1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* This file contains low level functions to manipulate the CFG and
24 analyze it. All other modules should not transform the data structure
25 directly and use abstraction instead. The file is supposed to be
26 ordered bottom-up and should not contain any code dependent on a
27 particular intermediate language (RTL or trees).
29 Available functionality:
30 - Initialization/deallocation
31 init_flow, clear_edges
32 - Low level basic block manipulation
33 alloc_block, expunge_block
35 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
36 - Low level edge redirection (without updating instruction chain)
37 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
38 - Dumping and debugging
39 dump_flow_info, debug_flow_info, dump_edge_info
40 - Allocation of AUX fields for basic blocks
41 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
43 - Consistency checking
45 - Dumping and debugging
46 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
51 #include "coretypes.h"
55 #include "hard-reg-set.h"
63 #include "alloc-pool.h"
67 /* The obstack on which the flow graph components are allocated. */
69 struct bitmap_obstack reg_obstack
;
71 /* Number of basic blocks in the current function. */
75 /* First free basic block number. */
79 /* Number of edges in the current function. */
83 /* The basic block array. */
85 varray_type basic_block_info
;
87 /* The special entry and exit blocks. */
88 basic_block ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
;
90 /* Memory alloc pool for bb member rbi. */
91 static alloc_pool rbi_pool
;
93 void debug_flow_info (void);
94 static void free_edge (edge
);
96 /* Indicate the presence of the profile. */
97 enum profile_status profile_status
;
99 /* Called once at initialization time. */
106 ENTRY_BLOCK_PTR
= ggc_alloc_cleared (sizeof (*ENTRY_BLOCK_PTR
));
107 ENTRY_BLOCK_PTR
->index
= ENTRY_BLOCK
;
108 EXIT_BLOCK_PTR
= ggc_alloc_cleared (sizeof (*EXIT_BLOCK_PTR
));
109 EXIT_BLOCK_PTR
->index
= EXIT_BLOCK
;
110 ENTRY_BLOCK_PTR
->next_bb
= EXIT_BLOCK_PTR
;
111 EXIT_BLOCK_PTR
->prev_bb
= ENTRY_BLOCK_PTR
;
114 /* Helper function for remove_edge and clear_edges. Frees edge structure
115 without actually unlinking it from the pred/succ lists. */
118 free_edge (edge e ATTRIBUTE_UNUSED
)
124 /* Free the memory associated with the edge structures. */
135 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
137 VEC_truncate (edge
, bb
->succs
, 0);
138 VEC_truncate (edge
, bb
->preds
, 0);
141 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
143 VEC_truncate (edge
, EXIT_BLOCK_PTR
->preds
, 0);
144 VEC_truncate (edge
, ENTRY_BLOCK_PTR
->succs
, 0);
146 gcc_assert (!n_edges
);
149 /* Allocate memory for basic_block. */
155 bb
= ggc_alloc_cleared (sizeof (*bb
));
159 /* Create memory pool for rbi_pool. */
162 alloc_rbi_pool (void)
164 rbi_pool
= create_alloc_pool ("rbi pool",
165 sizeof (struct reorder_block_def
),
174 free_alloc_pool (rbi_pool
);
177 /* Initialize rbi (the structure containing data used by basic block
178 duplication and reordering) for the given basic block. */
181 initialize_bb_rbi (basic_block bb
)
183 gcc_assert (!bb
->rbi
);
184 bb
->rbi
= pool_alloc (rbi_pool
);
185 memset (bb
->rbi
, 0, sizeof (struct reorder_block_def
));
188 /* Link block B to chain after AFTER. */
190 link_block (basic_block b
, basic_block after
)
192 b
->next_bb
= after
->next_bb
;
195 b
->next_bb
->prev_bb
= b
;
198 /* Unlink block B from chain. */
200 unlink_block (basic_block b
)
202 b
->next_bb
->prev_bb
= b
->prev_bb
;
203 b
->prev_bb
->next_bb
= b
->next_bb
;
208 /* Sequentially order blocks and compact the arrays. */
210 compact_blocks (void)
218 BASIC_BLOCK (i
) = bb
;
223 gcc_assert (i
== n_basic_blocks
);
225 for (; i
< last_basic_block
; i
++)
226 BASIC_BLOCK (i
) = NULL
;
228 last_basic_block
= n_basic_blocks
;
231 /* Remove block B from the basic block array. */
234 expunge_block (basic_block b
)
237 BASIC_BLOCK (b
->index
) = NULL
;
239 /* We should be able to ggc_free here, but we are not.
