Daily bump.
[official-gcc.git] / gcc / expmed.c
blobafbbaf53869b38d42618e673fe1cb6064c0bd21e
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
40 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
41 unsigned HOST_WIDE_INT,
42 unsigned HOST_WIDE_INT, rtx);
43 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
46 unsigned HOST_WIDE_INT,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT, rtx, int);
49 static rtx mask_rtx (enum machine_mode, int, int, int);
50 static rtx lshift_value (enum machine_mode, rtx, int, int);
51 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT, int);
53 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
54 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
55 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 /* Test whether a value is zero of a power of two. */
58 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
60 /* Nonzero means divides or modulus operations are relatively cheap for
61 powers of two, so don't use branches; emit the operation instead.
62 Usually, this will mean that the MD file will emit non-branch
63 sequences. */
65 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
66 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
68 #ifndef SLOW_UNALIGNED_ACCESS
69 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
70 #endif
72 /* For compilers that support multiple targets with different word sizes,
73 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
74 is the H8/300(H) compiler. */
76 #ifndef MAX_BITS_PER_WORD
77 #define MAX_BITS_PER_WORD BITS_PER_WORD
78 #endif
80 /* Reduce conditional compilation elsewhere. */
81 #ifndef HAVE_insv
82 #define HAVE_insv 0
83 #define CODE_FOR_insv CODE_FOR_nothing
84 #define gen_insv(a,b,c,d) NULL_RTX
85 #endif
86 #ifndef HAVE_extv
87 #define HAVE_extv 0
88 #define CODE_FOR_extv CODE_FOR_nothing
89 #define gen_extv(a,b,c,d) NULL_RTX
90 #endif
91 #ifndef HAVE_extzv
92 #define HAVE_extzv 0
93 #define CODE_FOR_extzv CODE_FOR_nothing
94 #define gen_extzv(a,b,c,d) NULL_RTX
95 #endif
97 /* Cost of various pieces of RTL. Note that some of these are indexed by
98 shift count and some by mode. */
99 static int zero_cost;
100 static int add_cost[NUM_MACHINE_MODES];
101 static int neg_cost[NUM_MACHINE_MODES];
102 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
103 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
104 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int mul_cost[NUM_MACHINE_MODES];
106 static int div_cost[NUM_MACHINE_MODES];
107 static int mul_widen_cost[NUM_MACHINE_MODES];
108 static int mul_highpart_cost[NUM_MACHINE_MODES];
110 void
111 init_expmed (void)
113 struct
115 struct rtx_def reg; rtunion reg_fld[2];
116 struct rtx_def plus; rtunion plus_fld1;
117 struct rtx_def neg;
118 struct rtx_def udiv; rtunion udiv_fld1;
119 struct rtx_def mult; rtunion mult_fld1;
120 struct rtx_def div; rtunion div_fld1;
121 struct rtx_def mod; rtunion mod_fld1;
122 struct rtx_def zext;
123 struct rtx_def wide_mult; rtunion wide_mult_fld1;
124 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
125 struct rtx_def wide_trunc;
126 struct rtx_def shift; rtunion shift_fld1;
127 struct rtx_def shift_mult; rtunion shift_mult_fld1;
128 struct rtx_def shift_add; rtunion shift_add_fld1;
129 struct rtx_def shift_sub; rtunion shift_sub_fld1;
130 } all;
132 rtx pow2[MAX_BITS_PER_WORD];
133 rtx cint[MAX_BITS_PER_WORD];
134 int m, n;
135 enum machine_mode mode, wider_mode;
137 zero_cost = rtx_cost (const0_rtx, 0);
139 for (m = 1; m < MAX_BITS_PER_WORD; m++)
141 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
142 cint[m] = GEN_INT (m);
145 memset (&all, 0, sizeof all);
147 PUT_CODE (&all.reg, REG);
148 /* Avoid using hard regs in ways which may be unsupported. */
149 REGNO (&all.reg) = LAST_VIRTUAL_REGISTER + 1;
151 PUT_CODE (&all.plus, PLUS);
152 XEXP (&all.plus, 0) = &all.reg;
153 XEXP (&all.plus, 1) = &all.reg;
155 PUT_CODE (&all.neg, NEG);
156 XEXP (&all.neg, 0) = &all.reg;
158 PUT_CODE (&all.udiv, UDIV);
159 XEXP (&all.udiv, 0) = &all.reg;
160 XEXP (&all.udiv, 1) = &all.reg;
162 PUT_CODE (&all.mult, MULT);
163 XEXP (&all.mult, 0) = &all.reg;
164 XEXP (&all.mult, 1) = &all.reg;
166 PUT_CODE (&all.div, DIV);
167 XEXP (&all.div, 0) = &all.reg;
168 XEXP (&all.div, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
170 PUT_CODE (&all.mod, MOD);
171 XEXP (&all.mod, 0) = &all.reg;
172 XEXP (&all.mod, 1) = XEXP (&all.div, 1);
174 PUT_CODE (&all.zext, ZERO_EXTEND);
175 XEXP (&all.zext, 0) = &all.reg;
177 PUT_CODE (&all.wide_mult, MULT);
178 XEXP (&all.wide_mult, 0) = &all.zext;
179 XEXP (&all.wide_mult, 1) = &all.zext;
181 PUT_CODE (&all.wide_lshr, LSHIFTRT);
182 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
184 PUT_CODE (&all.wide_trunc, TRUNCATE);
185 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
187 PUT_CODE (&all.shift, ASHIFT);
188 XEXP (&all.shift, 0) = &all.reg;
190 PUT_CODE (&all.shift_mult, MULT);
191 XEXP (&all.shift_mult, 0) = &all.reg;
193 PUT_CODE (&all.shift_add, PLUS);
194 XEXP (&all.shift_add, 0) = &all.shift_mult;
195 XEXP (&all.shift_add, 1) = &all.reg;
197 PUT_CODE (&all.shift_sub, MINUS);
198 XEXP (&all.shift_sub, 0) = &all.shift_mult;
199 XEXP (&all.shift_sub, 1) = &all.reg;
201 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
202 mode != VOIDmode;
203 mode = GET_MODE_WIDER_MODE (mode))
205 PUT_MODE (&all.reg, mode);
206 PUT_MODE (&all.plus, mode);
207 PUT_MODE (&all.neg, mode);
208 PUT_MODE (&all.udiv, mode);
209 PUT_MODE (&all.mult, mode);
210 PUT_MODE (&all.div, mode);
211 PUT_MODE (&all.mod, mode);
212 PUT_MODE (&all.wide_trunc, mode);
213 PUT_MODE (&all.shift, mode);
214 PUT_MODE (&all.shift_mult, mode);
215 PUT_MODE (&all.shift_add, mode);
216 PUT_MODE (&all.shift_sub, mode);
218 add_cost[mode] = rtx_cost (&all.plus, SET);
219 neg_cost[mode] = rtx_cost (&all.neg, SET);
220 div_cost[mode] = rtx_cost (&all.udiv, SET);
221 mul_cost[mode] = rtx_cost (&all.mult, SET);
223 sdiv_pow2_cheap[mode] = (rtx_cost (&all.div, SET) <= 2 * add_cost[mode]);
224 smod_pow2_cheap[mode] = (rtx_cost (&all.mod, SET) <= 4 * add_cost[mode]);
226 wider_mode = GET_MODE_WIDER_MODE (mode);
227 if (wider_mode != VOIDmode)
229 PUT_MODE (&all.zext, wider_mode);
230 PUT_MODE (&all.wide_mult, wider_mode);
231 PUT_MODE (&all.wide_lshr, wider_mode);
232 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
234 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
235 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
238 shift_cost[mode][0] = 0;
239 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
241 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
242 for (m = 1; m < n; m++)
244 XEXP (&all.shift, 1) = cint[m];
245 XEXP (&all.shift_mult, 1) = pow2[m];
247 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
248 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
249 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
254 /* Return an rtx representing minus the value of X.
255 MODE is the intended mode of the result,
256 useful if X is a CONST_INT. */
259 negate_rtx (enum machine_mode mode, rtx x)
261 rtx result = simplify_unary_operation (NEG, mode, x, mode);
263 if (result == 0)
264 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
266 return result;
269 /* Report on the availability of insv/extv/extzv and the desired mode
270 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
271 is false; else the mode of the specified operand. If OPNO is -1,
272 all the caller cares about is whether the insn is available. */
273 enum machine_mode
274 mode_for_extraction (enum extraction_pattern pattern, int opno)
276 const struct insn_data *data;
278 switch (pattern)
280 case EP_insv:
281 if (HAVE_insv)
283 data = &insn_data[CODE_FOR_insv];
284 break;
286 return MAX_MACHINE_MODE;
288 case EP_extv:
289 if (HAVE_extv)
291 data = &insn_data[CODE_FOR_extv];
292 break;
294 return MAX_MACHINE_MODE;
296 case EP_extzv:
297 if (HAVE_extzv)
299 data = &insn_data[CODE_FOR_extzv];
300 break;
302 return MAX_MACHINE_MODE;
304 default:
305 gcc_unreachable ();
308 if (opno == -1)
309 return VOIDmode;
311 /* Everyone who uses this function used to follow it with
312 if (result == VOIDmode) result = word_mode; */
313 if (data->operand[opno].mode == VOIDmode)
314 return word_mode;
315 return data->operand[opno].mode;
319 /* Generate code to store value from rtx VALUE
320 into a bit-field within structure STR_RTX
321 containing BITSIZE bits starting at bit BITNUM.
322 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
323 ALIGN is the alignment that STR_RTX is known to have.
324 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
326 /* ??? Note that there are two different ideas here for how
327 to determine the size to count bits within, for a register.
328 One is BITS_PER_WORD, and the other is the size of operand 3
329 of the insv pattern.
331 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
332 else, we use the mode of operand 3. */
335 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
336 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
337 rtx value)
339 unsigned int unit
340 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
341 unsigned HOST_WIDE_INT offset, bitpos;
342 rtx op0 = str_rtx;
343 int byte_offset;
344 rtx orig_value;
346 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
348 while (GET_CODE (op0) == SUBREG)
350 /* The following line once was done only if WORDS_BIG_ENDIAN,
351 but I think that is a mistake. WORDS_BIG_ENDIAN is
352 meaningful at a much higher level; when structures are copied
353 between memory and regs, the higher-numbered regs
354 always get higher addresses. */
355 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
356 op0 = SUBREG_REG (op0);
359 /* No action is needed if the target is a register and if the field
360 lies completely outside that register. This can occur if the source
361 code contains an out-of-bounds access to a small array. */
362 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
363 return value;
365 /* Use vec_set patterns for inserting parts of vectors whenever
366 available. */
367 if (VECTOR_MODE_P (GET_MODE (op0))
368 && !MEM_P (op0)
369 && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
370 != CODE_FOR_nothing)
371 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
372 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
373 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
375 enum machine_mode outermode = GET_MODE (op0);
376 enum machine_mode innermode = GET_MODE_INNER (outermode);
377 int icode = (int) vec_set_optab->handlers[outermode].insn_code;
378 int pos = bitnum / GET_MODE_BITSIZE (innermode);
379 rtx rtxpos = GEN_INT (pos);
380 rtx src = value;
381 rtx dest = op0;
382 rtx pat, seq;
383 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
384 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
385 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
387 start_sequence ();
389 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
390 src = copy_to_mode_reg (mode1, src);
392 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
393 rtxpos = copy_to_mode_reg (mode1, rtxpos);
395 /* We could handle this, but we should always be called with a pseudo
396 for our targets and all insns should take them as outputs. */
397 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
398 && (*insn_data[icode].operand[1].predicate) (src, mode1)
399 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
400 pat = GEN_FCN (icode) (dest, src, rtxpos);
401 seq = get_insns ();
402 end_sequence ();
403 if (pat)
405 emit_insn (seq);
406 emit_insn (pat);
407 return dest;
411 if (flag_force_mem)
413 int old_generating_concat_p = generating_concat_p;
414 generating_concat_p = 0;
415 value = force_not_mem (value);
416 generating_concat_p = old_generating_concat_p;
419 /* If the target is a register, overwriting the entire object, or storing
420 a full-word or multi-word field can be done with just a SUBREG.
422 If the target is memory, storing any naturally aligned field can be
423 done with a simple store. For targets that support fast unaligned
424 memory, any naturally sized, unit aligned field can be done directly. */
426 offset = bitnum / unit;
427 bitpos = bitnum % unit;
428 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
429 + (offset * UNITS_PER_WORD);
431 if (bitpos == 0
432 && bitsize == GET_MODE_BITSIZE (fieldmode)
433 && (!MEM_P (op0)
434 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
435 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
436 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
437 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
438 || (offset * BITS_PER_UNIT % bitsize == 0
439 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
441 if (GET_MODE (op0) != fieldmode)
443 if (MEM_P (op0))
444 op0 = adjust_address (op0, fieldmode, offset);
445 else
446 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
447 byte_offset);
449 emit_move_insn (op0, value);
450 return value;
453 /* Make sure we are playing with integral modes. Pun with subregs
454 if we aren't. This must come after the entire register case above,
455 since that case is valid for any mode. The following cases are only
456 valid for integral modes. */
458 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
459 if (imode != GET_MODE (op0))
461 if (MEM_P (op0))
462 op0 = adjust_address (op0, imode, 0);
463 else
465 gcc_assert (imode != BLKmode);
466 op0 = gen_lowpart (imode, op0);
471 /* We may be accessing data outside the field, which means
472 we can alias adjacent data. */
473 if (MEM_P (op0))
475 op0 = shallow_copy_rtx (op0);
476 set_mem_alias_set (op0, 0);
477 set_mem_expr (op0, 0);
480 /* If OP0 is a register, BITPOS must count within a word.
481 But as we have it, it counts within whatever size OP0 now has.
482 On a bigendian machine, these are not the same, so convert. */
483 if (BYTES_BIG_ENDIAN
484 && !MEM_P (op0)
485 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
486 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
488 /* Storing an lsb-aligned field in a register
489 can be done with a movestrict instruction. */
491 if (!MEM_P (op0)
492 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
493 && bitsize == GET_MODE_BITSIZE (fieldmode)
494 && (movstrict_optab->handlers[fieldmode].insn_code
495 != CODE_FOR_nothing))
497 int icode = movstrict_optab->handlers[fieldmode].insn_code;
499 /* Get appropriate low part of the value being stored. */
500 if (GET_CODE (value) == CONST_INT || REG_P (value))
501 value = gen_lowpart (fieldmode, value);
502 else if (!(GET_CODE (value) == SYMBOL_REF
503 || GET_CODE (value) == LABEL_REF
504 || GET_CODE (value) == CONST))
505 value = convert_to_mode (fieldmode, value, 0);
507 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
508 value = copy_to_mode_reg (fieldmode, value);
510 if (GET_CODE (op0) == SUBREG)
512 /* Else we've got some float mode source being extracted into
513 a different float mode destination -- this combination of
514 subregs results in Severe Tire Damage. */
515 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
516 || GET_MODE_CLASS (fieldmode) == MODE_INT
517 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
518 op0 = SUBREG_REG (op0);
521 emit_insn (GEN_FCN (icode)
522 (gen_rtx_SUBREG (fieldmode, op0,
523 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
524 + (offset * UNITS_PER_WORD)),
525 value));
527 return value;
530 /* Handle fields bigger than a word. */
532 if (bitsize > BITS_PER_WORD)
534 /* Here we transfer the words of the field
535 in the order least significant first.
536 This is because the most significant word is the one which may
537 be less than full.
538 However, only do that if the value is not BLKmode. */
540 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
541 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
542 unsigned int i;
544 /* This is the mode we must force value to, so that there will be enough
545 subwords to extract. Note that fieldmode will often (always?) be
546 VOIDmode, because that is what store_field uses to indicate that this
547 is a bit field, but passing VOIDmode to operand_subword_force will
548 result in an abort. */
549 fieldmode = GET_MODE (value);
550 if (fieldmode == VOIDmode)
551 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
553 for (i = 0; i < nwords; i++)
555 /* If I is 0, use the low-order word in both field and target;
556 if I is 1, use the next to lowest word; and so on. */
557 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
558 unsigned int bit_offset = (backwards
559 ? MAX ((int) bitsize - ((int) i + 1)
560 * BITS_PER_WORD,
562 : (int) i * BITS_PER_WORD);
564 store_bit_field (op0, MIN (BITS_PER_WORD,
565 bitsize - i * BITS_PER_WORD),
566 bitnum + bit_offset, word_mode,
567 operand_subword_force (value, wordnum, fieldmode));
569 return value;
572 /* From here on we can assume that the field to be stored in is
573 a full-word (whatever type that is), since it is shorter than a word. */
575 /* OFFSET is the number of words or bytes (UNIT says which)
576 from STR_RTX to the first word or byte containing part of the field. */
578 if (!MEM_P (op0))
580 if (offset != 0
581 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
583 if (!REG_P (op0))
585 /* Since this is a destination (lvalue), we can't copy it to a
586 pseudo. We can trivially remove a SUBREG that does not
587 change the size of the operand. Such a SUBREG may have been
588 added above. Otherwise, abort. */
589 gcc_assert (GET_CODE (op0) == SUBREG
590 && (GET_MODE_SIZE (GET_MODE (op0))
591 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
592 op0 = SUBREG_REG (op0);
594 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
595 op0, (offset * UNITS_PER_WORD));
597 offset = 0;
600 /* If VALUE has a floating-point or complex mode, access it as an
601 integer of the corresponding size. This can occur on a machine
602 with 64 bit registers that uses SFmode for float. It can also
603 occur for unaligned float or complex fields. */
604 orig_value = value;
605 if (GET_MODE (value) != VOIDmode
606 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
607 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
609 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
610 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
613 /* Now OFFSET is nonzero only if OP0 is memory
614 and is therefore always measured in bytes. */
616 if (HAVE_insv
617 && GET_MODE (value) != BLKmode
618 && !(bitsize == 1 && GET_CODE (value) == CONST_INT)
619 /* Ensure insv's size is wide enough for this field. */
620 && (GET_MODE_BITSIZE (op_mode) >= bitsize)
621 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
622 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode))))
624 int xbitpos = bitpos;
625 rtx value1;
626 rtx xop0 = op0;
627 rtx last = get_last_insn ();
628 rtx pat;
629 enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
630 int save_volatile_ok = volatile_ok;
632 volatile_ok = 1;
634 /* If this machine's insv can only insert into a register, copy OP0
635 into a register and save it back later. */
636 /* This used to check flag_force_mem, but that was a serious
637 de-optimization now that flag_force_mem is enabled by -O2. */
638 if (MEM_P (op0)
639 && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
640 (op0, VOIDmode)))
642 rtx tempreg;
643 enum machine_mode bestmode;
645 /* Get the mode to use for inserting into this field. If OP0 is
646 BLKmode, get the smallest mode consistent with the alignment. If
647 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
648 mode. Otherwise, use the smallest mode containing the field. */
650 if (GET_MODE (op0) == BLKmode
651 || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
652 bestmode
653 = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
654 MEM_VOLATILE_P (op0));
655 else
656 bestmode = GET_MODE (op0);
658 if (bestmode == VOIDmode
659 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
660 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
661 goto insv_loses;
663 /* Adjust address to point to the containing unit of that mode.
664 Compute offset as multiple of this unit, counting in bytes. */
665 unit = GET_MODE_BITSIZE (bestmode);
666 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
667 bitpos = bitnum % unit;
668 op0 = adjust_address (op0, bestmode, offset);
670 /* Fetch that unit, store the bitfield in it, then store
671 the unit. */
672 tempreg = copy_to_reg (op0);
673 store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
674 emit_move_insn (op0, tempreg);
675 return value;
677 volatile_ok = save_volatile_ok;
679 /* Add OFFSET into OP0's address. */
680 if (MEM_P (xop0))
681 xop0 = adjust_address (xop0, byte_mode, offset);
683 /* If xop0 is a register, we need it in MAXMODE
684 to make it acceptable to the format of insv. */
685 if (GET_CODE (xop0) == SUBREG)
686 /* We can't just change the mode, because this might clobber op0,
687 and we will need the original value of op0 if insv fails. */
688 xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
689 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
690 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
692 /* On big-endian machines, we count bits from the most significant.
693 If the bit field insn does not, we must invert. */
695 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
696 xbitpos = unit - bitsize - xbitpos;
698 /* We have been counting XBITPOS within UNIT.
