PR rtl-optimization/79386
[official-gcc.git] / gcc / ada / sem_ch8.adb
blobd8794920f8b2ee495ae746981175662716149fea
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Disp; use Exp_Disp;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Fname; use Fname;
35 with Freeze; use Freeze;
36 with Ghost; use Ghost;
37 with Impunit; use Impunit;
38 with Lib; use Lib;
39 with Lib.Load; use Lib.Load;
40 with Lib.Xref; use Lib.Xref;
41 with Namet; use Namet;
42 with Namet.Sp; use Namet.Sp;
43 with Nlists; use Nlists;
44 with Nmake; use Nmake;
45 with Opt; use Opt;
46 with Output; use Output;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Sem; use Sem;
51 with Sem_Aux; use Sem_Aux;
52 with Sem_Cat; use Sem_Cat;
53 with Sem_Ch3; use Sem_Ch3;
54 with Sem_Ch4; use Sem_Ch4;
55 with Sem_Ch6; use Sem_Ch6;
56 with Sem_Ch12; use Sem_Ch12;
57 with Sem_Ch13; use Sem_Ch13;
58 with Sem_Dim; use Sem_Dim;
59 with Sem_Disp; use Sem_Disp;
60 with Sem_Dist; use Sem_Dist;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Res; use Sem_Res;
63 with Sem_Util; use Sem_Util;
64 with Sem_Type; use Sem_Type;
65 with Stand; use Stand;
66 with Sinfo; use Sinfo;
67 with Sinfo.CN; use Sinfo.CN;
68 with Snames; use Snames;
69 with Style; use Style;
70 with Table;
71 with Tbuild; use Tbuild;
72 with Uintp; use Uintp;
74 package body Sem_Ch8 is
76 ------------------------------------
77 -- Visibility and Name Resolution --
78 ------------------------------------
80 -- This package handles name resolution and the collection of possible
81 -- interpretations for overloaded names, prior to overload resolution.
83 -- Name resolution is the process that establishes a mapping between source
84 -- identifiers and the entities they denote at each point in the program.
85 -- Each entity is represented by a defining occurrence. Each identifier
86 -- that denotes an entity points to the corresponding defining occurrence.
87 -- This is the entity of the applied occurrence. Each occurrence holds
88 -- an index into the names table, where source identifiers are stored.
90 -- Each entry in the names table for an identifier or designator uses the
91 -- Info pointer to hold a link to the currently visible entity that has
92 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
93 -- in package Sem_Util). The visibility is initialized at the beginning of
94 -- semantic processing to make entities in package Standard immediately
95 -- visible. The visibility table is used in a more subtle way when
96 -- compiling subunits (see below).
98 -- Entities that have the same name (i.e. homonyms) are chained. In the
99 -- case of overloaded entities, this chain holds all the possible meanings
100 -- of a given identifier. The process of overload resolution uses type
101 -- information to select from this chain the unique meaning of a given
102 -- identifier.
104 -- Entities are also chained in their scope, through the Next_Entity link.
105 -- As a consequence, the name space is organized as a sparse matrix, where
106 -- each row corresponds to a scope, and each column to a source identifier.
107 -- Open scopes, that is to say scopes currently being compiled, have their
108 -- corresponding rows of entities in order, innermost scope first.
110 -- The scopes of packages that are mentioned in context clauses appear in
111 -- no particular order, interspersed among open scopes. This is because
112 -- in the course of analyzing the context of a compilation, a package
113 -- declaration is first an open scope, and subsequently an element of the
114 -- context. If subunits or child units are present, a parent unit may
115 -- appear under various guises at various times in the compilation.
117 -- When the compilation of the innermost scope is complete, the entities
118 -- defined therein are no longer visible. If the scope is not a package
119 -- declaration, these entities are never visible subsequently, and can be
120 -- removed from visibility chains. If the scope is a package declaration,
121 -- its visible declarations may still be accessible. Therefore the entities
122 -- defined in such a scope are left on the visibility chains, and only
123 -- their visibility (immediately visibility or potential use-visibility)
124 -- is affected.
126 -- The ordering of homonyms on their chain does not necessarily follow
127 -- the order of their corresponding scopes on the scope stack. For
128 -- example, if package P and the enclosing scope both contain entities
129 -- named E, then when compiling the package body the chain for E will
130 -- hold the global entity first, and the local one (corresponding to
131 -- the current inner scope) next. As a result, name resolution routines
132 -- do not assume any relative ordering of the homonym chains, either
133 -- for scope nesting or to order of appearance of context clauses.
135 -- When compiling a child unit, entities in the parent scope are always
136 -- immediately visible. When compiling the body of a child unit, private
137 -- entities in the parent must also be made immediately visible. There
138 -- are separate routines to make the visible and private declarations
139 -- visible at various times (see package Sem_Ch7).
141 -- +--------+ +-----+
142 -- | In use |-------->| EU1 |-------------------------->
143 -- +--------+ +-----+
144 -- | |
145 -- +--------+ +-----+ +-----+
146 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
147 -- +--------+ +-----+ +-----+
148 -- | |
149 -- +---------+ | +-----+
150 -- | with'ed |------------------------------>| EW2 |--->
151 -- +---------+ | +-----+
152 -- | |
153 -- +--------+ +-----+ +-----+
154 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
155 -- +--------+ +-----+ +-----+
156 -- | |
157 -- +--------+ +-----+ +-----+
158 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
159 -- +--------+ +-----+ +-----+
160 -- ^ | |
161 -- | | |
162 -- | +---------+ | |
163 -- | | with'ed |----------------------------------------->
164 -- | +---------+ | |
165 -- | | |
166 -- Scope stack | |
167 -- (innermost first) | |
168 -- +----------------------------+
169 -- Names table => | Id1 | | | | Id2 |
170 -- +----------------------------+
172 -- Name resolution must deal with several syntactic forms: simple names,
173 -- qualified names, indexed names, and various forms of calls.
175 -- Each identifier points to an entry in the names table. The resolution
176 -- of a simple name consists in traversing the homonym chain, starting
177 -- from the names table. If an entry is immediately visible, it is the one
178 -- designated by the identifier. If only potentially use-visible entities
179 -- are on the chain, we must verify that they do not hide each other. If
180 -- the entity we find is overloadable, we collect all other overloadable
181 -- entities on the chain as long as they are not hidden.
183 -- To resolve expanded names, we must find the entity at the intersection
184 -- of the entity chain for the scope (the prefix) and the homonym chain
185 -- for the selector. In general, homonym chains will be much shorter than
186 -- entity chains, so it is preferable to start from the names table as
187 -- well. If the entity found is overloadable, we must collect all other
188 -- interpretations that are defined in the scope denoted by the prefix.
190 -- For records, protected types, and tasks, their local entities are
191 -- removed from visibility chains on exit from the corresponding scope.
192 -- From the outside, these entities are always accessed by selected
193 -- notation, and the entity chain for the record type, protected type,
194 -- etc. is traversed sequentially in order to find the designated entity.
196 -- The discriminants of a type and the operations of a protected type or
197 -- task are unchained on exit from the first view of the type, (such as
198 -- a private or incomplete type declaration, or a protected type speci-
199 -- fication) and re-chained when compiling the second view.
201 -- In the case of operators, we do not make operators on derived types
202 -- explicit. As a result, the notation P."+" may denote either a user-
203 -- defined function with name "+", or else an implicit declaration of the
204 -- operator "+" in package P. The resolution of expanded names always
205 -- tries to resolve an operator name as such an implicitly defined entity,
206 -- in addition to looking for explicit declarations.
208 -- All forms of names that denote entities (simple names, expanded names,
209 -- character literals in some cases) have a Entity attribute, which
210 -- identifies the entity denoted by the name.
212 ---------------------
213 -- The Scope Stack --
214 ---------------------
216 -- The Scope stack keeps track of the scopes currently been compiled.
217 -- Every entity that contains declarations (including records) is placed
218 -- on the scope stack while it is being processed, and removed at the end.
219 -- Whenever a non-package scope is exited, the entities defined therein
220 -- are removed from the visibility table, so that entities in outer scopes
221 -- become visible (see previous description). On entry to Sem, the scope
222 -- stack only contains the package Standard. As usual, subunits complicate
223 -- this picture ever so slightly.
225 -- The Rtsfind mechanism can force a call to Semantics while another
226 -- compilation is in progress. The unit retrieved by Rtsfind must be
227 -- compiled in its own context, and has no access to the visibility of
228 -- the unit currently being compiled. The procedures Save_Scope_Stack and
229 -- Restore_Scope_Stack make entities in current open scopes invisible
230 -- before compiling the retrieved unit, and restore the compilation
231 -- environment afterwards.
233 ------------------------
234 -- Compiling subunits --
235 ------------------------
237 -- Subunits must be compiled in the environment of the corresponding stub,
238 -- that is to say with the same visibility into the parent (and its
239 -- context) that is available at the point of the stub declaration, but
240 -- with the additional visibility provided by the context clause of the
241 -- subunit itself. As a result, compilation of a subunit forces compilation
242 -- of the parent (see description in lib-). At the point of the stub
243 -- declaration, Analyze is called recursively to compile the proper body of
244 -- the subunit, but without reinitializing the names table, nor the scope
245 -- stack (i.e. standard is not pushed on the stack). In this fashion the
246 -- context of the subunit is added to the context of the parent, and the
247 -- subunit is compiled in the correct environment. Note that in the course
248 -- of processing the context of a subunit, Standard will appear twice on
249 -- the scope stack: once for the parent of the subunit, and once for the
250 -- unit in the context clause being compiled. However, the two sets of
251 -- entities are not linked by homonym chains, so that the compilation of
252 -- any context unit happens in a fresh visibility environment.
254 -------------------------------
255 -- Processing of USE Clauses --
256 -------------------------------
258 -- Every defining occurrence has a flag indicating if it is potentially use
259 -- visible. Resolution of simple names examines this flag. The processing
260 -- of use clauses consists in setting this flag on all visible entities
261 -- defined in the corresponding package. On exit from the scope of the use
262 -- clause, the corresponding flag must be reset. However, a package may
263 -- appear in several nested use clauses (pathological but legal, alas)
264 -- which forces us to use a slightly more involved scheme:
266 -- a) The defining occurrence for a package holds a flag -In_Use- to
267 -- indicate that it is currently in the scope of a use clause. If a
268 -- redundant use clause is encountered, then the corresponding occurrence
269 -- of the package name is flagged -Redundant_Use-.
271 -- b) On exit from a scope, the use clauses in its declarative part are
272 -- scanned. The visibility flag is reset in all entities declared in
273 -- package named in a use clause, as long as the package is not flagged
274 -- as being in a redundant use clause (in which case the outer use
275 -- clause is still in effect, and the direct visibility of its entities
276 -- must be retained).
278 -- Note that entities are not removed from their homonym chains on exit
279 -- from the package specification. A subsequent use clause does not need
280 -- to rechain the visible entities, but only to establish their direct
281 -- visibility.
283 -----------------------------------
284 -- Handling private declarations --
285 -----------------------------------
287 -- The principle that each entity has a single defining occurrence clashes
288 -- with the presence of two separate definitions for private types: the
289 -- first is the private type declaration, and second is the full type
290 -- declaration. It is important that all references to the type point to
291 -- the same defining occurrence, namely the first one. To enforce the two
292 -- separate views of the entity, the corresponding information is swapped
293 -- between the two declarations. Outside of the package, the defining
294 -- occurrence only contains the private declaration information, while in
295 -- the private part and the body of the package the defining occurrence
296 -- contains the full declaration. To simplify the swap, the defining
297 -- occurrence that currently holds the private declaration points to the
298 -- full declaration. During semantic processing the defining occurrence
299 -- also points to a list of private dependents, that is to say access types
300 -- or composite types whose designated types or component types are
301 -- subtypes or derived types of the private type in question. After the
302 -- full declaration has been seen, the private dependents are updated to
303 -- indicate that they have full definitions.
305 ------------------------------------
306 -- Handling of Undefined Messages --
307 ------------------------------------
309 -- In normal mode, only the first use of an undefined identifier generates
310 -- a message. The table Urefs is used to record error messages that have
311 -- been issued so that second and subsequent ones do not generate further
312 -- messages. However, the second reference causes text to be added to the
313 -- original undefined message noting "(more references follow)". The
314 -- full error list option (-gnatf) forces messages to be generated for
315 -- every reference and disconnects the use of this table.
317 type Uref_Entry is record
318 Node : Node_Id;
319 -- Node for identifier for which original message was posted. The
320 -- Chars field of this identifier is used to detect later references
321 -- to the same identifier.
323 Err : Error_Msg_Id;
324 -- Records error message Id of original undefined message. Reset to
325 -- No_Error_Msg after the second occurrence, where it is used to add
326 -- text to the original message as described above.
328 Nvis : Boolean;
329 -- Set if the message is not visible rather than undefined
331 Loc : Source_Ptr;
332 -- Records location of error message. Used to make sure that we do
333 -- not consider a, b : undefined as two separate instances, which
334 -- would otherwise happen, since the parser converts this sequence
335 -- to a : undefined; b : undefined.
337 end record;
339 package Urefs is new Table.Table (
340 Table_Component_Type => Uref_Entry,
341 Table_Index_Type => Nat,
342 Table_Low_Bound => 1,
343 Table_Initial => 10,
344 Table_Increment => 100,
345 Table_Name => "Urefs");
347 Candidate_Renaming : Entity_Id;
348 -- Holds a candidate interpretation that appears in a subprogram renaming
349 -- declaration and does not match the given specification, but matches at
350 -- least on the first formal. Allows better error message when given
351 -- specification omits defaulted parameters, a common error.
353 -----------------------
354 -- Local Subprograms --
355 -----------------------
357 procedure Analyze_Generic_Renaming
358 (N : Node_Id;
359 K : Entity_Kind);
360 -- Common processing for all three kinds of generic renaming declarations.
361 -- Enter new name and indicate that it renames the generic unit.
363 procedure Analyze_Renamed_Character
364 (N : Node_Id;
365 New_S : Entity_Id;
366 Is_Body : Boolean);
367 -- Renamed entity is given by a character literal, which must belong
368 -- to the return type of the new entity. Is_Body indicates whether the
369 -- declaration is a renaming_as_body. If the original declaration has
370 -- already been frozen (because of an intervening body, e.g.) the body of
371 -- the function must be built now. The same applies to the following
372 -- various renaming procedures.
374 procedure Analyze_Renamed_Dereference
375 (N : Node_Id;
376 New_S : Entity_Id;
377 Is_Body : Boolean);
378 -- Renamed entity is given by an explicit dereference. Prefix must be a
379 -- conformant access_to_subprogram type.
381 procedure Analyze_Renamed_Entry
382 (N : Node_Id;
383 New_S : Entity_Id;
384 Is_Body : Boolean);
385 -- If the renamed entity in a subprogram renaming is an entry or protected
386 -- subprogram, build a body for the new entity whose only statement is a
387 -- call to the renamed entity.
389 procedure Analyze_Renamed_Family_Member
390 (N : Node_Id;
391 New_S : Entity_Id;
392 Is_Body : Boolean);
393 -- Used when the renamed entity is an indexed component. The prefix must
394 -- denote an entry family.
396 procedure Analyze_Renamed_Primitive_Operation
397 (N : Node_Id;
398 New_S : Entity_Id;
399 Is_Body : Boolean);
400 -- If the renamed entity in a subprogram renaming is a primitive operation
401 -- or a class-wide operation in prefix form, save the target object,
402 -- which must be added to the list of actuals in any subsequent call.
403 -- The renaming operation is intrinsic because the compiler must in
404 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
406 function Applicable_Use (Pack_Name : Node_Id) return Boolean;
407 -- Common code to Use_One_Package and Set_Use, to determine whether use
408 -- clause must be processed. Pack_Name is an entity name that references
409 -- the package in question.
411 procedure Attribute_Renaming (N : Node_Id);
412 -- Analyze renaming of attribute as subprogram. The renaming declaration N
413 -- is rewritten as a subprogram body that returns the attribute reference
414 -- applied to the formals of the function.
416 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
417 -- Set Entity, with style check if need be. For a discriminant reference,
418 -- replace by the corresponding discriminal, i.e. the parameter of the
419 -- initialization procedure that corresponds to the discriminant.
421 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
422 -- A renaming_as_body may occur after the entity of the original decla-
423 -- ration has been frozen. In that case, the body of the new entity must
424 -- be built now, because the usual mechanism of building the renamed
425 -- body at the point of freezing will not work. Subp is the subprogram
426 -- for which N provides the Renaming_As_Body.
428 procedure Check_In_Previous_With_Clause
429 (N : Node_Id;
430 Nam : Node_Id);
431 -- N is a use_package clause and Nam the package name, or N is a use_type
432 -- clause and Nam is the prefix of the type name. In either case, verify
433 -- that the package is visible at that point in the context: either it
434 -- appears in a previous with_clause, or because it is a fully qualified
435 -- name and the root ancestor appears in a previous with_clause.
437 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
438 -- Verify that the entity in a renaming declaration that is a library unit
439 -- is itself a library unit and not a nested unit or subunit. Also check
440 -- that if the renaming is a child unit of a generic parent, then the
441 -- renamed unit must also be a child unit of that parent. Finally, verify
442 -- that a renamed generic unit is not an implicit child declared within
443 -- an instance of the parent.
445 procedure Chain_Use_Clause (N : Node_Id);
446 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
447 -- the proper scope table entry. This is usually the current scope, but it
448 -- will be an inner scope when installing the use clauses of the private
449 -- declarations of a parent unit prior to compiling the private part of a
450 -- child unit. This chain is traversed when installing/removing use clauses
451 -- when compiling a subunit or instantiating a generic body on the fly,
452 -- when it is necessary to save and restore full environments.
454 function Enclosing_Instance return Entity_Id;
455 -- In an instance nested within another one, several semantic checks are
456 -- unnecessary because the legality of the nested instance has been checked
457 -- in the enclosing generic unit. This applies in particular to legality
458 -- checks on actuals for formal subprograms of the inner instance, which
459 -- are checked as subprogram renamings, and may be complicated by confusion
460 -- in private/full views. This function returns the instance enclosing the
461 -- current one if there is such, else it returns Empty.
463 -- If the renaming determines the entity for the default of a formal
464 -- subprogram nested within another instance, choose the innermost
465 -- candidate. This is because if the formal has a box, and we are within
466 -- an enclosing instance where some candidate interpretations are local
467 -- to this enclosing instance, we know that the default was properly
468 -- resolved when analyzing the generic, so we prefer the local
469 -- candidates to those that are external. This is not always the case
470 -- but is a reasonable heuristic on the use of nested generics. The
471 -- proper solution requires a full renaming model.
473 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
474 -- Find a type derived from Character or Wide_Character in the prefix of N.
475 -- Used to resolved qualified names whose selector is a character literal.
477 function Has_Private_With (E : Entity_Id) return Boolean;
478 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
479 -- private with on E.
481 procedure Find_Expanded_Name (N : Node_Id);
482 -- The input is a selected component known to be an expanded name. Verify
483 -- legality of selector given the scope denoted by prefix, and change node
484 -- N into a expanded name with a properly set Entity field.
486 function Find_Renamed_Entity
487 (N : Node_Id;
488 Nam : Node_Id;
489 New_S : Entity_Id;
490 Is_Actual : Boolean := False) return Entity_Id;
491 -- Find the renamed entity that corresponds to the given parameter profile
492 -- in a subprogram renaming declaration. The renamed entity may be an
493 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
494 -- indicates that the renaming is the one generated for an actual subpro-
495 -- gram in an instance, for which special visibility checks apply.
497 function Has_Implicit_Operator (N : Node_Id) return Boolean;
498 -- N is an expanded name whose selector is an operator name (e.g. P."+").
499 -- declarative part contains an implicit declaration of an operator if it
500 -- has a declaration of a type to which one of the predefined operators
501 -- apply. The existence of this routine is an implementation artifact. A
502 -- more straightforward but more space-consuming choice would be to make
503 -- all inherited operators explicit in the symbol table.
505 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
506 -- A subprogram defined by a renaming declaration inherits the parameter
507 -- profile of the renamed entity. The subtypes given in the subprogram
508 -- specification are discarded and replaced with those of the renamed
509 -- subprogram, which are then used to recheck the default values.
511 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
512 -- Prefix is appropriate for record if it is of a record type, or an access
513 -- to such.
515 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
516 -- True if it is of a task type, a protected type, or else an access to one
517 -- of these types.
519 procedure Note_Redundant_Use (Clause : Node_Id);
520 -- Mark the name in a use clause as redundant if the corresponding entity
521 -- is already use-visible. Emit a warning if the use clause comes from
522 -- source and the proper warnings are enabled.
524 procedure Premature_Usage (N : Node_Id);
525 -- Diagnose usage of an entity before it is visible
527 procedure Use_One_Package (P : Entity_Id; N : Node_Id);
528 -- Make visible entities declared in package P potentially use-visible
529 -- in the current context. Also used in the analysis of subunits, when
530 -- re-installing use clauses of parent units. N is the use_clause that
531 -- names P (and possibly other packages).
533 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False);
534 -- Id is the subtype mark from a use type clause. This procedure makes
535 -- the primitive operators of the type potentially use-visible. The
536 -- boolean flag Installed indicates that the clause is being reinstalled
537 -- after previous analysis, and primitive operations are already chained
538 -- on the Used_Operations list of the clause.
540 procedure Write_Info;
541 -- Write debugging information on entities declared in current scope
543 --------------------------------
544 -- Analyze_Exception_Renaming --
545 --------------------------------
547 -- The language only allows a single identifier, but the tree holds an
548 -- identifier list. The parser has already issued an error message if
549 -- there is more than one element in the list.
551 procedure Analyze_Exception_Renaming (N : Node_Id) is
552 Id : constant Entity_Id := Defining_Entity (N);
553 Nam : constant Node_Id := Name (N);
555 begin
556 Check_SPARK_05_Restriction ("exception renaming is not allowed", N);
558 Enter_Name (Id);
559 Analyze (Nam);
561 Set_Ekind (Id, E_Exception);
562 Set_Etype (Id, Standard_Exception_Type);
563 Set_Is_Pure (Id, Is_Pure (Current_Scope));
565 if Is_Entity_Name (Nam)
566 and then Present (Entity (Nam))
567 and then Ekind (Entity (Nam)) = E_Exception
568 then
569 if Present (Renamed_Object (Entity (Nam))) then
570 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
571 else
572 Set_Renamed_Object (Id, Entity (Nam));
573 end if;
575 -- The exception renaming declaration may become Ghost if it renames
576 -- a Ghost entity.
578 Mark_Ghost_Renaming (N, Entity (Nam));
579 else
580 Error_Msg_N ("invalid exception name in renaming", Nam);
581 end if;
583 -- Implementation-defined aspect specifications can appear in a renaming
584 -- declaration, but not language-defined ones. The call to procedure
585 -- Analyze_Aspect_Specifications will take care of this error check.
587 if Has_Aspects (N) then
588 Analyze_Aspect_Specifications (N, Id);
589 end if;
590 end Analyze_Exception_Renaming;
592 ---------------------------
593 -- Analyze_Expanded_Name --
594 ---------------------------
596 procedure Analyze_Expanded_Name (N : Node_Id) is
597 begin
598 -- If the entity pointer is already set, this is an internal node, or a
599 -- node that is analyzed more than once, after a tree modification. In
600 -- such a case there is no resolution to perform, just set the type. In
601 -- either case, start by analyzing the prefix.
603 Analyze (Prefix (N));
605 if Present (Entity (N)) then
606 if Is_Type (Entity (N)) then
607 Set_Etype (N, Entity (N));
608 else
609 Set_Etype (N, Etype (Entity (N)));
610 end if;
612 else
613 Find_Expanded_Name (N);
614 end if;
616 -- In either case, propagate dimension of entity to expanded name
618 Analyze_Dimension (N);
619 end Analyze_Expanded_Name;
621 ---------------------------------------
622 -- Analyze_Generic_Function_Renaming --
623 ---------------------------------------
625 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
626 begin
627 Analyze_Generic_Renaming (N, E_Generic_Function);
628 end Analyze_Generic_Function_Renaming;
630 --------------------------------------
631 -- Analyze_Generic_Package_Renaming --
632 --------------------------------------
634 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
635 begin
636 -- Test for the Text_IO special unit case here, since we may be renaming
637 -- one of the subpackages of Text_IO, then join common routine.
639 Check_Text_IO_Special_Unit (Name (N));
641 Analyze_Generic_Renaming (N, E_Generic_Package);
642 end Analyze_Generic_Package_Renaming;
644 ----------------------------------------
645 -- Analyze_Generic_Procedure_Renaming --
646 ----------------------------------------
648 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
649 begin
650 Analyze_Generic_Renaming (N, E_Generic_Procedure);
651 end Analyze_Generic_Procedure_Renaming;
653 ------------------------------
654 -- Analyze_Generic_Renaming --
655 ------------------------------
657 procedure Analyze_Generic_Renaming
658 (N : Node_Id;
659 K : Entity_Kind)
661 New_P : constant Entity_Id := Defining_Entity (N);
662 Inst : Boolean := False;
663 Old_P : Entity_Id;
665 begin
666 if Name (N) = Error then
667 return;
668 end if;
670 Check_SPARK_05_Restriction ("generic renaming is not allowed", N);
672 Generate_Definition (New_P);
674 if Current_Scope /= Standard_Standard then
675 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
676 end if;
678 if Nkind (Name (N)) = N_Selected_Component then
679 Check_Generic_Child_Unit (Name (N), Inst);
680 else
681 Analyze (Name (N));
682 end if;
684 if not Is_Entity_Name (Name (N)) then
685 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
686 Old_P := Any_Id;
687 else
688 Old_P := Entity (Name (N));
689 end if;
691 Enter_Name (New_P);
692 Set_Ekind (New_P, K);
694 if Etype (Old_P) = Any_Type then
695 null;
697 elsif Ekind (Old_P) /= K then
698 Error_Msg_N ("invalid generic unit name", Name (N));
700 else
701 if Present (Renamed_Object (Old_P)) then
702 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
703 else
704 Set_Renamed_Object (New_P, Old_P);
705 end if;
707 -- The generic renaming declaration may become Ghost if it renames a
708 -- Ghost entity.
710 Mark_Ghost_Renaming (N, Old_P);
712 Set_Is_Pure (New_P, Is_Pure (Old_P));
713 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
715 Set_Etype (New_P, Etype (Old_P));
716 Set_Has_Completion (New_P);
718 if In_Open_Scopes (Old_P) then
719 Error_Msg_N ("within its scope, generic denotes its instance", N);
720 end if;
722 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
723 -- renamings and subsequent instantiations of Unchecked_Conversion.
725 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
726 Set_Is_Intrinsic_Subprogram
727 (New_P, Is_Intrinsic_Subprogram (Old_P));
728 end if;
730 Check_Library_Unit_Renaming (N, Old_P);
731 end if;
733 -- Implementation-defined aspect specifications can appear in a renaming
734 -- declaration, but not language-defined ones. The call to procedure
735 -- Analyze_Aspect_Specifications will take care of this error check.
737 if Has_Aspects (N) then
738 Analyze_Aspect_Specifications (N, New_P);
739 end if;
740 end Analyze_Generic_Renaming;
742 -----------------------------
743 -- Analyze_Object_Renaming --
744 -----------------------------
746 procedure Analyze_Object_Renaming (N : Node_Id) is
747 Id : constant Entity_Id := Defining_Identifier (N);
748 Loc : constant Source_Ptr := Sloc (N);
749 Nam : constant Node_Id := Name (N);
750 Dec : Node_Id;
751 T : Entity_Id;
752 T2 : Entity_Id;
754 procedure Check_Constrained_Object;
755 -- If the nominal type is unconstrained but the renamed object is
756 -- constrained, as can happen with renaming an explicit dereference or
757 -- a function return, build a constrained subtype from the object. If
758 -- the renaming is for a formal in an accept statement, the analysis
759 -- has already established its actual subtype. This is only relevant
760 -- if the renamed object is an explicit dereference.
762 ------------------------------
763 -- Check_Constrained_Object --
764 ------------------------------
766 procedure Check_Constrained_Object is
767 Typ : constant Entity_Id := Etype (Nam);
768 Subt : Entity_Id;
770 begin
771 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
772 and then Is_Composite_Type (Etype (Nam))
773 and then not Is_Constrained (Etype (Nam))
774 and then not Has_Unknown_Discriminants (Etype (Nam))
775 and then Expander_Active
776 then
777 -- If Actual_Subtype is already set, nothing to do
779 if Ekind_In (Id, E_Variable, E_Constant)
780 and then Present (Actual_Subtype (Id))
781 then
782 null;
784 -- A renaming of an unchecked union has no actual subtype
786 elsif Is_Unchecked_Union (Typ) then
787 null;
789 -- If a record is limited its size is invariant. This is the case
790 -- in particular with record types with an access discirminant
791 -- that are used in iterators. This is an optimization, but it
792 -- also prevents typing anomalies when the prefix is further
793 -- expanded. Limited types with discriminants are included.
795 elsif Is_Limited_Record (Typ)
796 or else
797 (Ekind (Typ) = E_Limited_Private_Type
798 and then Has_Discriminants (Typ)
799 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
800 then
801 null;
803 else
804 Subt := Make_Temporary (Loc, 'T');
805 Remove_Side_Effects (Nam);
806 Insert_Action (N,
807 Make_Subtype_Declaration (Loc,
808 Defining_Identifier => Subt,
809 Subtype_Indication =>
810 Make_Subtype_From_Expr (Nam, Typ)));
811 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
812 Set_Etype (Nam, Subt);
814 -- Freeze subtype at once, to prevent order of elaboration
815 -- issues in the backend. The renamed object exists, so its
816 -- type is already frozen in any case.
818 Freeze_Before (N, Subt);
819 end if;
820 end if;
821 end Check_Constrained_Object;
823 -- Start of processing for Analyze_Object_Renaming
825 begin
826 if Nam = Error then
827 return;
828 end if;
830 Check_SPARK_05_Restriction ("object renaming is not allowed", N);
832 Set_Is_Pure (Id, Is_Pure (Current_Scope));
833 Enter_Name (Id);
835 -- The renaming of a component that depends on a discriminant requires
836 -- an actual subtype, because in subsequent use of the object Gigi will
837 -- be unable to locate the actual bounds. This explicit step is required
838 -- when the renaming is generated in removing side effects of an
839 -- already-analyzed expression.
841 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
843 -- The object renaming declaration may become Ghost if it renames a
844 -- Ghost entity.
846 if Is_Entity_Name (Nam) then
847 Mark_Ghost_Renaming (N, Entity (Nam));
848 end if;
850 T := Etype (Nam);
851 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
853 if Present (Dec) then
854 Insert_Action (N, Dec);
855 T := Defining_Identifier (Dec);
856 Set_Etype (Nam, T);
857 end if;
859 -- Complete analysis of the subtype mark in any case, for ASIS use
861 if Present (Subtype_Mark (N)) then
862 Find_Type (Subtype_Mark (N));
863 end if;
865 elsif Present (Subtype_Mark (N)) then
866 Find_Type (Subtype_Mark (N));
867 T := Entity (Subtype_Mark (N));
868 Analyze (Nam);
870 -- The object renaming declaration may become Ghost if it renames a
871 -- Ghost entity.
873 if Is_Entity_Name (Nam) then
874 Mark_Ghost_Renaming (N, Entity (Nam));
875 end if;
877 -- Reject renamings of conversions unless the type is tagged, or
878 -- the conversion is implicit (which can occur for cases of anonymous
879 -- access types in Ada 2012).
881 if Nkind (Nam) = N_Type_Conversion
882 and then Comes_From_Source (Nam)
883 and then not Is_Tagged_Type (T)
884 then
885 Error_Msg_N
886 ("renaming of conversion only allowed for tagged types", Nam);
887 end if;
889 Resolve (Nam, T);
891 -- If the renamed object is a function call of a limited type,
892 -- the expansion of the renaming is complicated by the presence
893 -- of various temporaries and subtypes that capture constraints
894 -- of the renamed object. Rewrite node as an object declaration,
895 -- whose expansion is simpler. Given that the object is limited
896 -- there is no copy involved and no performance hit.
898 if Nkind (Nam) = N_Function_Call
899 and then Is_Limited_View (Etype (Nam))
900 and then not Is_Constrained (Etype (Nam))
901 and then Comes_From_Source (N)
902 then
903 Set_Etype (Id, T);
904 Set_Ekind (Id, E_Constant);
905 Rewrite (N,
906 Make_Object_Declaration (Loc,
907 Defining_Identifier => Id,
908 Constant_Present => True,
909 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
910 Expression => Relocate_Node (Nam)));
911 return;
912 end if;
914 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
915 -- when renaming declaration has a named access type. The Ada 2012
916 -- coverage rules allow an anonymous access type in the context of
917 -- an expected named general access type, but the renaming rules
918 -- require the types to be the same. (An exception is when the type
919 -- of the renaming is also an anonymous access type, which can only
920 -- happen due to a renaming created by the expander.)
922 if Nkind (Nam) = N_Type_Conversion
923 and then not Comes_From_Source (Nam)
924 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
925 and then Ekind (T) /= E_Anonymous_Access_Type
926 then
927 Wrong_Type (Expression (Nam), T); -- Should we give better error???
928 end if;
930 -- Check that a class-wide object is not being renamed as an object
931 -- of a specific type. The test for access types is needed to exclude
932 -- cases where the renamed object is a dynamically tagged access
933 -- result, such as occurs in certain expansions.
935 if Is_Tagged_Type (T) then
936 Check_Dynamically_Tagged_Expression
937 (Expr => Nam,
938 Typ => T,
939 Related_Nod => N);
940 end if;
942 -- Ada 2005 (AI-230/AI-254): Access renaming
944 else pragma Assert (Present (Access_Definition (N)));
945 T :=
946 Access_Definition
947 (Related_Nod => N,
948 N => Access_Definition (N));
950 Analyze (Nam);
952 -- The object renaming declaration may become Ghost if it renames a
953 -- Ghost entity.
955 if Is_Entity_Name (Nam) then
956 Mark_Ghost_Renaming (N, Entity (Nam));
957 end if;
959 -- Ada 2005 AI05-105: if the declaration has an anonymous access
960 -- type, the renamed object must also have an anonymous type, and
961 -- this is a name resolution rule. This was implicit in the last part
962 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
963 -- recent AI.
965 if not Is_Overloaded (Nam) then
966 if Ekind (Etype (Nam)) /= Ekind (T) then
967 Error_Msg_N
968 ("expect anonymous access type in object renaming", N);
969 end if;
971 else
972 declare
973 I : Interp_Index;
974 It : Interp;
975 Typ : Entity_Id := Empty;
976 Seen : Boolean := False;
978 begin
979 Get_First_Interp (Nam, I, It);
980 while Present (It.Typ) loop
982 -- Renaming is ambiguous if more than one candidate
983 -- interpretation is type-conformant with the context.
985 if Ekind (It.Typ) = Ekind (T) then
986 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
987 and then
988 Type_Conformant
989 (Designated_Type (T), Designated_Type (It.Typ))
990 then
991 if not Seen then
992 Seen := True;
993 else
994 Error_Msg_N
995 ("ambiguous expression in renaming", Nam);
996 end if;
998 elsif Ekind (T) = E_Anonymous_Access_Type
999 and then
1000 Covers (Designated_Type (T), Designated_Type (It.Typ))
1001 then
1002 if not Seen then
1003 Seen := True;
1004 else
1005 Error_Msg_N
1006 ("ambiguous expression in renaming", Nam);
1007 end if;
1008 end if;
1010 if Covers (T, It.Typ) then
1011 Typ := It.Typ;
1012 Set_Etype (Nam, Typ);
1013 Set_Is_Overloaded (Nam, False);
1014 end if;
1015 end if;
1017 Get_Next_Interp (I, It);
1018 end loop;
1019 end;
1020 end if;
1022 Resolve (Nam, T);
1024 -- Do not perform the legality checks below when the resolution of
1025 -- the renaming name failed because the associated type is Any_Type.
1027 if Etype (Nam) = Any_Type then
1028 null;
1030 -- Ada 2005 (AI-231): In the case where the type is defined by an
1031 -- access_definition, the renamed entity shall be of an access-to-
1032 -- constant type if and only if the access_definition defines an
1033 -- access-to-constant type. ARM 8.5.1(4)
1035 elsif Constant_Present (Access_Definition (N))
1036 and then not Is_Access_Constant (Etype (Nam))
1037 then
1038 Error_Msg_N
1039 ("(Ada 2005): the renamed object is not access-to-constant "
1040 & "(RM 8.5.1(6))", N);
1042 elsif not Constant_Present (Access_Definition (N))
1043 and then Is_Access_Constant (Etype (Nam))
1044 then
1045 Error_Msg_N
1046 ("(Ada 2005): the renamed object is not access-to-variable "
1047 & "(RM 8.5.1(6))", N);
1048 end if;
1050 if Is_Access_Subprogram_Type (Etype (Nam)) then
1051 Check_Subtype_Conformant
1052 (Designated_Type (T), Designated_Type (Etype (Nam)));
1054 elsif not Subtypes_Statically_Match
1055 (Designated_Type (T),
1056 Available_View (Designated_Type (Etype (Nam))))
1057 then
1058 Error_Msg_N
1059 ("subtype of renamed object does not statically match", N);
1060 end if;
1061 end if;
1063 -- Special processing for renaming function return object. Some errors
1064 -- and warnings are produced only for calls that come from source.
