577 || GET_MODE (dest) == BLKmode)
5578 return;
5580 if (side_effects_p (dest))
5581 return;
5583 /* If we are handling exceptions, we must be careful with memory references
5584 that may trap. If we are not, the behavior is undefined, so we may just
5585 continue. */
5586 if (flag_non_call_exceptions && may_trap_p (dest))
5587 return;
5589 /* Even if the destination cannot trap, the source may. In this case we'd
5590 need to handle updating the REG_EH_REGION note. */
5591 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5592 return;
5594 ptr = ldst_entry (dest);
5595 if (!ptr->pattern_regs)
5596 ptr->pattern_regs = extract_mentioned_regs (dest);
5598 /* Do not check for anticipatability if we either found one anticipatable
5599 store already, or tested for one and found out that it was killed. */
5600 check_anticipatable = 0;
5601 if (!ANTIC_STORE_LIST (ptr))
5602 check_anticipatable = 1;
5603 else
5605 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5606 if (tmp != NULL_RTX
5607 && BLOCK_FOR_INSN (tmp) != bb)
5608 check_anticipatable = 1;
5610 if (check_anticipatable)
5612 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5613 tmp = NULL_RTX;
5614 else
5615 tmp = insn;
5616 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5617 ANTIC_STORE_LIST (ptr));
5620 /* It is not necessary to check whether store is available if we did
5621 it successfully before; if we failed before, do not bother to check
5622 until we reach the insn that caused us to fail. */
5623 check_available = 0;
5624 if (!AVAIL_STORE_LIST (ptr))
5625 check_available = 1;
5626 else
5628 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5629 if (BLOCK_FOR_INSN (tmp) != bb)
5630 check_available = 1;
5632 if (check_available)
5634 /* Check that we have already reached the insn at that the check
5635 failed last time. */
5636 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5638 for (tmp = BB_END (bb);
5639 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5640 tmp = PREV_INSN (tmp))
5641 continue;
5642 if (tmp == insn)
5643 check_available = 0;
5645 else
5646 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5647 bb, regs_set_after,
5648 &LAST_AVAIL_CHECK_FAILURE (ptr));
5650 if (!check_available)
5651 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5654 /* Find available and anticipatable stores. */
5656 static int
5657 compute_store_table (void)
5659 int ret;
5660 basic_block bb;
5661 unsigned regno;
5662 rtx insn, pat, tmp;
5663 int *last_set_in, *already_set;
5664 struct ls_expr * ptr, **prev_next_ptr_ptr;
5666 max_gcse_regno = max_reg_num ();
5668 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5669 max_gcse_regno);
5670 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5671 pre_ldst_mems = 0;
5672 last_set_in = xcalloc (max_gcse_regno, sizeof (int));
5673 already_set = xmalloc (sizeof (int) * max_gcse_regno);
5675 /* Find all the stores we care about. */
5676 FOR_EACH_BB (bb)
5678 /* First compute the registers set in this block. */
5679 regvec = last_set_in;
5681 for (insn = BB_HEAD (bb);
5682 insn != NEXT_INSN (BB_END (bb));
5683 insn = NEXT_INSN (insn))
5685 if (! INSN_P (insn))
5686 continue;
5688 if (CALL_P (insn))
5690 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5691 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5693 last_set_in[regno] = INSN_UID (insn);
5694 SET_BIT (reg_set_in_block[bb->index], regno);
5698 pat = PATTERN (insn);
5699 compute_store_table_current_insn = insn;
5700 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5703 /* Now find the stores. */
5704 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5705 regvec = already_set;
5706 for (insn = BB_HEAD (bb);
5707 insn != NEXT_INSN (BB_END (bb));
5708 insn = NEXT_INSN (insn))
5710 if (! INSN_P (insn))
5711 continue;
5713 if (CALL_P (insn))
5715 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5716 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5717 already_set[regno] = 1;
5720 pat = PATTERN (insn);
5721 note_stores (pat, reg_set_info, NULL);
5723 /* Now that we've marked regs, look for stores. */
5724 find_moveable_store (insn, already_set, last_set_in);
5726 /* Unmark regs that are no longer set. */
5727 compute_store_table_current_insn = insn;
5728 note_stores (pat, reg_clear_last_set, last_set_in);
5729 if (CALL_P (insn))
5731 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5732 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
5733 && last_set_in[regno] == INSN_UID (insn))
5734 last_set_in[regno] = 0;
5738 #ifdef ENABLE_CHECKING
5739 /* last_set_in should now be all-zero. */
5740 for (regno = 0; regno < max_gcse_regno; regno++)
5741 gcc_assert (!last_set_in[regno]);
5742 #endif
5744 /* Clear temporary marks. */
5745 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5747 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5748 if (ANTIC_STORE_LIST (ptr)
5749 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5750 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5754 /* Remove the stores that are not available anywhere, as there will
5755 be no opportunity to optimize them. */
5756 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5757 ptr != NULL;
5758 ptr = *prev_next_ptr_ptr)
5760 if (!AVAIL_STORE_LIST (ptr))
5762 *prev_next_ptr_ptr = ptr->next;
5763 free_ldst_entry (ptr);
5765 else
5766 prev_next_ptr_ptr = &ptr->next;
5769 ret = enumerate_ldsts ();
5771 if (gcse_file)
5773 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
5774 print_ldst_list (gcse_file);
5777 free (last_set_in);
5778 free (already_set);
5779 return ret;
5782 /* Check to see if the load X is aliased with STORE_PATTERN.
