PR rtl-optimization/79386
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob5a54515c4b9631ffea7ea84065f550dc970466fb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch9; use Exp_Ch9;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Tss; use Exp_Tss;
41 with Exp_Util; use Exp_Util;
42 with Fname; use Fname;
43 with Freeze; use Freeze;
44 with Ghost; use Ghost;
45 with Inline; use Inline;
46 with Itypes; use Itypes;
47 with Lib.Xref; use Lib.Xref;
48 with Layout; use Layout;
49 with Namet; use Namet;
50 with Lib; use Lib;
51 with Nlists; use Nlists;
52 with Nmake; use Nmake;
53 with Opt; use Opt;
54 with Output; use Output;
55 with Restrict; use Restrict;
56 with Rident; use Rident;
57 with Rtsfind; use Rtsfind;
58 with Sem; use Sem;
59 with Sem_Aux; use Sem_Aux;
60 with Sem_Cat; use Sem_Cat;
61 with Sem_Ch3; use Sem_Ch3;
62 with Sem_Ch4; use Sem_Ch4;
63 with Sem_Ch5; use Sem_Ch5;
64 with Sem_Ch8; use Sem_Ch8;
65 with Sem_Ch9; use Sem_Ch9;
66 with Sem_Ch10; use Sem_Ch10;
67 with Sem_Ch12; use Sem_Ch12;
68 with Sem_Ch13; use Sem_Ch13;
69 with Sem_Dim; use Sem_Dim;
70 with Sem_Disp; use Sem_Disp;
71 with Sem_Dist; use Sem_Dist;
72 with Sem_Elim; use Sem_Elim;
73 with Sem_Eval; use Sem_Eval;
74 with Sem_Mech; use Sem_Mech;
75 with Sem_Prag; use Sem_Prag;
76 with Sem_Res; use Sem_Res;
77 with Sem_Util; use Sem_Util;
78 with Sem_Type; use Sem_Type;
79 with Sem_Warn; use Sem_Warn;
80 with Sinput; use Sinput;
81 with Stand; use Stand;
82 with Sinfo; use Sinfo;
83 with Sinfo.CN; use Sinfo.CN;
84 with Snames; use Snames;
85 with Stringt; use Stringt;
86 with Style;
87 with Stylesw; use Stylesw;
88 with Tbuild; use Tbuild;
89 with Uintp; use Uintp;
90 with Urealp; use Urealp;
91 with Validsw; use Validsw;
93 package body Sem_Ch6 is
95 May_Hide_Profile : Boolean := False;
96 -- This flag is used to indicate that two formals in two subprograms being
97 -- checked for conformance differ only in that one is an access parameter
98 -- while the other is of a general access type with the same designated
99 -- type. In this case, if the rest of the signatures match, a call to
100 -- either subprogram may be ambiguous, which is worth a warning. The flag
101 -- is set in Compatible_Types, and the warning emitted in
102 -- New_Overloaded_Entity.
104 -----------------------
105 -- Local Subprograms --
106 -----------------------
108 procedure Analyze_Function_Return (N : Node_Id);
109 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
110 -- applies to a [generic] function.
112 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
113 -- Analyze a generic subprogram body. N is the body to be analyzed, and
114 -- Gen_Id is the defining entity Id for the corresponding spec.
116 procedure Analyze_Null_Procedure
117 (N : Node_Id;
118 Is_Completion : out Boolean);
119 -- A null procedure can be a declaration or (Ada 2012) a completion
121 procedure Analyze_Return_Statement (N : Node_Id);
122 -- Common processing for simple and extended return statements
124 procedure Analyze_Return_Type (N : Node_Id);
125 -- Subsidiary to Process_Formals: analyze subtype mark in function
126 -- specification in a context where the formals are visible and hide
127 -- outer homographs.
129 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
130 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
131 -- that we can use RETURN but not skip the debug output at the end.
133 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
134 -- Returns true if Subp can override a predefined operator.
136 procedure Check_Conformance
137 (New_Id : Entity_Id;
138 Old_Id : Entity_Id;
139 Ctype : Conformance_Type;
140 Errmsg : Boolean;
141 Conforms : out Boolean;
142 Err_Loc : Node_Id := Empty;
143 Get_Inst : Boolean := False;
144 Skip_Controlling_Formals : Boolean := False);
145 -- Given two entities, this procedure checks that the profiles associated
146 -- with these entities meet the conformance criterion given by the third
147 -- parameter. If they conform, Conforms is set True and control returns
148 -- to the caller. If they do not conform, Conforms is set to False, and
149 -- in addition, if Errmsg is True on the call, proper messages are output
150 -- to complain about the conformance failure. If Err_Loc is non_Empty
151 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
152 -- error messages are placed on the appropriate part of the construct
153 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
154 -- against a formal access-to-subprogram type so Get_Instance_Of must
155 -- be called.
157 procedure Check_Limited_Return
158 (N : Node_Id;
159 Expr : Node_Id;
160 R_Type : Entity_Id);
161 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
162 -- types. Used only for simple return statements. Expr is the expression
163 -- returned.
165 procedure Check_Subprogram_Order (N : Node_Id);
166 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
167 -- the alpha ordering rule for N if this ordering requirement applicable.
169 procedure Check_Returns
170 (HSS : Node_Id;
171 Mode : Character;
172 Err : out Boolean;
173 Proc : Entity_Id := Empty);
174 -- Called to check for missing return statements in a function body, or for
175 -- returns present in a procedure body which has No_Return set. HSS is the
176 -- handled statement sequence for the subprogram body. This procedure
177 -- checks all flow paths to make sure they either have return (Mode = 'F',
178 -- used for functions) or do not have a return (Mode = 'P', used for
179 -- No_Return procedures). The flag Err is set if there are any control
180 -- paths not explicitly terminated by a return in the function case, and is
181 -- True otherwise. Proc is the entity for the procedure case and is used
182 -- in posting the warning message.
184 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
185 -- In Ada 2012, a primitive equality operator on an untagged record type
186 -- must appear before the type is frozen, and have the same visibility as
187 -- that of the type. This procedure checks that this rule is met, and
188 -- otherwise emits an error on the subprogram declaration and a warning
189 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
190 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
191 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
192 -- is set, otherwise the call has no effect.
194 procedure Enter_Overloaded_Entity (S : Entity_Id);
195 -- This procedure makes S, a new overloaded entity, into the first visible
196 -- entity with that name.
198 function Is_Non_Overriding_Operation
199 (Prev_E : Entity_Id;
200 New_E : Entity_Id) return Boolean;
201 -- Enforce the rule given in 12.3(18): a private operation in an instance
202 -- overrides an inherited operation only if the corresponding operation
203 -- was overriding in the generic. This needs to be checked for primitive
204 -- operations of types derived (in the generic unit) from formal private
205 -- or formal derived types.
207 procedure Make_Inequality_Operator (S : Entity_Id);
208 -- Create the declaration for an inequality operator that is implicitly
209 -- created by a user-defined equality operator that yields a boolean.
211 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
212 -- Formal_Id is an formal parameter entity. This procedure deals with
213 -- setting the proper validity status for this entity, which depends on
214 -- the kind of parameter and the validity checking mode.
216 ---------------------------------------------
217 -- Analyze_Abstract_Subprogram_Declaration --
218 ---------------------------------------------
220 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
221 Scop : constant Entity_Id := Current_Scope;
222 Subp_Id : constant Entity_Id :=
223 Analyze_Subprogram_Specification (Specification (N));
225 begin
226 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
228 Generate_Definition (Subp_Id);
230 Set_Is_Abstract_Subprogram (Subp_Id);
231 New_Overloaded_Entity (Subp_Id);
232 Check_Delayed_Subprogram (Subp_Id);
234 Set_Categorization_From_Scope (Subp_Id, Scop);
236 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
237 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
239 -- Issue a warning if the abstract subprogram is neither a dispatching
240 -- operation nor an operation that overrides an inherited subprogram or
241 -- predefined operator, since this most likely indicates a mistake.
243 elsif Warn_On_Redundant_Constructs
244 and then not Is_Dispatching_Operation (Subp_Id)
245 and then not Present (Overridden_Operation (Subp_Id))
246 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
247 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
248 then
249 Error_Msg_N
250 ("abstract subprogram is not dispatching or overriding?r?", N);
251 end if;
253 Generate_Reference_To_Formals (Subp_Id);
254 Check_Eliminated (Subp_Id);
256 if Has_Aspects (N) then
257 Analyze_Aspect_Specifications (N, Subp_Id);
258 end if;
259 end Analyze_Abstract_Subprogram_Declaration;
261 ---------------------------------
262 -- Analyze_Expression_Function --
263 ---------------------------------
265 procedure Analyze_Expression_Function (N : Node_Id) is
266 Expr : constant Node_Id := Expression (N);
267 Loc : constant Source_Ptr := Sloc (N);
268 LocX : constant Source_Ptr := Sloc (Expr);
269 Spec : constant Node_Id := Specification (N);
271 Asp : Node_Id;
272 Def_Id : Entity_Id;
273 New_Body : Node_Id;
274 New_Spec : Node_Id;
275 Orig_N : Node_Id;
276 Ret : Node_Id;
277 Ret_Type : Entity_Id;
279 Prev : Entity_Id;
280 -- If the expression is a completion, Prev is the entity whose
281 -- declaration is completed. Def_Id is needed to analyze the spec.
283 begin
284 -- This is one of the occasions on which we transform the tree during
285 -- semantic analysis. If this is a completion, transform the expression
286 -- function into an equivalent subprogram body, and analyze it.
288 -- Expression functions are inlined unconditionally. The back-end will
289 -- determine whether this is possible.
291 Inline_Processing_Required := True;
293 -- Create a specification for the generated body. This must be done
294 -- prior to the analysis of the initial declaration.
296 New_Spec := Copy_Subprogram_Spec (Spec);
297 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
299 -- If there are previous overloadable entities with the same name,
300 -- check whether any of them is completed by the expression function.
301 -- In a generic context a formal subprogram has no completion.
303 if Present (Prev)
304 and then Is_Overloadable (Prev)
305 and then not Is_Formal_Subprogram (Prev)
306 then
307 Def_Id := Analyze_Subprogram_Specification (Spec);
308 Prev := Find_Corresponding_Spec (N);
310 -- The previous entity may be an expression function as well, in
311 -- which case the redeclaration is illegal.
313 if Present (Prev)
314 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
315 N_Expression_Function
316 then
317 Error_Msg_Sloc := Sloc (Prev);
318 Error_Msg_N ("& conflicts with declaration#", Def_Id);
319 return;
320 end if;
321 end if;
323 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
325 New_Body :=
326 Make_Subprogram_Body (Loc,
327 Specification => New_Spec,
328 Declarations => Empty_List,
329 Handled_Statement_Sequence =>
330 Make_Handled_Sequence_Of_Statements (LocX,
331 Statements => New_List (Ret)));
332 Set_Was_Expression_Function (New_Body);
334 -- If the expression completes a generic subprogram, we must create a
335 -- separate node for the body, because at instantiation the original
336 -- node of the generic copy must be a generic subprogram body, and
337 -- cannot be a expression function. Otherwise we just rewrite the
338 -- expression with the non-generic body.
340 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
341 Insert_After (N, New_Body);
343 -- Propagate any aspects or pragmas that apply to the expression
344 -- function to the proper body when the expression function acts
345 -- as a completion.
347 if Has_Aspects (N) then
348 Move_Aspects (N, To => New_Body);
349 end if;
351 Relocate_Pragmas_To_Body (New_Body);
353 Rewrite (N, Make_Null_Statement (Loc));
354 Set_Has_Completion (Prev, False);
355 Analyze (N);
356 Analyze (New_Body);
357 Set_Is_Inlined (Prev);
359 -- If the expression function is a completion, the previous declaration
360 -- must come from source. We know already that it appears in the current
361 -- scope. The entity itself may be internally created if within a body
362 -- to be inlined.
364 elsif Present (Prev)
365 and then Comes_From_Source (Parent (Prev))
366 and then not Is_Formal_Subprogram (Prev)
367 then
368 Set_Has_Completion (Prev, False);
369 Set_Is_Inlined (Prev);
370 Ret_Type := Etype (Prev);
372 -- An expression function which acts as a completion freezes the
373 -- expression. This means freezing the return type, and if it is
374 -- an access type, freezing its designated type as well.
376 -- Note that we cannot defer this freezing to the analysis of the
377 -- expression itself, because a freeze node might appear in a nested
378 -- scope, leading to an elaboration order issue in gigi.
380 Freeze_Before (N, Ret_Type);
382 -- An entity can only be frozen if it is complete, so if the type
383 -- is still unfrozen it must still be incomplete in some way, e.g.
384 -- a private type without a full view, or a type derived from such
385 -- in an enclosing scope. Except in a generic context, such use of
386 -- an incomplete type is an error. On the other hand, if this is a
387 -- limited view of a type, the type is declared in another unit and
388 -- frozen there. We must be in a context seeing the nonlimited view
389 -- of the type, which will be installed when the body is compiled.
391 if not Is_Frozen (Ret_Type)
392 and then not Is_Generic_Type (Ret_Type)
393 and then not Inside_A_Generic
394 then
395 if From_Limited_With (Ret_Type)
396 and then Present (Non_Limited_View (Ret_Type))
397 then
398 null;
399 else
400 Error_Msg_NE
401 ("premature use of private type&",
402 Result_Definition (Specification (N)), Ret_Type);
403 end if;
404 end if;
406 if Is_Access_Type (Etype (Prev)) then
407 Freeze_Before (N, Designated_Type (Etype (Prev)));
408 end if;
410 -- For navigation purposes, indicate that the function is a body
412 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
413 Rewrite (N, New_Body);
415 -- Remove any existing aspects from the original node because the act
416 -- of rewriting causes the list to be shared between the two nodes.
418 Orig_N := Original_Node (N);
419 Remove_Aspects (Orig_N);
421 -- Propagate any pragmas that apply to the expression function to the
422 -- proper body when the expression function acts as a completion.
423 -- Aspects are automatically transfered because of node rewriting.
425 Relocate_Pragmas_To_Body (N);
426 Analyze (N);
428 -- Once the aspects of the generated body have been analyzed, create
429 -- a copy for ASIS purposes and associate it with the original node.
431 if Has_Aspects (N) then
432 Set_Aspect_Specifications (Orig_N,
433 New_Copy_List_Tree (Aspect_Specifications (N)));
434 end if;
436 -- Prev is the previous entity with the same name, but it is can
437 -- be an unrelated spec that is not completed by the expression
438 -- function. In that case the relevant entity is the one in the body.
439 -- Not clear that the backend can inline it in this case ???
441 if Has_Completion (Prev) then
443 -- The formals of the expression function are body formals,
444 -- and do not appear in the ali file, which will only contain
445 -- references to the formals of the original subprogram spec.
447 declare
448 F1 : Entity_Id;
449 F2 : Entity_Id;
451 begin
452 F1 := First_Formal (Def_Id);
453 F2 := First_Formal (Prev);
455 while Present (F1) loop
456 Set_Spec_Entity (F1, F2);
457 Next_Formal (F1);
458 Next_Formal (F2);
459 end loop;
460 end;
462 else
463 Set_Is_Inlined (Defining_Entity (New_Body));
464 end if;
466 -- If this is not a completion, create both a declaration and a body, so
467 -- that the expression can be inlined whenever possible.
469 else
470 -- An expression function that is not a completion is not a
471 -- subprogram declaration, and thus cannot appear in a protected
472 -- definition.
474 if Nkind (Parent (N)) = N_Protected_Definition then
475 Error_Msg_N
476 ("an expression function is not a legal protected operation", N);
477 end if;
479 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
481 -- Remove any existing aspects from the original node because the act
482 -- of rewriting causes the list to be shared between the two nodes.
484 Orig_N := Original_Node (N);
485 Remove_Aspects (Orig_N);
487 Analyze (N);
489 -- Once the aspects of the generated spec have been analyzed, create
490 -- a copy for ASIS purposes and associate it with the original node.
492 if Has_Aspects (N) then
493 Set_Aspect_Specifications (Orig_N,
494 New_Copy_List_Tree (Aspect_Specifications (N)));
495 end if;
497 -- If aspect SPARK_Mode was specified on the body, it needs to be
498 -- repeated both on the generated spec and the body.
500 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
502 if Present (Asp) then
503 Asp := New_Copy_Tree (Asp);
504 Set_Analyzed (Asp, False);
505 Set_Aspect_Specifications (New_Body, New_List (Asp));
506 end if;
508 Def_Id := Defining_Entity (N);
510 -- Within a generic pre-analyze the original expression for name
511 -- capture. The body is also generated but plays no role in
512 -- this because it is not part of the original source.
514 if Inside_A_Generic then
515 Set_Has_Completion (Def_Id);
516 Push_Scope (Def_Id);
517 Install_Formals (Def_Id);
518 Preanalyze_Spec_Expression (Expr, Etype (Def_Id));
519 End_Scope;
520 end if;
522 Set_Is_Inlined (Defining_Entity (N));
524 -- Establish the linkages between the spec and the body. These are
525 -- used when the expression function acts as the prefix of attribute
526 -- 'Access in order to freeze the original expression which has been
527 -- moved to the generated body.
529 Set_Corresponding_Body (N, Defining_Entity (New_Body));
530 Set_Corresponding_Spec (New_Body, Defining_Entity (N));
532 -- To prevent premature freeze action, insert the new body at the end
533 -- of the current declarations, or at the end of the package spec.
534 -- However, resolve usage names now, to prevent spurious visibility
535 -- on later entities. Note that the function can now be called in
536 -- the current declarative part, which will appear to be prior to
537 -- the presence of the body in the code. There are nevertheless no
538 -- order of elaboration issues because all name resolution has taken
539 -- place at the point of declaration.
541 declare
542 Decls : List_Id := List_Containing (N);
543 Expr : constant Node_Id := Expression (Ret);
544 Par : constant Node_Id := Parent (Decls);
545 Typ : constant Entity_Id := Etype (Def_Id);
547 begin
548 -- If this is a wrapper created for in an instance for a formal
549 -- subprogram, insert body after declaration, to be analyzed when
550 -- the enclosing instance is analyzed.
552 if GNATprove_Mode
553 and then Is_Generic_Actual_Subprogram (Defining_Entity (N))
554 then
555 Insert_After (N, New_Body);
557 else
558 if Nkind (Par) = N_Package_Specification
559 and then Decls = Visible_Declarations (Par)
560 and then Present (Private_Declarations (Par))
561 and then not Is_Empty_List (Private_Declarations (Par))
562 then
563 Decls := Private_Declarations (Par);
564 end if;
566 Insert_After (Last (Decls), New_Body);
568 -- Preanalyze the expression for name capture, except in an
569 -- instance, where this has been done during generic analysis,
570 -- and will be redone when analyzing the body.
572 Set_Parent (Expr, Ret);
573 Push_Scope (Def_Id);
574 Install_Formals (Def_Id);
576 if not In_Instance then
577 Preanalyze_Spec_Expression (Expr, Typ);
578 Check_Limited_Return (Original_Node (N), Expr, Typ);
579 end if;
581 End_Scope;
582 end if;
583 end;
584 end if;
586 -- If the return expression is a static constant, we suppress warning
587 -- messages on unused formals, which in most cases will be noise.
589 Set_Is_Trivial_Subprogram
590 (Defining_Entity (New_Body), Is_OK_Static_Expression (Expr));
591 end Analyze_Expression_Function;
593 ----------------------------------------
594 -- Analyze_Extended_Return_Statement --
595 ----------------------------------------
597 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
598 begin
599 Check_Compiler_Unit ("extended return statement", N);
600 Analyze_Return_Statement (N);
601 end Analyze_Extended_Return_Statement;
603 ----------------------------
604 -- Analyze_Function_Call --
605 ----------------------------
607 procedure Analyze_Function_Call (N : Node_Id) is
608 Actuals : constant List_Id := Parameter_Associations (N);
609 Func_Nam : constant Node_Id := Name (N);
610 Actual : Node_Id;
612 begin
613 Analyze (Func_Nam);
615 -- A call of the form A.B (X) may be an Ada 2005 call, which is
616 -- rewritten as B (A, X). If the rewriting is successful, the call
617 -- has been analyzed and we just return.
619 if Nkind (Func_Nam) = N_Selected_Component
620 and then Name (N) /= Func_Nam
621 and then Is_Rewrite_Substitution (N)
622 and then Present (Etype (N))
623 then
624 return;
625 end if;
627 -- If error analyzing name, then set Any_Type as result type and return
629 if Etype (Func_Nam) = Any_Type then
630 Set_Etype (N, Any_Type);
631 return;
632 end if;
634 -- Otherwise analyze the parameters
636 if Present (Actuals) then
637 Actual := First (Actuals);
638 while Present (Actual) loop
639 Analyze (Actual);
640 Check_Parameterless_Call (Actual);
641 Next (Actual);
642 end loop;
643 end if;
645 Analyze_Call (N);
646 end Analyze_Function_Call;
648 -----------------------------
649 -- Analyze_Function_Return --
650 -----------------------------
652 procedure Analyze_Function_Return (N : Node_Id) is
653 Loc : constant Source_Ptr := Sloc (N);
654 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
655 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
657 R_Type : constant Entity_Id := Etype (Scope_Id);
658 -- Function result subtype
660 procedure Check_Aggregate_Accessibility (Aggr : Node_Id);
661 -- Apply legality rule of 6.5 (5.8) to the access discriminants of an
662 -- aggregate in a return statement.
664 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
665 -- Check that the return_subtype_indication properly matches the result
666 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
668 -----------------------------------
669 -- Check_Aggregate_Accessibility --
670 -----------------------------------
672 procedure Check_Aggregate_Accessibility (Aggr : Node_Id) is
673 Typ : constant Entity_Id := Etype (Aggr);
674 Assoc : Node_Id;
675 Discr : Entity_Id;
676 Expr : Node_Id;
677 Obj : Node_Id;
679 begin
680 if Is_Record_Type (Typ) and then Has_Discriminants (Typ) then
681 Discr := First_Discriminant (Typ);
682 Assoc := First (Component_Associations (Aggr));
683 while Present (Discr) loop
684 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type then
685 Expr := Expression (Assoc);
687 if Nkind (Expr) = N_Attribute_Reference
688 and then Attribute_Name (Expr) /= Name_Unrestricted_Access
689 then
690 Obj := Prefix (Expr);
691 while Nkind_In (Obj, N_Indexed_Component,
692 N_Selected_Component)
693 loop
694 Obj := Prefix (Obj);
695 end loop;
697 -- Do not check aliased formals or function calls. A
698 -- run-time check may still be needed ???
700 if Is_Entity_Name (Obj)
701 and then Comes_From_Source (Obj)
702 then
703 if Is_Formal (Entity (Obj))
704 and then Is_Aliased (Entity (Obj))
705 then
706 null;
708 elsif Object_Access_Level (Obj) >
709 Scope_Depth (Scope (Scope_Id))
710 then
711 Error_Msg_N
712 ("access discriminant in return aggregate would "
713 & "be a dangling reference", Obj);
714 end if;
715 end if;
716 end if;
717 end if;
719 Next_Discriminant (Discr);
720 end loop;
721 end if;
722 end Check_Aggregate_Accessibility;
724 -------------------------------------
725 -- Check_Return_Subtype_Indication --
726 -------------------------------------
728 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
729 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
731 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
732 -- Subtype given in the extended return statement (must match R_Type)
734 Subtype_Ind : constant Node_Id :=
735 Object_Definition (Original_Node (Obj_Decl));
737 R_Type_Is_Anon_Access : constant Boolean :=
738 Ekind_In (R_Type,
739 E_Anonymous_Access_Subprogram_Type,
740 E_Anonymous_Access_Protected_Subprogram_Type,
741 E_Anonymous_Access_Type);
742 -- True if return type of the function is an anonymous access type
743 -- Can't we make Is_Anonymous_Access_Type in einfo ???
745 R_Stm_Type_Is_Anon_Access : constant Boolean :=
746 Ekind_In (R_Stm_Type,
747 E_Anonymous_Access_Subprogram_Type,
748 E_Anonymous_Access_Protected_Subprogram_Type,
749 E_Anonymous_Access_Type);
750 -- True if type of the return object is an anonymous access type
752 procedure Error_No_Match (N : Node_Id);
753 -- Output error messages for case where types do not statically
754 -- match. N is the location for the messages.
756 --------------------
757 -- Error_No_Match --
758 --------------------
760 procedure Error_No_Match (N : Node_Id) is
761 begin
762 Error_Msg_N
763 ("subtype must statically match function result subtype", N);
765 if not Predicates_Match (R_Stm_Type, R_Type) then
766 Error_Msg_Node_2 := R_Type;
767 Error_Msg_NE
768 ("\predicate of& does not match predicate of&",
769 N, R_Stm_Type);
770 end if;
771 end Error_No_Match;
773 -- Start of processing for Check_Return_Subtype_Indication
775 begin
776 -- First, avoid cascaded errors
778 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
779 return;
780 end if;
782 -- "return access T" case; check that the return statement also has
783 -- "access T", and that the subtypes statically match:
784 -- if this is an access to subprogram the signatures must match.
786 if R_Type_Is_Anon_Access then
787 if R_Stm_Type_Is_Anon_Access then
789 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
790 then
791 if Base_Type (Designated_Type (R_Stm_Type)) /=
792 Base_Type (Designated_Type (R_Type))
793 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
794 then
795 Error_No_Match (Subtype_Mark (Subtype_Ind));
796 end if;
798 else
799 -- For two anonymous access to subprogram types, the
800 -- types themselves must be type conformant.
802 if not Conforming_Types
803 (R_Stm_Type, R_Type, Fully_Conformant)
804 then
805 Error_No_Match (Subtype_Ind);
806 end if;
807 end if;
809 else
810 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
811 end if;
813 -- If the return object is of an anonymous access type, then report
814 -- an error if the function's result type is not also anonymous.
816 elsif R_Stm_Type_Is_Anon_Access then
817 pragma Assert (not R_Type_Is_Anon_Access);
818 Error_Msg_N ("anonymous access not allowed for function with "
819 & "named access result", Subtype_Ind);
821 -- Subtype indication case: check that the return object's type is
822 -- covered by the result type, and that the subtypes statically match
823 -- when the result subtype is constrained. Also handle record types
824 -- with unknown discriminants for which we have built the underlying
825 -- record view. Coverage is needed to allow specific-type return
826 -- objects when the result type is class-wide (see AI05-32).
828 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
829 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
830 and then
831 Covers
832 (Base_Type (R_Type),
833 Underlying_Record_View (Base_Type (R_Stm_Type))))
834 then
835 -- A null exclusion may be present on the return type, on the
836 -- function specification, on the object declaration or on the
837 -- subtype itself.
839 if Is_Access_Type (R_Type)
840 and then
841 (Can_Never_Be_Null (R_Type)
842 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
843 Can_Never_Be_Null (R_Stm_Type)
844 then
845 Error_No_Match (Subtype_Ind);
846 end if;
848 -- AI05-103: for elementary types, subtypes must statically match
850 if Is_Constrained (R_Type)
851 or else Is_Access_Type (R_Type)
852 then
853 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
854 Error_No_Match (Subtype_Ind);
855 end if;
856 end if;
858 -- All remaining cases are illegal
860 -- Note: previous versions of this subprogram allowed the return
861 -- value to be the ancestor of the return type if the return type
862 -- was a null extension. This was plainly incorrect.
864 else
865 Error_Msg_N
866 ("wrong type for return_subtype_indication", Subtype_Ind);
867 end if;
868 end Check_Return_Subtype_Indication;
870 ---------------------
871 -- Local Variables --
872 ---------------------
874 Expr : Node_Id;
875 Obj_Decl : Node_Id;
877 -- Start of processing for Analyze_Function_Return
879 begin
880 Set_Return_Present (Scope_Id);
882 if Nkind (N) = N_Simple_Return_Statement then
883 Expr := Expression (N);
885 -- Guard against a malformed expression. The parser may have tried to
886 -- recover but the node is not analyzable.
888 if Nkind (Expr) = N_Error then
889 Set_Etype (Expr, Any_Type);
890 Expander_Mode_Save_And_Set (False);
891 return;
893 else
894 -- The resolution of a controlled [extension] aggregate associated
895 -- with a return statement creates a temporary which needs to be
896 -- finalized on function exit. Wrap the return statement inside a
897 -- block so that the finalization machinery can detect this case.
898 -- This early expansion is done only when the return statement is
899 -- not part of a handled sequence of statements.