699 Count instead within the size of the register. */
700 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
701 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
703 unit = GET_MODE_BITSIZE (maxmode);
705 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
706 value1 = value;
707 if (GET_MODE (value) != maxmode)
709 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
711 /* Optimization: Don't bother really extending VALUE
712 if it has all the bits we will actually use. However,
713 if we must narrow it, be sure we do it correctly. */
715 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
717 rtx tmp;
719 tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
720 if (! tmp)
721 tmp = simplify_gen_subreg (maxmode,
722 force_reg (GET_MODE (value),
723 value1),
724 GET_MODE (value), 0);
725 value1 = tmp;
727 else
728 value1 = gen_lowpart (maxmode, value1);
730 else if (GET_CODE (value) == CONST_INT)
731 value1 = gen_int_mode (INTVAL (value), maxmode);
732 else
733 /* Parse phase is supposed to make VALUE's data type
734 match that of the component reference, which is a type
735 at least as wide as the field; so VALUE should have
736 a mode that corresponds to that type. */
737 gcc_assert (CONSTANT_P (value));
740 /* If this machine's insv insists on a register,
741 get VALUE1 into a register. */
742 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
743 (value1, maxmode)))
744 value1 = force_reg (maxmode, value1);
746 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
747 if (pat)
748 emit_insn (pat);
749 else
751 delete_insns_since (last);
752 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
755 else
756 insv_loses:
757 /* Insv is not available; store using shifts and boolean ops. */
758 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
759 return value;
762 /* Use shifts and boolean operations to store VALUE
763 into a bit field of width BITSIZE
764 in a memory location specified by OP0 except offset by OFFSET bytes.
765 (OFFSET must be 0 if OP0 is a register.)
766 The field starts at position BITPOS within the byte.
767 (If OP0 is a register, it may be a full word or a narrower mode,
768 but BITPOS still counts within a full word,
769 which is significant on bigendian machines.) */
771 static void
772 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
773 unsigned HOST_WIDE_INT bitsize,
774 unsigned HOST_WIDE_INT bitpos, rtx value)
776 enum machine_mode mode;
777 unsigned int total_bits = BITS_PER_WORD;
778 rtx subtarget, temp;
779 int all_zero = 0;
780 int all_one = 0;
782 /* There is a case not handled here:
783 a structure with a known alignment of just a halfword
784 and a field split across two aligned halfwords within the structure.
785 Or likewise a structure with a known alignment of just a byte
786 and a field split across two bytes.
787 Such cases are not supposed to be able to occur. */
789 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
791 gcc_assert (!offset);
792 /* Special treatment for a bit field split across two registers. */
793 if (bitsize + bitpos > BITS_PER_WORD)
795 store_split_bit_field (op0, bitsize, bitpos, value);
796 return;
799 else
801 /* Get the proper mode to use for this field. We want a mode that
802 includes the entire field. If such a mode would be larger than
803 a word, we won't be doing the extraction the normal way.
804 We don't want a mode bigger than the destination. */
806 mode = GET_MODE (op0);
807 if (GET_MODE_BITSIZE (mode) == 0
808 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
809 mode = word_mode;
810 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
811 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
813 if (mode == VOIDmode)
815 /* The only way this should occur is if the field spans word
816 boundaries. */
817 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
818 value);
819 return;
822 total_bits = GET_MODE_BITSIZE (mode);
824 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
825 be in the range 0 to total_bits-1, and put any excess bytes in
826 OFFSET. */
827 if (bitpos >= total_bits)
829 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
830 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
831 * BITS_PER_UNIT);
834 /* Get ref to an aligned byte, halfword, or word containing the field.
835 Adjust BITPOS to be position within a word,
836 and OFFSET to be the offset of that word.
837 Then alter OP0 to refer to that word. */
838 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
839 offset -= (offset % (total_bits / BITS_PER_UNIT));
840 op0 = adjust_address (op0, mode, offset);
843 mode = GET_MODE (op0);
845 /* Now MODE is either some integral mode for a MEM as OP0,
846 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
847 The bit field is contained entirely within OP0.
848 BITPOS is the starting bit number within OP0.
849 (OP0's mode may actually be narrower than MODE.) */
851 if (BYTES_BIG_ENDIAN)
852 /* BITPOS is the distance between our msb
853 and that of the containing datum.
854 Convert it to the distance from the lsb. */
855 bitpos = total_bits - bitsize - bitpos;
857 /* Now BITPOS is always the distance between our lsb
858 and that of OP0. */
860 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
861 we must first convert its mode to MODE. */
863 if (GET_CODE (value) == CONST_INT)
865 HOST_WIDE_INT v = INTVAL (value);
867 if (bitsize < HOST_BITS_PER_WIDE_INT)
868 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
870 if (v == 0)
871 all_zero = 1;
872 else if ((bitsize < HOST_BITS_PER_WIDE_INT
873 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
874 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
875 all_one = 1;
877 value = lshift_value (mode, value, bitpos, bitsize);
879 else
881 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
882 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
884 if (GET_MODE (value) != mode)
886 if ((REG_P (value) || GET_CODE (value) == SUBREG)
887 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
888 value = gen_lowpart (mode, value);
889 else
890 value = convert_to_mode (mode, value, 1);
893 if (must_and)
894 value = expand_binop (mode, and_optab, value,
895 mask_rtx (mode, 0, bitsize, 0),
896 NULL_RTX, 1, OPTAB_LIB_WIDEN);
897 if (bitpos > 0)
898 value = expand_shift (LSHIFT_EXPR, mode, value,
899 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
902 /* Now clear the chosen bits in OP0,
903 except that if VALUE is -1 we need not bother. */
905 subtarget = (REG_P (op0) || ! flag_force_mem) ? op0 : 0;
907 if (! all_one)
909 temp = expand_binop (mode, and_optab, op0,
910 mask_rtx (mode, bitpos, bitsize, 1),
911 subtarget, 1, OPTAB_LIB_WIDEN);
912 subtarget = temp;
914 else
915 temp = op0;
917 /* Now logical-or VALUE into OP0, unless it is zero. */
919 if (! all_zero)
920 temp = expand_binop (mode, ior_optab, temp, value,
921 subtarget, 1, OPTAB_LIB_WIDEN);
922 if (op0 != temp)
923 emit_move_insn (op0, temp);
926 /* Store a bit field that is split across multiple accessible memory objects.
928 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
929 BITSIZE is the field width; BITPOS the position of its first bit
930 (within the word).
931 VALUE is the value to store.
933 This does not yet handle fields wider than BITS_PER_WORD. */
935 static void
936 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
937 unsigned HOST_WIDE_INT bitpos, rtx value)
939 unsigned int unit;
940 unsigned int bitsdone = 0;
942 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
943 much at a time. */
944 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
945 unit = BITS_PER_WORD;
946 else
947 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
949 /* If VALUE is a constant other than a CONST_INT, get it into a register in
950 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
951 that VALUE might be a floating-point constant. */
952 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
954 rtx word = gen_lowpart_common (word_mode, value);
956 if (word && (value != word))
957 value = word;
958 else
959 value = gen_lowpart_common (word_mode,
960 force_reg (GET_MODE (value) != VOIDmode
961 ? GET_MODE (value)
962 : word_mode, value));
965 while (bitsdone < bitsize)
967 unsigned HOST_WIDE_INT thissize;
968 rtx part, word;
969 unsigned HOST_WIDE_INT thispos;
970 unsigned HOST_WIDE_INT offset;
972 offset = (bitpos + bitsdone) / unit;
973 thispos = (bitpos + bitsdone) % unit;
975 /* THISSIZE must not overrun a word boundary. Otherwise,
976 store_fixed_bit_field will call us again, and we will mutually
977 recurse forever. */
978 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
979 thissize = MIN (thissize, unit - thispos);
981 if (BYTES_BIG_ENDIAN)
983 int total_bits;
985 /* We must do an endian conversion exactly the same way as it is
986 done in extract_bit_field, so that the two calls to
987 extract_fixed_bit_field will have comparable arguments. */
988 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
989 total_bits = BITS_PER_WORD;
990 else
991 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
993 /* Fetch successively less significant portions. */
994 if (GET_CODE (value) == CONST_INT)
995 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
996 >> (bitsize - bitsdone - thissize))
997 & (((HOST_WIDE_INT) 1 << thissize) - 1));
998 else
999 /* The args are chosen so that the last part includes the
1000 lsb. Give extract_bit_field the value it needs (with
1001 endianness compensation) to fetch the piece we want. */
1002 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1003 total_bits - bitsize + bitsdone,
1004 NULL_RTX, 1);
1006 else
1008 /* Fetch successively more significant portions. */
1009 if (GET_CODE (value) == CONST_INT)
1010 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1011 >> bitsdone)
1012 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1013 else
1014 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1015 bitsdone, NULL_RTX, 1);
1018 /* If OP0 is a register, then handle OFFSET here.
1020 When handling multiword bitfields, extract_bit_field may pass
1021 down a word_mode SUBREG of a larger REG for a bitfield that actually
1022 crosses a word boundary. Thus, for a SUBREG, we must find
1023 the current word starting from the base register. */
1024 if (GET_CODE (op0) == SUBREG)
1026 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1027 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1028 GET_MODE (SUBREG_REG (op0)));
1029 offset = 0;
1031 else if (REG_P (op0))
1033 word = operand_subword_force (op0, offset, GET_MODE (op0));
1034 offset = 0;
1036 else
1037 word = op0;
1039 /* OFFSET is in UNITs, and UNIT is in bits.
1040 store_fixed_bit_field wants offset in bytes. */
1041 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1042 thispos, part);
1043 bitsdone += thissize;
1047 /* Generate code to extract a byte-field from STR_RTX
1048 containing BITSIZE bits, starting at BITNUM,
1049 and put it in TARGET if possible (if TARGET is nonzero).
1050 Regardless of TARGET, we return the rtx for where the value is placed.
1052 STR_RTX is the structure containing the byte (a REG or MEM).
1053 UNSIGNEDP is nonzero if this is an unsigned bit field.
1054 MODE is the natural mode of the field value once extracted.
1055 TMODE is the mode the caller would like the value to have;
1056 but the value may be returned with type MODE instead.
1058 TOTAL_SIZE is the size in bytes of the containing structure,
1059 or -1 if varying.
1061 If a TARGET is specified and we can store in it at no extra cost,
1062 we do so, and return TARGET.
1063 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1064 if they are equally easy. */
1067 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1068 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1069 enum machine_mode mode, enum machine_mode tmode)
1071 unsigned int unit
1072 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1073 unsigned HOST_WIDE_INT offset, bitpos;
1074 rtx op0 = str_rtx;
1075 rtx spec_target = target;
1076 rtx spec_target_subreg = 0;
1077 enum machine_mode int_mode;
1078 enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
1079 enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
1080 enum machine_mode mode1;
1081 int byte_offset;
1083 if (tmode == VOIDmode)
1084 tmode = mode;
1086 while (GET_CODE (op0) == SUBREG)
1088 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1089 op0 = SUBREG_REG (op0);
1092 /* If we have an out-of-bounds access to a register, just return an
1093 uninitialized register of the required mode. This can occur if the
1094 source code contains an out-of-bounds access to a small array. */
1095 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1096 return gen_reg_rtx (tmode);
1098 if (REG_P (op0)
1099 && mode == GET_MODE (op0)
1100 && bitnum == 0
1101 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1103 /* We're trying to extract a full register from itself. */
1104 return op0;
1107 /* Use vec_extract patterns for extracting parts of vectors whenever
1108 available. */
1109 if (VECTOR_MODE_P (GET_MODE (op0))
1110 && !MEM_P (op0)
1111 && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
1112 != CODE_FOR_nothing)
1113 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1114 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1116 enum machine_mode outermode = GET_MODE (op0);
1117 enum machine_mode innermode = GET_MODE_INNER (outermode);
1118 int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
1119 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1120 rtx rtxpos = GEN_INT (pos);
1121 rtx src = op0;
1122 rtx dest = NULL, pat, seq;
1123 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1124 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1125 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1127 if (innermode == tmode || innermode == mode)
1128 dest = target;
1130 if (!dest)
1131 dest = gen_reg_rtx (innermode);
1133 start_sequence ();
1135 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1136 dest = copy_to_mode_reg (mode0, dest);
1138 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1139 src = copy_to_mode_reg (mode1, src);
1141 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1142 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1144 /* We could handle this, but we should always be called with a pseudo
1145 for our targets and all insns should take them as outputs. */
1146 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1147 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1148 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1150 pat = GEN_FCN (icode) (dest, src, rtxpos);
1151 seq = get_insns ();
1152 end_sequence ();
1153 if (pat)
1155 emit_insn (seq);
1156 emit_insn (pat);
1157 return dest;
1161 /* Make sure we are playing with integral modes. Pun with subregs
1162 if we aren't. */
1164 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1165 if (imode != GET_MODE (op0))
1167 if (MEM_P (op0))
1168 op0 = adjust_address (op0, imode, 0);
1169 else
1171 gcc_assert (imode != BLKmode);
1172 op0 = gen_lowpart (imode, op0);
1174 /* If we got a SUBREG, force it into a register since we
1175 aren't going to be able to do another SUBREG on it. */
1176 if (GET_CODE (op0) == SUBREG)
1177 op0 = force_reg (imode, op0);
1182 /* We may be accessing data outside the field, which means
1183 we can alias adjacent data. */
1184 if (MEM_P (op0))
1186 op0 = shallow_copy_rtx (op0);
1187 set_mem_alias_set (op0, 0);
1188 set_mem_expr (op0, 0);
1191 /* Extraction of a full-word or multi-word value from a structure
1192 in a register or aligned memory can be done with just a SUBREG.
1193 A subword value in the least significant part of a register
1194 can also be extracted with a SUBREG. For this, we need the
1195 byte offset of the value in op0. */
1197 bitpos = bitnum % unit;
1198 offset = bitnum / unit;
1199 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1201 /* If OP0 is a register, BITPOS must count within a word.
1202 But as we have it, it counts within whatever size OP0 now has.
1203 On a bigendian machine, these are not the same, so convert. */
1204 if (BYTES_BIG_ENDIAN
1205 && !MEM_P (op0)
1206 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1207 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1209 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1210 If that's wrong, the solution is to test for it and set TARGET to 0
1211 if needed. */
1213 /* Only scalar integer modes can be converted via subregs. There is an
1214 additional problem for FP modes here in that they can have a precision
1215 which is different from the size. mode_for_size uses precision, but
1216 we want a mode based on the size, so we must avoid calling it for FP
1217 modes. */
1218 mode1 = (SCALAR_INT_MODE_P (tmode)
1219 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1220 : mode);
1222 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1223 && bitpos % BITS_PER_WORD == 0)
1224 || (mode1 != BLKmode
1225 /* ??? The big endian test here is wrong. This is correct
1226 if the value is in a register, and if mode_for_size is not
1227 the same mode as op0. This causes us to get unnecessarily
1228 inefficient code from the Thumb port when -mbig-endian. */
1229 && (BYTES_BIG_ENDIAN
1230 ? bitpos + bitsize == BITS_PER_WORD
1231 : bitpos == 0)))
1232 && ((!MEM_P (op0)
1233 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1234 GET_MODE_BITSIZE (GET_MODE (op0)))
1235 && GET_MODE_SIZE (mode1) != 0
1236 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1237 || (MEM_P (op0)
1238 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1239 || (offset * BITS_PER_UNIT % bitsize == 0
1240 && MEM_ALIGN (op0) % bitsize == 0)))))
1242 if (mode1 != GET_MODE (op0))
1244 if (MEM_P (op0))
1245 op0 = adjust_address (op0, mode1, offset);
1246 else
1248 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1249 byte_offset);
1250 if (sub == NULL)
1251 goto no_subreg_mode_swap;
1252 op0 = sub;
1255 if (mode1 != mode)
1256 return convert_to_mode (tmode, op0, unsignedp);
1257 return op0;
1259 no_subreg_mode_swap:
1261 /* Handle fields bigger than a word. */
1263 if (bitsize > BITS_PER_WORD)
1265 /* Here we transfer the words of the field
1266 in the order least significant first.
1267 This is because the most significant word is the one which may
1268 be less than full. */
1270 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1271 unsigned int i;
1273 if (target == 0 || !REG_P (target))
1274 target = gen_reg_rtx (mode);
1276 /* Indicate for flow that the entire target reg is being set. */
1277 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1279 for (i = 0; i < nwords; i++)
1281 /* If I is 0, use the low-order word in both field and target;
1282 if I is 1, use the next to lowest word; and so on. */
1283 /* Word number in TARGET to use. */
1284 unsigned int wordnum
1285 = (WORDS_BIG_ENDIAN
1286 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1287 : i);
1288 /* Offset from start of field in OP0. */
1289 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1290 ? MAX (0, ((int) bitsize - ((int) i + 1)
1291 * (int) BITS_PER_WORD))
1292 : (int) i * BITS_PER_WORD);
1293 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1294 rtx result_part
1295 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1296 bitsize - i * BITS_PER_WORD),
1297 bitnum + bit_offset, 1, target_part, mode,
1298 word_mode);
1300 gcc_assert (target_part);
1302 if (result_part != target_part)
1303 emit_move_insn (target_part, result_part);
1306 if (unsignedp)
1308 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1309 need to be zero'd out. */
1310 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1312 unsigned int i, total_words;
1314 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1315 for (i = nwords; i < total_words; i++)
1316 emit_move_insn
1317 (operand_subword (target,
1318 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1319 1, VOIDmode),
1320 const0_rtx);
1322 return target;
1325 /* Signed bit field: sign-extend with two arithmetic shifts. */
1326 target = expand_shift (LSHIFT_EXPR, mode, target,
1327 build_int_cst (NULL_TREE,
1328 GET_MODE_BITSIZE (mode) - bitsize),
1329 NULL_RTX, 0);
1330 return expand_shift (RSHIFT_EXPR, mode, target,
1331 build_int_cst (NULL_TREE,
1332 GET_MODE_BITSIZE (mode) - bitsize),
1333 NULL_RTX, 0);
1336 /* From here on we know the desired field is smaller than a word. */
1338 /* Check if there is a correspondingly-sized integer field, so we can
1339 safely extract it as one size of integer, if necessary; then
1340 truncate or extend to the size that is wanted; then use SUBREGs or
1341 convert_to_mode to get one of the modes we really wanted. */
1343 int_mode = int_mode_for_mode (tmode);
1344 if (int_mode == BLKmode)
1345 int_mode = int_mode_for_mode (mode);
1346 /* Should probably push op0 out to memory and then do a load. */
1347 gcc_assert (int_mode != BLKmode);
1349 /* OFFSET is the number of words or bytes (UNIT says which)
1350 from STR_RTX to the first word or byte containing part of the field. */
1351 if (!MEM_P (op0))
1353 if (offset != 0
1354 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1356 if (!REG_P (op0))
1357 op0 = copy_to_reg (op0);
1358 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1359 op0, (offset * UNITS_PER_WORD));
1361 offset = 0;
1364 /* Now OFFSET is nonzero only for memory operands. */
1366 if (unsignedp)
1368 if (HAVE_extzv
1369 && (GET_MODE_BITSIZE (extzv_mode) >= bitsize)
1370 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1371 && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
1373 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1374 rtx bitsize_rtx, bitpos_rtx;
1375 rtx last = get_last_insn ();
1376 rtx xop0 = op0;
1377 rtx xtarget = target;
1378 rtx xspec_target = spec_target;
1379 rtx xspec_target_subreg = spec_target_subreg;
1380 rtx pat;
1381 enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
1383 if (MEM_P (xop0))
1385 int save_volatile_ok = volatile_ok;
1386 volatile_ok = 1;
1388 /* Is the memory operand acceptable? */
1389 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1390 (xop0, GET_MODE (xop0))))
1392 /* No, load into a reg and extract from there. */
1393 enum machine_mode bestmode;
1395 /* Get the mode to use for inserting into this field. If
1396 OP0 is BLKmode, get the smallest mode consistent with the
1397 alignment. If OP0 is a non-BLKmode object that is no
1398 wider than MAXMODE, use its mode. Otherwise, use the
1399 smallest mode containing the field. */
1401 if (GET_MODE (xop0) == BLKmode
1402 || (GET_MODE_SIZE (GET_MODE (op0))
1403 > GET_MODE_SIZE (maxmode)))
1404 bestmode = get_best_mode (bitsize, bitnum,
1405 MEM_ALIGN (xop0), maxmode,
1406 MEM_VOLATILE_P (xop0));
1407 else
1408 bestmode = GET_MODE (xop0);
1410 if (bestmode == VOIDmode
1411 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1412 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1413 goto extzv_loses;
1415 /* Compute offset as multiple of this unit,
1416 counting in bytes. */
1417 unit = GET_MODE_BITSIZE (bestmode);
1418 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1419 xbitpos = bitnum % unit;
1420 xop0 = adjust_address (xop0, bestmode, xoffset);
1422 /* Fetch it to a register in that size. */
1423 xop0 = force_reg (bestmode, xop0);
1425 /* XBITPOS counts within UNIT, which is what is expected. */
1427 else
1428 /* Get ref to first byte containing part of the field. */
1429 xop0 = adjust_address (xop0, byte_mode, xoffset);
1431 volatile_ok = save_volatile_ok;
1434 /* If op0 is a register, we need it in MAXMODE (which is usually
1435 SImode). to make it acceptable to the format of extzv. */
1436 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1437 goto extzv_loses;
1438 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1439 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1441 /* On big-endian machines, we count bits from the most significant.