5783 AFTER is true if we are checking the case when STORE_PATTERN occurs
5784 after the X. */
5786 static bool
5787 load_kills_store (rtx x, rtx store_pattern, int after)
5789 if (after)
5790 return anti_dependence (x, store_pattern);
5791 else
5792 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5793 rtx_addr_varies_p);
5796 /* Go through the entire insn X, looking for any loads which might alias
5797 STORE_PATTERN. Return true if found.
5798 AFTER is true if we are checking the case when STORE_PATTERN occurs
5799 after the insn X. */
5801 static bool
5802 find_loads (rtx x, rtx store_pattern, int after)
5804 const char * fmt;
5805 int i, j;
5806 int ret = false;
5808 if (!x)
5809 return false;
5811 if (GET_CODE (x) == SET)
5812 x = SET_SRC (x);
5814 if (MEM_P (x))
5816 if (load_kills_store (x, store_pattern, after))
5817 return true;
5820 /* Recursively process the insn. */
5821 fmt = GET_RTX_FORMAT (GET_CODE (x));
5823 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5825 if (fmt[i] == 'e')
5826 ret |= find_loads (XEXP (x, i), store_pattern, after);
5827 else if (fmt[i] == 'E')
5828 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5829 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5831 return ret;
5834 /* Check if INSN kills the store pattern X (is aliased with it).
5835 AFTER is true if we are checking the case when store X occurs
5836 after the insn. Return true if it does. */
5838 static bool
5839 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5841 rtx reg, base, note;
5843 if (!INSN_P (insn))
5844 return false;
5846 if (CALL_P (insn))
5848 /* A normal or pure call might read from pattern,
5849 but a const call will not. */
5850 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5851 return true;
5853 /* But even a const call reads its parameters. Check whether the
5854 base of some of registers used in mem is stack pointer. */
5855 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5857 base = find_base_term (XEXP (reg, 0));
5858 if (!base
5859 || (GET_CODE (base) == ADDRESS
5860 && GET_MODE (base) == Pmode
5861 && XEXP (base, 0) == stack_pointer_rtx))
5862 return true;
5865 return false;
5868 if (GET_CODE (PATTERN (insn)) == SET)
5870 rtx pat = PATTERN (insn);
5871 rtx dest = SET_DEST (pat);
5873 if (GET_CODE (dest) == ZERO_EXTRACT)
5874 dest = XEXP (dest, 0);
5876 /* Check for memory stores to aliased objects. */
5877 if (MEM_P (dest)
5878 && !expr_equiv_p (dest, x))
5880 if (after)
5882 if (output_dependence (dest, x))
5883 return true;
5885 else
5887 if (output_dependence (x, dest))
5888 return true;
5891 if (find_loads (SET_SRC (pat), x, after))
5892 return true;
5894 else if (find_loads (PATTERN (insn), x, after))
5895 return true;
5897 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5898 location aliased with X, then this insn kills X. */
5899 note = find_reg_equal_equiv_note (insn);
5900 if (! note)
5901 return false;
5902 note = XEXP (note, 0);
5904 /* However, if the note represents a must alias rather than a may
5905 alias relationship, then it does not kill X. */
5906 if (expr_equiv_p (note, x))
5907 return false;
5909 /* See if there are any aliased loads in the note. */
5910 return find_loads (note, x, after);
5913 /* Returns true if the expression X is loaded or clobbered on or after INSN
5914 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
5915 or after the insn. X_REGS is list of registers mentioned in X. If the store
5916 is killed, return the last insn in that it occurs in FAIL_INSN. */
5918 static bool
5919 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
5920 int *regs_set_after, rtx *fail_insn)
5922 rtx last = BB_END (bb), act;
5924 if (!store_ops_ok (x_regs, regs_set_after))
5926 /* We do not know where it will happen. */
5927 if (fail_insn)
5928 *fail_insn = NULL_RTX;
5929 return true;
5932 /* Scan from the end, so that fail_insn is determined correctly. */
5933 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
5934 if (store_killed_in_insn (x, x_regs, act, false))
5936 if (fail_insn)
5937 *fail_insn = act;
5938 return true;
5941 return false;