901 if Nkind_In (Expr, N_Aggregate,
902 N_Extension_Aggregate)
903 and then Needs_Finalization (R_Type)
904 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
905 then
906 Rewrite (N,
907 Make_Block_Statement (Loc,
908 Handled_Statement_Sequence =>
909 Make_Handled_Sequence_Of_Statements (Loc,
910 Statements => New_List (Relocate_Node (N)))));
912 Analyze (N);
913 return;
914 end if;
916 Analyze (Expr);
918 -- Ada 2005 (AI-251): If the type of the returned object is
919 -- an access to an interface type then we add an implicit type
920 -- conversion to force the displacement of the "this" pointer to
921 -- reference the secondary dispatch table. We cannot delay the
922 -- generation of this implicit conversion until the expansion
923 -- because in this case the type resolution changes the decoration
924 -- of the expression node to match R_Type; by contrast, if the
925 -- returned object is a class-wide interface type then it is too
926 -- early to generate here the implicit conversion since the return
927 -- statement may be rewritten by the expander into an extended
928 -- return statement whose expansion takes care of adding the
929 -- implicit type conversion to displace the pointer to the object.
931 if Expander_Active
932 and then Serious_Errors_Detected = 0
933 and then Is_Access_Type (R_Type)
934 and then Nkind (Expr) /= N_Null
935 and then Is_Interface (Designated_Type (R_Type))
936 and then Is_Progenitor (Designated_Type (R_Type),
937 Designated_Type (Etype (Expr)))
938 then
939 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
940 Analyze (Expr);
941 end if;
943 Resolve (Expr, R_Type);
944 Check_Limited_Return (N, Expr, R_Type);
946 if Present (Expr) and then Nkind (Expr) = N_Aggregate then
947 Check_Aggregate_Accessibility (Expr);
948 end if;
949 end if;
951 -- RETURN only allowed in SPARK as the last statement in function
953 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
954 and then
955 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
956 or else Present (Next (N)))
957 then
958 Check_SPARK_05_Restriction
959 ("RETURN should be the last statement in function", N);
960 end if;
962 else
963 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
964 Obj_Decl := Last (Return_Object_Declarations (N));
966 -- Analyze parts specific to extended_return_statement:
968 declare
969 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
970 HSS : constant Node_Id := Handled_Statement_Sequence (N);
972 begin
973 Expr := Expression (Obj_Decl);
975 -- Note: The check for OK_For_Limited_Init will happen in
976 -- Analyze_Object_Declaration; we treat it as a normal
977 -- object declaration.
979 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
980 Analyze (Obj_Decl);
982 Check_Return_Subtype_Indication (Obj_Decl);
984 if Present (HSS) then
985 Analyze (HSS);
987 if Present (Exception_Handlers (HSS)) then
989 -- ???Has_Nested_Block_With_Handler needs to be set.
990 -- Probably by creating an actual N_Block_Statement.
991 -- Probably in Expand.
993 null;
994 end if;
995 end if;
997 -- Mark the return object as referenced, since the return is an
998 -- implicit reference of the object.
1000 Set_Referenced (Defining_Identifier (Obj_Decl));
1002 Check_References (Stm_Entity);
1004 -- Check RM 6.5 (5.9/3)
1006 if Has_Aliased then
1007 if Ada_Version < Ada_2012 then
1009 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1010 -- Can it really happen (extended return???)
1012 Error_Msg_N
1013 ("aliased only allowed for limited return objects "
1014 & "in Ada 2012??", N);
1016 elsif not Is_Limited_View (R_Type) then
1017 Error_Msg_N
1018 ("aliased only allowed for limited return objects", N);
1019 end if;
1020 end if;
1021 end;
1022 end if;
1024 -- Case of Expr present
1026 if Present (Expr)
1028 -- Defend against previous errors
1030 and then Nkind (Expr) /= N_Empty
1031 and then Present (Etype (Expr))
1032 then
1033 -- Apply constraint check. Note that this is done before the implicit
1034 -- conversion of the expression done for anonymous access types to
1035 -- ensure correct generation of the null-excluding check associated
1036 -- with null-excluding expressions found in return statements.
1038 Apply_Constraint_Check (Expr, R_Type);
1040 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1041 -- type, apply an implicit conversion of the expression to that type
1042 -- to force appropriate static and run-time accessibility checks.
1044 if Ada_Version >= Ada_2005
1045 and then Ekind (R_Type) = E_Anonymous_Access_Type
1046 then
1047 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1048 Analyze_And_Resolve (Expr, R_Type);
1050 -- If this is a local anonymous access to subprogram, the
1051 -- accessibility check can be applied statically. The return is
1052 -- illegal if the access type of the return expression is declared
1053 -- inside of the subprogram (except if it is the subtype indication
1054 -- of an extended return statement).
1056 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1057 if not Comes_From_Source (Current_Scope)
1058 or else Ekind (Current_Scope) = E_Return_Statement
1059 then
1060 null;
1062 elsif
1063 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1064 then
1065 Error_Msg_N ("cannot return local access to subprogram", N);
1066 end if;
1068 -- The expression cannot be of a formal incomplete type
1070 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1071 and then Is_Generic_Type (Etype (Expr))
1072 then
1073 Error_Msg_N
1074 ("cannot return expression of a formal incomplete type", N);
1075 end if;
1077 -- If the result type is class-wide, then check that the return
1078 -- expression's type is not declared at a deeper level than the
1079 -- function (RM05-6.5(5.6/2)).
1081 if Ada_Version >= Ada_2005
1082 and then Is_Class_Wide_Type (R_Type)
1083 then
1084 if Type_Access_Level (Etype (Expr)) >
1085 Subprogram_Access_Level (Scope_Id)
1086 then
1087 Error_Msg_N
1088 ("level of return expression type is deeper than "
1089 & "class-wide function!", Expr);
1090 end if;
1091 end if;
1093 -- Check incorrect use of dynamically tagged expression
1095 if Is_Tagged_Type (R_Type) then
1096 Check_Dynamically_Tagged_Expression
1097 (Expr => Expr,
1098 Typ => R_Type,
1099 Related_Nod => N);
1100 end if;
1102 -- ??? A real run-time accessibility check is needed in cases
1103 -- involving dereferences of access parameters. For now we just
1104 -- check the static cases.
1106 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1107 and then Is_Limited_View (Etype (Scope_Id))
1108 and then Object_Access_Level (Expr) >
1109 Subprogram_Access_Level (Scope_Id)
1110 then
1111 -- Suppress the message in a generic, where the rewriting
1112 -- is irrelevant.
1114 if Inside_A_Generic then
1115 null;
1117 else
1118 Rewrite (N,
1119 Make_Raise_Program_Error (Loc,
1120 Reason => PE_Accessibility_Check_Failed));
1121 Analyze (N);
1123 Error_Msg_Warn := SPARK_Mode /= On;
1124 Error_Msg_N ("cannot return a local value by reference<<", N);
1125 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1126 end if;
1127 end if;
1129 if Known_Null (Expr)
1130 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1131 and then Null_Exclusion_Present (Parent (Scope_Id))
1132 then
1133 Apply_Compile_Time_Constraint_Error
1134 (N => Expr,
1135 Msg => "(Ada 2005) null not allowed for "
1136 & "null-excluding return??",
1137 Reason => CE_Null_Not_Allowed);
1138 end if;
1140 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1141 -- has no initializing expression.
1143 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1144 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1145 Subprogram_Access_Level (Scope_Id)
1146 then
1147 Error_Msg_N
1148 ("level of return expression type is deeper than "
1149 & "class-wide function!", Obj_Decl);
1150 end if;
1151 end if;
1152 end Analyze_Function_Return;
1154 -------------------------------------
1155 -- Analyze_Generic_Subprogram_Body --
1156 -------------------------------------
1158 procedure Analyze_Generic_Subprogram_Body
1159 (N : Node_Id;
1160 Gen_Id : Entity_Id)
1162 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1163 Kind : constant Entity_Kind := Ekind (Gen_Id);
1164 Body_Id : Entity_Id;
1165 New_N : Node_Id;
1166 Spec : Node_Id;
1168 begin
1169 -- Copy body and disable expansion while analyzing the generic For a
1170 -- stub, do not copy the stub (which would load the proper body), this
1171 -- will be done when the proper body is analyzed.
1173 if Nkind (N) /= N_Subprogram_Body_Stub then
1174 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1175 Rewrite (N, New_N);
1177 -- Once the contents of the generic copy and the template are
1178 -- swapped, do the same for their respective aspect specifications.
1180 Exchange_Aspects (N, New_N);
1182 -- Collect all contract-related source pragmas found within the
1183 -- template and attach them to the contract of the subprogram body.
1184 -- This contract is used in the capture of global references within
1185 -- annotations.
1187 Create_Generic_Contract (N);
1189 Start_Generic;
1190 end if;
1192 Spec := Specification (N);
1194 -- Within the body of the generic, the subprogram is callable, and
1195 -- behaves like the corresponding non-generic unit.
1197 Body_Id := Defining_Entity (Spec);
1199 if Kind = E_Generic_Procedure
1200 and then Nkind (Spec) /= N_Procedure_Specification
1201 then
1202 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1203 return;
1205 elsif Kind = E_Generic_Function
1206 and then Nkind (Spec) /= N_Function_Specification
1207 then
1208 Error_Msg_N ("invalid body for generic function ", Body_Id);
1209 return;
1210 end if;
1212 Set_Corresponding_Body (Gen_Decl, Body_Id);
1214 if Has_Completion (Gen_Id)
1215 and then Nkind (Parent (N)) /= N_Subunit
1216 then
1217 Error_Msg_N ("duplicate generic body", N);
1218 return;
1219 else
1220 Set_Has_Completion (Gen_Id);
1221 end if;
1223 if Nkind (N) = N_Subprogram_Body_Stub then
1224 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1225 else
1226 Set_Corresponding_Spec (N, Gen_Id);
1227 end if;
1229 if Nkind (Parent (N)) = N_Compilation_Unit then
1230 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1231 end if;
1233 -- Make generic parameters immediately visible in the body. They are
1234 -- needed to process the formals declarations. Then make the formals
1235 -- visible in a separate step.
1237 Push_Scope (Gen_Id);
1239 declare
1240 E : Entity_Id;
1241 First_Ent : Entity_Id;
1243 begin
1244 First_Ent := First_Entity (Gen_Id);
1246 E := First_Ent;
1247 while Present (E) and then not Is_Formal (E) loop
1248 Install_Entity (E);
1249 Next_Entity (E);
1250 end loop;
1252 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1254 -- Now generic formals are visible, and the specification can be
1255 -- analyzed, for subsequent conformance check.
1257 Body_Id := Analyze_Subprogram_Specification (Spec);
1259 -- Make formal parameters visible
1261 if Present (E) then
1263 -- E is the first formal parameter, we loop through the formals
1264 -- installing them so that they will be visible.
1266 Set_First_Entity (Gen_Id, E);
1267 while Present (E) loop
1268 Install_Entity (E);
1269 Next_Formal (E);
1270 end loop;
1271 end if;
1273 -- Visible generic entity is callable within its own body
1275 Set_Ekind (Gen_Id, Ekind (Body_Id));
1276 Set_Ekind (Body_Id, E_Subprogram_Body);
1277 Set_Convention (Body_Id, Convention (Gen_Id));
1278 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1279 Set_Scope (Body_Id, Scope (Gen_Id));
1281 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1283 if Nkind (N) = N_Subprogram_Body_Stub then
1285 -- No body to analyze, so restore state of generic unit
1287 Set_Ekind (Gen_Id, Kind);
1288 Set_Ekind (Body_Id, Kind);
1290 if Present (First_Ent) then
1291 Set_First_Entity (Gen_Id, First_Ent);
1292 end if;
1294 End_Scope;
1295 return;
1296 end if;
1298 -- If this is a compilation unit, it must be made visible explicitly,
1299 -- because the compilation of the declaration, unlike other library
1300 -- unit declarations, does not. If it is not a unit, the following
1301 -- is redundant but harmless.
1303 Set_Is_Immediately_Visible (Gen_Id);
1304 Reference_Body_Formals (Gen_Id, Body_Id);
1306 if Is_Child_Unit (Gen_Id) then
1307 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1308 end if;
1310 Set_Actual_Subtypes (N, Current_Scope);
1312 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1313 Set_SPARK_Pragma_Inherited (Body_Id);
1315 -- Analyze any aspect specifications that appear on the generic
1316 -- subprogram body.
1318 if Has_Aspects (N) then
1319 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
1320 end if;
1322 Analyze_Declarations (Declarations (N));
1323 Check_Completion;
1325 -- Process the contract of the subprogram body after all declarations
1326 -- have been analyzed. This ensures that any contract-related pragmas
1327 -- are available through the N_Contract node of the body.
1329 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1331 Analyze (Handled_Statement_Sequence (N));
1332 Save_Global_References (Original_Node (N));
1334 -- Prior to exiting the scope, include generic formals again (if any
1335 -- are present) in the set of local entities.
1337 if Present (First_Ent) then
1338 Set_First_Entity (Gen_Id, First_Ent);
1339 end if;
1341 Check_References (Gen_Id);
1342 end;
1344 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1345 End_Scope;
1346 Check_Subprogram_Order (N);
1348 -- Outside of its body, unit is generic again
1350 Set_Ekind (Gen_Id, Kind);
1351 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1353 if Style_Check then
1354 Style.Check_Identifier (Body_Id, Gen_Id);
1355 end if;
1357 End_Generic;
1358 end Analyze_Generic_Subprogram_Body;
1360 ----------------------------
1361 -- Analyze_Null_Procedure --
1362 ----------------------------
1364 procedure Analyze_Null_Procedure
1365 (N : Node_Id;
1366 Is_Completion : out Boolean)
1368 Loc : constant Source_Ptr := Sloc (N);
1369 Spec : constant Node_Id := Specification (N);
1370 Designator : Entity_Id;
1371 Form : Node_Id;
1372 Null_Body : Node_Id := Empty;
1373 Prev : Entity_Id;
1375 begin
1376 -- Capture the profile of the null procedure before analysis, for
1377 -- expansion at the freeze point and at each point of call. The body is
1378 -- used if the procedure has preconditions, or if it is a completion. In
1379 -- the first case the body is analyzed at the freeze point, in the other
1380 -- it replaces the null procedure declaration.
1382 Null_Body :=
1383 Make_Subprogram_Body (Loc,
1384 Specification => New_Copy_Tree (Spec),
1385 Declarations => New_List,
1386 Handled_Statement_Sequence =>
1387 Make_Handled_Sequence_Of_Statements (Loc,
1388 Statements => New_List (Make_Null_Statement (Loc))));
1390 -- Create new entities for body and formals
1392 Set_Defining_Unit_Name (Specification (Null_Body),
1393 Make_Defining_Identifier
1394 (Sloc (Defining_Entity (N)),
1395 Chars (Defining_Entity (N))));
1397 Form := First (Parameter_Specifications (Specification (Null_Body)));
1398 while Present (Form) loop
1399 Set_Defining_Identifier (Form,
1400 Make_Defining_Identifier
1401 (Sloc (Defining_Identifier (Form)),
1402 Chars (Defining_Identifier (Form))));
1403 Next (Form);
1404 end loop;
1406 -- Determine whether the null procedure may be a completion of a generic
1407 -- suprogram, in which case we use the new null body as the completion
1408 -- and set minimal semantic information on the original declaration,
1409 -- which is rewritten as a null statement.
1411 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1413 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1414 Insert_Before (N, Null_Body);
1415 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1417 Rewrite (N, Make_Null_Statement (Loc));
1418 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1419 Is_Completion := True;
1420 return;
1422 else
1423 -- Resolve the types of the formals now, because the freeze point
1424 -- may appear in a different context, e.g. an instantiation.
1426 Form := First (Parameter_Specifications (Specification (Null_Body)));
1427 while Present (Form) loop
1428 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1429 Find_Type (Parameter_Type (Form));
1431 elsif
1432 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1433 then
1434 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1436 else
1437 -- The case of a null procedure with a formal that is an
1438 -- access_to_subprogram type, and that is used as an actual
1439 -- in an instantiation is left to the enthusiastic reader.
1441 null;
1442 end if;
1444 Next (Form);
1445 end loop;
1446 end if;
1448 -- If there are previous overloadable entities with the same name,
1449 -- check whether any of them is completed by the null procedure.
1451 if Present (Prev) and then Is_Overloadable (Prev) then
1452 Designator := Analyze_Subprogram_Specification (Spec);
1453 Prev := Find_Corresponding_Spec (N);
1454 end if;
1456 if No (Prev) or else not Comes_From_Source (Prev) then
1457 Designator := Analyze_Subprogram_Specification (Spec);
1458 Set_Has_Completion (Designator);
1460 -- Signal to caller that this is a procedure declaration
1462 Is_Completion := False;
1464 -- Null procedures are always inlined, but generic formal subprograms
1465 -- which appear as such in the internal instance of formal packages,
1466 -- need no completion and are not marked Inline.
1468 if Expander_Active
1469 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1470 then
1471 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1472 Set_Body_To_Inline (N, Null_Body);
1473 Set_Is_Inlined (Designator);
1474 end if;
1476 else
1477 -- The null procedure is a completion. We unconditionally rewrite
1478 -- this as a null body (even if expansion is not active), because
1479 -- there are various error checks that are applied on this body
1480 -- when it is analyzed (e.g. correct aspect placement).
1482 if Has_Completion (Prev) then
1483 Error_Msg_Sloc := Sloc (Prev);
1484 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1485 end if;
1487 Is_Completion := True;
1488 Rewrite (N, Null_Body);
1489 Analyze (N);
1490 end if;
1491 end Analyze_Null_Procedure;
1493 -----------------------------
1494 -- Analyze_Operator_Symbol --
1495 -----------------------------
1497 -- An operator symbol such as "+" or "and" may appear in context where the
1498 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1499 -- is just a string, as in (conjunction = "or"). In these cases the parser
1500 -- generates this node, and the semantics does the disambiguation. Other
1501 -- such case are actuals in an instantiation, the generic unit in an
1502 -- instantiation, and pragma arguments.
1504 procedure Analyze_Operator_Symbol (N : Node_Id) is
1505 Par : constant Node_Id := Parent (N);
1507 begin
1508 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1509 or else Nkind (Par) = N_Function_Instantiation
1510 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1511 or else (Nkind (Par) = N_Pragma_Argument_Association
1512 and then not Is_Pragma_String_Literal (Par))
1513 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1514 or else (Nkind (Par) = N_Attribute_Reference
1515 and then Attribute_Name (Par) /= Name_Value)
1516 then
1517 Find_Direct_Name (N);
1519 else
1520 Change_Operator_Symbol_To_String_Literal (N);
1521 Analyze (N);
1522 end if;
1523 end Analyze_Operator_Symbol;
1525 -----------------------------------
1526 -- Analyze_Parameter_Association --
1527 -----------------------------------
1529 procedure Analyze_Parameter_Association (N : Node_Id) is
1530 begin
1531 Analyze (Explicit_Actual_Parameter (N));
1532 end Analyze_Parameter_Association;
1534 ----------------------------
1535 -- Analyze_Procedure_Call --
1536 ----------------------------
1538 -- WARNING: This routine manages Ghost regions. Return statements must be
1539 -- replaced by gotos which jump to the end of the routine and restore the
1540 -- Ghost mode.
1542 procedure Analyze_Procedure_Call (N : Node_Id) is
1543 procedure Analyze_Call_And_Resolve;
1544 -- Do Analyze and Resolve calls for procedure call. At the end, check
1545 -- for illegal order dependence.
1546 -- ??? where is the check for illegal order dependencies?
1548 ------------------------------
1549 -- Analyze_Call_And_Resolve --
1550 ------------------------------
1552 procedure Analyze_Call_And_Resolve is
1553 begin
1554 if Nkind (N) = N_Procedure_Call_Statement then
1555 Analyze_Call (N);
1556 Resolve (N, Standard_Void_Type);
1557 else
1558 Analyze (N);
1559 end if;
1560 end Analyze_Call_And_Resolve;
1562 -- Local variables
1564 Actuals : constant List_Id := Parameter_Associations (N);
1565 Loc : constant Source_Ptr := Sloc (N);
1566 P : constant Node_Id := Name (N);
1567 Actual : Node_Id;
1568 Mode : Ghost_Mode_Type;
1569 New_N : Node_Id;
1571 -- Start of processing for Analyze_Procedure_Call
1573 begin
1574 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1575 -- a procedure call or an entry call. The prefix may denote an access
1576 -- to subprogram type, in which case an implicit dereference applies.
1577 -- If the prefix is an indexed component (without implicit dereference)
1578 -- then the construct denotes a call to a member of an entire family.
1579 -- If the prefix is a simple name, it may still denote a call to a
1580 -- parameterless member of an entry family. Resolution of these various
1581 -- interpretations is delicate.
1583 -- Do not analyze machine code statements to avoid rejecting them in
1584 -- CodePeer mode.
1586 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
1587 Set_Etype (P, Standard_Void_Type);
1588 else
1589 Analyze (P);
1590 end if;
1592 -- If this is a call of the form Obj.Op, the call may have been analyzed
1593 -- and possibly rewritten into a block, in which case we are done.
1595 if Analyzed (N) then
1596 return;
1597 end if;
1599 -- If there is an error analyzing the name (which may have been
1600 -- rewritten if the original call was in prefix notation) then error
1601 -- has been emitted already, mark node and return.
1603 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1604 Set_Etype (N, Any_Type);
1605 return;
1606 end if;
1608 -- A procedure call is Ghost when its name denotes a Ghost procedure.
1609 -- Set the mode now to ensure that any nodes generated during analysis
1610 -- and expansion are properly marked as Ghost.
1612 Mark_And_Set_Ghost_Procedure_Call (N, Mode);
1614 -- Otherwise analyze the parameters
1616 if Present (Actuals) then
1617 Actual := First (Actuals);
1619 while Present (Actual) loop
1620 Analyze (Actual);
1621 Check_Parameterless_Call (Actual);
1622 Next (Actual);
1623 end loop;
1624 end if;
1626 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1628 if Nkind (P) = N_Attribute_Reference
1629 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1630 Name_Elab_Body,
1631 Name_Elab_Subp_Body)
1632 then
1633 if Present (Actuals) then
1634 Error_Msg_N
1635 ("no parameters allowed for this call", First (Actuals));
1636 goto Leave;
1637 end if;
1639 Set_Etype (N, Standard_Void_Type);
1640 Set_Analyzed (N);
1642 elsif Is_Entity_Name (P)
1643 and then Is_Record_Type (Etype (Entity (P)))
1644 and then Remote_AST_I_Dereference (P)
1645 then
1646 goto Leave;
1648 elsif Is_Entity_Name (P)
1649 and then Ekind (Entity (P)) /= E_Entry_Family
1650 then
1651 if Is_Access_Type (Etype (P))
1652 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1653 and then No (Actuals)
1654 and then Comes_From_Source (N)
1655 then
1656 Error_Msg_N ("missing explicit dereference in call", N);
1657 end if;
1659 Analyze_Call_And_Resolve;
1661 -- If the prefix is the simple name of an entry family, this is a
1662 -- parameterless call from within the task body itself.
1664 elsif Is_Entity_Name (P)
1665 and then Nkind (P) = N_Identifier
1666 and then Ekind (Entity (P)) = E_Entry_Family
1667 and then Present (Actuals)
1668 and then No (Next (First (Actuals)))
1669 then
1670 -- Can be call to parameterless entry family. What appears to be the
1671 -- sole argument is in fact the entry index. Rewrite prefix of node
1672 -- accordingly. Source representation is unchanged by this
1673 -- transformation.
1675 New_N :=
1676 Make_Indexed_Component (Loc,
1677 Prefix =>
1678 Make_Selected_Component (Loc,
1679 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1680 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1681 Expressions => Actuals);
1682 Set_Name (N, New_N);
1683 Set_Etype (New_N, Standard_Void_Type);
1684 Set_Parameter_Associations (N, No_List);
1685 Analyze_Call_And_Resolve;
1687 elsif Nkind (P) = N_Explicit_Dereference then
1688 if Ekind (Etype (P)) = E_Subprogram_Type then
1689 Analyze_Call_And_Resolve;
1690 else
1691 Error_Msg_N ("expect access to procedure in call", P);
1692 end if;
1694 -- The name can be a selected component or an indexed component that
1695 -- yields an access to subprogram. Such a prefix is legal if the call
1696 -- has parameter associations.
1698 elsif Is_Access_Type (Etype (P))
1699 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1700 then
1701 if Present (Actuals) then
1702 Analyze_Call_And_Resolve;
1703 else
1704 Error_Msg_N ("missing explicit dereference in call ", N);
1705 end if;
1707 -- If not an access to subprogram, then the prefix must resolve to the
1708 -- name of an entry, entry family, or protected operation.
1710 -- For the case of a simple entry call, P is a selected component where
1711 -- the prefix is the task and the selector name is the entry. A call to
1712 -- a protected procedure will have the same syntax. If the protected
1713 -- object contains overloaded operations, the entity may appear as a
1714 -- function, the context will select the operation whose type is Void.
1716 elsif Nkind (P) = N_Selected_Component
1717 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1718 E_Function,
1719 E_Procedure)
1720 then
1721 -- When front-end inlining is enabled, as with SPARK_Mode, a call
1722 -- in prefix notation may still be missing its controlling argument,
1723 -- so perform the transformation now.
1725 if SPARK_Mode = On and then In_Inlined_Body then
1726 declare
1727 Subp : constant Entity_Id := Entity (Selector_Name (P));
1728 Typ : constant Entity_Id := Etype (Prefix (P));
1730 begin
1731 if Is_Tagged_Type (Typ)
1732 and then Present (First_Formal (Subp))
1733 and then Etype (First_Formal (Subp)) = Typ
1734 and then Try_Object_Operation (P)
1735 then
1736 return;
1738 else
1739 Analyze_Call_And_Resolve;
1740 end if;
1741 end;
1743 else
1744 Analyze_Call_And_Resolve;
1745 end if;
1747 elsif Nkind (P) = N_Selected_Component
1748 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1749 and then Present (Actuals)
1750 and then No (Next (First (Actuals)))
1751 then
1752 -- Can be call to parameterless entry family. What appears to be the
1753 -- sole argument is in fact the entry index. Rewrite prefix of node
1754 -- accordingly. Source representation is unchanged by this
1755 -- transformation.
1757 New_N :=
1758 Make_Indexed_Component (Loc,
1759 Prefix => New_Copy (P),
1760 Expressions => Actuals);
1761 Set_Name (N, New_N);
1762 Set_Etype (New_N, Standard_Void_Type);
1763 Set_Parameter_Associations (N, No_List);
1764 Analyze_Call_And_Resolve;
1766 -- For the case of a reference to an element of an entry family, P is
1767 -- an indexed component whose prefix is a selected component (task and
1768 -- entry family), and whose index is the entry family index.
1770 elsif Nkind (P) = N_Indexed_Component
1771 and then Nkind (Prefix (P)) = N_Selected_Component
1772 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1773 then
1774 Analyze_Call_And_Resolve;
1776 -- If the prefix is the name of an entry family, it is a call from
1777 -- within the task body itself.
1779 elsif Nkind (P) = N_Indexed_Component
1780 and then Nkind (Prefix (P)) = N_Identifier
1781 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1782 then
1783 New_N :=
1784 Make_Selected_Component (Loc,
1785 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1786 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1787 Rewrite (Prefix (P), New_N);
1788 Analyze (P);
1789 Analyze_Call_And_Resolve;
1791 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1792 -- procedure name, so the construct can only be a qualified expression.
1794 elsif Nkind (P) = N_Qualified_Expression
1795 and then Ada_Version >= Ada_2012
1796 then
1797 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1798 Analyze (N);
1800 -- Anything else is an error
1802 else
1803 Error_Msg_N ("invalid procedure or entry call", N);
1804 end if;
1806 <<Leave>>
1807 Restore_Ghost_Mode (Mode);
1808 end Analyze_Procedure_Call;
1810 ------------------------------
1811 -- Analyze_Return_Statement --
1812 ------------------------------
1814 procedure Analyze_Return_Statement (N : Node_Id) is
1815 pragma Assert (Nkind_In (N, N_Extended_Return_Statement,
1816 N_Simple_Return_Statement));
1818 Returns_Object : constant Boolean :=
1819 Nkind (N) = N_Extended_Return_Statement
1820 or else
1821 (Nkind (N) = N_Simple_Return_Statement
1822 and then Present (Expression (N)));
1823 -- True if we're returning something; that is, "return <expression>;"
1824 -- or "return Result : T [:= ...]". False for "return;". Used for error
1825 -- checking: If Returns_Object is True, N should apply to a function
1826 -- body; otherwise N should apply to a procedure body, entry body,
1827 -- accept statement, or extended return statement.
1829 function Find_What_It_Applies_To return Entity_Id;
1830 -- Find the entity representing the innermost enclosing body, accept
1831 -- statement, or extended return statement. If the result is a callable
1832 -- construct or extended return statement, then this will be the value
1833 -- of the Return_Applies_To attribute. Otherwise, the program is
1834 -- illegal. See RM-6.5(4/2).
1836 -----------------------------
1837 -- Find_What_It_Applies_To --
1838 -----------------------------
1840 function Find_What_It_Applies_To return Entity_Id is
1841 Result : Entity_Id := Empty;
1843 begin
1844 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1845 -- and postconditions.