1442 If the bit field insn does not, we must invert. */
1443 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1444 xbitpos = unit - bitsize - xbitpos;
1446 /* Now convert from counting within UNIT to counting in MAXMODE. */
1447 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1448 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1450 unit = GET_MODE_BITSIZE (maxmode);
1452 if (xtarget == 0
1453 || (flag_force_mem && MEM_P (xtarget)))
1454 xtarget = xspec_target = gen_reg_rtx (tmode);
1456 if (GET_MODE (xtarget) != maxmode)
1458 if (REG_P (xtarget))
1460 int wider = (GET_MODE_SIZE (maxmode)
1461 > GET_MODE_SIZE (GET_MODE (xtarget)));
1462 xtarget = gen_lowpart (maxmode, xtarget);
1463 if (wider)
1464 xspec_target_subreg = xtarget;
1466 else
1467 xtarget = gen_reg_rtx (maxmode);
1470 /* If this machine's extzv insists on a register target,
1471 make sure we have one. */
1472 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1473 (xtarget, maxmode)))
1474 xtarget = gen_reg_rtx (maxmode);
1476 bitsize_rtx = GEN_INT (bitsize);
1477 bitpos_rtx = GEN_INT (xbitpos);
1479 pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1480 if (pat)
1482 emit_insn (pat);
1483 target = xtarget;
1484 spec_target = xspec_target;
1485 spec_target_subreg = xspec_target_subreg;
1487 else
1489 delete_insns_since (last);
1490 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1491 bitpos, target, 1);
1494 else
1495 extzv_loses:
1496 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1497 bitpos, target, 1);
1499 else
1501 if (HAVE_extv
1502 && (GET_MODE_BITSIZE (extv_mode) >= bitsize)
1503 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1504 && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
1506 int xbitpos = bitpos, xoffset = offset;
1507 rtx bitsize_rtx, bitpos_rtx;
1508 rtx last = get_last_insn ();
1509 rtx xop0 = op0, xtarget = target;
1510 rtx xspec_target = spec_target;
1511 rtx xspec_target_subreg = spec_target_subreg;
1512 rtx pat;
1513 enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
1515 if (MEM_P (xop0))
1517 /* Is the memory operand acceptable? */
1518 if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1519 (xop0, GET_MODE (xop0))))
1521 /* No, load into a reg and extract from there. */
1522 enum machine_mode bestmode;
1524 /* Get the mode to use for inserting into this field. If
1525 OP0 is BLKmode, get the smallest mode consistent with the
1526 alignment. If OP0 is a non-BLKmode object that is no
1527 wider than MAXMODE, use its mode. Otherwise, use the
1528 smallest mode containing the field. */
1530 if (GET_MODE (xop0) == BLKmode
1531 || (GET_MODE_SIZE (GET_MODE (op0))
1532 > GET_MODE_SIZE (maxmode)))
1533 bestmode = get_best_mode (bitsize, bitnum,
1534 MEM_ALIGN (xop0), maxmode,
1535 MEM_VOLATILE_P (xop0));
1536 else
1537 bestmode = GET_MODE (xop0);
1539 if (bestmode == VOIDmode
1540 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1541 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1542 goto extv_loses;
1544 /* Compute offset as multiple of this unit,
1545 counting in bytes. */
1546 unit = GET_MODE_BITSIZE (bestmode);
1547 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1548 xbitpos = bitnum % unit;
1549 xop0 = adjust_address (xop0, bestmode, xoffset);
1551 /* Fetch it to a register in that size. */
1552 xop0 = force_reg (bestmode, xop0);
1554 /* XBITPOS counts within UNIT, which is what is expected. */
1556 else
1557 /* Get ref to first byte containing part of the field. */
1558 xop0 = adjust_address (xop0, byte_mode, xoffset);
1561 /* If op0 is a register, we need it in MAXMODE (which is usually
1562 SImode) to make it acceptable to the format of extv. */
1563 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1564 goto extv_loses;
1565 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1566 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1568 /* On big-endian machines, we count bits from the most significant.
1569 If the bit field insn does not, we must invert. */
1570 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1571 xbitpos = unit - bitsize - xbitpos;
1573 /* XBITPOS counts within a size of UNIT.
1574 Adjust to count within a size of MAXMODE. */
1575 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1576 xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1578 unit = GET_MODE_BITSIZE (maxmode);
1580 if (xtarget == 0
1581 || (flag_force_mem && MEM_P (xtarget)))
1582 xtarget = xspec_target = gen_reg_rtx (tmode);
1584 if (GET_MODE (xtarget) != maxmode)
1586 if (REG_P (xtarget))
1588 int wider = (GET_MODE_SIZE (maxmode)
1589 > GET_MODE_SIZE (GET_MODE (xtarget)));
1590 xtarget = gen_lowpart (maxmode, xtarget);
1591 if (wider)
1592 xspec_target_subreg = xtarget;
1594 else
1595 xtarget = gen_reg_rtx (maxmode);
1598 /* If this machine's extv insists on a register target,
1599 make sure we have one. */
1600 if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1601 (xtarget, maxmode)))
1602 xtarget = gen_reg_rtx (maxmode);
1604 bitsize_rtx = GEN_INT (bitsize);
1605 bitpos_rtx = GEN_INT (xbitpos);
1607 pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1608 if (pat)
1610 emit_insn (pat);
1611 target = xtarget;
1612 spec_target = xspec_target;
1613 spec_target_subreg = xspec_target_subreg;
1615 else
1617 delete_insns_since (last);
1618 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1619 bitpos, target, 0);
1622 else
1623 extv_loses:
1624 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1625 bitpos, target, 0);
1627 if (target == spec_target)
1628 return target;
1629 if (target == spec_target_subreg)
1630 return spec_target;
1631 if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1633 /* If the target mode is not a scalar integral, first convert to the
1634 integer mode of that size and then access it as a floating-point
1635 value via a SUBREG. */
1636 if (!SCALAR_INT_MODE_P (tmode))
1638 enum machine_mode smode
1639 = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1640 target = convert_to_mode (smode, target, unsignedp);
1641 target = force_reg (smode, target);
1642 return gen_lowpart (tmode, target);
1645 return convert_to_mode (tmode, target, unsignedp);
1647 return target;
1650 /* Extract a bit field using shifts and boolean operations
1651 Returns an rtx to represent the value.
1652 OP0 addresses a register (word) or memory (byte).
1653 BITPOS says which bit within the word or byte the bit field starts in.
1654 OFFSET says how many bytes farther the bit field starts;
1655 it is 0 if OP0 is a register.
1656 BITSIZE says how many bits long the bit field is.
1657 (If OP0 is a register, it may be narrower than a full word,
1658 but BITPOS still counts within a full word,
1659 which is significant on bigendian machines.)
1661 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1662 If TARGET is nonzero, attempts to store the value there
1663 and return TARGET, but this is not guaranteed.
1664 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1666 static rtx
1667 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1668 unsigned HOST_WIDE_INT offset,
1669 unsigned HOST_WIDE_INT bitsize,
1670 unsigned HOST_WIDE_INT bitpos, rtx target,
1671 int unsignedp)
1673 unsigned int total_bits = BITS_PER_WORD;
1674 enum machine_mode mode;
1676 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1678 /* Special treatment for a bit field split across two registers. */
1679 if (bitsize + bitpos > BITS_PER_WORD)
1680 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1682 else
1684 /* Get the proper mode to use for this field. We want a mode that
1685 includes the entire field. If such a mode would be larger than
1686 a word, we won't be doing the extraction the normal way. */
1688 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1689 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1691 if (mode == VOIDmode)
1692 /* The only way this should occur is if the field spans word
1693 boundaries. */
1694 return extract_split_bit_field (op0, bitsize,
1695 bitpos + offset * BITS_PER_UNIT,
1696 unsignedp);
1698 total_bits = GET_MODE_BITSIZE (mode);
1700 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1701 be in the range 0 to total_bits-1, and put any excess bytes in
1702 OFFSET. */
1703 if (bitpos >= total_bits)
1705 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1706 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1707 * BITS_PER_UNIT);
1710 /* Get ref to an aligned byte, halfword, or word containing the field.
1711 Adjust BITPOS to be position within a word,
1712 and OFFSET to be the offset of that word.
1713 Then alter OP0 to refer to that word. */
1714 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1715 offset -= (offset % (total_bits / BITS_PER_UNIT));
1716 op0 = adjust_address (op0, mode, offset);
1719 mode = GET_MODE (op0);
1721 if (BYTES_BIG_ENDIAN)
1722 /* BITPOS is the distance between our msb and that of OP0.
1723 Convert it to the distance from the lsb. */
1724 bitpos = total_bits - bitsize - bitpos;
1726 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1727 We have reduced the big-endian case to the little-endian case. */
1729 if (unsignedp)
1731 if (bitpos)
1733 /* If the field does not already start at the lsb,
1734 shift it so it does. */
1735 tree amount = build_int_cst (NULL_TREE, bitpos);
1736 /* Maybe propagate the target for the shift. */
1737 /* But not if we will return it--could confuse integrate.c. */
1738 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1739 if (tmode != mode) subtarget = 0;
1740 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1742 /* Convert the value to the desired mode. */
1743 if (mode != tmode)
1744 op0 = convert_to_mode (tmode, op0, 1);
1746 /* Unless the msb of the field used to be the msb when we shifted,
1747 mask out the upper bits. */
1749 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1750 return expand_binop (GET_MODE (op0), and_optab, op0,
1751 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1752 target, 1, OPTAB_LIB_WIDEN);
1753 return op0;
1756 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1757 then arithmetic-shift its lsb to the lsb of the word. */
1758 op0 = force_reg (mode, op0);
1759 if (mode != tmode)
1760 target = 0;
1762 /* Find the narrowest integer mode that contains the field. */
1764 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1765 mode = GET_MODE_WIDER_MODE (mode))
1766 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1768 op0 = convert_to_mode (mode, op0, 0);
1769 break;
1772 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1774 tree amount
1775 = build_int_cst (NULL_TREE,
1776 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1777 /* Maybe propagate the target for the shift. */
1778 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1779 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1782 return expand_shift (RSHIFT_EXPR, mode, op0,
1783 build_int_cst (NULL_TREE,
1784 GET_MODE_BITSIZE (mode) - bitsize),
1785 target, 0);
1788 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1789 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1790 complement of that if COMPLEMENT. The mask is truncated if
1791 necessary to the width of mode MODE. The mask is zero-extended if
1792 BITSIZE+BITPOS is too small for MODE. */
1794 static rtx
1795 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1797 HOST_WIDE_INT masklow, maskhigh;
1799 if (bitsize == 0)
1800 masklow = 0;
1801 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1802 masklow = (HOST_WIDE_INT) -1 << bitpos;
1803 else
1804 masklow = 0;
1806 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1807 masklow &= ((unsigned HOST_WIDE_INT) -1
1808 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1810 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1811 maskhigh = -1;
1812 else
1813 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1815 if (bitsize == 0)
1816 maskhigh = 0;
1817 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1818 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1819 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1820 else
1821 maskhigh = 0;
1823 if (complement)
1825 maskhigh = ~maskhigh;
1826 masklow = ~masklow;
1829 return immed_double_const (masklow, maskhigh, mode);
1832 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1833 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1835 static rtx
1836 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1838 unsigned HOST_WIDE_INT v = INTVAL (value);
1839 HOST_WIDE_INT low, high;
1841 if (bitsize < HOST_BITS_PER_WIDE_INT)
1842 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1844 if (bitpos < HOST_BITS_PER_WIDE_INT)
1846 low = v << bitpos;
1847 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1849 else
1851 low = 0;
1852 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1855 return immed_double_const (low, high, mode);
1858 /* Extract a bit field from a memory by forcing the alignment of the
1859 memory. This efficient only if the field spans at least 4 boundaries.
1861 OP0 is the MEM.
1862 BITSIZE is the field width; BITPOS is the position of the first bit.
1863 UNSIGNEDP is true if the result should be zero-extended. */
1865 static rtx
1866 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1867 unsigned HOST_WIDE_INT bitpos,
1868 int unsignedp)
1870 enum machine_mode mode, dmode;
1871 unsigned int m_bitsize, m_size;
1872 unsigned int sign_shift_up, sign_shift_dn;
1873 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1875 /* Choose a mode that will fit BITSIZE. */
1876 mode = smallest_mode_for_size (bitsize, MODE_INT);
1877 m_size = GET_MODE_SIZE (mode);
1878 m_bitsize = GET_MODE_BITSIZE (mode);
1880 /* Choose a mode twice as wide. Fail if no such mode exists. */
1881 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1882 if (dmode == BLKmode)
1883 return NULL;
1885 do_pending_stack_adjust ();
1886 start = get_last_insn ();
1888 /* At the end, we'll need an additional shift to deal with sign/zero
1889 extension. By default this will be a left+right shift of the
1890 appropriate size. But we may be able to eliminate one of them. */
1891 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1893 if (STRICT_ALIGNMENT)
1895 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1896 bitpos %= BITS_PER_UNIT;
1898 /* We load two values to be concatenate. There's an edge condition
1899 that bears notice -- an aligned value at the end of a page can
1900 only load one value lest we segfault. So the two values we load
1901 are at "base & -size" and "(base + size - 1) & -size". If base
1902 is unaligned, the addresses will be aligned and sequential; if
1903 base is aligned, the addresses will both be equal to base. */
1905 a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1906 GEN_INT (-(HOST_WIDE_INT)m_size),
1907 NULL, true, OPTAB_LIB_WIDEN);
1908 mark_reg_pointer (a1, m_bitsize);
1909 v1 = gen_rtx_MEM (mode, a1);
1910 set_mem_align (v1, m_bitsize);
1911 v1 = force_reg (mode, validize_mem (v1));
1913 a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1914 a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1915 GEN_INT (-(HOST_WIDE_INT)m_size),
1916 NULL, true, OPTAB_LIB_WIDEN);
1917 v2 = gen_rtx_MEM (mode, a2);
1918 set_mem_align (v2, m_bitsize);
1919 v2 = force_reg (mode, validize_mem (v2));
1921 /* Combine these two values into a double-word value. */
1922 if (m_bitsize == BITS_PER_WORD)
1924 comb = gen_reg_rtx (dmode);
1925 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1926 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1927 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1929 else
1931 if (BYTES_BIG_ENDIAN)
1932 comb = v1, v1 = v2, v2 = comb;
1933 v1 = convert_modes (dmode, mode, v1, true);
1934 if (v1 == NULL)
1935 goto fail;
1936 v2 = convert_modes (dmode, mode, v2, true);
1937 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1938 NULL, true, OPTAB_LIB_WIDEN);
1939 if (v2 == NULL)
1940 goto fail;
1941 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1942 true, OPTAB_LIB_WIDEN);
1943 if (comb == NULL)
1944 goto fail;
1947 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1948 NULL, true, OPTAB_LIB_WIDEN);
1949 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1951 if (bitpos != 0)
1953 if (sign_shift_up <= bitpos)
1954 bitpos -= sign_shift_up, sign_shift_up = 0;
1955 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1956 NULL, true, OPTAB_LIB_WIDEN);
1959 else
1961 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1962 bitpos %= BITS_PER_UNIT;
1964 /* When strict alignment is not required, we can just load directly
1965 from memory without masking. If the remaining BITPOS offset is
1966 small enough, we may be able to do all operations in MODE as
1967 opposed to DMODE. */
1968 if (bitpos + bitsize <= m_bitsize)
1969 dmode = mode;
1970 comb = adjust_address (op0, dmode, offset);
1972 if (sign_shift_up <= bitpos)
1973 bitpos -= sign_shift_up, sign_shift_up = 0;
1974 shift = GEN_INT (bitpos);
1977 /* Shift down the double-word such that the requested value is at bit 0. */
1978 if (shift != const0_rtx)
1979 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
1980 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
1981 if (comb == NULL)
1982 goto fail;
1984 /* If the field exactly matches MODE, then all we need to do is return the
1985 lowpart. Otherwise, shift to get the sign bits set properly. */
1986 result = force_reg (mode, gen_lowpart (mode, comb));
1988 if (sign_shift_up)
1989 result = expand_simple_binop (mode, ASHIFT, result,
1990 GEN_INT (sign_shift_up),
1991 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1992 if (sign_shift_dn)
1993 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
1994 result, GEN_INT (sign_shift_dn),
1995 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1997 return result;
1999 fail:
2000 delete_insns_since (start);
2001 return NULL;
2004 /* Extract a bit field that is split across two words
2005 and return an RTX for the result.
2007 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2008 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2009 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
2011 static rtx
2012 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2013 unsigned HOST_WIDE_INT bitpos, int unsignedp)
2015 unsigned int unit;
2016 unsigned int bitsdone = 0;
2017 rtx result = NULL_RTX;
2018 int first = 1;
2020 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2021 much at a time. */
2022 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2023 unit = BITS_PER_WORD;
2024 else
2026 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2027 if (0 && bitsize / unit > 2)
2029 rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2030 unsignedp);
2031 if (tmp)
2032 return tmp;
2036 while (bitsdone < bitsize)
2038 unsigned HOST_WIDE_INT thissize;
2039 rtx part, word;
2040 unsigned HOST_WIDE_INT thispos;
2041 unsigned HOST_WIDE_INT offset;
2043 offset = (bitpos + bitsdone) / unit;
2044 thispos = (bitpos + bitsdone) % unit;
2046 /* THISSIZE must not overrun a word boundary. Otherwise,
2047 extract_fixed_bit_field will call us again, and we will mutually
2048 recurse forever. */
2049 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2050 thissize = MIN (thissize, unit - thispos);
2052 /* If OP0 is a register, then handle OFFSET here.
2054 When handling multiword bitfields, extract_bit_field may pass
2055 down a word_mode SUBREG of a larger REG for a bitfield that actually
2056 crosses a word boundary. Thus, for a SUBREG, we must find
2057 the current word starting from the base register. */
2058 if (GET_CODE (op0) == SUBREG)
2060 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2061 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2062 GET_MODE (SUBREG_REG (op0)));
2063 offset = 0;
2065 else if (REG_P (op0))
2067 word = operand_subword_force (op0, offset, GET_MODE (op0));
2068 offset = 0;
2070 else
2071 word = op0;
2073 /* Extract the parts in bit-counting order,
2074 whose meaning is determined by BYTES_PER_UNIT.
2075 OFFSET is in UNITs, and UNIT is in bits.
2076 extract_fixed_bit_field wants offset in bytes. */
2077 part = extract_fixed_bit_field (word_mode, word,
2078 offset * unit / BITS_PER_UNIT,
2079 thissize, thispos, 0, 1);
2080 bitsdone += thissize;
2082 /* Shift this part into place for the result. */
2083 if (BYTES_BIG_ENDIAN)
2085 if (bitsize != bitsdone)
2086 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2087 build_int_cst (NULL_TREE, bitsize - bitsdone),
2088 0, 1);
2090 else
2092 if (bitsdone != thissize)
2093 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2094 build_int_cst (NULL_TREE,
2095 bitsdone - thissize), 0, 1);
2098 if (first)
2099 result = part;
2100 else
2101 /* Combine the parts with bitwise or. This works
2102 because we extracted each part as an unsigned bit field. */
2103 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2104 OPTAB_LIB_WIDEN);
2106 first = 0;
2109 /* Unsigned bit field: we are done. */
2110 if (unsignedp)
2111 return result;
2112 /* Signed bit field: sign-extend with two arithmetic shifts. */
2113 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2114 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2115 NULL_RTX, 0);
2116 return expand_shift (RSHIFT_EXPR, word_mode, result,
2117 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2118 NULL_RTX, 0);
2121 /* Add INC into TARGET. */
2123 void
2124 expand_inc (rtx target, rtx inc)
2126 rtx value = expand_binop (GET_MODE (target), add_optab,
2127 target, inc,
2128 target, 0, OPTAB_LIB_WIDEN);
2129 if (value != target)
2130 emit_move_insn (target, value);
2133 /* Subtract DEC from TARGET. */
2135 void
2136 expand_dec (rtx target, rtx dec)
2138 rtx value = expand_binop (GET_MODE (target), sub_optab,
2139 target, dec,
2140 target, 0, OPTAB_LIB_WIDEN);
2141 if (value != target)
2142 emit_move_insn (target, value);
2145 /* Output a shift instruction for expression code CODE,
2146 with SHIFTED being the rtx for the value to shift,
2147 and AMOUNT the tree for the amount to shift by.