5944 /* Returns true if the expression X is loaded or clobbered on or before INSN
5945 within basic block BB. X_REGS is list of registers mentioned in X.
5946 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
5947 static bool
5948 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
5949 int *regs_set_before)
5951 rtx first = BB_HEAD (bb);
5953 if (!store_ops_ok (x_regs, regs_set_before))
5954 return true;
5956 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
5957 if (store_killed_in_insn (x, x_regs, insn, true))
5958 return true;
5960 return false;
5963 /* Fill in available, anticipatable, transparent and kill vectors in
5964 STORE_DATA, based on lists of available and anticipatable stores. */
5965 static void
5966 build_store_vectors (void)
5968 basic_block bb;
5969 int *regs_set_in_block;
5970 rtx insn, st;
5971 struct ls_expr * ptr;
5972 unsigned regno;
5974 /* Build the gen_vector. This is any store in the table which is not killed
5975 by aliasing later in its block. */
5976 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
5977 sbitmap_vector_zero (ae_gen, last_basic_block);
5979 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
5980 sbitmap_vector_zero (st_antloc, last_basic_block);
5982 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5984 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
5986 insn = XEXP (st, 0);
5987 bb = BLOCK_FOR_INSN (insn);
5989 /* If we've already seen an available expression in this block,
5990 we can delete this one (It occurs earlier in the block). We'll
5991 copy the SRC expression to an unused register in case there
5992 are any side effects. */
5993 if (TEST_BIT (ae_gen[bb->index], ptr->index))
5995 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
5996 if (gcse_file)
5997 fprintf (gcse_file, "Removing redundant store:\n");
5998 replace_store_insn (r, XEXP (st, 0), bb, ptr);
5999 continue;
6001 SET_BIT (ae_gen[bb->index], ptr->index);
6004 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6006 insn = XEXP (st, 0);
6007 bb = BLOCK_FOR_INSN (insn);
6008 SET_BIT (st_antloc[bb->index], ptr->index);
6012 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6013 sbitmap_vector_zero (ae_kill, last_basic_block);
6015 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6016 sbitmap_vector_zero (transp, last_basic_block);
6017 regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);
6019 FOR_EACH_BB (bb)
6021 for (regno = 0; regno < max_gcse_regno; regno++)
6022 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6024 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6026 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6027 bb, regs_set_in_block, NULL))
6029 /* It should not be necessary to consider the expression
6030 killed if it is both anticipatable and available. */
6031 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6032 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6033 SET_BIT (ae_kill[bb->index], ptr->index);
6035 else
6036 SET_BIT (transp[bb->index], ptr->index);
6040 free (regs_set_in_block);
6042 if (gcse_file)
6044 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
6045 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
6046 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
6047 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
6051 /* Insert an instruction at the beginning of a basic block, and update
6052 the BB_HEAD if needed. */
6054 static void
6055 insert_insn_start_bb (rtx insn, basic_block bb)
6057 /* Insert at start of successor block. */
6058 rtx prev = PREV_INSN (BB_HEAD (bb));
6059 rtx before = BB_HEAD (bb);
6060 while (before != 0)
6062 if (! LABEL_P (before)
6063 && (! NOTE_P (before)
6064 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6065 break;
6066 prev = before;
6067 if (prev == BB_END (bb))
6068 break;
6069 before = NEXT_INSN (before);
6072 insn = emit_insn_after_noloc (insn, prev);
6074 if (gcse_file)
6076 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6077 bb->index);
6078 print_inline_rtx (gcse_file, insn, 6);
6079 fprintf (gcse_file, "\n");