1847 for J in reverse 0 .. Scope_Stack.Last loop
1848 Result := Scope_Stack.Table (J).Entity;
1849 exit when not Ekind_In (Result, E_Block, E_Loop)
1850 and then Chars (Result) /= Name_uPostconditions;
1851 end loop;
1853 pragma Assert (Present (Result));
1854 return Result;
1855 end Find_What_It_Applies_To;
1857 -- Local declarations
1859 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1860 Kind : constant Entity_Kind := Ekind (Scope_Id);
1861 Loc : constant Source_Ptr := Sloc (N);
1862 Stm_Entity : constant Entity_Id :=
1863 New_Internal_Entity
1864 (E_Return_Statement, Current_Scope, Loc, 'R');
1866 -- Start of processing for Analyze_Return_Statement
1868 begin
1869 Set_Return_Statement_Entity (N, Stm_Entity);
1871 Set_Etype (Stm_Entity, Standard_Void_Type);
1872 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1874 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1875 -- (4/2): an inner return statement will apply to this extended return.
1877 if Nkind (N) = N_Extended_Return_Statement then
1878 Push_Scope (Stm_Entity);
1879 end if;
1881 -- Check that pragma No_Return is obeyed. Don't complain about the
1882 -- implicitly-generated return that is placed at the end.
1884 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1885 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1886 end if;
1888 -- Warn on any unassigned OUT parameters if in procedure
1890 if Ekind (Scope_Id) = E_Procedure then
1891 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1892 end if;
1894 -- Check that functions return objects, and other things do not
1896 if Kind = E_Function or else Kind = E_Generic_Function then
1897 if not Returns_Object then
1898 Error_Msg_N ("missing expression in return from function", N);
1899 end if;
1901 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1902 if Returns_Object then
1903 Error_Msg_N ("procedure cannot return value (use function)", N);
1904 end if;
1906 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1907 if Returns_Object then
1908 if Is_Protected_Type (Scope (Scope_Id)) then
1909 Error_Msg_N ("entry body cannot return value", N);
1910 else
1911 Error_Msg_N ("accept statement cannot return value", N);
1912 end if;
1913 end if;
1915 elsif Kind = E_Return_Statement then
1917 -- We are nested within another return statement, which must be an
1918 -- extended_return_statement.
1920 if Returns_Object then
1921 if Nkind (N) = N_Extended_Return_Statement then
1922 Error_Msg_N
1923 ("extended return statement cannot be nested (use `RETURN;`)",
1926 -- Case of a simple return statement with a value inside extended
1927 -- return statement.
1929 else
1930 Error_Msg_N
1931 ("return nested in extended return statement cannot return "
1932 & "value (use `RETURN;`)", N);
1933 end if;
1934 end if;
1936 else
1937 Error_Msg_N ("illegal context for return statement", N);
1938 end if;
1940 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1941 Analyze_Function_Return (N);
1943 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1944 Set_Return_Present (Scope_Id);
1945 end if;
1947 if Nkind (N) = N_Extended_Return_Statement then
1948 End_Scope;
1949 end if;
1951 Kill_Current_Values (Last_Assignment_Only => True);
1952 Check_Unreachable_Code (N);
1954 Analyze_Dimension (N);
1955 end Analyze_Return_Statement;
1957 -------------------------------------
1958 -- Analyze_Simple_Return_Statement --
1959 -------------------------------------
1961 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1962 begin
1963 if Present (Expression (N)) then
1964 Mark_Coextensions (N, Expression (N));
1965 end if;
1967 Analyze_Return_Statement (N);
1968 end Analyze_Simple_Return_Statement;
1970 -------------------------
1971 -- Analyze_Return_Type --
1972 -------------------------
1974 procedure Analyze_Return_Type (N : Node_Id) is
1975 Designator : constant Entity_Id := Defining_Entity (N);
1976 Typ : Entity_Id := Empty;
1978 begin
1979 -- Normal case where result definition does not indicate an error
1981 if Result_Definition (N) /= Error then
1982 if Nkind (Result_Definition (N)) = N_Access_Definition then
1983 Check_SPARK_05_Restriction
1984 ("access result is not allowed", Result_Definition (N));
1986 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1988 declare
1989 AD : constant Node_Id :=
1990 Access_To_Subprogram_Definition (Result_Definition (N));
1991 begin
1992 if Present (AD) and then Protected_Present (AD) then
1993 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1994 else
1995 Typ := Access_Definition (N, Result_Definition (N));
1996 end if;
1997 end;
1999 Set_Parent (Typ, Result_Definition (N));
2000 Set_Is_Local_Anonymous_Access (Typ);
2001 Set_Etype (Designator, Typ);
2003 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2005 Null_Exclusion_Static_Checks (N);
2007 -- Subtype_Mark case
2009 else
2010 Find_Type (Result_Definition (N));
2011 Typ := Entity (Result_Definition (N));
2012 Set_Etype (Designator, Typ);
2014 -- Unconstrained array as result is not allowed in SPARK
2016 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
2017 Check_SPARK_05_Restriction
2018 ("returning an unconstrained array is not allowed",
2019 Result_Definition (N));
2020 end if;
2022 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2024 Null_Exclusion_Static_Checks (N);
2026 -- If a null exclusion is imposed on the result type, then create
2027 -- a null-excluding itype (an access subtype) and use it as the
2028 -- function's Etype. Note that the null exclusion checks are done
2029 -- right before this, because they don't get applied to types that
2030 -- do not come from source.
2032 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2033 Set_Etype (Designator,
2034 Create_Null_Excluding_Itype
2035 (T => Typ,
2036 Related_Nod => N,
2037 Scope_Id => Scope (Current_Scope)));
2039 -- The new subtype must be elaborated before use because
2040 -- it is visible outside of the function. However its base
2041 -- type may not be frozen yet, so the reference that will
2042 -- force elaboration must be attached to the freezing of
2043 -- the base type.
2045 -- If the return specification appears on a proper body,
2046 -- the subtype will have been created already on the spec.
2048 if Is_Frozen (Typ) then
2049 if Nkind (Parent (N)) = N_Subprogram_Body
2050 and then Nkind (Parent (Parent (N))) = N_Subunit
2051 then
2052 null;
2053 else
2054 Build_Itype_Reference (Etype (Designator), Parent (N));
2055 end if;
2057 else
2058 Ensure_Freeze_Node (Typ);
2060 declare
2061 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2062 begin
2063 Set_Itype (IR, Etype (Designator));
2064 Append_Freeze_Actions (Typ, New_List (IR));
2065 end;
2066 end if;
2068 else
2069 Set_Etype (Designator, Typ);
2070 end if;
2072 if Ekind (Typ) = E_Incomplete_Type
2073 or else (Is_Class_Wide_Type (Typ)
2074 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2075 then
2076 -- AI05-0151: Tagged incomplete types are allowed in all formal
2077 -- parts. Untagged incomplete types are not allowed in bodies.
2078 -- As a consequence, limited views cannot appear in a basic
2079 -- declaration that is itself within a body, because there is
2080 -- no point at which the non-limited view will become visible.
2082 if Ada_Version >= Ada_2012 then
2083 if From_Limited_With (Typ) and then In_Package_Body then
2084 Error_Msg_NE
2085 ("invalid use of incomplete type&",
2086 Result_Definition (N), Typ);
2088 -- The return type of a subprogram body cannot be of a
2089 -- formal incomplete type.
2091 elsif Is_Generic_Type (Typ)
2092 and then Nkind (Parent (N)) = N_Subprogram_Body
2093 then
2094 Error_Msg_N
2095 ("return type cannot be a formal incomplete type",
2096 Result_Definition (N));
2098 elsif Is_Class_Wide_Type (Typ)
2099 and then Is_Generic_Type (Root_Type (Typ))
2100 and then Nkind (Parent (N)) = N_Subprogram_Body
2101 then
2102 Error_Msg_N
2103 ("return type cannot be a formal incomplete type",
2104 Result_Definition (N));
2106 elsif Is_Tagged_Type (Typ) then
2107 null;
2109 -- Use is legal in a thunk generated for an operation
2110 -- inherited from a progenitor.
2112 elsif Is_Thunk (Designator)
2113 and then Present (Non_Limited_View (Typ))
2114 then
2115 null;
2117 elsif Nkind (Parent (N)) = N_Subprogram_Body
2118 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2119 N_Entry_Body)
2120 then
2121 Error_Msg_NE
2122 ("invalid use of untagged incomplete type&",
2123 Designator, Typ);
2124 end if;
2126 -- The type must be completed in the current package. This
2127 -- is checked at the end of the package declaration when
2128 -- Taft-amendment types are identified. If the return type
2129 -- is class-wide, there is no required check, the type can
2130 -- be a bona fide TAT.
2132 if Ekind (Scope (Current_Scope)) = E_Package
2133 and then In_Private_Part (Scope (Current_Scope))
2134 and then not Is_Class_Wide_Type (Typ)
2135 then
2136 Append_Elmt (Designator, Private_Dependents (Typ));
2137 end if;
2139 else
2140 Error_Msg_NE
2141 ("invalid use of incomplete type&", Designator, Typ);
2142 end if;
2143 end if;
2144 end if;
2146 -- Case where result definition does indicate an error
2148 else
2149 Set_Etype (Designator, Any_Type);
2150 end if;
2151 end Analyze_Return_Type;
2153 -----------------------------
2154 -- Analyze_Subprogram_Body --
2155 -----------------------------
2157 procedure Analyze_Subprogram_Body (N : Node_Id) is
2158 Loc : constant Source_Ptr := Sloc (N);
2159 Body_Spec : constant Node_Id := Specification (N);
2160 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2162 begin
2163 if Debug_Flag_C then
2164 Write_Str ("==> subprogram body ");
2165 Write_Name (Chars (Body_Id));
2166 Write_Str (" from ");
2167 Write_Location (Loc);
2168 Write_Eol;
2169 Indent;
2170 end if;
2172 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2174 -- The real work is split out into the helper, so it can do "return;"
2175 -- without skipping the debug output:
2177 Analyze_Subprogram_Body_Helper (N);
2179 if Debug_Flag_C then
2180 Outdent;
2181 Write_Str ("<== subprogram body ");
2182 Write_Name (Chars (Body_Id));
2183 Write_Str (" from ");
2184 Write_Location (Loc);
2185 Write_Eol;
2186 end if;
2187 end Analyze_Subprogram_Body;
2189 ------------------------------------
2190 -- Analyze_Subprogram_Body_Helper --
2191 ------------------------------------
2193 -- This procedure is called for regular subprogram bodies, generic bodies,
2194 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2195 -- specification matters, and is used to create a proper declaration for
2196 -- the subprogram, or to perform conformance checks.
2198 -- WARNING: This routine manages Ghost regions. Return statements must be
2199 -- replaced by gotos which jump to the end of the routine and restore the
2200 -- Ghost mode.
2202 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2203 Body_Spec : Node_Id := Specification (N);
2204 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2205 Loc : constant Source_Ptr := Sloc (N);
2206 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2208 Conformant : Boolean;
2209 Desig_View : Entity_Id := Empty;
2210 Exch_Views : Elist_Id := No_Elist;
2211 HSS : Node_Id;
2212 Prot_Typ : Entity_Id := Empty;
2213 Spec_Decl : Node_Id := Empty;
2214 Spec_Id : Entity_Id;
2216 Last_Real_Spec_Entity : Entity_Id := Empty;
2217 -- When we analyze a separate spec, the entity chain ends up containing
2218 -- the formals, as well as any itypes generated during analysis of the
2219 -- default expressions for parameters, or the arguments of associated
2220 -- precondition/postcondition pragmas (which are analyzed in the context
2221 -- of the spec since they have visibility on formals).
2223 -- These entities belong with the spec and not the body. However we do
2224 -- the analysis of the body in the context of the spec (again to obtain
2225 -- visibility to the formals), and all the entities generated during
2226 -- this analysis end up also chained to the entity chain of the spec.
2227 -- But they really belong to the body, and there is circuitry to move
2228 -- them from the spec to the body.
2230 -- However, when we do this move, we don't want to move the real spec
2231 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2232 -- variable points to the last real spec entity, so we only move those
2233 -- chained beyond that point. It is initialized to Empty to deal with
2234 -- the case where there is no separate spec.
2236 function Body_Has_Contract return Boolean;
2237 -- Check whether unanalyzed body has an aspect or pragma that may
2238 -- generate a SPARK contract.
2240 function Body_Has_SPARK_Mode_On return Boolean;
2241 -- Check whether SPARK_Mode On applies to the subprogram body, either
2242 -- because it is specified directly on the body, or because it is
2243 -- inherited from the enclosing subprogram or package.
2245 procedure Build_Subprogram_Declaration;
2246 -- Create a matching subprogram declaration for subprogram body N
2248 procedure Check_Anonymous_Return;
2249 -- Ada 2005: if a function returns an access type that denotes a task,
2250 -- or a type that contains tasks, we must create a master entity for
2251 -- the anonymous type, which typically will be used in an allocator
2252 -- in the body of the function.
2254 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2255 -- Look ahead to recognize a pragma that may appear after the body.
2256 -- If there is a previous spec, check that it appears in the same
2257 -- declarative part. If the pragma is Inline_Always, perform inlining
2258 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2259 -- If the body acts as a spec, and inlining is required, we create a
2260 -- subprogram declaration for it, in order to attach the body to inline.
2261 -- If pragma does not appear after the body, check whether there is
2262 -- an inline pragma before any local declarations.
2264 procedure Check_Missing_Return;
2265 -- Checks for a function with a no return statements, and also performs
2266 -- the warning checks implemented by Check_Returns. In formal mode, also
2267 -- verify that a function ends with a RETURN and that a procedure does
2268 -- not contain any RETURN.
2270 function Disambiguate_Spec return Entity_Id;
2271 -- When a primitive is declared between the private view and the full
2272 -- view of a concurrent type which implements an interface, a special
2273 -- mechanism is used to find the corresponding spec of the primitive
2274 -- body.
2276 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2277 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2278 -- incomplete types coming from a limited context and replace their
2279 -- limited views with the non-limited ones. Return the list of changes
2280 -- to be used to undo the transformation.
2282 procedure Freeze_Expr_Types (Spec_Id : Entity_Id);
2283 -- AI12-0103: N is the body associated with an expression function that
2284 -- is a completion, and Spec_Id is its defining entity. Freeze before N
2285 -- all the types referenced by the expression of the function.
2287 function Is_Private_Concurrent_Primitive
2288 (Subp_Id : Entity_Id) return Boolean;
2289 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2290 -- type that implements an interface and has a private view.
2292 procedure Restore_Limited_Views (Restore_List : Elist_Id);
2293 -- Undo the transformation done by Exchange_Limited_Views.
2295 procedure Set_Trivial_Subprogram (N : Node_Id);
2296 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2297 -- subprogram whose body is being analyzed. N is the statement node
2298 -- causing the flag to be set, if the following statement is a return
2299 -- of an entity, we mark the entity as set in source to suppress any
2300 -- warning on the stylized use of function stubs with a dummy return.
2302 procedure Verify_Overriding_Indicator;
2303 -- If there was a previous spec, the entity has been entered in the
2304 -- current scope previously. If the body itself carries an overriding
2305 -- indicator, check that it is consistent with the known status of the
2306 -- entity.
2308 -----------------------
2309 -- Body_Has_Contract --
2310 -----------------------
2312 function Body_Has_Contract return Boolean is
2313 Decls : constant List_Id := Declarations (N);
2314 Item : Node_Id;
2316 begin
2317 -- Check for aspects that may generate a contract
2319 if Present (Aspect_Specifications (N)) then
2320 Item := First (Aspect_Specifications (N));
2321 while Present (Item) loop
2322 if Is_Subprogram_Contract_Annotation (Item) then
2323 return True;
2324 end if;
2326 Next (Item);
2327 end loop;
2328 end if;
2330 -- Check for pragmas that may generate a contract
2332 if Present (Decls) then
2333 Item := First (Decls);
2334 while Present (Item) loop
2335 if Nkind (Item) = N_Pragma
2336 and then Is_Subprogram_Contract_Annotation (Item)
2337 then
2338 return True;
2339 end if;
2341 Next (Item);
2342 end loop;
2343 end if;
2345 return False;
2346 end Body_Has_Contract;
2348 ----------------------------
2349 -- Body_Has_SPARK_Mode_On --
2350 ----------------------------
2352 function Body_Has_SPARK_Mode_On return Boolean is
2353 Decls : constant List_Id := Declarations (N);
2354 Item : Node_Id;
2356 begin
2357 -- Check for SPARK_Mode aspect
2359 if Present (Aspect_Specifications (N)) then
2360 Item := First (Aspect_Specifications (N));
2361 while Present (Item) loop
2362 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
2363 return Get_SPARK_Mode_From_Annotation (Item) = On;
2364 end if;
2366 Next (Item);
2367 end loop;
2368 end if;
2370 -- Check for SPARK_Mode pragma
2372 if Present (Decls) then
2373 Item := First (Decls);
2374 while Present (Item) loop
2376 -- Pragmas that apply to a subprogram body are usually grouped
2377 -- together. Look for a potential pragma SPARK_Mode among them.
2379 if Nkind (Item) = N_Pragma then
2380 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
2381 return Get_SPARK_Mode_From_Annotation (Item) = On;
2382 end if;
2384 -- Otherwise the first non-pragma declarative item terminates
2385 -- the region where pragma SPARK_Mode may appear.
2387 else
2388 exit;
2389 end if;
2391 Next (Item);
2392 end loop;
2393 end if;
2395 -- Otherwise, the applicable SPARK_Mode is inherited from the
2396 -- enclosing subprogram or package.
2398 return SPARK_Mode = On;
2399 end Body_Has_SPARK_Mode_On;
2401 ----------------------------------
2402 -- Build_Subprogram_Declaration --
2403 ----------------------------------
2405 procedure Build_Subprogram_Declaration is
2406 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2407 -- Relocate certain categorization pragmas from the declarative list
2408 -- of subprogram body From and insert them after node To. The pragmas
2409 -- in question are:
2410 -- Ghost
2411 -- Volatile_Function
2412 -- Also copy pragma SPARK_Mode if present in the declarative list
2413 -- of subprogram body From and insert it after node To. This pragma
2414 -- should not be moved, as it applies to the body too.
2416 ------------------
2417 -- Move_Pragmas --
2418 ------------------
2420 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
2421 Decl : Node_Id;
2422 Next_Decl : Node_Id;
2424 begin
2425 pragma Assert (Nkind (From) = N_Subprogram_Body);
2427 -- The destination node must be part of a list, as the pragmas are
2428 -- inserted after it.
2430 pragma Assert (Is_List_Member (To));
2432 -- Inspect the declarations of the subprogram body looking for
2433 -- specific pragmas.
2435 Decl := First (Declarations (N));
2436 while Present (Decl) loop
2437 Next_Decl := Next (Decl);
2439 if Nkind (Decl) = N_Pragma then
2440 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
2441 Insert_After (To, New_Copy_Tree (Decl));
2443 elsif Nam_In (Pragma_Name_Unmapped (Decl),
2444 Name_Ghost,
2445 Name_Volatile_Function)
2446 then
2447 Remove (Decl);
2448 Insert_After (To, Decl);
2449 end if;
2450 end if;
2452 Decl := Next_Decl;
2453 end loop;
2454 end Move_Pragmas;
2456 -- Local variables
2458 Decl : Node_Id;
2459 Subp_Decl : Node_Id;
2461 -- Start of processing for Build_Subprogram_Declaration
2463 begin
2464 -- Create a matching subprogram spec using the profile of the body.
2465 -- The structure of the tree is identical, but has new entities for
2466 -- the defining unit name and formal parameters.
2468 Subp_Decl :=
2469 Make_Subprogram_Declaration (Loc,
2470 Specification => Copy_Subprogram_Spec (Body_Spec));
2471 Set_Comes_From_Source (Subp_Decl, True);
2473 -- Relocate the aspects and relevant pragmas from the subprogram body
2474 -- to the generated spec because it acts as the initial declaration.
2476 Insert_Before (N, Subp_Decl);
2477 Move_Aspects (N, To => Subp_Decl);
2478 Move_Pragmas (N, To => Subp_Decl);
2480 -- Ensure that the generated corresponding spec and original body
2481 -- share the same SPARK_Mode pragma or aspect. As a result, both have
2482 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
2483 -- correctly set for local subprograms.
2485 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
2487 Analyze (Subp_Decl);
2489 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
2490 -- the body since the expander may generate calls using that entity.
2491 -- Required to ensure that Expand_Call rewrites calls to this
2492 -- function by calls to the built procedure.
2494 if Modify_Tree_For_C
2495 and then Nkind (Body_Spec) = N_Function_Specification
2496 and then
2497 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
2498 then
2499 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
2500 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
2501 Corresponding_Procedure
2502 (Defining_Entity (Specification (Subp_Decl))));
2503 end if;
2505 -- Analyze any relocated source pragmas or pragmas created for aspect
2506 -- specifications.
2508 Decl := Next (Subp_Decl);
2509 while Present (Decl) loop
2511 -- Stop the search for pragmas once the body has been reached as
2512 -- this terminates the region where pragmas may appear.
2514 if Decl = N then
2515 exit;
2517 elsif Nkind (Decl) = N_Pragma then
2518 Analyze (Decl);
2519 end if;
2521 Next (Decl);
2522 end loop;
2524 Spec_Id := Defining_Entity (Subp_Decl);
2525 Set_Corresponding_Spec (N, Spec_Id);
2527 -- Mark the generated spec as a source construct to ensure that all
2528 -- calls to it are properly registered in ALI files for GNATprove.
2530 Set_Comes_From_Source (Spec_Id, True);
2532 -- Ensure that the specs of the subprogram declaration and its body
2533 -- are identical, otherwise they will appear non-conformant due to
2534 -- rewritings in the default values of formal parameters.
2536 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
2537 Set_Specification (N, Body_Spec);
2538 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2539 end Build_Subprogram_Declaration;
2541 ----------------------------
2542 -- Check_Anonymous_Return --
2543 ----------------------------
2545 procedure Check_Anonymous_Return is
2546 Decl : Node_Id;
2547 Par : Node_Id;
2548 Scop : Entity_Id;
2550 begin
2551 if Present (Spec_Id) then
2552 Scop := Spec_Id;
2553 else
2554 Scop := Body_Id;
2555 end if;
2557 if Ekind (Scop) = E_Function
2558 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2559 and then not Is_Thunk (Scop)
2561 -- Skip internally built functions which handle the case of
2562 -- a null access (see Expand_Interface_Conversion)
2564 and then not (Is_Interface (Designated_Type (Etype (Scop)))
2565 and then not Comes_From_Source (Parent (Scop)))
2567 and then (Has_Task (Designated_Type (Etype (Scop)))
2568 or else
2569 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2570 and then
2571 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2572 and then Expander_Active
2574 -- Avoid cases with no tasking support
2576 and then RTE_Available (RE_Current_Master)
2577 and then not Restriction_Active (No_Task_Hierarchy)
2578 then
2579 Decl :=
2580 Make_Object_Declaration (Loc,
2581 Defining_Identifier =>
2582 Make_Defining_Identifier (Loc, Name_uMaster),
2583 Constant_Present => True,
2584 Object_Definition =>
2585 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2586 Expression =>
2587 Make_Explicit_Dereference (Loc,
2588 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2590 if Present (Declarations (N)) then
2591 Prepend (Decl, Declarations (N));
2592 else
2593 Set_Declarations (N, New_List (Decl));
2594 end if;
2596 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2597 Set_Has_Master_Entity (Scop);
2599 -- Now mark the containing scope as a task master
2601 Par := N;
2602 while Nkind (Par) /= N_Compilation_Unit loop
2603 Par := Parent (Par);
2604 pragma Assert (Present (Par));
2606 -- If we fall off the top, we are at the outer level, and
2607 -- the environment task is our effective master, so nothing
2608 -- to mark.
2610 if Nkind_In
2611 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2612 then
2613 Set_Is_Task_Master (Par, True);
2614 exit;
2615 end if;
2616 end loop;
2617 end if;
2618 end Check_Anonymous_Return;
2620 -------------------------
2621 -- Check_Inline_Pragma --
2622 -------------------------
2624 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2625 Prag : Node_Id;
2626 Plist : List_Id;
2628 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2629 -- True when N is a pragma Inline or Inline_Always that applies
2630 -- to this subprogram.
2632 -----------------------
2633 -- Is_Inline_Pragma --
2634 -----------------------
2636 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2637 begin
2638 if Nkind (N) = N_Pragma
2639 and then
2640 (Pragma_Name_Unmapped (N) = Name_Inline_Always
2641 or else (Pragma_Name_Unmapped (N) = Name_Inline
2642 and then
2643 (Front_End_Inlining or else Optimization_Level > 0)))
2644 and then Present (Pragma_Argument_Associations (N))
2645 then
2646 declare
2647 Pragma_Arg : Node_Id :=
2648 Expression (First (Pragma_Argument_Associations (N)));
2649 begin
2650 if Nkind (Pragma_Arg) = N_Selected_Component then
2651 Pragma_Arg := Selector_Name (Pragma_Arg);
2652 end if;
2654 return Chars (Pragma_Arg) = Chars (Body_Id);
2655 end;
2657 else
2658 return False;
2659 end if;
2660 end Is_Inline_Pragma;
2662 -- Start of processing for Check_Inline_Pragma
2664 begin
2665 if not Expander_Active then
2666 return;
2667 end if;
2669 if Is_List_Member (N)
2670 and then Present (Next (N))
2671 and then Is_Inline_Pragma (Next (N))
2672 then
2673 Prag := Next (N);
2675 elsif Nkind (N) /= N_Subprogram_Body_Stub
2676 and then Present (Declarations (N))
2677 and then Is_Inline_Pragma (First (Declarations (N)))
2678 then
2679 Prag := First (Declarations (N));
2681 else
2682 Prag := Empty;
2683 end if;
2685 if Present (Prag) then
2686 if Present (Spec_Id) then
2687 if Is_List_Member (N)
2688 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
2689 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
2690 then
2691 Analyze (Prag);
2692 end if;
2694 else
2695 -- Create a subprogram declaration, to make treatment uniform.
2696 -- Make the sloc of the subprogram name that of the entity in
2697 -- the body, so that style checks find identical strings.
2699 declare
2700 Subp : constant Entity_Id :=
2701 Make_Defining_Identifier
2702 (Sloc (Body_Id), Chars (Body_Id));
2703 Decl : constant Node_Id :=
2704 Make_Subprogram_Declaration (Loc,
2705 Specification =>
2706 New_Copy_Tree (Specification (N)));
2708 begin
2709 Set_Defining_Unit_Name (Specification (Decl), Subp);
2711 -- To ensure proper coverage when body is inlined, indicate
2712 -- whether the subprogram comes from source.
2714 Set_Comes_From_Source (Subp, Comes_From_Source (N));
2716 if Present (First_Formal (Body_Id)) then
2717 Plist := Copy_Parameter_List (Body_Id);
2718 Set_Parameter_Specifications
2719 (Specification (Decl), Plist);
2720 end if;
2722 -- Move aspects to the new spec
2724 if Has_Aspects (N) then
2725 Move_Aspects (N, To => Decl);
2726 end if;
2728 Insert_Before (N, Decl);
2729 Analyze (Decl);
2730 Analyze (Prag);
2731 Set_Has_Pragma_Inline (Subp);
2733 if Pragma_Name (Prag) = Name_Inline_Always then
2734 Set_Is_Inlined (Subp);
2735 Set_Has_Pragma_Inline_Always (Subp);
2736 end if;
2738 -- Prior to copying the subprogram body to create a template
2739 -- for it for subsequent inlining, remove the pragma from
2740 -- the current body so that the copy that will produce the
2741 -- new body will start from a completely unanalyzed tree.
2743 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2744 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2745 end if;
2747 Spec := Subp;
2748 end;
2749 end if;
2750 end if;
2751 end Check_Inline_Pragma;
2753 --------------------------
2754 -- Check_Missing_Return --
2755 --------------------------
2757 procedure Check_Missing_Return is
2758 Id : Entity_Id;
2759 Missing_Ret : Boolean;
2761 begin
2762 if Nkind (Body_Spec) = N_Function_Specification then
2763 if Present (Spec_Id) then
2764 Id := Spec_Id;
2765 else
2766 Id := Body_Id;
2767 end if;
2769 if Return_Present (Id) then
2770 Check_Returns (HSS, 'F', Missing_Ret);
2772 if Missing_Ret then
2773 Set_Has_Missing_Return (Id);
2774 end if;
2776 -- Within a premature instantiation of a package with no body, we
2777 -- build completions of the functions therein, with a Raise
2778 -- statement. No point in complaining about a missing return in
2779 -- this case.