1066 if Nkind (Nam) = N_Function_Call then
1067 case Ada_Version is
1069 -- Usage is illegal in Ada 83, but renamings are also introduced
1070 -- during expansion, and error does not apply to those.
1072 when Ada_83 =>
1073 if Comes_From_Source (N) then
1074 Error_Msg_N
1075 ("(Ada 83) cannot rename function return object", Nam);
1076 end if;
1078 -- In Ada 95, warn for odd case of renaming parameterless function
1079 -- call if this is not a limited type (where this is useful).
1081 when others =>
1082 if Warn_On_Object_Renames_Function
1083 and then No (Parameter_Associations (Nam))
1084 and then not Is_Limited_Type (Etype (Nam))
1085 and then Comes_From_Source (Nam)
1086 then
1087 Error_Msg_N
1088 ("renaming function result object is suspicious?R?", Nam);
1089 Error_Msg_NE
1090 ("\function & will be called only once?R?", Nam,
1091 Entity (Name (Nam)));
1092 Error_Msg_N -- CODEFIX
1093 ("\suggest using an initialized constant "
1094 & "object instead?R?", Nam);
1095 end if;
1096 end case;
1097 end if;
1099 Check_Constrained_Object;
1101 -- An object renaming requires an exact match of the type. Class-wide
1102 -- matching is not allowed.
1104 if Is_Class_Wide_Type (T)
1105 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1106 then
1107 Wrong_Type (Nam, T);
1108 end if;
1110 T2 := Etype (Nam);
1112 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1114 if Nkind (Nam) = N_Explicit_Dereference
1115 and then Ekind (Etype (T2)) = E_Incomplete_Type
1116 then
1117 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1118 return;
1120 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1121 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1122 return;
1123 end if;
1125 -- Ada 2005 (AI-327)
1127 if Ada_Version >= Ada_2005
1128 and then Nkind (Nam) = N_Attribute_Reference
1129 and then Attribute_Name (Nam) = Name_Priority
1130 then
1131 null;
1133 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1134 declare
1135 Nam_Decl : Node_Id;
1136 Nam_Ent : Entity_Id;
1138 begin
1139 if Nkind (Nam) = N_Attribute_Reference then
1140 Nam_Ent := Entity (Prefix (Nam));
1141 else
1142 Nam_Ent := Entity (Nam);
1143 end if;
1145 Nam_Decl := Parent (Nam_Ent);
1147 if Has_Null_Exclusion (N)
1148 and then not Has_Null_Exclusion (Nam_Decl)
1149 then
1150 -- Ada 2005 (AI-423): If the object name denotes a generic
1151 -- formal object of a generic unit G, and the object renaming
1152 -- declaration occurs within the body of G or within the body
1153 -- of a generic unit declared within the declarative region
1154 -- of G, then the declaration of the formal object of G must
1155 -- have a null exclusion or a null-excluding subtype.
1157 if Is_Formal_Object (Nam_Ent)
1158 and then In_Generic_Scope (Id)
1159 then
1160 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1161 Error_Msg_N
1162 ("renamed formal does not exclude `NULL` "
1163 & "(RM 8.5.1(4.6/2))", N);
1165 elsif In_Package_Body (Scope (Id)) then
1166 Error_Msg_N
1167 ("formal object does not have a null exclusion"
1168 & "(RM 8.5.1(4.6/2))", N);
1169 end if;
1171 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1172 -- shall exclude null.
1174 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1175 Error_Msg_N
1176 ("renamed object does not exclude `NULL` "
1177 & "(RM 8.5.1(4.6/2))", N);
1179 -- An instance is illegal if it contains a renaming that
1180 -- excludes null, and the actual does not. The renaming
1181 -- declaration has already indicated that the declaration
1182 -- of the renamed actual in the instance will raise
1183 -- constraint_error.
1185 elsif Nkind (Nam_Decl) = N_Object_Declaration
1186 and then In_Instance
1187 and then
1188 Present (Corresponding_Generic_Association (Nam_Decl))
1189 and then Nkind (Expression (Nam_Decl)) =
1190 N_Raise_Constraint_Error
1191 then
1192 Error_Msg_N
1193 ("renamed actual does not exclude `NULL` "
1194 & "(RM 8.5.1(4.6/2))", N);
1196 -- Finally, if there is a null exclusion, the subtype mark
1197 -- must not be null-excluding.
1199 elsif No (Access_Definition (N))
1200 and then Can_Never_Be_Null (T)
1201 then
1202 Error_Msg_NE
1203 ("`NOT NULL` not allowed (& already excludes null)",
1204 N, T);
1206 end if;
1208 elsif Can_Never_Be_Null (T)
1209 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1210 then
1211 Error_Msg_N
1212 ("renamed object does not exclude `NULL` "
1213 & "(RM 8.5.1(4.6/2))", N);
1215 elsif Has_Null_Exclusion (N)
1216 and then No (Access_Definition (N))
1217 and then Can_Never_Be_Null (T)
1218 then
1219 Error_Msg_NE
1220 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1221 end if;
1222 end;
1223 end if;
1225 -- Set the Ekind of the entity, unless it has been set already, as is
1226 -- the case for the iteration object over a container with no variable
1227 -- indexing. In that case it's been marked as a constant, and we do not
1228 -- want to change it to a variable.
1230 if Ekind (Id) /= E_Constant then
1231 Set_Ekind (Id, E_Variable);
1232 end if;
1234 -- Initialize the object size and alignment. Note that we used to call
1235 -- Init_Size_Align here, but that's wrong for objects which have only
1236 -- an Esize, not an RM_Size field.
1238 Init_Object_Size_Align (Id);
1240 if T = Any_Type or else Etype (Nam) = Any_Type then
1241 return;
1243 -- Verify that the renamed entity is an object or a function call. It
1244 -- may have been rewritten in several ways.
1246 elsif Is_Object_Reference (Nam) then
1247 if Comes_From_Source (N) then
1248 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1249 Error_Msg_N
1250 ("illegal renaming of discriminant-dependent component", Nam);
1251 end if;
1253 -- If the renaming comes from source and the renamed object is a
1254 -- dereference, then mark the prefix as needing debug information,
1255 -- since it might have been rewritten hence internally generated
1256 -- and Debug_Renaming_Declaration will link the renaming to it.
1258 if Nkind (Nam) = N_Explicit_Dereference
1259 and then Is_Entity_Name (Prefix (Nam))
1260 then
1261 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1262 end if;
1263 end if;
1265 -- A static function call may have been folded into a literal
1267 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1269 -- When expansion is disabled, attribute reference is not rewritten
1270 -- as function call. Otherwise it may be rewritten as a conversion,
1271 -- so check original node.
1273 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1274 and then Is_Function_Attribute_Name
1275 (Attribute_Name (Original_Node (Nam))))
1277 -- Weird but legal, equivalent to renaming a function call. Illegal
1278 -- if the literal is the result of constant-folding an attribute
1279 -- reference that is not a function.
1281 or else (Is_Entity_Name (Nam)
1282 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1283 and then
1284 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1286 or else (Nkind (Nam) = N_Type_Conversion
1287 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1288 then
1289 null;
1291 elsif Nkind (Nam) = N_Type_Conversion then
1292 Error_Msg_N
1293 ("renaming of conversion only allowed for tagged types", Nam);
1295 -- Ada 2005 (AI-327)
1297 elsif Ada_Version >= Ada_2005
1298 and then Nkind (Nam) = N_Attribute_Reference
1299 and then Attribute_Name (Nam) = Name_Priority
1300 then
1301 null;
1303 -- Allow internally generated x'Ref resulting in N_Reference node
1305 elsif Nkind (Nam) = N_Reference then
1306 null;
1308 else
1309 Error_Msg_N ("expect object name in renaming", Nam);
1310 end if;
1312 Set_Etype (Id, T2);
1314 if not Is_Variable (Nam) then
1315 Set_Ekind (Id, E_Constant);
1316 Set_Never_Set_In_Source (Id, True);
1317 Set_Is_True_Constant (Id, True);
1318 end if;
1320 -- The entity of the renaming declaration needs to reflect whether the
1321 -- renamed object is volatile. Is_Volatile is set if the renamed object
1322 -- is volatile in the RM legality sense.
1324 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1326 -- Also copy settings of Atomic/Independent/Volatile_Full_Access
1328 if Is_Entity_Name (Nam) then
1329 Set_Is_Atomic (Id, Is_Atomic (Entity (Nam)));
1330 Set_Is_Independent (Id, Is_Independent (Entity (Nam)));
1331 Set_Is_Volatile_Full_Access (Id,
1332 Is_Volatile_Full_Access (Entity (Nam)));
1333 end if;
1335 -- Treat as volatile if we just set the Volatile flag
1337 if Is_Volatile (Id)
1339 -- Or if we are renaming an entity which was marked this way
1341 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1343 or else (Is_Entity_Name (Nam)
1344 and then Treat_As_Volatile (Entity (Nam)))
1345 then
1346 Set_Treat_As_Volatile (Id, True);
1347 end if;
1349 -- Now make the link to the renamed object
1351 Set_Renamed_Object (Id, Nam);
1353 -- Implementation-defined aspect specifications can appear in a renaming
1354 -- declaration, but not language-defined ones. The call to procedure
1355 -- Analyze_Aspect_Specifications will take care of this error check.
1357 if Has_Aspects (N) then
1358 Analyze_Aspect_Specifications (N, Id);
1359 end if;
1361 -- Deal with dimensions
1363 Analyze_Dimension (N);
1364 end Analyze_Object_Renaming;
1366 ------------------------------
1367 -- Analyze_Package_Renaming --
1368 ------------------------------
1370 procedure Analyze_Package_Renaming (N : Node_Id) is
1371 New_P : constant Entity_Id := Defining_Entity (N);
1372 Old_P : Entity_Id;
1373 Spec : Node_Id;
1375 begin
1376 if Name (N) = Error then
1377 return;
1378 end if;
1380 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1382 Check_Text_IO_Special_Unit (Name (N));
1384 if Current_Scope /= Standard_Standard then
1385 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1386 end if;
1388 Enter_Name (New_P);
1389 Analyze (Name (N));
1391 if Is_Entity_Name (Name (N)) then
1392 Old_P := Entity (Name (N));
1393 else
1394 Old_P := Any_Id;
1395 end if;
1397 if Etype (Old_P) = Any_Type then
1398 Error_Msg_N ("expect package name in renaming", Name (N));
1400 elsif Ekind (Old_P) /= E_Package
1401 and then not (Ekind (Old_P) = E_Generic_Package
1402 and then In_Open_Scopes (Old_P))
1403 then
1404 if Ekind (Old_P) = E_Generic_Package then
1405 Error_Msg_N
1406 ("generic package cannot be renamed as a package", Name (N));
1407 else
1408 Error_Msg_Sloc := Sloc (Old_P);
1409 Error_Msg_NE
1410 ("expect package name in renaming, found& declared#",
1411 Name (N), Old_P);
1412 end if;
1414 -- Set basic attributes to minimize cascaded errors
1416 Set_Ekind (New_P, E_Package);
1417 Set_Etype (New_P, Standard_Void_Type);
1419 -- Here for OK package renaming
1421 else
1422 -- Entities in the old package are accessible through the renaming
1423 -- entity. The simplest implementation is to have both packages share
1424 -- the entity list.
1426 Set_Ekind (New_P, E_Package);
1427 Set_Etype (New_P, Standard_Void_Type);
1429 if Present (Renamed_Object (Old_P)) then
1430 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1431 else
1432 Set_Renamed_Object (New_P, Old_P);
1433 end if;
1435 -- The package renaming declaration may become Ghost if it renames a
1436 -- Ghost entity.
1438 Mark_Ghost_Renaming (N, Old_P);
1440 Set_Has_Completion (New_P);
1441 Set_First_Entity (New_P, First_Entity (Old_P));
1442 Set_Last_Entity (New_P, Last_Entity (Old_P));
1443 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1444 Check_Library_Unit_Renaming (N, Old_P);
1445 Generate_Reference (Old_P, Name (N));
1447 -- If the renaming is in the visible part of a package, then we set
1448 -- Renamed_In_Spec for the renamed package, to prevent giving
1449 -- warnings about no entities referenced. Such a warning would be
1450 -- overenthusiastic, since clients can see entities in the renamed
1451 -- package via the visible package renaming.
1453 declare
1454 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1455 begin
1456 if Ekind (Ent) = E_Package
1457 and then not In_Private_Part (Ent)
1458 and then In_Extended_Main_Source_Unit (N)
1459 and then Ekind (Old_P) = E_Package
1460 then
1461 Set_Renamed_In_Spec (Old_P);
1462 end if;
1463 end;
1465 -- If this is the renaming declaration of a package instantiation
1466 -- within itself, it is the declaration that ends the list of actuals
1467 -- for the instantiation. At this point, the subtypes that rename
1468 -- the actuals are flagged as generic, to avoid spurious ambiguities
1469 -- if the actuals for two distinct formals happen to coincide. If
1470 -- the actual is a private type, the subtype has a private completion
1471 -- that is flagged in the same fashion.
1473 -- Resolution is identical to what is was in the original generic.
1474 -- On exit from the generic instance, these are turned into regular
1475 -- subtypes again, so they are compatible with types in their class.
1477 if not Is_Generic_Instance (Old_P) then
1478 return;
1479 else
1480 Spec := Specification (Unit_Declaration_Node (Old_P));
1481 end if;
1483 if Nkind (Spec) = N_Package_Specification
1484 and then Present (Generic_Parent (Spec))
1485 and then Old_P = Current_Scope
1486 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1487 then
1488 declare
1489 E : Entity_Id;
1491 begin
1492 E := First_Entity (Old_P);
1493 while Present (E) and then E /= New_P loop
1494 if Is_Type (E)
1495 and then Nkind (Parent (E)) = N_Subtype_Declaration
1496 then
1497 Set_Is_Generic_Actual_Type (E);
1499 if Is_Private_Type (E)
1500 and then Present (Full_View (E))
1501 then
1502 Set_Is_Generic_Actual_Type (Full_View (E));
1503 end if;
1504 end if;
1506 Next_Entity (E);
1507 end loop;
1508 end;
1509 end if;
1510 end if;
1512 -- Implementation-defined aspect specifications can appear in a renaming
1513 -- declaration, but not language-defined ones. The call to procedure
1514 -- Analyze_Aspect_Specifications will take care of this error check.
1516 if Has_Aspects (N) then
1517 Analyze_Aspect_Specifications (N, New_P);
1518 end if;
1519 end Analyze_Package_Renaming;
1521 -------------------------------
1522 -- Analyze_Renamed_Character --
1523 -------------------------------
1525 procedure Analyze_Renamed_Character
1526 (N : Node_Id;
1527 New_S : Entity_Id;
1528 Is_Body : Boolean)
1530 C : constant Node_Id := Name (N);
1532 begin
1533 if Ekind (New_S) = E_Function then
1534 Resolve (C, Etype (New_S));
1536 if Is_Body then
1537 Check_Frozen_Renaming (N, New_S);
1538 end if;
1540 else
1541 Error_Msg_N ("character literal can only be renamed as function", N);
1542 end if;
1543 end Analyze_Renamed_Character;
1545 ---------------------------------
1546 -- Analyze_Renamed_Dereference --
1547 ---------------------------------
1549 procedure Analyze_Renamed_Dereference
1550 (N : Node_Id;
1551 New_S : Entity_Id;
1552 Is_Body : Boolean)
1554 Nam : constant Node_Id := Name (N);
1555 P : constant Node_Id := Prefix (Nam);
1556 Typ : Entity_Id;
1557 Ind : Interp_Index;
1558 It : Interp;
1560 begin
1561 if not Is_Overloaded (P) then
1562 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1563 or else not Type_Conformant (Etype (Nam), New_S)
1564 then
1565 Error_Msg_N ("designated type does not match specification", P);
1566 else
1567 Resolve (P);
1568 end if;
1570 return;
1572 else
1573 Typ := Any_Type;
1574 Get_First_Interp (Nam, Ind, It);
1576 while Present (It.Nam) loop
1578 if Ekind (It.Nam) = E_Subprogram_Type
1579 and then Type_Conformant (It.Nam, New_S)
1580 then
1581 if Typ /= Any_Id then
1582 Error_Msg_N ("ambiguous renaming", P);
1583 return;
1584 else
1585 Typ := It.Nam;
1586 end if;
1587 end if;
1589 Get_Next_Interp (Ind, It);
1590 end loop;
1592 if Typ = Any_Type then
1593 Error_Msg_N ("designated type does not match specification", P);
1594 else
1595 Resolve (N, Typ);
1597 if Is_Body then
1598 Check_Frozen_Renaming (N, New_S);
1599 end if;
1600 end if;
1601 end if;
1602 end Analyze_Renamed_Dereference;
1604 ---------------------------
1605 -- Analyze_Renamed_Entry --
1606 ---------------------------
1608 procedure Analyze_Renamed_Entry
1609 (N : Node_Id;
1610 New_S : Entity_Id;
1611 Is_Body : Boolean)
1613 Nam : constant Node_Id := Name (N);
1614 Sel : constant Node_Id := Selector_Name (Nam);
1615 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1616 Old_S : Entity_Id;
1618 begin
1619 if Entity (Sel) = Any_Id then
1621 -- Selector is undefined on prefix. Error emitted already
1623 Set_Has_Completion (New_S);
1624 return;
1625 end if;
1627 -- Otherwise find renamed entity and build body of New_S as a call to it
1629 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1631 if Old_S = Any_Id then
1632 Error_Msg_N (" no subprogram or entry matches specification", N);
1633 else
1634 if Is_Body then
1635 Check_Subtype_Conformant (New_S, Old_S, N);
1636 Generate_Reference (New_S, Defining_Entity (N), 'b');
1637 Style.Check_Identifier (Defining_Entity (N), New_S);
1639 else
1640 -- Only mode conformance required for a renaming_as_declaration
1642 Check_Mode_Conformant (New_S, Old_S, N);
1643 end if;
1645 Inherit_Renamed_Profile (New_S, Old_S);
1647 -- The prefix can be an arbitrary expression that yields a task or
1648 -- protected object, so it must be resolved.
1650 Resolve (Prefix (Nam), Scope (Old_S));
1651 end if;
1653 Set_Convention (New_S, Convention (Old_S));
1654 Set_Has_Completion (New_S, Inside_A_Generic);
1656 -- AI05-0225: If the renamed entity is a procedure or entry of a
1657 -- protected object, the target object must be a variable.
1659 if Ekind (Scope (Old_S)) in Protected_Kind
1660 and then Ekind (New_S) = E_Procedure
1661 and then not Is_Variable (Prefix (Nam))
1662 then
1663 if Is_Actual then
1664 Error_Msg_N
1665 ("target object of protected operation used as actual for "
1666 & "formal procedure must be a variable", Nam);
1667 else
1668 Error_Msg_N
1669 ("target object of protected operation renamed as procedure, "
1670 & "must be a variable", Nam);
1671 end if;
1672 end if;
1674 if Is_Body then
1675 Check_Frozen_Renaming (N, New_S);
1676 end if;
1677 end Analyze_Renamed_Entry;
1679 -----------------------------------
1680 -- Analyze_Renamed_Family_Member --
1681 -----------------------------------
1683 procedure Analyze_Renamed_Family_Member
1684 (N : Node_Id;
1685 New_S : Entity_Id;
1686 Is_Body : Boolean)
1688 Nam : constant Node_Id := Name (N);
1689 P : constant Node_Id := Prefix (Nam);
1690 Old_S : Entity_Id;
1692 begin
1693 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1694 or else (Nkind (P) = N_Selected_Component
1695 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1696 then
1697 if Is_Entity_Name (P) then
1698 Old_S := Entity (P);
1699 else
1700 Old_S := Entity (Selector_Name (P));
1701 end if;
1703 if not Entity_Matches_Spec (Old_S, New_S) then
1704 Error_Msg_N ("entry family does not match specification", N);
1706 elsif Is_Body then
1707 Check_Subtype_Conformant (New_S, Old_S, N);
1708 Generate_Reference (New_S, Defining_Entity (N), 'b');
1709 Style.Check_Identifier (Defining_Entity (N), New_S);
1710 end if;
1712 else
1713 Error_Msg_N ("no entry family matches specification", N);
1714 end if;
1716 Set_Has_Completion (New_S, Inside_A_Generic);
1718 if Is_Body then
1719 Check_Frozen_Renaming (N, New_S);
1720 end if;
1721 end Analyze_Renamed_Family_Member;
1723 -----------------------------------------
1724 -- Analyze_Renamed_Primitive_Operation --
1725 -----------------------------------------
1727 procedure Analyze_Renamed_Primitive_Operation
1728 (N : Node_Id;
1729 New_S : Entity_Id;
1730 Is_Body : Boolean)
1732 Old_S : Entity_Id;
1734 function Conforms
1735 (Subp : Entity_Id;
1736 Ctyp : Conformance_Type) return Boolean;
1737 -- Verify that the signatures of the renamed entity and the new entity
1738 -- match. The first formal of the renamed entity is skipped because it
1739 -- is the target object in any subsequent call.
1741 --------------
1742 -- Conforms --
1743 --------------
1745 function Conforms
1746 (Subp : Entity_Id;
1747 Ctyp : Conformance_Type) return Boolean
1749 Old_F : Entity_Id;
1750 New_F : Entity_Id;
1752 begin
1753 if Ekind (Subp) /= Ekind (New_S) then
1754 return False;
1755 end if;
1757 Old_F := Next_Formal (First_Formal (Subp));
1758 New_F := First_Formal (New_S);
1759 while Present (Old_F) and then Present (New_F) loop
1760 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1761 return False;
1762 end if;
1764 if Ctyp >= Mode_Conformant
1765 and then Ekind (Old_F) /= Ekind (New_F)
1766 then
1767 return False;
1768 end if;
1770 Next_Formal (New_F);
1771 Next_Formal (Old_F);
1772 end loop;
1774 return True;
1775 end Conforms;
1777 -- Start of processing for Analyze_Renamed_Primitive_Operation
1779 begin
1780 if not Is_Overloaded (Selector_Name (Name (N))) then
1781 Old_S := Entity (Selector_Name (Name (N)));
1783 if not Conforms (Old_S, Type_Conformant) then
1784 Old_S := Any_Id;
1785 end if;
1787 else
1788 -- Find the operation that matches the given signature
1790 declare
1791 It : Interp;
1792 Ind : Interp_Index;
1794 begin
1795 Old_S := Any_Id;
1796 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1798 while Present (It.Nam) loop
1799 if Conforms (It.Nam, Type_Conformant) then
1800 Old_S := It.Nam;
1801 end if;
1803 Get_Next_Interp (Ind, It);
1804 end loop;
1805 end;
1806 end if;
1808 if Old_S = Any_Id then
1809 Error_Msg_N (" no subprogram or entry matches specification", N);
1811 else
1812 if Is_Body then
1813 if not Conforms (Old_S, Subtype_Conformant) then
1814 Error_Msg_N ("subtype conformance error in renaming", N);
1815 end if;
1817 Generate_Reference (New_S, Defining_Entity (N), 'b');
1818 Style.Check_Identifier (Defining_Entity (N), New_S);
1820 else
1821 -- Only mode conformance required for a renaming_as_declaration
1823 if not Conforms (Old_S, Mode_Conformant) then
1824 Error_Msg_N ("mode conformance error in renaming", N);
1825 end if;
1827 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1828 -- view of a subprogram is intrinsic, because the compiler has
1829 -- to generate a wrapper for any call to it. If the name in a
1830 -- subprogram renaming is a prefixed view, the entity is thus
1831 -- intrinsic, and 'Access cannot be applied to it.
1833 Set_Convention (New_S, Convention_Intrinsic);
1834 end if;
1836 -- Inherit_Renamed_Profile (New_S, Old_S);
1838 -- The prefix can be an arbitrary expression that yields an
1839 -- object, so it must be resolved.
1841 Resolve (Prefix (Name (N)));
1842 end if;
1843 end Analyze_Renamed_Primitive_Operation;
1845 ---------------------------------
1846 -- Analyze_Subprogram_Renaming --
1847 ---------------------------------
1849 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1850 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1851 Is_Actual : constant Boolean := Present (Formal_Spec);
1852 Nam : constant Node_Id := Name (N);
1853 Save_AV : constant Ada_Version_Type := Ada_Version;
1854 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1855 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1856 Spec : constant Node_Id := Specification (N);
1858 Old_S : Entity_Id := Empty;
1859 Rename_Spec : Entity_Id;
1861 procedure Build_Class_Wide_Wrapper
1862 (Ren_Id : out Entity_Id;
1863 Wrap_Id : out Entity_Id);
1864 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1865 -- type with unknown discriminants and a generic primitive operation of
1866 -- the said type with a box require special processing when the actual
1867 -- is a class-wide type:
1869 -- generic
1870 -- type Formal_Typ (<>) is private;
1871 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1872 -- package Gen is ...
1874 -- package Inst is new Gen (Actual_Typ'Class);
1876 -- In this case the general renaming mechanism used in the prologue of
1877 -- an instance no longer applies:
1879 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1881 -- The above is replaced the following wrapper/renaming combination:
1883 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1884 -- begin
1885 -- Prim_Op (Param); -- primitive
1886 -- end Wrapper;
1888 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1890 -- This transformation applies only if there is no explicit visible
1891 -- class-wide operation at the point of the instantiation. Ren_Id is
1892 -- the entity of the renaming declaration. When the transformation
1893 -- applies, Wrap_Id is the entity of the generated class-wide wrapper
1894 -- (or Any_Id). Otherwise, Wrap_Id is the entity of the class-wide
1895 -- operation.
1897 procedure Check_Null_Exclusion
1898 (Ren : Entity_Id;
1899 Sub : Entity_Id);
1900 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1901 -- following AI rules:
1903 -- If Ren is a renaming of a formal subprogram and one of its
1904 -- parameters has a null exclusion, then the corresponding formal
1905 -- in Sub must also have one. Otherwise the subtype of the Sub's
1906 -- formal parameter must exclude null.
1908 -- If Ren is a renaming of a formal function and its return
1909 -- profile has a null exclusion, then Sub's return profile must
1910 -- have one. Otherwise the subtype of Sub's return profile must
1911 -- exclude null.
1913 procedure Freeze_Actual_Profile;
1914 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1915 -- types: a callable entity freezes its profile, unless it has an
1916 -- incomplete untagged formal (RM 13.14(10.2/3)).
1918 function Has_Class_Wide_Actual return Boolean;
1919 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1920 -- defaulted formal subprogram where the actual for the controlling
1921 -- formal type is class-wide.
1923 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1924 -- Find renamed entity when the declaration is a renaming_as_body and
1925 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1926 -- rule that a renaming_as_body is illegal if the declaration occurs
1927 -- before the subprogram it completes is frozen, and renaming indirectly
1928 -- renames the subprogram itself.(Defect Report 8652/0027).
1930 ------------------------------
1931 -- Build_Class_Wide_Wrapper --
1932 ------------------------------
1934 procedure Build_Class_Wide_Wrapper
1935 (Ren_Id : out Entity_Id;
1936 Wrap_Id : out Entity_Id)
1938 Loc : constant Source_Ptr := Sloc (N);
1940 function Build_Call
1941 (Subp_Id : Entity_Id;
1942 Params : List_Id) return Node_Id;
1943 -- Create a dispatching call to invoke routine Subp_Id with actuals
1944 -- built from the parameter specifications of list Params.
1946 function Build_Expr_Fun_Call
1947 (Subp_Id : Entity_Id;
1948 Params : List_Id) return Node_Id;
1949 -- Create a dispatching call to invoke function Subp_Id with actuals
1950 -- built from the parameter specifications of list Params. Return
1951 -- directly the call, so that it can be used inside an expression
1952 -- function. This is a specificity of the GNATprove mode.
1954 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
1955 -- Create a subprogram specification based on the subprogram profile
1956 -- of Subp_Id.
1958 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
1959 -- Find a primitive subprogram of type Typ which matches the profile
1960 -- of the renaming declaration.
1962 procedure Interpretation_Error (Subp_Id : Entity_Id);
1963 -- Emit a continuation error message suggesting subprogram Subp_Id as
1964 -- a possible interpretation.
1966 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean;
1967 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1968 -- operator.
1970 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean;
1971 -- Determine whether subprogram Subp_Id is a suitable candidate for
1972 -- the role of a wrapped subprogram.
1974 ----------------
1975 -- Build_Call --
1976 ----------------
1978 function Build_Call
1979 (Subp_Id : Entity_Id;
1980 Params : List_Id) return Node_Id
1982 Actuals : constant List_Id := New_List;
1983 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
1984 Formal : Node_Id;
1986 begin
1987 -- Build the actual parameters of the call
1989 Formal := First (Params);
1990 while Present (Formal) loop
1991 Append_To (Actuals,
1992 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
1993 Next (Formal);
1994 end loop;
1996 -- Generate:
1997 -- return Subp_Id (Actuals);
1999 if Ekind_In (Subp_Id, E_Function, E_Operator) then
2000 return
2001 Make_Simple_Return_Statement (Loc,
2002 Expression =>
2003 Make_Function_Call (Loc,
2004 Name => Call_Ref,
2005 Parameter_Associations => Actuals));
2007 -- Generate:
2008 -- Subp_Id (Actuals);
2010 else
2011 return
2012 Make_Procedure_Call_Statement (Loc,
2013 Name => Call_Ref,
2014 Parameter_Associations => Actuals);
2015 end if;
2016 end Build_Call;
2018 -------------------------
2019 -- Build_Expr_Fun_Call --
2020 -------------------------
2022 function Build_Expr_Fun_Call
2023 (Subp_Id : Entity_Id;
2024 Params : List_Id) return Node_Id
2026 Actuals : constant List_Id := New_List;
2027 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2028 Formal : Node_Id;
2030 begin
2031 pragma Assert (Ekind_In (Subp_Id, E_Function, E_Operator));
2033 -- Build the actual parameters of the call
2035 Formal := First (Params);
2036 while Present (Formal) loop
2037 Append_To (Actuals,
2038 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2039 Next (Formal);
2040 end loop;
2042 -- Generate:
2043 -- Subp_Id (Actuals);
2045 return
2046 Make_Function_Call (Loc,
2047 Name => Call_Ref,
2048 Parameter_Associations => Actuals);
2049 end Build_Expr_Fun_Call;
2051 ----------------
2052 -- Build_Spec --
2053 ----------------
2055 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2056 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2057 Spec_Id : constant Entity_Id :=
2058 Make_Defining_Identifier (Loc,
2059 Chars => New_External_Name (Chars (Subp_Id), 'R'));
2061 begin
2062 if Ekind (Formal_Spec) = E_Procedure then
2063 return
2064 Make_Procedure_Specification (Loc,
2065 Defining_Unit_Name => Spec_Id,
2066 Parameter_Specifications => Params);
2067 else
2068 return
2069 Make_Function_Specification (Loc,
2070 Defining_Unit_Name => Spec_Id,
2071 Parameter_Specifications => Params,
2072 Result_Definition =>
2073 New_Copy_Tree (Result_Definition (Spec)));
2074 end if;
2075 end Build_Spec;
2077 --------------------
2078 -- Find_Primitive --
2079 --------------------
2081 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2082 procedure Replace_Parameter_Types (Spec : Node_Id);
2083 -- Given a specification Spec, replace all class-wide parameter
2084 -- types with reference to type Typ.
2086 -----------------------------
2087 -- Replace_Parameter_Types --
2088 -----------------------------
2090 procedure Replace_Parameter_Types (Spec : Node_Id) is
2091 Formal : Node_Id;
2092 Formal_Id : Entity_Id;
2093 Formal_Typ : Node_Id;
2095 begin
2096 Formal := First (Parameter_Specifications (Spec));
2097 while Present (Formal) loop
2098 Formal_Id := Defining_Identifier (Formal);
2099 Formal_Typ := Parameter_Type (Formal);
2101 -- Create a new entity for each class-wide formal to prevent
2102 -- aliasing with the original renaming. Replace the type of
2103 -- such a parameter with the candidate type.
2105 if Nkind (Formal_Typ) = N_Identifier
2106 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2107 then
2108 Set_Defining_Identifier (Formal,
2109 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2111 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2112 end if;
2114 Next (Formal);
2115 end loop;
2116 end Replace_Parameter_Types;
2118 -- Local variables
2120 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2121 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2122 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2123 Subp_Id : Entity_Id;
2125 -- Start of processing for Find_Primitive
2127 begin
2128 -- Each attempt to find a suitable primitive of a particular type
2129 -- operates on its own copy of the original renaming. As a result
2130 -- the original renaming is kept decoration and side-effect free.
2132 -- Inherit the overloaded status of the renamed subprogram name
2134 if Is_Overloaded (Nam) then
2135 Set_Is_Overloaded (Alt_Nam);
2136 Save_Interps (Nam, Alt_Nam);
2137 end if;
2139 -- The copied renaming is hidden from visibility to prevent the
2140 -- pollution of the enclosing context.
2142 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2144 -- The types of all class-wide parameters must be changed to the
2145 -- candidate type.
2147 Replace_Parameter_Types (Alt_Spec);
2149 -- Try to find a suitable primitive which matches the altered
2150 -- profile of the renaming specification.
2152 Subp_Id :=
2153 Find_Renamed_Entity
2154 (N => Alt_Ren,
2155 Nam => Name (Alt_Ren),
2156 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2157 Is_Actual => Is_Actual);
2159 -- Do not return Any_Id if the resolion of the altered profile
2160 -- failed as this complicates further checks on the caller side,
2161 -- return Empty instead.
2163 if Subp_Id = Any_Id then
2164 return Empty;
2165 else
2166 return Subp_Id;
2167 end if;
2168 end Find_Primitive;
2170 --------------------------
2171 -- Interpretation_Error --
2172 --------------------------
2174 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2175 begin
2176 Error_Msg_Sloc := Sloc (Subp_Id);
2178 if Is_Internal (Subp_Id) then
2179 Error_Msg_NE
2180 ("\\possible interpretation: predefined & #",
2181 Spec, Formal_Spec);
2182 else
2183 Error_Msg_NE
2184 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2185 end if;
2186 end Interpretation_Error;
2188 ---------------------------
2189 -- Is_Intrinsic_Equality --
2190 ---------------------------
2192 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean is
2193 begin
2194 return
2195 Ekind (Subp_Id) = E_Operator
2196 and then Chars (Subp_Id) = Name_Op_Eq
2197 and then Is_Intrinsic_Subprogram (Subp_Id);
2198 end Is_Intrinsic_Equality;
2200 ---------------------------
2201 -- Is_Suitable_Candidate --
2202 ---------------------------
2204 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean is
2205 begin
2206 if No (Subp_Id) then
2207 return False;
2209 -- An intrinsic subprogram is never a good candidate. This is an
2210 -- indication of a missing primitive, either defined directly or
2211 -- inherited from a parent tagged type.
2213 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2214 return False;
2216 else
2217 return True;
2218 end if;
2219 end Is_Suitable_Candidate;
2221 -- Local variables
2223 Actual_Typ : Entity_Id := Empty;
2224 -- The actual class-wide type for Formal_Typ
2226 CW_Prim_OK : Boolean;
2227 CW_Prim_Op : Entity_Id;
2228 -- The class-wide subprogram (if available) which corresponds to the
2229 -- renamed generic formal subprogram.
2231 Formal_Typ : Entity_Id := Empty;
2232 -- The generic formal type with unknown discriminants
2234 Root_Prim_OK : Boolean;
2235 Root_Prim_Op : Entity_Id;
2236 -- The root type primitive (if available) which corresponds to the
2237 -- renamed generic formal subprogram.
2239 Root_Typ : Entity_Id := Empty;
2240 -- The root type of Actual_Typ
2242 Body_Decl : Node_Id;
2243 Formal : Node_Id;
2244 Prim_Op : Entity_Id;
2245 Spec_Decl : Node_Id;
2246 New_Spec : Node_Id;
2248 -- Start of processing for Build_Class_Wide_Wrapper
2250 begin
2251 -- Analyze the specification of the renaming in case the generation
2252 -- of the class-wide wrapper fails.
2254 Ren_Id := Analyze_Subprogram_Specification (Spec);
2255 Wrap_Id := Any_Id;
2257 -- Do not attempt to build a wrapper if the renaming is in error
2259 if Error_Posted (Nam) then
2260 return;
2261 end if;
2263 -- Analyze the renamed name, but do not resolve it. The resolution is
2264 -- completed once a suitable subprogram is found.
2266 Analyze (Nam);
2268 -- When the renamed name denotes the intrinsic operator equals, the
2269 -- name must be treated as overloaded. This allows for a potential
2270 -- match against the root type's predefined equality function.
2272 if Is_Intrinsic_Equality (Entity (Nam)) then
2273 Set_Is_Overloaded (Nam);
2274 Collect_Interps (Nam);
2275 end if;
2277 -- Step 1: Find the generic formal type with unknown discriminants
2278 -- and its corresponding class-wide actual type from the renamed
2279 -- generic formal subprogram.