2148 Store the result in the rtx TARGET, if that is convenient.
2149 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2150 Return the rtx for where the value is. */
2153 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2154 tree amount, rtx target, int unsignedp)
2156 rtx op1, temp = 0;
2157 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2158 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2159 int try;
2161 /* Previously detected shift-counts computed by NEGATE_EXPR
2162 and shifted in the other direction; but that does not work
2163 on all machines. */
2165 op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
2167 if (SHIFT_COUNT_TRUNCATED)
2169 if (GET_CODE (op1) == CONST_INT
2170 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2171 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2172 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2173 % GET_MODE_BITSIZE (mode));
2174 else if (GET_CODE (op1) == SUBREG
2175 && subreg_lowpart_p (op1))
2176 op1 = SUBREG_REG (op1);
2179 if (op1 == const0_rtx)
2180 return shifted;
2182 /* Check whether its cheaper to implement a left shift by a constant
2183 bit count by a sequence of additions. */
2184 if (code == LSHIFT_EXPR
2185 && GET_CODE (op1) == CONST_INT
2186 && INTVAL (op1) > 0
2187 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2188 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode])
2190 int i;
2191 for (i = 0; i < INTVAL (op1); i++)
2193 temp = force_reg (mode, shifted);
2194 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2195 unsignedp, OPTAB_LIB_WIDEN);
2197 return shifted;
2200 for (try = 0; temp == 0 && try < 3; try++)
2202 enum optab_methods methods;
2204 if (try == 0)
2205 methods = OPTAB_DIRECT;
2206 else if (try == 1)
2207 methods = OPTAB_WIDEN;
2208 else
2209 methods = OPTAB_LIB_WIDEN;
2211 if (rotate)
2213 /* Widening does not work for rotation. */
2214 if (methods == OPTAB_WIDEN)
2215 continue;
2216 else if (methods == OPTAB_LIB_WIDEN)
2218 /* If we have been unable to open-code this by a rotation,
2219 do it as the IOR of two shifts. I.e., to rotate A
2220 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2221 where C is the bitsize of A.
2223 It is theoretically possible that the target machine might
2224 not be able to perform either shift and hence we would
2225 be making two libcalls rather than just the one for the
2226 shift (similarly if IOR could not be done). We will allow
2227 this extremely unlikely lossage to avoid complicating the
2228 code below. */
2230 rtx subtarget = target == shifted ? 0 : target;
2231 rtx temp1;
2232 tree type = TREE_TYPE (amount);
2233 tree new_amount = make_tree (type, op1);
2234 tree other_amount
2235 = fold (build2 (MINUS_EXPR, type,
2236 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2237 amount));
2239 shifted = force_reg (mode, shifted);
2241 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2242 mode, shifted, new_amount, subtarget, 1);
2243 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2244 mode, shifted, other_amount, 0, 1);
2245 return expand_binop (mode, ior_optab, temp, temp1, target,
2246 unsignedp, methods);
2249 temp = expand_binop (mode,
2250 left ? rotl_optab : rotr_optab,
2251 shifted, op1, target, unsignedp, methods);
2253 /* If we don't have the rotate, but we are rotating by a constant
2254 that is in range, try a rotate in the opposite direction. */
2256 if (temp == 0 && GET_CODE (op1) == CONST_INT
2257 && INTVAL (op1) > 0
2258 && (unsigned int) INTVAL (op1) < GET_MODE_BITSIZE (mode))
2259 temp = expand_binop (mode,
2260 left ? rotr_optab : rotl_optab,
2261 shifted,
2262 GEN_INT (GET_MODE_BITSIZE (mode)
2263 - INTVAL (op1)),
2264 target, unsignedp, methods);
2266 else if (unsignedp)
2267 temp = expand_binop (mode,
2268 left ? ashl_optab : lshr_optab,
2269 shifted, op1, target, unsignedp, methods);
2271 /* Do arithmetic shifts.
2272 Also, if we are going to widen the operand, we can just as well
2273 use an arithmetic right-shift instead of a logical one. */
2274 if (temp == 0 && ! rotate
2275 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2277 enum optab_methods methods1 = methods;
2279 /* If trying to widen a log shift to an arithmetic shift,
2280 don't accept an arithmetic shift of the same size. */
2281 if (unsignedp)
2282 methods1 = OPTAB_MUST_WIDEN;
2284 /* Arithmetic shift */
2286 temp = expand_binop (mode,
2287 left ? ashl_optab : ashr_optab,
2288 shifted, op1, target, unsignedp, methods1);
2291 /* We used to try extzv here for logical right shifts, but that was
2292 only useful for one machine, the VAX, and caused poor code
2293 generation there for lshrdi3, so the code was deleted and a
2294 define_expand for lshrsi3 was added to vax.md. */
2297 gcc_assert (temp);
2298 return temp;
2301 enum alg_code { alg_unknown, alg_zero, alg_m, alg_shift,
2302 alg_add_t_m2, alg_sub_t_m2,
2303 alg_add_factor, alg_sub_factor,
2304 alg_add_t2_m, alg_sub_t2_m };
2306 /* This structure holds the "cost" of a multiply sequence. The
2307 "cost" field holds the total rtx_cost of every operator in the
2308 synthetic multiplication sequence, hence cost(a op b) is defined
2309 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2310 The "latency" field holds the minimum possible latency of the
2311 synthetic multiply, on a hypothetical infinitely parallel CPU.
2312 This is the critical path, or the maximum height, of the expression
2313 tree which is the sum of rtx_costs on the most expensive path from
2314 any leaf to the root. Hence latency(a op b) is defined as zero for
2315 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2317 struct mult_cost {
2318 short cost; /* Total rtx_cost of the multiplication sequence. */
2319 short latency; /* The latency of the multiplication sequence. */
2322 /* This macro is used to compare a pointer to a mult_cost against an
2323 single integer "rtx_cost" value. This is equivalent to the macro
2324 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2325 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2326 || ((X)->cost == (Y) && (X)->latency < (Y)))
2328 /* This macro is used to compare two pointers to mult_costs against
2329 each other. The macro returns true if X is cheaper than Y.
2330 Currently, the cheaper of two mult_costs is the one with the
2331 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2332 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2333 || ((X)->cost == (Y)->cost \
2334 && (X)->latency < (Y)->latency))
2336 /* This structure records a sequence of operations.
2337 `ops' is the number of operations recorded.
2338 `cost' is their total cost.
2339 The operations are stored in `op' and the corresponding
2340 logarithms of the integer coefficients in `log'.
2342 These are the operations:
2343 alg_zero total := 0;
2344 alg_m total := multiplicand;
2345 alg_shift total := total * coeff
2346 alg_add_t_m2 total := total + multiplicand * coeff;
2347 alg_sub_t_m2 total := total - multiplicand * coeff;
2348 alg_add_factor total := total * coeff + total;
2349 alg_sub_factor total := total * coeff - total;
2350 alg_add_t2_m total := total * coeff + multiplicand;
2351 alg_sub_t2_m total := total * coeff - multiplicand;
2353 The first operand must be either alg_zero or alg_m. */
2355 struct algorithm
2357 struct mult_cost cost;
2358 short ops;
2359 /* The size of the OP and LOG fields are not directly related to the
2360 word size, but the worst-case algorithms will be if we have few
2361 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2362 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2363 in total wordsize operations. */
2364 enum alg_code op[MAX_BITS_PER_WORD];
2365 char log[MAX_BITS_PER_WORD];
2368 /* The entry for our multiplication cache/hash table. */
2369 struct alg_hash_entry {
2370 /* The number we are multiplying by. */
2371 unsigned int t;
2373 /* The mode in which we are multiplying something by T. */
2374 enum machine_mode mode;
2376 /* The best multiplication algorithm for t. */
2377 enum alg_code alg;
2380 /* The number of cache/hash entries. */
2381 #define NUM_ALG_HASH_ENTRIES 307
2383 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2384 actually a hash table. If we have a collision, that the older
2385 entry is kicked out. */
2386 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2388 /* Indicates the type of fixup needed after a constant multiplication.
2389 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2390 the result should be negated, and ADD_VARIANT means that the
2391 multiplicand should be added to the result. */
2392 enum mult_variant {basic_variant, negate_variant, add_variant};
2394 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2395 const struct mult_cost *, enum machine_mode mode);
2396 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2397 struct algorithm *, enum mult_variant *, int);
2398 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2399 const struct algorithm *, enum mult_variant);
2400 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2401 int, rtx *, int *, int *);
2402 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2403 static rtx extract_high_half (enum machine_mode, rtx);
2404 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2405 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2406 int, int);
2407 /* Compute and return the best algorithm for multiplying by T.
2408 The algorithm must cost less than cost_limit
2409 If retval.cost >= COST_LIMIT, no algorithm was found and all
2410 other field of the returned struct are undefined.
2411 MODE is the machine mode of the multiplication. */
2413 static void
2414 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2415 const struct mult_cost *cost_limit, enum machine_mode mode)
2417 int m;
2418 struct algorithm *alg_in, *best_alg;
2419 struct mult_cost best_cost;
2420 struct mult_cost new_limit;
2421 int op_cost, op_latency;
2422 unsigned HOST_WIDE_INT q;
2423 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2424 int hash_index;
2425 bool cache_hit = false;
2426 enum alg_code cache_alg = alg_zero;
2428 /* Indicate that no algorithm is yet found. If no algorithm
2429 is found, this value will be returned and indicate failure. */
2430 alg_out->cost.cost = cost_limit->cost + 1;
2431 alg_out->cost.latency = cost_limit->latency + 1;
2433 if (cost_limit->cost < 0
2434 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2435 return;
2437 /* Restrict the bits of "t" to the multiplication's mode. */
2438 t &= GET_MODE_MASK (mode);
2440 /* t == 1 can be done in zero cost. */
2441 if (t == 1)
2443 alg_out->ops = 1;
2444 alg_out->cost.cost = 0;
2445 alg_out->cost.latency = 0;
2446 alg_out->op[0] = alg_m;
2447 return;
2450 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2451 fail now. */
2452 if (t == 0)
2454 if (MULT_COST_LESS (cost_limit, zero_cost))
2455 return;
2456 else
2458 alg_out->ops = 1;
2459 alg_out->cost.cost = zero_cost;
2460 alg_out->cost.latency = zero_cost;
2461 alg_out->op[0] = alg_zero;
2462 return;
2466 /* We'll be needing a couple extra algorithm structures now. */
2468 alg_in = alloca (sizeof (struct algorithm));
2469 best_alg = alloca (sizeof (struct algorithm));
2470 best_cost = *cost_limit;
2472 /* Compute the hash index. */
2473 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2475 /* See if we already know what to do for T. */
2476 if (alg_hash[hash_index].t == t
2477 && alg_hash[hash_index].mode == mode
2478 && alg_hash[hash_index].alg != alg_unknown)
2480 cache_hit = true;
2481 cache_alg = alg_hash[hash_index].alg;
2482 switch (cache_alg)
2484 case alg_shift:
2485 goto do_alg_shift;
2487 case alg_add_t_m2:
2488 case alg_sub_t_m2:
2489 goto do_alg_addsub_t_m2;
2491 case alg_add_factor:
2492 case alg_sub_factor:
2493 goto do_alg_addsub_factor;
2495 case alg_add_t2_m:
2496 goto do_alg_add_t2_m;
2498 case alg_sub_t2_m:
2499 goto do_alg_sub_t2_m;
2501 default:
2502 gcc_unreachable ();
2506 /* If we have a group of zero bits at the low-order part of T, try
2507 multiplying by the remaining bits and then doing a shift. */
2509 if ((t & 1) == 0)
2511 do_alg_shift:
2512 m = floor_log2 (t & -t); /* m = number of low zero bits */
2513 if (m < maxm)
2515 q = t >> m;
2516 /* The function expand_shift will choose between a shift and
2517 a sequence of additions, so the observed cost is given as
2518 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2519 op_cost = m * add_cost[mode];
2520 if (shift_cost[mode][m] < op_cost)
2521 op_cost = shift_cost[mode][m];
2522 new_limit.cost = best_cost.cost - op_cost;
2523 new_limit.latency = best_cost.latency - op_cost;
2524 synth_mult (alg_in, q, &new_limit, mode);
2526 alg_in->cost.cost += op_cost;
2527 alg_in->cost.latency += op_cost;
2528 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2530 struct algorithm *x;
2531 best_cost = alg_in->cost;
2532 x = alg_in, alg_in = best_alg, best_alg = x;
2533 best_alg->log[best_alg->ops] = m;
2534 best_alg->op[best_alg->ops] = alg_shift;
2537 if (cache_hit)
2538 goto done;
2541 /* If we have an odd number, add or subtract one. */
2542 if ((t & 1) != 0)
2544 unsigned HOST_WIDE_INT w;
2546 do_alg_addsub_t_m2:
2547 for (w = 1; (w & t) != 0; w <<= 1)
2549 /* If T was -1, then W will be zero after the loop. This is another
2550 case where T ends with ...111. Handling this with (T + 1) and
2551 subtract 1 produces slightly better code and results in algorithm
2552 selection much faster than treating it like the ...0111 case
2553 below. */
2554 if (w == 0
2555 || (w > 2
2556 /* Reject the case where t is 3.
2557 Thus we prefer addition in that case. */
2558 && t != 3))
2560 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2562 op_cost = add_cost[mode];
2563 new_limit.cost = best_cost.cost - op_cost;
2564 new_limit.latency = best_cost.latency - op_cost;
2565 synth_mult (alg_in, t + 1, &new_limit, mode);
2567 alg_in->cost.cost += op_cost;
2568 alg_in->cost.latency += op_cost;
2569 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2571 struct algorithm *x;
2572 best_cost = alg_in->cost;
2573 x = alg_in, alg_in = best_alg, best_alg = x;
2574 best_alg->log[best_alg->ops] = 0;
2575 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2578 else
2580 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2582 op_cost = add_cost[mode];
2583 new_limit.cost = best_cost.cost - op_cost;
2584 new_limit.latency = best_cost.latency - op_cost;
2585 synth_mult (alg_in, t - 1, &new_limit, mode);
2587 alg_in->cost.cost += op_cost;
2588 alg_in->cost.latency += op_cost;
2589 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2591 struct algorithm *x;
2592 best_cost = alg_in->cost;
2593 x = alg_in, alg_in = best_alg, best_alg = x;
2594 best_alg->log[best_alg->ops] = 0;
2595 best_alg->op[best_alg->ops] = alg_add_t_m2;
2598 if (cache_hit)
2599 goto done;
2602 /* Look for factors of t of the form
2603 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2604 If we find such a factor, we can multiply by t using an algorithm that
2605 multiplies by q, shift the result by m and add/subtract it to itself.
2607 We search for large factors first and loop down, even if large factors
2608 are less probable than small; if we find a large factor we will find a
2609 good sequence quickly, and therefore be able to prune (by decreasing
2610 COST_LIMIT) the search. */
2612 do_alg_addsub_factor:
2613 for (m = floor_log2 (t - 1); m >= 2; m--)
2615 unsigned HOST_WIDE_INT d;
2617 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2618 if (t % d == 0 && t > d && m < maxm
2619 && (!cache_hit || cache_alg == alg_add_factor))
2621 /* If the target has a cheap shift-and-add instruction use
2622 that in preference to a shift insn followed by an add insn.
2623 Assume that the shift-and-add is "atomic" with a latency
2624 equal to its cost, otherwise assume that on superscalar
2625 hardware the shift may be executed concurrently with the
2626 earlier steps in the algorithm. */
2627 op_cost = add_cost[mode] + shift_cost[mode][m];
2628 if (shiftadd_cost[mode][m] < op_cost)
2630 op_cost = shiftadd_cost[mode][m];
2631 op_latency = op_cost;
2633 else
2634 op_latency = add_cost[mode];
2636 new_limit.cost = best_cost.cost - op_cost;
2637 new_limit.latency = best_cost.latency - op_latency;
2638 synth_mult (alg_in, t / d, &new_limit, mode);
2640 alg_in->cost.cost += op_cost;
2641 alg_in->cost.latency += op_latency;
2642 if (alg_in->cost.latency < op_cost)
2643 alg_in->cost.latency = op_cost;
2644 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2646 struct algorithm *x;
2647 best_cost = alg_in->cost;
2648 x = alg_in, alg_in = best_alg, best_alg = x;
2649 best_alg->log[best_alg->ops] = m;
2650 best_alg->op[best_alg->ops] = alg_add_factor;
2652 /* Other factors will have been taken care of in the recursion. */
2653 break;
2656 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2657 if (t % d == 0 && t > d && m < maxm
2658 && (!cache_hit || cache_alg == alg_sub_factor))
2660 /* If the target has a cheap shift-and-subtract insn use
2661 that in preference to a shift insn followed by a sub insn.
2662 Assume that the shift-and-sub is "atomic" with a latency
2663 equal to it's cost, otherwise assume that on superscalar
2664 hardware the shift may be executed concurrently with the
2665 earlier steps in the algorithm. */
2666 op_cost = add_cost[mode] + shift_cost[mode][m];
2667 if (shiftsub_cost[mode][m] < op_cost)
2669 op_cost = shiftsub_cost[mode][m];
2670 op_latency = op_cost;
2672 else
2673 op_latency = add_cost[mode];
2675 new_limit.cost = best_cost.cost - op_cost;
2676 new_limit.latency = best_cost.latency - op_latency;
2677 synth_mult (alg_in, t / d, &new_limit, mode);
2679 alg_in->cost.cost += op_cost;
2680 alg_in->cost.latency += op_latency;
2681 if (alg_in->cost.latency < op_cost)
2682 alg_in->cost.latency = op_cost;
2683 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2685 struct algorithm *x;
2686 best_cost = alg_in->cost;
2687 x = alg_in, alg_in = best_alg, best_alg = x;
2688 best_alg->log[best_alg->ops] = m;
2689 best_alg->op[best_alg->ops] = alg_sub_factor;
2691 break;
2694 if (cache_hit)
2695 goto done;
2697 /* Try shift-and-add (load effective address) instructions,
2698 i.e. do a*3, a*5, a*9. */
2699 if ((t & 1) != 0)
2701 do_alg_add_t2_m:
2702 q = t - 1;
2703 q = q & -q;
2704 m = exact_log2 (q);
2705 if (m >= 0 && m < maxm)
2707 op_cost = shiftadd_cost[mode][m];
2708 new_limit.cost = best_cost.cost - op_cost;
2709 new_limit.latency = best_cost.latency - op_cost;
2710 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2712 alg_in->cost.cost += op_cost;
2713 alg_in->cost.latency += op_cost;
2714 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2716 struct algorithm *x;
2717 best_cost = alg_in->cost;
2718 x = alg_in, alg_in = best_alg, best_alg = x;
2719 best_alg->log[best_alg->ops] = m;
2720 best_alg->op[best_alg->ops] = alg_add_t2_m;
2723 if (cache_hit)
2724 goto done;
2726 do_alg_sub_t2_m:
2727 q = t + 1;
2728 q = q & -q;
2729 m = exact_log2 (q);
2730 if (m >= 0 && m < maxm)
2732 op_cost = shiftsub_cost[mode][m];
2733 new_limit.cost = best_cost.cost - op_cost;
2734 new_limit.latency = best_cost.latency - op_cost;
2735 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2737 alg_in->cost.cost += op_cost;
2738 alg_in->cost.latency += op_cost;
2739 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2741 struct algorithm *x;
2742 best_cost = alg_in->cost;
2743 x = alg_in, alg_in = best_alg, best_alg = x;
2744 best_alg->log[best_alg->ops] = m;
2745 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2748 if (cache_hit)
2749 goto done;
2752 done:
2753 /* If best_cost has not decreased, we have not found any algorithm. */
2754 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2755 return;
2757 /* Cache the result. */
2758 if (!cache_hit)
2760 alg_hash[hash_index].t = t;
2761 alg_hash[hash_index].mode = mode;
2762 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2765 /* If we are getting a too long sequence for `struct algorithm'
2766 to record, make this search fail. */
2767 if (best_alg->ops == MAX_BITS_PER_WORD)
2768 return;
2770 /* Copy the algorithm from temporary space to the space at alg_out.