2781 elsif Ekind (Id) = E_Function
2782 and then In_Instance
2783 and then Present (Statements (HSS))
2784 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
2785 then
2786 null;
2788 elsif Is_Generic_Subprogram (Id)
2789 or else not Is_Machine_Code_Subprogram (Id)
2790 then
2791 Error_Msg_N ("missing RETURN statement in function body", N);
2792 end if;
2794 -- If procedure with No_Return, check returns
2796 elsif Nkind (Body_Spec) = N_Procedure_Specification
2797 and then Present (Spec_Id)
2798 and then No_Return (Spec_Id)
2799 then
2800 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2801 end if;
2803 -- Special checks in SPARK mode
2805 if Nkind (Body_Spec) = N_Function_Specification then
2807 -- In SPARK mode, last statement of a function should be a return
2809 declare
2810 Stat : constant Node_Id := Last_Source_Statement (HSS);
2811 begin
2812 if Present (Stat)
2813 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2814 N_Extended_Return_Statement)
2815 then
2816 Check_SPARK_05_Restriction
2817 ("last statement in function should be RETURN", Stat);
2818 end if;
2819 end;
2821 -- In SPARK mode, verify that a procedure has no return
2823 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2824 if Present (Spec_Id) then
2825 Id := Spec_Id;
2826 else
2827 Id := Body_Id;
2828 end if;
2830 -- Would be nice to point to return statement here, can we
2831 -- borrow the Check_Returns procedure here ???
2833 if Return_Present (Id) then
2834 Check_SPARK_05_Restriction
2835 ("procedure should not have RETURN", N);
2836 end if;
2837 end if;
2838 end Check_Missing_Return;
2840 -----------------------
2841 -- Disambiguate_Spec --
2842 -----------------------
2844 function Disambiguate_Spec return Entity_Id is
2845 Priv_Spec : Entity_Id;
2846 Spec_N : Entity_Id;
2848 procedure Replace_Types (To_Corresponding : Boolean);
2849 -- Depending on the flag, replace the type of formal parameters of
2850 -- Body_Id if it is a concurrent type implementing interfaces with
2851 -- the corresponding record type or the other way around.
2853 procedure Replace_Types (To_Corresponding : Boolean) is
2854 Formal : Entity_Id;
2855 Formal_Typ : Entity_Id;
2857 begin
2858 Formal := First_Formal (Body_Id);
2859 while Present (Formal) loop
2860 Formal_Typ := Etype (Formal);
2862 if Is_Class_Wide_Type (Formal_Typ) then
2863 Formal_Typ := Root_Type (Formal_Typ);
2864 end if;
2866 -- From concurrent type to corresponding record
2868 if To_Corresponding then
2869 if Is_Concurrent_Type (Formal_Typ)
2870 and then Present (Corresponding_Record_Type (Formal_Typ))
2871 and then
2872 Present (Interfaces
2873 (Corresponding_Record_Type (Formal_Typ)))
2874 then
2875 Set_Etype (Formal,
2876 Corresponding_Record_Type (Formal_Typ));
2877 end if;
2879 -- From corresponding record to concurrent type
2881 else
2882 if Is_Concurrent_Record_Type (Formal_Typ)
2883 and then Present (Interfaces (Formal_Typ))
2884 then
2885 Set_Etype (Formal,
2886 Corresponding_Concurrent_Type (Formal_Typ));
2887 end if;
2888 end if;
2890 Next_Formal (Formal);
2891 end loop;
2892 end Replace_Types;
2894 -- Start of processing for Disambiguate_Spec
2896 begin
2897 -- Try to retrieve the specification of the body as is. All error
2898 -- messages are suppressed because the body may not have a spec in
2899 -- its current state.
2901 Spec_N := Find_Corresponding_Spec (N, False);
2903 -- It is possible that this is the body of a primitive declared
2904 -- between a private and a full view of a concurrent type. The
2905 -- controlling parameter of the spec carries the concurrent type,
2906 -- not the corresponding record type as transformed by Analyze_
2907 -- Subprogram_Specification. In such cases, we undo the change
2908 -- made by the analysis of the specification and try to find the
2909 -- spec again.
2911 -- Note that wrappers already have their corresponding specs and
2912 -- bodies set during their creation, so if the candidate spec is
2913 -- a wrapper, then we definitely need to swap all types to their
2914 -- original concurrent status.
2916 if No (Spec_N)
2917 or else Is_Primitive_Wrapper (Spec_N)
2918 then
2919 -- Restore all references of corresponding record types to the
2920 -- original concurrent types.
2922 Replace_Types (To_Corresponding => False);
2923 Priv_Spec := Find_Corresponding_Spec (N, False);
2925 -- The current body truly belongs to a primitive declared between
2926 -- a private and a full view. We leave the modified body as is,
2927 -- and return the true spec.
2929 if Present (Priv_Spec)
2930 and then Is_Private_Primitive (Priv_Spec)
2931 then
2932 return Priv_Spec;
2933 end if;
2935 -- In case that this is some sort of error, restore the original
2936 -- state of the body.
2938 Replace_Types (To_Corresponding => True);
2939 end if;
2941 return Spec_N;
2942 end Disambiguate_Spec;
2944 ----------------------------
2945 -- Exchange_Limited_Views --
2946 ----------------------------
2948 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
2949 Result : Elist_Id := No_Elist;
2951 procedure Detect_And_Exchange (Id : Entity_Id);
2952 -- Determine whether Id's type denotes an incomplete type associated
2953 -- with a limited with clause and exchange the limited view with the
2954 -- non-limited one when available. Note that the non-limited view
2955 -- may exist because of a with_clause in another unit in the context,
2956 -- but cannot be used because the current view of the enclosing unit
2957 -- is still a limited view.
2959 -------------------------
2960 -- Detect_And_Exchange --
2961 -------------------------
2963 procedure Detect_And_Exchange (Id : Entity_Id) is
2964 Typ : constant Entity_Id := Etype (Id);
2965 begin
2966 if From_Limited_With (Typ)
2967 and then Has_Non_Limited_View (Typ)
2968 and then not From_Limited_With (Scope (Typ))
2969 then
2970 if No (Result) then
2971 Result := New_Elmt_List;
2972 end if;
2974 Prepend_Elmt (Typ, Result);
2975 Prepend_Elmt (Id, Result);
2976 Set_Etype (Id, Non_Limited_View (Typ));
2977 end if;
2978 end Detect_And_Exchange;
2980 -- Local variables
2982 Formal : Entity_Id;
2984 -- Start of processing for Exchange_Limited_Views
2986 begin
2987 -- Do not process subprogram bodies as they already use the non-
2988 -- limited view of types.
2990 if not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2991 return No_Elist;
2992 end if;
2994 -- Examine all formals and swap views when applicable
2996 Formal := First_Formal (Subp_Id);
2997 while Present (Formal) loop
2998 Detect_And_Exchange (Formal);
3000 Next_Formal (Formal);
3001 end loop;
3003 -- Process the return type of a function
3005 if Ekind (Subp_Id) = E_Function then
3006 Detect_And_Exchange (Subp_Id);
3007 end if;
3009 return Result;
3010 end Exchange_Limited_Views;
3012 -----------------------
3013 -- Freeze_Expr_Types --
3014 -----------------------
3016 procedure Freeze_Expr_Types (Spec_Id : Entity_Id) is
3017 function Cloned_Expression return Node_Id;
3018 -- Build a duplicate of the expression of the return statement that
3019 -- has no defining entities shared with the original expression.
3021 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result;
3022 -- Freeze all types referenced in the subtree rooted at Node
3024 -----------------------
3025 -- Cloned_Expression --
3026 -----------------------
3028 function Cloned_Expression return Node_Id is
3029 function Clone_Id (Node : Node_Id) return Traverse_Result;
3030 -- Tree traversal routine that clones the defining identifier of
3031 -- iterator and loop parameter specification nodes.
3033 ----------------
3034 -- Check_Node --
3035 ----------------
3037 function Clone_Id (Node : Node_Id) return Traverse_Result is
3038 begin
3039 if Nkind_In (Node, N_Iterator_Specification,
3040 N_Loop_Parameter_Specification)
3041 then
3042 Set_Defining_Identifier (Node,
3043 New_Copy (Defining_Identifier (Node)));
3044 end if;
3046 return OK;
3047 end Clone_Id;
3049 -------------------
3050 -- Clone_Def_Ids --
3051 -------------------
3053 procedure Clone_Def_Ids is new Traverse_Proc (Clone_Id);
3055 -- Local variables
3057 Return_Stmt : constant Node_Id :=
3058 First
3059 (Statements (Handled_Statement_Sequence (N)));
3060 Dup_Expr : Node_Id;
3062 -- Start of processing for Cloned_Expression
3064 begin
3065 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3067 -- We must duplicate the expression with semantic information to
3068 -- inherit the decoration of global entities in generic instances.
3070 Dup_Expr := New_Copy_Tree (Expression (Return_Stmt));
3072 -- Replace the defining identifier of iterators and loop param
3073 -- specifications by a clone to ensure that the cloned expression
3074 -- and the original expression don't have shared identifiers;
3075 -- otherwise, as part of the preanalysis of the expression, these
3076 -- shared identifiers may be left decorated with itypes which
3077 -- will not be available in the tree passed to the backend.
3079 Clone_Def_Ids (Dup_Expr);
3081 return Dup_Expr;
3082 end Cloned_Expression;
3084 ----------------------
3085 -- Freeze_Type_Refs --
3086 ----------------------
3088 function Freeze_Type_Refs (Node : Node_Id) return Traverse_Result is
3089 begin
3090 if Nkind (Node) = N_Identifier
3091 and then Present (Entity (Node))
3092 then
3093 if Is_Type (Entity (Node)) then
3094 Freeze_Before (N, Entity (Node));
3096 elsif Ekind_In (Entity (Node), E_Component,
3097 E_Discriminant)
3098 then
3099 Freeze_Before (N, Scope (Entity (Node)));
3100 end if;
3101 end if;
3103 return OK;
3104 end Freeze_Type_Refs;
3106 procedure Freeze_References is new Traverse_Proc (Freeze_Type_Refs);
3108 -- Local variables
3110 Saved_First_Entity : constant Entity_Id := First_Entity (Spec_Id);
3111 Saved_Last_Entity : constant Entity_Id := Last_Entity (Spec_Id);
3112 Dup_Expr : constant Node_Id := Cloned_Expression;
3114 -- Start of processing for Freeze_Expr_Types
3116 begin
3117 -- Preanalyze a duplicate of the expression to have available the
3118 -- minimum decoration needed to locate referenced unfrozen types
3119 -- without adding any decoration to the function expression. This
3120 -- preanalysis is performed with errors disabled to avoid reporting
3121 -- spurious errors on Ghost entities (since the expression is not
3122 -- fully analyzed).
3124 Push_Scope (Spec_Id);
3125 Install_Formals (Spec_Id);
3126 Ignore_Errors_Enable := Ignore_Errors_Enable + 1;
3128 Preanalyze_Spec_Expression (Dup_Expr, Etype (Spec_Id));
3130 Ignore_Errors_Enable := Ignore_Errors_Enable - 1;
3131 End_Scope;
3133 -- Restore certain attributes of Spec_Id since the preanalysis may
3134 -- have introduced itypes to this scope, thus modifying attributes
3135 -- First_Entity and Last_Entity.
3137 Set_First_Entity (Spec_Id, Saved_First_Entity);
3138 Set_Last_Entity (Spec_Id, Saved_Last_Entity);
3140 if Present (Last_Entity (Spec_Id)) then
3141 Set_Next_Entity (Last_Entity (Spec_Id), Empty);
3142 end if;
3144 -- Freeze all types referenced in the expression
3146 Freeze_References (Dup_Expr);
3147 end Freeze_Expr_Types;
3149 -------------------------------------
3150 -- Is_Private_Concurrent_Primitive --
3151 -------------------------------------
3153 function Is_Private_Concurrent_Primitive
3154 (Subp_Id : Entity_Id) return Boolean
3156 Formal_Typ : Entity_Id;
3158 begin
3159 if Present (First_Formal (Subp_Id)) then
3160 Formal_Typ := Etype (First_Formal (Subp_Id));
3162 if Is_Concurrent_Record_Type (Formal_Typ) then
3163 if Is_Class_Wide_Type (Formal_Typ) then
3164 Formal_Typ := Root_Type (Formal_Typ);
3165 end if;
3167 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3168 end if;
3170 -- The type of the first formal is a concurrent tagged type with
3171 -- a private view.
3173 return
3174 Is_Concurrent_Type (Formal_Typ)
3175 and then Is_Tagged_Type (Formal_Typ)
3176 and then Has_Private_Declaration (Formal_Typ);
3177 end if;
3179 return False;
3180 end Is_Private_Concurrent_Primitive;
3182 ---------------------------
3183 -- Restore_Limited_Views --
3184 ---------------------------
3186 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
3187 Elmt : Elmt_Id := First_Elmt (Restore_List);
3188 Id : Entity_Id;
3190 begin
3191 while Present (Elmt) loop
3192 Id := Node (Elmt);
3193 Next_Elmt (Elmt);
3194 Set_Etype (Id, Node (Elmt));
3195 Next_Elmt (Elmt);
3196 end loop;
3197 end Restore_Limited_Views;
3199 ----------------------------
3200 -- Set_Trivial_Subprogram --
3201 ----------------------------
3203 procedure Set_Trivial_Subprogram (N : Node_Id) is
3204 Nxt : constant Node_Id := Next (N);
3206 begin
3207 Set_Is_Trivial_Subprogram (Body_Id);
3209 if Present (Spec_Id) then
3210 Set_Is_Trivial_Subprogram (Spec_Id);
3211 end if;
3213 if Present (Nxt)
3214 and then Nkind (Nxt) = N_Simple_Return_Statement
3215 and then No (Next (Nxt))
3216 and then Present (Expression (Nxt))
3217 and then Is_Entity_Name (Expression (Nxt))
3218 then
3219 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
3220 end if;
3221 end Set_Trivial_Subprogram;
3223 ---------------------------------
3224 -- Verify_Overriding_Indicator --
3225 ---------------------------------
3227 procedure Verify_Overriding_Indicator is
3228 begin
3229 if Must_Override (Body_Spec) then
3230 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
3231 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3232 then
3233 null;
3235 elsif not Present (Overridden_Operation (Spec_Id)) then
3236 Error_Msg_NE
3237 ("subprogram& is not overriding", Body_Spec, Spec_Id);
3239 -- Overriding indicators aren't allowed for protected subprogram
3240 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3241 -- this to a warning if -gnatd.E is enabled.
3243 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3244 Error_Msg_Warn := Error_To_Warning;
3245 Error_Msg_N
3246 ("<<overriding indicator not allowed for protected "
3247 & "subprogram body", Body_Spec);
3248 end if;
3250 elsif Must_Not_Override (Body_Spec) then
3251 if Present (Overridden_Operation (Spec_Id)) then
3252 Error_Msg_NE
3253 ("subprogram& overrides inherited operation",
3254 Body_Spec, Spec_Id);
3256 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3257 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3258 then
3259 Error_Msg_NE
3260 ("subprogram& overrides predefined operator ",
3261 Body_Spec, Spec_Id);
3263 -- Overriding indicators aren't allowed for protected subprogram
3264 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3265 -- this to a warning if -gnatd.E is enabled.
3267 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3268 Error_Msg_Warn := Error_To_Warning;
3270 Error_Msg_N
3271 ("<<overriding indicator not allowed "
3272 & "for protected subprogram body", Body_Spec);
3274 -- If this is not a primitive operation, then the overriding
3275 -- indicator is altogether illegal.
3277 elsif not Is_Primitive (Spec_Id) then
3278 Error_Msg_N
3279 ("overriding indicator only allowed "
3280 & "if subprogram is primitive", Body_Spec);
3281 end if;
3283 -- If checking the style rule and the operation overrides, then
3284 -- issue a warning about a missing overriding_indicator. Protected
3285 -- subprogram bodies are excluded from this style checking, since
3286 -- they aren't primitives (even though their declarations can
3287 -- override) and aren't allowed to have an overriding_indicator.
3289 elsif Style_Check
3290 and then Present (Overridden_Operation (Spec_Id))
3291 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3292 then
3293 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3294 Style.Missing_Overriding (N, Body_Id);
3296 elsif Style_Check
3297 and then Can_Override_Operator (Spec_Id)
3298 and then not Is_Predefined_File_Name
3299 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
3300 then
3301 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3302 Style.Missing_Overriding (N, Body_Id);
3303 end if;
3304 end Verify_Overriding_Indicator;
3306 -- Local variables
3308 Mode : Ghost_Mode_Type;
3309 Mode_Set : Boolean := False;
3311 -- Start of processing for Analyze_Subprogram_Body_Helper
3313 begin
3314 -- A [generic] subprogram body "freezes" the contract of the nearest
3315 -- enclosing package body and all other contracts encountered in the
3316 -- same declarative part up to and excluding the subprogram body:
3318 -- package body Nearest_Enclosing_Package
3319 -- with Refined_State => (State => Constit)
3320 -- is
3321 -- Constit : ...;
3323 -- procedure Freezes_Enclosing_Package_Body
3324 -- with Refined_Depends => (Input => Constit) ...
3326 -- This ensures that any annotations referenced by the contract of the
3327 -- [generic] subprogram body are available. This form of "freezing" is
3328 -- decoupled from the usual Freeze_xxx mechanism because it must also
3329 -- work in the context of generics where normal freezing is disabled.
3331 -- Only bodies coming from source should cause this type of "freezing".
3332 -- Expression functions that act as bodies and complete an initial
3333 -- declaration must be included in this category, hence the use of
3334 -- Original_Node.
3336 if Comes_From_Source (Original_Node (N)) then
3337 Analyze_Previous_Contracts (N);
3338 end if;
3340 -- Generic subprograms are handled separately. They always have a
3341 -- generic specification. Determine whether current scope has a
3342 -- previous declaration.
3344 -- If the subprogram body is defined within an instance of the same
3345 -- name, the instance appears as a package renaming, and will be hidden
3346 -- within the subprogram.
3348 if Present (Prev_Id)
3349 and then not Is_Overloadable (Prev_Id)
3350 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3351 or else Comes_From_Source (Prev_Id))
3352 then
3353 if Is_Generic_Subprogram (Prev_Id) then
3354 Spec_Id := Prev_Id;
3356 -- A subprogram body is Ghost when it is stand alone and subject
3357 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3358 -- the mode now to ensure that any nodes generated during analysis
3359 -- and expansion are properly marked as Ghost.
3361 Mark_And_Set_Ghost_Body (N, Spec_Id, Mode);
3362 Mode_Set := True;
3364 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3365 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3367 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3369 if Nkind (N) = N_Subprogram_Body then
3370 HSS := Handled_Statement_Sequence (N);
3371 Check_Missing_Return;
3372 end if;
3374 goto Leave;
3376 -- Otherwise a previous entity conflicts with the subprogram name.
3377 -- Attempting to enter name will post error.
3379 else
3380 Enter_Name (Body_Id);
3381 return;
3382 end if;
3384 -- Non-generic case, find the subprogram declaration, if one was seen,
3385 -- or enter new overloaded entity in the current scope. If the
3386 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3387 -- part of the context of one of its subunits. No need to redo the
3388 -- analysis.
3390 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3391 return;
3393 else
3394 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3396 if Nkind (N) = N_Subprogram_Body_Stub
3397 or else No (Corresponding_Spec (N))
3398 then
3399 if Is_Private_Concurrent_Primitive (Body_Id) then
3400 Spec_Id := Disambiguate_Spec;
3402 -- A subprogram body is Ghost when it is stand alone and
3403 -- subject to pragma Ghost or when the corresponding spec is
3404 -- Ghost. Set the mode now to ensure that any nodes generated
3405 -- during analysis and expansion are properly marked as Ghost.
3407 Mark_And_Set_Ghost_Body (N, Spec_Id, Mode);
3408 Mode_Set := True;
3410 else
3411 Spec_Id := Find_Corresponding_Spec (N);
3413 -- A subprogram body is Ghost when it is stand alone and
3414 -- subject to pragma Ghost or when the corresponding spec is
3415 -- Ghost. Set the mode now to ensure that any nodes generated
3416 -- during analysis and expansion are properly marked as Ghost.
3418 Mark_And_Set_Ghost_Body (N, Spec_Id, Mode);
3419 Mode_Set := True;
3421 -- In GNATprove mode, if the body has no previous spec, create
3422 -- one so that the inlining machinery can operate properly.
3423 -- Transfer aspects, if any, to the new spec, so that they
3424 -- are legal and can be processed ahead of the body.
3425 -- We make two copies of the given spec, one for the new
3426 -- declaration, and one for the body.
3428 if No (Spec_Id) and then GNATprove_Mode
3430 -- Inlining does not apply during pre-analysis of code
3432 and then Full_Analysis
3434 -- Inlining only applies to full bodies, not stubs
3436 and then Nkind (N) /= N_Subprogram_Body_Stub
3438 -- Inlining only applies to bodies in the source code, not to
3439 -- those generated by the compiler. In particular, expression
3440 -- functions, whose body is generated by the compiler, are
3441 -- treated specially by GNATprove.
3443 and then Comes_From_Source (Body_Id)
3445 -- This cannot be done for a compilation unit, which is not
3446 -- in a context where we can insert a new spec.
3448 and then Is_List_Member (N)
3450 -- Inlining only applies to subprograms without contracts,
3451 -- as a contract is a sign that GNATprove should perform a
3452 -- modular analysis of the subprogram instead of a contextual
3453 -- analysis at each call site. The same test is performed in
3454 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3455 -- here in another form (because the contract has not been
3456 -- attached to the body) to avoid front-end errors in case
3457 -- pragmas are used instead of aspects, because the
3458 -- corresponding pragmas in the body would not be transferred
3459 -- to the spec, leading to legality errors.
3461 and then not Body_Has_Contract
3462 and then not Inside_A_Generic
3463 then
3464 Build_Subprogram_Declaration;
3466 -- If this is a function that returns a constrained array, and
3467 -- we are generating SPARK_For_C, create subprogram declaration
3468 -- to simplify subsequent C generation.
3470 elsif No (Spec_Id)
3471 and then Modify_Tree_For_C
3472 and then Nkind (Body_Spec) = N_Function_Specification
3473 and then Is_Array_Type (Etype (Body_Id))
3474 and then Is_Constrained (Etype (Body_Id))
3475 then
3476 Build_Subprogram_Declaration;
3477 end if;
3478 end if;
3480 -- If this is a duplicate body, no point in analyzing it
3482 if Error_Posted (N) then
3483 goto Leave;
3484 end if;
3486 -- A subprogram body should cause freezing of its own declaration,
3487 -- but if there was no previous explicit declaration, then the
3488 -- subprogram will get frozen too late (there may be code within
3489 -- the body that depends on the subprogram having been frozen,
3490 -- such as uses of extra formals), so we force it to be frozen
3491 -- here. Same holds if the body and spec are compilation units.
3492 -- Finally, if the return type is an anonymous access to protected
3493 -- subprogram, it must be frozen before the body because its
3494 -- expansion has generated an equivalent type that is used when
3495 -- elaborating the body.
3497 -- An exception in the case of Ada 2012, AI05-177: The bodies
3498 -- created for expression functions do not freeze.
3500 if No (Spec_Id)
3501 and then Nkind (Original_Node (N)) /= N_Expression_Function
3502 then
3503 Freeze_Before (N, Body_Id);
3505 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3506 Freeze_Before (N, Spec_Id);
3508 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3509 Freeze_Before (N, Etype (Body_Id));
3510 end if;
3512 else
3513 Spec_Id := Corresponding_Spec (N);
3515 -- A subprogram body is Ghost when it is stand alone and subject
3516 -- to pragma Ghost or when the corresponding spec is Ghost. Set
3517 -- the mode now to ensure that any nodes generated during analysis
3518 -- and expansion are properly marked as Ghost.
3520 Mark_And_Set_Ghost_Body (N, Spec_Id, Mode);
3521 Mode_Set := True;
3522 end if;
3523 end if;
3525 -- Previously we scanned the body to look for nested subprograms, and
3526 -- rejected an inline directive if nested subprograms were present,
3527 -- because the back-end would generate conflicting symbols for the
3528 -- nested bodies. This is now unnecessary.
3530 -- Look ahead to recognize a pragma Inline that appears after the body
3532 Check_Inline_Pragma (Spec_Id);
3534 -- Deal with special case of a fully private operation in the body of
3535 -- the protected type. We must create a declaration for the subprogram,
3536 -- in order to attach the protected subprogram that will be used in
3537 -- internal calls. We exclude compiler generated bodies from the
3538 -- expander since the issue does not arise for those cases.
3540 if No (Spec_Id)
3541 and then Comes_From_Source (N)
3542 and then Is_Protected_Type (Current_Scope)
3543 then
3544 Spec_Id := Build_Private_Protected_Declaration (N);
3545 end if;
3547 -- If we are generating C and this is a function returning a constrained
3548 -- array type for which we must create a procedure with an extra out
3549 -- parameter, build and analyze the body now. The procedure declaration
3550 -- has already been created. We reuse the source body of the function,
3551 -- because in an instance it may contain global references that cannot
3552 -- be reanalyzed. The source function itself is not used any further,
3553 -- so we mark it as having a completion. If the subprogram is a stub the
3554 -- transformation is done later, when the proper body is analyzed.
3556 if Expander_Active
3557 and then Modify_Tree_For_C
3558 and then Present (Spec_Id)
3559 and then Ekind (Spec_Id) = E_Function
3560 and then Nkind (N) /= N_Subprogram_Body_Stub
3561 and then Rewritten_For_C (Spec_Id)
3562 then
3563 Set_Has_Completion (Spec_Id);
3565 Rewrite (N, Build_Procedure_Body_Form (Spec_Id, N));
3566 Analyze (N);
3568 -- The entity for the created procedure must remain invisible, so it
3569 -- does not participate in resolution of subsequent references to the
3570 -- function.
3572 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
3573 goto Leave;
3574 end if;
3576 -- If a separate spec is present, then deal with freezing issues
3578 if Present (Spec_Id) then
3579 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3580 Verify_Overriding_Indicator;
3582 -- In general, the spec will be frozen when we start analyzing the
3583 -- body. However, for internally generated operations, such as
3584 -- wrapper functions for inherited operations with controlling
3585 -- results, the spec may not have been frozen by the time we expand
3586 -- the freeze actions that include the bodies. In particular, extra
3587 -- formals for accessibility or for return-in-place may need to be
3588 -- generated. Freeze nodes, if any, are inserted before the current
3589 -- body. These freeze actions are also needed in ASIS mode and in
3590 -- Compile_Only mode to enable the proper back-end type annotations.
3591 -- They are necessary in any case to insure order of elaboration
3592 -- in gigi.
3594 if not Is_Frozen (Spec_Id)
3595 and then (Expander_Active
3596 or else ASIS_Mode
3597 or else (Operating_Mode = Check_Semantics
3598 and then Serious_Errors_Detected = 0))
3599 then
3600 Set_Has_Delayed_Freeze (Spec_Id);
3601 Freeze_Before (N, Spec_Id);
3603 -- AI12-0103: At the occurrence of an expression function
3604 -- declaration that is a completion, its expression causes
3605 -- freezing.
3607 if Has_Completion (Spec_Id)
3608 and then Nkind (N) = N_Subprogram_Body
3609 and then Was_Expression_Function (N)
3610 then
3611 Freeze_Expr_Types (Spec_Id);
3612 end if;
3613 end if;
3614 end if;
3616 -- Place subprogram on scope stack, and make formals visible. If there
3617 -- is a spec, the visible entity remains that of the spec.
3619 if Present (Spec_Id) then
3620 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3622 if Is_Child_Unit (Spec_Id) then
3623 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3624 end if;
3626 if Style_Check then
3627 Style.Check_Identifier (Body_Id, Spec_Id);
3628 end if;
3630 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3631 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3633 if Is_Abstract_Subprogram (Spec_Id) then
3634 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3635 goto Leave;
3637 else
3638 Set_Convention (Body_Id, Convention (Spec_Id));
3639 Set_Has_Completion (Spec_Id);
3641 if Is_Protected_Type (Scope (Spec_Id)) then
3642 Prot_Typ := Scope (Spec_Id);
3643 end if;
3645 -- If this is a body generated for a renaming, do not check for
3646 -- full conformance. The check is redundant, because the spec of
3647 -- the body is a copy of the spec in the renaming declaration,
3648 -- and the test can lead to spurious errors on nested defaults.
3650 if Present (Spec_Decl)
3651 and then not Comes_From_Source (N)
3652 and then
3653 (Nkind (Original_Node (Spec_Decl)) =
3654 N_Subprogram_Renaming_Declaration
3655 or else (Present (Corresponding_Body (Spec_Decl))
3656 and then
3657 Nkind (Unit_Declaration_Node
3658 (Corresponding_Body (Spec_Decl))) =
3659 N_Subprogram_Renaming_Declaration))
3660 then
3661 Conformant := True;
3663 -- Conversely, the spec may have been generated for specless body
3664 -- with an inline pragma. The entity comes from source, which is
3665 -- both semantically correct and necessary for proper inlining.
3666 -- The subprogram declaration itself is not in the source.
3668 elsif Comes_From_Source (N)
3669 and then Present (Spec_Decl)
3670 and then not Comes_From_Source (Spec_Decl)
3671 and then Has_Pragma_Inline (Spec_Id)
3672 then
3673 Conformant := True;
3675 else
3676 Check_Conformance
3677 (Body_Id, Spec_Id,
3678 Fully_Conformant, True, Conformant, Body_Id);
3679 end if;
3681 -- If the body is not fully conformant, we have to decide if we
3682 -- should analyze it or not. If it has a really messed up profile
3683 -- then we probably should not analyze it, since we will get too
3684 -- many bogus messages.