2281 Formal := First_Formal (Formal_Spec);
2282 while Present (Formal) loop
2283 if Has_Unknown_Discriminants (Etype (Formal))
2284 and then not Is_Class_Wide_Type (Etype (Formal))
2285 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2286 then
2287 Formal_Typ := Etype (Formal);
2288 Actual_Typ := Get_Instance_Of (Formal_Typ);
2289 Root_Typ := Etype (Actual_Typ);
2290 exit;
2291 end if;
2293 Next_Formal (Formal);
2294 end loop;
2296 -- The specification of the generic formal subprogram should always
2297 -- contain a formal type with unknown discriminants whose actual is
2298 -- a class-wide type, otherwise this indicates a failure in routine
2299 -- Has_Class_Wide_Actual.
2301 pragma Assert (Present (Formal_Typ));
2303 -- Step 2: Find the proper class-wide subprogram or primitive which
2304 -- corresponds to the renamed generic formal subprogram.
2306 CW_Prim_Op := Find_Primitive (Actual_Typ);
2307 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2308 Root_Prim_Op := Find_Primitive (Root_Typ);
2309 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2311 -- The class-wide actual type has two subprograms which correspond to
2312 -- the renamed generic formal subprogram:
2314 -- with procedure Prim_Op (Param : Formal_Typ);
2316 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2317 -- procedure Prim_Op (Param : Actual_Typ'Class);
2319 -- Even though the declaration of the two subprograms is legal, a
2320 -- call to either one is ambiguous and therefore illegal.
2322 if CW_Prim_OK and Root_Prim_OK then
2324 -- A user-defined primitive has precedence over a predefined one
2326 if Is_Internal (CW_Prim_Op)
2327 and then not Is_Internal (Root_Prim_Op)
2328 then
2329 Prim_Op := Root_Prim_Op;
2331 elsif Is_Internal (Root_Prim_Op)
2332 and then not Is_Internal (CW_Prim_Op)
2333 then
2334 Prim_Op := CW_Prim_Op;
2336 elsif CW_Prim_Op = Root_Prim_Op then
2337 Prim_Op := Root_Prim_Op;
2339 -- Otherwise both candidate subprograms are user-defined and
2340 -- ambiguous.
2342 else
2343 Error_Msg_NE
2344 ("ambiguous actual for generic subprogram &",
2345 Spec, Formal_Spec);
2346 Interpretation_Error (Root_Prim_Op);
2347 Interpretation_Error (CW_Prim_Op);
2348 return;
2349 end if;
2351 elsif CW_Prim_OK and not Root_Prim_OK then
2352 Prim_Op := CW_Prim_Op;
2354 elsif not CW_Prim_OK and Root_Prim_OK then
2355 Prim_Op := Root_Prim_Op;
2357 -- An intrinsic equality may act as a suitable candidate in the case
2358 -- of a null type extension where the parent's equality is hidden. A
2359 -- call to an intrinsic equality is expanded as dispatching.
2361 elsif Present (Root_Prim_Op)
2362 and then Is_Intrinsic_Equality (Root_Prim_Op)
2363 then
2364 Prim_Op := Root_Prim_Op;
2366 -- Otherwise there are no candidate subprograms. Let the caller
2367 -- diagnose the error.
2369 else
2370 return;
2371 end if;
2373 -- At this point resolution has taken place and the name is no longer
2374 -- overloaded. Mark the primitive as referenced.
2376 Set_Is_Overloaded (Name (N), False);
2377 Set_Referenced (Prim_Op);
2379 -- Do not generate a wrapper when the only candidate is a class-wide
2380 -- subprogram. Instead modify the renaming to directly map the actual
2381 -- to the generic formal.
2383 if CW_Prim_OK and then Prim_Op = CW_Prim_Op then
2384 Wrap_Id := Prim_Op;
2385 Rewrite (Nam, New_Occurrence_Of (Prim_Op, Loc));
2386 return;
2387 end if;
2389 -- Step 3: Create the declaration and the body of the wrapper, insert
2390 -- all the pieces into the tree.
2392 -- In GNATprove mode, create a function wrapper in the form of an
2393 -- expression function, so that an implicit postcondition relating
2394 -- the result of calling the wrapper function and the result of the
2395 -- dispatching call to the wrapped function is known during proof.
2397 if GNATprove_Mode
2398 and then Ekind_In (Ren_Id, E_Function, E_Operator)
2399 then
2400 New_Spec := Build_Spec (Ren_Id);
2401 Body_Decl :=
2402 Make_Expression_Function (Loc,
2403 Specification => New_Spec,
2404 Expression =>
2405 Build_Expr_Fun_Call
2406 (Subp_Id => Prim_Op,
2407 Params => Parameter_Specifications (New_Spec)));
2409 Wrap_Id := Defining_Entity (Body_Decl);
2411 -- Otherwise, create separate spec and body for the subprogram
2413 else
2414 Spec_Decl :=
2415 Make_Subprogram_Declaration (Loc,
2416 Specification => Build_Spec (Ren_Id));
2417 Insert_Before_And_Analyze (N, Spec_Decl);
2419 Wrap_Id := Defining_Entity (Spec_Decl);
2421 Body_Decl :=
2422 Make_Subprogram_Body (Loc,
2423 Specification => Build_Spec (Ren_Id),
2424 Declarations => New_List,
2425 Handled_Statement_Sequence =>
2426 Make_Handled_Sequence_Of_Statements (Loc,
2427 Statements => New_List (
2428 Build_Call
2429 (Subp_Id => Prim_Op,
2430 Params =>
2431 Parameter_Specifications
2432 (Specification (Spec_Decl))))));
2434 Set_Corresponding_Body (Spec_Decl, Defining_Entity (Body_Decl));
2435 end if;
2437 -- If the operator carries an Eliminated pragma, indicate that the
2438 -- wrapper is also to be eliminated, to prevent spurious error when
2439 -- using gnatelim on programs that include box-initialization of
2440 -- equality operators.
2442 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2444 -- In GNATprove mode, insert the body in the tree for analysis
2446 if GNATprove_Mode then
2447 Insert_Before_And_Analyze (N, Body_Decl);
2448 end if;
2450 -- The generated body does not freeze and must be analyzed when the
2451 -- class-wide wrapper is frozen. The body is only needed if expansion
2452 -- is enabled.
2454 if Expander_Active then
2455 Append_Freeze_Action (Wrap_Id, Body_Decl);
2456 end if;
2458 -- Step 4: The subprogram renaming aliases the wrapper
2460 Rewrite (Nam, New_Occurrence_Of (Wrap_Id, Loc));
2461 end Build_Class_Wide_Wrapper;
2463 --------------------------
2464 -- Check_Null_Exclusion --
2465 --------------------------
2467 procedure Check_Null_Exclusion
2468 (Ren : Entity_Id;
2469 Sub : Entity_Id)
2471 Ren_Formal : Entity_Id;
2472 Sub_Formal : Entity_Id;
2474 begin
2475 -- Parameter check
2477 Ren_Formal := First_Formal (Ren);
2478 Sub_Formal := First_Formal (Sub);
2479 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2480 if Has_Null_Exclusion (Parent (Ren_Formal))
2481 and then
2482 not (Has_Null_Exclusion (Parent (Sub_Formal))
2483 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2484 then
2485 Error_Msg_NE
2486 ("`NOT NULL` required for parameter &",
2487 Parent (Sub_Formal), Sub_Formal);
2488 end if;
2490 Next_Formal (Ren_Formal);
2491 Next_Formal (Sub_Formal);
2492 end loop;
2494 -- Return profile check
2496 if Nkind (Parent (Ren)) = N_Function_Specification
2497 and then Nkind (Parent (Sub)) = N_Function_Specification
2498 and then Has_Null_Exclusion (Parent (Ren))
2499 and then not (Has_Null_Exclusion (Parent (Sub))
2500 or else Can_Never_Be_Null (Etype (Sub)))
2501 then
2502 Error_Msg_N
2503 ("return must specify `NOT NULL`",
2504 Result_Definition (Parent (Sub)));
2505 end if;
2506 end Check_Null_Exclusion;
2508 ---------------------------
2509 -- Freeze_Actual_Profile --
2510 ---------------------------
2512 procedure Freeze_Actual_Profile is
2513 F : Entity_Id;
2514 Has_Untagged_Inc : Boolean;
2515 Instantiation_Node : constant Node_Id := Parent (N);
2517 begin
2518 if Ada_Version >= Ada_2012 then
2519 F := First_Formal (Formal_Spec);
2520 Has_Untagged_Inc := False;
2521 while Present (F) loop
2522 if Ekind (Etype (F)) = E_Incomplete_Type
2523 and then not Is_Tagged_Type (Etype (F))
2524 then
2525 Has_Untagged_Inc := True;
2526 exit;
2527 end if;
2529 F := Next_Formal (F);
2530 end loop;
2532 if Ekind (Formal_Spec) = E_Function
2533 and then not Is_Tagged_Type (Etype (Formal_Spec))
2534 then
2535 Has_Untagged_Inc := True;
2536 end if;
2538 if not Has_Untagged_Inc then
2539 F := First_Formal (Old_S);
2540 while Present (F) loop
2541 Freeze_Before (Instantiation_Node, Etype (F));
2543 if Is_Incomplete_Or_Private_Type (Etype (F))
2544 and then No (Underlying_Type (Etype (F)))
2545 then
2546 -- Exclude generic types, or types derived from them.
2547 -- They will be frozen in the enclosing instance.
2549 if Is_Generic_Type (Etype (F))
2550 or else Is_Generic_Type (Root_Type (Etype (F)))
2551 then
2552 null;
2554 -- A limited view of a type declared elsewhere needs no
2555 -- freezing actions.
2557 elsif From_Limited_With (Etype (F)) then
2558 null;
2560 else
2561 Error_Msg_NE
2562 ("type& must be frozen before this point",
2563 Instantiation_Node, Etype (F));
2564 end if;
2565 end if;
2567 F := Next_Formal (F);
2568 end loop;
2569 end if;
2570 end if;
2571 end Freeze_Actual_Profile;
2573 ---------------------------
2574 -- Has_Class_Wide_Actual --
2575 ---------------------------
2577 function Has_Class_Wide_Actual return Boolean is
2578 Formal : Entity_Id;
2579 Formal_Typ : Entity_Id;
2581 begin
2582 if Is_Actual then
2583 Formal := First_Formal (Formal_Spec);
2584 while Present (Formal) loop
2585 Formal_Typ := Etype (Formal);
2587 if Has_Unknown_Discriminants (Formal_Typ)
2588 and then not Is_Class_Wide_Type (Formal_Typ)
2589 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2590 then
2591 return True;
2592 end if;
2594 Next_Formal (Formal);
2595 end loop;
2596 end if;
2598 return False;
2599 end Has_Class_Wide_Actual;
2601 -------------------------
2602 -- Original_Subprogram --
2603 -------------------------
2605 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2606 Orig_Decl : Node_Id;
2607 Orig_Subp : Entity_Id;
2609 begin
2610 -- First case: renamed entity is itself a renaming
2612 if Present (Alias (Subp)) then
2613 return Alias (Subp);
2615 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2616 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2617 then
2618 -- Check if renamed entity is a renaming_as_body
2620 Orig_Decl :=
2621 Unit_Declaration_Node
2622 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2624 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2625 Orig_Subp := Entity (Name (Orig_Decl));
2627 if Orig_Subp = Rename_Spec then
2629 -- Circularity detected
2631 return Orig_Subp;
2633 else
2634 return (Original_Subprogram (Orig_Subp));
2635 end if;
2636 else
2637 return Subp;
2638 end if;
2639 else
2640 return Subp;
2641 end if;
2642 end Original_Subprogram;
2644 -- Local variables
2646 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2647 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2648 -- defaulted formal subprogram when the actual for a related formal
2649 -- type is class-wide.
2651 Inst_Node : Node_Id := Empty;
2652 New_S : Entity_Id;
2654 -- Start of processing for Analyze_Subprogram_Renaming
2656 begin
2657 -- We must test for the attribute renaming case before the Analyze
2658 -- call because otherwise Sem_Attr will complain that the attribute
2659 -- is missing an argument when it is analyzed.
2661 if Nkind (Nam) = N_Attribute_Reference then
2663 -- In the case of an abstract formal subprogram association, rewrite
2664 -- an actual given by a stream attribute as the name of the
2665 -- corresponding stream primitive of the type.
2667 -- In a generic context the stream operations are not generated, and
2668 -- this must be treated as a normal attribute reference, to be
2669 -- expanded in subsequent instantiations.
2671 if Is_Actual
2672 and then Is_Abstract_Subprogram (Formal_Spec)
2673 and then Expander_Active
2674 then
2675 declare
2676 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2677 Stream_Prim : Entity_Id;
2679 begin
2680 -- The class-wide forms of the stream attributes are not
2681 -- primitive dispatching operations (even though they
2682 -- internally dispatch to a stream attribute).
2684 if Is_Class_Wide_Type (Prefix_Type) then
2685 Error_Msg_N
2686 ("attribute must be a primitive dispatching operation",
2687 Nam);
2688 return;
2689 end if;
2691 -- Retrieve the primitive subprogram associated with the
2692 -- attribute. This can only be a stream attribute, since those
2693 -- are the only ones that are dispatching (and the actual for
2694 -- an abstract formal subprogram must be dispatching
2695 -- operation).
2697 case Attribute_Name (Nam) is
2698 when Name_Input =>
2699 Stream_Prim :=
2700 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Input);
2702 when Name_Output =>
2703 Stream_Prim :=
2704 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Output);
2706 when Name_Read =>
2707 Stream_Prim :=
2708 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Read);
2710 when Name_Write =>
2711 Stream_Prim :=
2712 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Write);
2714 when others =>
2715 Error_Msg_N
2716 ("attribute must be a primitive dispatching operation",
2717 Nam);
2718 return;
2719 end case;
2721 -- If no operation was found, and the type is limited, the user
2722 -- should have defined one.
2724 if No (Stream_Prim) then
2725 if Is_Limited_Type (Prefix_Type) then
2726 Error_Msg_NE
2727 ("stream operation not defined for type&",
2728 N, Prefix_Type);
2729 return;
2731 -- Otherwise, compiler should have generated default
2733 else
2734 raise Program_Error;
2735 end if;
2736 end if;
2738 -- Rewrite the attribute into the name of its corresponding
2739 -- primitive dispatching subprogram. We can then proceed with
2740 -- the usual processing for subprogram renamings.
2742 declare
2743 Prim_Name : constant Node_Id :=
2744 Make_Identifier (Sloc (Nam),
2745 Chars => Chars (Stream_Prim));
2746 begin
2747 Set_Entity (Prim_Name, Stream_Prim);
2748 Rewrite (Nam, Prim_Name);
2749 Analyze (Nam);
2750 end;
2751 end;
2753 -- Normal processing for a renaming of an attribute
2755 else
2756 Attribute_Renaming (N);
2757 return;
2758 end if;
2759 end if;
2761 -- Check whether this declaration corresponds to the instantiation of a
2762 -- formal subprogram.
2764 -- If this is an instantiation, the corresponding actual is frozen and
2765 -- error messages can be made more precise. If this is a default
2766 -- subprogram, the entity is already established in the generic, and is
2767 -- not retrieved by visibility. If it is a default with a box, the
2768 -- candidate interpretations, if any, have been collected when building
2769 -- the renaming declaration. If overloaded, the proper interpretation is
2770 -- determined in Find_Renamed_Entity. If the entity is an operator,
2771 -- Find_Renamed_Entity applies additional visibility checks.
2773 if Is_Actual then
2774 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2776 -- Check whether the renaming is for a defaulted actual subprogram
2777 -- with a class-wide actual.
2779 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2780 -- is an external axiomatization on the package.
2782 if CW_Actual
2783 and then Box_Present (Inst_Node)
2784 and then not
2785 (GNATprove_Mode
2786 and then
2787 Present (Containing_Package_With_Ext_Axioms (Formal_Spec)))
2788 then
2789 Build_Class_Wide_Wrapper (New_S, Old_S);
2791 elsif Is_Entity_Name (Nam)
2792 and then Present (Entity (Nam))
2793 and then not Comes_From_Source (Nam)
2794 and then not Is_Overloaded (Nam)
2795 then
2796 Old_S := Entity (Nam);
2798 -- The subprogram renaming declaration may become Ghost if it
2799 -- renames a Ghost entity.
2801 Mark_Ghost_Renaming (N, Old_S);
2803 New_S := Analyze_Subprogram_Specification (Spec);
2805 -- Operator case
2807 if Ekind (Old_S) = E_Operator then
2809 -- Box present
2811 if Box_Present (Inst_Node) then
2812 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2814 -- If there is an immediately visible homonym of the operator
2815 -- and the declaration has a default, this is worth a warning
2816 -- because the user probably did not intend to get the pre-
2817 -- defined operator, visible in the generic declaration. To
2818 -- find if there is an intended candidate, analyze the renaming
2819 -- again in the current context.
2821 elsif Scope (Old_S) = Standard_Standard
2822 and then Present (Default_Name (Inst_Node))
2823 then
2824 declare
2825 Decl : constant Node_Id := New_Copy_Tree (N);
2826 Hidden : Entity_Id;
2828 begin
2829 Set_Entity (Name (Decl), Empty);
2830 Analyze (Name (Decl));
2831 Hidden :=
2832 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2834 if Present (Hidden)
2835 and then In_Open_Scopes (Scope (Hidden))
2836 and then Is_Immediately_Visible (Hidden)
2837 and then Comes_From_Source (Hidden)
2838 and then Hidden /= Old_S
2839 then
2840 Error_Msg_Sloc := Sloc (Hidden);
2841 Error_Msg_N
2842 ("default subprogram is resolved in the generic "
2843 & "declaration (RM 12.6(17))??", N);
2844 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2845 end if;
2846 end;
2847 end if;
2848 end if;
2850 else
2851 Analyze (Nam);
2853 -- The subprogram renaming declaration may become Ghost if it
2854 -- renames a Ghost entity.
2856 if Is_Entity_Name (Nam) then
2857 Mark_Ghost_Renaming (N, Entity (Nam));
2858 end if;
2860 New_S := Analyze_Subprogram_Specification (Spec);
2861 end if;
2863 else
2864 -- Renamed entity must be analyzed first, to avoid being hidden by
2865 -- new name (which might be the same in a generic instance).
2867 Analyze (Nam);
2869 -- The subprogram renaming declaration may become Ghost if it renames
2870 -- a Ghost entity.
2872 if Is_Entity_Name (Nam) then
2873 Mark_Ghost_Renaming (N, Entity (Nam));
2874 end if;
2876 -- The renaming defines a new overloaded entity, which is analyzed
2877 -- like a subprogram declaration.
2879 New_S := Analyze_Subprogram_Specification (Spec);
2880 end if;
2882 if Current_Scope /= Standard_Standard then
2883 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2884 end if;
2886 -- Set SPARK mode from current context
2888 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2889 Set_SPARK_Pragma_Inherited (New_S);
2891 Rename_Spec := Find_Corresponding_Spec (N);
2893 -- Case of Renaming_As_Body
2895 if Present (Rename_Spec) then
2897 -- Renaming declaration is the completion of the declaration of
2898 -- Rename_Spec. We build an actual body for it at the freezing point.
2900 Set_Corresponding_Spec (N, Rename_Spec);
2902 -- Deal with special case of stream functions of abstract types
2903 -- and interfaces.
2905 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2906 N_Abstract_Subprogram_Declaration
2907 then
2908 -- Input stream functions are abstract if the object type is
2909 -- abstract. Similarly, all default stream functions for an
2910 -- interface type are abstract. However, these subprograms may
2911 -- receive explicit declarations in representation clauses, making
2912 -- the attribute subprograms usable as defaults in subsequent
2913 -- type extensions.
2914 -- In this case we rewrite the declaration to make the subprogram
2915 -- non-abstract. We remove the previous declaration, and insert
2916 -- the new one at the point of the renaming, to prevent premature
2917 -- access to unfrozen types. The new declaration reuses the
2918 -- specification of the previous one, and must not be analyzed.
2920 pragma Assert
2921 (Is_Primitive (Entity (Nam))
2922 and then
2923 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2924 declare
2925 Old_Decl : constant Node_Id :=
2926 Unit_Declaration_Node (Rename_Spec);
2927 New_Decl : constant Node_Id :=
2928 Make_Subprogram_Declaration (Sloc (N),
2929 Specification =>
2930 Relocate_Node (Specification (Old_Decl)));
2931 begin
2932 Remove (Old_Decl);
2933 Insert_After (N, New_Decl);
2934 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2935 Set_Analyzed (New_Decl);
2936 end;
2937 end if;
2939 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
2941 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2942 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
2943 end if;
2945 Set_Convention (New_S, Convention (Rename_Spec));
2946 Check_Fully_Conformant (New_S, Rename_Spec);
2947 Set_Public_Status (New_S);
2949 -- The specification does not introduce new formals, but only
2950 -- repeats the formals of the original subprogram declaration.
2951 -- For cross-reference purposes, and for refactoring tools, we
2952 -- treat the formals of the renaming declaration as body formals.
2954 Reference_Body_Formals (Rename_Spec, New_S);
2956 -- Indicate that the entity in the declaration functions like the
2957 -- corresponding body, and is not a new entity. The body will be
2958 -- constructed later at the freeze point, so indicate that the
2959 -- completion has not been seen yet.
2961 Set_Ekind (New_S, E_Subprogram_Body);
2962 New_S := Rename_Spec;
2963 Set_Has_Completion (Rename_Spec, False);
2965 -- Ada 2005: check overriding indicator
2967 if Present (Overridden_Operation (Rename_Spec)) then
2968 if Must_Not_Override (Specification (N)) then
2969 Error_Msg_NE
2970 ("subprogram& overrides inherited operation",
2971 N, Rename_Spec);
2973 elsif Style_Check
2974 and then not Must_Override (Specification (N))
2975 then
2976 Style.Missing_Overriding (N, Rename_Spec);
2977 end if;
2979 elsif Must_Override (Specification (N)) then
2980 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
2981 end if;
2983 -- Normal subprogram renaming (not renaming as body)
2985 else
2986 Generate_Definition (New_S);
2987 New_Overloaded_Entity (New_S);
2989 if Is_Entity_Name (Nam)
2990 and then Is_Intrinsic_Subprogram (Entity (Nam))
2991 then
2992 null;
2993 else
2994 Check_Delayed_Subprogram (New_S);
2995 end if;
2996 end if;
2998 -- There is no need for elaboration checks on the new entity, which may
2999 -- be called before the next freezing point where the body will appear.
3000 -- Elaboration checks refer to the real entity, not the one created by
3001 -- the renaming declaration.
3003 Set_Kill_Elaboration_Checks (New_S, True);
3005 -- If we had a previous error, indicate a completely is present to stop
3006 -- junk cascaded messages, but don't take any further action.
3008 if Etype (Nam) = Any_Type then
3009 Set_Has_Completion (New_S);
3010 return;
3012 -- Case where name has the form of a selected component
3014 elsif Nkind (Nam) = N_Selected_Component then
3016 -- A name which has the form A.B can designate an entry of task A, a
3017 -- protected operation of protected object A, or finally a primitive
3018 -- operation of object A. In the later case, A is an object of some
3019 -- tagged type, or an access type that denotes one such. To further
3020 -- distinguish these cases, note that the scope of a task entry or
3021 -- protected operation is type of the prefix.
3023 -- The prefix could be an overloaded function call that returns both
3024 -- kinds of operations. This overloading pathology is left to the
3025 -- dedicated reader ???
3027 declare
3028 T : constant Entity_Id := Etype (Prefix (Nam));
3030 begin
3031 if Present (T)
3032 and then
3033 (Is_Tagged_Type (T)
3034 or else
3035 (Is_Access_Type (T)
3036 and then Is_Tagged_Type (Designated_Type (T))))
3037 and then Scope (Entity (Selector_Name (Nam))) /= T
3038 then
3039 Analyze_Renamed_Primitive_Operation
3040 (N, New_S, Present (Rename_Spec));
3041 return;
3043 else
3044 -- Renamed entity is an entry or protected operation. For those
3045 -- cases an explicit body is built (at the point of freezing of
3046 -- this entity) that contains a call to the renamed entity.
3048 -- This is not allowed for renaming as body if the renamed
3049 -- spec is already frozen (see RM 8.5.4(5) for details).
3051 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
3052 Error_Msg_N
3053 ("renaming-as-body cannot rename entry as subprogram", N);
3054 Error_Msg_NE
3055 ("\since & is already frozen (RM 8.5.4(5))",
3056 N, Rename_Spec);
3057 else
3058 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
3059 end if;
3061 return;
3062 end if;
3063 end;
3065 -- Case where name is an explicit dereference X.all
3067 elsif Nkind (Nam) = N_Explicit_Dereference then
3069 -- Renamed entity is designated by access_to_subprogram expression.
3070 -- Must build body to encapsulate call, as in the entry case.
3072 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
3073 return;
3075 -- Indexed component
3077 elsif Nkind (Nam) = N_Indexed_Component then
3078 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
3079 return;
3081 -- Character literal
3083 elsif Nkind (Nam) = N_Character_Literal then
3084 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
3085 return;
3087 -- Only remaining case is where we have a non-entity name, or a renaming
3088 -- of some other non-overloadable entity.
3090 elsif not Is_Entity_Name (Nam)
3091 or else not Is_Overloadable (Entity (Nam))
3092 then
3093 -- Do not mention the renaming if it comes from an instance
3095 if not Is_Actual then
3096 Error_Msg_N ("expect valid subprogram name in renaming", N);
3097 else
3098 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
3099 end if;
3101 return;
3102 end if;
3104 -- Find the renamed entity that matches the given specification. Disable
3105 -- Ada_83 because there is no requirement of full conformance between
3106 -- renamed entity and new entity, even though the same circuit is used.
3108 -- This is a bit of an odd case, which introduces a really irregular use
3109 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3110 -- this. ???
3112 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
3113 Ada_Version_Pragma := Empty;
3114 Ada_Version_Explicit := Ada_Version;
3116 if No (Old_S) then
3117 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3119 -- The visible operation may be an inherited abstract operation that
3120 -- was overridden in the private part, in which case a call will
3121 -- dispatch to the overriding operation. Use the overriding one in
3122 -- the renaming declaration, to prevent spurious errors below.
3124 if Is_Overloadable (Old_S)
3125 and then Is_Abstract_Subprogram (Old_S)
3126 and then No (DTC_Entity (Old_S))
3127 and then Present (Alias (Old_S))
3128 and then not Is_Abstract_Subprogram (Alias (Old_S))
3129 and then Present (Overridden_Operation (Alias (Old_S)))
3130 then
3131 Old_S := Alias (Old_S);
3132 end if;
3134 -- When the renamed subprogram is overloaded and used as an actual
3135 -- of a generic, its entity is set to the first available homonym.
3136 -- We must first disambiguate the name, then set the proper entity.
3138 if Is_Actual and then Is_Overloaded (Nam) then
3139 Set_Entity (Nam, Old_S);
3140 end if;
3141 end if;
3143 -- Most common case: subprogram renames subprogram. No body is generated
3144 -- in this case, so we must indicate the declaration is complete as is.
3145 -- and inherit various attributes of the renamed subprogram.
3147 if No (Rename_Spec) then
3148 Set_Has_Completion (New_S);
3149 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3150 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3151 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3153 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3154 -- between a subprogram and its correct renaming.
3156 -- Note: the Any_Id check is a guard that prevents compiler crashes
3157 -- when performing a null exclusion check between a renaming and a
3158 -- renamed subprogram that has been found to be illegal.
3160 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3161 Check_Null_Exclusion
3162 (Ren => New_S,
3163 Sub => Entity (Nam));
3164 end if;
3166 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3167 -- overriding. The flag Requires_Overriding is set very selectively
3168 -- and misses some other illegal cases. The additional conditions
3169 -- checked below are sufficient but not necessary ???
3171 -- The rule does not apply to the renaming generated for an actual
3172 -- subprogram in an instance.
3174 if Is_Actual then
3175 null;
3177 -- Guard against previous errors, and omit renamings of predefined
3178 -- operators.
3180 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
3181 null;
3183 elsif Requires_Overriding (Old_S)
3184 or else
3185 (Is_Abstract_Subprogram (Old_S)
3186 and then Present (Find_Dispatching_Type (Old_S))
3187 and then
3188 not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3189 then
3190 Error_Msg_N
3191 ("renamed entity cannot be subprogram that requires overriding "
3192 & "(RM 8.5.4 (5.1))", N);
3193 end if;
3194 end if;
3196 if Old_S /= Any_Id then
3197 if Is_Actual and then From_Default (N) then
3199 -- This is an implicit reference to the default actual
3201 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3203 else
3204 Generate_Reference (Old_S, Nam);
3205 end if;
3207 Check_Internal_Protected_Use (N, Old_S);
3209 -- For a renaming-as-body, require subtype conformance, but if the
3210 -- declaration being completed has not been frozen, then inherit the
3211 -- convention of the renamed subprogram prior to checking conformance
3212 -- (unless the renaming has an explicit convention established; the
3213 -- rule stated in the RM doesn't seem to address this ???).
3215 if Present (Rename_Spec) then
3216 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3217 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3219 if not Is_Frozen (Rename_Spec) then
3220 if not Has_Convention_Pragma (Rename_Spec) then
3221 Set_Convention (New_S, Convention (Old_S));
3222 end if;
3224 if Ekind (Old_S) /= E_Operator then
3225 Check_Mode_Conformant (New_S, Old_S, Spec);
3226 end if;
3228 if Original_Subprogram (Old_S) = Rename_Spec then
3229 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3230 end if;
3231 else
3232 Check_Subtype_Conformant (New_S, Old_S, Spec);
3233 end if;
3235 Check_Frozen_Renaming (N, Rename_Spec);
3237 -- Check explicitly that renamed entity is not intrinsic, because
3238 -- in a generic the renamed body is not built. In this case,
3239 -- the renaming_as_body is a completion.
3241 if Inside_A_Generic then
3242 if Is_Frozen (Rename_Spec)
3243 and then Is_Intrinsic_Subprogram (Old_S)
3244 then
3245 Error_Msg_N
3246 ("subprogram in renaming_as_body cannot be intrinsic",
3247 Name (N));
3248 end if;
3250 Set_Has_Completion (Rename_Spec);
3251 end if;
3253 elsif Ekind (Old_S) /= E_Operator then
3255 -- If this a defaulted subprogram for a class-wide actual there is
3256 -- no check for mode conformance, given that the signatures don't
3257 -- match (the source mentions T but the actual mentions T'Class).
3259 if CW_Actual then
3260 null;
3261 elsif not Is_Actual or else No (Enclosing_Instance) then
3262 Check_Mode_Conformant (New_S, Old_S);
3263 end if;
3265 if Is_Actual and then Error_Posted (New_S) then
3266 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3267 end if;
3268 end if;
3270 if No (Rename_Spec) then
3272 -- The parameter profile of the new entity is that of the renamed
3273 -- entity: the subtypes given in the specification are irrelevant.
3275 Inherit_Renamed_Profile (New_S, Old_S);
3277 -- A call to the subprogram is transformed into a call to the
3278 -- renamed entity. This is transitive if the renamed entity is
3279 -- itself a renaming.
3281 if Present (Alias (Old_S)) then
3282 Set_Alias (New_S, Alias (Old_S));
3283 else
3284 Set_Alias (New_S, Old_S);
3285 end if;
3287 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3288 -- renaming as body, since the entity in this case is not an
3289 -- intrinsic (it calls an intrinsic, but we have a real body for
3290 -- this call, and it is in this body that the required intrinsic
3291 -- processing will take place).
3293 -- Also, if this is a renaming of inequality, the renamed operator
3294 -- is intrinsic, but what matters is the corresponding equality
3295 -- operator, which may be user-defined.
3297 Set_Is_Intrinsic_Subprogram
3298 (New_S,
3299 Is_Intrinsic_Subprogram (Old_S)
3300 and then
3301 (Chars (Old_S) /= Name_Op_Ne
3302 or else Ekind (Old_S) = E_Operator
3303 or else Is_Intrinsic_Subprogram
3304 (Corresponding_Equality (Old_S))));
3306 if Ekind (Alias (New_S)) = E_Operator then
3307 Set_Has_Delayed_Freeze (New_S, False);
3308 end if;
3310 -- If the renaming corresponds to an association for an abstract
3311 -- formal subprogram, then various attributes must be set to
3312 -- indicate that the renaming is an abstract dispatching operation
3313 -- with a controlling type.
3315 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3317 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3318 -- see it as corresponding to a generic association for a
3319 -- formal abstract subprogram
3321 Set_Is_Abstract_Subprogram (New_S);
3323 declare
3324 New_S_Ctrl_Type : constant Entity_Id :=
3325 Find_Dispatching_Type (New_S);
3326 Old_S_Ctrl_Type : constant Entity_Id :=
3327 Find_Dispatching_Type (Old_S);
3329 begin
3331 -- The actual must match the (instance of the) formal,
3332 -- and must be a controlling type.
3334 if Old_S_Ctrl_Type /= New_S_Ctrl_Type
3335 or else No (New_S_Ctrl_Type)
3336 then
3337 Error_Msg_NE
3338 ("actual must be dispatching subprogram for type&",
3339 Nam, New_S_Ctrl_Type);
3341 else
3342 Set_Is_Dispatching_Operation (New_S);
3343 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3345 -- If the actual in the formal subprogram is itself a
3346 -- formal abstract subprogram association, there's no
3347 -- dispatch table component or position to inherit.
3349 if Present (DTC_Entity (Old_S)) then
3350 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3351 Set_DT_Position_Value (New_S, DT_Position (Old_S));
3352 end if;
3353 end if;
3354 end;
3355 end if;
3356 end if;
3358 if Is_Actual then
3359 null;
3361 -- The following is illegal, because F hides whatever other F may
3362 -- be around:
3363 -- function F (...) renames F;
3365 elsif Old_S = New_S
3366 or else (Nkind (Nam) /= N_Expanded_Name
3367 and then Chars (Old_S) = Chars (New_S))
3368 then
3369 Error_Msg_N ("subprogram cannot rename itself", N);
3371 -- This is illegal even if we use a selector:
3372 -- function F (...) renames Pkg.F;
3373 -- because F is still hidden.
3375 elsif Nkind (Nam) = N_Expanded_Name
3376 and then Entity (Prefix (Nam)) = Current_Scope
3377 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3378 then
3379 -- This is an error, but we overlook the error and accept the
3380 -- renaming if the special Overriding_Renamings mode is in effect.
3382 if not Overriding_Renamings then
3383 Error_Msg_NE
3384 ("implicit operation& is not visible (RM 8.3 (15))",
3385 Nam, Old_S);
3386 end if;
3387 end if;
3389 Set_Convention (New_S, Convention (Old_S));
3391 if Is_Abstract_Subprogram (Old_S) then
3392 if Present (Rename_Spec) then
3393 Error_Msg_N
3394 ("a renaming-as-body cannot rename an abstract subprogram",
3396 Set_Has_Completion (Rename_Spec);
3397 else
3398 Set_Is_Abstract_Subprogram (New_S);
3399 end if;
3400 end if;
3402 Check_Library_Unit_Renaming (N, Old_S);
3404 -- Pathological case: procedure renames entry in the scope of its
3405 -- task. Entry is given by simple name, but body must be built for
3406 -- procedure. Of course if called it will deadlock.
3408 if Ekind (Old_S) = E_Entry then
3409 Set_Has_Completion (New_S, False);
3410 Set_Alias (New_S, Empty);
3411 end if;
3413 -- Do not freeze the renaming nor the renamed entity when the context
3414 -- is an enclosing generic. Freezing is an expansion activity, and in
3415 -- addition the renamed entity may depend on the generic formals of
3416 -- the enclosing generic.
3418 if Is_Actual and not Inside_A_Generic then
3419 Freeze_Before (N, Old_S);
3420 Freeze_Actual_Profile;
3421 Set_Has_Delayed_Freeze (New_S, False);
3422 Freeze_Before (N, New_S);
3424 -- An abstract subprogram is only allowed as an actual in the case
3425 -- where the formal subprogram is also abstract.
3427 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3428 and then Is_Abstract_Subprogram (Old_S)
3429 and then not Is_Abstract_Subprogram (Formal_Spec)
3430 then
3431 Error_Msg_N
3432 ("abstract subprogram not allowed as generic actual", Nam);
3433 end if;
3434 end if;
3436 else
3437 -- A common error is to assume that implicit operators for types are
3438 -- defined in Standard, or in the scope of a subtype. In those cases
3439 -- where the renamed entity is given with an expanded name, it is
3440 -- worth mentioning that operators for the type are not declared in
3441 -- the scope given by the prefix.