2771 We avoid using structure assignment because the majority of
2772 best_alg is normally undefined, and this is a critical function. */
2773 alg_out->ops = best_alg->ops + 1;
2774 alg_out->cost = best_cost;
2775 memcpy (alg_out->op, best_alg->op,
2776 alg_out->ops * sizeof *alg_out->op);
2777 memcpy (alg_out->log, best_alg->log,
2778 alg_out->ops * sizeof *alg_out->log);
2781 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2782 Try three variations:
2784 - a shift/add sequence based on VAL itself
2785 - a shift/add sequence based on -VAL, followed by a negation
2786 - a shift/add sequence based on VAL - 1, followed by an addition.
2788 Return true if the cheapest of these cost less than MULT_COST,
2789 describing the algorithm in *ALG and final fixup in *VARIANT. */
2791 static bool
2792 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2793 struct algorithm *alg, enum mult_variant *variant,
2794 int mult_cost)
2796 struct algorithm alg2;
2797 struct mult_cost limit;
2798 int op_cost;
2800 *variant = basic_variant;
2801 limit.cost = mult_cost;
2802 limit.latency = mult_cost;
2803 synth_mult (alg, val, &limit, mode);
2805 /* This works only if the inverted value actually fits in an
2806 `unsigned int' */
2807 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2809 op_cost = neg_cost[mode];
2810 if (MULT_COST_LESS (&alg->cost, mult_cost))
2812 limit.cost = alg->cost.cost - op_cost;
2813 limit.latency = alg->cost.latency - op_cost;
2815 else
2817 limit.cost = mult_cost - op_cost;
2818 limit.latency = mult_cost - op_cost;
2821 synth_mult (&alg2, -val, &limit, mode);
2822 alg2.cost.cost += op_cost;
2823 alg2.cost.latency += op_cost;
2824 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2825 *alg = alg2, *variant = negate_variant;
2828 /* This proves very useful for division-by-constant. */
2829 op_cost = add_cost[mode];
2830 if (MULT_COST_LESS (&alg->cost, mult_cost))
2832 limit.cost = alg->cost.cost - op_cost;
2833 limit.latency = alg->cost.latency - op_cost;
2835 else
2837 limit.cost = mult_cost - op_cost;
2838 limit.latency = mult_cost - op_cost;
2841 synth_mult (&alg2, val - 1, &limit, mode);
2842 alg2.cost.cost += op_cost;
2843 alg2.cost.latency += op_cost;
2844 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2845 *alg = alg2, *variant = add_variant;
2847 return MULT_COST_LESS (&alg->cost, mult_cost);
2850 /* A subroutine of expand_mult, used for constant multiplications.
2851 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2852 convenient. Use the shift/add sequence described by ALG and apply
2853 the final fixup specified by VARIANT. */
2855 static rtx
2856 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2857 rtx target, const struct algorithm *alg,
2858 enum mult_variant variant)
2860 HOST_WIDE_INT val_so_far;
2861 rtx insn, accum, tem;
2862 int opno;
2863 enum machine_mode nmode;
2865 /* Avoid referencing memory over and over.
2866 For speed, but also for correctness when mem is volatile. */
2867 if (MEM_P (op0))
2868 op0 = force_reg (mode, op0);
2870 /* ACCUM starts out either as OP0 or as a zero, depending on
2871 the first operation. */
2873 if (alg->op[0] == alg_zero)
2875 accum = copy_to_mode_reg (mode, const0_rtx);
2876 val_so_far = 0;
2878 else if (alg->op[0] == alg_m)
2880 accum = copy_to_mode_reg (mode, op0);
2881 val_so_far = 1;
2883 else
2884 gcc_unreachable ();
2886 for (opno = 1; opno < alg->ops; opno++)
2888 int log = alg->log[opno];
2889 rtx shift_subtarget = optimize ? 0 : accum;
2890 rtx add_target
2891 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2892 && !optimize)
2893 ? target : 0;
2894 rtx accum_target = optimize ? 0 : accum;
2896 switch (alg->op[opno])
2898 case alg_shift:
2899 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2900 build_int_cst (NULL_TREE, log),
2901 NULL_RTX, 0);
2902 val_so_far <<= log;
2903 break;
2905 case alg_add_t_m2:
2906 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2907 build_int_cst (NULL_TREE, log),
2908 NULL_RTX, 0);
2909 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2910 add_target ? add_target : accum_target);
2911 val_so_far += (HOST_WIDE_INT) 1 << log;
2912 break;
2914 case alg_sub_t_m2:
2915 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2916 build_int_cst (NULL_TREE, log),
2917 NULL_RTX, 0);
2918 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2919 add_target ? add_target : accum_target);
2920 val_so_far -= (HOST_WIDE_INT) 1 << log;
2921 break;
2923 case alg_add_t2_m:
2924 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2925 build_int_cst (NULL_TREE, log),
2926 shift_subtarget,
2928 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2929 add_target ? add_target : accum_target);
2930 val_so_far = (val_so_far << log) + 1;
2931 break;
2933 case alg_sub_t2_m:
2934 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2935 build_int_cst (NULL_TREE, log),
2936 shift_subtarget, 0);
2937 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2938 add_target ? add_target : accum_target);
2939 val_so_far = (val_so_far << log) - 1;
2940 break;
2942 case alg_add_factor:
2943 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2944 build_int_cst (NULL_TREE, log),
2945 NULL_RTX, 0);
2946 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2947 add_target ? add_target : accum_target);
2948 val_so_far += val_so_far << log;
2949 break;
2951 case alg_sub_factor:
2952 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2953 build_int_cst (NULL_TREE, log),
2954 NULL_RTX, 0);
2955 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2956 (add_target
2957 ? add_target : (optimize ? 0 : tem)));
2958 val_so_far = (val_so_far << log) - val_so_far;
2959 break;
2961 default:
2962 gcc_unreachable ();
2965 /* Write a REG_EQUAL note on the last insn so that we can cse
2966 multiplication sequences. Note that if ACCUM is a SUBREG,
2967 we've set the inner register and must properly indicate
2968 that. */
2970 tem = op0, nmode = mode;
2971 if (GET_CODE (accum) == SUBREG)
2973 nmode = GET_MODE (SUBREG_REG (accum));
2974 tem = gen_lowpart (nmode, op0);
2977 insn = get_last_insn ();
2978 set_unique_reg_note (insn, REG_EQUAL,
2979 gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
2982 if (variant == negate_variant)
2984 val_so_far = -val_so_far;
2985 accum = expand_unop (mode, neg_optab, accum, target, 0);
2987 else if (variant == add_variant)
2989 val_so_far = val_so_far + 1;
2990 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
2993 /* Compare only the bits of val and val_so_far that are significant
2994 in the result mode, to avoid sign-/zero-extension confusion. */
2995 val &= GET_MODE_MASK (mode);
2996 val_so_far &= GET_MODE_MASK (mode);
2997 gcc_assert (val == val_so_far);
2999 return accum;
3002 /* Perform a multiplication and return an rtx for the result.
3003 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3004 TARGET is a suggestion for where to store the result (an rtx).
3006 We check specially for a constant integer as OP1.
3007 If you want this check for OP0 as well, then before calling
3008 you should swap the two operands if OP0 would be constant. */
3011 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3012 int unsignedp)
3014 rtx const_op1 = op1;
3015 enum mult_variant variant;
3016 struct algorithm algorithm;
3018 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3019 less than or equal in size to `unsigned int' this doesn't matter.
3020 If the mode is larger than `unsigned int', then synth_mult works only
3021 if the constant value exactly fits in an `unsigned int' without any
3022 truncation. This means that multiplying by negative values does
3023 not work; results are off by 2^32 on a 32 bit machine. */
3025 /* If we are multiplying in DImode, it may still be a win
3026 to try to work with shifts and adds. */
3027 if (GET_CODE (op1) == CONST_DOUBLE
3028 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_INT
3029 && HOST_BITS_PER_INT >= BITS_PER_WORD
3030 && CONST_DOUBLE_HIGH (op1) == 0)
3031 const_op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
3032 else if (HOST_BITS_PER_INT < GET_MODE_BITSIZE (mode)
3033 && GET_CODE (op1) == CONST_INT
3034 && INTVAL (op1) < 0)
3035 const_op1 = 0;
3037 /* We used to test optimize here, on the grounds that it's better to
3038 produce a smaller program when -O is not used.
3039 But this causes such a terrible slowdown sometimes
3040 that it seems better to use synth_mult always. */
3042 if (const_op1 && GET_CODE (const_op1) == CONST_INT
3043 && (unsignedp || !flag_trapv))
3045 HOST_WIDE_INT coeff = INTVAL (const_op1);
3046 int mult_cost;
3048 /* Special case powers of two. */
3049 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3051 if (coeff == 0)
3052 return const0_rtx;
3053 if (coeff == 1)
3054 return op0;
3055 return expand_shift (LSHIFT_EXPR, mode, op0,
3056 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3057 target, unsignedp);
3060 mult_cost = rtx_cost (gen_rtx_MULT (mode, op0, op1), SET);
3061 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3062 mult_cost))
3063 return expand_mult_const (mode, op0, coeff, target,
3064 &algorithm, variant);
3067 if (GET_CODE (op0) == CONST_DOUBLE)
3069 rtx temp = op0;
3070 op0 = op1;
3071 op1 = temp;
3074 /* Expand x*2.0 as x+x. */
3075 if (GET_CODE (op1) == CONST_DOUBLE
3076 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3078 REAL_VALUE_TYPE d;
3079 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3081 if (REAL_VALUES_EQUAL (d, dconst2))
3083 op0 = force_reg (GET_MODE (op0), op0);
3084 return expand_binop (mode, add_optab, op0, op0,
3085 target, unsignedp, OPTAB_LIB_WIDEN);
3089 /* This used to use umul_optab if unsigned, but for non-widening multiply
3090 there is no difference between signed and unsigned. */
3091 op0 = expand_binop (mode,
3092 ! unsignedp
3093 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3094 ? smulv_optab : smul_optab,
3095 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3096 gcc_assert (op0);
3097 return op0;
3100 /* Return the smallest n such that 2**n >= X. */
3103 ceil_log2 (unsigned HOST_WIDE_INT x)
3105 return floor_log2 (x - 1) + 1;
3108 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3109 replace division by D, and put the least significant N bits of the result
3110 in *MULTIPLIER_PTR and return the most significant bit.
3112 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3113 needed precision is in PRECISION (should be <= N).
3115 PRECISION should be as small as possible so this function can choose
3116 multiplier more freely.
3118 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3119 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3121 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3122 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3124 static
3125 unsigned HOST_WIDE_INT
3126 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3127 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3129 HOST_WIDE_INT mhigh_hi, mlow_hi;
3130 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3131 int lgup, post_shift;
3132 int pow, pow2;
3133 unsigned HOST_WIDE_INT nl, dummy1;
3134 HOST_WIDE_INT nh, dummy2;
3136 /* lgup = ceil(log2(divisor)); */
3137 lgup = ceil_log2 (d);
3139 gcc_assert (lgup <= n);
3141 pow = n + lgup;
3142 pow2 = n + lgup - precision;
3144 /* We could handle this with some effort, but this case is much
3145 better handled directly with a scc insn, so rely on caller using
3146 that. */
3147 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3149 /* mlow = 2^(N + lgup)/d */
3150 if (pow >= HOST_BITS_PER_WIDE_INT)
3152 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3153 nl = 0;
3155 else
3157 nh = 0;
3158 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3160 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3161 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3163 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3164 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3165 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3166 else
3167 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3168 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3169 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3171 gcc_assert (!mhigh_hi || nh - d < d);
3172 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3173 /* Assert that mlow < mhigh. */
3174 gcc_assert (mlow_hi < mhigh_hi
3175 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3177 /* If precision == N, then mlow, mhigh exceed 2^N
3178 (but they do not exceed 2^(N+1)). */
3180 /* Reduce to lowest terms. */
3181 for (post_shift = lgup; post_shift > 0; post_shift--)
3183 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3184 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3185 if (ml_lo >= mh_lo)
3186 break;
3188 mlow_hi = 0;
3189 mlow_lo = ml_lo;
3190 mhigh_hi = 0;
3191 mhigh_lo = mh_lo;
3194 *post_shift_ptr = post_shift;
3195 *lgup_ptr = lgup;
3196 if (n < HOST_BITS_PER_WIDE_INT)
3198 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3199 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3200 return mhigh_lo >= mask;
3202 else
3204 *multiplier_ptr = GEN_INT (mhigh_lo);
3205 return mhigh_hi;
3209 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3210 congruent to 1 (mod 2**N). */
3212 static unsigned HOST_WIDE_INT
3213 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3215 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3217 /* The algorithm notes that the choice y = x satisfies
3218 x*y == 1 mod 2^3, since x is assumed odd.
3219 Each iteration doubles the number of bits of significance in y. */
3221 unsigned HOST_WIDE_INT mask;
3222 unsigned HOST_WIDE_INT y = x;
3223 int nbit = 3;
3225 mask = (n == HOST_BITS_PER_WIDE_INT
3226 ? ~(unsigned HOST_WIDE_INT) 0
3227 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3229 while (nbit < n)
3231 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3232 nbit *= 2;
3234 return y;
3237 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3238 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3239 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3240 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3241 become signed.
3243 The result is put in TARGET if that is convenient.
3245 MODE is the mode of operation. */
3248 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3249 rtx op1, rtx target, int unsignedp)
3251 rtx tem;
3252 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3254 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3255 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3256 NULL_RTX, 0);
3257 tem = expand_and (mode, tem, op1, NULL_RTX);
3258 adj_operand
3259 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3260 adj_operand);
3262 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3263 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3264 NULL_RTX, 0);
3265 tem = expand_and (mode, tem, op0, NULL_RTX);
3266 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3267 target);
3269 return target;
3272 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3274 static rtx
3275 extract_high_half (enum machine_mode mode, rtx op)
3277 enum machine_mode wider_mode;
3279 if (mode == word_mode)
3280 return gen_highpart (mode, op);
3282 wider_mode = GET_MODE_WIDER_MODE (mode);
3283 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3284 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3285 return convert_modes (mode, wider_mode, op, 0);
3288 /* Like expand_mult_highpart, but only consider using a multiplication
3289 optab. OP1 is an rtx for the constant operand. */
3291 static rtx
3292 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3293 rtx target, int unsignedp, int max_cost)
3295 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3296 enum machine_mode wider_mode;
3297 optab moptab;
3298 rtx tem;
3299 int size;
3301 wider_mode = GET_MODE_WIDER_MODE (mode);
3302 size = GET_MODE_BITSIZE (mode);
3304 /* Firstly, try using a multiplication insn that only generates the needed
3305 high part of the product, and in the sign flavor of unsignedp. */
3306 if (mul_highpart_cost[mode] < max_cost)
3308 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3309 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3310 unsignedp, OPTAB_DIRECT);
3311 if (tem)
3312 return tem;
3315 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3316 Need to adjust the result after the multiplication. */
3317 if (size - 1 < BITS_PER_WORD
3318 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3319 + 4 * add_cost[mode] < max_cost))
3321 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3322 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3323 unsignedp, OPTAB_DIRECT);
3324 if (tem)
3325 /* We used the wrong signedness. Adjust the result. */
3326 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3327 tem, unsignedp);
3330 /* Try widening multiplication. */
3331 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3332 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3333 && mul_widen_cost[wider_mode] < max_cost)
3335 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3336 unsignedp, OPTAB_WIDEN);
3337 if (tem)
3338 return extract_high_half (mode, tem);
3341 /* Try widening the mode and perform a non-widening multiplication. */
3342 if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3343 && size - 1 < BITS_PER_WORD
3344 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3346 rtx insns, wop0, wop1;
3348 /* We need to widen the operands, for example to ensure the
3349 constant multiplier is correctly sign or zero extended.
3350 Use a sequence to clean-up any instructions emitted by
3351 the conversions if things don't work out. */
3352 start_sequence ();
3353 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3354 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3355 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3356 unsignedp, OPTAB_WIDEN);
3357 insns = get_insns ();
3358 end_sequence ();
3360 if (tem)
3362 emit_insn (insns);
3363 return extract_high_half (mode, tem);
3367 /* Try widening multiplication of opposite signedness, and adjust. */
3368 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3369 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3370 && size - 1 < BITS_PER_WORD
3371 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3372 + 4 * add_cost[mode] < max_cost))
3374 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3375 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3376 if (tem != 0)
3378 tem = extract_high_half (mode, tem);
3379 /* We used the wrong signedness. Adjust the result. */
3380 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3381 target, unsignedp);
3385 return 0;
3388 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3389 putting the high half of the result in TARGET if that is convenient,
3390 and return where the result is. If the operation can not be performed,
3391 0 is returned.
3393 MODE is the mode of operation and result.
3395 UNSIGNEDP nonzero means unsigned multiply.
3397 MAX_COST is the total allowed cost for the expanded RTL. */
3399 static rtx
3400 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3401 rtx target, int unsignedp, int max_cost)
3403 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3404 unsigned HOST_WIDE_INT cnst1;
3405 int extra_cost;
3406 bool sign_adjust = false;
3407 enum mult_variant variant;
3408 struct algorithm alg;
3409 rtx tem;
3411 /* We can't support modes wider than HOST_BITS_PER_INT. */
3412 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3414 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3416 /* We can't optimize modes wider than BITS_PER_WORD.
3417 ??? We might be able to perform double-word arithmetic if
3418 mode == word_mode, however all the cost calculations in
3419 synth_mult etc. assume single-word operations. */
3420 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3421 return expand_mult_highpart_optab (mode, op0, op1, target,
3422 unsignedp, max_cost);
3424 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3426 /* Check whether we try to multiply by a negative constant. */
3427 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3429 sign_adjust = true;
3430 extra_cost += add_cost[mode];
3433 /* See whether shift/add multiplication is cheap enough. */
3434 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3435 max_cost - extra_cost))
3437 /* See whether the specialized multiplication optabs are
3438 cheaper than the shift/add version. */
3439 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3440 alg.cost.cost + extra_cost);
3441 if (tem)
3442 return tem;
3444 tem = convert_to_mode (wider_mode, op0, unsignedp);
3445 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3446 tem = extract_high_half (mode, tem);
3448 /* Adjust result for signedness. */
3449 if (sign_adjust)
3450 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3452 return tem;
3454 return expand_mult_highpart_optab (mode, op0, op1, target,
3455 unsignedp, max_cost);
3459 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3461 static rtx
3462 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3464 unsigned HOST_WIDE_INT masklow, maskhigh;
3465 rtx result, temp, shift, label;
3466 int logd;
3468 logd = floor_log2 (d);
3469 result = gen_reg_rtx (mode);
3471 /* Avoid conditional branches when they're expensive. */
3472 if (BRANCH_COST >= 2
3473 && !optimize_size)
3475 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3476 mode, 0, -1);
3477 if (signmask)
3479 signmask = force_reg (mode, signmask);
3480 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3481 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3483 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3484 which instruction sequence to use. If logical right shifts
3485 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3486 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3488 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3489 if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
3490 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3492 temp = expand_binop (mode, xor_optab, op0, signmask,
3493 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3494 temp = expand_binop (mode, sub_optab, temp, signmask,
3495 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3496 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3497 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3498 temp = expand_binop (mode, xor_optab, temp, signmask,
3499 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3500 temp = expand_binop (mode, sub_optab, temp, signmask,
3501 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3503 else
3505 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3506 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3507 signmask = force_reg (mode, signmask);
3509 temp = expand_binop (mode, add_optab, op0, signmask,
3510 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3511 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3512 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3513 temp = expand_binop (mode, sub_optab, temp, signmask,
3514 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3516 return temp;
3520 /* Mask contains the mode's signbit and the significant bits of the
3521 modulus. By including the signbit in the operation, many targets
3522 can avoid an explicit compare operation in the following comparison
3523 against zero. */
3525 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3526 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3528 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3529 maskhigh = -1;
3531 else
3532 maskhigh = (HOST_WIDE_INT) -1
3533 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3535 temp = expand_binop (mode, and_optab, op0,
3536 immed_double_const (masklow, maskhigh, mode),
3537 result, 1, OPTAB_LIB_WIDEN);
3538 if (temp != result)
3539 emit_move_insn (result, temp);
3541 label = gen_label_rtx ();
3542 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3544 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3545 0, OPTAB_LIB_WIDEN);
3546 masklow = (HOST_WIDE_INT) -1 << logd;
3547 maskhigh = -1;
3548 temp = expand_binop (mode, ior_optab, temp,
3549 immed_double_const (masklow, maskhigh, mode),
3550 result, 1, OPTAB_LIB_WIDEN);
3551 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3552 0, OPTAB_LIB_WIDEN);
3553 if (temp != result)
3554 emit_move_insn (result, temp);
3555 emit_label (label);
3556 return result;
3559 /* Expand signed division of OP0 by a power of two D in mode MODE.