3686 -- Our decision is to go ahead in the non-fully conformant case
3687 -- only if it is at least mode conformant with the spec. Note
3688 -- that the call to Check_Fully_Conformant has issued the proper
3689 -- error messages to complain about the lack of conformance.
3691 if not Conformant
3692 and then not Mode_Conformant (Body_Id, Spec_Id)
3693 then
3694 goto Leave;
3695 end if;
3696 end if;
3698 if Spec_Id /= Body_Id then
3699 Reference_Body_Formals (Spec_Id, Body_Id);
3700 end if;
3702 Set_Ekind (Body_Id, E_Subprogram_Body);
3704 if Nkind (N) = N_Subprogram_Body_Stub then
3705 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3707 -- Regular body
3709 else
3710 Set_Corresponding_Spec (N, Spec_Id);
3712 -- Ada 2005 (AI-345): If the operation is a primitive operation
3713 -- of a concurrent type, the type of the first parameter has been
3714 -- replaced with the corresponding record, which is the proper
3715 -- run-time structure to use. However, within the body there may
3716 -- be uses of the formals that depend on primitive operations
3717 -- of the type (in particular calls in prefixed form) for which
3718 -- we need the original concurrent type. The operation may have
3719 -- several controlling formals, so the replacement must be done
3720 -- for all of them.
3722 if Comes_From_Source (Spec_Id)
3723 and then Present (First_Entity (Spec_Id))
3724 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3725 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3726 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3727 and then Present (Corresponding_Concurrent_Type
3728 (Etype (First_Entity (Spec_Id))))
3729 then
3730 declare
3731 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3732 Form : Entity_Id;
3734 begin
3735 Form := First_Formal (Spec_Id);
3736 while Present (Form) loop
3737 if Etype (Form) = Typ then
3738 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3739 end if;
3741 Next_Formal (Form);
3742 end loop;
3743 end;
3744 end if;
3746 -- Make the formals visible, and place subprogram on scope stack.
3747 -- This is also the point at which we set Last_Real_Spec_Entity
3748 -- to mark the entities which will not be moved to the body.
3750 Install_Formals (Spec_Id);
3751 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3753 -- Within an instance, add local renaming declarations so that
3754 -- gdb can retrieve the values of actuals more easily. This is
3755 -- only relevant if generating code (and indeed we definitely
3756 -- do not want these definitions -gnatc mode, because that would
3757 -- confuse ASIS).
3759 if Is_Generic_Instance (Spec_Id)
3760 and then Is_Wrapper_Package (Current_Scope)
3761 and then Expander_Active
3762 then
3763 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3764 end if;
3766 Push_Scope (Spec_Id);
3768 -- Make sure that the subprogram is immediately visible. For
3769 -- child units that have no separate spec this is indispensable.
3770 -- Otherwise it is safe albeit redundant.
3772 Set_Is_Immediately_Visible (Spec_Id);
3773 end if;
3775 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3776 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3777 Set_Scope (Body_Id, Scope (Spec_Id));
3779 -- Case of subprogram body with no previous spec
3781 else
3782 -- Check for style warning required
3784 if Style_Check
3786 -- Only apply check for source level subprograms for which checks
3787 -- have not been suppressed.
3789 and then Comes_From_Source (Body_Id)
3790 and then not Suppress_Style_Checks (Body_Id)
3792 -- No warnings within an instance
3794 and then not In_Instance
3796 -- No warnings for expression functions
3798 and then Nkind (Original_Node (N)) /= N_Expression_Function
3799 then
3800 Style.Body_With_No_Spec (N);
3801 end if;
3803 New_Overloaded_Entity (Body_Id);
3805 if Nkind (N) /= N_Subprogram_Body_Stub then
3806 Set_Acts_As_Spec (N);
3807 Generate_Definition (Body_Id);
3808 Generate_Reference
3809 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3811 -- If the body is an entry wrapper created for an entry with
3812 -- preconditions, it must be compiled in the context of the
3813 -- enclosing synchronized object, because it may mention other
3814 -- operations of the type.
3816 if Is_Entry_Wrapper (Body_Id) then
3817 declare
3818 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
3819 begin
3820 Push_Scope (Prot);
3821 Install_Declarations (Prot);
3822 end;
3823 end if;
3825 Install_Formals (Body_Id);
3827 Push_Scope (Body_Id);
3828 end if;
3830 -- For stubs and bodies with no previous spec, generate references to
3831 -- formals.
3833 Generate_Reference_To_Formals (Body_Id);
3834 end if;
3836 -- Entry barrier functions are generated outside the protected type and
3837 -- should not carry the SPARK_Mode of the enclosing context.
3839 if Nkind (N) = N_Subprogram_Body
3840 and then Is_Entry_Barrier_Function (N)
3841 then
3842 null;
3844 -- The body is generated as part of expression function expansion. When
3845 -- the expression function appears in the visible declarations of a
3846 -- package, the body is added to the private declarations. Since both
3847 -- declarative lists may be subject to a different SPARK_Mode, inherit
3848 -- the mode of the spec.
3850 -- package P with SPARK_Mode is
3851 -- function Expr_Func ... is (...); -- original
3852 -- [function Expr_Func ...;] -- generated spec
3853 -- -- mode is ON
3854 -- private
3855 -- pragma SPARK_Mode (Off);
3856 -- [function Expr_Func ... is return ...;] -- generated body
3857 -- end P; -- mode is ON
3859 elsif not Comes_From_Source (N)
3860 and then Present (Spec_Id)
3861 and then Is_Expression_Function (Spec_Id)
3862 then
3863 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
3864 Set_SPARK_Pragma_Inherited
3865 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
3867 -- Set the SPARK_Mode from the current context (may be overwritten later
3868 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
3869 -- initially on a stand-alone subprogram body, but is then relocated to
3870 -- a generated corresponding spec. In this scenario the mode is shared
3871 -- between the spec and body.
3873 elsif No (SPARK_Pragma (Body_Id)) then
3874 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
3875 Set_SPARK_Pragma_Inherited (Body_Id);
3876 end if;
3878 -- If this is the proper body of a stub, we must verify that the stub
3879 -- conforms to the body, and to the previous spec if one was present.
3880 -- We know already that the body conforms to that spec. This test is
3881 -- only required for subprograms that come from source.
3883 if Nkind (Parent (N)) = N_Subunit
3884 and then Comes_From_Source (N)
3885 and then not Error_Posted (Body_Id)
3886 and then Nkind (Corresponding_Stub (Parent (N))) =
3887 N_Subprogram_Body_Stub
3888 then
3889 declare
3890 Old_Id : constant Entity_Id :=
3891 Defining_Entity
3892 (Specification (Corresponding_Stub (Parent (N))));
3894 Conformant : Boolean := False;
3896 begin
3897 if No (Spec_Id) then
3898 Check_Fully_Conformant (Body_Id, Old_Id);
3900 else
3901 Check_Conformance
3902 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3904 if not Conformant then
3906 -- The stub was taken to be a new declaration. Indicate that
3907 -- it lacks a body.
3909 Set_Has_Completion (Old_Id, False);
3910 end if;
3911 end if;
3912 end;
3913 end if;
3915 Set_Has_Completion (Body_Id);
3916 Check_Eliminated (Body_Id);
3918 -- Analyze any aspect specifications that appear on the subprogram body
3919 -- stub. Stop the analysis now as the stub does not have a declarative
3920 -- or a statement part, and it cannot be inlined.
3922 if Nkind (N) = N_Subprogram_Body_Stub then
3923 if Has_Aspects (N) then
3924 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
3925 end if;
3927 goto Leave;
3928 end if;
3930 -- Handle inlining
3932 -- Note: Normally we don't do any inlining if expansion is off, since
3933 -- we won't generate code in any case. An exception arises in GNATprove
3934 -- mode where we want to expand some calls in place, even with expansion
3935 -- disabled, since the inlining eases formal verification.
3937 if not GNATprove_Mode
3938 and then Expander_Active
3939 and then Serious_Errors_Detected = 0
3940 and then Present (Spec_Id)
3941 and then Has_Pragma_Inline (Spec_Id)
3942 then
3943 -- Legacy implementation (relying on front-end inlining)
3945 if not Back_End_Inlining then
3946 if (Has_Pragma_Inline_Always (Spec_Id)
3947 and then not Opt.Disable_FE_Inline_Always)
3948 or else (Front_End_Inlining
3949 and then not Opt.Disable_FE_Inline)
3950 then
3951 Build_Body_To_Inline (N, Spec_Id);
3952 end if;
3954 -- New implementation (relying on back-end inlining)
3956 else
3957 if Has_Pragma_Inline_Always (Spec_Id)
3958 or else Optimization_Level > 0
3959 then
3960 -- Handle function returning an unconstrained type
3962 if Comes_From_Source (Body_Id)
3963 and then Ekind (Spec_Id) = E_Function
3964 and then Returns_Unconstrained_Type (Spec_Id)
3966 -- If function builds in place, i.e. returns a limited type,
3967 -- inlining cannot be done.
3969 and then not Is_Limited_Type (Etype (Spec_Id))
3970 then
3971 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
3973 else
3974 declare
3975 Subp_Body : constant Node_Id :=
3976 Unit_Declaration_Node (Body_Id);
3977 Subp_Decl : constant List_Id := Declarations (Subp_Body);
3979 begin
3980 -- Do not pass inlining to the backend if the subprogram
3981 -- has declarations or statements which cannot be inlined
3982 -- by the backend. This check is done here to emit an
3983 -- error instead of the generic warning message reported
3984 -- by the GCC backend (ie. "function might not be
3985 -- inlinable").
3987 if Present (Subp_Decl)
3988 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
3989 then
3990 null;
3992 elsif Has_Excluded_Statement
3993 (Spec_Id,
3994 Statements
3995 (Handled_Statement_Sequence (Subp_Body)))
3996 then
3997 null;
3999 -- If the backend inlining is available then at this
4000 -- stage we only have to mark the subprogram as inlined.
4001 -- The expander will take care of registering it in the
4002 -- table of subprograms inlined by the backend a part of
4003 -- processing calls to it (cf. Expand_Call)
4005 else
4006 Set_Is_Inlined (Spec_Id);
4007 end if;
4008 end;
4009 end if;
4010 end if;
4011 end if;
4013 -- In GNATprove mode, inline only when there is a separate subprogram
4014 -- declaration for now, as inlining of subprogram bodies acting as
4015 -- declarations, or subprogram stubs, are not supported by front-end
4016 -- inlining. This inlining should occur after analysis of the body, so
4017 -- that it is known whether the value of SPARK_Mode, which can be
4018 -- defined by a pragma inside the body, is applicable to the body.
4020 elsif GNATprove_Mode
4021 and then Full_Analysis
4022 and then not Inside_A_Generic
4023 and then Present (Spec_Id)
4024 and then
4025 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
4026 and then Body_Has_SPARK_Mode_On
4027 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
4028 and then not Body_Has_Contract
4029 then
4030 Build_Body_To_Inline (N, Spec_Id);
4031 end if;
4033 -- When generating code, inherited pre/postconditions are handled when
4034 -- expanding the corresponding contract.
4036 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
4037 -- of the specification we have to install the private withed units.
4038 -- This holds for child units as well.
4040 if Is_Compilation_Unit (Body_Id)
4041 or else Nkind (Parent (N)) = N_Compilation_Unit
4042 then
4043 Install_Private_With_Clauses (Body_Id);
4044 end if;
4046 Check_Anonymous_Return;
4048 -- Set the Protected_Formal field of each extra formal of the protected
4049 -- subprogram to reference the corresponding extra formal of the
4050 -- subprogram that implements it. For regular formals this occurs when
4051 -- the protected subprogram's declaration is expanded, but the extra
4052 -- formals don't get created until the subprogram is frozen. We need to
4053 -- do this before analyzing the protected subprogram's body so that any
4054 -- references to the original subprogram's extra formals will be changed
4055 -- refer to the implementing subprogram's formals (see Expand_Formal).
4057 if Present (Spec_Id)
4058 and then Is_Protected_Type (Scope (Spec_Id))
4059 and then Present (Protected_Body_Subprogram (Spec_Id))
4060 then
4061 declare
4062 Impl_Subp : constant Entity_Id :=
4063 Protected_Body_Subprogram (Spec_Id);
4064 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
4065 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
4066 begin
4067 while Present (Prot_Ext_Formal) loop
4068 pragma Assert (Present (Impl_Ext_Formal));
4069 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
4070 Next_Formal_With_Extras (Prot_Ext_Formal);
4071 Next_Formal_With_Extras (Impl_Ext_Formal);
4072 end loop;
4073 end;
4074 end if;
4076 -- Now we can go on to analyze the body
4078 HSS := Handled_Statement_Sequence (N);
4079 Set_Actual_Subtypes (N, Current_Scope);
4081 -- Add a declaration for the Protection object, renaming declarations
4082 -- for discriminals and privals and finally a declaration for the entry
4083 -- family index (if applicable). This form of early expansion is done
4084 -- when the Expander is active because Install_Private_Data_Declarations
4085 -- references entities which were created during regular expansion. The
4086 -- subprogram entity must come from source, and not be an internally
4087 -- generated subprogram.
4089 if Expander_Active
4090 and then Present (Prot_Typ)
4091 and then Present (Spec_Id)
4092 and then Comes_From_Source (Spec_Id)
4093 and then not Is_Eliminated (Spec_Id)
4094 then
4095 Install_Private_Data_Declarations
4096 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
4097 end if;
4099 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
4100 -- may now appear in parameter and result profiles. Since the analysis
4101 -- of a subprogram body may use the parameter and result profile of the
4102 -- spec, swap any limited views with their non-limited counterpart.
4104 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
4105 Exch_Views := Exchange_Limited_Views (Spec_Id);
4106 end if;
4108 -- If the return type is an anonymous access type whose designated type
4109 -- is the limited view of a class-wide type and the non-limited view is
4110 -- available, update the return type accordingly.
4112 if Ada_Version >= Ada_2005 and then Present (Spec_Id) then
4113 declare
4114 Etyp : Entity_Id;
4115 Rtyp : Entity_Id;
4117 begin
4118 Rtyp := Etype (Spec_Id);
4120 if Ekind (Rtyp) = E_Anonymous_Access_Type then
4121 Etyp := Directly_Designated_Type (Rtyp);
4123 if Is_Class_Wide_Type (Etyp)
4124 and then From_Limited_With (Etyp)
4125 then
4126 Desig_View := Etyp;
4127 Set_Directly_Designated_Type (Rtyp, Available_View (Etyp));
4128 end if;
4129 end if;
4130 end;
4131 end if;
4133 -- Analyze any aspect specifications that appear on the subprogram body
4135 if Has_Aspects (N) then
4136 Analyze_Aspect_Specifications_On_Body_Or_Stub (N);
4137 end if;
4139 Analyze_Declarations (Declarations (N));
4141 -- Verify that the SPARK_Mode of the body agrees with that of its spec
4143 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
4144 if Present (SPARK_Pragma (Spec_Id)) then
4145 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
4146 and then
4147 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
4148 then
4149 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4150 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
4151 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
4152 Error_Msg_NE
4153 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
4154 end if;
4156 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
4157 null;
4159 else
4160 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
4161 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
4162 Error_Msg_Sloc := Sloc (Spec_Id);
4163 Error_Msg_NE
4164 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
4165 end if;
4166 end if;
4168 -- A subprogram body "freezes" its own contract. Analyze the contract
4169 -- after the declarations of the body have been processed as pragmas
4170 -- are now chained on the contract of the subprogram body.
4172 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
4174 -- Check completion, and analyze the statements
4176 Check_Completion;
4177 Inspect_Deferred_Constant_Completion (Declarations (N));
4178 Analyze (HSS);
4180 -- Deal with end of scope processing for the body
4182 Process_End_Label (HSS, 't', Current_Scope);
4183 End_Scope;
4185 -- If we are compiling an entry wrapper, remove the enclosing
4186 -- synchronized object from the stack.
4188 if Is_Entry_Wrapper (Body_Id) then
4189 End_Scope;
4190 end if;
4192 Check_Subprogram_Order (N);
4193 Set_Analyzed (Body_Id);
4195 -- If we have a separate spec, then the analysis of the declarations
4196 -- caused the entities in the body to be chained to the spec id, but
4197 -- we want them chained to the body id. Only the formal parameters
4198 -- end up chained to the spec id in this case.
4200 if Present (Spec_Id) then
4202 -- We must conform to the categorization of our spec
4204 Validate_Categorization_Dependency (N, Spec_Id);
4206 -- And if this is a child unit, the parent units must conform
4208 if Is_Child_Unit (Spec_Id) then
4209 Validate_Categorization_Dependency
4210 (Unit_Declaration_Node (Spec_Id), Spec_Id);
4211 end if;
4213 -- Here is where we move entities from the spec to the body
4215 -- Case where there are entities that stay with the spec
4217 if Present (Last_Real_Spec_Entity) then
4219 -- No body entities (happens when the only real spec entities come
4220 -- from precondition and postcondition pragmas).
4222 if No (Last_Entity (Body_Id)) then
4223 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
4225 -- Body entities present (formals), so chain stuff past them
4227 else
4228 Set_Next_Entity
4229 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
4230 end if;
4232 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
4233 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4234 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
4236 -- Case where there are no spec entities, in this case there can be
4237 -- no body entities either, so just move everything.
4239 -- If the body is generated for an expression function, it may have
4240 -- been preanalyzed already, if 'access was applied to it.
4242 else
4243 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
4244 N_Expression_Function
4245 then
4246 pragma Assert (No (Last_Entity (Body_Id)));
4247 null;
4248 end if;
4250 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
4251 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
4252 Set_First_Entity (Spec_Id, Empty);
4253 Set_Last_Entity (Spec_Id, Empty);
4254 end if;
4255 end if;
4257 Check_Missing_Return;
4259 -- Now we are going to check for variables that are never modified in
4260 -- the body of the procedure. But first we deal with a special case
4261 -- where we want to modify this check. If the body of the subprogram
4262 -- starts with a raise statement or its equivalent, or if the body
4263 -- consists entirely of a null statement, then it is pretty obvious that
4264 -- it is OK to not reference the parameters. For example, this might be
4265 -- the following common idiom for a stubbed function: statement of the
4266 -- procedure raises an exception. In particular this deals with the
4267 -- common idiom of a stubbed function, which appears something like:
4269 -- function F (A : Integer) return Some_Type;
4270 -- X : Some_Type;
4271 -- begin
4272 -- raise Program_Error;
4273 -- return X;
4274 -- end F;
4276 -- Here the purpose of X is simply to satisfy the annoying requirement
4277 -- in Ada that there be at least one return, and we certainly do not
4278 -- want to go posting warnings on X that it is not initialized. On
4279 -- the other hand, if X is entirely unreferenced that should still
4280 -- get a warning.
4282 -- What we do is to detect these cases, and if we find them, flag the
4283 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
4284 -- suppress unwanted warnings. For the case of the function stub above
4285 -- we have a special test to set X as apparently assigned to suppress
4286 -- the warning.
4288 declare
4289 Stm : Node_Id;
4291 begin
4292 -- Skip initial labels (for one thing this occurs when we are in
4293 -- front-end ZCX mode, but in any case it is irrelevant), and also
4294 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
4296 Stm := First (Statements (HSS));
4297 while Nkind (Stm) = N_Label
4298 or else Nkind (Stm) in N_Push_xxx_Label
4299 loop
4300 Next (Stm);
4301 end loop;
4303 -- Do the test on the original statement before expansion
4305 declare
4306 Ostm : constant Node_Id := Original_Node (Stm);
4308 begin
4309 -- If explicit raise statement, turn on flag
4311 if Nkind (Ostm) = N_Raise_Statement then
4312 Set_Trivial_Subprogram (Stm);
4314 -- If null statement, and no following statements, turn on flag
4316 elsif Nkind (Stm) = N_Null_Statement
4317 and then Comes_From_Source (Stm)
4318 and then No (Next (Stm))
4319 then
4320 Set_Trivial_Subprogram (Stm);
4322 -- Check for explicit call cases which likely raise an exception
4324 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
4325 if Is_Entity_Name (Name (Ostm)) then
4326 declare
4327 Ent : constant Entity_Id := Entity (Name (Ostm));
4329 begin
4330 -- If the procedure is marked No_Return, then likely it
4331 -- raises an exception, but in any case it is not coming
4332 -- back here, so turn on the flag.
4334 if Present (Ent)
4335 and then Ekind (Ent) = E_Procedure
4336 and then No_Return (Ent)
4337 then
4338 Set_Trivial_Subprogram (Stm);
4339 end if;
4340 end;
4341 end if;
4342 end if;
4343 end;
4344 end;
4346 -- Check for variables that are never modified
4348 declare
4349 E1 : Entity_Id;
4350 E2 : Entity_Id;
4352 begin
4353 -- If there is a separate spec, then transfer Never_Set_In_Source
4354 -- flags from out parameters to the corresponding entities in the
4355 -- body. The reason we do that is we want to post error flags on
4356 -- the body entities, not the spec entities.
4358 if Present (Spec_Id) then
4359 E1 := First_Entity (Spec_Id);
4360 while Present (E1) loop
4361 if Ekind (E1) = E_Out_Parameter then
4362 E2 := First_Entity (Body_Id);
4363 while Present (E2) loop
4364 exit when Chars (E1) = Chars (E2);
4365 Next_Entity (E2);
4366 end loop;
4368 if Present (E2) then
4369 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4370 end if;
4371 end if;
4373 Next_Entity (E1);
4374 end loop;
4375 end if;
4377 -- Check references in body
4379 Check_References (Body_Id);
4380 end;
4382 -- Check for nested subprogram, and mark outer level subprogram if so
4384 declare
4385 Ent : Entity_Id;
4387 begin
4388 if Present (Spec_Id) then
4389 Ent := Spec_Id;
4390 else
4391 Ent := Body_Id;
4392 end if;
4394 loop
4395 Ent := Enclosing_Subprogram (Ent);
4396 exit when No (Ent) or else Is_Subprogram (Ent);
4397 end loop;
4399 if Present (Ent) then
4400 Set_Has_Nested_Subprogram (Ent);
4401 end if;
4402 end;
4404 -- Restore the limited views in the spec, if any, to let the back end
4405 -- process it without running into circularities.
4407 if Exch_Views /= No_Elist then
4408 Restore_Limited_Views (Exch_Views);
4409 end if;
4411 if Present (Desig_View) then
4412 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
4413 end if;
4415 <<Leave>>
4416 if Mode_Set then
4417 Restore_Ghost_Mode (Mode);
4418 end if;
4419 end Analyze_Subprogram_Body_Helper;
4421 ------------------------------------
4422 -- Analyze_Subprogram_Declaration --
4423 ------------------------------------
4425 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4426 Scop : constant Entity_Id := Current_Scope;
4427 Designator : Entity_Id;
4429 Is_Completion : Boolean;
4430 -- Indicates whether a null procedure declaration is a completion
4432 begin
4433 -- Null procedures are not allowed in SPARK
4435 if Nkind (Specification (N)) = N_Procedure_Specification
4436 and then Null_Present (Specification (N))
4437 then
4438 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4440 -- Null procedures are allowed in protected types, following the
4441 -- recent AI12-0147.
4443 if Is_Protected_Type (Current_Scope)
4444 and then Ada_Version < Ada_2012
4445 then
4446 Error_Msg_N ("protected operation cannot be a null procedure", N);
4447 end if;
4449 Analyze_Null_Procedure (N, Is_Completion);
4451 -- The null procedure acts as a body, nothing further is needed
4453 if Is_Completion then
4454 return;
4455 end if;
4456 end if;
4458 Designator := Analyze_Subprogram_Specification (Specification (N));
4460 -- A reference may already have been generated for the unit name, in
4461 -- which case the following call is redundant. However it is needed for
4462 -- declarations that are the rewriting of an expression function.
4464 Generate_Definition (Designator);
4466 -- Set the SPARK mode from the current context (may be overwritten later
4467 -- with explicit pragma). This is not done for entry barrier functions
4468 -- because they are generated outside the protected type and should not
4469 -- carry the mode of the enclosing context.
4471 if Nkind (N) = N_Subprogram_Declaration
4472 and then Is_Entry_Barrier_Function (N)
4473 then
4474 null;
4475 else
4476 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4477 Set_SPARK_Pragma_Inherited (Designator);
4478 end if;
4480 if Debug_Flag_C then
4481 Write_Str ("==> subprogram spec ");
4482 Write_Name (Chars (Designator));
4483 Write_Str (" from ");
4484 Write_Location (Sloc (N));
4485 Write_Eol;
4486 Indent;
4487 end if;
4489 Validate_RCI_Subprogram_Declaration (N);
4490 New_Overloaded_Entity (Designator);
4491 Check_Delayed_Subprogram (Designator);
4493 -- If the type of the first formal of the current subprogram is a non-
4494 -- generic tagged private type, mark the subprogram as being a private
4495 -- primitive. Ditto if this is a function with controlling result, and
4496 -- the return type is currently private. In both cases, the type of the
4497 -- controlling argument or result must be in the current scope for the
4498 -- operation to be primitive.
4500 if Has_Controlling_Result (Designator)
4501 and then Is_Private_Type (Etype (Designator))
4502 and then Scope (Etype (Designator)) = Current_Scope
4503 and then not Is_Generic_Actual_Type (Etype (Designator))
4504 then
4505 Set_Is_Private_Primitive (Designator);
4507 elsif Present (First_Formal (Designator)) then
4508 declare
4509 Formal_Typ : constant Entity_Id :=
4510 Etype (First_Formal (Designator));
4511 begin
4512 Set_Is_Private_Primitive (Designator,
4513 Is_Tagged_Type (Formal_Typ)
4514 and then Scope (Formal_Typ) = Current_Scope
4515 and then Is_Private_Type (Formal_Typ)
4516 and then not Is_Generic_Actual_Type (Formal_Typ));
4517 end;
4518 end if;
4520 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4521 -- or null.
4523 if Ada_Version >= Ada_2005
4524 and then Comes_From_Source (N)
4525 and then Is_Dispatching_Operation (Designator)
4526 then
4527 declare
4528 E : Entity_Id;
4529 Etyp : Entity_Id;
4531 begin
4532 if Has_Controlling_Result (Designator) then
4533 Etyp := Etype (Designator);
4535 else
4536 E := First_Entity (Designator);
4537 while Present (E)
4538 and then Is_Formal (E)
4539 and then not Is_Controlling_Formal (E)
4540 loop
4541 Next_Entity (E);
4542 end loop;
4544 Etyp := Etype (E);
4545 end if;
4547 if Is_Access_Type (Etyp) then
4548 Etyp := Directly_Designated_Type (Etyp);
4549 end if;
4551 if Is_Interface (Etyp)
4552 and then not Is_Abstract_Subprogram (Designator)
4553 and then not (Ekind (Designator) = E_Procedure
4554 and then Null_Present (Specification (N)))
4555 then
4556 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4558 -- Specialize error message based on procedures vs. functions,
4559 -- since functions can't be null subprograms.
4561 if Ekind (Designator) = E_Procedure then
4562 Error_Msg_N
4563 ("interface procedure % must be abstract or null", N);
4564 else
4565 Error_Msg_N
4566 ("interface function % must be abstract", N);
4567 end if;
4568 end if;
4569 end;
4570 end if;
4572 -- What is the following code for, it used to be
4574 -- ??? Set_Suppress_Elaboration_Checks
4575 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4577 -- The following seems equivalent, but a bit dubious
4579 if Elaboration_Checks_Suppressed (Designator) then
4580 Set_Kill_Elaboration_Checks (Designator);
4581 end if;
4583 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4584 Set_Categorization_From_Scope (Designator, Scop);
4586 else
4587 -- For a compilation unit, check for library-unit pragmas
4589 Push_Scope (Designator);
4590 Set_Categorization_From_Pragmas (N);
4591 Validate_Categorization_Dependency (N, Designator);
4592 Pop_Scope;
4593 end if;
4595 -- For a compilation unit, set body required. This flag will only be
4596 -- reset if a valid Import or Interface pragma is processed later on.
4598 if Nkind (Parent (N)) = N_Compilation_Unit then
4599 Set_Body_Required (Parent (N), True);
4601 if Ada_Version >= Ada_2005
4602 and then Nkind (Specification (N)) = N_Procedure_Specification
4603 and then Null_Present (Specification (N))
4604 then
4605 Error_Msg_N
4606 ("null procedure cannot be declared at library level", N);
4607 end if;
4608 end if;
4610 Generate_Reference_To_Formals (Designator);
4611 Check_Eliminated (Designator);
4613 if Debug_Flag_C then
4614 Outdent;
4615 Write_Str ("<== subprogram spec ");
4616 Write_Name (Chars (Designator));
4617 Write_Str (" from ");
4618 Write_Location (Sloc (N));
4619 Write_Eol;
4620 end if;
4622 if Is_Protected_Type (Current_Scope) then
4624 -- Indicate that this is a protected operation, because it may be
4625 -- used in subsequent declarations within the protected type.