3443 if Nkind (Nam) = N_Expanded_Name
3444 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3445 and then Scope (Entity (Nam)) = Standard_Standard
3446 then
3447 declare
3448 T : constant Entity_Id :=
3449 Base_Type (Etype (First_Formal (New_S)));
3450 begin
3451 Error_Msg_Node_2 := Prefix (Nam);
3452 Error_Msg_NE
3453 ("operator for type& is not declared in&", Prefix (Nam), T);
3454 end;
3456 else
3457 Error_Msg_NE
3458 ("no visible subprogram matches the specification for&",
3459 Spec, New_S);
3460 end if;
3462 if Present (Candidate_Renaming) then
3463 declare
3464 F1 : Entity_Id;
3465 F2 : Entity_Id;
3466 T1 : Entity_Id;
3468 begin
3469 F1 := First_Formal (Candidate_Renaming);
3470 F2 := First_Formal (New_S);
3471 T1 := First_Subtype (Etype (F1));
3472 while Present (F1) and then Present (F2) loop
3473 Next_Formal (F1);
3474 Next_Formal (F2);
3475 end loop;
3477 if Present (F1) and then Present (Default_Value (F1)) then
3478 if Present (Next_Formal (F1)) then
3479 Error_Msg_NE
3480 ("\missing specification for & and other formals with "
3481 & "defaults", Spec, F1);
3482 else
3483 Error_Msg_NE ("\missing specification for &", Spec, F1);
3484 end if;
3485 end if;
3487 if Nkind (Nam) = N_Operator_Symbol
3488 and then From_Default (N)
3489 then
3490 Error_Msg_Node_2 := T1;
3491 Error_Msg_NE
3492 ("default & on & is not directly visible", Nam, Nam);
3493 end if;
3494 end;
3495 end if;
3496 end if;
3498 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3499 -- controlling access parameters are known non-null for the renamed
3500 -- subprogram. Test also applies to a subprogram instantiation that
3501 -- is dispatching. Test is skipped if some previous error was detected
3502 -- that set Old_S to Any_Id.
3504 if Ada_Version >= Ada_2005
3505 and then Old_S /= Any_Id
3506 and then not Is_Dispatching_Operation (Old_S)
3507 and then Is_Dispatching_Operation (New_S)
3508 then
3509 declare
3510 Old_F : Entity_Id;
3511 New_F : Entity_Id;
3513 begin
3514 Old_F := First_Formal (Old_S);
3515 New_F := First_Formal (New_S);
3516 while Present (Old_F) loop
3517 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3518 and then Is_Controlling_Formal (New_F)
3519 and then not Can_Never_Be_Null (Old_F)
3520 then
3521 Error_Msg_N ("access parameter is controlling,", New_F);
3522 Error_Msg_NE
3523 ("\corresponding parameter of& must be explicitly null "
3524 & "excluding", New_F, Old_S);
3525 end if;
3527 Next_Formal (Old_F);
3528 Next_Formal (New_F);
3529 end loop;
3530 end;
3531 end if;
3533 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3534 -- is to warn if an operator is being renamed as a different operator.
3535 -- If the operator is predefined, examine the kind of the entity, not
3536 -- the abbreviated declaration in Standard.
3538 if Comes_From_Source (N)
3539 and then Present (Old_S)
3540 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3541 or else Ekind (Old_S) = E_Operator)
3542 and then Nkind (New_S) = N_Defining_Operator_Symbol
3543 and then Chars (Old_S) /= Chars (New_S)
3544 then
3545 Error_Msg_NE
3546 ("& is being renamed as a different operator??", N, Old_S);
3547 end if;
3549 -- Check for renaming of obsolescent subprogram
3551 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3553 -- Another warning or some utility: if the new subprogram as the same
3554 -- name as the old one, the old one is not hidden by an outer homograph,
3555 -- the new one is not a public symbol, and the old one is otherwise
3556 -- directly visible, the renaming is superfluous.
3558 if Chars (Old_S) = Chars (New_S)
3559 and then Comes_From_Source (N)
3560 and then Scope (Old_S) /= Standard_Standard
3561 and then Warn_On_Redundant_Constructs
3562 and then (Is_Immediately_Visible (Old_S)
3563 or else Is_Potentially_Use_Visible (Old_S))
3564 and then Is_Overloadable (Current_Scope)
3565 and then Chars (Current_Scope) /= Chars (Old_S)
3566 then
3567 Error_Msg_N
3568 ("redundant renaming, entity is directly visible?r?", Name (N));
3569 end if;
3571 -- Implementation-defined aspect specifications can appear in a renaming
3572 -- declaration, but not language-defined ones. The call to procedure
3573 -- Analyze_Aspect_Specifications will take care of this error check.
3575 if Has_Aspects (N) then
3576 Analyze_Aspect_Specifications (N, New_S);
3577 end if;
3579 Ada_Version := Save_AV;
3580 Ada_Version_Pragma := Save_AVP;
3581 Ada_Version_Explicit := Save_AV_Exp;
3583 -- In GNATprove mode, the renamings of actual subprograms are replaced
3584 -- with wrapper functions that make it easier to propagate axioms to the
3585 -- points of call within an instance. Wrappers are generated if formal
3586 -- subprogram is subject to axiomatization.
3588 -- The types in the wrapper profiles are obtained from (instances of)
3589 -- the types of the formal subprogram.
3591 if Is_Actual
3592 and then GNATprove_Mode
3593 and then Present (Containing_Package_With_Ext_Axioms (Formal_Spec))
3594 and then not Inside_A_Generic
3595 then
3596 if Ekind (Old_S) = E_Function then
3597 Rewrite (N, Build_Function_Wrapper (Formal_Spec, Old_S));
3598 Analyze (N);
3600 elsif Ekind (Old_S) = E_Operator then
3601 Rewrite (N, Build_Operator_Wrapper (Formal_Spec, Old_S));
3602 Analyze (N);
3603 end if;
3604 end if;
3605 end Analyze_Subprogram_Renaming;
3607 -------------------------
3608 -- Analyze_Use_Package --
3609 -------------------------
3611 -- Resolve the package names in the use clause, and make all the visible
3612 -- entities defined in the package potentially use-visible. If the package
3613 -- is already in use from a previous use clause, its visible entities are
3614 -- already use-visible. In that case, mark the occurrence as a redundant
3615 -- use. If the package is an open scope, i.e. if the use clause occurs
3616 -- within the package itself, ignore it.
3618 procedure Analyze_Use_Package (N : Node_Id) is
3619 Ghost_Id : Entity_Id := Empty;
3620 Living_Id : Entity_Id := Empty;
3621 Pack : Entity_Id;
3622 Pack_Name : Node_Id;
3624 begin
3625 Check_SPARK_05_Restriction ("use clause is not allowed", N);
3627 Set_Hidden_By_Use_Clause (N, No_Elist);
3629 -- Use clause not allowed in a spec of a predefined package declaration
3630 -- except that packages whose file name starts a-n are OK (these are
3631 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3633 if Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
3634 and then Name_Buffer (1 .. 3) /= "a-n"
3635 and then
3636 Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
3637 then
3638 Error_Msg_N ("use clause not allowed in predefined spec", N);
3639 end if;
3641 -- Chain clause to list of use clauses in current scope
3643 if Nkind (Parent (N)) /= N_Compilation_Unit then
3644 Chain_Use_Clause (N);
3645 end if;
3647 -- Loop through package names to identify referenced packages
3649 Pack_Name := First (Names (N));
3650 while Present (Pack_Name) loop
3651 Analyze (Pack_Name);
3653 if Nkind (Parent (N)) = N_Compilation_Unit
3654 and then Nkind (Pack_Name) = N_Expanded_Name
3655 then
3656 declare
3657 Pref : Node_Id;
3659 begin
3660 Pref := Prefix (Pack_Name);
3661 while Nkind (Pref) = N_Expanded_Name loop
3662 Pref := Prefix (Pref);
3663 end loop;
3665 if Entity (Pref) = Standard_Standard then
3666 Error_Msg_N
3667 ("predefined package Standard cannot appear in a context "
3668 & "clause", Pref);
3669 end if;
3670 end;
3671 end if;
3673 Next (Pack_Name);
3674 end loop;
3676 -- Loop through package names to mark all entities as potentially use
3677 -- visible.
3679 Pack_Name := First (Names (N));
3680 while Present (Pack_Name) loop
3681 if Is_Entity_Name (Pack_Name) then
3682 Pack := Entity (Pack_Name);
3684 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3685 if Ekind (Pack) = E_Generic_Package then
3686 Error_Msg_N -- CODEFIX
3687 ("a generic package is not allowed in a use clause",
3688 Pack_Name);
3690 elsif Ekind_In (Pack, E_Generic_Function, E_Generic_Package)
3691 then
3692 Error_Msg_N -- CODEFIX
3693 ("a generic subprogram is not allowed in a use clause",
3694 Pack_Name);
3696 elsif Ekind_In (Pack, E_Function, E_Procedure, E_Operator) then
3697 Error_Msg_N -- CODEFIX
3698 ("a subprogram is not allowed in a use clause",
3699 Pack_Name);
3701 else
3702 Error_Msg_N ("& is not allowed in a use clause", Pack_Name);
3703 end if;
3705 else
3706 if Nkind (Parent (N)) = N_Compilation_Unit then
3707 Check_In_Previous_With_Clause (N, Pack_Name);
3708 end if;
3710 if Applicable_Use (Pack_Name) then
3711 Use_One_Package (Pack, N);
3712 end if;
3714 -- Capture the first Ghost package and the first living package
3716 if Is_Entity_Name (Pack_Name) then
3717 Pack := Entity (Pack_Name);
3719 if Is_Ghost_Entity (Pack) then
3720 if No (Ghost_Id) then
3721 Ghost_Id := Pack;
3722 end if;
3724 elsif No (Living_Id) then
3725 Living_Id := Pack;
3726 end if;
3727 end if;
3728 end if;
3730 -- Report error because name denotes something other than a package
3732 else
3733 Error_Msg_N ("& is not a package", Pack_Name);
3734 end if;
3736 Next (Pack_Name);
3737 end loop;
3739 -- Detect a mixture of Ghost packages and living packages within the
3740 -- same use package clause. Ideally one would split a use package clause
3741 -- with multiple names into multiple use package clauses with a single
3742 -- name, however clients of the front end would have to adapt to this
3743 -- change.
3745 if Present (Ghost_Id) and then Present (Living_Id) then
3746 Error_Msg_N
3747 ("use clause cannot mention ghost and non-ghost ghost units", N);
3749 Error_Msg_Sloc := Sloc (Ghost_Id);
3750 Error_Msg_NE ("\& # declared as ghost", N, Ghost_Id);
3752 Error_Msg_Sloc := Sloc (Living_Id);
3753 Error_Msg_NE ("\& # declared as non-ghost", N, Living_Id);
3754 end if;
3756 Mark_Ghost_Clause (N);
3757 end Analyze_Use_Package;
3759 ----------------------
3760 -- Analyze_Use_Type --
3761 ----------------------
3763 procedure Analyze_Use_Type (N : Node_Id) is
3764 E : Entity_Id;
3765 Ghost_Id : Entity_Id := Empty;
3766 Id : Node_Id;
3767 Living_Id : Entity_Id := Empty;
3769 begin
3770 Set_Hidden_By_Use_Clause (N, No_Elist);
3772 -- Chain clause to list of use clauses in current scope
3774 if Nkind (Parent (N)) /= N_Compilation_Unit then
3775 Chain_Use_Clause (N);
3776 end if;
3778 -- If the Used_Operations list is already initialized, the clause has
3779 -- been analyzed previously, and it is begin reinstalled, for example
3780 -- when the clause appears in a package spec and we are compiling the
3781 -- corresponding package body. In that case, make the entities on the
3782 -- existing list use_visible, and mark the corresponding types In_Use.
3784 if Present (Used_Operations (N)) then
3785 declare
3786 Mark : Node_Id;
3787 Elmt : Elmt_Id;
3789 begin
3790 Mark := First (Subtype_Marks (N));
3791 while Present (Mark) loop
3792 Use_One_Type (Mark, Installed => True);
3793 Next (Mark);
3794 end loop;
3796 Elmt := First_Elmt (Used_Operations (N));
3797 while Present (Elmt) loop
3798 Set_Is_Potentially_Use_Visible (Node (Elmt));
3799 Next_Elmt (Elmt);
3800 end loop;
3801 end;
3803 return;
3804 end if;
3806 -- Otherwise, create new list and attach to it the operations that
3807 -- are made use-visible by the clause.
3809 Set_Used_Operations (N, New_Elmt_List);
3810 Id := First (Subtype_Marks (N));
3811 while Present (Id) loop
3812 Find_Type (Id);
3813 E := Entity (Id);
3815 if E /= Any_Type then
3816 Use_One_Type (Id);
3818 if Nkind (Parent (N)) = N_Compilation_Unit then
3819 if Nkind (Id) = N_Identifier then
3820 Error_Msg_N ("type is not directly visible", Id);
3822 elsif Is_Child_Unit (Scope (E))
3823 and then Scope (E) /= System_Aux_Id
3824 then
3825 Check_In_Previous_With_Clause (N, Prefix (Id));
3826 end if;
3827 end if;
3829 else
3830 -- If the use_type_clause appears in a compilation unit context,
3831 -- check whether it comes from a unit that may appear in a
3832 -- limited_with_clause, for a better error message.
3834 if Nkind (Parent (N)) = N_Compilation_Unit
3835 and then Nkind (Id) /= N_Identifier
3836 then
3837 declare
3838 Item : Node_Id;
3839 Pref : Node_Id;
3841 function Mentioned (Nam : Node_Id) return Boolean;
3842 -- Check whether the prefix of expanded name for the type
3843 -- appears in the prefix of some limited_with_clause.
3845 ---------------
3846 -- Mentioned --
3847 ---------------
3849 function Mentioned (Nam : Node_Id) return Boolean is
3850 begin
3851 return Nkind (Name (Item)) = N_Selected_Component
3852 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3853 end Mentioned;
3855 begin
3856 Pref := Prefix (Id);
3857 Item := First (Context_Items (Parent (N)));
3858 while Present (Item) and then Item /= N loop
3859 if Nkind (Item) = N_With_Clause
3860 and then Limited_Present (Item)
3861 and then Mentioned (Pref)
3862 then
3863 Change_Error_Text
3864 (Get_Msg_Id, "premature usage of incomplete type");
3865 end if;
3867 Next (Item);
3868 end loop;
3869 end;
3870 end if;
3871 end if;
3873 -- Capture the first Ghost type and the first living type
3875 if Is_Ghost_Entity (E) then
3876 if No (Ghost_Id) then
3877 Ghost_Id := E;
3878 end if;
3880 elsif No (Living_Id) then
3881 Living_Id := E;
3882 end if;
3884 Next (Id);
3885 end loop;
3887 -- Detect a mixture of Ghost types and living types within the same use
3888 -- type clause. Ideally one would split a use type clause with multiple
3889 -- marks into multiple use type clauses with a single mark, however
3890 -- clients of the front end will have to adapt to this change.
3892 if Present (Ghost_Id) and then Present (Living_Id) then
3893 Error_Msg_N
3894 ("use clause cannot mention ghost and non-ghost ghost types", N);
3896 Error_Msg_Sloc := Sloc (Ghost_Id);
3897 Error_Msg_NE ("\& # declared as ghost", N, Ghost_Id);
3899 Error_Msg_Sloc := Sloc (Living_Id);
3900 Error_Msg_NE ("\& # declared as non-ghost", N, Living_Id);
3901 end if;
3903 Mark_Ghost_Clause (N);
3904 end Analyze_Use_Type;
3906 --------------------
3907 -- Applicable_Use --
3908 --------------------
3910 function Applicable_Use (Pack_Name : Node_Id) return Boolean is
3911 Pack : constant Entity_Id := Entity (Pack_Name);
3913 begin
3914 if In_Open_Scopes (Pack) then
3915 if Warn_On_Redundant_Constructs and then Pack = Current_Scope then
3916 Error_Msg_NE -- CODEFIX
3917 ("& is already use-visible within itself?r?", Pack_Name, Pack);
3918 end if;
3920 return False;
3922 elsif In_Use (Pack) then
3923 Note_Redundant_Use (Pack_Name);
3924 return False;
3926 elsif Present (Renamed_Object (Pack))
3927 and then In_Use (Renamed_Object (Pack))
3928 then
3929 Note_Redundant_Use (Pack_Name);
3930 return False;
3932 else
3933 return True;
3934 end if;
3935 end Applicable_Use;
3937 ------------------------
3938 -- Attribute_Renaming --
3939 ------------------------
3941 procedure Attribute_Renaming (N : Node_Id) is
3942 Loc : constant Source_Ptr := Sloc (N);
3943 Nam : constant Node_Id := Name (N);
3944 Spec : constant Node_Id := Specification (N);
3945 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
3946 Aname : constant Name_Id := Attribute_Name (Nam);
3948 Form_Num : Nat := 0;
3949 Expr_List : List_Id := No_List;
3951 Attr_Node : Node_Id;
3952 Body_Node : Node_Id;
3953 Param_Spec : Node_Id;
3955 begin
3956 Generate_Definition (New_S);
3958 -- This procedure is called in the context of subprogram renaming, and
3959 -- thus the attribute must be one that is a subprogram. All of those
3960 -- have at least one formal parameter, with the exceptions of the GNAT
3961 -- attribute 'Img, which GNAT treats as renameable.
3963 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
3964 if Aname /= Name_Img then
3965 Error_Msg_N
3966 ("subprogram renaming an attribute must have formals", N);
3967 return;
3968 end if;
3970 else
3971 Param_Spec := First (Parameter_Specifications (Spec));
3972 while Present (Param_Spec) loop
3973 Form_Num := Form_Num + 1;
3975 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
3976 Find_Type (Parameter_Type (Param_Spec));
3978 -- The profile of the new entity denotes the base type (s) of
3979 -- the types given in the specification. For access parameters
3980 -- there are no subtypes involved.
3982 Rewrite (Parameter_Type (Param_Spec),
3983 New_Occurrence_Of
3984 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
3985 end if;
3987 if No (Expr_List) then
3988 Expr_List := New_List;
3989 end if;
3991 Append_To (Expr_List,
3992 Make_Identifier (Loc,
3993 Chars => Chars (Defining_Identifier (Param_Spec))));
3995 -- The expressions in the attribute reference are not freeze
3996 -- points. Neither is the attribute as a whole, see below.
3998 Set_Must_Not_Freeze (Last (Expr_List));
3999 Next (Param_Spec);
4000 end loop;
4001 end if;
4003 -- Immediate error if too many formals. Other mismatches in number or
4004 -- types of parameters are detected when we analyze the body of the
4005 -- subprogram that we construct.
4007 if Form_Num > 2 then
4008 Error_Msg_N ("too many formals for attribute", N);
4010 -- Error if the attribute reference has expressions that look like
4011 -- formal parameters.
4013 elsif Present (Expressions (Nam)) then
4014 Error_Msg_N ("illegal expressions in attribute reference", Nam);
4016 elsif
4017 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
4018 Name_Pos, Name_Round, Name_Scaling,
4019 Name_Val)
4020 then
4021 if Nkind (N) = N_Subprogram_Renaming_Declaration
4022 and then Present (Corresponding_Formal_Spec (N))
4023 then
4024 Error_Msg_N
4025 ("generic actual cannot be attribute involving universal type",
4026 Nam);
4027 else
4028 Error_Msg_N
4029 ("attribute involving a universal type cannot be renamed",
4030 Nam);
4031 end if;
4032 end if;
4034 -- Rewrite attribute node to have a list of expressions corresponding to
4035 -- the subprogram formals. A renaming declaration is not a freeze point,
4036 -- and the analysis of the attribute reference should not freeze the
4037 -- type of the prefix. We use the original node in the renaming so that
4038 -- its source location is preserved, and checks on stream attributes are
4039 -- properly applied.
4041 Attr_Node := Relocate_Node (Nam);
4042 Set_Expressions (Attr_Node, Expr_List);
4044 Set_Must_Not_Freeze (Attr_Node);
4045 Set_Must_Not_Freeze (Prefix (Nam));
4047 -- Case of renaming a function
4049 if Nkind (Spec) = N_Function_Specification then
4050 if Is_Procedure_Attribute_Name (Aname) then
4051 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
4052 return;
4053 end if;
4055 Find_Type (Result_Definition (Spec));
4056 Rewrite (Result_Definition (Spec),
4057 New_Occurrence_Of
4058 (Base_Type (Entity (Result_Definition (Spec))), Loc));
4060 Body_Node :=
4061 Make_Subprogram_Body (Loc,
4062 Specification => Spec,
4063 Declarations => New_List,
4064 Handled_Statement_Sequence =>
4065 Make_Handled_Sequence_Of_Statements (Loc,
4066 Statements => New_List (
4067 Make_Simple_Return_Statement (Loc,
4068 Expression => Attr_Node))));
4070 -- Case of renaming a procedure
4072 else
4073 if not Is_Procedure_Attribute_Name (Aname) then
4074 Error_Msg_N ("attribute can only be renamed as function", Nam);
4075 return;
4076 end if;
4078 Body_Node :=
4079 Make_Subprogram_Body (Loc,
4080 Specification => Spec,
4081 Declarations => New_List,
4082 Handled_Statement_Sequence =>
4083 Make_Handled_Sequence_Of_Statements (Loc,
4084 Statements => New_List (Attr_Node)));
4085 end if;
4087 -- In case of tagged types we add the body of the generated function to
4088 -- the freezing actions of the type (because in the general case such
4089 -- type is still not frozen). We exclude from this processing generic
4090 -- formal subprograms found in instantiations.
4092 -- We must exclude restricted run-time libraries because
4093 -- entity AST_Handler is defined in package System.Aux_Dec which is not
4094 -- available in those platforms. Note that we cannot use the function
4095 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
4096 -- the ZFP run-time library is not defined as a profile, and we do not
4097 -- want to deal with AST_Handler in ZFP mode.
4099 if not Configurable_Run_Time_Mode
4100 and then not Present (Corresponding_Formal_Spec (N))
4101 and then Etype (Nam) /= RTE (RE_AST_Handler)
4102 then
4103 declare
4104 P : constant Node_Id := Prefix (Nam);
4106 begin
4107 -- The prefix of 'Img is an object that is evaluated for each call
4108 -- of the function that renames it.
4110 if Aname = Name_Img then
4111 Preanalyze_And_Resolve (P);
4113 -- For all other attribute renamings, the prefix is a subtype
4115 else
4116 Find_Type (P);
4117 end if;
4119 -- If the target type is not yet frozen, add the body to the
4120 -- actions to be elaborated at freeze time.
4122 if Is_Tagged_Type (Etype (P))
4123 and then In_Open_Scopes (Scope (Etype (P)))
4124 then
4125 Ensure_Freeze_Node (Etype (P));
4126 Append_Freeze_Action (Etype (P), Body_Node);
4127 else
4128 Rewrite (N, Body_Node);
4129 Analyze (N);
4130 Set_Etype (New_S, Base_Type (Etype (New_S)));
4131 end if;
4132 end;
4134 -- Generic formal subprograms or AST_Handler renaming
4136 else
4137 Rewrite (N, Body_Node);
4138 Analyze (N);
4139 Set_Etype (New_S, Base_Type (Etype (New_S)));
4140 end if;
4142 if Is_Compilation_Unit (New_S) then
4143 Error_Msg_N
4144 ("a library unit can only rename another library unit", N);
4145 end if;
4147 -- We suppress elaboration warnings for the resulting entity, since
4148 -- clearly they are not needed, and more particularly, in the case
4149 -- of a generic formal subprogram, the resulting entity can appear
4150 -- after the instantiation itself, and thus look like a bogus case
4151 -- of access before elaboration.
4153 Set_Suppress_Elaboration_Warnings (New_S);
4155 end Attribute_Renaming;
4157 ----------------------
4158 -- Chain_Use_Clause --
4159 ----------------------
4161 procedure Chain_Use_Clause (N : Node_Id) is
4162 Pack : Entity_Id;
4163 Level : Int := Scope_Stack.Last;
4165 begin
4166 if not Is_Compilation_Unit (Current_Scope)
4167 or else not Is_Child_Unit (Current_Scope)
4168 then
4169 null; -- Common case
4171 elsif Defining_Entity (Parent (N)) = Current_Scope then
4172 null; -- Common case for compilation unit
4174 else
4175 -- If declaration appears in some other scope, it must be in some
4176 -- parent unit when compiling a child.
4178 Pack := Defining_Entity (Parent (N));
4179 if not In_Open_Scopes (Pack) then
4180 null; -- default as well
4182 -- If the use clause appears in an ancestor and we are in the
4183 -- private part of the immediate parent, the use clauses are
4184 -- already installed.
4186 elsif Pack /= Scope (Current_Scope)
4187 and then In_Private_Part (Scope (Current_Scope))
4188 then
4189 null;
4191 else
4192 -- Find entry for parent unit in scope stack
4194 while Scope_Stack.Table (Level).Entity /= Pack loop
4195 Level := Level - 1;
4196 end loop;
4197 end if;
4198 end if;
4200 Set_Next_Use_Clause (N,
4201 Scope_Stack.Table (Level).First_Use_Clause);
4202 Scope_Stack.Table (Level).First_Use_Clause := N;
4203 end Chain_Use_Clause;
4205 ---------------------------
4206 -- Check_Frozen_Renaming --
4207 ---------------------------
4209 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
4210 B_Node : Node_Id;
4211 Old_S : Entity_Id;
4213 begin
4214 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
4215 B_Node :=
4216 Build_Renamed_Body
4217 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
4219 if Is_Entity_Name (Name (N)) then
4220 Old_S := Entity (Name (N));
4222 if not Is_Frozen (Old_S)
4223 and then Operating_Mode /= Check_Semantics
4224 then
4225 Append_Freeze_Action (Old_S, B_Node);
4226 else
4227 Insert_After (N, B_Node);
4228 Analyze (B_Node);
4229 end if;
4231 if Is_Intrinsic_Subprogram (Old_S) and then not In_Instance then
4232 Error_Msg_N
4233 ("subprogram used in renaming_as_body cannot be intrinsic",
4234 Name (N));
4235 end if;
4237 else
4238 Insert_After (N, B_Node);
4239 Analyze (B_Node);
4240 end if;
4241 end if;
4242 end Check_Frozen_Renaming;
4244 -------------------------------
4245 -- Set_Entity_Or_Discriminal --
4246 -------------------------------
4248 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4249 P : Node_Id;
4251 begin
4252 -- If the entity is not a discriminant, or else expansion is disabled,
4253 -- simply set the entity.
4255 if not In_Spec_Expression
4256 or else Ekind (E) /= E_Discriminant
4257 or else Inside_A_Generic
4258 then
4259 Set_Entity_With_Checks (N, E);
4261 -- The replacement of a discriminant by the corresponding discriminal
4262 -- is not done for a task discriminant that appears in a default
4263 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4264 -- for details on their handling.
4266 elsif Is_Concurrent_Type (Scope (E)) then
4267 P := Parent (N);
4268 while Present (P)
4269 and then not Nkind_In (P, N_Parameter_Specification,
4270 N_Component_Declaration)
4271 loop
4272 P := Parent (P);
4273 end loop;
4275 if Present (P)
4276 and then Nkind (P) = N_Parameter_Specification
4277 then
4278 null;
4280 else
4281 Set_Entity (N, Discriminal (E));
4282 end if;
4284 -- Otherwise, this is a discriminant in a context in which
4285 -- it is a reference to the corresponding parameter of the
4286 -- init proc for the enclosing type.
4288 else
4289 Set_Entity (N, Discriminal (E));
4290 end if;
4291 end Set_Entity_Or_Discriminal;
4293 -----------------------------------
4294 -- Check_In_Previous_With_Clause --
4295 -----------------------------------
4297 procedure Check_In_Previous_With_Clause
4298 (N : Node_Id;
4299 Nam : Entity_Id)
4301 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4302 Item : Node_Id;
4303 Par : Node_Id;
4305 begin
4306 Item := First (Context_Items (Parent (N)));
4307 while Present (Item) and then Item /= N loop
4308 if Nkind (Item) = N_With_Clause
4310 -- Protect the frontend against previous critical errors
4312 and then Nkind (Name (Item)) /= N_Selected_Component
4313 and then Entity (Name (Item)) = Pack
4314 then
4315 Par := Nam;
4317 -- Find root library unit in with_clause
4319 while Nkind (Par) = N_Expanded_Name loop
4320 Par := Prefix (Par);
4321 end loop;
4323 if Is_Child_Unit (Entity (Original_Node (Par))) then
4324 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4325 else
4326 return;
4327 end if;
4328 end if;
4330 Next (Item);
4331 end loop;
4333 -- On exit, package is not mentioned in a previous with_clause.
4334 -- Check if its prefix is.
4336 if Nkind (Nam) = N_Expanded_Name then
4337 Check_In_Previous_With_Clause (N, Prefix (Nam));
4339 elsif Pack /= Any_Id then
4340 Error_Msg_NE ("& is not visible", Nam, Pack);
4341 end if;
4342 end Check_In_Previous_With_Clause;
4344 ---------------------------------
4345 -- Check_Library_Unit_Renaming --
4346 ---------------------------------
4348 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4349 New_E : Entity_Id;
4351 begin
4352 if Nkind (Parent (N)) /= N_Compilation_Unit then
4353 return;
4355 -- Check for library unit. Note that we used to check for the scope
4356 -- being Standard here, but that was wrong for Standard itself.
4358 elsif not Is_Compilation_Unit (Old_E)
4359 and then not Is_Child_Unit (Old_E)
4360 then
4361 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4363 -- Entities defined in Standard (operators and boolean literals) cannot
4364 -- be renamed as library units.
4366 elsif Scope (Old_E) = Standard_Standard
4367 and then Sloc (Old_E) = Standard_Location
4368 then
4369 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4371 elsif Present (Parent_Spec (N))
4372 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4373 and then not Is_Child_Unit (Old_E)
4374 then
4375 Error_Msg_N
4376 ("renamed unit must be a child unit of generic parent", Name (N));
4378 elsif Nkind (N) in N_Generic_Renaming_Declaration
4379 and then Nkind (Name (N)) = N_Expanded_Name
4380 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4381 and then Is_Generic_Unit (Old_E)
4382 then
4383 Error_Msg_N
4384 ("renamed generic unit must be a library unit", Name (N));
4386 elsif Is_Package_Or_Generic_Package (Old_E) then
4388 -- Inherit categorization flags
4390 New_E := Defining_Entity (N);
4391 Set_Is_Pure (New_E, Is_Pure (Old_E));
4392 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4393 Set_Is_Remote_Call_Interface (New_E,
4394 Is_Remote_Call_Interface (Old_E));
4395 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4396 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4397 end if;
4398 end Check_Library_Unit_Renaming;
4400 ------------------------
4401 -- Enclosing_Instance --
4402 ------------------------
4404 function Enclosing_Instance return Entity_Id is
4405 S : Entity_Id;
4407 begin
4408 if not Is_Generic_Instance (Current_Scope) then
4409 return Empty;
4410 end if;
4412 S := Scope (Current_Scope);
4413 while S /= Standard_Standard loop
4414 if Is_Generic_Instance (S) then
4415 return S;
4416 end if;
4418 S := Scope (S);
4419 end loop;
4421 return Empty;
4422 end Enclosing_Instance;
4424 ---------------
4425 -- End_Scope --
4426 ---------------
4428 procedure End_Scope is
4429 Id : Entity_Id;
4430 Prev : Entity_Id;
4431 Outer : Entity_Id;
4433 begin
4434 Id := First_Entity (Current_Scope);
4435 while Present (Id) loop
4436 -- An entity in the current scope is not necessarily the first one
4437 -- on its homonym chain. Find its predecessor if any,
4438 -- If it is an internal entity, it will not be in the visibility
4439 -- chain altogether, and there is nothing to unchain.
4441 if Id /= Current_Entity (Id) then
4442 Prev := Current_Entity (Id);
4443 while Present (Prev)
4444 and then Present (Homonym (Prev))
4445 and then Homonym (Prev) /= Id
4446 loop
4447 Prev := Homonym (Prev);
4448 end loop;
4450 -- Skip to end of loop if Id is not in the visibility chain
4452 if No (Prev) or else Homonym (Prev) /= Id then
4453 goto Next_Ent;
4454 end if;
4456 else
4457 Prev := Empty;
4458 end if;
4460 Set_Is_Immediately_Visible (Id, False);
4462 Outer := Homonym (Id);
4463 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4464 Outer := Homonym (Outer);
4465 end loop;
4467 -- Reset homonym link of other entities, but do not modify link
4468 -- between entities in current scope, so that the back-end can have
4469 -- a proper count of local overloadings.
4471 if No (Prev) then
4472 Set_Name_Entity_Id (Chars (Id), Outer);
4474 elsif Scope (Prev) /= Scope (Id) then
4475 Set_Homonym (Prev, Outer);
4476 end if;
4478 <<Next_Ent>>
4479 Next_Entity (Id);
4480 end loop;
4482 -- If the scope generated freeze actions, place them before the
4483 -- current declaration and analyze them. Type declarations and
4484 -- the bodies of initialization procedures can generate such nodes.
4485 -- We follow the parent chain until we reach a list node, which is
4486 -- the enclosing list of declarations. If the list appears within
4487 -- a protected definition, move freeze nodes outside the protected
4488 -- type altogether.
4490 if Present
4491 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4492 then
4493 declare
4494 Decl : Node_Id;
4495 L : constant List_Id := Scope_Stack.Table
4496 (Scope_Stack.Last).Pending_Freeze_Actions;
4498 begin
4499 if Is_Itype (Current_Scope) then
4500 Decl := Associated_Node_For_Itype (Current_Scope);
4501 else
4502 Decl := Parent (Current_Scope);
4503 end if;
4505 Pop_Scope;
4507 while not (Is_List_Member (Decl))
4508 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4509 N_Task_Definition)
4510 loop
4511 Decl := Parent (Decl);
4512 end loop;
4514 Insert_List_Before_And_Analyze (Decl, L);
4515 end;
4517 else
4518 Pop_Scope;
4519 end if;
4520 end End_Scope;
4522 ---------------------
4523 -- End_Use_Clauses --
4524 ---------------------
4526 procedure End_Use_Clauses (Clause : Node_Id) is
4527 U : Node_Id;
4529 begin
4530 -- Remove Use_Type clauses first, because they affect the
4531 -- visibility of operators in subsequent used packages.
4533 U := Clause;
4534 while Present (U) loop
4535 if Nkind (U) = N_Use_Type_Clause then
4536 End_Use_Type (U);
4537 end if;
4539 Next_Use_Clause (U);
4540 end loop;
4542 U := Clause;
4543 while Present (U) loop
4544 if Nkind (U) = N_Use_Package_Clause then
4545 End_Use_Package (U);
4546 end if;
4548 Next_Use_Clause (U);
4549 end loop;
4550 end End_Use_Clauses;
4552 ---------------------
4553 -- End_Use_Package --
4554 ---------------------
4556 procedure End_Use_Package (N : Node_Id) is
4557 Pack_Name : Node_Id;
4558 Pack : Entity_Id;
4559 Id : Entity_Id;
4560 Elmt : Elmt_Id;
4562 function Is_Primitive_Operator_In_Use
4563 (Op : Entity_Id;
4564 F : Entity_Id) return Boolean;
4565 -- Check whether Op is a primitive operator of a use-visible type
4567 ----------------------------------
4568 -- Is_Primitive_Operator_In_Use --
4569 ----------------------------------
4571 function Is_Primitive_Operator_In_Use
4572 (Op : Entity_Id;
4573 F : Entity_Id) return Boolean
4575 T : constant Entity_Id := Base_Type (Etype (F));
4576 begin
4577 return In_Use (T) and then Scope (T) = Scope (Op);
4578 end Is_Primitive_Operator_In_Use;
4580 -- Start of processing for End_Use_Package
4582 begin
4583 Pack_Name := First (Names (N));
4584 while Present (Pack_Name) loop
4586 -- Test that Pack_Name actually denotes a package before processing
4588 if Is_Entity_Name (Pack_Name)
4589 and then Ekind (Entity (Pack_Name)) = E_Package
4590 then
4591 Pack := Entity (Pack_Name);
4593 if In_Open_Scopes (Pack) then
4594 null;
4596 elsif not Redundant_Use (Pack_Name) then
4597 Set_In_Use (Pack, False);
4598 Set_Current_Use_Clause (Pack, Empty);
4600 Id := First_Entity (Pack);
4601 while Present (Id) loop
4603 -- Preserve use-visibility of operators that are primitive
4604 -- operators of a type that is use-visible through an active
4605 -- use_type clause.
4607 if Nkind (Id) = N_Defining_Operator_Symbol
4608 and then
4609 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4610 or else
4611 (Present (Next_Formal (First_Formal (Id)))
4612 and then
4613 Is_Primitive_Operator_In_Use
4614 (Id, Next_Formal (First_Formal (Id)))))
4615 then
4616 null;
4617 else
4618 Set_Is_Potentially_Use_Visible (Id, False);
4619 end if;
4621 if Is_Private_Type (Id)
4622 and then Present (Full_View (Id))
4623 then
4624 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4625 end if;
4627 Next_Entity (Id);
4628 end loop;
4630 if Present (Renamed_Object (Pack)) then
4631 Set_In_Use (Renamed_Object (Pack), False);
4632 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4633 end if;
4635 if Chars (Pack) = Name_System
4636 and then Scope (Pack) = Standard_Standard
4637 and then Present_System_Aux
4638 then
4639 Id := First_Entity (System_Aux_Id);
4640 while Present (Id) loop
4641 Set_Is_Potentially_Use_Visible (Id, False);
4643 if Is_Private_Type (Id)
4644 and then Present (Full_View (Id))
4645 then
4646 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4647 end if;
4649 Next_Entity (Id);
4650 end loop;
4652 Set_In_Use (System_Aux_Id, False);
4653 end if;
4655 else
4656 Set_Redundant_Use (Pack_Name, False);
4657 end if;
4658 end if;
4660 Next (Pack_Name);
4661 end loop;
4663 if Present (Hidden_By_Use_Clause (N)) then
4664 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4665 while Present (Elmt) loop
4666 declare
4667 E : constant Entity_Id := Node (Elmt);
4669 begin
4670 -- Reset either Use_Visibility or Direct_Visibility, depending
4671 -- on how the entity was hidden by the use clause.