3560 This routine is only called for positive values of D. */
3562 static rtx
3563 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3565 rtx temp, label;
3566 tree shift;
3567 int logd;
3569 logd = floor_log2 (d);
3570 shift = build_int_cst (NULL_TREE, logd);
3572 if (d == 2 && BRANCH_COST >= 1)
3574 temp = gen_reg_rtx (mode);
3575 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3576 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3577 0, OPTAB_LIB_WIDEN);
3578 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3581 #ifdef HAVE_conditional_move
3582 if (BRANCH_COST >= 2)
3584 rtx temp2;
3586 /* ??? emit_conditional_move forces a stack adjustment via
3587 compare_from_rtx so, if the sequence is discarded, it will
3588 be lost. Do it now instead. */
3589 do_pending_stack_adjust ();
3591 start_sequence ();
3592 temp2 = copy_to_mode_reg (mode, op0);
3593 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3594 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3595 temp = force_reg (mode, temp);
3597 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3598 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3599 mode, temp, temp2, mode, 0);
3600 if (temp2)
3602 rtx seq = get_insns ();
3603 end_sequence ();
3604 emit_insn (seq);
3605 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3607 end_sequence ();
3609 #endif
3611 if (BRANCH_COST >= 2)
3613 int ushift = GET_MODE_BITSIZE (mode) - logd;
3615 temp = gen_reg_rtx (mode);
3616 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3617 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3618 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3619 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3620 else
3621 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3622 build_int_cst (NULL_TREE, ushift),
3623 NULL_RTX, 1);
3624 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3625 0, OPTAB_LIB_WIDEN);
3626 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3629 label = gen_label_rtx ();
3630 temp = copy_to_mode_reg (mode, op0);
3631 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3632 expand_inc (temp, GEN_INT (d - 1));
3633 emit_label (label);
3634 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3637 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3638 if that is convenient, and returning where the result is.
3639 You may request either the quotient or the remainder as the result;
3640 specify REM_FLAG nonzero to get the remainder.
3642 CODE is the expression code for which kind of division this is;
3643 it controls how rounding is done. MODE is the machine mode to use.
3644 UNSIGNEDP nonzero means do unsigned division. */
3646 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3647 and then correct it by or'ing in missing high bits
3648 if result of ANDI is nonzero.
3649 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3650 This could optimize to a bfexts instruction.
3651 But C doesn't use these operations, so their optimizations are
3652 left for later. */
3653 /* ??? For modulo, we don't actually need the highpart of the first product,
3654 the low part will do nicely. And for small divisors, the second multiply
3655 can also be a low-part only multiply or even be completely left out.
3656 E.g. to calculate the remainder of a division by 3 with a 32 bit
3657 multiply, multiply with 0x55555556 and extract the upper two bits;
3658 the result is exact for inputs up to 0x1fffffff.
3659 The input range can be reduced by using cross-sum rules.
3660 For odd divisors >= 3, the following table gives right shift counts
3661 so that if a number is shifted by an integer multiple of the given
3662 amount, the remainder stays the same:
3663 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3664 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3665 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3666 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3667 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3669 Cross-sum rules for even numbers can be derived by leaving as many bits
3670 to the right alone as the divisor has zeros to the right.
3671 E.g. if x is an unsigned 32 bit number:
3672 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3676 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3677 rtx op0, rtx op1, rtx target, int unsignedp)
3679 enum machine_mode compute_mode;
3680 rtx tquotient;
3681 rtx quotient = 0, remainder = 0;
3682 rtx last;
3683 int size;
3684 rtx insn, set;
3685 optab optab1, optab2;
3686 int op1_is_constant, op1_is_pow2 = 0;
3687 int max_cost, extra_cost;
3688 static HOST_WIDE_INT last_div_const = 0;
3689 static HOST_WIDE_INT ext_op1;
3691 op1_is_constant = GET_CODE (op1) == CONST_INT;
3692 if (op1_is_constant)
3694 ext_op1 = INTVAL (op1);
3695 if (unsignedp)
3696 ext_op1 &= GET_MODE_MASK (mode);
3697 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3698 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3702 This is the structure of expand_divmod:
3704 First comes code to fix up the operands so we can perform the operations
3705 correctly and efficiently.
3707 Second comes a switch statement with code specific for each rounding mode.
3708 For some special operands this code emits all RTL for the desired
3709 operation, for other cases, it generates only a quotient and stores it in
3710 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3711 to indicate that it has not done anything.
3713 Last comes code that finishes the operation. If QUOTIENT is set and
3714 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3715 QUOTIENT is not set, it is computed using trunc rounding.
3717 We try to generate special code for division and remainder when OP1 is a
3718 constant. If |OP1| = 2**n we can use shifts and some other fast
3719 operations. For other values of OP1, we compute a carefully selected
3720 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3721 by m.
3723 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3724 half of the product. Different strategies for generating the product are
3725 implemented in expand_mult_highpart.
3727 If what we actually want is the remainder, we generate that by another
3728 by-constant multiplication and a subtraction. */
3730 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3731 code below will malfunction if we are, so check here and handle
3732 the special case if so. */
3733 if (op1 == const1_rtx)
3734 return rem_flag ? const0_rtx : op0;
3736 /* When dividing by -1, we could get an overflow.
3737 negv_optab can handle overflows. */
3738 if (! unsignedp && op1 == constm1_rtx)
3740 if (rem_flag)
3741 return const0_rtx;
3742 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3743 ? negv_optab : neg_optab, op0, target, 0);
3746 if (target
3747 /* Don't use the function value register as a target
3748 since we have to read it as well as write it,
3749 and function-inlining gets confused by this. */
3750 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3751 /* Don't clobber an operand while doing a multi-step calculation. */
3752 || ((rem_flag || op1_is_constant)
3753 && (reg_mentioned_p (target, op0)
3754 || (MEM_P (op0) && MEM_P (target))))
3755 || reg_mentioned_p (target, op1)
3756 || (MEM_P (op1) && MEM_P (target))))
3757 target = 0;
3759 /* Get the mode in which to perform this computation. Normally it will
3760 be MODE, but sometimes we can't do the desired operation in MODE.
3761 If so, pick a wider mode in which we can do the operation. Convert
3762 to that mode at the start to avoid repeated conversions.
3764 First see what operations we need. These depend on the expression
3765 we are evaluating. (We assume that divxx3 insns exist under the
3766 same conditions that modxx3 insns and that these insns don't normally
3767 fail. If these assumptions are not correct, we may generate less
3768 efficient code in some cases.)
3770 Then see if we find a mode in which we can open-code that operation
3771 (either a division, modulus, or shift). Finally, check for the smallest
3772 mode for which we can do the operation with a library call. */
3774 /* We might want to refine this now that we have division-by-constant
3775 optimization. Since expand_mult_highpart tries so many variants, it is
3776 not straightforward to generalize this. Maybe we should make an array
3777 of possible modes in init_expmed? Save this for GCC 2.7. */
3779 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3780 ? (unsignedp ? lshr_optab : ashr_optab)
3781 : (unsignedp ? udiv_optab : sdiv_optab));
3782 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3783 ? optab1
3784 : (unsignedp ? udivmod_optab : sdivmod_optab));
3786 for (compute_mode = mode; compute_mode != VOIDmode;
3787 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3788 if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
3789 || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
3790 break;
3792 if (compute_mode == VOIDmode)
3793 for (compute_mode = mode; compute_mode != VOIDmode;
3794 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3795 if (optab1->handlers[compute_mode].libfunc
3796 || optab2->handlers[compute_mode].libfunc)
3797 break;
3799 /* If we still couldn't find a mode, use MODE, but we'll probably abort
3800 in expand_binop. */
3801 if (compute_mode == VOIDmode)
3802 compute_mode = mode;
3804 if (target && GET_MODE (target) == compute_mode)
3805 tquotient = target;
3806 else
3807 tquotient = gen_reg_rtx (compute_mode);
3809 size = GET_MODE_BITSIZE (compute_mode);
3810 #if 0
3811 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3812 (mode), and thereby get better code when OP1 is a constant. Do that
3813 later. It will require going over all usages of SIZE below. */
3814 size = GET_MODE_BITSIZE (mode);
3815 #endif
3817 /* Only deduct something for a REM if the last divide done was
3818 for a different constant. Then set the constant of the last
3819 divide. */
3820 max_cost = div_cost[compute_mode]
3821 - (rem_flag && ! (last_div_const != 0 && op1_is_constant
3822 && INTVAL (op1) == last_div_const)
3823 ? mul_cost[compute_mode] + add_cost[compute_mode]
3824 : 0);
3826 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3828 /* Now convert to the best mode to use. */
3829 if (compute_mode != mode)
3831 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3832 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3834 /* convert_modes may have placed op1 into a register, so we
3835 must recompute the following. */
3836 op1_is_constant = GET_CODE (op1) == CONST_INT;
3837 op1_is_pow2 = (op1_is_constant
3838 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3839 || (! unsignedp
3840 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3843 /* If one of the operands is a volatile MEM, copy it into a register. */
3845 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3846 op0 = force_reg (compute_mode, op0);
3847 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3848 op1 = force_reg (compute_mode, op1);
3850 /* If we need the remainder or if OP1 is constant, we need to
3851 put OP0 in a register in case it has any queued subexpressions. */
3852 if (rem_flag || op1_is_constant)
3853 op0 = force_reg (compute_mode, op0);
3855 last = get_last_insn ();
3857 /* Promote floor rounding to trunc rounding for unsigned operations. */
3858 if (unsignedp)
3860 if (code == FLOOR_DIV_EXPR)
3861 code = TRUNC_DIV_EXPR;
3862 if (code == FLOOR_MOD_EXPR)
3863 code = TRUNC_MOD_EXPR;
3864 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3865 code = TRUNC_DIV_EXPR;
3868 if (op1 != const0_rtx)
3869 switch (code)
3871 case TRUNC_MOD_EXPR:
3872 case TRUNC_DIV_EXPR:
3873 if (op1_is_constant)
3875 if (unsignedp)
3877 unsigned HOST_WIDE_INT mh;
3878 int pre_shift, post_shift;
3879 int dummy;
3880 rtx ml;
3881 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3882 & GET_MODE_MASK (compute_mode));
3884 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3886 pre_shift = floor_log2 (d);
3887 if (rem_flag)
3889 remainder
3890 = expand_binop (compute_mode, and_optab, op0,
3891 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3892 remainder, 1,
3893 OPTAB_LIB_WIDEN);
3894 if (remainder)
3895 return gen_lowpart (mode, remainder);
3897 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3898 build_int_cst (NULL_TREE,
3899 pre_shift),
3900 tquotient, 1);
3902 else if (size <= HOST_BITS_PER_WIDE_INT)
3904 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3906 /* Most significant bit of divisor is set; emit an scc
3907 insn. */
3908 quotient = emit_store_flag (tquotient, GEU, op0, op1,
3909 compute_mode, 1, 1);
3910 if (quotient == 0)
3911 goto fail1;
3913 else
3915 /* Find a suitable multiplier and right shift count
3916 instead of multiplying with D. */
3918 mh = choose_multiplier (d, size, size,
3919 &ml, &post_shift, &dummy);
3921 /* If the suggested multiplier is more than SIZE bits,
3922 we can do better for even divisors, using an
3923 initial right shift. */
3924 if (mh != 0 && (d & 1) == 0)
3926 pre_shift = floor_log2 (d & -d);
3927 mh = choose_multiplier (d >> pre_shift, size,
3928 size - pre_shift,
3929 &ml, &post_shift, &dummy);
3930 gcc_assert (!mh);
3932 else
3933 pre_shift = 0;
3935 if (mh != 0)
3937 rtx t1, t2, t3, t4;
3939 if (post_shift - 1 >= BITS_PER_WORD)
3940 goto fail1;
3942 extra_cost
3943 = (shift_cost[compute_mode][post_shift - 1]
3944 + shift_cost[compute_mode][1]
3945 + 2 * add_cost[compute_mode]);
3946 t1 = expand_mult_highpart (compute_mode, op0, ml,
3947 NULL_RTX, 1,
3948 max_cost - extra_cost);
3949 if (t1 == 0)
3950 goto fail1;
3951 t2 = force_operand (gen_rtx_MINUS (compute_mode,
3952 op0, t1),
3953 NULL_RTX);
3954 t3 = expand_shift
3955 (RSHIFT_EXPR, compute_mode, t2,
3956 build_int_cst (NULL_TREE, 1),
3957 NULL_RTX,1);
3958 t4 = force_operand (gen_rtx_PLUS (compute_mode,
3959 t1, t3),
3960 NULL_RTX);
3961 quotient = expand_shift
3962 (RSHIFT_EXPR, compute_mode, t4,
3963 build_int_cst (NULL_TREE, post_shift - 1),
3964 tquotient, 1);
3966 else
3968 rtx t1, t2;
3970 if (pre_shift >= BITS_PER_WORD
3971 || post_shift >= BITS_PER_WORD)
3972 goto fail1;
3974 t1 = expand_shift
3975 (RSHIFT_EXPR, compute_mode, op0,
3976 build_int_cst (NULL_TREE, pre_shift),
3977 NULL_RTX, 1);
3978 extra_cost
3979 = (shift_cost[compute_mode][pre_shift]
3980 + shift_cost[compute_mode][post_shift]);
3981 t2 = expand_mult_highpart (compute_mode, t1, ml,
3982 NULL_RTX, 1,
3983 max_cost - extra_cost);
3984 if (t2 == 0)
3985 goto fail1;
3986 quotient = expand_shift
3987 (RSHIFT_EXPR, compute_mode, t2,
3988 build_int_cst (NULL_TREE, post_shift),
3989 tquotient, 1);
3993 else /* Too wide mode to use tricky code */
3994 break;
3996 insn = get_last_insn ();
3997 if (insn != last
3998 && (set = single_set (insn)) != 0
3999 && SET_DEST (set) == quotient)
4000 set_unique_reg_note (insn,
4001 REG_EQUAL,
4002 gen_rtx_UDIV (compute_mode, op0, op1));
4004 else /* TRUNC_DIV, signed */
4006 unsigned HOST_WIDE_INT ml;
4007 int lgup, post_shift;
4008 rtx mlr;
4009 HOST_WIDE_INT d = INTVAL (op1);
4010 unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
4012 /* n rem d = n rem -d */
4013 if (rem_flag && d < 0)
4015 d = abs_d;
4016 op1 = gen_int_mode (abs_d, compute_mode);
4019 if (d == 1)
4020 quotient = op0;
4021 else if (d == -1)
4022 quotient = expand_unop (compute_mode, neg_optab, op0,
4023 tquotient, 0);
4024 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4026 /* This case is not handled correctly below. */
4027 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4028 compute_mode, 1, 1);
4029 if (quotient == 0)
4030 goto fail1;
4032 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4033 && (rem_flag ? smod_pow2_cheap[compute_mode]
4034 : sdiv_pow2_cheap[compute_mode])
4035 /* We assume that cheap metric is true if the
4036 optab has an expander for this mode. */
4037 && (((rem_flag ? smod_optab : sdiv_optab)
4038 ->handlers[compute_mode].insn_code
4039 != CODE_FOR_nothing)
4040 || (sdivmod_optab->handlers[compute_mode]
4041 .insn_code != CODE_FOR_nothing)))
4043 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4045 if (rem_flag)
4047 remainder = expand_smod_pow2 (compute_mode, op0, d);
4048 if (remainder)
4049 return gen_lowpart (mode, remainder);
4052 if (sdiv_pow2_cheap[compute_mode]
4053 && ((sdiv_optab->handlers[compute_mode].insn_code
4054 != CODE_FOR_nothing)
4055 || (sdivmod_optab->handlers[compute_mode].insn_code
4056 != CODE_FOR_nothing)))
4057 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4058 compute_mode, op0,
4059 gen_int_mode (abs_d,
4060 compute_mode),
4061 NULL_RTX, 0);
4062 else
4063 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4065 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4066 negate the quotient. */
4067 if (d < 0)
4069 insn = get_last_insn ();
4070 if (insn != last
4071 && (set = single_set (insn)) != 0
4072 && SET_DEST (set) == quotient
4073 && abs_d < ((unsigned HOST_WIDE_INT) 1
4074 << (HOST_BITS_PER_WIDE_INT - 1)))
4075 set_unique_reg_note (insn,
4076 REG_EQUAL,
4077 gen_rtx_DIV (compute_mode,
4078 op0,
4079 GEN_INT
4080 (trunc_int_for_mode
4081 (abs_d,
4082 compute_mode))));
4084 quotient = expand_unop (compute_mode, neg_optab,
4085 quotient, quotient, 0);
4088 else if (size <= HOST_BITS_PER_WIDE_INT)
4090 choose_multiplier (abs_d, size, size - 1,
4091 &mlr, &post_shift, &lgup);
4092 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4093 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4095 rtx t1, t2, t3;
4097 if (post_shift >= BITS_PER_WORD
4098 || size - 1 >= BITS_PER_WORD)
4099 goto fail1;
4101 extra_cost = (shift_cost[compute_mode][post_shift]
4102 + shift_cost[compute_mode][size - 1]
4103 + add_cost[compute_mode]);
4104 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4105 NULL_RTX, 0,
4106 max_cost - extra_cost);
4107 if (t1 == 0)
4108 goto fail1;
4109 t2 = expand_shift
4110 (RSHIFT_EXPR, compute_mode, t1,
4111 build_int_cst (NULL_TREE, post_shift),
4112 NULL_RTX, 0);
4113 t3 = expand_shift
4114 (RSHIFT_EXPR, compute_mode, op0,
4115 build_int_cst (NULL_TREE, size - 1),
4116 NULL_RTX, 0);
4117 if (d < 0)
4118 quotient
4119 = force_operand (gen_rtx_MINUS (compute_mode,
4120 t3, t2),
4121 tquotient);
4122 else
4123 quotient
4124 = force_operand (gen_rtx_MINUS (compute_mode,
4125 t2, t3),
4126 tquotient);
4128 else
4130 rtx t1, t2, t3, t4;
4132 if (post_shift >= BITS_PER_WORD
4133 || size - 1 >= BITS_PER_WORD)
4134 goto fail1;
4136 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4137 mlr = gen_int_mode (ml, compute_mode);
4138 extra_cost = (shift_cost[compute_mode][post_shift]
4139 + shift_cost[compute_mode][size - 1]
4140 + 2 * add_cost[compute_mode]);
4141 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4142 NULL_RTX, 0,
4143 max_cost - extra_cost);
4144 if (t1 == 0)
4145 goto fail1;
4146 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4147 t1, op0),
4148 NULL_RTX);
4149 t3 = expand_shift
4150 (RSHIFT_EXPR, compute_mode, t2,
4151 build_int_cst (NULL_TREE, post_shift),
4152 NULL_RTX, 0);
4153 t4 = expand_shift
4154 (RSHIFT_EXPR, compute_mode, op0,
4155 build_int_cst (NULL_TREE, size - 1),
4156 NULL_RTX, 0);
4157 if (d < 0)
4158 quotient
4159 = force_operand (gen_rtx_MINUS (compute_mode,
4160 t4, t3),
4161 tquotient);
4162 else
4163 quotient
4164 = force_operand (gen_rtx_MINUS (compute_mode,
4165 t3, t4),
4166 tquotient);
4169 else /* Too wide mode to use tricky code */
4170 break;
4172 insn = get_last_insn ();
4173 if (insn != last
4174 && (set = single_set (insn)) != 0
4175 && SET_DEST (set) == quotient)
4176 set_unique_reg_note (insn,
4177 REG_EQUAL,
4178 gen_rtx_DIV (compute_mode, op0, op1));
4180 break;
4182 fail1:
4183 delete_insns_since (last);
4184 break;
4186 case FLOOR_DIV_EXPR:
4187 case FLOOR_MOD_EXPR:
4188 /* We will come here only for signed operations. */
4189 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4191 unsigned HOST_WIDE_INT mh;
4192 int pre_shift, lgup, post_shift;
4193 HOST_WIDE_INT d = INTVAL (op1);
4194 rtx ml;
4196 if (d > 0)
4198 /* We could just as easily deal with negative constants here,
4199 but it does not seem worth the trouble for GCC 2.6. */
4200 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4202 pre_shift = floor_log2 (d);
4203 if (rem_flag)
4205 remainder = expand_binop (compute_mode, and_optab, op0,
4206 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4207 remainder, 0, OPTAB_LIB_WIDEN);
4208 if (remainder)
4209 return gen_lowpart (mode, remainder);
4211 quotient = expand_shift
4212 (RSHIFT_EXPR, compute_mode, op0,
4213 build_int_cst (NULL_TREE, pre_shift),
4214 tquotient, 0);
4216 else
4218 rtx t1, t2, t3, t4;
4220 mh = choose_multiplier (d, size, size - 1,
4221 &ml, &post_shift, &lgup);
4222 gcc_assert (!mh);
4224 if (post_shift < BITS_PER_WORD
4225 && size - 1 < BITS_PER_WORD)
4227 t1 = expand_shift
4228 (RSHIFT_EXPR, compute_mode, op0,
4229 build_int_cst (NULL_TREE, size - 1),
4230 NULL_RTX, 0);
4231 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4232 NULL_RTX, 0, OPTAB_WIDEN);
4233 extra_cost = (shift_cost[compute_mode][post_shift]
4234 + shift_cost[compute_mode][size - 1]
4235 + 2 * add_cost[compute_mode]);
4236 t3 = expand_mult_highpart (compute_mode, t2, ml,
4237 NULL_RTX, 1,
4238 max_cost - extra_cost);
4239 if (t3 != 0)
4241 t4 = expand_shift
4242 (RSHIFT_EXPR, compute_mode, t3,
4243 build_int_cst (NULL_TREE, post_shift),
4244 NULL_RTX, 1);
4245 quotient = expand_binop (compute_mode, xor_optab,
4246 t4, t1, tquotient, 0,
4247 OPTAB_WIDEN);
4252 else
4254 rtx nsign, t1, t2, t3, t4;
4255 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4256 op0, constm1_rtx), NULL_RTX);
4257 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4258 0, OPTAB_WIDEN);
4259 nsign = expand_shift
4260 (RSHIFT_EXPR, compute_mode, t2,
4261 build_int_cst (NULL_TREE, size - 1),
4262 NULL_RTX, 0);
4263 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4264 NULL_RTX);
4265 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4266 NULL_RTX, 0);
4267 if (t4)
4269 rtx t5;
4270 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4271 NULL_RTX, 0);
4272 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4273 t4, t5),
4274 tquotient);
4279 if (quotient != 0)
4280 break;
4281 delete_insns_since (last);
4283 /* Try using an instruction that produces both the quotient and
4284 remainder, using truncation. We can easily compensate the quotient
4285 or remainder to get floor rounding, once we have the remainder.
