Daily bump.
[official-gcc.git] / gcc / ada / s-osprim-mingw.adb
blob07a8ca79eab21d579b22eaa9fd2f690eab72b3cd
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . O S _ P R I M I T I V E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1998-2003 Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNARL; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNARL was developed by the GNARL team at Florida State University. --
30 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- This is the NT version of this package
36 with Ada.Exceptions;
37 with Interfaces.C;
39 package body System.OS_Primitives is
41 ---------------------------
42 -- Win32 API Definitions --
43 ---------------------------
45 -- These definitions are copied from System.OS_Interface because we do not
46 -- want to depend on gnarl here.
48 type DWORD is new Interfaces.C.unsigned_long;
50 type LARGE_INTEGER is delta 1.0 range -2.0**63 .. 2.0**63 - 1.0;
52 type BOOL is new Boolean;
53 for BOOL'Size use Interfaces.C.unsigned_long'Size;
55 procedure GetSystemTimeAsFileTime (lpFileTime : access Long_Long_Integer);
56 pragma Import (Stdcall, GetSystemTimeAsFileTime, "GetSystemTimeAsFileTime");
58 function QueryPerformanceCounter
59 (lpPerformanceCount : access LARGE_INTEGER) return BOOL;
60 pragma Import
61 (Stdcall, QueryPerformanceCounter, "QueryPerformanceCounter");
63 function QueryPerformanceFrequency
64 (lpFrequency : access LARGE_INTEGER) return BOOL;
65 pragma Import
66 (Stdcall, QueryPerformanceFrequency, "QueryPerformanceFrequency");
68 procedure Sleep (dwMilliseconds : DWORD);
69 pragma Import (Stdcall, Sleep, External_Name => "Sleep");
71 ----------------------------------------
72 -- Data for the high resolution clock --
73 ----------------------------------------
75 -- Declare some pointers to access multi-word data above. This is needed
76 -- to workaround a limitation in the GNU/Linker auto-import feature used
77 -- to build the GNAT runtime DLLs. In fact the Clock and Monotonic_Clock
78 -- routines are inlined and they are using some multi-word variables.
79 -- GNU/Linker will fail to auto-import those variables when building
80 -- libgnarl.dll. The indirection level introduced here has no measurable
81 -- penalties.
83 -- Note that access variables below must not be declared as constant
84 -- otherwise the compiler optimization will remove this indirect access.
86 type DA is access all Duration;
87 -- Use to have indirect access to multi-word variables
89 type LIA is access all LARGE_INTEGER;
90 -- Use to have indirect access to multi-word variables
92 type LLIA is access all Long_Long_Integer;
93 -- Use to have indirect access to multi-word variables
95 Tick_Frequency : aliased LARGE_INTEGER;
96 TFA : constant LIA := Tick_Frequency'Access;
97 -- Holds frequency of high-performance counter used by Clock
98 -- Windows NT uses a 1_193_182 Hz counter on PCs.
100 Base_Ticks : aliased LARGE_INTEGER;
101 BTA : constant LIA := Base_Ticks'Access;
102 -- Holds the Tick count for the base time.
104 Base_Monotonic_Ticks : aliased LARGE_INTEGER;
105 BMTA : constant LIA := Base_Monotonic_Ticks'Access;
106 -- Holds the Tick count for the base monotonic time
108 Base_Clock : aliased Duration;
109 BCA : constant DA := Base_Clock'Access;
110 -- Holds the current clock for the standard clock's base time
112 Base_Monotonic_Clock : aliased Duration;
113 BMCA : constant DA := Base_Monotonic_Clock'Access;
114 -- Holds the current clock for monotonic clock's base time
116 Base_Time : aliased Long_Long_Integer;
117 BTiA : constant LLIA := Base_Time'Access;
118 -- Holds the base time used to check for system time change, used with
119 -- the standard clock.
121 procedure Get_Base_Time;
122 -- Retrieve the base time and base ticks. These values will be used by
123 -- clock to compute the current time by adding to it a fraction of the
124 -- performance counter. This is for the implementation of a
125 -- high-resolution clock. Note that this routine does not change the base
126 -- monotonic values used by the monotonic clock.
128 -----------
129 -- Clock --
130 -----------
132 -- This implementation of clock provides high resolution timer values
133 -- using QueryPerformanceCounter. This call return a 64 bits values (based
134 -- on the 8253 16 bits counter). This counter is updated every 1/1_193_182
135 -- times per seconds. The call to QueryPerformanceCounter takes 6
136 -- microsecs to complete.