4673 if In_Use (Scope (E))
4674 and then Used_As_Generic_Actual (Scope (E))
4675 then
4676 Set_Is_Potentially_Use_Visible (Node (Elmt));
4677 else
4678 Set_Is_Immediately_Visible (Node (Elmt));
4679 end if;
4681 Next_Elmt (Elmt);
4682 end;
4683 end loop;
4685 Set_Hidden_By_Use_Clause (N, No_Elist);
4686 end if;
4687 end End_Use_Package;
4689 ------------------
4690 -- End_Use_Type --
4691 ------------------
4693 procedure End_Use_Type (N : Node_Id) is
4694 Elmt : Elmt_Id;
4695 Id : Entity_Id;
4696 T : Entity_Id;
4698 -- Start of processing for End_Use_Type
4700 begin
4701 Id := First (Subtype_Marks (N));
4702 while Present (Id) loop
4704 -- A call to Rtsfind may occur while analyzing a use_type clause,
4705 -- in which case the type marks are not resolved yet, and there is
4706 -- nothing to remove.
4708 if not Is_Entity_Name (Id) or else No (Entity (Id)) then
4709 goto Continue;
4710 end if;
4712 T := Entity (Id);
4714 if T = Any_Type or else From_Limited_With (T) then
4715 null;
4717 -- Note that the use_type clause may mention a subtype of the type
4718 -- whose primitive operations have been made visible. Here as
4719 -- elsewhere, it is the base type that matters for visibility.
4721 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4722 null;
4724 elsif not Redundant_Use (Id) then
4725 Set_In_Use (T, False);
4726 Set_In_Use (Base_Type (T), False);
4727 Set_Current_Use_Clause (T, Empty);
4728 Set_Current_Use_Clause (Base_Type (T), Empty);
4729 end if;
4731 <<Continue>>
4732 Next (Id);
4733 end loop;
4735 if Is_Empty_Elmt_List (Used_Operations (N)) then
4736 return;
4738 else
4739 Elmt := First_Elmt (Used_Operations (N));
4740 while Present (Elmt) loop
4741 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4742 Next_Elmt (Elmt);
4743 end loop;
4744 end if;
4745 end End_Use_Type;
4747 ----------------------
4748 -- Find_Direct_Name --
4749 ----------------------
4751 procedure Find_Direct_Name (N : Node_Id) is
4752 E : Entity_Id;
4753 E2 : Entity_Id;
4754 Msg : Boolean;
4756 Inst : Entity_Id := Empty;
4757 -- Enclosing instance, if any
4759 Homonyms : Entity_Id;
4760 -- Saves start of homonym chain
4762 Nvis_Entity : Boolean;
4763 -- Set True to indicate that there is at least one entity on the homonym
4764 -- chain which, while not visible, is visible enough from the user point
4765 -- of view to warrant an error message of "not visible" rather than
4766 -- undefined.
4768 Nvis_Is_Private_Subprg : Boolean := False;
4769 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4770 -- effect concerning library subprograms has been detected. Used to
4771 -- generate the precise error message.
4773 function From_Actual_Package (E : Entity_Id) return Boolean;
4774 -- Returns true if the entity is an actual for a package that is itself
4775 -- an actual for a formal package of the current instance. Such an
4776 -- entity requires special handling because it may be use-visible but
4777 -- hides directly visible entities defined outside the instance, because
4778 -- the corresponding formal did so in the generic.
4780 function Is_Actual_Parameter return Boolean;
4781 -- This function checks if the node N is an identifier that is an actual
4782 -- parameter of a procedure call. If so it returns True, otherwise it
4783 -- return False. The reason for this check is that at this stage we do
4784 -- not know what procedure is being called if the procedure might be
4785 -- overloaded, so it is premature to go setting referenced flags or
4786 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4787 -- for that processing
4789 function Known_But_Invisible (E : Entity_Id) return Boolean;
4790 -- This function determines whether a reference to the entity E, which
4791 -- is not visible, can reasonably be considered to be known to the
4792 -- writer of the reference. This is a heuristic test, used only for
4793 -- the purposes of figuring out whether we prefer to complain that an
4794 -- entity is undefined or invisible (and identify the declaration of
4795 -- the invisible entity in the latter case). The point here is that we
4796 -- don't want to complain that something is invisible and then point to
4797 -- something entirely mysterious to the writer.
4799 procedure Nvis_Messages;
4800 -- Called if there are no visible entries for N, but there is at least
4801 -- one non-directly visible, or hidden declaration. This procedure
4802 -- outputs an appropriate set of error messages.
4804 procedure Undefined (Nvis : Boolean);
4805 -- This function is called if the current node has no corresponding
4806 -- visible entity or entities. The value set in Msg indicates whether
4807 -- an error message was generated (multiple error messages for the
4808 -- same variable are generally suppressed, see body for details).
4809 -- Msg is True if an error message was generated, False if not. This
4810 -- value is used by the caller to determine whether or not to output
4811 -- additional messages where appropriate. The parameter is set False
4812 -- to get the message "X is undefined", and True to get the message
4813 -- "X is not visible".
4815 -------------------------
4816 -- From_Actual_Package --
4817 -------------------------
4819 function From_Actual_Package (E : Entity_Id) return Boolean is
4820 Scop : constant Entity_Id := Scope (E);
4821 -- Declared scope of candidate entity
4823 Act : Entity_Id;
4825 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4826 -- Recursive function that does the work and examines actuals of
4827 -- actual packages of current instance.
4829 ------------------------
4830 -- Declared_In_Actual --
4831 ------------------------
4833 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4834 Act : Entity_Id;
4836 begin
4837 if No (Associated_Formal_Package (Pack)) then
4838 return False;
4840 else
4841 Act := First_Entity (Pack);
4842 while Present (Act) loop
4843 if Renamed_Object (Pack) = Scop then
4844 return True;
4846 -- Check for end of list of actuals.
4848 elsif Ekind (Act) = E_Package
4849 and then Renamed_Object (Act) = Pack
4850 then
4851 return False;
4853 elsif Ekind (Act) = E_Package
4854 and then Declared_In_Actual (Act)
4855 then
4856 return True;
4857 end if;
4859 Next_Entity (Act);
4860 end loop;
4862 return False;
4863 end if;
4864 end Declared_In_Actual;
4866 -- Start of processing for From_Actual_Package
4868 begin
4869 if not In_Instance then
4870 return False;
4872 else
4873 Inst := Current_Scope;
4874 while Present (Inst)
4875 and then Ekind (Inst) /= E_Package
4876 and then not Is_Generic_Instance (Inst)
4877 loop
4878 Inst := Scope (Inst);
4879 end loop;
4881 if No (Inst) then
4882 return False;
4883 end if;
4885 Act := First_Entity (Inst);
4886 while Present (Act) loop
4887 if Ekind (Act) = E_Package
4888 and then Declared_In_Actual (Act)
4889 then
4890 return True;
4891 end if;
4893 Next_Entity (Act);
4894 end loop;
4896 return False;
4897 end if;
4898 end From_Actual_Package;
4900 -------------------------
4901 -- Is_Actual_Parameter --
4902 -------------------------
4904 function Is_Actual_Parameter return Boolean is
4905 begin
4906 return
4907 Nkind (N) = N_Identifier
4908 and then
4909 (Nkind (Parent (N)) = N_Procedure_Call_Statement
4910 or else
4911 (Nkind (Parent (N)) = N_Parameter_Association
4912 and then N = Explicit_Actual_Parameter (Parent (N))
4913 and then Nkind (Parent (Parent (N))) =
4914 N_Procedure_Call_Statement));
4915 end Is_Actual_Parameter;
4917 -------------------------
4918 -- Known_But_Invisible --
4919 -------------------------
4921 function Known_But_Invisible (E : Entity_Id) return Boolean is
4922 Fname : File_Name_Type;
4924 begin
4925 -- Entities in Standard are always considered to be known
4927 if Sloc (E) <= Standard_Location then
4928 return True;
4930 -- An entity that does not come from source is always considered
4931 -- to be unknown, since it is an artifact of code expansion.
4933 elsif not Comes_From_Source (E) then
4934 return False;
4936 -- In gnat internal mode, we consider all entities known. The
4937 -- historical reason behind this discrepancy is not known??? But the
4938 -- only effect is to modify the error message given, so it is not
4939 -- critical. Since it only affects the exact wording of error
4940 -- messages in illegal programs, we do not mention this as an
4941 -- effect of -gnatg, since it is not a language modification.
4943 elsif GNAT_Mode then
4944 return True;
4945 end if;
4947 -- Here we have an entity that is not from package Standard, and
4948 -- which comes from Source. See if it comes from an internal file.
4950 Fname := Unit_File_Name (Get_Source_Unit (E));
4952 -- Case of from internal file
4954 if Is_Internal_File_Name (Fname) then
4956 -- Private part entities in internal files are never considered
4957 -- to be known to the writer of normal application code.
4959 if Is_Hidden (E) then
4960 return False;
4961 end if;
4963 -- Entities from System packages other than System and
4964 -- System.Storage_Elements are not considered to be known.
4965 -- System.Auxxxx files are also considered known to the user.
4967 -- Should refine this at some point to generally distinguish
4968 -- between known and unknown internal files ???
4970 Get_Name_String (Fname);
4972 return
4973 Name_Len < 2
4974 or else
4975 Name_Buffer (1 .. 2) /= "s-"
4976 or else
4977 Name_Buffer (3 .. 8) = "stoele"
4978 or else
4979 Name_Buffer (3 .. 5) = "aux";
4981 -- If not an internal file, then entity is definitely known, even if
4982 -- it is in a private part (the message generated will note that it
4983 -- is in a private part).
4985 else
4986 return True;
4987 end if;
4988 end Known_But_Invisible;
4990 -------------------
4991 -- Nvis_Messages --
4992 -------------------
4994 procedure Nvis_Messages is
4995 Comp_Unit : Node_Id;
4996 Ent : Entity_Id;
4997 Found : Boolean := False;
4998 Hidden : Boolean := False;
4999 Item : Node_Id;
5001 begin
5002 -- Ada 2005 (AI-262): Generate a precise error concerning the
5003 -- Beaujolais effect that was previously detected
5005 if Nvis_Is_Private_Subprg then
5007 pragma Assert (Nkind (E2) = N_Defining_Identifier
5008 and then Ekind (E2) = E_Function
5009 and then Scope (E2) = Standard_Standard
5010 and then Has_Private_With (E2));
5012 -- Find the sloc corresponding to the private with'ed unit
5014 Comp_Unit := Cunit (Current_Sem_Unit);
5015 Error_Msg_Sloc := No_Location;
5017 Item := First (Context_Items (Comp_Unit));
5018 while Present (Item) loop
5019 if Nkind (Item) = N_With_Clause
5020 and then Private_Present (Item)
5021 and then Entity (Name (Item)) = E2
5022 then
5023 Error_Msg_Sloc := Sloc (Item);
5024 exit;
5025 end if;
5027 Next (Item);
5028 end loop;
5030 pragma Assert (Error_Msg_Sloc /= No_Location);
5032 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
5033 return;
5034 end if;
5036 Undefined (Nvis => True);
5038 if Msg then
5040 -- First loop does hidden declarations
5042 Ent := Homonyms;
5043 while Present (Ent) loop
5044 if Is_Potentially_Use_Visible (Ent) then
5045 if not Hidden then
5046 Error_Msg_N -- CODEFIX
5047 ("multiple use clauses cause hiding!", N);
5048 Hidden := True;
5049 end if;
5051 Error_Msg_Sloc := Sloc (Ent);
5052 Error_Msg_N -- CODEFIX
5053 ("hidden declaration#!", N);
5054 end if;
5056 Ent := Homonym (Ent);
5057 end loop;
5059 -- If we found hidden declarations, then that's enough, don't
5060 -- bother looking for non-visible declarations as well.
5062 if Hidden then
5063 return;
5064 end if;
5066 -- Second loop does non-directly visible declarations
5068 Ent := Homonyms;
5069 while Present (Ent) loop
5070 if not Is_Potentially_Use_Visible (Ent) then
5072 -- Do not bother the user with unknown entities
5074 if not Known_But_Invisible (Ent) then
5075 goto Continue;
5076 end if;
5078 Error_Msg_Sloc := Sloc (Ent);
5080 -- Output message noting that there is a non-visible
5081 -- declaration, distinguishing the private part case.
5083 if Is_Hidden (Ent) then
5084 Error_Msg_N ("non-visible (private) declaration#!", N);
5086 -- If the entity is declared in a generic package, it
5087 -- cannot be visible, so there is no point in adding it
5088 -- to the list of candidates if another homograph from a
5089 -- non-generic package has been seen.
5091 elsif Ekind (Scope (Ent)) = E_Generic_Package
5092 and then Found
5093 then
5094 null;
5096 else
5097 Error_Msg_N -- CODEFIX
5098 ("non-visible declaration#!", N);
5100 if Ekind (Scope (Ent)) /= E_Generic_Package then
5101 Found := True;
5102 end if;
5104 if Is_Compilation_Unit (Ent)
5105 and then
5106 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
5107 then
5108 Error_Msg_Qual_Level := 99;
5109 Error_Msg_NE -- CODEFIX
5110 ("\\missing `WITH &;`", N, Ent);
5111 Error_Msg_Qual_Level := 0;
5112 end if;
5114 if Ekind (Ent) = E_Discriminant
5115 and then Present (Corresponding_Discriminant (Ent))
5116 and then Scope (Corresponding_Discriminant (Ent)) =
5117 Etype (Scope (Ent))
5118 then
5119 Error_Msg_N
5120 ("inherited discriminant not allowed here" &
5121 " (RM 3.8 (12), 3.8.1 (6))!", N);
5122 end if;
5123 end if;
5125 -- Set entity and its containing package as referenced. We
5126 -- can't be sure of this, but this seems a better choice
5127 -- to avoid unused entity messages.
5129 if Comes_From_Source (Ent) then
5130 Set_Referenced (Ent);
5131 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
5132 end if;
5133 end if;
5135 <<Continue>>
5136 Ent := Homonym (Ent);
5137 end loop;
5138 end if;
5139 end Nvis_Messages;
5141 ---------------
5142 -- Undefined --
5143 ---------------
5145 procedure Undefined (Nvis : Boolean) is
5146 Emsg : Error_Msg_Id;
5148 begin
5149 -- We should never find an undefined internal name. If we do, then
5150 -- see if we have previous errors. If so, ignore on the grounds that
5151 -- it is probably a cascaded message (e.g. a block label from a badly
5152 -- formed block). If no previous errors, then we have a real internal
5153 -- error of some kind so raise an exception.
5155 if Is_Internal_Name (Chars (N)) then
5156 if Total_Errors_Detected /= 0 then
5157 return;
5158 else
5159 raise Program_Error;
5160 end if;
5161 end if;
5163 -- A very specialized error check, if the undefined variable is
5164 -- a case tag, and the case type is an enumeration type, check
5165 -- for a possible misspelling, and if so, modify the identifier
5167 -- Named aggregate should also be handled similarly ???
5169 if Nkind (N) = N_Identifier
5170 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
5171 then
5172 declare
5173 Case_Stm : constant Node_Id := Parent (Parent (N));
5174 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
5176 Lit : Node_Id;
5178 begin
5179 if Is_Enumeration_Type (Case_Typ)
5180 and then not Is_Standard_Character_Type (Case_Typ)
5181 then
5182 Lit := First_Literal (Case_Typ);
5183 Get_Name_String (Chars (Lit));
5185 if Chars (Lit) /= Chars (N)
5186 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
5187 then
5188 Error_Msg_Node_2 := Lit;
5189 Error_Msg_N -- CODEFIX
5190 ("& is undefined, assume misspelling of &", N);
5191 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
5192 return;
5193 end if;
5195 Lit := Next_Literal (Lit);
5196 end if;
5197 end;
5198 end if;
5200 -- Normal processing
5202 Set_Entity (N, Any_Id);
5203 Set_Etype (N, Any_Type);
5205 -- We use the table Urefs to keep track of entities for which we
5206 -- have issued errors for undefined references. Multiple errors
5207 -- for a single name are normally suppressed, however we modify
5208 -- the error message to alert the programmer to this effect.
5210 for J in Urefs.First .. Urefs.Last loop
5211 if Chars (N) = Chars (Urefs.Table (J).Node) then
5212 if Urefs.Table (J).Err /= No_Error_Msg
5213 and then Sloc (N) /= Urefs.Table (J).Loc
5214 then
5215 Error_Msg_Node_1 := Urefs.Table (J).Node;
5217 if Urefs.Table (J).Nvis then
5218 Change_Error_Text (Urefs.Table (J).Err,
5219 "& is not visible (more references follow)");
5220 else
5221 Change_Error_Text (Urefs.Table (J).Err,
5222 "& is undefined (more references follow)");
5223 end if;
5225 Urefs.Table (J).Err := No_Error_Msg;
5226 end if;
5228 -- Although we will set Msg False, and thus suppress the
5229 -- message, we also set Error_Posted True, to avoid any
5230 -- cascaded messages resulting from the undefined reference.
5232 Msg := False;
5233 Set_Error_Posted (N, True);
5234 return;
5235 end if;
5236 end loop;
5238 -- If entry not found, this is first undefined occurrence
5240 if Nvis then
5241 Error_Msg_N ("& is not visible!", N);
5242 Emsg := Get_Msg_Id;
5244 else
5245 Error_Msg_N ("& is undefined!", N);
5246 Emsg := Get_Msg_Id;
5248 -- A very bizarre special check, if the undefined identifier
5249 -- is put or put_line, then add a special error message (since
5250 -- this is a very common error for beginners to make).
5252 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
5253 Error_Msg_N -- CODEFIX
5254 ("\\possible missing `WITH Ada.Text_'I'O; " &
5255 "USE Ada.Text_'I'O`!", N);
5257 -- Another special check if N is the prefix of a selected
5258 -- component which is a known unit, add message complaining
5259 -- about missing with for this unit.
5261 elsif Nkind (Parent (N)) = N_Selected_Component
5262 and then N = Prefix (Parent (N))
5263 and then Is_Known_Unit (Parent (N))
5264 then
5265 Error_Msg_Node_2 := Selector_Name (Parent (N));
5266 Error_Msg_N -- CODEFIX
5267 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
5268 end if;
5270 -- Now check for possible misspellings
5272 declare
5273 E : Entity_Id;
5274 Ematch : Entity_Id := Empty;
5276 Last_Name_Id : constant Name_Id :=
5277 Name_Id (Nat (First_Name_Id) +
5278 Name_Entries_Count - 1);
5280 begin
5281 for Nam in First_Name_Id .. Last_Name_Id loop
5282 E := Get_Name_Entity_Id (Nam);
5284 if Present (E)
5285 and then (Is_Immediately_Visible (E)
5286 or else
5287 Is_Potentially_Use_Visible (E))
5288 then
5289 if Is_Bad_Spelling_Of (Chars (N), Nam) then
5290 Ematch := E;
5291 exit;
5292 end if;
5293 end if;
5294 end loop;
5296 if Present (Ematch) then
5297 Error_Msg_NE -- CODEFIX
5298 ("\possible misspelling of&", N, Ematch);
5299 end if;
5300 end;
5301 end if;
5303 -- Make entry in undefined references table unless the full errors
5304 -- switch is set, in which case by refraining from generating the
5305 -- table entry, we guarantee that we get an error message for every
5306 -- undefined reference.
5308 if not All_Errors_Mode then
5309 Urefs.Append (
5310 (Node => N,
5311 Err => Emsg,
5312 Nvis => Nvis,
5313 Loc => Sloc (N)));
5314 end if;
5316 Msg := True;
5317 end Undefined;
5319 -- Start of processing for Find_Direct_Name
5321 begin
5322 -- If the entity pointer is already set, this is an internal node, or
5323 -- a node that is analyzed more than once, after a tree modification.
5324 -- In such a case there is no resolution to perform, just set the type.
5326 if Present (Entity (N)) then
5327 if Is_Type (Entity (N)) then
5328 Set_Etype (N, Entity (N));
5330 else
5331 declare
5332 Entyp : constant Entity_Id := Etype (Entity (N));
5334 begin
5335 -- One special case here. If the Etype field is already set,
5336 -- and references the packed array type corresponding to the
5337 -- etype of the referenced entity, then leave it alone. This
5338 -- happens for trees generated from Exp_Pakd, where expressions
5339 -- can be deliberately "mis-typed" to the packed array type.
5341 if Is_Array_Type (Entyp)
5342 and then Is_Packed (Entyp)
5343 and then Present (Etype (N))
5344 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5345 then
5346 null;
5348 -- If not that special case, then just reset the Etype
5350 else
5351 Set_Etype (N, Etype (Entity (N)));
5352 end if;
5353 end;
5354 end if;
5356 return;
5357 end if;
5359 -- Here if Entity pointer was not set, we need full visibility analysis
5360 -- First we generate debugging output if the debug E flag is set.
5362 if Debug_Flag_E then
5363 Write_Str ("Looking for ");
5364 Write_Name (Chars (N));
5365 Write_Eol;
5366 end if;
5368 Homonyms := Current_Entity (N);
5369 Nvis_Entity := False;
5371 E := Homonyms;
5372 while Present (E) loop
5374 -- If entity is immediately visible or potentially use visible, then
5375 -- process the entity and we are done.
5377 if Is_Immediately_Visible (E) then
5378 goto Immediately_Visible_Entity;
5380 elsif Is_Potentially_Use_Visible (E) then
5381 goto Potentially_Use_Visible_Entity;
5383 -- Note if a known but invisible entity encountered
5385 elsif Known_But_Invisible (E) then
5386 Nvis_Entity := True;
5387 end if;
5389 -- Move to next entity in chain and continue search
5391 E := Homonym (E);
5392 end loop;
5394 -- If no entries on homonym chain that were potentially visible,
5395 -- and no entities reasonably considered as non-visible, then
5396 -- we have a plain undefined reference, with no additional
5397 -- explanation required.
5399 if not Nvis_Entity then
5400 Undefined (Nvis => False);
5402 -- Otherwise there is at least one entry on the homonym chain that
5403 -- is reasonably considered as being known and non-visible.
5405 else
5406 Nvis_Messages;
5407 end if;
5409 goto Done;
5411 -- Processing for a potentially use visible entry found. We must search
5412 -- the rest of the homonym chain for two reasons. First, if there is a
5413 -- directly visible entry, then none of the potentially use-visible
5414 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5415 -- for the case of multiple potentially use-visible entries hiding one
5416 -- another and as a result being non-directly visible (RM 8.4(11)).
5418 <<Potentially_Use_Visible_Entity>> declare
5419 Only_One_Visible : Boolean := True;
5420 All_Overloadable : Boolean := Is_Overloadable (E);
5422 begin
5423 E2 := Homonym (E);
5424 while Present (E2) loop
5425 if Is_Immediately_Visible (E2) then
5427 -- If the use-visible entity comes from the actual for a
5428 -- formal package, it hides a directly visible entity from
5429 -- outside the instance.
5431 if From_Actual_Package (E)
5432 and then Scope_Depth (E2) < Scope_Depth (Inst)
5433 then
5434 goto Found;
5435 else
5436 E := E2;
5437 goto Immediately_Visible_Entity;
5438 end if;
5440 elsif Is_Potentially_Use_Visible (E2) then
5441 Only_One_Visible := False;
5442 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5444 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5445 -- that can occur in private_with clauses. Example:
5447 -- with A;
5448 -- private with B; package A is
5449 -- package C is function B return Integer;
5450 -- use A; end A;
5451 -- V1 : Integer := B;
5452 -- private function B return Integer;
5453 -- V2 : Integer := B;
5454 -- end C;
5456 -- V1 resolves to A.B, but V2 resolves to library unit B
5458 elsif Ekind (E2) = E_Function
5459 and then Scope (E2) = Standard_Standard
5460 and then Has_Private_With (E2)
5461 then
5462 Only_One_Visible := False;
5463 All_Overloadable := False;
5464 Nvis_Is_Private_Subprg := True;
5465 exit;
5466 end if;
5468 E2 := Homonym (E2);
5469 end loop;
5471 -- On falling through this loop, we have checked that there are no
5472 -- immediately visible entities. Only_One_Visible is set if exactly
5473 -- one potentially use visible entity exists. All_Overloadable is
5474 -- set if all the potentially use visible entities are overloadable.
5475 -- The condition for legality is that either there is one potentially
5476 -- use visible entity, or if there is more than one, then all of them
5477 -- are overloadable.
5479 if Only_One_Visible or All_Overloadable then
5480 goto Found;
5482 -- If there is more than one potentially use-visible entity and at
5483 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5484 -- Note that E points to the first such entity on the homonym list.
5485 -- Special case: if one of the entities is declared in an actual
5486 -- package, it was visible in the generic, and takes precedence over
5487 -- other entities that are potentially use-visible. Same if it is
5488 -- declared in a local instantiation of the current instance.
5490 else
5491 if In_Instance then
5493 -- Find current instance
5495 Inst := Current_Scope;
5496 while Present (Inst) and then Inst /= Standard_Standard loop
5497 if Is_Generic_Instance (Inst) then
5498 exit;
5499 end if;
5501 Inst := Scope (Inst);
5502 end loop;
5504 E2 := E;
5505 while Present (E2) loop
5506 if From_Actual_Package (E2)
5507 or else
5508 (Is_Generic_Instance (Scope (E2))
5509 and then Scope_Depth (Scope (E2)) > Scope_Depth (Inst))
5510 then
5511 E := E2;
5512 goto Found;
5513 end if;
5515 E2 := Homonym (E2);
5516 end loop;
5518 Nvis_Messages;
5519 goto Done;
5521 elsif
5522 Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
5523 then
5524 -- A use-clause in the body of a system file creates conflict
5525 -- with some entity in a user scope, while rtsfind is active.
5526 -- Keep only the entity coming from another predefined unit.
5528 E2 := E;
5529 while Present (E2) loop
5530 if Is_Predefined_File_Name
5531 (Unit_File_Name (Get_Source_Unit (Sloc (E2))))
5532 then
5533 E := E2;
5534 goto Found;
5535 end if;
5537 E2 := Homonym (E2);
5538 end loop;
5540 -- Entity must exist because predefined unit is correct
5542 raise Program_Error;
5544 else
5545 Nvis_Messages;
5546 goto Done;
5547 end if;
5548 end if;
5549 end;
5551 -- Come here with E set to the first immediately visible entity on
5552 -- the homonym chain. This is the one we want unless there is another
5553 -- immediately visible entity further on in the chain for an inner
5554 -- scope (RM 8.3(8)).
5556 <<Immediately_Visible_Entity>> declare
5557 Level : Int;
5558 Scop : Entity_Id;
5560 begin
5561 -- Find scope level of initial entity. When compiling through
5562 -- Rtsfind, the previous context is not completely invisible, and
5563 -- an outer entity may appear on the chain, whose scope is below
5564 -- the entry for Standard that delimits the current scope stack.
5565 -- Indicate that the level for this spurious entry is outside of
5566 -- the current scope stack.
5568 Level := Scope_Stack.Last;
5569 loop
5570 Scop := Scope_Stack.Table (Level).Entity;
5571 exit when Scop = Scope (E);
5572 Level := Level - 1;
5573 exit when Scop = Standard_Standard;
5574 end loop;
5576 -- Now search remainder of homonym chain for more inner entry
5577 -- If the entity is Standard itself, it has no scope, and we
5578 -- compare it with the stack entry directly.
5580 E2 := Homonym (E);
5581 while Present (E2) loop
5582 if Is_Immediately_Visible (E2) then
5584 -- If a generic package contains a local declaration that
5585 -- has the same name as the generic, there may be a visibility
5586 -- conflict in an instance, where the local declaration must
5587 -- also hide the name of the corresponding package renaming.
5588 -- We check explicitly for a package declared by a renaming,
5589 -- whose renamed entity is an instance that is on the scope
5590 -- stack, and that contains a homonym in the same scope. Once
5591 -- we have found it, we know that the package renaming is not
5592 -- immediately visible, and that the identifier denotes the
5593 -- other entity (and its homonyms if overloaded).
5595 if Scope (E) = Scope (E2)
5596 and then Ekind (E) = E_Package
5597 and then Present (Renamed_Object (E))
5598 and then Is_Generic_Instance (Renamed_Object (E))
5599 and then In_Open_Scopes (Renamed_Object (E))
5600 and then Comes_From_Source (N)
5601 then
5602 Set_Is_Immediately_Visible (E, False);
5603 E := E2;
5605 else
5606 for J in Level + 1 .. Scope_Stack.Last loop
5607 if Scope_Stack.Table (J).Entity = Scope (E2)
5608 or else Scope_Stack.Table (J).Entity = E2
5609 then
5610 Level := J;
5611 E := E2;
5612 exit;
5613 end if;
5614 end loop;
5615 end if;
5616 end if;
5618 E2 := Homonym (E2);
5619 end loop;
5621 -- At the end of that loop, E is the innermost immediately
5622 -- visible entity, so we are all set.
5623 end;
5625 -- Come here with entity found, and stored in E
5627 <<Found>> begin
5629 -- Check violation of No_Wide_Characters restriction
5631 Check_Wide_Character_Restriction (E, N);
5633 -- When distribution features are available (Get_PCS_Name /=
5634 -- Name_No_DSA), a remote access-to-subprogram type is converted
5635 -- into a record type holding whatever information is needed to
5636 -- perform a remote call on an RCI subprogram. In that case we
5637 -- rewrite any occurrence of the RAS type into the equivalent record
5638 -- type here. 'Access attribute references and RAS dereferences are
5639 -- then implemented using specific TSSs. However when distribution is
5640 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5641 -- generation of these TSSs, and we must keep the RAS type in its
5642 -- original access-to-subprogram form (since all calls through a
5643 -- value of such type will be local anyway in the absence of a PCS).
5645 if Comes_From_Source (N)
5646 and then Is_Remote_Access_To_Subprogram_Type (E)
5647 and then Ekind (E) = E_Access_Subprogram_Type
5648 and then Expander_Active
5649 and then Get_PCS_Name /= Name_No_DSA
5650 then
5651 Rewrite (N, New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5652 goto Done;
5653 end if;
5655 -- Set the entity. Note that the reason we call Set_Entity for the
5656 -- overloadable case, as opposed to Set_Entity_With_Checks is
5657 -- that in the overloaded case, the initial call can set the wrong
5658 -- homonym. The call that sets the right homonym is in Sem_Res and
5659 -- that call does use Set_Entity_With_Checks, so we don't miss
5660 -- a style check.
5662 if Is_Overloadable (E) then
5663 Set_Entity (N, E);
5664 else
5665 Set_Entity_With_Checks (N, E);
5666 end if;
5668 if Is_Type (E) then
5669 Set_Etype (N, E);
5670 else
5671 Set_Etype (N, Get_Full_View (Etype (E)));
5672 end if;
5674 if Debug_Flag_E then
5675 Write_Str (" found ");
5676 Write_Entity_Info (E, " ");
5677 end if;
5679 -- If the Ekind of the entity is Void, it means that all homonyms
5680 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5681 -- test is skipped if the current scope is a record and the name is
5682 -- a pragma argument expression (case of Atomic and Volatile pragmas
5683 -- and possibly other similar pragmas added later, which are allowed
5684 -- to reference components in the current record).
5686 if Ekind (E) = E_Void
5687 and then
5688 (not Is_Record_Type (Current_Scope)
5689 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5690 then
5691 Premature_Usage (N);
5693 -- If the entity is overloadable, collect all interpretations of the
5694 -- name for subsequent overload resolution. We optimize a bit here to
5695 -- do this only if we have an overloadable entity that is not on its
5696 -- own on the homonym chain.
5698 elsif Is_Overloadable (E)
5699 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5700 then
5701 Collect_Interps (N);
5703 -- If no homonyms were visible, the entity is unambiguous
5705 if not Is_Overloaded (N) then
5706 if not Is_Actual_Parameter then
5707 Generate_Reference (E, N);
5708 end if;
5709 end if;
5711 -- Case of non-overloadable entity, set the entity providing that
5712 -- we do not have the case of a discriminant reference within a
5713 -- default expression. Such references are replaced with the
5714 -- corresponding discriminal, which is the formal corresponding to
5715 -- to the discriminant in the initialization procedure.
5717 else
5718 -- Entity is unambiguous, indicate that it is referenced here
5720 -- For a renaming of an object, always generate simple reference,
5721 -- we don't try to keep track of assignments in this case, except
5722 -- in SPARK mode where renamings are traversed for generating
5723 -- local effects of subprograms.
5725 if Is_Object (E)
5726 and then Present (Renamed_Object (E))
5727 and then not GNATprove_Mode
5728 then
5729 Generate_Reference (E, N);
5731 -- If the renamed entity is a private protected component,
5732 -- reference the original component as well. This needs to be
5733 -- done because the private renamings are installed before any
5734 -- analysis has occurred. Reference to a private component will
5735 -- resolve to the renaming and the original component will be
5736 -- left unreferenced, hence the following.
5738 if Is_Prival (E) then
5739 Generate_Reference (Prival_Link (E), N);
5740 end if;
5742 -- One odd case is that we do not want to set the Referenced flag
5743 -- if the entity is a label, and the identifier is the label in
5744 -- the source, since this is not a reference from the point of
5745 -- view of the user.
5747 elsif Nkind (Parent (N)) = N_Label then
5748 declare
5749 R : constant Boolean := Referenced (E);
5751 begin
5752 -- Generate reference unless this is an actual parameter
5753 -- (see comment below)
5755 if Is_Actual_Parameter then
5756 Generate_Reference (E, N);
5757 Set_Referenced (E, R);
5758 end if;
5759 end;
5761 -- Normal case, not a label: generate reference
5763 else
5764 if not Is_Actual_Parameter then
5766 -- Package or generic package is always a simple reference
5768 if Ekind_In (E, E_Package, E_Generic_Package) then
5769 Generate_Reference (E, N, 'r');
5771 -- Else see if we have a left hand side
5773 else
5774 case Is_LHS (N) is
5775 when Yes =>
5776 Generate_Reference (E, N, 'm');
5778 when No =>
5779 Generate_Reference (E, N, 'r');
5781 -- If we don't know now, generate reference later
5783 when Unknown =>
5784 Deferred_References.Append ((E, N));
5785 end case;
5786 end if;
5787 end if;
5788 end if;
5790 Set_Entity_Or_Discriminal (N, E);
5792 -- The name may designate a generalized reference, in which case
5793 -- the dereference interpretation will be included. Context is
5794 -- one in which a name is legal.
5796 if Ada_Version >= Ada_2012
5797 and then
5798 (Nkind (Parent (N)) in N_Subexpr
5799 or else Nkind_In (Parent (N), N_Assignment_Statement,
5800 N_Object_Declaration,
5801 N_Parameter_Association))
5802 then
5803 Check_Implicit_Dereference (N, Etype (E));
5804 end if;
5805 end if;
5806 end;
5808 -- Come here with entity set
5810 <<Done>>
5811 Check_Restriction_No_Use_Of_Entity (N);
5812 end Find_Direct_Name;
5814 ------------------------
5815 -- Find_Expanded_Name --
5816 ------------------------
5818 -- This routine searches the homonym chain of the entity until it finds
5819 -- an entity declared in the scope denoted by the prefix. If the entity
5820 -- is private, it may nevertheless be immediately visible, if we are in
5821 -- the scope of its declaration.
5823 procedure Find_Expanded_Name (N : Node_Id) is
5824 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean;
5825 -- Determine whether expanded name Nod appears within a pragma which is
5826 -- a suitable context for an abstract view of a state or variable. The
5827 -- following pragmas fall in this category:
5828 -- Depends
5829 -- Global
5830 -- Initializes
5831 -- Refined_Depends
5832 -- Refined_Global
5834 -- In addition, pragma Abstract_State is also considered suitable even
5835 -- though it is an illegal context for an abstract view as this allows
5836 -- for proper resolution of abstract views of variables. This illegal
5837 -- context is later flagged in the analysis of indicator Part_Of.
5839 -----------------------------
5840 -- In_Abstract_View_Pragma --
5841 -----------------------------
5843 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean is
5844 Par : Node_Id;
5846 begin
5847 -- Climb the parent chain looking for a pragma
5849 Par := Nod;
5850 while Present (Par) loop
5851 if Nkind (Par) = N_Pragma then
5852 if Nam_In (Pragma_Name_Unmapped (Par),
5853 Name_Abstract_State,
5854 Name_Depends,
5855 Name_Global,
5856 Name_Initializes,
5857 Name_Refined_Depends,
5858 Name_Refined_Global)
5859 then
5860 return True;
5862 -- Otherwise the pragma is not a legal context for an abstract
5863 -- view.