4286 Notice that we compute also the final remainder value here,
4287 and return the result right away. */
4288 if (target == 0 || GET_MODE (target) != compute_mode)
4289 target = gen_reg_rtx (compute_mode);
4291 if (rem_flag)
4293 remainder
4294 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4295 quotient = gen_reg_rtx (compute_mode);
4297 else
4299 quotient
4300 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4301 remainder = gen_reg_rtx (compute_mode);
4304 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4305 quotient, remainder, 0))
4307 /* This could be computed with a branch-less sequence.
4308 Save that for later. */
4309 rtx tem;
4310 rtx label = gen_label_rtx ();
4311 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4312 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4313 NULL_RTX, 0, OPTAB_WIDEN);
4314 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4315 expand_dec (quotient, const1_rtx);
4316 expand_inc (remainder, op1);
4317 emit_label (label);
4318 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4321 /* No luck with division elimination or divmod. Have to do it
4322 by conditionally adjusting op0 *and* the result. */
4324 rtx label1, label2, label3, label4, label5;
4325 rtx adjusted_op0;
4326 rtx tem;
4328 quotient = gen_reg_rtx (compute_mode);
4329 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4330 label1 = gen_label_rtx ();
4331 label2 = gen_label_rtx ();
4332 label3 = gen_label_rtx ();
4333 label4 = gen_label_rtx ();
4334 label5 = gen_label_rtx ();
4335 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4336 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4337 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4338 quotient, 0, OPTAB_LIB_WIDEN);
4339 if (tem != quotient)
4340 emit_move_insn (quotient, tem);
4341 emit_jump_insn (gen_jump (label5));
4342 emit_barrier ();
4343 emit_label (label1);
4344 expand_inc (adjusted_op0, const1_rtx);
4345 emit_jump_insn (gen_jump (label4));
4346 emit_barrier ();
4347 emit_label (label2);
4348 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4349 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4350 quotient, 0, OPTAB_LIB_WIDEN);
4351 if (tem != quotient)
4352 emit_move_insn (quotient, tem);
4353 emit_jump_insn (gen_jump (label5));
4354 emit_barrier ();
4355 emit_label (label3);
4356 expand_dec (adjusted_op0, const1_rtx);
4357 emit_label (label4);
4358 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4359 quotient, 0, OPTAB_LIB_WIDEN);
4360 if (tem != quotient)
4361 emit_move_insn (quotient, tem);
4362 expand_dec (quotient, const1_rtx);
4363 emit_label (label5);
4365 break;
4367 case CEIL_DIV_EXPR:
4368 case CEIL_MOD_EXPR:
4369 if (unsignedp)
4371 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4373 rtx t1, t2, t3;
4374 unsigned HOST_WIDE_INT d = INTVAL (op1);
4375 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4376 build_int_cst (NULL_TREE, floor_log2 (d)),
4377 tquotient, 1);
4378 t2 = expand_binop (compute_mode, and_optab, op0,
4379 GEN_INT (d - 1),
4380 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4381 t3 = gen_reg_rtx (compute_mode);
4382 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4383 compute_mode, 1, 1);
4384 if (t3 == 0)
4386 rtx lab;
4387 lab = gen_label_rtx ();
4388 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4389 expand_inc (t1, const1_rtx);
4390 emit_label (lab);
4391 quotient = t1;
4393 else
4394 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4395 t1, t3),
4396 tquotient);
4397 break;
4400 /* Try using an instruction that produces both the quotient and
4401 remainder, using truncation. We can easily compensate the
4402 quotient or remainder to get ceiling rounding, once we have the
4403 remainder. Notice that we compute also the final remainder
4404 value here, and return the result right away. */
4405 if (target == 0 || GET_MODE (target) != compute_mode)
4406 target = gen_reg_rtx (compute_mode);
4408 if (rem_flag)
4410 remainder = (REG_P (target)
4411 ? target : gen_reg_rtx (compute_mode));
4412 quotient = gen_reg_rtx (compute_mode);
4414 else
4416 quotient = (REG_P (target)
4417 ? target : gen_reg_rtx (compute_mode));
4418 remainder = gen_reg_rtx (compute_mode);
4421 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4422 remainder, 1))
4424 /* This could be computed with a branch-less sequence.
4425 Save that for later. */
4426 rtx label = gen_label_rtx ();
4427 do_cmp_and_jump (remainder, const0_rtx, EQ,
4428 compute_mode, label);
4429 expand_inc (quotient, const1_rtx);
4430 expand_dec (remainder, op1);
4431 emit_label (label);
4432 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4435 /* No luck with division elimination or divmod. Have to do it
4436 by conditionally adjusting op0 *and* the result. */
4438 rtx label1, label2;
4439 rtx adjusted_op0, tem;
4441 quotient = gen_reg_rtx (compute_mode);
4442 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4443 label1 = gen_label_rtx ();
4444 label2 = gen_label_rtx ();
4445 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4446 compute_mode, label1);
4447 emit_move_insn (quotient, const0_rtx);
4448 emit_jump_insn (gen_jump (label2));
4449 emit_barrier ();
4450 emit_label (label1);
4451 expand_dec (adjusted_op0, const1_rtx);
4452 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4453 quotient, 1, OPTAB_LIB_WIDEN);
4454 if (tem != quotient)
4455 emit_move_insn (quotient, tem);
4456 expand_inc (quotient, const1_rtx);
4457 emit_label (label2);
4460 else /* signed */
4462 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4463 && INTVAL (op1) >= 0)
4465 /* This is extremely similar to the code for the unsigned case
4466 above. For 2.7 we should merge these variants, but for
4467 2.6.1 I don't want to touch the code for unsigned since that
4468 get used in C. The signed case will only be used by other
4469 languages (Ada). */
4471 rtx t1, t2, t3;
4472 unsigned HOST_WIDE_INT d = INTVAL (op1);
4473 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4474 build_int_cst (NULL_TREE, floor_log2 (d)),
4475 tquotient, 0);
4476 t2 = expand_binop (compute_mode, and_optab, op0,
4477 GEN_INT (d - 1),
4478 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4479 t3 = gen_reg_rtx (compute_mode);
4480 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4481 compute_mode, 1, 1);
4482 if (t3 == 0)
4484 rtx lab;
4485 lab = gen_label_rtx ();
4486 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4487 expand_inc (t1, const1_rtx);
4488 emit_label (lab);
4489 quotient = t1;
4491 else
4492 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4493 t1, t3),
4494 tquotient);
4495 break;
4498 /* Try using an instruction that produces both the quotient and
4499 remainder, using truncation. We can easily compensate the
4500 quotient or remainder to get ceiling rounding, once we have the
4501 remainder. Notice that we compute also the final remainder
4502 value here, and return the result right away. */
4503 if (target == 0 || GET_MODE (target) != compute_mode)
4504 target = gen_reg_rtx (compute_mode);
4505 if (rem_flag)
4507 remainder= (REG_P (target)
4508 ? target : gen_reg_rtx (compute_mode));
4509 quotient = gen_reg_rtx (compute_mode);
4511 else
4513 quotient = (REG_P (target)
4514 ? target : gen_reg_rtx (compute_mode));
4515 remainder = gen_reg_rtx (compute_mode);
4518 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4519 remainder, 0))
4521 /* This could be computed with a branch-less sequence.
4522 Save that for later. */
4523 rtx tem;
4524 rtx label = gen_label_rtx ();
4525 do_cmp_and_jump (remainder, const0_rtx, EQ,
4526 compute_mode, label);
4527 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4528 NULL_RTX, 0, OPTAB_WIDEN);
4529 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4530 expand_inc (quotient, const1_rtx);
4531 expand_dec (remainder, op1);
4532 emit_label (label);
4533 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4536 /* No luck with division elimination or divmod. Have to do it
4537 by conditionally adjusting op0 *and* the result. */
4539 rtx label1, label2, label3, label4, label5;
4540 rtx adjusted_op0;
4541 rtx tem;
4543 quotient = gen_reg_rtx (compute_mode);
4544 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4545 label1 = gen_label_rtx ();
4546 label2 = gen_label_rtx ();
4547 label3 = gen_label_rtx ();
4548 label4 = gen_label_rtx ();
4549 label5 = gen_label_rtx ();
4550 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4551 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4552 compute_mode, label1);
4553 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4554 quotient, 0, OPTAB_LIB_WIDEN);
4555 if (tem != quotient)
4556 emit_move_insn (quotient, tem);
4557 emit_jump_insn (gen_jump (label5));
4558 emit_barrier ();
4559 emit_label (label1);
4560 expand_dec (adjusted_op0, const1_rtx);
4561 emit_jump_insn (gen_jump (label4));
4562 emit_barrier ();
4563 emit_label (label2);
4564 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4565 compute_mode, label3);
4566 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4567 quotient, 0, OPTAB_LIB_WIDEN);
4568 if (tem != quotient)
4569 emit_move_insn (quotient, tem);
4570 emit_jump_insn (gen_jump (label5));
4571 emit_barrier ();
4572 emit_label (label3);
4573 expand_inc (adjusted_op0, const1_rtx);
4574 emit_label (label4);
4575 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4576 quotient, 0, OPTAB_LIB_WIDEN);
4577 if (tem != quotient)
4578 emit_move_insn (quotient, tem);
4579 expand_inc (quotient, const1_rtx);
4580 emit_label (label5);
4583 break;
4585 case EXACT_DIV_EXPR:
4586 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4588 HOST_WIDE_INT d = INTVAL (op1);
4589 unsigned HOST_WIDE_INT ml;
4590 int pre_shift;
4591 rtx t1;
4593 pre_shift = floor_log2 (d & -d);
4594 ml = invert_mod2n (d >> pre_shift, size);
4595 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4596 build_int_cst (NULL_TREE, pre_shift),
4597 NULL_RTX, unsignedp);
4598 quotient = expand_mult (compute_mode, t1,
4599 gen_int_mode (ml, compute_mode),
4600 NULL_RTX, 1);
4602 insn = get_last_insn ();
4603 set_unique_reg_note (insn,
4604 REG_EQUAL,
4605 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4606 compute_mode,
4607 op0, op1));
4609 break;
4611 case ROUND_DIV_EXPR:
4612 case ROUND_MOD_EXPR:
4613 if (unsignedp)
4615 rtx tem;
4616 rtx label;
4617 label = gen_label_rtx ();
4618 quotient = gen_reg_rtx (compute_mode);
4619 remainder = gen_reg_rtx (compute_mode);
4620 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4622 rtx tem;
4623 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4624 quotient, 1, OPTAB_LIB_WIDEN);
4625 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4626 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4627 remainder, 1, OPTAB_LIB_WIDEN);
4629 tem = plus_constant (op1, -1);
4630 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4631 build_int_cst (NULL_TREE, 1),
4632 NULL_RTX, 1);
4633 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4634 expand_inc (quotient, const1_rtx);
4635 expand_dec (remainder, op1);
4636 emit_label (label);
4638 else
4640 rtx abs_rem, abs_op1, tem, mask;
4641 rtx label;
4642 label = gen_label_rtx ();
4643 quotient = gen_reg_rtx (compute_mode);
4644 remainder = gen_reg_rtx (compute_mode);
4645 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4647 rtx tem;
4648 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4649 quotient, 0, OPTAB_LIB_WIDEN);
4650 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4651 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4652 remainder, 0, OPTAB_LIB_WIDEN);
4654 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4655 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4656 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4657 build_int_cst (NULL_TREE, 1),
4658 NULL_RTX, 1);
4659 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4660 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4661 NULL_RTX, 0, OPTAB_WIDEN);
4662 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4663 build_int_cst (NULL_TREE, size - 1),
4664 NULL_RTX, 0);
4665 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4666 NULL_RTX, 0, OPTAB_WIDEN);
4667 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4668 NULL_RTX, 0, OPTAB_WIDEN);
4669 expand_inc (quotient, tem);
4670 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4671 NULL_RTX, 0, OPTAB_WIDEN);
4672 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4673 NULL_RTX, 0, OPTAB_WIDEN);
4674 expand_dec (remainder, tem);
4675 emit_label (label);
4677 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4679 default:
4680 gcc_unreachable ();
4683 if (quotient == 0)
4685 if (target && GET_MODE (target) != compute_mode)
4686 target = 0;
4688 if (rem_flag)
4690 /* Try to produce the remainder without producing the quotient.
4691 If we seem to have a divmod pattern that does not require widening,
4692 don't try widening here. We should really have a WIDEN argument
4693 to expand_twoval_binop, since what we'd really like to do here is
4694 1) try a mod insn in compute_mode
4695 2) try a divmod insn in compute_mode
4696 3) try a div insn in compute_mode and multiply-subtract to get
4697 remainder
4698 4) try the same things with widening allowed. */
4699 remainder
4700 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4701 op0, op1, target,
4702 unsignedp,
4703 ((optab2->handlers[compute_mode].insn_code
4704 != CODE_FOR_nothing)
4705 ? OPTAB_DIRECT : OPTAB_WIDEN));
4706 if (remainder == 0)
4708 /* No luck there. Can we do remainder and divide at once
4709 without a library call? */
4710 remainder = gen_reg_rtx (compute_mode);
4711 if (! expand_twoval_binop ((unsignedp
4712 ? udivmod_optab
4713 : sdivmod_optab),
4714 op0, op1,
4715 NULL_RTX, remainder, unsignedp))
4716 remainder = 0;
4719 if (remainder)
4720 return gen_lowpart (mode, remainder);
4723 /* Produce the quotient. Try a quotient insn, but not a library call.
4724 If we have a divmod in this mode, use it in preference to widening
4725 the div (for this test we assume it will not fail). Note that optab2
4726 is set to the one of the two optabs that the call below will use. */
4727 quotient
4728 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4729 op0, op1, rem_flag ? NULL_RTX : target,
4730 unsignedp,
4731 ((optab2->handlers[compute_mode].insn_code
4732 != CODE_FOR_nothing)
4733 ? OPTAB_DIRECT : OPTAB_WIDEN));
4735 if (quotient == 0)
4737 /* No luck there. Try a quotient-and-remainder insn,
4738 keeping the quotient alone. */
4739 quotient = gen_reg_rtx (compute_mode);
4740 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4741 op0, op1,
4742 quotient, NULL_RTX, unsignedp))
4744 quotient = 0;
4745 if (! rem_flag)
4746 /* Still no luck. If we are not computing the remainder,
4747 use a library call for the quotient. */
4748 quotient = sign_expand_binop (compute_mode,
4749 udiv_optab, sdiv_optab,
4750 op0, op1, target,
4751 unsignedp, OPTAB_LIB_WIDEN);
4756 if (rem_flag)
4758 if (target && GET_MODE (target) != compute_mode)
4759 target = 0;
4761 if (quotient == 0)
4763 /* No divide instruction either. Use library for remainder. */
4764 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4765 op0, op1, target,
4766 unsignedp, OPTAB_LIB_WIDEN);
4767 /* No remainder function. Try a quotient-and-remainder
4768 function, keeping the remainder. */
4769 if (!remainder)
4771 remainder = gen_reg_rtx (compute_mode);
4772 if (!expand_twoval_binop_libfunc
4773 (unsignedp ? udivmod_optab : sdivmod_optab,
4774 op0, op1,
4775 NULL_RTX, remainder,
4776 unsignedp ? UMOD : MOD))
4777 remainder = NULL_RTX;
4780 else
4782 /* We divided. Now finish doing X - Y * (X / Y). */
4783 remainder = expand_mult (compute_mode, quotient, op1,
4784 NULL_RTX, unsignedp);
4785 remainder = expand_binop (compute_mode, sub_optab, op0,
4786 remainder, target, unsignedp,
4787 OPTAB_LIB_WIDEN);
4791 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4794 /* Return a tree node with data type TYPE, describing the value of X.