4627 Set_Convention (Designator, Convention_Protected);
4628 end if;
4630 List_Inherited_Pre_Post_Aspects (Designator);
4632 if Has_Aspects (N) then
4633 Analyze_Aspect_Specifications (N, Designator);
4634 end if;
4635 end Analyze_Subprogram_Declaration;
4637 --------------------------------------
4638 -- Analyze_Subprogram_Specification --
4639 --------------------------------------
4641 -- Reminder: N here really is a subprogram specification (not a subprogram
4642 -- declaration). This procedure is called to analyze the specification in
4643 -- both subprogram bodies and subprogram declarations (specs).
4645 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4646 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
4647 -- Determine whether entity E denotes the spec or body of an invariant
4648 -- procedure.
4650 ------------------------------------
4651 -- Is_Invariant_Procedure_Or_Body --
4652 ------------------------------------
4654 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
4655 Decl : constant Node_Id := Unit_Declaration_Node (E);
4656 Spec : Entity_Id;
4658 begin
4659 if Nkind (Decl) = N_Subprogram_Body then
4660 Spec := Corresponding_Spec (Decl);
4661 else
4662 Spec := E;
4663 end if;
4665 return
4666 Present (Spec)
4667 and then Ekind (Spec) = E_Procedure
4668 and then (Is_Partial_Invariant_Procedure (Spec)
4669 or else Is_Invariant_Procedure (Spec));
4670 end Is_Invariant_Procedure_Or_Body;
4672 -- Local variables
4674 Designator : constant Entity_Id := Defining_Entity (N);
4675 Formals : constant List_Id := Parameter_Specifications (N);
4677 -- Start of processing for Analyze_Subprogram_Specification
4679 begin
4680 -- User-defined operator is not allowed in SPARK, except as a renaming
4682 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4683 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4684 then
4685 Check_SPARK_05_Restriction
4686 ("user-defined operator is not allowed", N);
4687 end if;
4689 -- Proceed with analysis. Do not emit a cross-reference entry if the
4690 -- specification comes from an expression function, because it may be
4691 -- the completion of a previous declaration. It is not, the cross-
4692 -- reference entry will be emitted for the new subprogram declaration.
4694 if Nkind (Parent (N)) /= N_Expression_Function then
4695 Generate_Definition (Designator);
4696 end if;
4698 if Nkind (N) = N_Function_Specification then
4699 Set_Ekind (Designator, E_Function);
4700 Set_Mechanism (Designator, Default_Mechanism);
4701 else
4702 Set_Ekind (Designator, E_Procedure);
4703 Set_Etype (Designator, Standard_Void_Type);
4704 end if;
4706 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4707 -- those subprograms which could be inlined in GNATprove mode (because
4708 -- Body_To_Inline is non-Empty) but should not be inlined.
4710 if GNATprove_Mode then
4711 Set_Is_Inlined_Always (Designator);
4712 end if;
4714 -- Introduce new scope for analysis of the formals and the return type
4716 Set_Scope (Designator, Current_Scope);
4718 if Present (Formals) then
4719 Push_Scope (Designator);
4720 Process_Formals (Formals, N);
4722 -- Check dimensions in N for formals with default expression
4724 Analyze_Dimension_Formals (N, Formals);
4726 -- Ada 2005 (AI-345): If this is an overriding operation of an
4727 -- inherited interface operation, and the controlling type is
4728 -- a synchronized type, replace the type with its corresponding
4729 -- record, to match the proper signature of an overriding operation.
4730 -- Same processing for an access parameter whose designated type is
4731 -- derived from a synchronized interface.
4733 -- This modification is not done for invariant procedures because
4734 -- the corresponding record may not necessarely be visible when the
4735 -- concurrent type acts as the full view of a private type.
4737 -- package Pack is
4738 -- type Prot is private with Type_Invariant => ...;
4739 -- procedure ConcInvariant (Obj : Prot);
4740 -- private
4741 -- protected type Prot is ...;
4742 -- type Concurrent_Record_Prot is record ...;
4743 -- procedure ConcInvariant (Obj : Prot) is
4744 -- ...
4745 -- end ConcInvariant;
4746 -- end Pack;
4748 -- In the example above, both the spec and body of the invariant
4749 -- procedure must utilize the private type as the controlling type.
4751 if Ada_Version >= Ada_2005
4752 and then not Is_Invariant_Procedure_Or_Body (Designator)
4753 then
4754 declare
4755 Formal : Entity_Id;
4756 Formal_Typ : Entity_Id;
4757 Rec_Typ : Entity_Id;
4758 Desig_Typ : Entity_Id;
4760 begin
4761 Formal := First_Formal (Designator);
4762 while Present (Formal) loop
4763 Formal_Typ := Etype (Formal);
4765 if Is_Concurrent_Type (Formal_Typ)
4766 and then Present (Corresponding_Record_Type (Formal_Typ))
4767 then
4768 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4770 if Present (Interfaces (Rec_Typ)) then
4771 Set_Etype (Formal, Rec_Typ);
4772 end if;
4774 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4775 Desig_Typ := Designated_Type (Formal_Typ);
4777 if Is_Concurrent_Type (Desig_Typ)
4778 and then Present (Corresponding_Record_Type (Desig_Typ))
4779 then
4780 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4782 if Present (Interfaces (Rec_Typ)) then
4783 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4784 end if;
4785 end if;
4786 end if;
4788 Next_Formal (Formal);
4789 end loop;
4790 end;
4791 end if;
4793 End_Scope;
4795 -- The subprogram scope is pushed and popped around the processing of
4796 -- the return type for consistency with call above to Process_Formals
4797 -- (which itself can call Analyze_Return_Type), and to ensure that any
4798 -- itype created for the return type will be associated with the proper
4799 -- scope.
4801 elsif Nkind (N) = N_Function_Specification then
4802 Push_Scope (Designator);
4803 Analyze_Return_Type (N);
4804 End_Scope;
4805 end if;
4807 -- Function case
4809 if Nkind (N) = N_Function_Specification then
4811 -- Deal with operator symbol case
4813 if Nkind (Designator) = N_Defining_Operator_Symbol then
4814 Valid_Operator_Definition (Designator);
4815 end if;
4817 May_Need_Actuals (Designator);
4819 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4820 -- the subprogram is abstract also. This does not apply to renaming
4821 -- declarations, where abstractness is inherited, and to subprogram
4822 -- bodies generated for stream operations, which become renamings as
4823 -- bodies.
4825 -- In case of primitives associated with abstract interface types
4826 -- the check is applied later (see Analyze_Subprogram_Declaration).
4828 if not Nkind_In (Original_Node (Parent (N)),
4829 N_Abstract_Subprogram_Declaration,
4830 N_Formal_Abstract_Subprogram_Declaration,
4831 N_Subprogram_Renaming_Declaration)
4832 then
4833 if Is_Abstract_Type (Etype (Designator))
4834 and then not Is_Interface (Etype (Designator))
4835 then
4836 Error_Msg_N
4837 ("function that returns abstract type must be abstract", N);
4839 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4840 -- access result whose designated type is abstract.
4842 elsif Ada_Version >= Ada_2012
4843 and then Nkind (Result_Definition (N)) = N_Access_Definition
4844 and then
4845 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4846 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
4847 then
4848 Error_Msg_N
4849 ("function whose access result designates abstract type "
4850 & "must be abstract", N);
4851 end if;
4852 end if;
4853 end if;
4855 return Designator;
4856 end Analyze_Subprogram_Specification;
4858 -----------------------
4859 -- Check_Conformance --
4860 -----------------------
4862 procedure Check_Conformance
4863 (New_Id : Entity_Id;
4864 Old_Id : Entity_Id;
4865 Ctype : Conformance_Type;
4866 Errmsg : Boolean;
4867 Conforms : out Boolean;
4868 Err_Loc : Node_Id := Empty;
4869 Get_Inst : Boolean := False;
4870 Skip_Controlling_Formals : Boolean := False)
4872 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
4873 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4874 -- If Errmsg is True, then processing continues to post an error message
4875 -- for conformance error on given node. Two messages are output. The
4876 -- first message points to the previous declaration with a general "no
4877 -- conformance" message. The second is the detailed reason, supplied as
4878 -- Msg. The parameter N provide information for a possible & insertion
4879 -- in the message, and also provides the location for posting the
4880 -- message in the absence of a specified Err_Loc location.
4882 function Conventions_Match
4883 (Id1 : Entity_Id;
4884 Id2 : Entity_Id) return Boolean;
4885 -- Determine whether the conventions of arbitrary entities Id1 and Id2
4886 -- match.
4888 -----------------------
4889 -- Conformance_Error --
4890 -----------------------
4892 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4893 Enode : Node_Id;
4895 begin
4896 Conforms := False;
4898 if Errmsg then
4899 if No (Err_Loc) then
4900 Enode := N;
4901 else
4902 Enode := Err_Loc;
4903 end if;
4905 Error_Msg_Sloc := Sloc (Old_Id);
4907 case Ctype is
4908 when Type_Conformant =>
4909 Error_Msg_N -- CODEFIX
4910 ("not type conformant with declaration#!", Enode);
4912 when Mode_Conformant =>
4913 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4914 Error_Msg_N
4915 ("not mode conformant with operation inherited#!",
4916 Enode);
4917 else
4918 Error_Msg_N
4919 ("not mode conformant with declaration#!", Enode);
4920 end if;
4922 when Subtype_Conformant =>
4923 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4924 Error_Msg_N
4925 ("not subtype conformant with operation inherited#!",
4926 Enode);
4927 else
4928 Error_Msg_N
4929 ("not subtype conformant with declaration#!", Enode);
4930 end if;
4932 when Fully_Conformant =>
4933 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4934 Error_Msg_N -- CODEFIX
4935 ("not fully conformant with operation inherited#!",
4936 Enode);
4937 else
4938 Error_Msg_N -- CODEFIX
4939 ("not fully conformant with declaration#!", Enode);
4940 end if;
4941 end case;
4943 Error_Msg_NE (Msg, Enode, N);
4944 end if;
4945 end Conformance_Error;
4947 -----------------------
4948 -- Conventions_Match --
4949 -----------------------
4951 function Conventions_Match
4952 (Id1 : Entity_Id;
4953 Id2 : Entity_Id) return Boolean
4955 begin
4956 -- Ignore the conventions of anonymous access-to-subprogram types
4957 -- and subprogram types because these are internally generated and
4958 -- the only way these may receive a convention is if they inherit
4959 -- the convention of a related subprogram.
4961 if Ekind_In (Id1, E_Anonymous_Access_Subprogram_Type,
4962 E_Subprogram_Type)
4963 or else
4964 Ekind_In (Id2, E_Anonymous_Access_Subprogram_Type,
4965 E_Subprogram_Type)
4966 then
4967 return True;
4969 -- Otherwise compare the conventions directly
4971 else
4972 return Convention (Id1) = Convention (Id2);
4973 end if;
4974 end Conventions_Match;
4976 -- Local Variables
4978 Old_Type : constant Entity_Id := Etype (Old_Id);
4979 New_Type : constant Entity_Id := Etype (New_Id);
4980 Old_Formal : Entity_Id;
4981 New_Formal : Entity_Id;
4982 Access_Types_Match : Boolean;
4983 Old_Formal_Base : Entity_Id;
4984 New_Formal_Base : Entity_Id;
4986 -- Start of processing for Check_Conformance
4988 begin
4989 Conforms := True;
4991 -- We need a special case for operators, since they don't appear
4992 -- explicitly.
4994 if Ctype = Type_Conformant then
4995 if Ekind (New_Id) = E_Operator
4996 and then Operator_Matches_Spec (New_Id, Old_Id)
4997 then
4998 return;
4999 end if;
5000 end if;
5002 -- If both are functions/operators, check return types conform
5004 if Old_Type /= Standard_Void_Type
5005 and then
5006 New_Type /= Standard_Void_Type
5007 then
5008 -- If we are checking interface conformance we omit controlling
5009 -- arguments and result, because we are only checking the conformance
5010 -- of the remaining parameters.
5012 if Has_Controlling_Result (Old_Id)
5013 and then Has_Controlling_Result (New_Id)
5014 and then Skip_Controlling_Formals
5015 then
5016 null;
5018 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5019 if Ctype >= Subtype_Conformant
5020 and then not Predicates_Match (Old_Type, New_Type)
5021 then
5022 Conformance_Error
5023 ("\predicate of return type does not match!", New_Id);
5024 else
5025 Conformance_Error
5026 ("\return type does not match!", New_Id);
5027 end if;
5029 return;
5030 end if;
5032 -- Ada 2005 (AI-231): In case of anonymous access types check the
5033 -- null-exclusion and access-to-constant attributes match.
5035 if Ada_Version >= Ada_2005
5036 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5037 and then
5038 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5039 or else Is_Access_Constant (Etype (Old_Type)) /=
5040 Is_Access_Constant (Etype (New_Type)))
5041 then
5042 Conformance_Error ("\return type does not match!", New_Id);
5043 return;
5044 end if;
5046 -- If either is a function/operator and the other isn't, error
5048 elsif Old_Type /= Standard_Void_Type
5049 or else New_Type /= Standard_Void_Type
5050 then
5051 Conformance_Error ("\functions can only match functions!", New_Id);
5052 return;
5053 end if;
5055 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5056 -- If this is a renaming as body, refine error message to indicate that
5057 -- the conflict is with the original declaration. If the entity is not
5058 -- frozen, the conventions don't have to match, the one of the renamed
5059 -- entity is inherited.
5061 if Ctype >= Subtype_Conformant then
5062 if not Conventions_Match (Old_Id, New_Id) then
5063 if not Is_Frozen (New_Id) then
5064 null;
5066 elsif Present (Err_Loc)
5067 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5068 and then Present (Corresponding_Spec (Err_Loc))
5069 then
5070 Error_Msg_Name_1 := Chars (New_Id);
5071 Error_Msg_Name_2 :=
5072 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5073 Conformance_Error ("\prior declaration for% has convention %!");
5075 else
5076 Conformance_Error ("\calling conventions do not match!");
5077 end if;
5079 return;
5081 elsif Is_Formal_Subprogram (Old_Id)
5082 or else Is_Formal_Subprogram (New_Id)
5083 then
5084 Conformance_Error ("\formal subprograms not allowed!");
5085 return;
5086 end if;
5087 end if;
5089 -- Deal with parameters
5091 -- Note: we use the entity information, rather than going directly
5092 -- to the specification in the tree. This is not only simpler, but
5093 -- absolutely necessary for some cases of conformance tests between
5094 -- operators, where the declaration tree simply does not exist.
5096 Old_Formal := First_Formal (Old_Id);
5097 New_Formal := First_Formal (New_Id);
5098 while Present (Old_Formal) and then Present (New_Formal) loop
5099 if Is_Controlling_Formal (Old_Formal)
5100 and then Is_Controlling_Formal (New_Formal)
5101 and then Skip_Controlling_Formals
5102 then
5103 -- The controlling formals will have different types when
5104 -- comparing an interface operation with its match, but both
5105 -- or neither must be access parameters.
5107 if Is_Access_Type (Etype (Old_Formal))
5109 Is_Access_Type (Etype (New_Formal))
5110 then
5111 goto Skip_Controlling_Formal;
5112 else
5113 Conformance_Error
5114 ("\access parameter does not match!", New_Formal);
5115 end if;
5116 end if;
5118 -- Ada 2012: Mode conformance also requires that formal parameters
5119 -- be both aliased, or neither.
5121 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
5122 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
5123 Conformance_Error
5124 ("\aliased parameter mismatch!", New_Formal);
5125 end if;
5126 end if;
5128 if Ctype = Fully_Conformant then
5130 -- Names must match. Error message is more accurate if we do
5131 -- this before checking that the types of the formals match.
5133 if Chars (Old_Formal) /= Chars (New_Formal) then
5134 Conformance_Error ("\name& does not match!", New_Formal);
5136 -- Set error posted flag on new formal as well to stop
5137 -- junk cascaded messages in some cases.
5139 Set_Error_Posted (New_Formal);
5140 return;
5141 end if;
5143 -- Null exclusion must match
5145 if Null_Exclusion_Present (Parent (Old_Formal))
5147 Null_Exclusion_Present (Parent (New_Formal))
5148 then
5149 -- Only give error if both come from source. This should be
5150 -- investigated some time, since it should not be needed ???
5152 if Comes_From_Source (Old_Formal)
5153 and then
5154 Comes_From_Source (New_Formal)
5155 then
5156 Conformance_Error
5157 ("\null exclusion for& does not match", New_Formal);
5159 -- Mark error posted on the new formal to avoid duplicated
5160 -- complaint about types not matching.
5162 Set_Error_Posted (New_Formal);
5163 end if;
5164 end if;
5165 end if;
5167 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
5168 -- case occurs whenever a subprogram is being renamed and one of its
5169 -- parameters imposes a null exclusion. For example:
5171 -- type T is null record;
5172 -- type Acc_T is access T;
5173 -- subtype Acc_T_Sub is Acc_T;
5175 -- procedure P (Obj : not null Acc_T_Sub); -- itype
5176 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
5177 -- renames P;
5179 Old_Formal_Base := Etype (Old_Formal);
5180 New_Formal_Base := Etype (New_Formal);
5182 if Get_Inst then
5183 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
5184 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
5185 end if;
5187 Access_Types_Match := Ada_Version >= Ada_2005
5189 -- Ensure that this rule is only applied when New_Id is a
5190 -- renaming of Old_Id.
5192 and then Nkind (Parent (Parent (New_Id))) =
5193 N_Subprogram_Renaming_Declaration
5194 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
5195 and then Present (Entity (Name (Parent (Parent (New_Id)))))
5196 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
5198 -- Now handle the allowed access-type case
5200 and then Is_Access_Type (Old_Formal_Base)
5201 and then Is_Access_Type (New_Formal_Base)
5203 -- The type kinds must match. The only exception occurs with
5204 -- multiple generics of the form:
5206 -- generic generic
5207 -- type F is private; type A is private;
5208 -- type F_Ptr is access F; type A_Ptr is access A;
5209 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
5210 -- package F_Pack is ... package A_Pack is
5211 -- package F_Inst is
5212 -- new F_Pack (A, A_Ptr, A_P);
5214 -- When checking for conformance between the parameters of A_P
5215 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
5216 -- because the compiler has transformed A_Ptr into a subtype of
5217 -- F_Ptr. We catch this case in the code below.
5219 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
5220 or else
5221 (Is_Generic_Type (Old_Formal_Base)
5222 and then Is_Generic_Type (New_Formal_Base)
5223 and then Is_Internal (New_Formal_Base)
5224 and then Etype (Etype (New_Formal_Base)) =
5225 Old_Formal_Base))
5226 and then Directly_Designated_Type (Old_Formal_Base) =
5227 Directly_Designated_Type (New_Formal_Base)
5228 and then ((Is_Itype (Old_Formal_Base)
5229 and then Can_Never_Be_Null (Old_Formal_Base))
5230 or else
5231 (Is_Itype (New_Formal_Base)
5232 and then Can_Never_Be_Null (New_Formal_Base)));
5234 -- Types must always match. In the visible part of an instance,
5235 -- usual overloading rules for dispatching operations apply, and
5236 -- we check base types (not the actual subtypes).
5238 if In_Instance_Visible_Part
5239 and then Is_Dispatching_Operation (New_Id)
5240 then
5241 if not Conforming_Types
5242 (T1 => Base_Type (Etype (Old_Formal)),
5243 T2 => Base_Type (Etype (New_Formal)),
5244 Ctype => Ctype,
5245 Get_Inst => Get_Inst)
5246 and then not Access_Types_Match
5247 then
5248 Conformance_Error ("\type of & does not match!", New_Formal);
5249 return;
5250 end if;
5252 elsif not Conforming_Types
5253 (T1 => Old_Formal_Base,
5254 T2 => New_Formal_Base,
5255 Ctype => Ctype,
5256 Get_Inst => Get_Inst)
5257 and then not Access_Types_Match
5258 then
5259 -- Don't give error message if old type is Any_Type. This test
5260 -- avoids some cascaded errors, e.g. in case of a bad spec.
5262 if Errmsg and then Old_Formal_Base = Any_Type then
5263 Conforms := False;
5264 else
5265 if Ctype >= Subtype_Conformant
5266 and then
5267 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
5268 then
5269 Conformance_Error
5270 ("\predicate of & does not match!", New_Formal);
5271 else
5272 Conformance_Error
5273 ("\type of & does not match!", New_Formal);
5274 end if;
5275 end if;
5277 return;
5278 end if;
5280 -- For mode conformance, mode must match
5282 if Ctype >= Mode_Conformant then
5283 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
5284 if not Ekind_In (New_Id, E_Function, E_Procedure)
5285 or else not Is_Primitive_Wrapper (New_Id)
5286 then
5287 Conformance_Error ("\mode of & does not match!", New_Formal);
5289 else
5290 declare
5291 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
5292 begin
5293 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
5294 then
5295 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
5296 else
5297 Conformance_Error
5298 ("\mode of & does not match!", New_Formal);
5299 end if;
5300 end;
5301 end if;
5303 return;
5305 -- Part of mode conformance for access types is having the same
5306 -- constant modifier.
5308 elsif Access_Types_Match
5309 and then Is_Access_Constant (Old_Formal_Base) /=
5310 Is_Access_Constant (New_Formal_Base)
5311 then
5312 Conformance_Error
5313 ("\constant modifier does not match!", New_Formal);
5314 return;
5315 end if;
5316 end if;
5318 if Ctype >= Subtype_Conformant then
5320 -- Ada 2005 (AI-231): In case of anonymous access types check
5321 -- the null-exclusion and access-to-constant attributes must
5322 -- match. For null exclusion, we test the types rather than the
5323 -- formals themselves, since the attribute is only set reliably
5324 -- on the formals in the Ada 95 case, and we exclude the case
5325 -- where Old_Formal is marked as controlling, to avoid errors
5326 -- when matching completing bodies with dispatching declarations
5327 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5329 if Ada_Version >= Ada_2005
5330 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5331 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5332 and then
5333 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5334 Can_Never_Be_Null (Etype (New_Formal))
5335 and then
5336 not Is_Controlling_Formal (Old_Formal))
5337 or else
5338 Is_Access_Constant (Etype (Old_Formal)) /=
5339 Is_Access_Constant (Etype (New_Formal)))
5341 -- Do not complain if error already posted on New_Formal. This
5342 -- avoids some redundant error messages.
5344 and then not Error_Posted (New_Formal)
5345 then
5346 -- It is allowed to omit the null-exclusion in case of stream
5347 -- attribute subprograms. We recognize stream subprograms
5348 -- through their TSS-generated suffix.
5350 declare
5351 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5353 begin
5354 if TSS_Name /= TSS_Stream_Read
5355 and then TSS_Name /= TSS_Stream_Write
5356 and then TSS_Name /= TSS_Stream_Input
5357 and then TSS_Name /= TSS_Stream_Output
5358 then
5359 -- Here we have a definite conformance error. It is worth
5360 -- special casing the error message for the case of a
5361 -- controlling formal (which excludes null).
5363 if Is_Controlling_Formal (New_Formal) then
5364 Error_Msg_Node_2 := Scope (New_Formal);
5365 Conformance_Error
5366 ("\controlling formal & of & excludes null, "
5367 & "declaration must exclude null as well",
5368 New_Formal);
5370 -- Normal case (couldn't we give more detail here???)
5372 else
5373 Conformance_Error
5374 ("\type of & does not match!", New_Formal);
5375 end if;
5377 return;
5378 end if;
5379 end;
5380 end if;
5381 end if;
5383 -- Full conformance checks
5385 if Ctype = Fully_Conformant then
5387 -- We have checked already that names match
5389 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5391 -- Check default expressions for in parameters
5393 declare
5394 NewD : constant Boolean :=
5395 Present (Default_Value (New_Formal));
5396 OldD : constant Boolean :=
5397 Present (Default_Value (Old_Formal));
5398 begin
5399 if NewD or OldD then
5401 -- The old default value has been analyzed because the
5402 -- current full declaration will have frozen everything
5403 -- before. The new default value has not been analyzed,
5404 -- so analyze it now before we check for conformance.
5406 if NewD then
5407 Push_Scope (New_Id);
5408 Preanalyze_Spec_Expression
5409 (Default_Value (New_Formal), Etype (New_Formal));
5410 End_Scope;
5411 end if;
5413 if not (NewD and OldD)
5414 or else not Fully_Conformant_Expressions
5415 (Default_Value (Old_Formal),
5416 Default_Value (New_Formal))
5417 then
5418 Conformance_Error
5419 ("\default expression for & does not match!",
5420 New_Formal);
5421 return;
5422 end if;
5423 end if;
5424 end;
5425 end if;
5426 end if;
5428 -- A couple of special checks for Ada 83 mode. These checks are
5429 -- skipped if either entity is an operator in package Standard,
5430 -- or if either old or new instance is not from the source program.
5432 if Ada_Version = Ada_83
5433 and then Sloc (Old_Id) > Standard_Location
5434 and then Sloc (New_Id) > Standard_Location
5435 and then Comes_From_Source (Old_Id)
5436 and then Comes_From_Source (New_Id)
5437 then
5438 declare
5439 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5440 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5442 begin
5443 -- Explicit IN must be present or absent in both cases. This
5444 -- test is required only in the full conformance case.
5446 if In_Present (Old_Param) /= In_Present (New_Param)
5447 and then Ctype = Fully_Conformant
5448 then
5449 Conformance_Error
5450 ("\(Ada 83) IN must appear in both declarations",
5451 New_Formal);
5452 return;
5453 end if;
5455 -- Grouping (use of comma in param lists) must be the same
5456 -- This is where we catch a misconformance like:
5458 -- A, B : Integer
5459 -- A : Integer; B : Integer
5461 -- which are represented identically in the tree except
5462 -- for the setting of the flags More_Ids and Prev_Ids.
5464 if More_Ids (Old_Param) /= More_Ids (New_Param)
5465 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5466 then
5467 Conformance_Error
5468 ("\grouping of & does not match!", New_Formal);
5469 return;
5470 end if;
5471 end;
5472 end if;
5474 -- This label is required when skipping controlling formals
5476 <<Skip_Controlling_Formal>>
5478 Next_Formal (Old_Formal);
5479 Next_Formal (New_Formal);
5480 end loop;
5482 if Present (Old_Formal) then
5483 Conformance_Error ("\too few parameters!");
5484 return;
5486 elsif Present (New_Formal) then
5487 Conformance_Error ("\too many parameters!", New_Formal);
5488 return;
5489 end if;
5490 end Check_Conformance;
5492 -----------------------
5493 -- Check_Conventions --
5494 -----------------------
5496 procedure Check_Conventions (Typ : Entity_Id) is
5497 Ifaces_List : Elist_Id;
5499 procedure Check_Convention (Op : Entity_Id);
5500 -- Verify that the convention of inherited dispatching operation Op is
5501 -- consistent among all subprograms it overrides. In order to minimize
5502 -- the search, Search_From is utilized to designate a specific point in
5503 -- the list rather than iterating over the whole list once more.
5505 ----------------------
5506 -- Check_Convention --
5507 ----------------------
5509 procedure Check_Convention (Op : Entity_Id) is
5510 Op_Conv : constant Convention_Id := Convention (Op);
5511 Iface_Conv : Convention_Id;
5512 Iface_Elmt : Elmt_Id;
5513 Iface_Prim_Elmt : Elmt_Id;
5514 Iface_Prim : Entity_Id;
5516 begin
5517 Iface_Elmt := First_Elmt (Ifaces_List);
5518 while Present (Iface_Elmt) loop
5519 Iface_Prim_Elmt :=
5520 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5521 while Present (Iface_Prim_Elmt) loop
5522 Iface_Prim := Node (Iface_Prim_Elmt);
5523 Iface_Conv := Convention (Iface_Prim);
5525 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5526 and then Iface_Conv /= Op_Conv
5527 then
5528 Error_Msg_N
5529 ("inconsistent conventions in primitive operations", Typ);
5531 Error_Msg_Name_1 := Chars (Op);
5532 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5533 Error_Msg_Sloc := Sloc (Op);
5535 if Comes_From_Source (Op) or else No (Alias (Op)) then
5536 if not Present (Overridden_Operation (Op)) then
5537 Error_Msg_N ("\\primitive % defined #", Typ);
5538 else
5539 Error_Msg_N
5540 ("\\overriding operation % with "
5541 & "convention % defined #", Typ);
5542 end if;
5544 else pragma Assert (Present (Alias (Op)));
5545 Error_Msg_Sloc := Sloc (Alias (Op));
5546 Error_Msg_N ("\\inherited operation % with "
5547 & "convention % defined #", Typ);
5548 end if;
5550 Error_Msg_Name_1 := Chars (Op);
5551 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5552 Error_Msg_Sloc := Sloc (Iface_Prim);
5553 Error_Msg_N ("\\overridden operation % with "
5554 & "convention % defined #", Typ);
5556 -- Avoid cascading errors
5558 return;
5559 end if;
5561 Next_Elmt (Iface_Prim_Elmt);
5562 end loop;
5564 Next_Elmt (Iface_Elmt);
5565 end loop;
5566 end Check_Convention;
5568 -- Local variables
5570 Prim_Op : Entity_Id;
5571 Prim_Op_Elmt : Elmt_Id;
5573 -- Start of processing for Check_Conventions
5575 begin
5576 if not Has_Interfaces (Typ) then
5577 return;
5578 end if;
5580 Collect_Interfaces (Typ, Ifaces_List);
5582 -- The algorithm checks every overriding dispatching operation against
5583 -- all the corresponding overridden dispatching operations, detecting
5584 -- differences in conventions.