5865 else
5866 exit;
5867 end if;
5869 -- Prevent the search from going too far
5871 elsif Is_Body_Or_Package_Declaration (Par) then
5872 exit;
5873 end if;
5875 Par := Parent (Par);
5876 end loop;
5878 return False;
5879 end In_Abstract_View_Pragma;
5881 -- Local variables
5883 Selector : constant Node_Id := Selector_Name (N);
5884 Candidate : Entity_Id := Empty;
5885 P_Name : Entity_Id;
5886 Id : Entity_Id;
5888 -- Start of processing for Find_Expanded_Name
5890 begin
5891 P_Name := Entity (Prefix (N));
5893 -- If the prefix is a renamed package, look for the entity in the
5894 -- original package.
5896 if Ekind (P_Name) = E_Package
5897 and then Present (Renamed_Object (P_Name))
5898 then
5899 P_Name := Renamed_Object (P_Name);
5901 -- Rewrite node with entity field pointing to renamed object
5903 Rewrite (Prefix (N), New_Copy (Prefix (N)));
5904 Set_Entity (Prefix (N), P_Name);
5906 -- If the prefix is an object of a concurrent type, look for
5907 -- the entity in the associated task or protected type.
5909 elsif Is_Concurrent_Type (Etype (P_Name)) then
5910 P_Name := Etype (P_Name);
5911 end if;
5913 Id := Current_Entity (Selector);
5915 declare
5916 Is_New_Candidate : Boolean;
5918 begin
5919 while Present (Id) loop
5920 if Scope (Id) = P_Name then
5921 Candidate := Id;
5922 Is_New_Candidate := True;
5924 -- Handle abstract views of states and variables. These are
5925 -- acceptable candidates only when the reference to the view
5926 -- appears in certain pragmas.
5928 if Ekind (Id) = E_Abstract_State
5929 and then From_Limited_With (Id)
5930 and then Present (Non_Limited_View (Id))
5931 then
5932 if In_Abstract_View_Pragma (N) then
5933 Candidate := Non_Limited_View (Id);
5934 Is_New_Candidate := True;
5936 -- Hide the candidate because it is not used in a proper
5937 -- context.
5939 else
5940 Candidate := Empty;
5941 Is_New_Candidate := False;
5942 end if;
5943 end if;
5945 -- Ada 2005 (AI-217): Handle shadow entities associated with
5946 -- types declared in limited-withed nested packages. We don't need
5947 -- to handle E_Incomplete_Subtype entities because the entities
5948 -- in the limited view are always E_Incomplete_Type and
5949 -- E_Class_Wide_Type entities (see Build_Limited_Views).
5951 -- Regarding the expression used to evaluate the scope, it
5952 -- is important to note that the limited view also has shadow
5953 -- entities associated nested packages. For this reason the
5954 -- correct scope of the entity is the scope of the real entity.
5955 -- The non-limited view may itself be incomplete, in which case
5956 -- get the full view if available.
5958 elsif Ekind_In (Id, E_Incomplete_Type, E_Class_Wide_Type)
5959 and then From_Limited_With (Id)
5960 and then Present (Non_Limited_View (Id))
5961 and then Scope (Non_Limited_View (Id)) = P_Name
5962 then
5963 Candidate := Get_Full_View (Non_Limited_View (Id));
5964 Is_New_Candidate := True;
5966 else
5967 Is_New_Candidate := False;
5968 end if;
5970 if Is_New_Candidate then
5972 -- If entity is a child unit, either it is a visible child of
5973 -- the prefix, or we are in the body of a generic prefix, as
5974 -- will happen when a child unit is instantiated in the body
5975 -- of a generic parent. This is because the instance body does
5976 -- not restore the full compilation context, given that all
5977 -- non-local references have been captured.
5979 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
5980 exit when Is_Visible_Lib_Unit (Id)
5981 or else (Is_Child_Unit (Id)
5982 and then In_Open_Scopes (Scope (Id))
5983 and then In_Instance_Body);
5984 else
5985 exit when not Is_Hidden (Id);
5986 end if;
5988 exit when Is_Immediately_Visible (Id);
5989 end if;
5991 Id := Homonym (Id);
5992 end loop;
5993 end;
5995 if No (Id)
5996 and then Ekind_In (P_Name, E_Procedure, E_Function)
5997 and then Is_Generic_Instance (P_Name)
5998 then
5999 -- Expanded name denotes entity in (instance of) generic subprogram.
6000 -- The entity may be in the subprogram instance, or may denote one of
6001 -- the formals, which is declared in the enclosing wrapper package.
6003 P_Name := Scope (P_Name);
6005 Id := Current_Entity (Selector);
6006 while Present (Id) loop
6007 exit when Scope (Id) = P_Name;
6008 Id := Homonym (Id);
6009 end loop;
6010 end if;
6012 if No (Id) or else Chars (Id) /= Chars (Selector) then
6013 Set_Etype (N, Any_Type);
6015 -- If we are looking for an entity defined in System, try to find it
6016 -- in the child package that may have been provided as an extension
6017 -- to System. The Extend_System pragma will have supplied the name of
6018 -- the extension, which may have to be loaded.
6020 if Chars (P_Name) = Name_System
6021 and then Scope (P_Name) = Standard_Standard
6022 and then Present (System_Extend_Unit)
6023 and then Present_System_Aux (N)
6024 then
6025 Set_Entity (Prefix (N), System_Aux_Id);
6026 Find_Expanded_Name (N);
6027 return;
6029 -- There is an implicit instance of the predefined operator in
6030 -- the given scope. The operator entity is defined in Standard.
6031 -- Has_Implicit_Operator makes the node into an Expanded_Name.
6033 elsif Nkind (Selector) = N_Operator_Symbol
6034 and then Has_Implicit_Operator (N)
6035 then
6036 return;
6038 -- If there is no literal defined in the scope denoted by the
6039 -- prefix, the literal may belong to (a type derived from)
6040 -- Standard_Character, for which we have no explicit literals.
6042 elsif Nkind (Selector) = N_Character_Literal
6043 and then Has_Implicit_Character_Literal (N)
6044 then
6045 return;
6047 else
6048 -- If the prefix is a single concurrent object, use its name in
6049 -- the error message, rather than that of the anonymous type.
6051 if Is_Concurrent_Type (P_Name)
6052 and then Is_Internal_Name (Chars (P_Name))
6053 then
6054 Error_Msg_Node_2 := Entity (Prefix (N));
6055 else
6056 Error_Msg_Node_2 := P_Name;
6057 end if;
6059 if P_Name = System_Aux_Id then
6060 P_Name := Scope (P_Name);
6061 Set_Entity (Prefix (N), P_Name);
6062 end if;
6064 if Present (Candidate) then
6066 -- If we know that the unit is a child unit we can give a more
6067 -- accurate error message.
6069 if Is_Child_Unit (Candidate) then
6071 -- If the candidate is a private child unit and we are in
6072 -- the visible part of a public unit, specialize the error
6073 -- message. There might be a private with_clause for it,
6074 -- but it is not currently active.
6076 if Is_Private_Descendant (Candidate)
6077 and then Ekind (Current_Scope) = E_Package
6078 and then not In_Private_Part (Current_Scope)
6079 and then not Is_Private_Descendant (Current_Scope)
6080 then
6081 Error_Msg_N
6082 ("private child unit& is not visible here", Selector);
6084 -- Normal case where we have a missing with for a child unit
6086 else
6087 Error_Msg_Qual_Level := 99;
6088 Error_Msg_NE -- CODEFIX
6089 ("missing `WITH &;`", Selector, Candidate);
6090 Error_Msg_Qual_Level := 0;
6091 end if;
6093 -- Here we don't know that this is a child unit
6095 else
6096 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
6097 end if;
6099 else
6100 -- Within the instantiation of a child unit, the prefix may
6101 -- denote the parent instance, but the selector has the name
6102 -- of the original child. That is to say, when A.B appears
6103 -- within an instantiation of generic child unit B, the scope
6104 -- stack includes an instance of A (P_Name) and an instance
6105 -- of B under some other name. We scan the scope to find this
6106 -- child instance, which is the desired entity.
6107 -- Note that the parent may itself be a child instance, if
6108 -- the reference is of the form A.B.C, in which case A.B has
6109 -- already been rewritten with the proper entity.
6111 if In_Open_Scopes (P_Name)
6112 and then Is_Generic_Instance (P_Name)
6113 then
6114 declare
6115 Gen_Par : constant Entity_Id :=
6116 Generic_Parent (Specification
6117 (Unit_Declaration_Node (P_Name)));
6118 S : Entity_Id := Current_Scope;
6119 P : Entity_Id;
6121 begin
6122 for J in reverse 0 .. Scope_Stack.Last loop
6123 S := Scope_Stack.Table (J).Entity;
6125 exit when S = Standard_Standard;
6127 if Ekind_In (S, E_Function,
6128 E_Package,
6129 E_Procedure)
6130 then
6131 P :=
6132 Generic_Parent (Specification
6133 (Unit_Declaration_Node (S)));
6135 -- Check that P is a generic child of the generic
6136 -- parent of the prefix.
6138 if Present (P)
6139 and then Chars (P) = Chars (Selector)
6140 and then Scope (P) = Gen_Par
6141 then
6142 Id := S;
6143 goto Found;
6144 end if;
6145 end if;
6147 end loop;
6148 end;
6149 end if;
6151 -- If this is a selection from Ada, System or Interfaces, then
6152 -- we assume a missing with for the corresponding package.
6154 if Is_Known_Unit (N) then
6155 if not Error_Posted (N) then
6156 Error_Msg_Node_2 := Selector;
6157 Error_Msg_N -- CODEFIX
6158 ("missing `WITH &.&;`", Prefix (N));
6159 end if;
6161 -- If this is a selection from a dummy package, then suppress
6162 -- the error message, of course the entity is missing if the
6163 -- package is missing.
6165 elsif Sloc (Error_Msg_Node_2) = No_Location then
6166 null;
6168 -- Here we have the case of an undefined component
6170 else
6171 -- The prefix may hide a homonym in the context that
6172 -- declares the desired entity. This error can use a
6173 -- specialized message.
6175 if In_Open_Scopes (P_Name) then
6176 declare
6177 H : constant Entity_Id := Homonym (P_Name);
6179 begin
6180 if Present (H)
6181 and then Is_Compilation_Unit (H)
6182 and then
6183 (Is_Immediately_Visible (H)
6184 or else Is_Visible_Lib_Unit (H))
6185 then
6186 Id := First_Entity (H);
6187 while Present (Id) loop
6188 if Chars (Id) = Chars (Selector) then
6189 Error_Msg_Qual_Level := 99;
6190 Error_Msg_Name_1 := Chars (Selector);
6191 Error_Msg_NE
6192 ("% not declared in&", N, P_Name);
6193 Error_Msg_NE
6194 ("\use fully qualified name starting with "
6195 & "Standard to make& visible", N, H);
6196 Error_Msg_Qual_Level := 0;
6197 goto Done;
6198 end if;
6200 Next_Entity (Id);
6201 end loop;
6202 end if;
6204 -- If not found, standard error message
6206 Error_Msg_NE ("& not declared in&", N, Selector);
6208 <<Done>> null;
6209 end;
6211 else
6212 Error_Msg_NE ("& not declared in&", N, Selector);
6213 end if;
6215 -- Check for misspelling of some entity in prefix
6217 Id := First_Entity (P_Name);
6218 while Present (Id) loop
6219 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
6220 and then not Is_Internal_Name (Chars (Id))
6221 then
6222 Error_Msg_NE -- CODEFIX
6223 ("possible misspelling of&", Selector, Id);
6224 exit;
6225 end if;
6227 Next_Entity (Id);
6228 end loop;
6230 -- Specialize the message if this may be an instantiation
6231 -- of a child unit that was not mentioned in the context.
6233 if Nkind (Parent (N)) = N_Package_Instantiation
6234 and then Is_Generic_Instance (Entity (Prefix (N)))
6235 and then Is_Compilation_Unit
6236 (Generic_Parent (Parent (Entity (Prefix (N)))))
6237 then
6238 Error_Msg_Node_2 := Selector;
6239 Error_Msg_N -- CODEFIX
6240 ("\missing `WITH &.&;`", Prefix (N));
6241 end if;
6242 end if;
6243 end if;
6245 Id := Any_Id;
6246 end if;
6247 end if;
6249 <<Found>>
6250 if Comes_From_Source (N)
6251 and then Is_Remote_Access_To_Subprogram_Type (Id)
6252 and then Ekind (Id) = E_Access_Subprogram_Type
6253 and then Present (Equivalent_Type (Id))
6254 then
6255 -- If we are not actually generating distribution code (i.e. the
6256 -- current PCS is the dummy non-distributed version), then the
6257 -- Equivalent_Type will be missing, and Id should be treated as
6258 -- a regular access-to-subprogram type.
6260 Id := Equivalent_Type (Id);
6261 Set_Chars (Selector, Chars (Id));
6262 end if;
6264 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6266 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
6267 if From_Limited_With (Id)
6268 or else Is_Type (Id)
6269 or else Ekind (Id) = E_Package
6270 then
6271 null;
6272 else
6273 Error_Msg_N
6274 ("limited withed package can only be used to access incomplete "
6275 & "types", N);
6276 end if;
6277 end if;
6279 if Is_Task_Type (P_Name)
6280 and then ((Ekind (Id) = E_Entry
6281 and then Nkind (Parent (N)) /= N_Attribute_Reference)
6282 or else
6283 (Ekind (Id) = E_Entry_Family
6284 and then
6285 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
6286 then
6287 -- If both the task type and the entry are in scope, this may still
6288 -- be the expanded name of an entry formal.
6290 if In_Open_Scopes (Id)
6291 and then Nkind (Parent (N)) = N_Selected_Component
6292 then
6293 null;
6295 else
6296 -- It is an entry call after all, either to the current task
6297 -- (which will deadlock) or to an enclosing task.
6299 Analyze_Selected_Component (N);
6300 return;
6301 end if;
6302 end if;
6304 Change_Selected_Component_To_Expanded_Name (N);
6306 -- Set appropriate type
6308 if Is_Type (Id) then
6309 Set_Etype (N, Id);
6310 else
6311 Set_Etype (N, Get_Full_View (Etype (Id)));
6312 end if;
6314 -- Do style check and generate reference, but skip both steps if this
6315 -- entity has homonyms, since we may not have the right homonym set yet.
6316 -- The proper homonym will be set during the resolve phase.
6318 if Has_Homonym (Id) then
6319 Set_Entity (N, Id);
6321 else
6322 Set_Entity_Or_Discriminal (N, Id);
6324 case Is_LHS (N) is
6325 when Yes =>
6326 Generate_Reference (Id, N, 'm');
6328 when No =>
6329 Generate_Reference (Id, N, 'r');
6331 when Unknown =>
6332 Deferred_References.Append ((Id, N));
6333 end case;
6334 end if;
6336 -- Check for violation of No_Wide_Characters
6338 Check_Wide_Character_Restriction (Id, N);
6340 -- If the Ekind of the entity is Void, it means that all homonyms are
6341 -- hidden from all visibility (RM 8.3(5,14-20)).
6343 if Ekind (Id) = E_Void then
6344 Premature_Usage (N);
6346 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
6347 declare
6348 H : Entity_Id := Homonym (Id);
6350 begin
6351 while Present (H) loop
6352 if Scope (H) = Scope (Id)
6353 and then (not Is_Hidden (H)
6354 or else Is_Immediately_Visible (H))
6355 then
6356 Collect_Interps (N);
6357 exit;
6358 end if;
6360 H := Homonym (H);
6361 end loop;
6363 -- If an extension of System is present, collect possible explicit
6364 -- overloadings declared in the extension.
6366 if Chars (P_Name) = Name_System
6367 and then Scope (P_Name) = Standard_Standard
6368 and then Present (System_Extend_Unit)
6369 and then Present_System_Aux (N)
6370 then
6371 H := Current_Entity (Id);
6373 while Present (H) loop
6374 if Scope (H) = System_Aux_Id then
6375 Add_One_Interp (N, H, Etype (H));
6376 end if;
6378 H := Homonym (H);
6379 end loop;
6380 end if;
6381 end;
6382 end if;
6384 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6385 and then Scope (Id) /= Standard_Standard
6386 then
6387 -- In addition to user-defined operators in the given scope, there
6388 -- may be an implicit instance of the predefined operator. The
6389 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6390 -- and added to the interpretations. Procedure Add_One_Interp will
6391 -- determine which hides which.
6393 if Has_Implicit_Operator (N) then
6394 null;
6395 end if;
6396 end if;
6398 -- If there is a single interpretation for N we can generate a
6399 -- reference to the unique entity found.
6401 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6402 Generate_Reference (Id, N);
6403 end if;
6405 Check_Restriction_No_Use_Of_Entity (N);
6406 end Find_Expanded_Name;
6408 -------------------------
6409 -- Find_Renamed_Entity --
6410 -------------------------
6412 function Find_Renamed_Entity
6413 (N : Node_Id;
6414 Nam : Node_Id;
6415 New_S : Entity_Id;
6416 Is_Actual : Boolean := False) return Entity_Id
6418 Ind : Interp_Index;
6419 I1 : Interp_Index := 0; -- Suppress junk warnings
6420 It : Interp;
6421 It1 : Interp;
6422 Old_S : Entity_Id;
6423 Inst : Entity_Id;
6425 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6426 -- If the renamed entity is an implicit operator, check whether it is
6427 -- visible because its operand type is properly visible. This check
6428 -- applies to explicit renamed entities that appear in the source in a
6429 -- renaming declaration or a formal subprogram instance, but not to
6430 -- default generic actuals with a name.
6432 function Report_Overload return Entity_Id;
6433 -- List possible interpretations, and specialize message in the
6434 -- case of a generic actual.
6436 function Within (Inner, Outer : Entity_Id) return Boolean;
6437 -- Determine whether a candidate subprogram is defined within the
6438 -- enclosing instance. If yes, it has precedence over outer candidates.
6440 --------------------------
6441 -- Is_Visible_Operation --
6442 --------------------------
6444 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6445 Scop : Entity_Id;
6446 Typ : Entity_Id;
6447 Btyp : Entity_Id;
6449 begin
6450 if Ekind (Op) /= E_Operator
6451 or else Scope (Op) /= Standard_Standard
6452 or else (In_Instance
6453 and then (not Is_Actual
6454 or else Present (Enclosing_Instance)))
6455 then
6456 return True;
6458 else
6459 -- For a fixed point type operator, check the resulting type,
6460 -- because it may be a mixed mode integer * fixed operation.
6462 if Present (Next_Formal (First_Formal (New_S)))
6463 and then Is_Fixed_Point_Type (Etype (New_S))
6464 then
6465 Typ := Etype (New_S);
6466 else
6467 Typ := Etype (First_Formal (New_S));
6468 end if;
6470 Btyp := Base_Type (Typ);
6472 if Nkind (Nam) /= N_Expanded_Name then
6473 return (In_Open_Scopes (Scope (Btyp))
6474 or else Is_Potentially_Use_Visible (Btyp)
6475 or else In_Use (Btyp)
6476 or else In_Use (Scope (Btyp)));
6478 else
6479 Scop := Entity (Prefix (Nam));
6481 if Ekind (Scop) = E_Package
6482 and then Present (Renamed_Object (Scop))
6483 then
6484 Scop := Renamed_Object (Scop);
6485 end if;
6487 -- Operator is visible if prefix of expanded name denotes
6488 -- scope of type, or else type is defined in System_Aux
6489 -- and the prefix denotes System.
6491 return Scope (Btyp) = Scop
6492 or else (Scope (Btyp) = System_Aux_Id
6493 and then Scope (Scope (Btyp)) = Scop);
6494 end if;
6495 end if;
6496 end Is_Visible_Operation;
6498 ------------
6499 -- Within --
6500 ------------
6502 function Within (Inner, Outer : Entity_Id) return Boolean is
6503 Sc : Entity_Id;
6505 begin
6506 Sc := Scope (Inner);
6507 while Sc /= Standard_Standard loop
6508 if Sc = Outer then
6509 return True;
6510 else
6511 Sc := Scope (Sc);
6512 end if;
6513 end loop;
6515 return False;
6516 end Within;
6518 ---------------------
6519 -- Report_Overload --
6520 ---------------------
6522 function Report_Overload return Entity_Id is
6523 begin
6524 if Is_Actual then
6525 Error_Msg_NE -- CODEFIX
6526 ("ambiguous actual subprogram&, " &
6527 "possible interpretations:", N, Nam);
6528 else
6529 Error_Msg_N -- CODEFIX
6530 ("ambiguous subprogram, " &
6531 "possible interpretations:", N);
6532 end if;
6534 List_Interps (Nam, N);
6535 return Old_S;
6536 end Report_Overload;
6538 -- Start of processing for Find_Renamed_Entity
6540 begin
6541 Old_S := Any_Id;
6542 Candidate_Renaming := Empty;
6544 if Is_Overloaded (Nam) then
6545 Get_First_Interp (Nam, Ind, It);
6546 while Present (It.Nam) loop
6547 if Entity_Matches_Spec (It.Nam, New_S)
6548 and then Is_Visible_Operation (It.Nam)
6549 then
6550 if Old_S /= Any_Id then
6552 -- Note: The call to Disambiguate only happens if a
6553 -- previous interpretation was found, in which case I1
6554 -- has received a value.
6556 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
6558 if It1 = No_Interp then
6559 Inst := Enclosing_Instance;
6561 if Present (Inst) then
6562 if Within (It.Nam, Inst) then
6563 if Within (Old_S, Inst) then
6565 -- Choose the innermost subprogram, which would
6566 -- have hidden the outer one in the generic.
6568 if Scope_Depth (It.Nam) <
6569 Scope_Depth (Old_S)
6570 then
6571 return Old_S;
6572 else
6573 return It.Nam;
6574 end if;
6575 end if;
6577 elsif Within (Old_S, Inst) then
6578 return (Old_S);
6580 else
6581 return Report_Overload;
6582 end if;
6584 -- If not within an instance, ambiguity is real
6586 else
6587 return Report_Overload;
6588 end if;
6590 else
6591 Old_S := It1.Nam;
6592 exit;
6593 end if;
6595 else
6596 I1 := Ind;
6597 Old_S := It.Nam;
6598 end if;
6600 elsif
6601 Present (First_Formal (It.Nam))
6602 and then Present (First_Formal (New_S))
6603 and then (Base_Type (Etype (First_Formal (It.Nam))) =
6604 Base_Type (Etype (First_Formal (New_S))))
6605 then
6606 Candidate_Renaming := It.Nam;
6607 end if;
6609 Get_Next_Interp (Ind, It);
6610 end loop;
6612 Set_Entity (Nam, Old_S);
6614 if Old_S /= Any_Id then
6615 Set_Is_Overloaded (Nam, False);
6616 end if;
6618 -- Non-overloaded case
6620 else
6621 if Is_Actual
6622 and then Present (Enclosing_Instance)
6623 and then Entity_Matches_Spec (Entity (Nam), New_S)
6624 then
6625 Old_S := Entity (Nam);
6627 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
6628 Candidate_Renaming := New_S;
6630 if Is_Visible_Operation (Entity (Nam)) then
6631 Old_S := Entity (Nam);
6632 end if;
6634 elsif Present (First_Formal (Entity (Nam)))
6635 and then Present (First_Formal (New_S))
6636 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
6637 Base_Type (Etype (First_Formal (New_S))))
6638 then
6639 Candidate_Renaming := Entity (Nam);
6640 end if;
6641 end if;
6643 return Old_S;
6644 end Find_Renamed_Entity;
6646 -----------------------------
6647 -- Find_Selected_Component --
6648 -----------------------------
6650 procedure Find_Selected_Component (N : Node_Id) is
6651 P : constant Node_Id := Prefix (N);
6653 P_Name : Entity_Id;
6654 -- Entity denoted by prefix
6656 P_Type : Entity_Id;
6657 -- and its type
6659 Nam : Node_Id;
6661 function Available_Subtype return Boolean;
6662 -- A small optimization: if the prefix is constrained and the component
6663 -- is an array type we may already have a usable subtype for it, so we
6664 -- can use it rather than generating a new one, because the bounds
6665 -- will be the values of the discriminants and not discriminant refs.
6666 -- This simplifies value tracing in GNATProve. For consistency, both
6667 -- the entity name and the subtype come from the constrained component.
6669 -- This is only used in GNATProve mode: when generating code it may be
6670 -- necessary to create an itype in the scope of use of the selected
6671 -- component, e.g. in the context of a expanded record equality.
6673 function Is_Reference_In_Subunit return Boolean;
6674 -- In a subunit, the scope depth is not a proper measure of hiding,
6675 -- because the context of the proper body may itself hide entities in
6676 -- parent units. This rare case requires inspecting the tree directly
6677 -- because the proper body is inserted in the main unit and its context
6678 -- is simply added to that of the parent.
6680 -----------------------
6681 -- Available_Subtype --
6682 -----------------------
6684 function Available_Subtype return Boolean is
6685 Comp : Entity_Id;
6687 begin
6688 if GNATprove_Mode then
6689 Comp := First_Entity (Etype (P));
6690 while Present (Comp) loop
6691 if Chars (Comp) = Chars (Selector_Name (N)) then
6692 Set_Etype (N, Etype (Comp));
6693 Set_Entity (Selector_Name (N), Comp);
6694 Set_Etype (Selector_Name (N), Etype (Comp));
6695 return True;
6696 end if;
6698 Next_Component (Comp);
6699 end loop;
6700 end if;
6702 return False;
6703 end Available_Subtype;
6705 -----------------------------
6706 -- Is_Reference_In_Subunit --
6707 -----------------------------
6709 function Is_Reference_In_Subunit return Boolean is
6710 Clause : Node_Id;
6711 Comp_Unit : Node_Id;
6713 begin
6714 Comp_Unit := N;
6715 while Present (Comp_Unit)
6716 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6717 loop
6718 Comp_Unit := Parent (Comp_Unit);
6719 end loop;
6721 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6722 return False;
6723 end if;
6725 -- Now check whether the package is in the context of the subunit
6727 Clause := First (Context_Items (Comp_Unit));
6728 while Present (Clause) loop
6729 if Nkind (Clause) = N_With_Clause
6730 and then Entity (Name (Clause)) = P_Name
6731 then
6732 return True;
6733 end if;
6735 Clause := Next (Clause);
6736 end loop;
6738 return False;
6739 end Is_Reference_In_Subunit;
6741 -- Start of processing for Find_Selected_Component
6743 begin
6744 Analyze (P);
6746 if Nkind (P) = N_Error then
6747 return;
6748 end if;
6750 -- Selector name cannot be a character literal or an operator symbol in
6751 -- SPARK, except for the operator symbol in a renaming.
6753 if Restriction_Check_Required (SPARK_05) then
6754 if Nkind (Selector_Name (N)) = N_Character_Literal then
6755 Check_SPARK_05_Restriction
6756 ("character literal cannot be prefixed", N);
6757 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
6758 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
6759 then
6760 Check_SPARK_05_Restriction
6761 ("operator symbol cannot be prefixed", N);
6762 end if;
6763 end if;
6765 -- If the selector already has an entity, the node has been constructed
6766 -- in the course of expansion, and is known to be valid. Do not verify
6767 -- that it is defined for the type (it may be a private component used
6768 -- in the expansion of record equality).
6770 if Present (Entity (Selector_Name (N))) then
6771 if No (Etype (N)) or else Etype (N) = Any_Type then
6772 declare
6773 Sel_Name : constant Node_Id := Selector_Name (N);
6774 Selector : constant Entity_Id := Entity (Sel_Name);
6775 C_Etype : Node_Id;
6777 begin
6778 Set_Etype (Sel_Name, Etype (Selector));
6780 if not Is_Entity_Name (P) then
6781 Resolve (P);
6782 end if;
6784 -- Build an actual subtype except for the first parameter
6785 -- of an init proc, where this actual subtype is by
6786 -- definition incorrect, since the object is uninitialized
6787 -- (and does not even have defined discriminants etc.)
6789 if Is_Entity_Name (P)
6790 and then Ekind (Entity (P)) = E_Function
6791 then
6792 Nam := New_Copy (P);
6794 if Is_Overloaded (P) then
6795 Save_Interps (P, Nam);
6796 end if;
6798 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
6799 Analyze_Call (P);
6800 Analyze_Selected_Component (N);
6801 return;
6803 elsif Ekind (Selector) = E_Component
6804 and then (not Is_Entity_Name (P)
6805 or else Chars (Entity (P)) /= Name_uInit)
6806 then
6807 -- Check if we already have an available subtype we can use
6809 if Ekind (Etype (P)) = E_Record_Subtype
6810 and then Nkind (Parent (Etype (P))) = N_Subtype_Declaration
6811 and then Is_Array_Type (Etype (Selector))
6812 and then not Is_Packed (Etype (Selector))
6813 and then Available_Subtype
6814 then
6815 return;
6817 -- Do not build the subtype when referencing components of
6818 -- dispatch table wrappers. Required to avoid generating
6819 -- elaboration code with HI runtimes.
6821 elsif RTU_Loaded (Ada_Tags)
6822 and then
6823 ((RTE_Available (RE_Dispatch_Table_Wrapper)
6824 and then Scope (Selector) =
6825 RTE (RE_Dispatch_Table_Wrapper))
6826 or else
6827 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
6828 and then Scope (Selector) =
6829 RTE (RE_No_Dispatch_Table_Wrapper)))
6830 then
6831 C_Etype := Empty;
6832 else
6833 C_Etype :=
6834 Build_Actual_Subtype_Of_Component
6835 (Etype (Selector), N);
6836 end if;
6838 else
6839 C_Etype := Empty;
6840 end if;
6842 if No (C_Etype) then
6843 C_Etype := Etype (Selector);
6844 else
6845 Insert_Action (N, C_Etype);
6846 C_Etype := Defining_Identifier (C_Etype);
6847 end if;
6849 Set_Etype (N, C_Etype);
6850 end;
6852 -- If this is the name of an entry or protected operation, and
6853 -- the prefix is an access type, insert an explicit dereference,
6854 -- so that entry calls are treated uniformly.
6856 if Is_Access_Type (Etype (P))
6857 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
6858 then
6859 declare
6860 New_P : constant Node_Id :=
6861 Make_Explicit_Dereference (Sloc (P),
6862 Prefix => Relocate_Node (P));
6863 begin
6864 Rewrite (P, New_P);
6865 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
6866 end;
6867 end if;
6869 -- If the selected component appears within a default expression
6870 -- and it has an actual subtype, the pre-analysis has not yet
6871 -- completed its analysis, because Insert_Actions is disabled in
6872 -- that context. Within the init proc of the enclosing type we
6873 -- must complete this analysis, if an actual subtype was created.
6875 elsif Inside_Init_Proc then
6876 declare
6877 Typ : constant Entity_Id := Etype (N);
6878 Decl : constant Node_Id := Declaration_Node (Typ);
6879 begin
6880 if Nkind (Decl) = N_Subtype_Declaration
6881 and then not Analyzed (Decl)
6882 and then Is_List_Member (Decl)
6883 and then No (Parent (Decl))
6884 then
6885 Remove (Decl);
6886 Insert_Action (N, Decl);
6887 end if;
6888 end;
6889 end if;
6891 return;
6893 elsif Is_Entity_Name (P) then
6894 P_Name := Entity (P);
6896 -- The prefix may denote an enclosing type which is the completion
6897 -- of an incomplete type declaration.
6899 if Is_Type (P_Name) then
6900 Set_Entity (P, Get_Full_View (P_Name));
6901 Set_Etype (P, Entity (P));
6902 P_Name := Entity (P);
6903 end if;
6905 P_Type := Base_Type (Etype (P));
6907 if Debug_Flag_E then
6908 Write_Str ("Found prefix type to be ");
6909 Write_Entity_Info (P_Type, " "); Write_Eol;
6910 end if;
6912 -- The designated type may be a limited view with no components.
6913 -- Check whether the non-limited view is available, because in some
6914 -- cases this will not be set when installing the context. Rewrite
6915 -- the node by introducing an explicit dereference at once, and
6916 -- setting the type of the rewritten prefix to the non-limited view
6917 -- of the original designated type.
6919 if Is_Access_Type (P_Type) then
6920 declare
6921 Desig_Typ : constant Entity_Id :=
6922 Directly_Designated_Type (P_Type);
6924 begin
6925 if Is_Incomplete_Type (Desig_Typ)
6926 and then From_Limited_With (Desig_Typ)
6927 and then Present (Non_Limited_View (Desig_Typ))
6928 then
6929 Rewrite (P,
6930 Make_Explicit_Dereference (Sloc (P),
6931 Prefix => Relocate_Node (P)));
6933 Set_Etype (P, Get_Full_View (Non_Limited_View (Desig_Typ)));
6934 P_Type := Etype (P);
6935 end if;
6936 end;
6937 end if;
6939 -- First check for components of a record object (not the
6940 -- result of a call, which is handled below).
6942 if Is_Appropriate_For_Record (P_Type)
6943 and then not Is_Overloadable (P_Name)
6944 and then not Is_Type (P_Name)
6945 then
6946 -- Selected component of record. Type checking will validate
6947 -- name of selector.
6949 -- ??? Could we rewrite an implicit dereference into an explicit
6950 -- one here?
6952 Analyze_Selected_Component (N);
6954 -- Reference to type name in predicate/invariant expression
6956 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
6957 and then not In_Open_Scopes (P_Name)
6958 and then (not Is_Concurrent_Type (Etype (P_Name))
6959 or else not In_Open_Scopes (Etype (P_Name)))
6960 then
6961 -- Call to protected operation or entry. Type checking is
6962 -- needed on the prefix.
6964 Analyze_Selected_Component (N);
6966 elsif (In_Open_Scopes (P_Name)
6967 and then Ekind (P_Name) /= E_Void
6968 and then not Is_Overloadable (P_Name))
6969 or else (Is_Concurrent_Type (Etype (P_Name))
6970 and then In_Open_Scopes (Etype (P_Name)))
6971 then
6972 -- Prefix denotes an enclosing loop, block, or task, i.e. an
6973 -- enclosing construct that is not a subprogram or accept.
6975 -- A special case: a protected body may call an operation
6976 -- on an external object of the same type, in which case it
6977 -- is not an expanded name. If the prefix is the type itself,
6978 -- or the context is a single synchronized object it can only
6979 -- be interpreted as an expanded name.
6981 if Is_Concurrent_Type (Etype (P_Name)) then
6982 if Is_Type (P_Name)
6983 or else Present (Anonymous_Object (Etype (P_Name)))
6984 then
6985 Find_Expanded_Name (N);
6987 else
6988 Analyze_Selected_Component (N);
6989 return;
6990 end if;
6992 else
6993 Find_Expanded_Name (N);
6994 end if;
6996 elsif Ekind (P_Name) = E_Package then
6997 Find_Expanded_Name (N);
6999 elsif Is_Overloadable (P_Name) then
7001 -- The subprogram may be a renaming (of an enclosing scope) as
7002 -- in the case of the name of the generic within an instantiation.
7004 if Ekind_In (P_Name, E_Procedure, E_Function)
7005 and then Present (Alias (P_Name))
7006 and then Is_Generic_Instance (Alias (P_Name))
7007 then
7008 P_Name := Alias (P_Name);
7009 end if;
7011 if Is_Overloaded (P) then
7013 -- The prefix must resolve to a unique enclosing construct
7015 declare
7016 Found : Boolean := False;
7017 Ind : Interp_Index;
7018 It : Interp;
7020 begin
7021 Get_First_Interp (P, Ind, It);
7022 while Present (It.Nam) loop
7023 if In_Open_Scopes (It.Nam) then
7024 if Found then
7025 Error_Msg_N (
7026 "prefix must be unique enclosing scope", N);
7027 Set_Entity (N, Any_Id);
7028 Set_Etype (N, Any_Type);
7029 return;
7031 else
7032 Found := True;
7033 P_Name := It.Nam;
7034 end if;
7035 end if;
7037 Get_Next_Interp (Ind, It);
7038 end loop;
7039 end;
7040 end if;
7042 if In_Open_Scopes (P_Name) then
7043 Set_Entity (P, P_Name);
7044 Set_Is_Overloaded (P, False);
7045 Find_Expanded_Name (N);
7047 else
7048 -- If no interpretation as an expanded name is possible, it
7049 -- must be a selected component of a record returned by a
7050 -- function call. Reformat prefix as a function call, the rest
7051 -- is done by type resolution.
7053 -- Error if the prefix is procedure or entry, as is P.X
7055 if Ekind (P_Name) /= E_Function
7056 and then
7057 (not Is_Overloaded (P)
7058 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
7059 then
7060 -- Prefix may mention a package that is hidden by a local
7061 -- declaration: let the user know. Scan the full homonym
7062 -- chain, the candidate package may be anywhere on it.
7064 if Present (Homonym (Current_Entity (P_Name))) then
7065 P_Name := Current_Entity (P_Name);
7067 while Present (P_Name) loop
7068 exit when Ekind (P_Name) = E_Package;
7069 P_Name := Homonym (P_Name);
7070 end loop;
7072 if Present (P_Name) then
7073 if not Is_Reference_In_Subunit then
7074 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
7075 Error_Msg_NE
7076 ("package& is hidden by declaration#", N, P_Name);
7077 end if;
7079 Set_Entity (Prefix (N), P_Name);
7080 Find_Expanded_Name (N);
7081 return;
7083 else
7084 P_Name := Entity (Prefix (N));
7085 end if;
7086 end if;
7088 Error_Msg_NE
7089 ("invalid prefix in selected component&", N, P_Name);
7090 Change_Selected_Component_To_Expanded_Name (N);
7091 Set_Entity (N, Any_Id);
7092 Set_Etype (N, Any_Type);
7094 -- Here we have a function call, so do the reformatting
7096 else
7097 Nam := New_Copy (P);
7098 Save_Interps (P, Nam);
7100 -- We use Replace here because this is one of those cases
7101 -- where the parser has missclassified the node, and we fix
7102 -- things up and then do the semantic analysis on the fixed
7103 -- up node. Normally we do this using one of the Sinfo.CN
7104 -- routines, but this is too tricky for that.