138 function Clock return Duration is
139 Max_Shift : constant Duration := 2.0;
140 Hundreds_Nano_In_Sec : constant Long_Long_Float := 1.0E7;
141 Current_Ticks : aliased LARGE_INTEGER;
142 Elap_Secs_Tick : Duration;
143 Elap_Secs_Sys : Duration;
144 Now : aliased Long_Long_Integer;
146 begin
147 if not QueryPerformanceCounter (Current_Ticks'Access) then
148 return 0.0;
149 end if;
151 GetSystemTimeAsFileTime (Now'Access);
153 Elap_Secs_Sys :=
154 Duration (Long_Long_Float (abs (Now - BTiA.all)) /
155 Hundreds_Nano_In_Sec);
157 Elap_Secs_Tick :=
158 Duration (Long_Long_Float (Current_Ticks - BTA.all) /
159 Long_Long_Float (TFA.all));
161 -- If we have a shift of more than Max_Shift seconds we resynchonize the
162 -- Clock. This is probably due to a manual Clock adjustment, an DST
163 -- adjustment or an NTP synchronisation. And we want to adjust the
164 -- time for this system (non-monotonic) clock.
166 if abs (Elap_Secs_Sys - Elap_Secs_Tick) > Max_Shift then
167 Get_Base_Time;
169 Elap_Secs_Tick :=
170 Duration (Long_Long_Float (Current_Ticks - BTA.all) /
171 Long_Long_Float (TFA.all));
172 end if;
174 return BCA.all + Elap_Secs_Tick;
175 end Clock;
177 -------------------
178 -- Get_Base_Time --
179 -------------------
181 procedure Get_Base_Time is
182 -- The resolution for GetSystemTime is 1 millisecond.
184 -- The time to get both base times should take less than 1 millisecond.
185 -- Therefore, the elapsed time reported by GetSystemTime between both
186 -- actions should be null.
188 Max_Elapsed : constant := 0;
190 Test_Now : aliased Long_Long_Integer;
192 epoch_1970 : constant := 16#19D_B1DE_D53E_8000#; -- win32 UTC epoch
193 system_time_ns : constant := 100; -- 100 ns per tick
194 Sec_Unit : constant := 10#1#E9;
196 begin
197 -- Here we must be sure that both of these calls are done in a short
198 -- amount of time. Both are base time and should in theory be taken
199 -- at the very same time.
201 loop
202 GetSystemTimeAsFileTime (Base_Time'Access);
204 if not QueryPerformanceCounter (Base_Ticks'Access) then
205 pragma Assert
206 (Standard.False,
207 "Could not query high performance counter in Clock");
208 null;
209 end if;
211 GetSystemTimeAsFileTime (Test_Now'Access);
213 exit when Test_Now - Base_Time = Max_Elapsed;
214 end loop;
216 Base_Clock := Duration
217 (Long_Long_Float ((Base_Time - epoch_1970) * system_time_ns) /
218 Long_Long_Float (Sec_Unit));
219 end Get_Base_Time;
221 ---------------------
222 -- Monotonic_Clock --
223 ---------------------
225 function Monotonic_Clock return Duration is
226 Current_Ticks : aliased LARGE_INTEGER;
227 Elap_Secs_Tick : Duration;
228 begin
229 if not QueryPerformanceCounter (Current_Ticks'Access) then
230 return 0.0;
231 end if;
233 Elap_Secs_Tick :=
234 Duration (Long_Long_Float (Current_Ticks - BMTA.all) /
235 Long_Long_Float (TFA.all));
237 return BMCA.all + Elap_Secs_Tick;
238 end Monotonic_Clock;
240 -----------------
241 -- Timed_Delay --
242 -----------------
244 procedure Timed_Delay (Time : Duration; Mode : Integer) is
245 Rel_Time : Duration;
246 Abs_Time : Duration;
247 Check_Time : Duration := Monotonic_Clock;
249 begin
250 if Mode = Relative then
251 Rel_Time := Time;
252 Abs_Time := Time + Check_Time;
253 else
254 Rel_Time := Time - Check_Time;
255 Abs_Time := Time;
256 end if;
258 if Rel_Time > 0.0 then
259 loop
260 Sleep (DWORD (Rel_Time * 1000.0));
261 Check_Time := Monotonic_Clock;
263 exit when Abs_Time <= Check_Time;
265 Rel_Time := Abs_Time - Check_Time;
266 end loop;
267 end if;
268 end Timed_Delay;
270 -- Package elaboration, get starting time as base
272 begin
273 if not QueryPerformanceFrequency (Tick_Frequency'Access) then
274 Ada.Exceptions.Raise_Exception
275 (Program_Error'Identity,
276 "cannot get high performance counter frequency");
277 end if;
279 Get_Base_Time;
281 -- Keep base clock and ticks for the monotonic clock. These values should
282 -- never be changed to ensure proper behavior of the monotonic clock.
284 Base_Monotonic_Clock := Base_Clock;
285 Base_Monotonic_Ticks := Base_Ticks;
286 end System.OS_Primitives;