240 The dead SSA_NAMES are left pointing to dead statements that are pointing
241 to dead basic blocks making garbage collector to die.
242 We should be able to release all dead SSA_NAMES and at the same time we should
243 clear out BB pointer of dead statements consistently. */
246 /* Connect E to E->src. */
251 VEC_safe_push (edge
, e
->src
->succs
, e
);
254 /* Connect E to E->dest. */
257 connect_dest (edge e
)
259 basic_block dest
= e
->dest
;
260 VEC_safe_push (edge
, dest
->preds
, e
);
261 e
->dest_idx
= EDGE_COUNT (dest
->preds
) - 1;
264 /* Disconnect edge E from E->src. */
267 disconnect_src (edge e
)
269 basic_block src
= e
->src
;
273 for (ei
= ei_start (src
->succs
); (tmp
= ei_safe_edge (ei
)); )
277 VEC_unordered_remove (edge
, src
->succs
, ei
.index
);
287 /* Disconnect edge E from E->dest. */
290 disconnect_dest (edge e
)
292 basic_block dest
= e
->dest
;
293 unsigned int dest_idx
= e
->dest_idx
;
295 VEC_unordered_remove (edge
, dest
->preds
, dest_idx
);
297 /* If we removed an edge in the middle of the edge vector, we need
298 to update dest_idx of the edge that moved into the "hole". */
299 if (dest_idx
< EDGE_COUNT (dest
->preds
))
300 EDGE_PRED (dest
, dest_idx
)->dest_idx
= dest_idx
;
303 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
304 created edge. Use this only if you are sure that this edge can't
305 possibly already exist. */
308 unchecked_make_edge (basic_block src
, basic_block dst
, int flags
)
311 e
= ggc_alloc_cleared (sizeof (*e
));
321 execute_on_growing_pred (e
);
326 /* Create an edge connecting SRC and DST with FLAGS optionally using
327 edge cache CACHE. Return the new edge, NULL if already exist. */
330 cached_make_edge (sbitmap
*edge_cache
, basic_block src
, basic_block dst
, int flags
)
332 if (edge_cache
== NULL
333 || src
== ENTRY_BLOCK_PTR
334 || dst
== EXIT_BLOCK_PTR
)
335 return make_edge (src
, dst
, flags
);
337 /* Does the requested edge already exist? */
338 if (! TEST_BIT (edge_cache
[src
->index
], dst
->index
))
340 /* The edge does not exist. Create one and update the
342 SET_BIT (edge_cache
[src
->index
], dst
->index
);
343 return unchecked_make_edge (src
, dst
, flags
);
346 /* At this point, we know that the requested edge exists. Adjust
347 flags if necessary. */
350 edge e
= find_edge (src
, dst
);
357 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
358 created edge or NULL if already exist. */
361 make_edge (basic_block src
, basic_block dest
, int flags
)
363 edge e
= find_edge (src
, dest
);
365 /* Make sure we don't add duplicate edges. */
372 return unchecked_make_edge (src
, dest
, flags
);
375 /* Create an edge connecting SRC to DEST and set probability by knowing
376 that it is the single edge leaving SRC. */
379 make_single_succ_edge (basic_block src
, basic_block dest
, int flags
)
381 edge e
= make_edge (src
, dest
, flags
);
383 e
->probability
= REG_BR_PROB_BASE
;
384 e
->count
= src
->count
;
388 /* This function will remove an edge from the flow graph. */
393 execute_on_shrinking_pred (e
);
401 /* Redirect an edge's successor from one block to another. */
404 redirect_edge_succ (edge e
, basic_block new_succ
)
406 execute_on_shrinking_pred (e
);
412 /* Reconnect the edge to the new successor block. */
415 execute_on_growing_pred (e
);
418 /* Like previous but avoid possible duplicate edge. */
421 redirect_edge_succ_nodup (edge e
, basic_block new_succ
)
425 s
= find_edge (e
->src
, new_succ
);
428 s
->flags
|= e
->flags
;
429 s
->probability
+= e
->probability
;
430 if (s
->probability
> REG_BR_PROB_BASE
)
431 s
->probability
= REG_BR_PROB_BASE
;
432 s
->count
+= e
->count
;
437 redirect_edge_succ (e
, new_succ
);
442 /* Redirect an edge's predecessor from one block to another. */
445 redirect_edge_pred (edge e
, basic_block new_pred
)
451 /* Reconnect the edge to the new predecessor block. */
455 /* Clear all basic block flags, with the exception of partitioning. */
457 clear_bb_flags (void)
461 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
462 bb
->flags
= BB_PARTITION (bb
);
465 /* Check the consistency of profile information. We can't do that
466 in verify_flow_info, as the counts may get invalid for incompletely
467 solved graphs, later eliminating of conditionals or roundoff errors.