5586 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5587 while Present (Prim_Op_Elmt) loop
5588 Prim_Op := Node (Prim_Op_Elmt);
5590 -- A small optimization: skip the predefined dispatching operations
5591 -- since they always have the same convention.
5593 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5594 Check_Convention (Prim_Op);
5595 end if;
5597 Next_Elmt (Prim_Op_Elmt);
5598 end loop;
5599 end Check_Conventions;
5601 ------------------------------
5602 -- Check_Delayed_Subprogram --
5603 ------------------------------
5605 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5606 F : Entity_Id;
5608 procedure Possible_Freeze (T : Entity_Id);
5609 -- T is the type of either a formal parameter or of the return type.
5610 -- If T is not yet frozen and needs a delayed freeze, then the
5611 -- subprogram itself must be delayed.
5613 ---------------------
5614 -- Possible_Freeze --
5615 ---------------------
5617 procedure Possible_Freeze (T : Entity_Id) is
5618 begin
5619 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5620 Set_Has_Delayed_Freeze (Designator);
5622 elsif Is_Access_Type (T)
5623 and then Has_Delayed_Freeze (Designated_Type (T))
5624 and then not Is_Frozen (Designated_Type (T))
5625 then
5626 Set_Has_Delayed_Freeze (Designator);
5627 end if;
5629 end Possible_Freeze;
5631 -- Start of processing for Check_Delayed_Subprogram
5633 begin
5634 -- All subprograms, including abstract subprograms, may need a freeze
5635 -- node if some formal type or the return type needs one.
5637 Possible_Freeze (Etype (Designator));
5638 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5640 -- Need delayed freeze if any of the formal types themselves need
5641 -- a delayed freeze and are not yet frozen.
5643 F := First_Formal (Designator);
5644 while Present (F) loop
5645 Possible_Freeze (Etype (F));
5646 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5647 Next_Formal (F);
5648 end loop;
5650 -- Mark functions that return by reference. Note that it cannot be
5651 -- done for delayed_freeze subprograms because the underlying
5652 -- returned type may not be known yet (for private types)
5654 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5655 declare
5656 Typ : constant Entity_Id := Etype (Designator);
5657 Utyp : constant Entity_Id := Underlying_Type (Typ);
5658 begin
5659 if Is_Limited_View (Typ) then
5660 Set_Returns_By_Ref (Designator);
5661 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5662 Set_Returns_By_Ref (Designator);
5663 end if;
5664 end;
5665 end if;
5666 end Check_Delayed_Subprogram;
5668 ------------------------------------
5669 -- Check_Discriminant_Conformance --
5670 ------------------------------------
5672 procedure Check_Discriminant_Conformance
5673 (N : Node_Id;
5674 Prev : Entity_Id;
5675 Prev_Loc : Node_Id)
5677 Old_Discr : Entity_Id := First_Discriminant (Prev);
5678 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5679 New_Discr_Id : Entity_Id;
5680 New_Discr_Type : Entity_Id;
5682 procedure Conformance_Error (Msg : String; N : Node_Id);
5683 -- Post error message for conformance error on given node. Two messages
5684 -- are output. The first points to the previous declaration with a
5685 -- general "no conformance" message. The second is the detailed reason,
5686 -- supplied as Msg. The parameter N provide information for a possible
5687 -- & insertion in the message.
5689 -----------------------
5690 -- Conformance_Error --
5691 -----------------------
5693 procedure Conformance_Error (Msg : String; N : Node_Id) is
5694 begin
5695 Error_Msg_Sloc := Sloc (Prev_Loc);
5696 Error_Msg_N -- CODEFIX
5697 ("not fully conformant with declaration#!", N);
5698 Error_Msg_NE (Msg, N, N);
5699 end Conformance_Error;
5701 -- Start of processing for Check_Discriminant_Conformance
5703 begin
5704 while Present (Old_Discr) and then Present (New_Discr) loop
5705 New_Discr_Id := Defining_Identifier (New_Discr);
5707 -- The subtype mark of the discriminant on the full type has not
5708 -- been analyzed so we do it here. For an access discriminant a new
5709 -- type is created.
5711 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5712 New_Discr_Type :=
5713 Access_Definition (N, Discriminant_Type (New_Discr));
5715 else
5716 Analyze (Discriminant_Type (New_Discr));
5717 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5719 -- Ada 2005: if the discriminant definition carries a null
5720 -- exclusion, create an itype to check properly for consistency
5721 -- with partial declaration.
5723 if Is_Access_Type (New_Discr_Type)
5724 and then Null_Exclusion_Present (New_Discr)
5725 then
5726 New_Discr_Type :=
5727 Create_Null_Excluding_Itype
5728 (T => New_Discr_Type,
5729 Related_Nod => New_Discr,
5730 Scope_Id => Current_Scope);
5731 end if;
5732 end if;
5734 if not Conforming_Types
5735 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5736 then
5737 Conformance_Error ("type of & does not match!", New_Discr_Id);
5738 return;
5739 else
5740 -- Treat the new discriminant as an occurrence of the old one,
5741 -- for navigation purposes, and fill in some semantic
5742 -- information, for completeness.
5744 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5745 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5746 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5747 end if;
5749 -- Names must match
5751 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5752 Conformance_Error ("name & does not match!", New_Discr_Id);
5753 return;
5754 end if;
5756 -- Default expressions must match
5758 declare
5759 NewD : constant Boolean :=
5760 Present (Expression (New_Discr));
5761 OldD : constant Boolean :=
5762 Present (Expression (Parent (Old_Discr)));
5764 begin
5765 if NewD or OldD then
5767 -- The old default value has been analyzed and expanded,
5768 -- because the current full declaration will have frozen
5769 -- everything before. The new default values have not been
5770 -- expanded, so expand now to check conformance.
5772 if NewD then
5773 Preanalyze_Spec_Expression
5774 (Expression (New_Discr), New_Discr_Type);
5775 end if;
5777 if not (NewD and OldD)
5778 or else not Fully_Conformant_Expressions
5779 (Expression (Parent (Old_Discr)),
5780 Expression (New_Discr))
5782 then
5783 Conformance_Error
5784 ("default expression for & does not match!",
5785 New_Discr_Id);
5786 return;
5787 end if;
5788 end if;
5789 end;
5791 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5793 if Ada_Version = Ada_83 then
5794 declare
5795 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
5797 begin
5798 -- Grouping (use of comma in param lists) must be the same
5799 -- This is where we catch a misconformance like:
5801 -- A, B : Integer
5802 -- A : Integer; B : Integer
5804 -- which are represented identically in the tree except
5805 -- for the setting of the flags More_Ids and Prev_Ids.
5807 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
5808 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
5809 then
5810 Conformance_Error
5811 ("grouping of & does not match!", New_Discr_Id);
5812 return;
5813 end if;
5814 end;
5815 end if;
5817 Next_Discriminant (Old_Discr);
5818 Next (New_Discr);
5819 end loop;
5821 if Present (Old_Discr) then
5822 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
5823 return;
5825 elsif Present (New_Discr) then
5826 Conformance_Error
5827 ("too many discriminants!", Defining_Identifier (New_Discr));
5828 return;
5829 end if;
5830 end Check_Discriminant_Conformance;
5832 ----------------------------
5833 -- Check_Fully_Conformant --
5834 ----------------------------
5836 procedure Check_Fully_Conformant
5837 (New_Id : Entity_Id;
5838 Old_Id : Entity_Id;
5839 Err_Loc : Node_Id := Empty)
5841 Result : Boolean;
5842 pragma Warnings (Off, Result);
5843 begin
5844 Check_Conformance
5845 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
5846 end Check_Fully_Conformant;
5848 --------------------------
5849 -- Check_Limited_Return --
5850 --------------------------
5852 procedure Check_Limited_Return
5853 (N : Node_Id;
5854 Expr : Node_Id;
5855 R_Type : Entity_Id)
5857 begin
5858 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
5859 -- replaced by anonymous access results. This is an incompatibility with
5860 -- Ada 95. Not clear whether this should be enforced yet or perhaps
5861 -- controllable with special switch. ???
5863 -- A limited interface that is not immutably limited is OK
5865 if Is_Limited_Interface (R_Type)
5866 and then
5867 not (Is_Task_Interface (R_Type)
5868 or else Is_Protected_Interface (R_Type)
5869 or else Is_Synchronized_Interface (R_Type))
5870 then
5871 null;
5873 elsif Is_Limited_Type (R_Type)
5874 and then not Is_Interface (R_Type)
5875 and then Comes_From_Source (N)
5876 and then not In_Instance_Body
5877 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
5878 then
5879 -- Error in Ada 2005
5881 if Ada_Version >= Ada_2005
5882 and then not Debug_Flag_Dot_L
5883 and then not GNAT_Mode
5884 then
5885 Error_Msg_N
5886 ("(Ada 2005) cannot copy object of a limited type "
5887 & "(RM-2005 6.5(5.5/2))", Expr);
5889 if Is_Limited_View (R_Type) then
5890 Error_Msg_N
5891 ("\return by reference not permitted in Ada 2005", Expr);
5892 end if;
5894 -- Warn in Ada 95 mode, to give folks a heads up about this
5895 -- incompatibility.
5897 -- In GNAT mode, this is just a warning, to allow it to be evilly
5898 -- turned off. Otherwise it is a real error.
5900 -- In a generic context, simplify the warning because it makes no
5901 -- sense to discuss pass-by-reference or copy.
5903 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
5904 if Inside_A_Generic then
5905 Error_Msg_N
5906 ("return of limited object not permitted in Ada 2005 "
5907 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5909 elsif Is_Limited_View (R_Type) then
5910 Error_Msg_N
5911 ("return by reference not permitted in Ada 2005 "
5912 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5913 else
5914 Error_Msg_N
5915 ("cannot copy object of a limited type in Ada 2005 "
5916 & "(RM-2005 6.5(5.5/2))?y?", Expr);
5917 end if;
5919 -- Ada 95 mode, compatibility warnings disabled
5921 else
5922 return; -- skip continuation messages below
5923 end if;
5925 if not Inside_A_Generic then
5926 Error_Msg_N
5927 ("\consider switching to return of access type", Expr);
5928 Explain_Limited_Type (R_Type, Expr);
5929 end if;
5930 end if;
5931 end Check_Limited_Return;
5933 ---------------------------
5934 -- Check_Mode_Conformant --
5935 ---------------------------
5937 procedure Check_Mode_Conformant
5938 (New_Id : Entity_Id;
5939 Old_Id : Entity_Id;
5940 Err_Loc : Node_Id := Empty;
5941 Get_Inst : Boolean := False)
5943 Result : Boolean;
5944 pragma Warnings (Off, Result);
5945 begin
5946 Check_Conformance
5947 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
5948 end Check_Mode_Conformant;
5950 --------------------------------
5951 -- Check_Overriding_Indicator --
5952 --------------------------------
5954 procedure Check_Overriding_Indicator
5955 (Subp : Entity_Id;
5956 Overridden_Subp : Entity_Id;
5957 Is_Primitive : Boolean)
5959 Decl : Node_Id;
5960 Spec : Node_Id;
5962 begin
5963 -- No overriding indicator for literals
5965 if Ekind (Subp) = E_Enumeration_Literal then
5966 return;
5968 elsif Ekind (Subp) = E_Entry then
5969 Decl := Parent (Subp);
5971 -- No point in analyzing a malformed operator
5973 elsif Nkind (Subp) = N_Defining_Operator_Symbol
5974 and then Error_Posted (Subp)
5975 then
5976 return;
5978 else
5979 Decl := Unit_Declaration_Node (Subp);
5980 end if;
5982 if Nkind_In (Decl, N_Subprogram_Body,
5983 N_Subprogram_Body_Stub,
5984 N_Subprogram_Declaration,
5985 N_Abstract_Subprogram_Declaration,
5986 N_Subprogram_Renaming_Declaration)
5987 then
5988 Spec := Specification (Decl);
5990 elsif Nkind (Decl) = N_Entry_Declaration then
5991 Spec := Decl;
5993 else
5994 return;
5995 end if;
5997 -- The overriding operation is type conformant with the overridden one,
5998 -- but the names of the formals are not required to match. If the names
5999 -- appear permuted in the overriding operation, this is a possible
6000 -- source of confusion that is worth diagnosing. Controlling formals
6001 -- often carry names that reflect the type, and it is not worthwhile
6002 -- requiring that their names match.
6004 if Present (Overridden_Subp)
6005 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6006 then
6007 declare
6008 Form1 : Entity_Id;
6009 Form2 : Entity_Id;
6011 begin
6012 Form1 := First_Formal (Subp);
6013 Form2 := First_Formal (Overridden_Subp);
6015 -- If the overriding operation is a synchronized operation, skip
6016 -- the first parameter of the overridden operation, which is
6017 -- implicit in the new one. If the operation is declared in the
6018 -- body it is not primitive and all formals must match.
6020 if Is_Concurrent_Type (Scope (Subp))
6021 and then Is_Tagged_Type (Scope (Subp))
6022 and then not Has_Completion (Scope (Subp))
6023 then
6024 Form2 := Next_Formal (Form2);
6025 end if;
6027 if Present (Form1) then
6028 Form1 := Next_Formal (Form1);
6029 Form2 := Next_Formal (Form2);
6030 end if;
6032 while Present (Form1) loop
6033 if not Is_Controlling_Formal (Form1)
6034 and then Present (Next_Formal (Form2))
6035 and then Chars (Form1) = Chars (Next_Formal (Form2))
6036 then
6037 Error_Msg_Node_2 := Alias (Overridden_Subp);
6038 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6039 Error_Msg_NE
6040 ("& does not match corresponding formal of&#",
6041 Form1, Form1);
6042 exit;
6043 end if;
6045 Next_Formal (Form1);
6046 Next_Formal (Form2);
6047 end loop;
6048 end;
6049 end if;
6051 -- If there is an overridden subprogram, then check that there is no
6052 -- "not overriding" indicator, and mark the subprogram as overriding.
6053 -- This is not done if the overridden subprogram is marked as hidden,
6054 -- which can occur for the case of inherited controlled operations
6055 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6056 -- subprogram is not itself hidden. (Note: This condition could probably
6057 -- be simplified, leaving out the testing for the specific controlled
6058 -- cases, but it seems safer and clearer this way, and echoes similar
6059 -- special-case tests of this kind in other places.)
6061 if Present (Overridden_Subp)
6062 and then (not Is_Hidden (Overridden_Subp)
6063 or else
6064 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6065 Name_Adjust,
6066 Name_Finalize)
6067 and then Present (Alias (Overridden_Subp))
6068 and then not Is_Hidden (Alias (Overridden_Subp))))
6069 then
6070 if Must_Not_Override (Spec) then
6071 Error_Msg_Sloc := Sloc (Overridden_Subp);
6073 if Ekind (Subp) = E_Entry then
6074 Error_Msg_NE
6075 ("entry & overrides inherited operation #", Spec, Subp);
6076 else
6077 Error_Msg_NE
6078 ("subprogram & overrides inherited operation #", Spec, Subp);
6079 end if;
6081 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6082 -- as an extension of Root_Controlled, and thus has a useless Adjust
6083 -- operation. This operation should not be inherited by other limited
6084 -- controlled types. An explicit Adjust for them is not overriding.
6086 elsif Must_Override (Spec)
6087 and then Chars (Overridden_Subp) = Name_Adjust
6088 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6089 and then Present (Alias (Overridden_Subp))
6090 and then
6091 Is_Predefined_File_Name
6092 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
6093 then
6094 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6096 elsif Is_Subprogram (Subp) then
6097 if Is_Init_Proc (Subp) then
6098 null;
6100 elsif No (Overridden_Operation (Subp)) then
6102 -- For entities generated by Derive_Subprograms the overridden
6103 -- operation is the inherited primitive (which is available
6104 -- through the attribute alias)
6106 if (Is_Dispatching_Operation (Subp)
6107 or else Is_Dispatching_Operation (Overridden_Subp))
6108 and then not Comes_From_Source (Overridden_Subp)
6109 and then Find_Dispatching_Type (Overridden_Subp) =
6110 Find_Dispatching_Type (Subp)
6111 and then Present (Alias (Overridden_Subp))
6112 and then Comes_From_Source (Alias (Overridden_Subp))
6113 then
6114 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6115 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
6117 else
6118 Set_Overridden_Operation (Subp, Overridden_Subp);
6119 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
6120 end if;
6121 end if;
6122 end if;
6124 -- If primitive flag is set or this is a protected operation, then
6125 -- the operation is overriding at the point of its declaration, so
6126 -- warn if necessary. Otherwise it may have been declared before the
6127 -- operation it overrides and no check is required.
6129 if Style_Check
6130 and then not Must_Override (Spec)
6131 and then (Is_Primitive
6132 or else Ekind (Scope (Subp)) = E_Protected_Type)
6133 then
6134 Style.Missing_Overriding (Decl, Subp);
6135 end if;
6137 -- If Subp is an operator, it may override a predefined operation, if
6138 -- it is defined in the same scope as the type to which it applies.
6139 -- In that case Overridden_Subp is empty because of our implicit
6140 -- representation for predefined operators. We have to check whether the
6141 -- signature of Subp matches that of a predefined operator. Note that
6142 -- first argument provides the name of the operator, and the second
6143 -- argument the signature that may match that of a standard operation.
6144 -- If the indicator is overriding, then the operator must match a
6145 -- predefined signature, because we know already that there is no
6146 -- explicit overridden operation.
6148 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6149 if Must_Not_Override (Spec) then
6151 -- If this is not a primitive or a protected subprogram, then
6152 -- "not overriding" is illegal.
6154 if not Is_Primitive
6155 and then Ekind (Scope (Subp)) /= E_Protected_Type
6156 then
6157 Error_Msg_N ("overriding indicator only allowed "
6158 & "if subprogram is primitive", Subp);
6160 elsif Can_Override_Operator (Subp) then
6161 Error_Msg_NE
6162 ("subprogram& overrides predefined operator ", Spec, Subp);
6163 end if;
6165 elsif Must_Override (Spec) then
6166 if No (Overridden_Operation (Subp))
6167 and then not Can_Override_Operator (Subp)
6168 then
6169 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6170 end if;
6172 elsif not Error_Posted (Subp)
6173 and then Style_Check
6174 and then Can_Override_Operator (Subp)
6175 and then
6176 not Is_Predefined_File_Name
6177 (Unit_File_Name (Get_Source_Unit (Subp)))
6178 then
6179 -- If style checks are enabled, indicate that the indicator is
6180 -- missing. However, at the point of declaration, the type of
6181 -- which this is a primitive operation may be private, in which
6182 -- case the indicator would be premature.
6184 if Has_Private_Declaration (Etype (Subp))
6185 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
6186 then
6187 null;
6188 else
6189 Style.Missing_Overriding (Decl, Subp);
6190 end if;
6191 end if;
6193 elsif Must_Override (Spec) then
6194 if Ekind (Subp) = E_Entry then
6195 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
6196 else
6197 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6198 end if;
6200 -- If the operation is marked "not overriding" and it's not primitive
6201 -- then an error is issued, unless this is an operation of a task or
6202 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
6203 -- has been specified have already been checked above.
6205 elsif Must_Not_Override (Spec)
6206 and then not Is_Primitive
6207 and then Ekind (Subp) /= E_Entry
6208 and then Ekind (Scope (Subp)) /= E_Protected_Type
6209 then
6210 Error_Msg_N
6211 ("overriding indicator only allowed if subprogram is primitive",
6212 Subp);
6213 return;
6214 end if;
6215 end Check_Overriding_Indicator;
6217 -------------------
6218 -- Check_Returns --
6219 -------------------
6221 -- Note: this procedure needs to know far too much about how the expander
6222 -- messes with exceptions. The use of the flag Exception_Junk and the
6223 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
6224 -- works, but is not very clean. It would be better if the expansion
6225 -- routines would leave Original_Node working nicely, and we could use
6226 -- Original_Node here to ignore all the peculiar expander messing ???
6228 procedure Check_Returns
6229 (HSS : Node_Id;
6230 Mode : Character;
6231 Err : out Boolean;
6232 Proc : Entity_Id := Empty)
6234 Handler : Node_Id;
6236 procedure Check_Statement_Sequence (L : List_Id);
6237 -- Internal recursive procedure to check a list of statements for proper
6238 -- termination by a return statement (or a transfer of control or a
6239 -- compound statement that is itself internally properly terminated).
6241 ------------------------------
6242 -- Check_Statement_Sequence --
6243 ------------------------------
6245 procedure Check_Statement_Sequence (L : List_Id) is
6246 Last_Stm : Node_Id;
6247 Stm : Node_Id;
6248 Kind : Node_Kind;
6250 function Assert_False return Boolean;
6251 -- Returns True if Last_Stm is a pragma Assert (False) that has been
6252 -- rewritten as a null statement when assertions are off. The assert
6253 -- is not active, but it is still enough to kill the warning.
6255 ------------------
6256 -- Assert_False --
6257 ------------------
6259 function Assert_False return Boolean is
6260 Orig : constant Node_Id := Original_Node (Last_Stm);
6262 begin
6263 if Nkind (Orig) = N_Pragma
6264 and then Pragma_Name (Orig) = Name_Assert
6265 and then not Error_Posted (Orig)
6266 then
6267 declare
6268 Arg : constant Node_Id :=
6269 First (Pragma_Argument_Associations (Orig));
6270 Exp : constant Node_Id := Expression (Arg);
6271 begin
6272 return Nkind (Exp) = N_Identifier
6273 and then Chars (Exp) = Name_False;
6274 end;
6276 else
6277 return False;
6278 end if;
6279 end Assert_False;
6281 -- Local variables
6283 Raise_Exception_Call : Boolean;
6284 -- Set True if statement sequence terminated by Raise_Exception call
6285 -- or a Reraise_Occurrence call.
6287 -- Start of processing for Check_Statement_Sequence
6289 begin
6290 Raise_Exception_Call := False;
6292 -- Get last real statement
6294 Last_Stm := Last (L);
6296 -- Deal with digging out exception handler statement sequences that
6297 -- have been transformed by the local raise to goto optimization.
6298 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
6299 -- optimization has occurred, we are looking at something like:
6301 -- begin
6302 -- original stmts in block
6304 -- exception \
6305 -- when excep1 => |
6306 -- goto L1; | omitted if No_Exception_Propagation
6307 -- when excep2 => |
6308 -- goto L2; /
6309 -- end;
6311 -- goto L3; -- skip handler when exception not raised
6313 -- <<L1>> -- target label for local exception
6314 -- begin
6315 -- estmts1
6316 -- end;
6318 -- goto L3;
6320 -- <<L2>>
6321 -- begin
6322 -- estmts2
6323 -- end;
6325 -- <<L3>>
6327 -- and what we have to do is to dig out the estmts1 and estmts2
6328 -- sequences (which were the original sequences of statements in
6329 -- the exception handlers) and check them.
6331 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
6332 Stm := Last_Stm;
6333 loop
6334 Prev (Stm);
6335 exit when No (Stm);
6336 exit when Nkind (Stm) /= N_Block_Statement;
6337 exit when not Exception_Junk (Stm);
6338 Prev (Stm);
6339 exit when No (Stm);
6340 exit when Nkind (Stm) /= N_Label;
6341 exit when not Exception_Junk (Stm);
6342 Check_Statement_Sequence
6343 (Statements (Handled_Statement_Sequence (Next (Stm))));
6345 Prev (Stm);
6346 Last_Stm := Stm;
6347 exit when No (Stm);
6348 exit when Nkind (Stm) /= N_Goto_Statement;
6349 exit when not Exception_Junk (Stm);
6350 end loop;
6351 end if;
6353 -- Don't count pragmas
6355 while Nkind (Last_Stm) = N_Pragma
6357 -- Don't count call to SS_Release (can happen after Raise_Exception)
6359 or else
6360 (Nkind (Last_Stm) = N_Procedure_Call_Statement
6361 and then
6362 Nkind (Name (Last_Stm)) = N_Identifier
6363 and then
6364 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
6366 -- Don't count exception junk
6368 or else
6369 (Nkind_In (Last_Stm, N_Goto_Statement,
6370 N_Label,
6371 N_Object_Declaration)
6372 and then Exception_Junk (Last_Stm))
6373 or else Nkind (Last_Stm) in N_Push_xxx_Label
6374 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6376 -- Inserted code, such as finalization calls, is irrelevant: we only
6377 -- need to check original source.
6379 or else Is_Rewrite_Insertion (Last_Stm)
6380 loop
6381 Prev (Last_Stm);
6382 end loop;
6384 -- Here we have the "real" last statement
6386 Kind := Nkind (Last_Stm);
6388 -- Transfer of control, OK. Note that in the No_Return procedure
6389 -- case, we already diagnosed any explicit return statements, so
6390 -- we can treat them as OK in this context.
6392 if Is_Transfer (Last_Stm) then
6393 return;
6395 -- Check cases of explicit non-indirect procedure calls
6397 elsif Kind = N_Procedure_Call_Statement
6398 and then Is_Entity_Name (Name (Last_Stm))
6399 then
6400 -- Check call to Raise_Exception procedure which is treated
6401 -- specially, as is a call to Reraise_Occurrence.
6403 -- We suppress the warning in these cases since it is likely that
6404 -- the programmer really does not expect to deal with the case
6405 -- of Null_Occurrence, and thus would find a warning about a
6406 -- missing return curious, and raising Program_Error does not
6407 -- seem such a bad behavior if this does occur.
6409 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6410 -- behavior will be to raise Constraint_Error (see AI-329).
6412 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6413 or else
6414 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6415 then
6416 Raise_Exception_Call := True;
6418 -- For Raise_Exception call, test first argument, if it is
6419 -- an attribute reference for a 'Identity call, then we know
6420 -- that the call cannot possibly return.
6422 declare
6423 Arg : constant Node_Id :=
6424 Original_Node (First_Actual (Last_Stm));
6425 begin
6426 if Nkind (Arg) = N_Attribute_Reference
6427 and then Attribute_Name (Arg) = Name_Identity
6428 then
6429 return;
6430 end if;
6431 end;
6432 end if;
6434 -- If statement, need to look inside if there is an else and check
6435 -- each constituent statement sequence for proper termination.
6437 elsif Kind = N_If_Statement
6438 and then Present (Else_Statements (Last_Stm))
6439 then
6440 Check_Statement_Sequence (Then_Statements (Last_Stm));
6441 Check_Statement_Sequence (Else_Statements (Last_Stm));
6443 if Present (Elsif_Parts (Last_Stm)) then
6444 declare
6445 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6447 begin
6448 while Present (Elsif_Part) loop
6449 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6450 Next (Elsif_Part);
6451 end loop;
6452 end;
6453 end if;
6455 return;
6457 -- Case statement, check each case for proper termination
6459 elsif Kind = N_Case_Statement then
6460 declare
6461 Case_Alt : Node_Id;
6462 begin
6463 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6464 while Present (Case_Alt) loop
6465 Check_Statement_Sequence (Statements (Case_Alt));
6466 Next_Non_Pragma (Case_Alt);
6467 end loop;
6468 end;
6470 return;
6472 -- Block statement, check its handled sequence of statements
6474 elsif Kind = N_Block_Statement then
6475 declare
6476 Err1 : Boolean;
6478 begin
6479 Check_Returns
6480 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6482 if Err1 then
6483 Err := True;
6484 end if;
6486 return;
6487 end;
6489 -- Loop statement. If there is an iteration scheme, we can definitely
6490 -- fall out of the loop. Similarly if there is an exit statement, we
6491 -- can fall out. In either case we need a following return.
6493 elsif Kind = N_Loop_Statement then
6494 if Present (Iteration_Scheme (Last_Stm))
6495 or else Has_Exit (Entity (Identifier (Last_Stm)))
6496 then
6497 null;
6499 -- A loop with no exit statement or iteration scheme is either
6500 -- an infinite loop, or it has some other exit (raise/return).
6501 -- In either case, no warning is required.
6503 else
6504 return;
6505 end if;
6507 -- Timed entry call, check entry call and delay alternatives
6509 -- Note: in expanded code, the timed entry call has been converted
6510 -- to a set of expanded statements on which the check will work
6511 -- correctly in any case.