6083 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6084 the memory reference, and E is the edge to insert it on. Returns nonzero
6085 if an edge insertion was performed. */
6087 static int
6088 insert_store (struct ls_expr * expr, edge e)
6090 rtx reg, insn;
6091 basic_block bb;
6092 edge tmp;
6093 edge_iterator ei;
6095 /* We did all the deleted before this insert, so if we didn't delete a
6096 store, then we haven't set the reaching reg yet either. */
6097 if (expr->reaching_reg == NULL_RTX)
6098 return 0;
6100 if (e->flags & EDGE_FAKE)
6101 return 0;
6103 reg = expr->reaching_reg;
6104 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6106 /* If we are inserting this expression on ALL predecessor edges of a BB,
6107 insert it at the start of the BB, and reset the insert bits on the other
6108 edges so we don't try to insert it on the other edges. */
6109 bb = e->dest;
6110 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6111 if (!(tmp->flags & EDGE_FAKE))
6113 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6115 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6116 if (! TEST_BIT (pre_insert_map[index], expr->index))
6117 break;
6120 /* If tmp is NULL, we found an insertion on every edge, blank the
6121 insertion vector for these edges, and insert at the start of the BB. */
6122 if (!tmp && bb != EXIT_BLOCK_PTR)
6124 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6126 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6127 RESET_BIT (pre_insert_map[index], expr->index);
6129 insert_insn_start_bb (insn, bb);
6130 return 0;
6133 /* We can't put stores in the front of blocks pointed to by abnormal
6134 edges since that may put a store where one didn't used to be. */
6135 gcc_assert (!(e->flags & EDGE_ABNORMAL));
6137 insert_insn_on_edge (insn, e);
6139 if (gcse_file)
6141 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6142 e->src->index, e->dest->index);
6143 print_inline_rtx (gcse_file, insn, 6);
6144 fprintf (gcse_file, "\n");
6147 return 1;
6150 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6151 memory location in SMEXPR set in basic block BB.
6153 This could be rather expensive. */
6155 static void
6156 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6158 edge_iterator *stack, ei;
6159 int sp;
6160 edge act;
6161 sbitmap visited = sbitmap_alloc (last_basic_block);
6162 rtx last, insn, note;
6163 rtx mem = smexpr->pattern;
6165 stack = xmalloc (sizeof (edge_iterator) * n_basic_blocks);
6166 sp = 0;
6167 ei = ei_start (bb->succs);
6169 sbitmap_zero (visited);
6171 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6172 while (1)
6174 if (!act)
6176 if (!sp)
6178 free (stack);
6179 sbitmap_free (visited);
6180 return;
6182 act = ei_edge (stack[--sp]);
6184 bb = act->dest;
6186 if (bb == EXIT_BLOCK_PTR
6187 || TEST_BIT (visited, bb->index))
6189 if (!ei_end_p (ei))
6190 ei_next (&ei);
6191 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6192 continue;
6194 SET_BIT (visited, bb->index);
6196 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6198 for (last = ANTIC_STORE_LIST (smexpr);
6199 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6200 last = XEXP (last, 1))
6201 continue;
6202 last = XEXP (last, 0);
6204 else
6205 last = NEXT_INSN (BB_END (bb));
6207 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6208 if (INSN_P (insn))
6210 note = find_reg_equal_equiv_note (insn);
6211 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6212 continue;
6214 if (gcse_file)
6215 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6216 INSN_UID (insn));
6217 remove_note (insn, note);
6220 if (!ei_end_p (ei))
6221 ei_next (&ei);
6222 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6224 if (EDGE_COUNT (bb->succs) > 0)
6226 if (act)
6227 stack[sp++] = ei;
6228 ei = ei_start (bb->succs);
6229 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6234 /* This routine will replace a store with a SET to a specified register. */
6236 static void
6237 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6239 rtx insn, mem, note, set, ptr, pair;
6241 mem = smexpr->pattern;
6242 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6243 insn = emit_insn_after (insn, del);