7106 -- Note that using Rewrite would be wrong, because we would
7107 -- have a tree where the original node is unanalyzed, and
7108 -- this violates the required interface for ASIS.
7110 Replace (P,
7111 Make_Function_Call (Sloc (P), Name => Nam));
7113 -- Now analyze the reformatted node
7115 Analyze_Call (P);
7117 -- If the prefix is illegal after this transformation, there
7118 -- may be visibility errors on the prefix. The safest is to
7119 -- treat the selected component as an error.
7121 if Error_Posted (P) then
7122 Set_Etype (N, Any_Type);
7123 return;
7125 else
7126 Analyze_Selected_Component (N);
7127 end if;
7128 end if;
7129 end if;
7131 -- Remaining cases generate various error messages
7133 else
7134 -- Format node as expanded name, to avoid cascaded errors
7136 -- If the limited_with transformation was applied earlier, restore
7137 -- source for proper error reporting.
7139 if not Comes_From_Source (P)
7140 and then Nkind (P) = N_Explicit_Dereference
7141 then
7142 Rewrite (P, Prefix (P));
7143 P_Type := Etype (P);
7144 end if;
7146 Change_Selected_Component_To_Expanded_Name (N);
7147 Set_Entity (N, Any_Id);
7148 Set_Etype (N, Any_Type);
7150 -- Issue error message, but avoid this if error issued already.
7151 -- Use identifier of prefix if one is available.
7153 if P_Name = Any_Id then
7154 null;
7156 -- It is not an error if the prefix is the current instance of
7157 -- type name, e.g. the expression of a type aspect, when it is
7158 -- analyzed for ASIS use.
7160 elsif Is_Entity_Name (P) and then Is_Current_Instance (P) then
7161 null;
7163 elsif Ekind (P_Name) = E_Void then
7164 Premature_Usage (P);
7166 elsif Nkind (P) /= N_Attribute_Reference then
7168 -- This may have been meant as a prefixed call to a primitive
7169 -- of an untagged type. If it is a function call check type of
7170 -- its first formal and add explanation.
7172 declare
7173 F : constant Entity_Id :=
7174 Current_Entity (Selector_Name (N));
7175 begin
7176 if Present (F)
7177 and then Is_Overloadable (F)
7178 and then Present (First_Entity (F))
7179 and then not Is_Tagged_Type (Etype (First_Entity (F)))
7180 then
7181 Error_Msg_N
7182 ("prefixed call is only allowed for objects of a "
7183 & "tagged type", N);
7184 end if;
7185 end;
7187 Error_Msg_N ("invalid prefix in selected component&", P);
7189 if Is_Access_Type (P_Type)
7190 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
7191 then
7192 Error_Msg_N
7193 ("\dereference must not be of an incomplete type "
7194 & "(RM 3.10.1)", P);
7195 end if;
7197 else
7198 Error_Msg_N ("invalid prefix in selected component", P);
7199 end if;
7200 end if;
7202 -- Selector name is restricted in SPARK
7204 if Nkind (N) = N_Expanded_Name
7205 and then Restriction_Check_Required (SPARK_05)
7206 then
7207 if Is_Subprogram (P_Name) then
7208 Check_SPARK_05_Restriction
7209 ("prefix of expanded name cannot be a subprogram", P);
7210 elsif Ekind (P_Name) = E_Loop then
7211 Check_SPARK_05_Restriction
7212 ("prefix of expanded name cannot be a loop statement", P);
7213 end if;
7214 end if;
7216 else
7217 -- If prefix is not the name of an entity, it must be an expression,
7218 -- whose type is appropriate for a record. This is determined by
7219 -- type resolution.
7221 Analyze_Selected_Component (N);
7222 end if;
7224 Analyze_Dimension (N);
7225 end Find_Selected_Component;
7227 ---------------
7228 -- Find_Type --
7229 ---------------
7231 procedure Find_Type (N : Node_Id) is
7232 C : Entity_Id;
7233 Typ : Entity_Id;
7234 T : Entity_Id;
7235 T_Name : Entity_Id;
7237 begin
7238 if N = Error then
7239 return;
7241 elsif Nkind (N) = N_Attribute_Reference then
7243 -- Class attribute. This is not valid in Ada 83 mode, but we do not
7244 -- need to enforce that at this point, since the declaration of the
7245 -- tagged type in the prefix would have been flagged already.
7247 if Attribute_Name (N) = Name_Class then
7248 Check_Restriction (No_Dispatch, N);
7249 Find_Type (Prefix (N));
7251 -- Propagate error from bad prefix
7253 if Etype (Prefix (N)) = Any_Type then
7254 Set_Entity (N, Any_Type);
7255 Set_Etype (N, Any_Type);
7256 return;
7257 end if;
7259 T := Base_Type (Entity (Prefix (N)));
7261 -- Case where type is not known to be tagged. Its appearance in
7262 -- the prefix of the 'Class attribute indicates that the full view
7263 -- will be tagged.
7265 if not Is_Tagged_Type (T) then
7266 if Ekind (T) = E_Incomplete_Type then
7268 -- It is legal to denote the class type of an incomplete
7269 -- type. The full type will have to be tagged, of course.
7270 -- In Ada 2005 this usage is declared obsolescent, so we
7271 -- warn accordingly. This usage is only legal if the type
7272 -- is completed in the current scope, and not for a limited
7273 -- view of a type.
7275 if Ada_Version >= Ada_2005 then
7277 -- Test whether the Available_View of a limited type view
7278 -- is tagged, since the limited view may not be marked as
7279 -- tagged if the type itself has an untagged incomplete
7280 -- type view in its package.
7282 if From_Limited_With (T)
7283 and then not Is_Tagged_Type (Available_View (T))
7284 then
7285 Error_Msg_N
7286 ("prefix of Class attribute must be tagged", N);
7287 Set_Etype (N, Any_Type);
7288 Set_Entity (N, Any_Type);
7289 return;
7291 -- ??? This test is temporarily disabled (always
7292 -- False) because it causes an unwanted warning on
7293 -- GNAT sources (built with -gnatg, which includes
7294 -- Warn_On_Obsolescent_ Feature). Once this issue
7295 -- is cleared in the sources, it can be enabled.
7297 elsif Warn_On_Obsolescent_Feature and then False then
7298 Error_Msg_N
7299 ("applying 'Class to an untagged incomplete type"
7300 & " is an obsolescent feature (RM J.11)?r?", N);
7301 end if;
7302 end if;
7304 Set_Is_Tagged_Type (T);
7305 Set_Direct_Primitive_Operations (T, New_Elmt_List);
7306 Make_Class_Wide_Type (T);
7307 Set_Entity (N, Class_Wide_Type (T));
7308 Set_Etype (N, Class_Wide_Type (T));
7310 elsif Ekind (T) = E_Private_Type
7311 and then not Is_Generic_Type (T)
7312 and then In_Private_Part (Scope (T))
7313 then
7314 -- The Class attribute can be applied to an untagged private
7315 -- type fulfilled by a tagged type prior to the full type
7316 -- declaration (but only within the parent package's private
7317 -- part). Create the class-wide type now and check that the
7318 -- full type is tagged later during its analysis. Note that
7319 -- we do not mark the private type as tagged, unlike the
7320 -- case of incomplete types, because the type must still
7321 -- appear untagged to outside units.
7323 if No (Class_Wide_Type (T)) then
7324 Make_Class_Wide_Type (T);
7325 end if;
7327 Set_Entity (N, Class_Wide_Type (T));
7328 Set_Etype (N, Class_Wide_Type (T));
7330 else
7331 -- Should we introduce a type Any_Tagged and use Wrong_Type
7332 -- here, it would be a bit more consistent???
7334 Error_Msg_NE
7335 ("tagged type required, found}",
7336 Prefix (N), First_Subtype (T));
7337 Set_Entity (N, Any_Type);
7338 return;
7339 end if;
7341 -- Case of tagged type
7343 else
7344 if Is_Concurrent_Type (T) then
7345 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
7347 -- Previous error. Use current type, which at least
7348 -- provides some operations.
7350 C := Entity (Prefix (N));
7352 else
7353 C := Class_Wide_Type
7354 (Corresponding_Record_Type (Entity (Prefix (N))));
7355 end if;
7357 else
7358 C := Class_Wide_Type (Entity (Prefix (N)));
7359 end if;
7361 Set_Entity_With_Checks (N, C);
7362 Generate_Reference (C, N);
7363 Set_Etype (N, C);
7364 end if;
7366 -- Base attribute, not allowed in Ada 83
7368 elsif Attribute_Name (N) = Name_Base then
7369 Error_Msg_Name_1 := Name_Base;
7370 Check_SPARK_05_Restriction
7371 ("attribute% is only allowed as prefix of another attribute", N);
7373 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
7374 Error_Msg_N
7375 ("(Ada 83) Base attribute not allowed in subtype mark", N);
7377 else
7378 Find_Type (Prefix (N));
7379 Typ := Entity (Prefix (N));
7381 if Ada_Version >= Ada_95
7382 and then not Is_Scalar_Type (Typ)
7383 and then not Is_Generic_Type (Typ)
7384 then
7385 Error_Msg_N
7386 ("prefix of Base attribute must be scalar type",
7387 Prefix (N));
7389 elsif Warn_On_Redundant_Constructs
7390 and then Base_Type (Typ) = Typ
7391 then
7392 Error_Msg_NE -- CODEFIX
7393 ("redundant attribute, & is its own base type?r?", N, Typ);
7394 end if;
7396 T := Base_Type (Typ);
7398 -- Rewrite attribute reference with type itself (see similar
7399 -- processing in Analyze_Attribute, case Base). Preserve prefix
7400 -- if present, for other legality checks.
7402 if Nkind (Prefix (N)) = N_Expanded_Name then
7403 Rewrite (N,
7404 Make_Expanded_Name (Sloc (N),
7405 Chars => Chars (T),
7406 Prefix => New_Copy (Prefix (Prefix (N))),
7407 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
7409 else
7410 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
7411 end if;
7413 Set_Entity (N, T);
7414 Set_Etype (N, T);
7415 end if;
7417 elsif Attribute_Name (N) = Name_Stub_Type then
7419 -- This is handled in Analyze_Attribute
7421 Analyze (N);
7423 -- All other attributes are invalid in a subtype mark
7425 else
7426 Error_Msg_N ("invalid attribute in subtype mark", N);
7427 end if;
7429 else
7430 Analyze (N);
7432 if Is_Entity_Name (N) then
7433 T_Name := Entity (N);
7434 else
7435 Error_Msg_N ("subtype mark required in this context", N);
7436 Set_Etype (N, Any_Type);
7437 return;
7438 end if;
7440 if T_Name = Any_Id or else Etype (N) = Any_Type then
7442 -- Undefined id. Make it into a valid type
7444 Set_Entity (N, Any_Type);
7446 elsif not Is_Type (T_Name)
7447 and then T_Name /= Standard_Void_Type
7448 then
7449 Error_Msg_Sloc := Sloc (T_Name);
7450 Error_Msg_N ("subtype mark required in this context", N);
7451 Error_Msg_NE ("\\found & declared#", N, T_Name);
7452 Set_Entity (N, Any_Type);
7454 else
7455 -- If the type is an incomplete type created to handle
7456 -- anonymous access components of a record type, then the
7457 -- incomplete type is the visible entity and subsequent
7458 -- references will point to it. Mark the original full
7459 -- type as referenced, to prevent spurious warnings.
7461 if Is_Incomplete_Type (T_Name)
7462 and then Present (Full_View (T_Name))
7463 and then not Comes_From_Source (T_Name)
7464 then
7465 Set_Referenced (Full_View (T_Name));
7466 end if;
7468 T_Name := Get_Full_View (T_Name);
7470 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7471 -- limited-with clauses
7473 if From_Limited_With (T_Name)
7474 and then Ekind (T_Name) in Incomplete_Kind
7475 and then Present (Non_Limited_View (T_Name))
7476 and then Is_Interface (Non_Limited_View (T_Name))
7477 then
7478 T_Name := Non_Limited_View (T_Name);
7479 end if;
7481 if In_Open_Scopes (T_Name) then
7482 if Ekind (Base_Type (T_Name)) = E_Task_Type then
7484 -- In Ada 2005, a task name can be used in an access
7485 -- definition within its own body. It cannot be used
7486 -- in the discriminant part of the task declaration,
7487 -- nor anywhere else in the declaration because entries
7488 -- cannot have access parameters.
7490 if Ada_Version >= Ada_2005
7491 and then Nkind (Parent (N)) = N_Access_Definition
7492 then
7493 Set_Entity (N, T_Name);
7494 Set_Etype (N, T_Name);
7496 if Has_Completion (T_Name) then
7497 return;
7499 else
7500 Error_Msg_N
7501 ("task type cannot be used as type mark " &
7502 "within its own declaration", N);
7503 end if;
7505 else
7506 Error_Msg_N
7507 ("task type cannot be used as type mark " &
7508 "within its own spec or body", N);
7509 end if;
7511 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7513 -- In Ada 2005, a protected name can be used in an access
7514 -- definition within its own body.
7516 if Ada_Version >= Ada_2005
7517 and then Nkind (Parent (N)) = N_Access_Definition
7518 then
7519 Set_Entity (N, T_Name);
7520 Set_Etype (N, T_Name);
7521 return;
7523 else
7524 Error_Msg_N
7525 ("protected type cannot be used as type mark " &
7526 "within its own spec or body", N);
7527 end if;
7529 else
7530 Error_Msg_N ("type declaration cannot refer to itself", N);
7531 end if;
7533 Set_Etype (N, Any_Type);
7534 Set_Entity (N, Any_Type);
7535 Set_Error_Posted (T_Name);
7536 return;
7537 end if;
7539 Set_Entity (N, T_Name);
7540 Set_Etype (N, T_Name);
7541 end if;
7542 end if;
7544 if Present (Etype (N)) and then Comes_From_Source (N) then
7545 if Is_Fixed_Point_Type (Etype (N)) then
7546 Check_Restriction (No_Fixed_Point, N);
7547 elsif Is_Floating_Point_Type (Etype (N)) then
7548 Check_Restriction (No_Floating_Point, N);
7549 end if;
7551 -- A Ghost type must appear in a specific context
7553 if Is_Ghost_Entity (Etype (N)) then
7554 Check_Ghost_Context (Etype (N), N);
7555 end if;
7556 end if;
7557 end Find_Type;
7559 ------------------------------------
7560 -- Has_Implicit_Character_Literal --
7561 ------------------------------------
7563 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
7564 Id : Entity_Id;
7565 Found : Boolean := False;
7566 P : constant Entity_Id := Entity (Prefix (N));
7567 Priv_Id : Entity_Id := Empty;
7569 begin
7570 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7571 Priv_Id := First_Private_Entity (P);
7572 end if;
7574 if P = Standard_Standard then
7575 Change_Selected_Component_To_Expanded_Name (N);
7576 Rewrite (N, Selector_Name (N));
7577 Analyze (N);
7578 Set_Etype (Original_Node (N), Standard_Character);
7579 return True;
7580 end if;
7582 Id := First_Entity (P);
7583 while Present (Id) and then Id /= Priv_Id loop
7584 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
7586 -- We replace the node with the literal itself, resolve as a
7587 -- character, and set the type correctly.
7589 if not Found then
7590 Change_Selected_Component_To_Expanded_Name (N);
7591 Rewrite (N, Selector_Name (N));
7592 Analyze (N);
7593 Set_Etype (N, Id);
7594 Set_Etype (Original_Node (N), Id);
7595 Found := True;
7597 else
7598 -- More than one type derived from Character in given scope.
7599 -- Collect all possible interpretations.
7601 Add_One_Interp (N, Id, Id);
7602 end if;
7603 end if;
7605 Next_Entity (Id);
7606 end loop;
7608 return Found;
7609 end Has_Implicit_Character_Literal;
7611 ----------------------
7612 -- Has_Private_With --
7613 ----------------------
7615 function Has_Private_With (E : Entity_Id) return Boolean is
7616 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
7617 Item : Node_Id;
7619 begin
7620 Item := First (Context_Items (Comp_Unit));
7621 while Present (Item) loop
7622 if Nkind (Item) = N_With_Clause
7623 and then Private_Present (Item)
7624 and then Entity (Name (Item)) = E
7625 then
7626 return True;
7627 end if;
7629 Next (Item);
7630 end loop;
7632 return False;
7633 end Has_Private_With;
7635 ---------------------------
7636 -- Has_Implicit_Operator --
7637 ---------------------------
7639 function Has_Implicit_Operator (N : Node_Id) return Boolean is
7640 Op_Id : constant Name_Id := Chars (Selector_Name (N));
7641 P : constant Entity_Id := Entity (Prefix (N));
7642 Id : Entity_Id;
7643 Priv_Id : Entity_Id := Empty;
7645 procedure Add_Implicit_Operator
7646 (T : Entity_Id;
7647 Op_Type : Entity_Id := Empty);
7648 -- Add implicit interpretation to node N, using the type for which a
7649 -- predefined operator exists. If the operator yields a boolean type,
7650 -- the Operand_Type is implicitly referenced by the operator, and a
7651 -- reference to it must be generated.
7653 ---------------------------
7654 -- Add_Implicit_Operator --
7655 ---------------------------
7657 procedure Add_Implicit_Operator
7658 (T : Entity_Id;
7659 Op_Type : Entity_Id := Empty)
7661 Predef_Op : Entity_Id;
7663 begin
7664 Predef_Op := Current_Entity (Selector_Name (N));
7665 while Present (Predef_Op)
7666 and then Scope (Predef_Op) /= Standard_Standard
7667 loop
7668 Predef_Op := Homonym (Predef_Op);
7669 end loop;
7671 if Nkind (N) = N_Selected_Component then
7672 Change_Selected_Component_To_Expanded_Name (N);
7673 end if;
7675 -- If the context is an unanalyzed function call, determine whether
7676 -- a binary or unary interpretation is required.
7678 if Nkind (Parent (N)) = N_Indexed_Component then
7679 declare
7680 Is_Binary_Call : constant Boolean :=
7681 Present
7682 (Next (First (Expressions (Parent (N)))));
7683 Is_Binary_Op : constant Boolean :=
7684 First_Entity
7685 (Predef_Op) /= Last_Entity (Predef_Op);
7686 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
7688 begin
7689 if Is_Binary_Call then
7690 if Is_Binary_Op then
7691 Add_One_Interp (N, Predef_Op, T);
7692 else
7693 Add_One_Interp (N, Predef_Op2, T);
7694 end if;
7696 else
7697 if not Is_Binary_Op then
7698 Add_One_Interp (N, Predef_Op, T);
7699 else
7700 Add_One_Interp (N, Predef_Op2, T);
7701 end if;
7702 end if;
7703 end;
7705 else
7706 Add_One_Interp (N, Predef_Op, T);
7708 -- For operators with unary and binary interpretations, if
7709 -- context is not a call, add both
7711 if Present (Homonym (Predef_Op)) then
7712 Add_One_Interp (N, Homonym (Predef_Op), T);
7713 end if;
7714 end if;
7716 -- The node is a reference to a predefined operator, and
7717 -- an implicit reference to the type of its operands.
7719 if Present (Op_Type) then
7720 Generate_Operator_Reference (N, Op_Type);
7721 else
7722 Generate_Operator_Reference (N, T);
7723 end if;
7724 end Add_Implicit_Operator;
7726 -- Start of processing for Has_Implicit_Operator
7728 begin
7729 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7730 Priv_Id := First_Private_Entity (P);
7731 end if;
7733 Id := First_Entity (P);
7735 case Op_Id is
7737 -- Boolean operators: an implicit declaration exists if the scope
7738 -- contains a declaration for a derived Boolean type, or for an
7739 -- array of Boolean type.
7741 when Name_Op_And
7742 | Name_Op_Not
7743 | Name_Op_Or
7744 | Name_Op_Xor
7746 while Id /= Priv_Id loop
7747 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
7748 Add_Implicit_Operator (Id);
7749 return True;
7750 end if;
7752 Next_Entity (Id);
7753 end loop;
7755 -- Equality: look for any non-limited type (result is Boolean)
7757 when Name_Op_Eq
7758 | Name_Op_Ne
7760 while Id /= Priv_Id loop
7761 if Is_Type (Id)
7762 and then not Is_Limited_Type (Id)
7763 and then Is_Base_Type (Id)
7764 then
7765 Add_Implicit_Operator (Standard_Boolean, Id);
7766 return True;
7767 end if;
7769 Next_Entity (Id);
7770 end loop;
7772 -- Comparison operators: scalar type, or array of scalar
7774 when Name_Op_Ge
7775 | Name_Op_Gt
7776 | Name_Op_Le
7777 | Name_Op_Lt
7779 while Id /= Priv_Id loop
7780 if (Is_Scalar_Type (Id)
7781 or else (Is_Array_Type (Id)
7782 and then Is_Scalar_Type (Component_Type (Id))))
7783 and then Is_Base_Type (Id)
7784 then
7785 Add_Implicit_Operator (Standard_Boolean, Id);
7786 return True;
7787 end if;
7789 Next_Entity (Id);
7790 end loop;
7792 -- Arithmetic operators: any numeric type
7794 when Name_Op_Abs
7795 | Name_Op_Add
7796 | Name_Op_Divide
7797 | Name_Op_Expon
7798 | Name_Op_Mod
7799 | Name_Op_Multiply
7800 | Name_Op_Rem
7801 | Name_Op_Subtract
7803 while Id /= Priv_Id loop
7804 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
7805 Add_Implicit_Operator (Id);
7806 return True;
7807 end if;
7809 Next_Entity (Id);
7810 end loop;
7812 -- Concatenation: any one-dimensional array type
7814 when Name_Op_Concat =>
7815 while Id /= Priv_Id loop
7816 if Is_Array_Type (Id)
7817 and then Number_Dimensions (Id) = 1
7818 and then Is_Base_Type (Id)
7819 then
7820 Add_Implicit_Operator (Id);
7821 return True;
7822 end if;
7824 Next_Entity (Id);
7825 end loop;
7827 -- What is the others condition here? Should we be using a
7828 -- subtype of Name_Id that would restrict to operators ???
7830 when others =>
7831 null;
7832 end case;
7834 -- If we fall through, then we do not have an implicit operator
7836 return False;
7837 end Has_Implicit_Operator;
7839 -----------------------------------
7840 -- Has_Loop_In_Inner_Open_Scopes --
7841 -----------------------------------
7843 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
7844 begin
7845 -- Several scope stacks are maintained by Scope_Stack. The base of the
7846 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7847 -- flag in the scope stack entry. Note that the scope stacks used to
7848 -- simply be delimited implicitly by the presence of Standard_Standard
7849 -- at their base, but there now are cases where this is not sufficient
7850 -- because Standard_Standard actually may appear in the middle of the
7851 -- active set of scopes.
7853 for J in reverse 0 .. Scope_Stack.Last loop
7855 -- S was reached without seing a loop scope first
7857 if Scope_Stack.Table (J).Entity = S then
7858 return False;
7860 -- S was not yet reached, so it contains at least one inner loop
7862 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
7863 return True;
7864 end if;
7866 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7867 -- cases where Standard_Standard appears in the middle of the active
7868 -- set of scopes. This affects the declaration and overriding of
7869 -- private inherited operations in instantiations of generic child
7870 -- units.
7872 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
7873 end loop;
7875 raise Program_Error; -- unreachable
7876 end Has_Loop_In_Inner_Open_Scopes;
7878 --------------------
7879 -- In_Open_Scopes --
7880 --------------------
7882 function In_Open_Scopes (S : Entity_Id) return Boolean is
7883 begin
7884 -- Several scope stacks are maintained by Scope_Stack. The base of the
7885 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7886 -- flag in the scope stack entry. Note that the scope stacks used to
7887 -- simply be delimited implicitly by the presence of Standard_Standard
7888 -- at their base, but there now are cases where this is not sufficient
7889 -- because Standard_Standard actually may appear in the middle of the
7890 -- active set of scopes.
7892 for J in reverse 0 .. Scope_Stack.Last loop
7893 if Scope_Stack.Table (J).Entity = S then
7894 return True;
7895 end if;
7897 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7898 -- cases where Standard_Standard appears in the middle of the active
7899 -- set of scopes. This affects the declaration and overriding of
7900 -- private inherited operations in instantiations of generic child
7901 -- units.
7903 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
7904 end loop;
7906 return False;
7907 end In_Open_Scopes;
7909 -----------------------------
7910 -- Inherit_Renamed_Profile --
7911 -----------------------------
7913 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
7914 New_F : Entity_Id;
7915 Old_F : Entity_Id;
7916 Old_T : Entity_Id;
7917 New_T : Entity_Id;
7919 begin
7920 if Ekind (Old_S) = E_Operator then
7921 New_F := First_Formal (New_S);
7923 while Present (New_F) loop
7924 Set_Etype (New_F, Base_Type (Etype (New_F)));
7925 Next_Formal (New_F);
7926 end loop;
7928 Set_Etype (New_S, Base_Type (Etype (New_S)));
7930 else
7931 New_F := First_Formal (New_S);
7932 Old_F := First_Formal (Old_S);
7934 while Present (New_F) loop
7935 New_T := Etype (New_F);
7936 Old_T := Etype (Old_F);
7938 -- If the new type is a renaming of the old one, as is the case
7939 -- for actuals in instances, retain its name, to simplify later
7940 -- disambiguation.
7942 if Nkind (Parent (New_T)) = N_Subtype_Declaration
7943 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
7944 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
7945 then
7946 null;
7947 else
7948 Set_Etype (New_F, Old_T);
7949 end if;
7951 Next_Formal (New_F);
7952 Next_Formal (Old_F);
7953 end loop;
7955 pragma Assert (No (Old_F));
7957 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
7958 Set_Etype (New_S, Etype (Old_S));
7959 end if;
7960 end if;
7961 end Inherit_Renamed_Profile;
7963 ----------------
7964 -- Initialize --
7965 ----------------
7967 procedure Initialize is
7968 begin
7969 Urefs.Init;
7970 end Initialize;
7972 -------------------------
7973 -- Install_Use_Clauses --
7974 -------------------------
7976 procedure Install_Use_Clauses
7977 (Clause : Node_Id;
7978 Force_Installation : Boolean := False)
7980 U : Node_Id;
7981 P : Node_Id;
7982 Id : Entity_Id;
7984 begin
7985 U := Clause;
7986 while Present (U) loop
7988 -- Case of USE package
7990 if Nkind (U) = N_Use_Package_Clause then
7991 P := First (Names (U));
7992 while Present (P) loop
7993 Id := Entity (P);
7995 if Ekind (Id) = E_Package then
7996 if In_Use (Id) then
7997 Note_Redundant_Use (P);
7999 elsif Present (Renamed_Object (Id))
8000 and then In_Use (Renamed_Object (Id))
8001 then
8002 Note_Redundant_Use (P);
8004 elsif Force_Installation or else Applicable_Use (P) then
8005 Use_One_Package (Id, U);
8007 end if;
8008 end if;
8010 Next (P);
8011 end loop;
8013 -- Case of USE TYPE
8015 else
8016 P := First (Subtype_Marks (U));
8017 while Present (P) loop
8018 if not Is_Entity_Name (P)
8019 or else No (Entity (P))
8020 then
8021 null;
8023 elsif Entity (P) /= Any_Type then
8024 Use_One_Type (P);
8025 end if;
8027 Next (P);
8028 end loop;
8029 end if;
8031 Next_Use_Clause (U);
8032 end loop;
8033 end Install_Use_Clauses;
8035 -------------------------------------
8036 -- Is_Appropriate_For_Entry_Prefix --
8037 -------------------------------------
8039 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
8040 P_Type : Entity_Id := T;
8042 begin
8043 if Is_Access_Type (P_Type) then
8044 P_Type := Designated_Type (P_Type);
8045 end if;
8047 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
8048 end Is_Appropriate_For_Entry_Prefix;
8050 -------------------------------
8051 -- Is_Appropriate_For_Record --
8052 -------------------------------
8054 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
8056 function Has_Components (T1 : Entity_Id) return Boolean;
8057 -- Determine if given type has components (i.e. is either a record
8058 -- type or a type that has discriminants).
8060 --------------------
8061 -- Has_Components --
8062 --------------------
8064 function Has_Components (T1 : Entity_Id) return Boolean is
8065 begin
8066 return Is_Record_Type (T1)
8067 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
8068 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
8069 or else (Is_Incomplete_Type (T1)
8070 and then From_Limited_With (T1)
8071 and then Present (Non_Limited_View (T1))
8072 and then Is_Record_Type
8073 (Get_Full_View (Non_Limited_View (T1))));
8074 end Has_Components;
8076 -- Start of processing for Is_Appropriate_For_Record
8078 begin
8079 return
8080 Present (T)
8081 and then (Has_Components (T)
8082 or else (Is_Access_Type (T)
8083 and then Has_Components (Designated_Type (T))));
8084 end Is_Appropriate_For_Record;
8086 ------------------------
8087 -- Note_Redundant_Use --
8088 ------------------------
8090 procedure Note_Redundant_Use (Clause : Node_Id) is
8091 Pack_Name : constant Entity_Id := Entity (Clause);
8092 Cur_Use : constant Node_Id := Current_Use_Clause (Pack_Name);
8093 Decl : constant Node_Id := Parent (Clause);
8095 Prev_Use : Node_Id := Empty;
8096 Redundant : Node_Id := Empty;
8097 -- The Use_Clause which is actually redundant. In the simplest case it
8098 -- is Pack itself, but when we compile a body we install its context
8099 -- before that of its spec, in which case it is the use_clause in the
8100 -- spec that will appear to be redundant, and we want the warning to be
8101 -- placed on the body. Similar complications appear when the redundancy
8102 -- is between a child unit and one of its ancestors.
8104 begin
8105 Set_Redundant_Use (Clause, True);
8107 if not Comes_From_Source (Clause)
8108 or else In_Instance
8109 or else not Warn_On_Redundant_Constructs
8110 then
8111 return;
8112 end if;
8114 if not Is_Compilation_Unit (Current_Scope) then
8116 -- If the use_clause is in an inner scope, it is made redundant by
8117 -- some clause in the current context, with one exception: If we're
8118 -- compiling a nested package body, and the use_clause comes from the
8119 -- corresponding spec, the clause is not necessarily fully redundant,
8120 -- so we should not warn. If a warning was warranted, it would have
8121 -- been given when the spec was processed.
8123 if Nkind (Parent (Decl)) = N_Package_Specification then
8124 declare
8125 Package_Spec_Entity : constant Entity_Id :=
8126 Defining_Unit_Name (Parent (Decl));
8127 begin
8128 if In_Package_Body (Package_Spec_Entity) then
8129 return;
8130 end if;
8131 end;
8132 end if;
8134 Redundant := Clause;
8135 Prev_Use := Cur_Use;
8137 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
8138 declare
8139 Cur_Unit : constant Unit_Number_Type := Get_Source_Unit (Cur_Use);
8140 New_Unit : constant Unit_Number_Type := Get_Source_Unit (Clause);
8141 Scop : Entity_Id;
8143 begin
8144 if Cur_Unit = New_Unit then
8146 -- Redundant clause in same body
8148 Redundant := Clause;
8149 Prev_Use := Cur_Use;
8151 elsif Cur_Unit = Current_Sem_Unit then
8153 -- If the new clause is not in the current unit it has been
8154 -- analyzed first, and it makes the other one redundant.
8155 -- However, if the new clause appears in a subunit, Cur_Unit
8156 -- is still the parent, and in that case the redundant one
8157 -- is the one appearing in the subunit.
8159 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
8160 Redundant := Clause;
8161 Prev_Use := Cur_Use;
8163 -- Most common case: redundant clause in body,
8164 -- original clause in spec. Current scope is spec entity.
8166 elsif
8167 Current_Scope =
8168 Defining_Entity (
8169 Unit (Library_Unit (Cunit (Current_Sem_Unit))))
8170 then
8171 Redundant := Cur_Use;
8172 Prev_Use := Clause;
8174 else
8175 -- The new clause may appear in an unrelated unit, when
8176 -- the parents of a generic are being installed prior to
8177 -- instantiation. In this case there must be no warning.
8178 -- We detect this case by checking whether the current top
8179 -- of the stack is related to the current compilation.
8181 Scop := Current_Scope;
8182 while Present (Scop) and then Scop /= Standard_Standard loop
8183 if Is_Compilation_Unit (Scop)
8184 and then not Is_Child_Unit (Scop)
8185 then
8186 return;
8188 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
8189 exit;
8190 end if;
8192 Scop := Scope (Scop);
8193 end loop;
8195 Redundant := Cur_Use;
8196 Prev_Use := Clause;
8197 end if;
8199 elsif New_Unit = Current_Sem_Unit then
8200 Redundant := Clause;
8201 Prev_Use := Cur_Use;
8203 else
8204 -- Neither is the current unit, so they appear in parent or
8205 -- sibling units. Warning will be emitted elsewhere.
8207 return;
8208 end if;
8209 end;
8211 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
8212 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
8213 then
8214 -- Use_clause is in child unit of current unit, and the child unit
8215 -- appears in the context of the body of the parent, so it has been
8216 -- installed first, even though it is the redundant one. Depending on
8217 -- their placement in the context, the visible or the private parts
8218 -- of the two units, either might appear as redundant, but the
8219 -- message has to be on the current unit.
8221 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
8222 Redundant := Cur_Use;
8223 Prev_Use := Clause;
8224 else
8225 Redundant := Clause;
8226 Prev_Use := Cur_Use;
8227 end if;
8229 -- If the new use clause appears in the private part of a parent unit
8230 -- it may appear to be redundant w.r.t. a use clause in a child unit,
8231 -- but the previous use clause was needed in the visible part of the
8232 -- child, and no warning should be emitted.
8234 if Nkind (Parent (Decl)) = N_Package_Specification
8235 and then
8236 List_Containing (Decl) = Private_Declarations (Parent (Decl))
8237 then
8238 declare
8239 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
8240 Spec : constant Node_Id :=
8241 Specification (Unit (Cunit (Current_Sem_Unit)));
8243 begin
8244 if Is_Compilation_Unit (Par)
8245 and then Par /= Cunit_Entity (Current_Sem_Unit)
8246 and then Parent (Cur_Use) = Spec
8247 and then
8248 List_Containing (Cur_Use) = Visible_Declarations (Spec)
8249 then
8250 return;
8251 end if;
8252 end;
8253 end if;
8255 -- Finally, if the current use clause is in the context then
8256 -- the clause is redundant when it is nested within the unit.
8258 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
8259 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
8260 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
8261 then
8262 Redundant := Clause;
8263 Prev_Use := Cur_Use;
8265 else
8266 null;
8267 end if;
8269 if Present (Redundant) then
8270 Error_Msg_Sloc := Sloc (Prev_Use);
8271 Error_Msg_NE -- CODEFIX
8272 ("& is already use-visible through previous use clause #??",
8273 Redundant, Pack_Name);
8274 end if;
8275 end Note_Redundant_Use;
8277 ---------------
8278 -- Pop_Scope --
8279 ---------------
8281 procedure Pop_Scope is
8282 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8283 S : constant Entity_Id := SST.Entity;
8285 begin
8286 if Debug_Flag_E then
8287 Write_Info;
8288 end if;
8290 -- Set Default_Storage_Pool field of the library unit if necessary
8292 if Ekind_In (S, E_Package, E_Generic_Package)
8293 and then
8294 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
8295 then
8296 declare
8297 Aux : constant Node_Id :=
8298 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
8299 begin
8300 if No (Default_Storage_Pool (Aux)) then
8301 Set_Default_Storage_Pool (Aux, Default_Pool);
8302 end if;
8303 end;
8304 end if;
8306 Scope_Suppress := SST.Save_Scope_Suppress;
8307 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
8308 Check_Policy_List := SST.Save_Check_Policy_List;
8309 Default_Pool := SST.Save_Default_Storage_Pool;
8310 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
8311 SPARK_Mode := SST.Save_SPARK_Mode;
8312 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
8313 Default_SSO := SST.Save_Default_SSO;
8314 Uneval_Old := SST.Save_Uneval_Old;
8316 if Debug_Flag_W then
8317 Write_Str ("<-- exiting scope: ");
8318 Write_Name (Chars (Current_Scope));
8319 Write_Str (", Depth=");
8320 Write_Int (Int (Scope_Stack.Last));
8321 Write_Eol;
8322 end if;
8324 End_Use_Clauses (SST.First_Use_Clause);
8326 -- If the actions to be wrapped are still there they will get lost
8327 -- causing incomplete code to be generated. It is better to abort in
8328 -- this case (and we do the abort even with assertions off since the
8329 -- penalty is incorrect code generation).