468 It is still practical to have them reported for debugging of simple
471 check_bb_profile (basic_block bb
, FILE * file
)
478 if (profile_status
== PROFILE_ABSENT
)
481 if (bb
!= EXIT_BLOCK_PTR
)
483 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
484 sum
+= e
->probability
;
485 if (EDGE_COUNT (bb
->succs
) && abs (sum
- REG_BR_PROB_BASE
) > 100)
486 fprintf (file
, "Invalid sum of outgoing probabilities %.1f%%\n",
487 sum
* 100.0 / REG_BR_PROB_BASE
);
489 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
491 if (EDGE_COUNT (bb
->succs
)
492 && (lsum
- bb
->count
> 100 || lsum
- bb
->count
< -100))
493 fprintf (file
, "Invalid sum of outgoing counts %i, should be %i\n",
494 (int) lsum
, (int) bb
->count
);
496 if (bb
!= ENTRY_BLOCK_PTR
)
499 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
500 sum
+= EDGE_FREQUENCY (e
);
501 if (abs (sum
- bb
->frequency
) > 100)
503 "Invalid sum of incoming frequencies %i, should be %i\n",
506 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
508 if (lsum
- bb
->count
> 100 || lsum
- bb
->count
< -100)
509 fprintf (file
, "Invalid sum of incoming counts %i, should be %i\n",
510 (int) lsum
, (int) bb
->count
);
515 dump_flow_info (FILE *file
)
520 /* There are no pseudo registers after reload. Don't dump them. */
521 if (reg_n_info
&& !reload_completed
)
523 int max_regno
= max_reg_num ();
524 fprintf (file
, "%d registers.\n", max_regno
);
525 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
528 enum reg_class
class, altclass
;
530 fprintf (file
, "\nRegister %d used %d times across %d insns",
531 i
, REG_N_REFS (i
), REG_LIVE_LENGTH (i
));
532 if (REG_BASIC_BLOCK (i
) >= 0)
533 fprintf (file
, " in block %d", REG_BASIC_BLOCK (i
));
535 fprintf (file
, "; set %d time%s", REG_N_SETS (i
),
536 (REG_N_SETS (i
) == 1) ? "" : "s");
537 if (regno_reg_rtx
[i
] != NULL
&& REG_USERVAR_P (regno_reg_rtx
[i
]))
538 fprintf (file
, "; user var");
539 if (REG_N_DEATHS (i
) != 1)
540 fprintf (file
, "; dies in %d places", REG_N_DEATHS (i
));
541 if (REG_N_CALLS_CROSSED (i
) == 1)
542 fprintf (file
, "; crosses 1 call");
543 else if (REG_N_CALLS_CROSSED (i
))
544 fprintf (file
, "; crosses %d calls", REG_N_CALLS_CROSSED (i
));
545 if (regno_reg_rtx
[i
] != NULL
546 && PSEUDO_REGNO_BYTES (i
) != UNITS_PER_WORD
)
547 fprintf (file
, "; %d bytes", PSEUDO_REGNO_BYTES (i
));
549 class = reg_preferred_class (i
);
550 altclass
= reg_alternate_class (i
);
551 if (class != GENERAL_REGS
|| altclass
!= ALL_REGS
)
553 if (altclass
== ALL_REGS
|| class == ALL_REGS
)
554 fprintf (file
, "; pref %s", reg_class_names
[(int) class]);
555 else if (altclass
== NO_REGS
)
556 fprintf (file
, "; %s or none", reg_class_names
[(int) class]);
558 fprintf (file
, "; pref %s, else %s",
559 reg_class_names
[(int) class],
560 reg_class_names
[(int) altclass
]);
563 if (regno_reg_rtx
[i
] != NULL
&& REG_POINTER (regno_reg_rtx
[i
]))
564 fprintf (file
, "; pointer");
565 fprintf (file
, ".\n");
569 fprintf (file
, "\n%d basic blocks, %d edges.\n", n_basic_blocks
, n_edges
);
575 fprintf (file
, "\nBasic block %d ", bb
->index
);
576 fprintf (file
, "prev %d, next %d, ",
577 bb
->prev_bb
->index
, bb
->next_bb
->index
);
578 fprintf (file
, "loop_depth %d, count ", bb
->loop_depth
);
579 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, bb
->count
);
580 fprintf (file
, ", freq %i", bb
->frequency
);
581 if (maybe_hot_bb_p (bb
))
582 fprintf (file
, ", maybe hot");
583 if (probably_never_executed_bb_p (bb
))
584 fprintf (file