6245 if (gcse_file)
6247 fprintf (gcse_file,
6248 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6249 print_inline_rtx (gcse_file, del, 6);
6250 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6251 print_inline_rtx (gcse_file, insn, 6);
6252 fprintf (gcse_file, "\n");
6255 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6256 if (XEXP (ptr, 0) == del)
6258 XEXP (ptr, 0) = insn;
6259 break;
6262 /* Move the notes from the deleted insn to its replacement, and patch
6263 up the LIBCALL notes. */
6264 REG_NOTES (insn) = REG_NOTES (del);
6266 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6267 if (note)
6269 pair = XEXP (note, 0);
6270 note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6271 XEXP (note, 0) = insn;
6273 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6274 if (note)
6276 pair = XEXP (note, 0);
6277 note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6278 XEXP (note, 0) = insn;
6281 delete_insn (del);
6283 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6284 they are no longer accurate provided that they are reached by this
6285 definition, so drop them. */
6286 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6287 if (INSN_P (insn))
6289 set = single_set (insn);
6290 if (!set)
6291 continue;
6292 if (expr_equiv_p (SET_DEST (set), mem))
6293 return;
6294 note = find_reg_equal_equiv_note (insn);
6295 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6296 continue;
6298 if (gcse_file)
6299 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6300 INSN_UID (insn));
6301 remove_note (insn, note);
6303 remove_reachable_equiv_notes (bb, smexpr);
6307 /* Delete a store, but copy the value that would have been stored into
6308 the reaching_reg for later storing. */
6310 static void
6311 delete_store (struct ls_expr * expr, basic_block bb)
6313 rtx reg, i, del;
6315 if (expr->reaching_reg == NULL_RTX)
6316 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6318 reg = expr->reaching_reg;
6320 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6322 del = XEXP (i, 0);
6323 if (BLOCK_FOR_INSN (del) == bb)
6325 /* We know there is only one since we deleted redundant
6326 ones during the available computation. */
6327 replace_store_insn (reg, del, bb, expr);
6328 break;
6333 /* Free memory used by store motion. */
6335 static void
6336 free_store_memory (void)
6338 free_ldst_mems ();
6340 if (ae_gen)
6341 sbitmap_vector_free (ae_gen);
6342 if (ae_kill)
6343 sbitmap_vector_free (ae_kill);
6344 if (transp)
6345 sbitmap_vector_free (transp);
6346 if (st_antloc)
6347 sbitmap_vector_free (st_antloc);
6348 if (pre_insert_map)
6349 sbitmap_vector_free (pre_insert_map);
6350 if (pre_delete_map)
6351 sbitmap_vector_free (pre_delete_map);
6352 if (reg_set_in_block)
6353 sbitmap_vector_free (reg_set_in_block);
6355 ae_gen = ae_kill = transp = st_antloc = NULL;
6356 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6359 /* Perform store motion. Much like gcse, except we move expressions the
6360 other way by looking at the flowgraph in reverse. */
6362 static void
6363 store_motion (void)
6365 basic_block bb;
6366 int x;
6367 struct ls_expr * ptr;
6368 int update_flow = 0;
6370 if (gcse_file)
6372 fprintf (gcse_file, "before store motion\n");
6373 print_rtl (gcse_file, get_insns ());
6376 init_alias_analysis ();
6378 /* Find all the available and anticipatable stores. */
6379 num_stores = compute_store_table ();
6380 if (num_stores == 0)
6382 sbitmap_vector_free (reg_set_in_block);
6383 end_alias_analysis ();
6384 return;
6387 /* Now compute kill & transp vectors. */
6388 build_store_vectors ();
6389 add_noreturn_fake_exit_edges ();
6390 connect_infinite_loops_to_exit ();
6392 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6393 st_antloc, ae_kill, &pre_insert_map,
6394 &pre_delete_map);
6396 /* Now we want to insert the new stores which are going to be needed. */
6397 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6399 /* If any of the edges we have above are abnormal, we can't move this
6400 store. */
6401 for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