8331 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
8332 raise Program_Error;
8333 end if;
8335 -- Free last subprogram name if allocated, and pop scope
8337 Free (SST.Last_Subprogram_Name);
8338 Scope_Stack.Decrement_Last;
8339 end Pop_Scope;
8341 ---------------
8342 -- Push_Scope --
8343 ---------------
8345 procedure Push_Scope (S : Entity_Id) is
8346 E : constant Entity_Id := Scope (S);
8348 begin
8349 if Ekind (S) = E_Void then
8350 null;
8352 -- Set scope depth if not a non-concurrent type, and we have not yet set
8353 -- the scope depth. This means that we have the first occurrence of the
8354 -- scope, and this is where the depth is set.
8356 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8357 and then not Scope_Depth_Set (S)
8358 then
8359 if S = Standard_Standard then
8360 Set_Scope_Depth_Value (S, Uint_0);
8362 elsif Is_Child_Unit (S) then
8363 Set_Scope_Depth_Value (S, Uint_1);
8365 elsif not Is_Record_Type (Current_Scope) then
8366 if Ekind (S) = E_Loop then
8367 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8368 else
8369 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8370 end if;
8371 end if;
8372 end if;
8374 Scope_Stack.Increment_Last;
8376 declare
8377 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8379 begin
8380 SST.Entity := S;
8381 SST.Save_Scope_Suppress := Scope_Suppress;
8382 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8383 SST.Save_Check_Policy_List := Check_Policy_List;
8384 SST.Save_Default_Storage_Pool := Default_Pool;
8385 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8386 SST.Save_SPARK_Mode := SPARK_Mode;
8387 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8388 SST.Save_Default_SSO := Default_SSO;
8389 SST.Save_Uneval_Old := Uneval_Old;
8391 -- Each new scope pushed onto the scope stack inherits the component
8392 -- alignment of the previous scope. This emulates the "visibility"
8393 -- semantics of pragma Component_Alignment.
8395 if Scope_Stack.Last > Scope_Stack.First then
8396 SST.Component_Alignment_Default :=
8397 Scope_Stack.Table
8398 (Scope_Stack.Last - 1). Component_Alignment_Default;
8400 -- Otherwise, this is the first scope being pushed on the scope
8401 -- stack. Inherit the component alignment from the configuration
8402 -- form of pragma Component_Alignment (if any).
8404 else
8405 SST.Component_Alignment_Default :=
8406 Configuration_Component_Alignment;
8407 end if;
8409 SST.Last_Subprogram_Name := null;
8410 SST.Is_Transient := False;
8411 SST.Node_To_Be_Wrapped := Empty;
8412 SST.Pending_Freeze_Actions := No_List;
8413 SST.Actions_To_Be_Wrapped := (others => No_List);
8414 SST.First_Use_Clause := Empty;
8415 SST.Is_Active_Stack_Base := False;
8416 SST.Previous_Visibility := False;
8417 SST.Locked_Shared_Objects := No_Elist;
8418 end;
8420 if Debug_Flag_W then
8421 Write_Str ("--> new scope: ");
8422 Write_Name (Chars (Current_Scope));
8423 Write_Str (", Id=");
8424 Write_Int (Int (Current_Scope));
8425 Write_Str (", Depth=");
8426 Write_Int (Int (Scope_Stack.Last));
8427 Write_Eol;
8428 end if;
8430 -- Deal with copying flags from the previous scope to this one. This is
8431 -- not necessary if either scope is standard, or if the new scope is a
8432 -- child unit.
8434 if S /= Standard_Standard
8435 and then Scope (S) /= Standard_Standard
8436 and then not Is_Child_Unit (S)
8437 then
8438 if Nkind (E) not in N_Entity then
8439 return;
8440 end if;
8442 -- Copy categorization flags from Scope (S) to S, this is not done
8443 -- when Scope (S) is Standard_Standard since propagation is from
8444 -- library unit entity inwards. Copy other relevant attributes as
8445 -- well (Discard_Names in particular).
8447 -- We only propagate inwards for library level entities,
8448 -- inner level subprograms do not inherit the categorization.
8450 if Is_Library_Level_Entity (S) then
8451 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8452 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8453 Set_Discard_Names (S, Discard_Names (E));
8454 Set_Suppress_Value_Tracking_On_Call
8455 (S, Suppress_Value_Tracking_On_Call (E));
8456 Set_Categorization_From_Scope (E => S, Scop => E);
8457 end if;
8458 end if;
8460 if Is_Child_Unit (S)
8461 and then Present (E)
8462 and then Ekind_In (E, E_Package, E_Generic_Package)
8463 and then
8464 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8465 then
8466 declare
8467 Aux : constant Node_Id :=
8468 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8469 begin
8470 if Present (Default_Storage_Pool (Aux)) then
8471 Default_Pool := Default_Storage_Pool (Aux);
8472 end if;
8473 end;
8474 end if;
8475 end Push_Scope;
8477 ---------------------
8478 -- Premature_Usage --
8479 ---------------------
8481 procedure Premature_Usage (N : Node_Id) is
8482 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8483 E : Entity_Id := Entity (N);
8485 begin
8486 -- Within an instance, the analysis of the actual for a formal object
8487 -- does not see the name of the object itself. This is significant only
8488 -- if the object is an aggregate, where its analysis does not do any
8489 -- name resolution on component associations. (see 4717-008). In such a
8490 -- case, look for the visible homonym on the chain.
8492 if In_Instance and then Present (Homonym (E)) then
8493 E := Homonym (E);
8494 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8495 E := Homonym (E);
8496 end loop;
8498 if Present (E) then
8499 Set_Entity (N, E);
8500 Set_Etype (N, Etype (E));
8501 return;
8502 end if;
8503 end if;
8505 if Kind = N_Component_Declaration then
8506 Error_Msg_N
8507 ("component&! cannot be used before end of record declaration", N);
8509 elsif Kind = N_Parameter_Specification then
8510 Error_Msg_N
8511 ("formal parameter&! cannot be used before end of specification",
8514 elsif Kind = N_Discriminant_Specification then
8515 Error_Msg_N
8516 ("discriminant&! cannot be used before end of discriminant part",
8519 elsif Kind = N_Procedure_Specification
8520 or else Kind = N_Function_Specification
8521 then
8522 Error_Msg_N
8523 ("subprogram&! cannot be used before end of its declaration",
8526 elsif Kind = N_Full_Type_Declaration then
8527 Error_Msg_N
8528 ("type& cannot be used before end of its declaration!", N);
8530 else
8531 Error_Msg_N
8532 ("object& cannot be used before end of its declaration!", N);
8533 end if;
8534 end Premature_Usage;
8536 ------------------------
8537 -- Present_System_Aux --
8538 ------------------------
8540 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8541 Loc : Source_Ptr;
8542 Aux_Name : Unit_Name_Type;
8543 Unum : Unit_Number_Type;
8544 Withn : Node_Id;
8545 With_Sys : Node_Id;
8546 The_Unit : Node_Id;
8548 function Find_System (C_Unit : Node_Id) return Entity_Id;
8549 -- Scan context clause of compilation unit to find with_clause
8550 -- for System.
8552 -----------------
8553 -- Find_System --
8554 -----------------
8556 function Find_System (C_Unit : Node_Id) return Entity_Id is
8557 With_Clause : Node_Id;
8559 begin
8560 With_Clause := First (Context_Items (C_Unit));
8561 while Present (With_Clause) loop
8562 if (Nkind (With_Clause) = N_With_Clause
8563 and then Chars (Name (With_Clause)) = Name_System)
8564 and then Comes_From_Source (With_Clause)
8565 then
8566 return With_Clause;
8567 end if;
8569 Next (With_Clause);
8570 end loop;
8572 return Empty;
8573 end Find_System;
8575 -- Start of processing for Present_System_Aux
8577 begin
8578 -- The child unit may have been loaded and analyzed already
8580 if Present (System_Aux_Id) then
8581 return True;
8583 -- If no previous pragma for System.Aux, nothing to load
8585 elsif No (System_Extend_Unit) then
8586 return False;
8588 -- Use the unit name given in the pragma to retrieve the unit.
8589 -- Verify that System itself appears in the context clause of the
8590 -- current compilation. If System is not present, an error will
8591 -- have been reported already.
8593 else
8594 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8596 The_Unit := Unit (Cunit (Current_Sem_Unit));
8598 if No (With_Sys)
8599 and then
8600 (Nkind (The_Unit) = N_Package_Body
8601 or else (Nkind (The_Unit) = N_Subprogram_Body
8602 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8603 then
8604 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8605 end if;
8607 if No (With_Sys) and then Present (N) then
8609 -- If we are compiling a subunit, we need to examine its
8610 -- context as well (Current_Sem_Unit is the parent unit);
8612 The_Unit := Parent (N);
8613 while Nkind (The_Unit) /= N_Compilation_Unit loop
8614 The_Unit := Parent (The_Unit);
8615 end loop;
8617 if Nkind (Unit (The_Unit)) = N_Subunit then
8618 With_Sys := Find_System (The_Unit);
8619 end if;
8620 end if;
8622 if No (With_Sys) then
8623 return False;
8624 end if;
8626 Loc := Sloc (With_Sys);
8627 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8628 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8629 Name_Buffer (1 .. 7) := "system.";
8630 Name_Buffer (Name_Len + 8) := '%';
8631 Name_Buffer (Name_Len + 9) := 's';
8632 Name_Len := Name_Len + 9;
8633 Aux_Name := Name_Find;
8635 Unum :=
8636 Load_Unit
8637 (Load_Name => Aux_Name,
8638 Required => False,
8639 Subunit => False,
8640 Error_Node => With_Sys);
8642 if Unum /= No_Unit then
8643 Semantics (Cunit (Unum));
8644 System_Aux_Id :=
8645 Defining_Entity (Specification (Unit (Cunit (Unum))));
8647 Withn :=
8648 Make_With_Clause (Loc,
8649 Name =>
8650 Make_Expanded_Name (Loc,
8651 Chars => Chars (System_Aux_Id),
8652 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8653 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8655 Set_Entity (Name (Withn), System_Aux_Id);
8657 Set_Library_Unit (Withn, Cunit (Unum));
8658 Set_Corresponding_Spec (Withn, System_Aux_Id);
8659 Set_First_Name (Withn, True);
8660 Set_Implicit_With (Withn, True);
8662 Insert_After (With_Sys, Withn);
8663 Mark_Rewrite_Insertion (Withn);
8664 Set_Context_Installed (Withn);
8666 return True;
8668 -- Here if unit load failed
8670 else
8671 Error_Msg_Name_1 := Name_System;
8672 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8673 Error_Msg_N
8674 ("extension package `%.%` does not exist",
8675 Opt.System_Extend_Unit);
8676 return False;
8677 end if;
8678 end if;
8679 end Present_System_Aux;
8681 -------------------------
8682 -- Restore_Scope_Stack --
8683 -------------------------
8685 procedure Restore_Scope_Stack
8686 (List : Elist_Id;
8687 Handle_Use : Boolean := True)
8689 SS_Last : constant Int := Scope_Stack.Last;
8690 Elmt : Elmt_Id;
8692 begin
8693 -- Restore visibility of previous scope stack, if any, using the list
8694 -- we saved (we use Remove, since this list will not be used again).
8696 loop
8697 Elmt := Last_Elmt (List);
8698 exit when Elmt = No_Elmt;
8699 Set_Is_Immediately_Visible (Node (Elmt));
8700 Remove_Last_Elmt (List);
8701 end loop;
8703 -- Restore use clauses
8705 if SS_Last >= Scope_Stack.First
8706 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8707 and then Handle_Use
8708 then
8709 Install_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8710 end if;
8711 end Restore_Scope_Stack;
8713 ----------------------
8714 -- Save_Scope_Stack --
8715 ----------------------
8717 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8718 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8719 -- from immediate visibility entities and Restore_Scope_Stack took care
8720 -- of restoring their visibility analyzing the context of each entity. The
8721 -- problem of such approach is that it was fragile and caused unexpected
8722 -- visibility problems, and indeed one test was found where there was a
8723 -- real problem.
8725 -- Furthermore, the following experiment was carried out:
8727 -- - Save_Scope_Stack was modified to store in an Elist1 all those
8728 -- entities whose attribute Is_Immediately_Visible is modified
8729 -- from True to False.
8731 -- - Restore_Scope_Stack was modified to store in another Elist2
8732 -- all the entities whose attribute Is_Immediately_Visible is
8733 -- modified from False to True.
8735 -- - Extra code was added to verify that all the elements of Elist1
8736 -- are found in Elist2
8738 -- This test shows that there may be more occurrences of this problem which
8739 -- have not yet been detected. As a result, we replaced that approach by
8740 -- the current one in which Save_Scope_Stack returns the list of entities
8741 -- whose visibility is changed, and that list is passed to Restore_Scope_
8742 -- Stack to undo that change. This approach is simpler and safer, although
8743 -- it consumes more memory.
8745 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
8746 Result : constant Elist_Id := New_Elmt_List;
8747 E : Entity_Id;
8748 S : Entity_Id;
8749 SS_Last : constant Int := Scope_Stack.Last;
8751 procedure Remove_From_Visibility (E : Entity_Id);
8752 -- If E is immediately visible then append it to the result and remove
8753 -- it temporarily from visibility.
8755 ----------------------------
8756 -- Remove_From_Visibility --
8757 ----------------------------
8759 procedure Remove_From_Visibility (E : Entity_Id) is
8760 begin
8761 if Is_Immediately_Visible (E) then
8762 Append_Elmt (E, Result);
8763 Set_Is_Immediately_Visible (E, False);
8764 end if;
8765 end Remove_From_Visibility;
8767 -- Start of processing for Save_Scope_Stack
8769 begin
8770 if SS_Last >= Scope_Stack.First
8771 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8772 then
8773 if Handle_Use then
8774 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8775 end if;
8777 -- If the call is from within a compilation unit, as when called from
8778 -- Rtsfind, make current entries in scope stack invisible while we
8779 -- analyze the new unit.
8781 for J in reverse 0 .. SS_Last loop
8782 exit when Scope_Stack.Table (J).Entity = Standard_Standard
8783 or else No (Scope_Stack.Table (J).Entity);
8785 S := Scope_Stack.Table (J).Entity;
8787 Remove_From_Visibility (S);
8789 E := First_Entity (S);
8790 while Present (E) loop
8791 Remove_From_Visibility (E);
8792 Next_Entity (E);
8793 end loop;
8794 end loop;
8796 end if;
8798 return Result;
8799 end Save_Scope_Stack;
8801 -------------
8802 -- Set_Use --
8803 -------------
8805 procedure Set_Use (L : List_Id) is
8806 Decl : Node_Id;
8807 Pack_Name : Node_Id;
8808 Pack : Entity_Id;
8809 Id : Entity_Id;
8811 begin
8812 if Present (L) then
8813 Decl := First (L);
8814 while Present (Decl) loop
8815 if Nkind (Decl) = N_Use_Package_Clause then
8816 Chain_Use_Clause (Decl);
8818 Pack_Name := First (Names (Decl));
8819 while Present (Pack_Name) loop
8820 Pack := Entity (Pack_Name);
8822 if Ekind (Pack) = E_Package
8823 and then Applicable_Use (Pack_Name)
8824 then
8825 Use_One_Package (Pack, Decl);
8826 end if;
8828 Next (Pack_Name);
8829 end loop;
8831 elsif Nkind (Decl) = N_Use_Type_Clause then
8832 Chain_Use_Clause (Decl);
8834 Id := First (Subtype_Marks (Decl));
8835 while Present (Id) loop
8836 if Entity (Id) /= Any_Type then
8837 Use_One_Type (Id);
8838 end if;
8840 Next (Id);
8841 end loop;
8842 end if;
8844 Next (Decl);
8845 end loop;
8846 end if;
8847 end Set_Use;
8849 ---------------------
8850 -- Use_One_Package --
8851 ---------------------
8853 procedure Use_One_Package (P : Entity_Id; N : Node_Id) is
8854 Id : Entity_Id;
8855 Prev : Entity_Id;
8856 Current_Instance : Entity_Id := Empty;
8857 Real_P : Entity_Id;
8858 Private_With_OK : Boolean := False;
8860 begin
8861 if Ekind (P) /= E_Package then
8862 return;
8863 end if;
8865 Set_In_Use (P);
8866 Set_Current_Use_Clause (P, N);
8868 -- Ada 2005 (AI-50217): Check restriction
8870 if From_Limited_With (P) then
8871 Error_Msg_N ("limited withed package cannot appear in use clause", N);
8872 end if;
8874 -- Find enclosing instance, if any
8876 if In_Instance then
8877 Current_Instance := Current_Scope;
8878 while not Is_Generic_Instance (Current_Instance) loop
8879 Current_Instance := Scope (Current_Instance);
8880 end loop;
8882 if No (Hidden_By_Use_Clause (N)) then
8883 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
8884 end if;
8885 end if;
8887 -- If unit is a package renaming, indicate that the renamed
8888 -- package is also in use (the flags on both entities must
8889 -- remain consistent, and a subsequent use of either of them
8890 -- should be recognized as redundant).
8892 if Present (Renamed_Object (P)) then
8893 Set_In_Use (Renamed_Object (P));
8894 Set_Current_Use_Clause (Renamed_Object (P), N);
8895 Real_P := Renamed_Object (P);
8896 else
8897 Real_P := P;
8898 end if;
8900 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
8901 -- found in the private part of a package specification
8903 if In_Private_Part (Current_Scope)
8904 and then Has_Private_With (P)
8905 and then Is_Child_Unit (Current_Scope)
8906 and then Is_Child_Unit (P)
8907 and then Is_Ancestor_Package (Scope (Current_Scope), P)
8908 then
8909 Private_With_OK := True;
8910 end if;
8912 -- Loop through entities in one package making them potentially
8913 -- use-visible.
8915 Id := First_Entity (P);
8916 while Present (Id)
8917 and then (Id /= First_Private_Entity (P)
8918 or else Private_With_OK) -- Ada 2005 (AI-262)
8919 loop
8920 Prev := Current_Entity (Id);
8921 while Present (Prev) loop
8922 if Is_Immediately_Visible (Prev)
8923 and then (not Is_Overloadable (Prev)
8924 or else not Is_Overloadable (Id)
8925 or else (Type_Conformant (Id, Prev)))
8926 then
8927 if No (Current_Instance) then
8929 -- Potentially use-visible entity remains hidden
8931 goto Next_Usable_Entity;
8933 -- A use clause within an instance hides outer global entities,
8934 -- which are not used to resolve local entities in the
8935 -- instance. Note that the predefined entities in Standard
8936 -- could not have been hidden in the generic by a use clause,
8937 -- and therefore remain visible. Other compilation units whose
8938 -- entities appear in Standard must be hidden in an instance.
8940 -- To determine whether an entity is external to the instance
8941 -- we compare the scope depth of its scope with that of the
8942 -- current instance. However, a generic actual of a subprogram
8943 -- instance is declared in the wrapper package but will not be
8944 -- hidden by a use-visible entity. similarly, an entity that is
8945 -- declared in an enclosing instance will not be hidden by an
8946 -- an entity declared in a generic actual, which can only have
8947 -- been use-visible in the generic and will not have hidden the
8948 -- entity in the generic parent.
8950 -- If Id is called Standard, the predefined package with the
8951 -- same name is in the homonym chain. It has to be ignored
8952 -- because it has no defined scope (being the only entity in
8953 -- the system with this mandated behavior).
8955 elsif not Is_Hidden (Id)
8956 and then Present (Scope (Prev))
8957 and then not Is_Wrapper_Package (Scope (Prev))
8958 and then Scope_Depth (Scope (Prev)) <
8959 Scope_Depth (Current_Instance)
8960 and then (Scope (Prev) /= Standard_Standard
8961 or else Sloc (Prev) > Standard_Location)
8962 then
8963 if In_Open_Scopes (Scope (Prev))
8964 and then Is_Generic_Instance (Scope (Prev))
8965 and then Present (Associated_Formal_Package (P))
8966 then
8967 null;
8969 else
8970 Set_Is_Potentially_Use_Visible (Id);
8971 Set_Is_Immediately_Visible (Prev, False);
8972 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8973 end if;
8974 end if;
8976 -- A user-defined operator is not use-visible if the predefined
8977 -- operator for the type is immediately visible, which is the case
8978 -- if the type of the operand is in an open scope. This does not
8979 -- apply to user-defined operators that have operands of different
8980 -- types, because the predefined mixed mode operations (multiply
8981 -- and divide) apply to universal types and do not hide anything.
8983 elsif Ekind (Prev) = E_Operator
8984 and then Operator_Matches_Spec (Prev, Id)
8985 and then In_Open_Scopes
8986 (Scope (Base_Type (Etype (First_Formal (Id)))))
8987 and then (No (Next_Formal (First_Formal (Id)))
8988 or else Etype (First_Formal (Id)) =
8989 Etype (Next_Formal (First_Formal (Id)))
8990 or else Chars (Prev) = Name_Op_Expon)
8991 then
8992 goto Next_Usable_Entity;
8994 -- In an instance, two homonyms may become use_visible through the
8995 -- actuals of distinct formal packages. In the generic, only the
8996 -- current one would have been visible, so make the other one
8997 -- not use_visible.
8999 elsif Present (Current_Instance)
9000 and then Is_Potentially_Use_Visible (Prev)
9001 and then not Is_Overloadable (Prev)
9002 and then Scope (Id) /= Scope (Prev)
9003 and then Used_As_Generic_Actual (Scope (Prev))
9004 and then Used_As_Generic_Actual (Scope (Id))
9005 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
9006 Current_Use_Clause (Scope (Id)))
9007 then
9008 Set_Is_Potentially_Use_Visible (Prev, False);
9009 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9010 end if;
9012 Prev := Homonym (Prev);
9013 end loop;
9015 -- On exit, we know entity is not hidden, unless it is private
9017 if not Is_Hidden (Id)
9018 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
9019 then
9020 Set_Is_Potentially_Use_Visible (Id);
9022 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
9023 Set_Is_Potentially_Use_Visible (Full_View (Id));
9024 end if;
9025 end if;
9027 <<Next_Usable_Entity>>
9028 Next_Entity (Id);
9029 end loop;
9031 -- Child units are also made use-visible by a use clause, but they may
9032 -- appear after all visible declarations in the parent entity list.
9034 while Present (Id) loop
9035 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
9036 Set_Is_Potentially_Use_Visible (Id);
9037 end if;
9039 Next_Entity (Id);
9040 end loop;
9042 if Chars (Real_P) = Name_System
9043 and then Scope (Real_P) = Standard_Standard
9044 and then Present_System_Aux (N)
9045 then
9046 Use_One_Package (System_Aux_Id, N);
9047 end if;
9049 end Use_One_Package;
9051 ------------------
9052 -- Use_One_Type --
9053 ------------------
9055 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False) is
9056 Elmt : Elmt_Id;
9057 Is_Known_Used : Boolean;
9058 Op_List : Elist_Id;
9059 T : Entity_Id;
9061 function Spec_Reloaded_For_Body return Boolean;
9062 -- Determine whether the compilation unit is a package body and the use
9063 -- type clause is in the spec of the same package. Even though the spec
9064 -- was analyzed first, its context is reloaded when analysing the body.
9066 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
9067 -- AI05-150: if the use_type_clause carries the "all" qualifier,
9068 -- class-wide operations of ancestor types are use-visible if the
9069 -- ancestor type is visible.
9071 ----------------------------
9072 -- Spec_Reloaded_For_Body --
9073 ----------------------------
9075 function Spec_Reloaded_For_Body return Boolean is
9076 begin
9077 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9078 declare
9079 Spec : constant Node_Id :=
9080 Parent (List_Containing (Parent (Id)));
9082 begin
9083 -- Check whether type is declared in a package specification,
9084 -- and current unit is the corresponding package body. The
9085 -- use clauses themselves may be within a nested package.
9087 return
9088 Nkind (Spec) = N_Package_Specification
9089 and then
9090 In_Same_Source_Unit (Corresponding_Body (Parent (Spec)),
9091 Cunit_Entity (Current_Sem_Unit));
9092 end;
9093 end if;
9095 return False;
9096 end Spec_Reloaded_For_Body;
9098 -------------------------------
9099 -- Use_Class_Wide_Operations --
9100 -------------------------------
9102 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
9103 Scop : Entity_Id;
9104 Ent : Entity_Id;
9106 function Is_Class_Wide_Operation_Of
9107 (Op : Entity_Id;
9108 T : Entity_Id) return Boolean;
9109 -- Determine whether a subprogram has a class-wide parameter or
9110 -- result that is T'Class.
9112 ---------------------------------
9113 -- Is_Class_Wide_Operation_Of --
9114 ---------------------------------
9116 function Is_Class_Wide_Operation_Of
9117 (Op : Entity_Id;
9118 T : Entity_Id) return Boolean
9120 Formal : Entity_Id;
9122 begin
9123 Formal := First_Formal (Op);
9124 while Present (Formal) loop
9125 if Etype (Formal) = Class_Wide_Type (T) then
9126 return True;
9127 end if;
9128 Next_Formal (Formal);
9129 end loop;
9131 if Etype (Op) = Class_Wide_Type (T) then
9132 return True;
9133 end if;
9135 return False;
9136 end Is_Class_Wide_Operation_Of;
9138 -- Start of processing for Use_Class_Wide_Operations
9140 begin
9141 Scop := Scope (Typ);
9142 if not Is_Hidden (Scop) then
9143 Ent := First_Entity (Scop);
9144 while Present (Ent) loop
9145 if Is_Overloadable (Ent)
9146 and then Is_Class_Wide_Operation_Of (Ent, Typ)
9147 and then not Is_Potentially_Use_Visible (Ent)
9148 then
9149 Set_Is_Potentially_Use_Visible (Ent);
9150 Append_Elmt (Ent, Used_Operations (Parent (Id)));
9151 end if;
9153 Next_Entity (Ent);
9154 end loop;
9155 end if;
9157 if Is_Derived_Type (Typ) then
9158 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
9159 end if;
9160 end Use_Class_Wide_Operations;
9162 -- Start of processing for Use_One_Type
9164 begin
9165 -- It is the type determined by the subtype mark (8.4(8)) whose
9166 -- operations become potentially use-visible.
9168 T := Base_Type (Entity (Id));
9170 -- Either the type itself is used, the package where it is declared
9171 -- is in use or the entity is declared in the current package, thus
9172 -- use-visible.
9174 Is_Known_Used :=
9175 In_Use (T)
9176 or else In_Use (Scope (T))
9177 or else Scope (T) = Current_Scope;
9179 Set_Redundant_Use (Id,
9180 Is_Known_Used or else Is_Potentially_Use_Visible (T));
9182 if Ekind (T) = E_Incomplete_Type then
9183 Error_Msg_N ("premature usage of incomplete type", Id);
9185 elsif In_Open_Scopes (Scope (T)) then
9186 null;
9188 -- A limited view cannot appear in a use_type clause. However, an access
9189 -- type whose designated type is limited has the flag but is not itself
9190 -- a limited view unless we only have a limited view of its enclosing
9191 -- package.
9193 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
9194 Error_Msg_N
9195 ("incomplete type from limited view "
9196 & "cannot appear in use clause", Id);
9198 -- If the subtype mark designates a subtype in a different package,
9199 -- we have to check that the parent type is visible, otherwise the
9200 -- use type clause is a noop. Not clear how to do that???
9202 elsif not Redundant_Use (Id) then
9203 Set_In_Use (T);
9205 -- If T is tagged, primitive operators on class-wide operands
9206 -- are also available.
9208 if Is_Tagged_Type (T) then
9209 Set_In_Use (Class_Wide_Type (T));
9210 end if;
9212 Set_Current_Use_Clause (T, Parent (Id));
9214 -- Iterate over primitive operations of the type. If an operation is
9215 -- already use_visible, it is the result of a previous use_clause,
9216 -- and already appears on the corresponding entity chain. If the
9217 -- clause is being reinstalled, operations are already use-visible.
9219 if Installed then
9220 null;
9222 else
9223 Op_List := Collect_Primitive_Operations (T);
9224 Elmt := First_Elmt (Op_List);
9225 while Present (Elmt) loop
9226 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
9227 or else Chars (Node (Elmt)) in Any_Operator_Name)
9228 and then not Is_Hidden (Node (Elmt))
9229 and then not Is_Potentially_Use_Visible (Node (Elmt))
9230 then
9231 Set_Is_Potentially_Use_Visible (Node (Elmt));
9232 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9234 elsif Ada_Version >= Ada_2012
9235 and then All_Present (Parent (Id))
9236 and then not Is_Hidden (Node (Elmt))
9237 and then not Is_Potentially_Use_Visible (Node (Elmt))
9238 then
9239 Set_Is_Potentially_Use_Visible (Node (Elmt));
9240 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9241 end if;
9243 Next_Elmt (Elmt);
9244 end loop;
9245 end if;
9247 if Ada_Version >= Ada_2012
9248 and then All_Present (Parent (Id))
9249 and then Is_Tagged_Type (T)
9250 then
9251 Use_Class_Wide_Operations (T);
9252 end if;
9253 end if;
9255 -- If warning on redundant constructs, check for unnecessary WITH
9257 if Warn_On_Redundant_Constructs
9258 and then Is_Known_Used
9260 -- with P; with P; use P;
9261 -- package P is package X is package body X is
9262 -- type T ... use P.T;
9264 -- The compilation unit is the body of X. GNAT first compiles the
9265 -- spec of X, then proceeds to the body. At that point P is marked
9266 -- as use visible. The analysis then reinstalls the spec along with
9267 -- its context. The use clause P.T is now recognized as redundant,
9268 -- but in the wrong context. Do not emit a warning in such cases.
9269 -- Do not emit a warning either if we are in an instance, there is
9270 -- no redundancy between an outer use_clause and one that appears
9271 -- within the generic.
9273 and then not Spec_Reloaded_For_Body
9274 and then not In_Instance
9275 then
9276 -- The type already has a use clause
9278 if In_Use (T) then
9280 -- Case where we know the current use clause for the type
9282 if Present (Current_Use_Clause (T)) then
9283 Use_Clause_Known : declare
9284 Clause1 : constant Node_Id := Parent (Id);
9285 Clause2 : constant Node_Id := Current_Use_Clause (T);
9286 Ent1 : Entity_Id;
9287 Ent2 : Entity_Id;
9288 Err_No : Node_Id;
9289 Unit1 : Node_Id;
9290 Unit2 : Node_Id;
9292 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
9293 -- Return the appropriate entity for determining which unit
9294 -- has a deeper scope: the defining entity for U, unless U
9295 -- is a package instance, in which case we retrieve the
9296 -- entity of the instance spec.
9298 --------------------
9299 -- Entity_Of_Unit --
9300 --------------------
9302 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
9303 begin
9304 if Nkind (U) = N_Package_Instantiation
9305 and then Analyzed (U)
9306 then
9307 return Defining_Entity (Instance_Spec (U));
9308 else
9309 return Defining_Entity (U);
9310 end if;
9311 end Entity_Of_Unit;
9313 -- Start of processing for Use_Clause_Known
9315 begin
9316 -- If both current use type clause and the use type clause
9317 -- for the type are at the compilation unit level, one of
9318 -- the units must be an ancestor of the other, and the
9319 -- warning belongs on the descendant.
9321 if Nkind (Parent (Clause1)) = N_Compilation_Unit
9322 and then
9323 Nkind (Parent (Clause2)) = N_Compilation_Unit
9324 then
9325 -- If the unit is a subprogram body that acts as spec,
9326 -- the context clause is shared with the constructed
9327 -- subprogram spec. Clearly there is no redundancy.
9329 if Clause1 = Clause2 then
9330 return;
9331 end if;
9333 Unit1 := Unit (Parent (Clause1));
9334 Unit2 := Unit (Parent (Clause2));
9336 -- If both clauses are on same unit, or one is the body
9337 -- of the other, or one of them is in a subunit, report
9338 -- redundancy on the later one.
9340 if Unit1 = Unit2 then
9341 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9342 Error_Msg_NE -- CODEFIX
9343 ("& is already use-visible through previous "
9344 & "use_type_clause #??", Clause1, T);
9345 return;
9347 elsif Nkind (Unit1) = N_Subunit then
9348 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9349 Error_Msg_NE -- CODEFIX
9350 ("& is already use-visible through previous "
9351 & "use_type_clause #??", Clause1, T);
9352 return;
9354 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
9355 and then Nkind (Unit1) /= Nkind (Unit2)
9356 and then Nkind (Unit1) /= N_Subunit
9357 then
9358 Error_Msg_Sloc := Sloc (Clause1);
9359 Error_Msg_NE -- CODEFIX
9360 ("& is already use-visible through previous "
9361 & "use_type_clause #??", Current_Use_Clause (T), T);
9362 return;
9363 end if;
9365 -- There is a redundant use type clause in a child unit.
9366 -- Determine which of the units is more deeply nested.
9367 -- If a unit is a package instance, retrieve the entity
9368 -- and its scope from the instance spec.
9370 Ent1 := Entity_Of_Unit (Unit1);
9371 Ent2 := Entity_Of_Unit (Unit2);
9373 if Scope (Ent2) = Standard_Standard then
9374 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9375 Err_No := Clause1;
9377 elsif Scope (Ent1) = Standard_Standard then
9378 Error_Msg_Sloc := Sloc (Id);
9379 Err_No := Clause2;
9381 -- If both units are child units, we determine which one
9382 -- is the descendant by the scope distance to the
9383 -- ultimate parent unit.
9385 else
9386 declare
9387 S1, S2 : Entity_Id;
9389 begin
9390 S1 := Scope (Ent1);
9391 S2 := Scope (Ent2);
9392 while Present (S1)
9393 and then Present (S2)
9394 and then S1 /= Standard_Standard
9395 and then S2 /= Standard_Standard
9396 loop
9397 S1 := Scope (S1);
9398 S2 := Scope (S2);
9399 end loop;
9401 if S1 = Standard_Standard then
9402 Error_Msg_Sloc := Sloc (Id);
9403 Err_No := Clause2;
9404 else
9405 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9406 Err_No := Clause1;
9407 end if;
9408 end;
9409 end if;
9411 Error_Msg_NE -- CODEFIX
9412 ("& is already use-visible through previous "
9413 & "use_type_clause #??", Err_No, Id);
9415 -- Case where current use type clause and the use type
9416 -- clause for the type are not both at the compilation unit
9417 -- level. In this case we don't have location information.
9419 else
9420 Error_Msg_NE -- CODEFIX
9421 ("& is already use-visible through previous "
9422 & "use type clause??", Id, T);
9423 end if;
9424 end Use_Clause_Known;
9426 -- Here if Current_Use_Clause is not set for T, another case
9427 -- where we do not have the location information available.
9429 else
9430 Error_Msg_NE -- CODEFIX
9431 ("& is already use-visible through previous "
9432 & "use type clause??", Id, T);
9433 end if;
9435 -- The package where T is declared is already used
9437 elsif In_Use (Scope (T)) then
9438 Error_Msg_Sloc := Sloc (Current_Use_Clause (Scope (T)));
9439 Error_Msg_NE -- CODEFIX
9440 ("& is already use-visible through package use clause #??",
9441 Id, T);
9443 -- The current scope is the package where T is declared
9445 else
9446 Error_Msg_Node_2 := Scope (T);
9447 Error_Msg_NE -- CODEFIX
9448 ("& is already use-visible inside package &??", Id, T);
9449 end if;
9450 end if;
9451 end Use_One_Type;
9453 ----------------
9454 -- Write_Info --
9455 ----------------
9457 procedure Write_Info is
9458 Id : Entity_Id := First_Entity (Current_Scope);
9460 begin
9461 -- No point in dumping standard entities
9463 if Current_Scope = Standard_Standard then
9464 return;
9465 end if;
9467 Write_Str ("========================================================");
9468 Write_Eol;
9469 Write_Str (" Defined Entities in ");
9470 Write_Name (Chars (Current_Scope));
9471 Write_Eol;
9472 Write_Str ("========================================================");
9473 Write_Eol;
9475 if No (Id) then
9476 Write_Str ("-- none --");
9477 Write_Eol;
9479 else
9480 while Present (Id) loop
9481 Write_Entity_Info (Id, " ");
9482 Next_Entity (Id);
9483 end loop;
9484 end if;
9486 if Scope (Current_Scope) = Standard_Standard then
9488 -- Print information on the current unit itself
9490 Write_Entity_Info (Current_Scope, " ");
9491 end if;
9493 Write_Eol;
9494 end Write_Info;
9496 --------
9497 -- ws --
9498 --------
9500 procedure ws is
9501 S : Entity_Id;
9502 begin
9503 for J in reverse 1 .. Scope_Stack.Last loop
9504 S := Scope_Stack.Table (J).Entity;
9505 Write_Int (Int (S));
9506 Write_Str (" === ");
9507 Write_Name (Chars (S));
9508 Write_Eol;
9509 end loop;
9510 end ws;
9512 --------
9513 -- we --
9514 --------
9516 procedure we (S : Entity_Id) is
9517 E : Entity_Id;
9518 begin
9519 E := First_Entity (S);
9520 while Present (E) loop
9521 Write_Int (Int (E));
9522 Write_Str (" === ");
9523 Write_Name (Chars (E));
9524 Write_Eol;
9525 Next_Entity (E);
9526 end loop;
9527 end we;
9528 end Sem_Ch8;