, ", probably never executed");
585 fprintf (file
, ".\n");
587 fprintf (file
, "Predecessors: ");
588 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
589 dump_edge_info (file
, e
, 0);
591 fprintf (file
, "\nSuccessors: ");
592 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
593 dump_edge_info (file
, e
, 1);
595 if (bb
->global_live_at_start
)
597 fprintf (file
, "\nRegisters live at start:");
598 dump_regset (bb
->global_live_at_start
, file
);
601 if (bb
->global_live_at_end
)
603 fprintf (file
, "\nRegisters live at end:");
604 dump_regset (bb
->global_live_at_end
, file
);
608 check_bb_profile (bb
, file
);
615 debug_flow_info (void)
617 dump_flow_info (stderr
);
621 dump_edge_info (FILE *file
, edge e
, int do_succ
)
623 basic_block side
= (do_succ
? e
->dest
: e
->src
);
625 if (side
== ENTRY_BLOCK_PTR
)
626 fputs (" ENTRY", file
);
627 else if (side
== EXIT_BLOCK_PTR
)
628 fputs (" EXIT", file
);
630 fprintf (file
, " %d", side
->index
);
633 fprintf (file
, " [%.1f%%] ", e
->probability
* 100.0 / REG_BR_PROB_BASE
);
637 fprintf (file
, " count:");
638 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, e
->count
);
643 static const char * const bitnames
[] = {
644 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
645 "can_fallthru", "irreducible", "sibcall", "loop_exit",
646 "true", "false", "exec"
649 int i
, flags
= e
->flags
;
652 for (i
= 0; flags
; i
++)
653 if (flags
& (1 << i
))
659 if (i
< (int) ARRAY_SIZE (bitnames
))
660 fputs (bitnames
[i
], file
);
662 fprintf (file
, "%d", i
);
670 /* Simple routines to easily allocate AUX fields of basic blocks. */
672 static struct obstack block_aux_obstack
;
673 static void *first_block_aux_obj
= 0;
674 static struct obstack edge_aux_obstack
;
675 static void *first_edge_aux_obj
= 0;
677 /* Allocate a memory block of SIZE as BB->aux. The obstack must
678 be first initialized by alloc_aux_for_blocks. */
681 alloc_aux_for_block (basic_block bb
, int size
)
683 /* Verify that aux field is clear. */
684 gcc_assert (!bb
->aux
&& first_block_aux_obj
);
685 bb
->aux
= obstack_alloc (&block_aux_obstack
, size
);
686 memset (bb
->aux
, 0, size
);
689 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
690 alloc_aux_for_block for each basic block. */
693 alloc_aux_for_blocks (int size
)
695 static int initialized
;
699 gcc_obstack_init (&block_aux_obstack
);
703 /* Check whether AUX data are still allocated. */
704 gcc_assert (!first_block_aux_obj
);
706 first_block_aux_obj
= obstack_alloc (&block_aux_obstack
, 0);
711 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
712 alloc_aux_for_block (bb
, size
);
716 /* Clear AUX pointers of all blocks. */
719 clear_aux_for_blocks (void)
723 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
727 /* Free data allocated in block_aux_obstack and clear AUX pointers
731 free_aux_for_blocks (void)
733 gcc_assert (first_block_aux_obj
);
734 obstack_free (&block_aux_obstack
, first_block_aux_obj
);
735 first_block_aux_obj
= NULL
;
737 clear_aux_for_blocks ();
740 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
741 be first initialized by alloc_aux_for_edges. */
744 alloc_aux_for_edge (edge e
, int size
)
746 /* Verify that aux field is clear. */
747 gcc_assert (!e
->aux
&& first_edge_aux_obj
);
748 e
->aux
= obstack_alloc (&edge_aux_obstack
, size
);
749 memset (e
->aux
, 0, size
);
752 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
753 alloc_aux_for_edge for each basic edge. */
756 alloc_aux_for_edges (int size
)
758 static int initialized
;