6402 if (TEST_BIT (pre_insert_map[x], ptr->index)
6403 && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
6404 break;
6406 if (x >= 0)
6408 if (gcse_file != NULL)
6409 fprintf (gcse_file,
6410 "Can't replace store %d: abnormal edge from %d to %d\n",
6411 ptr->index, INDEX_EDGE (edge_list, x)->src->index,
6412 INDEX_EDGE (edge_list, x)->dest->index);
6413 continue;
6416 /* Now we want to insert the new stores which are going to be needed. */
6418 FOR_EACH_BB (bb)
6419 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6420 delete_store (ptr, bb);
6422 for (x = 0; x < NUM_EDGES (edge_list); x++)
6423 if (TEST_BIT (pre_insert_map[x], ptr->index))
6424 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6427 if (update_flow)
6428 commit_edge_insertions ();
6430 free_store_memory ();
6431 free_edge_list (edge_list);
6432 remove_fake_exit_edges ();
6433 end_alias_analysis ();
6437 /* Entry point for jump bypassing optimization pass. */
6440 bypass_jumps (FILE *file)
6442 int changed;
6444 /* We do not construct an accurate cfg in functions which call
6445 setjmp, so just punt to be safe. */
6446 if (current_function_calls_setjmp)
6447 return 0;
6449 /* For calling dump_foo fns from gdb. */
6450 debug_stderr = stderr;
6451 gcse_file = file;
6453 /* Identify the basic block information for this function, including
6454 successors and predecessors. */
6455 max_gcse_regno = max_reg_num ();
6457 if (file)
6458 dump_flow_info (file);
6460 /* Return if there's nothing to do, or it is too expensive. */
6461 if (n_basic_blocks <= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6462 return 0;
6464 gcc_obstack_init (&gcse_obstack);
6465 bytes_used = 0;
6467 /* We need alias. */
6468 init_alias_analysis ();
6470 /* Record where pseudo-registers are set. This data is kept accurate
6471 during each pass. ??? We could also record hard-reg information here
6472 [since it's unchanging], however it is currently done during hash table
6473 computation.
6475 It may be tempting to compute MEM set information here too, but MEM sets
6476 will be subject to code motion one day and thus we need to compute
6477 information about memory sets when we build the hash tables. */
6479 alloc_reg_set_mem (max_gcse_regno);
6480 compute_sets (get_insns ());
6482 max_gcse_regno = max_reg_num ();
6483 alloc_gcse_mem (get_insns ());
6484 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, 1, 1);
6485 free_gcse_mem ();
6487 if (file)
6489 fprintf (file, "BYPASS of %s: %d basic blocks, ",
6490 current_function_name (), n_basic_blocks);
6491 fprintf (file, "%d bytes\n\n", bytes_used);
6494 obstack_free (&gcse_obstack, NULL);
6495 free_reg_set_mem ();
6497 /* We are finished with alias. */
6498 end_alias_analysis ();
6499 allocate_reg_info (max_reg_num (), FALSE, FALSE);
6501 return changed;
6504 /* Return true if the graph is too expensive to optimize. PASS is the
6505 optimization about to be performed. */
6507 static bool
6508 is_too_expensive (const char *pass)
6510 /* Trying to perform global optimizations on flow graphs which have
6511 a high connectivity will take a long time and is unlikely to be
6512 particularly useful.
6514 In normal circumstances a cfg should have about twice as many
6515 edges as blocks. But we do not want to punish small functions
6516 which have a couple switch statements. Rather than simply
6517 threshold the number of blocks, uses something with a more
6518 graceful degradation. */
6519 if (n_edges > 20000 + n_basic_blocks * 4)
6521 if (warn_disabled_optimization)
6522 warning ("%s: %d basic blocks and %d edges/basic block",
6523 pass, n_basic_blocks, n_edges / n_basic_blocks);
6525 return true;
6528 /* If allocating memory for the cprop bitmap would take up too much
6529 storage it's better just to disable the optimization. */
6530 if ((n_basic_blocks
6531 * SBITMAP_SET_SIZE (max_reg_num ())
6532 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6534 if (warn_disabled_optimization)
6535 warning ("%s: %d basic blocks and %d registers",
6536 pass, n_basic_blocks, max_reg_num ());
6538 return true;
6541 return false;
6544 #include "gt-gcse.h"