4795 Usually this is an VAR_DECL, if there is no obvious better choice.
4796 X may be an expression, however we only support those expressions
4797 generated by loop.c. */
4799 tree
4800 make_tree (tree type, rtx x)
4802 tree t;
4804 switch (GET_CODE (x))
4806 case CONST_INT:
4808 HOST_WIDE_INT hi = 0;
4810 if (INTVAL (x) < 0
4811 && !(TYPE_UNSIGNED (type)
4812 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4813 < HOST_BITS_PER_WIDE_INT)))
4814 hi = -1;
4816 t = build_int_cst_wide (type, INTVAL (x), hi);
4818 return t;
4821 case CONST_DOUBLE:
4822 if (GET_MODE (x) == VOIDmode)
4823 t = build_int_cst_wide (type,
4824 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4825 else
4827 REAL_VALUE_TYPE d;
4829 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4830 t = build_real (type, d);
4833 return t;
4835 case CONST_VECTOR:
4837 int i, units;
4838 rtx elt;
4839 tree t = NULL_TREE;
4841 units = CONST_VECTOR_NUNITS (x);
4843 /* Build a tree with vector elements. */
4844 for (i = units - 1; i >= 0; --i)
4846 elt = CONST_VECTOR_ELT (x, i);
4847 t = tree_cons (NULL_TREE, make_tree (type, elt), t);
4850 return build_vector (type, t);
4853 case PLUS:
4854 return fold (build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4855 make_tree (type, XEXP (x, 1))));
4857 case MINUS:
4858 return fold (build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4859 make_tree (type, XEXP (x, 1))));
4861 case NEG:
4862 return fold (build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0))));
4864 case MULT:
4865 return fold (build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4866 make_tree (type, XEXP (x, 1))));
4868 case ASHIFT:
4869 return fold (build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4870 make_tree (type, XEXP (x, 1))));
4872 case LSHIFTRT:
4873 t = lang_hooks.types.unsigned_type (type);
4874 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4875 make_tree (t, XEXP (x, 0)),
4876 make_tree (type, XEXP (x, 1))));
4878 case ASHIFTRT:
4879 t = lang_hooks.types.signed_type (type);
4880 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4881 make_tree (t, XEXP (x, 0)),
4882 make_tree (type, XEXP (x, 1))));
4884 case DIV:
4885 if (TREE_CODE (type) != REAL_TYPE)
4886 t = lang_hooks.types.signed_type (type);
4887 else
4888 t = type;
4890 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4891 make_tree (t, XEXP (x, 0)),
4892 make_tree (t, XEXP (x, 1))));
4893 case UDIV:
4894 t = lang_hooks.types.unsigned_type (type);
4895 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4896 make_tree (t, XEXP (x, 0)),
4897 make_tree (t, XEXP (x, 1))));
4899 case SIGN_EXTEND:
4900 case ZERO_EXTEND:
4901 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
4902 GET_CODE (x) == ZERO_EXTEND);
4903 return fold_convert (type, make_tree (t, XEXP (x, 0)));
4905 default:
4906 t = build_decl (VAR_DECL, NULL_TREE, type);
4908 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
4909 ptr_mode. So convert. */
4910 if (POINTER_TYPE_P (type))
4911 x = convert_memory_address (TYPE_MODE (type), x);
4913 /* Note that we do *not* use SET_DECL_RTL here, because we do not
4914 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
4915 t->decl.rtl = x;
4917 return t;
4921 /* Check whether the multiplication X * MULT + ADD overflows.
4922 X, MULT and ADD must be CONST_*.
4923 MODE is the machine mode for the computation.
4924 X and MULT must have mode MODE. ADD may have a different mode.
4925 So can X (defaults to same as MODE).
4926 UNSIGNEDP is nonzero to do unsigned multiplication. */
4928 bool
4929 const_mult_add_overflow_p (rtx x, rtx mult, rtx add,
4930 enum machine_mode mode, int unsignedp)
4932 tree type, mult_type, add_type, result;
4934 type = lang_hooks.types.type_for_mode (mode, unsignedp);
4936 /* In order to get a proper overflow indication from an unsigned
4937 type, we have to pretend that it's a sizetype. */
4938 mult_type = type;
4939 if (unsignedp)
4941 /* FIXME:It would be nice if we could step directly from this
4942 type to its sizetype equivalent. */
4943 mult_type = build_distinct_type_copy (type);
4944 TYPE_IS_SIZETYPE (mult_type) = 1;
4947 add_type = (GET_MODE (add) == VOIDmode ? mult_type
4948 : lang_hooks.types.type_for_mode (GET_MODE (add), unsignedp));
4950 result = fold (build2 (PLUS_EXPR, mult_type,
4951 fold (build2 (MULT_EXPR, mult_type,
4952 make_tree (mult_type, x),
4953 make_tree (mult_type, mult))),
4954 make_tree (add_type, add)));
4956 return TREE_CONSTANT_OVERFLOW (result);
4959 /* Return an rtx representing the value of X * MULT + ADD.
4960 TARGET is a suggestion for where to store the result (an rtx).
4961 MODE is the machine mode for the computation.
4962 X and MULT must have mode MODE. ADD may have a different mode.
4963 So can X (defaults to same as MODE).
4964 UNSIGNEDP is nonzero to do unsigned multiplication.
4965 This may emit insns. */
4968 expand_mult_add (rtx x, rtx target, rtx mult, rtx add, enum machine_mode mode,
4969 int unsignedp)
4971 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
4972 tree add_type = (GET_MODE (add) == VOIDmode
4973 ? type: lang_hooks.types.type_for_mode (GET_MODE (add),
4974 unsignedp));
4975 tree result = fold (build2 (PLUS_EXPR, type,
4976 fold (build2 (MULT_EXPR, type,
4977 make_tree (type, x),
4978 make_tree (type, mult))),
4979 make_tree (add_type, add)));
4981 return expand_expr (result, target, VOIDmode, 0);
4984 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
4985 and returning TARGET.
4987 If TARGET is 0, a pseudo-register or constant is returned. */
4990 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
4992 rtx tem = 0;
4994 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
4995 tem = simplify_binary_operation (AND, mode, op0, op1);
4996 if (tem == 0)
4997 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
4999 if (target == 0)
5000 target = tem;
5001 else if (tem != target)
5002 emit_move_insn (target, tem);
5003 return target;
5006 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5007 and storing in TARGET. Normally return TARGET.
5008 Return 0 if that cannot be done.
5010 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5011 it is VOIDmode, they cannot both be CONST_INT.
5013 UNSIGNEDP is for the case where we have to widen the operands
5014 to perform the operation. It says to use zero-extension.
5016 NORMALIZEP is 1 if we should convert the result to be either zero
5017 or one. Normalize is -1 if we should convert the result to be
5018 either zero or -1. If NORMALIZEP is zero, the result will be left
5019 "raw" out of the scc insn. */
5022 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5023 enum machine_mode mode, int unsignedp, int normalizep)
5025 rtx subtarget;
5026 enum insn_code icode;
5027 enum machine_mode compare_mode;
5028 enum machine_mode target_mode = GET_MODE (target);
5029 rtx tem;
5030 rtx last = get_last_insn ();
5031 rtx pattern, comparison;
5033 if (unsignedp)
5034 code = unsigned_condition (code);
5036 /* If one operand is constant, make it the second one. Only do this
5037 if the other operand is not constant as well. */
5039 if (swap_commutative_operands_p (op0, op1))
5041 tem = op0;
5042 op0 = op1;
5043 op1 = tem;
5044 code = swap_condition (code);
5047 if (mode == VOIDmode)
5048 mode = GET_MODE (op0);
5050 /* For some comparisons with 1 and -1, we can convert this to
5051 comparisons with zero. This will often produce more opportunities for
5052 store-flag insns. */
5054 switch (code)
5056 case LT:
5057 if (op1 == const1_rtx)
5058 op1 = const0_rtx, code = LE;
5059 break;
5060 case LE:
5061 if (op1 == constm1_rtx)
5062 op1 = const0_rtx, code = LT;
5063 break;
5064 case GE:
5065 if (op1 == const1_rtx)
5066 op1 = const0_rtx, code = GT;
5067 break;
5068 case GT:
5069 if (op1 == constm1_rtx)
5070 op1 = const0_rtx, code = GE;
5071 break;
5072 case GEU:
5073 if (op1 == const1_rtx)
5074 op1 = const0_rtx, code = NE;
5075 break;
5076 case LTU:
5077 if (op1 == const1_rtx)
5078 op1 = const0_rtx, code = EQ;
5079 break;
5080 default:
5081 break;
5084 /* If we are comparing a double-word integer with zero or -1, we can
5085 convert the comparison into one involving a single word. */
5086 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5087 && GET_MODE_CLASS (mode) == MODE_INT
5088 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5090 if ((code == EQ || code == NE)
5091 && (op1 == const0_rtx || op1 == constm1_rtx))
5093 rtx op00, op01, op0both;
5095 /* Do a logical OR or AND of the two words and compare the result. */
5096 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5097 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5098 op0both = expand_binop (word_mode,
5099 op1 == const0_rtx ? ior_optab : and_optab,
5100 op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
5102 if (op0both != 0)
5103 return emit_store_flag (target, code, op0both, op1, word_mode,
5104 unsignedp, normalizep);
5106 else if ((code == LT || code == GE) && op1 == const0_rtx)
5108 rtx op0h;
5110 /* If testing the sign bit, can just test on high word. */
5111 op0h = simplify_gen_subreg (word_mode, op0, mode,
5112 subreg_highpart_offset (word_mode, mode));
5113 return emit_store_flag (target, code, op0h, op1, word_mode,
5114 unsignedp, normalizep);
5118 /* From now on, we won't change CODE, so set ICODE now. */
5119 icode = setcc_gen_code[(int) code];
5121 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5122 complement of A (for GE) and shifting the sign bit to the low bit. */
5123 if (op1 == const0_rtx && (code == LT || code == GE)
5124 && GET_MODE_CLASS (mode) == MODE_INT
5125 && (normalizep || STORE_FLAG_VALUE == 1
5126 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5127 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5128 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
5130 subtarget = target;
5132 /* If the result is to be wider than OP0, it is best to convert it
5133 first. If it is to be narrower, it is *incorrect* to convert it
5134 first. */
5135 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5137 op0 = convert_modes (target_mode, mode, op0, 0);
5138 mode = target_mode;
5141 if (target_mode != mode)
5142 subtarget = 0;
5144 if (code == GE)
5145 op0 = expand_unop (mode, one_cmpl_optab, op0,
5146 ((STORE_FLAG_VALUE == 1 || normalizep)
5147 ? 0 : subtarget), 0);
5149 if (STORE_FLAG_VALUE == 1 || normalizep)
5150 /* If we are supposed to produce a 0/1 value, we want to do
5151 a logical shift from the sign bit to the low-order bit; for
5152 a -1/0 value, we do an arithmetic shift. */
5153 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5154 size_int (GET_MODE_BITSIZE (mode) - 1),
5155 subtarget, normalizep != -1);
5157 if (mode != target_mode)
5158 op0 = convert_modes (target_mode, mode, op0, 0);
5160 return op0;
5163 if (icode != CODE_FOR_nothing)
5165 insn_operand_predicate_fn pred;
5167 /* We think we may be able to do this with a scc insn. Emit the
5168 comparison and then the scc insn. */
5170 do_pending_stack_adjust ();
5171 last = get_last_insn ();
5173 comparison
5174 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5175 if (CONSTANT_P (comparison))
5177 switch (GET_CODE (comparison))
5179 case CONST_INT:
5180 if (comparison == const0_rtx)
5181 return const0_rtx;
5182 break;
5184 #ifdef FLOAT_STORE_FLAG_VALUE
5185 case CONST_DOUBLE:
5186 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5187 return const0_rtx;
5188 break;
5189 #endif
5190 default:
5191 gcc_unreachable ();
5194 if (normalizep == 1)
5195 return const1_rtx;
5196 if (normalizep == -1)
5197 return constm1_rtx;
5198 return const_true_rtx;
5201 /* The code of COMPARISON may not match CODE if compare_from_rtx
5202 decided to swap its operands and reverse the original code.
5204 We know that compare_from_rtx returns either a CONST_INT or
5205 a new comparison code, so it is safe to just extract the
5206 code from COMPARISON. */
5207 code = GET_CODE (comparison);
5209 /* Get a reference to the target in the proper mode for this insn. */
5210 compare_mode = insn_data[(int) icode].operand[0].mode;
5211 subtarget = target;
5212 pred = insn_data[(int) icode].operand[0].predicate;
5213 if (optimize || ! (*pred) (subtarget, compare_mode))
5214 subtarget = gen_reg_rtx (compare_mode);
5216 pattern = GEN_FCN (icode) (subtarget);
5217 if (pattern)
5219 emit_insn (pattern);
5221 /* If we are converting to a wider mode, first convert to
5222 TARGET_MODE, then normalize. This produces better combining
5223 opportunities on machines that have a SIGN_EXTRACT when we are
5224 testing a single bit. This mostly benefits the 68k.
5226 If STORE_FLAG_VALUE does not have the sign bit set when
5227 interpreted in COMPARE_MODE, we can do this conversion as
5228 unsigned, which is usually more efficient. */
5229 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
5231 convert_move (target, subtarget,
5232 (GET_MODE_BITSIZE (compare_mode)
5233 <= HOST_BITS_PER_WIDE_INT)
5234 && 0 == (STORE_FLAG_VALUE
5235 & ((HOST_WIDE_INT) 1
5236 << (GET_MODE_BITSIZE (compare_mode) -1))));
5237 op0 = target;
5238 compare_mode = target_mode;
5240 else
5241 op0 = subtarget;
5243 /* If we want to keep subexpressions around, don't reuse our
5244 last target. */
5246 if (optimize)
5247 subtarget = 0;
5249 /* Now normalize to the proper value in COMPARE_MODE. Sometimes
5250 we don't have to do anything. */
5251 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5253 /* STORE_FLAG_VALUE might be the most negative number, so write
5254 the comparison this way to avoid a compiler-time warning. */
5255 else if (- normalizep == STORE_FLAG_VALUE)
5256 op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
5258 /* We don't want to use STORE_FLAG_VALUE < 0 below since this
5259 makes it hard to use a value of just the sign bit due to
5260 ANSI integer constant typing rules. */
5261 else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
5262 && (STORE_FLAG_VALUE
5263 & ((HOST_WIDE_INT) 1
5264 << (GET_MODE_BITSIZE (compare_mode) - 1))))
5265 op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
5266 size_int (GET_MODE_BITSIZE (compare_mode) - 1),
5267 subtarget, normalizep == 1);
5268 else
5270 gcc_assert (STORE_FLAG_VALUE & 1);
5272 op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
5273 if (normalizep == -1)
5274 op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
5277 /* If we were converting to a smaller mode, do the
5278 conversion now. */
5279 if (target_mode != compare_mode)
5281 convert_move (target, op0, 0);
5282 return target;
5284 else
5285 return op0;
5289 delete_insns_since (last);
5291 /* If optimizing, use different pseudo registers for each insn, instead
5292 of reusing the same pseudo. This leads to better CSE, but slows
5293 down the compiler, since there are more pseudos */
5294 subtarget = (!optimize
5295 && (target_mode == mode)) ? target : NULL_RTX;
5297 /* If we reached here, we can't do this with a scc insn. However, there
5298 are some comparisons that can be done directly. For example, if
5299 this is an equality comparison of integers, we can try to exclusive-or
5300 (or subtract) the two operands and use a recursive call to try the
5301 comparison with zero. Don't do any of these cases if branches are
5302 very cheap. */
5304 if (BRANCH_COST > 0
5305 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5306 && op1 != const0_rtx)
5308 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5309 OPTAB_WIDEN);
5311 if (tem == 0)
5312 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5313 OPTAB_WIDEN);
5314 if (tem != 0)
5315 tem = emit_store_flag (target, code, tem, const0_rtx,
5316 mode, unsignedp, normalizep);
5317 if (tem == 0)
5318 delete_insns_since (last);
5319 return tem;
5322 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5323 the constant zero. Reject all other comparisons at this point. Only
5324 do LE and GT if branches are expensive since they are expensive on
5325 2-operand machines. */
5327 if (BRANCH_COST == 0
5328 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5329 || (code != EQ && code != NE
5330 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5331 return 0;
5333 /* See what we need to return. We can only return a 1, -1, or the
5334 sign bit. */
5336 if (normalizep == 0)
5338 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5339 normalizep = STORE_FLAG_VALUE;
5341 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5342 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5343 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5345 else
5346 return 0;
5349 /* Try to put the result of the comparison in the sign bit. Assume we can't
5350 do the necessary operation below. */
5352 tem = 0;
5354 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5355 the sign bit set. */
5357 if (code == LE)
5359 /* This is destructive, so SUBTARGET can't be OP0. */
5360 if (rtx_equal_p (subtarget, op0))
5361 subtarget = 0;
5363 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5364 OPTAB_WIDEN);
5365 if (tem)
5366 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5367 OPTAB_WIDEN);
5370 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5371 number of bits in the mode of OP0, minus one. */
5373 if (code == GT)
5375 if (rtx_equal_p (subtarget, op0))
5376 subtarget = 0;
5378 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5379 size_int (GET_MODE_BITSIZE (mode) - 1),
5380 subtarget, 0);
5381 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5382 OPTAB_WIDEN);
5385 if (code == EQ || code == NE)
5387 /* For EQ or NE, one way to do the comparison is to apply an operation
5388 that converts the operand into a positive number if it is nonzero
5389 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5390 for NE we negate. This puts the result in the sign bit. Then we
5391 normalize with a shift, if needed.
5393 Two operations that can do the above actions are ABS and FFS, so try
5394 them. If that doesn't work, and MODE is smaller than a full word,
5395 we can use zero-extension to the wider mode (an unsigned conversion)
5396 as the operation. */
5398 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5399 that is compensated by the subsequent overflow when subtracting
5400 one / negating. */
5402 if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5403 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5404 else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5405 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5406 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5408 tem = convert_modes (word_mode, mode, op0, 1);
5409 mode = word_mode;
5412 if (tem != 0)
5414 if (code == EQ)
5415 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5416 0, OPTAB_WIDEN);
5417 else
5418 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5421 /* If we couldn't do it that way, for NE we can "or" the two's complement
5422 of the value with itself. For EQ, we take the one's complement of
5423 that "or", which is an extra insn, so we only handle EQ if branches
5424 are expensive. */
5426 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5428 if (rtx_equal_p (subtarget, op0))
5429 subtarget = 0;
5431 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5432 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5433 OPTAB_WIDEN);
5435 if (tem && code == EQ)
5436 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5440 if (tem && normalizep)
5441 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5442 size_int (GET_MODE_BITSIZE (mode) - 1),
5443 subtarget, normalizep == 1);
5445 if (tem)
5447 if (GET_MODE (tem) != target_mode)
5449 convert_move (target, tem, 0);
5450 tem = target;
5452 else if (!subtarget)
5454 emit_move_insn (target, tem);
5455 tem = target;
5458 else
5459 delete_insns_since (last);
5461 return tem;
5464 /* Like emit_store_flag, but always succeeds. */
5467 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5468 enum machine_mode mode, int unsignedp, int normalizep)
5470 rtx tem, label;
5472 /* First see if emit_store_flag can do the job. */
5473 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5474 if (tem != 0)
5475 return tem;
5477 if (normalizep == 0)
5478 normalizep = 1;
5480 /* If this failed, we have to do this with set/compare/jump/set code. */
5482 if (!REG_P (target)
5483 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5484 target = gen_reg_rtx (GET_MODE (target));
5486 emit_move_insn (target, const1_rtx);
5487 label = gen_label_rtx ();
5488 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5489 NULL_RTX, label);
5491 emit_move_insn (target, const0_rtx);
5492 emit_label (label);
5494 return target;
5497 /* Perform possibly multi-word comparison and conditional jump to LABEL
5498 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE
5500 The algorithm is based on the code in expr.c:do_jump.
5502 Note that this does not perform a general comparison. Only variants
5503 generated within expmed.c are correctly handled, others abort (but could
5504 be handled if needed). */
5506 static void
5507 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5508 rtx label)
5510 /* If this mode is an integer too wide to compare properly,
5511 compare word by word. Rely on cse to optimize constant cases. */
5513 if (GET_MODE_CLASS (mode) == MODE_INT
5514 && ! can_compare_p (op, mode, ccp_jump))
5516 rtx label2 = gen_label_rtx ();
5518 switch (op)
5520 case LTU:
5521 do_jump_by_parts_greater_rtx (mode, 1, arg2, arg1, label2, label);
5522 break;
5524 case LEU:
5525 do_jump_by_parts_greater_rtx (mode, 1, arg1, arg2, label, label2);
5526 break;
5528 case LT:
5529 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label2, label);
5530 break;
5532 case GT:
5533 do_jump_by_parts_greater_rtx (mode, 0, arg1, arg2, label2, label);
5534 break;
5536 case GE:
5537 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label, label2);
5538 break;
5540 /* do_jump_by_parts_equality_rtx compares with zero. Luckily
5541 that's the only equality operations we do */
5542 case EQ:
5543 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5544 do_jump_by_parts_equality_rtx (arg1, label2, label);
5545 break;
5547 case NE:
5548 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5549 do_jump_by_parts_equality_rtx (arg1, label, label2);
5550 break;
5552 default:
5553 gcc_unreachable ();
5556 emit_label (label2);
5558 else
5559 emit_cmp_and_jump_insns (arg1, arg2, op, NULL_RTX, mode, 0, label);