762 gcc_obstack_init (&edge_aux_obstack
);
766 /* Check whether AUX data are still allocated. */
767 gcc_assert (!first_edge_aux_obj
);
769 first_edge_aux_obj
= obstack_alloc (&edge_aux_obstack
, 0);
774 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
779 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
780 alloc_aux_for_edge (e
, size
);
785 /* Clear AUX pointers of all edges. */
788 clear_aux_for_edges (void)
793 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
796 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
801 /* Free data allocated in edge_aux_obstack and clear AUX pointers
805 free_aux_for_edges (void)
807 gcc_assert (first_edge_aux_obj
);
808 obstack_free (&edge_aux_obstack
, first_edge_aux_obj
);
809 first_edge_aux_obj
= NULL
;
811 clear_aux_for_edges ();
815 debug_bb (basic_block bb
)
817 dump_bb (bb
, stderr
, 0);
823 basic_block bb
= BASIC_BLOCK (n
);
824 dump_bb (bb
, stderr
, 0);
828 /* Dumps cfg related information about basic block BB to FILE. */
831 dump_cfg_bb_info (FILE *file
, basic_block bb
)
836 static const char * const bb_bitnames
[] =
838 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
840 const unsigned n_bitnames
= sizeof (bb_bitnames
) / sizeof (char *);
843 fprintf (file
, "Basic block %d", bb
->index
);
844 for (i
= 0; i
< n_bitnames
; i
++)
845 if (bb
->flags
& (1 << i
))
848 fprintf (file
, " (");
850 fprintf (file
, ", ");
852 fprintf (file
, bb_bitnames
[i
]);
856 fprintf (file
, "\n");
858 fprintf (file
, "Predecessors: ");
859 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
860 dump_edge_info (file
, e
, 0);
862 fprintf (file
, "\nSuccessors: ");
863 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
864 dump_edge_info (file
, e
, 1);
865 fprintf (file
, "\n\n");
868 /* Dumps a brief description of cfg to FILE. */
871 brief_dump_cfg (FILE *file
)
877 dump_cfg_bb_info (file
, bb
);
881 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
882 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
883 redirected to destination of TAKEN_EDGE.
885 This function may leave the profile inconsistent in the case TAKEN_EDGE
886 frequency or count is believed to be lower than FREQUENCY or COUNT
889 update_bb_profile_for_threading (basic_block bb
, int edge_frequency
,
890 gcov_type count
, edge taken_edge
)
900 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
901 Watch for overflows. */
903 prob
= edge_frequency
* REG_BR_PROB_BASE
/ bb
->frequency
;
906 if (prob
> taken_edge
->probability
)
909 fprintf (dump_file
, "Jump threading proved probability of edge "
910 "%i->%i too small (it is %i, should be %i).\n",
911 taken_edge
->src
->index
, taken_edge
->dest
->index
,
912 taken_edge
->probability
, prob
);
913 prob
= taken_edge
->probability
;
916 /* Now rescale the probabilities. */
917 taken_edge
->probability
-= prob
;
918 prob
= REG_BR_PROB_BASE
- prob
;
919 bb
->frequency
-= edge_frequency
;
920 if (bb
->frequency
< 0)
925 fprintf (dump_file
, "Edge frequencies of bb %i has been reset, "
926 "frequency of block should end up being 0, it is %i\n",
927 bb
->index
, bb
->frequency
);
928 EDGE_SUCC (bb
, 0)->probability
= REG_BR_PROB_BASE
;
929 ei
= ei_start (bb
->succs
);
931 for (; (c
= ei_safe_edge (ei
)); ei_next (&ei
))
934 else if (prob
!= REG_BR_PROB_BASE
)
936 int scale
= REG_BR_PROB_BASE
/ prob
;
938 FOR_EACH_EDGE (c
, ei
, bb
->succs
)
939 c
->probability
*= scale
;
942 if (bb
!= taken_edge
->src
)
944 taken_edge
->count
-= count
;
945 if (taken_edge
->count
< 0)
946 taken_edge
->count
= 0;