6513 elsif Kind = N_Timed_Entry_Call then
6514 declare
6515 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6516 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6518 begin
6519 -- If statement sequence of entry call alternative is missing,
6520 -- then we can definitely fall through, and we post the error
6521 -- message on the entry call alternative itself.
6523 if No (Statements (ECA)) then
6524 Last_Stm := ECA;
6526 -- If statement sequence of delay alternative is missing, then
6527 -- we can definitely fall through, and we post the error
6528 -- message on the delay alternative itself.
6530 -- Note: if both ECA and DCA are missing the return, then we
6531 -- post only one message, should be enough to fix the bugs.
6532 -- If not we will get a message next time on the DCA when the
6533 -- ECA is fixed.
6535 elsif No (Statements (DCA)) then
6536 Last_Stm := DCA;
6538 -- Else check both statement sequences
6540 else
6541 Check_Statement_Sequence (Statements (ECA));
6542 Check_Statement_Sequence (Statements (DCA));
6543 return;
6544 end if;
6545 end;
6547 -- Conditional entry call, check entry call and else part
6549 -- Note: in expanded code, the conditional entry call has been
6550 -- converted to a set of expanded statements on which the check
6551 -- will work correctly in any case.
6553 elsif Kind = N_Conditional_Entry_Call then
6554 declare
6555 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6557 begin
6558 -- If statement sequence of entry call alternative is missing,
6559 -- then we can definitely fall through, and we post the error
6560 -- message on the entry call alternative itself.
6562 if No (Statements (ECA)) then
6563 Last_Stm := ECA;
6565 -- Else check statement sequence and else part
6567 else
6568 Check_Statement_Sequence (Statements (ECA));
6569 Check_Statement_Sequence (Else_Statements (Last_Stm));
6570 return;
6571 end if;
6572 end;
6573 end if;
6575 -- If we fall through, issue appropriate message
6577 if Mode = 'F' then
6579 -- Kill warning if last statement is a raise exception call,
6580 -- or a pragma Assert (False). Note that with assertions enabled,
6581 -- such a pragma has been converted into a raise exception call
6582 -- already, so the Assert_False is for the assertions off case.
6584 if not Raise_Exception_Call and then not Assert_False then
6586 -- In GNATprove mode, it is an error to have a missing return
6588 Error_Msg_Warn := SPARK_Mode /= On;
6590 -- Issue error message or warning
6592 Error_Msg_N
6593 ("RETURN statement missing following this statement<<!",
6594 Last_Stm);
6595 Error_Msg_N
6596 ("\Program_Error ]<<!", Last_Stm);
6597 end if;
6599 -- Note: we set Err even though we have not issued a warning
6600 -- because we still have a case of a missing return. This is
6601 -- an extremely marginal case, probably will never be noticed
6602 -- but we might as well get it right.
6604 Err := True;
6606 -- Otherwise we have the case of a procedure marked No_Return
6608 else
6609 if not Raise_Exception_Call then
6610 if GNATprove_Mode then
6611 Error_Msg_N
6612 ("implied return after this statement "
6613 & "would have raised Program_Error", Last_Stm);
6614 else
6615 Error_Msg_N
6616 ("implied return after this statement "
6617 & "will raise Program_Error??", Last_Stm);
6618 end if;
6620 Error_Msg_Warn := SPARK_Mode /= On;
6621 Error_Msg_NE
6622 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6623 end if;
6625 declare
6626 RE : constant Node_Id :=
6627 Make_Raise_Program_Error (Sloc (Last_Stm),
6628 Reason => PE_Implicit_Return);
6629 begin
6630 Insert_After (Last_Stm, RE);
6631 Analyze (RE);
6632 end;
6633 end if;
6634 end Check_Statement_Sequence;
6636 -- Start of processing for Check_Returns
6638 begin
6639 Err := False;
6640 Check_Statement_Sequence (Statements (HSS));
6642 if Present (Exception_Handlers (HSS)) then
6643 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6644 while Present (Handler) loop
6645 Check_Statement_Sequence (Statements (Handler));
6646 Next_Non_Pragma (Handler);
6647 end loop;
6648 end if;
6649 end Check_Returns;
6651 ----------------------------
6652 -- Check_Subprogram_Order --
6653 ----------------------------
6655 procedure Check_Subprogram_Order (N : Node_Id) is
6657 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6658 -- This is used to check if S1 > S2 in the sense required by this test,
6659 -- for example nameab < namec, but name2 < name10.
6661 -----------------------------
6662 -- Subprogram_Name_Greater --
6663 -----------------------------
6665 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6666 L1, L2 : Positive;
6667 N1, N2 : Natural;
6669 begin
6670 -- Deal with special case where names are identical except for a
6671 -- numerical suffix. These are handled specially, taking the numeric
6672 -- ordering from the suffix into account.
6674 L1 := S1'Last;
6675 while S1 (L1) in '0' .. '9' loop
6676 L1 := L1 - 1;
6677 end loop;
6679 L2 := S2'Last;
6680 while S2 (L2) in '0' .. '9' loop
6681 L2 := L2 - 1;
6682 end loop;
6684 -- If non-numeric parts non-equal, do straight compare
6686 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6687 return S1 > S2;
6689 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6690 -- that a missing suffix is treated as numeric zero in this test.
6692 else
6693 N1 := 0;
6694 while L1 < S1'Last loop
6695 L1 := L1 + 1;
6696 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6697 end loop;
6699 N2 := 0;
6700 while L2 < S2'Last loop
6701 L2 := L2 + 1;
6702 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6703 end loop;
6705 return N1 > N2;
6706 end if;
6707 end Subprogram_Name_Greater;
6709 -- Start of processing for Check_Subprogram_Order
6711 begin
6712 -- Check body in alpha order if this is option
6714 if Style_Check
6715 and then Style_Check_Order_Subprograms
6716 and then Nkind (N) = N_Subprogram_Body
6717 and then Comes_From_Source (N)
6718 and then In_Extended_Main_Source_Unit (N)
6719 then
6720 declare
6721 LSN : String_Ptr
6722 renames Scope_Stack.Table
6723 (Scope_Stack.Last).Last_Subprogram_Name;
6725 Body_Id : constant Entity_Id :=
6726 Defining_Entity (Specification (N));
6728 begin
6729 Get_Decoded_Name_String (Chars (Body_Id));
6731 if LSN /= null then
6732 if Subprogram_Name_Greater
6733 (LSN.all, Name_Buffer (1 .. Name_Len))
6734 then
6735 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6736 end if;
6738 Free (LSN);
6739 end if;
6741 LSN := new String'(Name_Buffer (1 .. Name_Len));
6742 end;
6743 end if;
6744 end Check_Subprogram_Order;
6746 ------------------------------
6747 -- Check_Subtype_Conformant --
6748 ------------------------------
6750 procedure Check_Subtype_Conformant
6751 (New_Id : Entity_Id;
6752 Old_Id : Entity_Id;
6753 Err_Loc : Node_Id := Empty;
6754 Skip_Controlling_Formals : Boolean := False;
6755 Get_Inst : Boolean := False)
6757 Result : Boolean;
6758 pragma Warnings (Off, Result);
6759 begin
6760 Check_Conformance
6761 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6762 Skip_Controlling_Formals => Skip_Controlling_Formals,
6763 Get_Inst => Get_Inst);
6764 end Check_Subtype_Conformant;
6766 -----------------------------------
6767 -- Check_Synchronized_Overriding --
6768 -----------------------------------
6770 procedure Check_Synchronized_Overriding
6771 (Def_Id : Entity_Id;
6772 Overridden_Subp : out Entity_Id)
6774 Ifaces_List : Elist_Id;
6775 In_Scope : Boolean;
6776 Typ : Entity_Id;
6778 function Matches_Prefixed_View_Profile
6779 (Prim_Params : List_Id;
6780 Iface_Params : List_Id) return Boolean;
6781 -- Determine whether a subprogram's parameter profile Prim_Params
6782 -- matches that of a potentially overridden interface subprogram
6783 -- Iface_Params. Also determine if the type of first parameter of
6784 -- Iface_Params is an implemented interface.
6786 -----------------------------------
6787 -- Matches_Prefixed_View_Profile --
6788 -----------------------------------
6790 function Matches_Prefixed_View_Profile
6791 (Prim_Params : List_Id;
6792 Iface_Params : List_Id) return Boolean
6794 function Is_Implemented
6795 (Ifaces_List : Elist_Id;
6796 Iface : Entity_Id) return Boolean;
6797 -- Determine if Iface is implemented by the current task or
6798 -- protected type.
6800 --------------------
6801 -- Is_Implemented --
6802 --------------------
6804 function Is_Implemented
6805 (Ifaces_List : Elist_Id;
6806 Iface : Entity_Id) return Boolean
6808 Iface_Elmt : Elmt_Id;
6810 begin
6811 Iface_Elmt := First_Elmt (Ifaces_List);
6812 while Present (Iface_Elmt) loop
6813 if Node (Iface_Elmt) = Iface then
6814 return True;
6815 end if;
6817 Next_Elmt (Iface_Elmt);
6818 end loop;
6820 return False;
6821 end Is_Implemented;
6823 -- Local variables
6825 Iface_Id : Entity_Id;
6826 Iface_Param : Node_Id;
6827 Iface_Typ : Entity_Id;
6828 Prim_Id : Entity_Id;
6829 Prim_Param : Node_Id;
6830 Prim_Typ : Entity_Id;
6832 -- Start of processing for Matches_Prefixed_View_Profile
6834 begin
6835 Iface_Param := First (Iface_Params);
6836 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
6838 if Is_Access_Type (Iface_Typ) then
6839 Iface_Typ := Designated_Type (Iface_Typ);
6840 end if;
6842 Prim_Param := First (Prim_Params);
6844 -- The first parameter of the potentially overridden subprogram must
6845 -- be an interface implemented by Prim.
6847 if not Is_Interface (Iface_Typ)
6848 or else not Is_Implemented (Ifaces_List, Iface_Typ)
6849 then
6850 return False;
6851 end if;
6853 -- The checks on the object parameters are done, so move on to the
6854 -- rest of the parameters.
6856 if not In_Scope then
6857 Prim_Param := Next (Prim_Param);
6858 end if;
6860 Iface_Param := Next (Iface_Param);
6861 while Present (Iface_Param) and then Present (Prim_Param) loop
6862 Iface_Id := Defining_Identifier (Iface_Param);
6863 Iface_Typ := Find_Parameter_Type (Iface_Param);
6865 Prim_Id := Defining_Identifier (Prim_Param);
6866 Prim_Typ := Find_Parameter_Type (Prim_Param);
6868 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
6869 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
6870 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
6871 then
6872 Iface_Typ := Designated_Type (Iface_Typ);
6873 Prim_Typ := Designated_Type (Prim_Typ);
6874 end if;
6876 -- Case of multiple interface types inside a parameter profile
6878 -- (Obj_Param : in out Iface; ...; Param : Iface)
6880 -- If the interface type is implemented, then the matching type in
6881 -- the primitive should be the implementing record type.
6883 if Ekind (Iface_Typ) = E_Record_Type
6884 and then Is_Interface (Iface_Typ)
6885 and then Is_Implemented (Ifaces_List, Iface_Typ)
6886 then
6887 if Prim_Typ /= Typ then
6888 return False;
6889 end if;
6891 -- The two parameters must be both mode and subtype conformant
6893 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
6894 or else not
6895 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
6896 then
6897 return False;
6898 end if;
6900 Next (Iface_Param);
6901 Next (Prim_Param);
6902 end loop;
6904 -- One of the two lists contains more parameters than the other
6906 if Present (Iface_Param) or else Present (Prim_Param) then
6907 return False;
6908 end if;
6910 return True;
6911 end Matches_Prefixed_View_Profile;
6913 -- Start of processing for Check_Synchronized_Overriding
6915 begin
6916 Overridden_Subp := Empty;
6918 -- Def_Id must be an entry or a subprogram. We should skip predefined
6919 -- primitives internally generated by the front end; however at this
6920 -- stage predefined primitives are still not fully decorated. As a
6921 -- minor optimization we skip here internally generated subprograms.
6923 if (Ekind (Def_Id) /= E_Entry
6924 and then Ekind (Def_Id) /= E_Function
6925 and then Ekind (Def_Id) /= E_Procedure)
6926 or else not Comes_From_Source (Def_Id)
6927 then
6928 return;
6929 end if;
6931 -- Search for the concurrent declaration since it contains the list of
6932 -- all implemented interfaces. In this case, the subprogram is declared
6933 -- within the scope of a protected or a task type.
6935 if Present (Scope (Def_Id))
6936 and then Is_Concurrent_Type (Scope (Def_Id))
6937 and then not Is_Generic_Actual_Type (Scope (Def_Id))
6938 then
6939 Typ := Scope (Def_Id);
6940 In_Scope := True;
6942 -- The enclosing scope is not a synchronized type and the subprogram
6943 -- has no formals.
6945 elsif No (First_Formal (Def_Id)) then
6946 return;
6948 -- The subprogram has formals and hence it may be a primitive of a
6949 -- concurrent type.
6951 else
6952 Typ := Etype (First_Formal (Def_Id));
6954 if Is_Access_Type (Typ) then
6955 Typ := Directly_Designated_Type (Typ);
6956 end if;
6958 if Is_Concurrent_Type (Typ)
6959 and then not Is_Generic_Actual_Type (Typ)
6960 then
6961 In_Scope := False;
6963 -- This case occurs when the concurrent type is declared within a
6964 -- generic unit. As a result the corresponding record has been built
6965 -- and used as the type of the first formal, we just have to retrieve
6966 -- the corresponding concurrent type.
6968 elsif Is_Concurrent_Record_Type (Typ)
6969 and then not Is_Class_Wide_Type (Typ)
6970 and then Present (Corresponding_Concurrent_Type (Typ))
6971 then
6972 Typ := Corresponding_Concurrent_Type (Typ);
6973 In_Scope := False;
6975 else
6976 return;
6977 end if;
6978 end if;
6980 -- There is no overriding to check if this is an inherited operation in
6981 -- a type derivation for a generic actual.
6983 Collect_Interfaces (Typ, Ifaces_List);
6985 if Is_Empty_Elmt_List (Ifaces_List) then
6986 return;
6987 end if;
6989 -- Determine whether entry or subprogram Def_Id overrides a primitive
6990 -- operation that belongs to one of the interfaces in Ifaces_List.
6992 declare
6993 Candidate : Entity_Id := Empty;
6994 Hom : Entity_Id := Empty;
6995 Subp : Entity_Id := Empty;
6997 begin
6998 -- Traverse the homonym chain, looking for a potentially overridden
6999 -- subprogram that belongs to an implemented interface.
7001 Hom := Current_Entity_In_Scope (Def_Id);
7002 while Present (Hom) loop
7003 Subp := Hom;
7005 if Subp = Def_Id
7006 or else not Is_Overloadable (Subp)
7007 or else not Is_Primitive (Subp)
7008 or else not Is_Dispatching_Operation (Subp)
7009 or else not Present (Find_Dispatching_Type (Subp))
7010 or else not Is_Interface (Find_Dispatching_Type (Subp))
7011 then
7012 null;
7014 -- Entries and procedures can override abstract or null interface
7015 -- procedures.
7017 elsif Ekind_In (Def_Id, E_Entry, E_Procedure)
7018 and then Ekind (Subp) = E_Procedure
7019 and then Matches_Prefixed_View_Profile
7020 (Parameter_Specifications (Parent (Def_Id)),
7021 Parameter_Specifications (Parent (Subp)))
7022 then
7023 Candidate := Subp;
7025 -- For an overridden subprogram Subp, check whether the mode
7026 -- of its first parameter is correct depending on the kind of
7027 -- synchronized type.
7029 declare
7030 Formal : constant Node_Id := First_Formal (Candidate);
7032 begin
7033 -- In order for an entry or a protected procedure to
7034 -- override, the first parameter of the overridden routine
7035 -- must be of mode "out", "in out", or access-to-variable.
7037 if Ekind_In (Candidate, E_Entry, E_Procedure)
7038 and then Is_Protected_Type (Typ)
7039 and then Ekind (Formal) /= E_In_Out_Parameter
7040 and then Ekind (Formal) /= E_Out_Parameter
7041 and then Nkind (Parameter_Type (Parent (Formal))) /=
7042 N_Access_Definition
7043 then
7044 null;
7046 -- All other cases are OK since a task entry or routine does
7047 -- not have a restriction on the mode of the first parameter
7048 -- of the overridden interface routine.
7050 else
7051 Overridden_Subp := Candidate;
7052 return;
7053 end if;
7054 end;
7056 -- Functions can override abstract interface functions
7058 elsif Ekind (Def_Id) = E_Function
7059 and then Ekind (Subp) = E_Function
7060 and then Matches_Prefixed_View_Profile
7061 (Parameter_Specifications (Parent (Def_Id)),
7062 Parameter_Specifications (Parent (Subp)))
7063 and then Etype (Def_Id) = Etype (Subp)
7064 then
7065 Candidate := Subp;
7067 -- If an inherited subprogram is implemented by a protected
7068 -- function, then the first parameter of the inherited
7069 -- subprogram shall be of mode in, but not an access-to-
7070 -- variable parameter (RM 9.4(11/9)).
7072 if Present (First_Formal (Subp))
7073 and then Ekind (First_Formal (Subp)) = E_In_Parameter
7074 and then
7075 (not Is_Access_Type (Etype (First_Formal (Subp)))
7076 or else
7077 Is_Access_Constant (Etype (First_Formal (Subp))))
7078 then
7079 Overridden_Subp := Subp;
7080 return;
7081 end if;
7082 end if;
7084 Hom := Homonym (Hom);
7085 end loop;
7087 -- After examining all candidates for overriding, we are left with
7088 -- the best match, which is a mode-incompatible interface routine.
7090 if In_Scope and then Present (Candidate) then
7091 Error_Msg_PT (Def_Id, Candidate);
7092 end if;
7094 Overridden_Subp := Candidate;
7095 return;
7096 end;
7097 end Check_Synchronized_Overriding;
7099 ---------------------------
7100 -- Check_Type_Conformant --
7101 ---------------------------
7103 procedure Check_Type_Conformant
7104 (New_Id : Entity_Id;
7105 Old_Id : Entity_Id;
7106 Err_Loc : Node_Id := Empty)
7108 Result : Boolean;
7109 pragma Warnings (Off, Result);
7110 begin
7111 Check_Conformance
7112 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7113 end Check_Type_Conformant;
7115 ---------------------------
7116 -- Can_Override_Operator --
7117 ---------------------------
7119 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7120 Typ : Entity_Id;
7122 begin
7123 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7124 return False;
7126 else
7127 Typ := Base_Type (Etype (First_Formal (Subp)));
7129 -- Check explicitly that the operation is a primitive of the type
7131 return Operator_Matches_Spec (Subp, Subp)
7132 and then not Is_Generic_Type (Typ)
7133 and then Scope (Subp) = Scope (Typ)
7134 and then not Is_Class_Wide_Type (Typ);
7135 end if;
7136 end Can_Override_Operator;
7138 ----------------------
7139 -- Conforming_Types --
7140 ----------------------
7142 function Conforming_Types
7143 (T1 : Entity_Id;
7144 T2 : Entity_Id;
7145 Ctype : Conformance_Type;
7146 Get_Inst : Boolean := False) return Boolean
7148 function Base_Types_Match
7149 (Typ_1 : Entity_Id;
7150 Typ_2 : Entity_Id) return Boolean;
7151 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
7152 -- in different scopes (e.g. parent and child instances), then verify
7153 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
7154 -- the same subtype chain. The whole purpose of this procedure is to
7155 -- prevent spurious ambiguities in an instantiation that may arise if
7156 -- two distinct generic types are instantiated with the same actual.
7158 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
7159 -- An access parameter can designate an incomplete type. If the
7160 -- incomplete type is the limited view of a type from a limited_
7161 -- with_clause, check whether the non-limited view is available.
7162 -- If it is a (non-limited) incomplete type, get the full view.
7164 function Matches_Limited_With_View
7165 (Typ_1 : Entity_Id;
7166 Typ_2 : Entity_Id) return Boolean;
7167 -- Returns True if and only if either Typ_1 denotes a limited view of
7168 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
7169 -- the limited with view of a type is used in a subprogram declaration
7170 -- and the subprogram body is in the scope of a regular with clause for
7171 -- the same unit. In such a case, the two type entities are considered
7172 -- identical for purposes of conformance checking.
7174 ----------------------
7175 -- Base_Types_Match --
7176 ----------------------
7178 function Base_Types_Match
7179 (Typ_1 : Entity_Id;
7180 Typ_2 : Entity_Id) return Boolean
7182 Base_1 : constant Entity_Id := Base_Type (Typ_1);
7183 Base_2 : constant Entity_Id := Base_Type (Typ_2);
7185 begin
7186 if Typ_1 = Typ_2 then
7187 return True;
7189 elsif Base_1 = Base_2 then
7191 -- The following is too permissive. A more precise test should
7192 -- check that the generic actual is an ancestor subtype of the
7193 -- other ???.
7195 -- See code in Find_Corresponding_Spec that applies an additional
7196 -- filter to handle accidental amiguities in instances.
7198 return
7199 not Is_Generic_Actual_Type (Typ_1)
7200 or else not Is_Generic_Actual_Type (Typ_2)
7201 or else Scope (Typ_1) /= Scope (Typ_2);
7203 -- If Typ_2 is a generic actual type it is declared as the subtype of
7204 -- the actual. If that actual is itself a subtype we need to use its
7205 -- own base type to check for compatibility.
7207 elsif Ekind (Base_2) = Ekind (Typ_2)
7208 and then Base_1 = Base_Type (Base_2)
7209 then
7210 return True;
7212 elsif Ekind (Base_1) = Ekind (Typ_1)
7213 and then Base_2 = Base_Type (Base_1)
7214 then
7215 return True;
7217 else
7218 return False;
7219 end if;
7220 end Base_Types_Match;
7222 --------------------------
7223 -- Find_Designated_Type --
7224 --------------------------
7226 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
7227 Desig : Entity_Id;
7229 begin
7230 Desig := Directly_Designated_Type (Typ);
7232 if Ekind (Desig) = E_Incomplete_Type then
7234 -- If regular incomplete type, get full view if available
7236 if Present (Full_View (Desig)) then
7237 Desig := Full_View (Desig);
7239 -- If limited view of a type, get non-limited view if available,
7240 -- and check again for a regular incomplete type.
7242 elsif Present (Non_Limited_View (Desig)) then
7243 Desig := Get_Full_View (Non_Limited_View (Desig));
7244 end if;
7245 end if;
7247 return Desig;
7248 end Find_Designated_Type;
7250 -------------------------------
7251 -- Matches_Limited_With_View --
7252 -------------------------------
7254 function Matches_Limited_With_View
7255 (Typ_1 : Entity_Id;
7256 Typ_2 : Entity_Id) return Boolean
7258 function Is_Matching_Limited_View
7259 (Typ : Entity_Id;
7260 View : Entity_Id) return Boolean;
7261 -- Determine whether non-limited view View denotes type Typ in some
7262 -- conformant fashion.
7264 ------------------------------
7265 -- Is_Matching_Limited_View --
7266 ------------------------------
7268 function Is_Matching_Limited_View
7269 (Typ : Entity_Id;
7270 View : Entity_Id) return Boolean
7272 Root_Typ : Entity_Id;
7273 Root_View : Entity_Id;
7275 begin
7276 -- The non-limited view directly denotes the type
7278 if Typ = View then
7279 return True;
7281 -- The type is a subtype of the non-limited view
7283 elsif Is_Subtype_Of (Typ, View) then
7284 return True;
7286 -- Both the non-limited view and the type denote class-wide types
7288 elsif Is_Class_Wide_Type (Typ)
7289 and then Is_Class_Wide_Type (View)
7290 then
7291 Root_Typ := Root_Type (Typ);
7292 Root_View := Root_Type (View);
7294 if Root_Typ = Root_View then
7295 return True;
7297 -- An incomplete tagged type and its full view may receive two
7298 -- distinct class-wide types when the related package has not
7299 -- been analyzed yet.
7301 -- package Pack is
7302 -- type T is tagged; -- CW_1
7303 -- type T is tagged null record; -- CW_2
7304 -- end Pack;
7306 -- This is because the package lacks any semantic information
7307 -- that may eventually link both views of T. As a consequence,
7308 -- a client of the limited view of Pack will see CW_2 while a
7309 -- client of the non-limited view of Pack will see CW_1.
7311 elsif Is_Incomplete_Type (Root_Typ)
7312 and then Present (Full_View (Root_Typ))
7313 and then Full_View (Root_Typ) = Root_View
7314 then
7315 return True;
7317 elsif Is_Incomplete_Type (Root_View)
7318 and then Present (Full_View (Root_View))
7319 and then Full_View (Root_View) = Root_Typ
7320 then
7321 return True;
7322 end if;
7323 end if;
7325 return False;
7326 end Is_Matching_Limited_View;
7328 -- Start of processing for Matches_Limited_With_View
7330 begin
7331 -- In some cases a type imported through a limited_with clause, and
7332 -- its non-limited view are both visible, for example in an anonymous
7333 -- access-to-class-wide type in a formal, or when building the body
7334 -- for a subprogram renaming after the subprogram has been frozen.
7335 -- In these cases both entities designate the same type. In addition,
7336 -- if one of them is an actual in an instance, it may be a subtype of
7337 -- the non-limited view of the other.
7339 if From_Limited_With (Typ_1)
7340 and then From_Limited_With (Typ_2)
7341 and then Available_View (Typ_1) = Available_View (Typ_2)
7342 then
7343 return True;
7345 elsif From_Limited_With (Typ_1) then
7346 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
7348 elsif From_Limited_With (Typ_2) then
7349 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
7351 else
7352 return False;
7353 end if;
7354 end Matches_Limited_With_View;
7356 -- Local variables
7358 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7360 Type_1 : Entity_Id := T1;
7361 Type_2 : Entity_Id := T2;
7363 -- Start of processing for Conforming_Types
7365 begin
7366 -- The context is an instance association for a formal access-to-
7367 -- subprogram type; the formal parameter types require mapping because
7368 -- they may denote other formal parameters of the generic unit.
7370 if Get_Inst then
7371 Type_1 := Get_Instance_Of (T1);
7372 Type_2 := Get_Instance_Of (T2);
7373 end if;
7375 -- If one of the types is a view of the other introduced by a limited
7376 -- with clause, treat these as conforming for all purposes.
7378 if Matches_Limited_With_View (T1, T2) then
7379 return True;
7381 elsif Base_Types_Match (Type_1, Type_2) then
7382 return Ctype <= Mode_Conformant
7383 or else Subtypes_Statically_Match (Type_1, Type_2);
7385 elsif Is_Incomplete_Or_Private_Type (Type_1)
7386 and then Present (Full_View (Type_1))
7387 and then Base_Types_Match (Full_View (Type_1), Type_2)
7388 then
7389 return Ctype <= Mode_Conformant
7390 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7392 elsif Ekind (Type_2) = E_Incomplete_Type
7393 and then Present (Full_View (Type_2))
7394 and then Base_Types_Match (Type_1, Full_View (Type_2))
7395 then
7396 return Ctype <= Mode_Conformant
7397 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7399 elsif Is_Private_Type (Type_2)
7400 and then In_Instance
7401 and then Present (Full_View (Type_2))
7402 and then Base_Types_Match (Type_1, Full_View (Type_2))
7403 then
7404 return Ctype <= Mode_Conformant
7405 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7407 -- Another confusion between views in a nested instance with an
7408 -- actual private type whose full view is not in scope.
7410 elsif Ekind (Type_2) = E_Private_Subtype
7411 and then In_Instance
7412 and then Etype (Type_2) = Type_1
7413 then
7414 return True;
7416 -- In Ada 2012, incomplete types (including limited views) can appear
7417 -- as actuals in instantiations.
7419 elsif Is_Incomplete_Type (Type_1)
7420 and then Is_Incomplete_Type (Type_2)
7421 and then (Used_As_Generic_Actual (Type_1)
7422 or else Used_As_Generic_Actual (Type_2))
7423 then
7424 return True;
7425 end if;
7427 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7428 -- treated recursively because they carry a signature. As far as
7429 -- conformance is concerned, convention plays no role, and either
7430 -- or both could be access to protected subprograms.
7432 Are_Anonymous_Access_To_Subprogram_Types :=
7433 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7434 E_Anonymous_Access_Protected_Subprogram_Type)
7435 and then
7436 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7437 E_Anonymous_Access_Protected_Subprogram_Type);
7439 -- Test anonymous access type case. For this case, static subtype
7440 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7441 -- the base types because we may have built internal subtype entities
7442 -- to handle null-excluding types (see Process_Formals).
7444 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7445 and then
7446 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7448 -- Ada 2005 (AI-254)
7450 or else Are_Anonymous_Access_To_Subprogram_Types
7451 then
7452 declare
7453 Desig_1 : Entity_Id;
7454 Desig_2 : Entity_Id;
7456 begin
7457 -- In Ada 2005, access constant indicators must match for
7458 -- subtype conformance.
7460 if Ada_Version >= Ada_2005
7461 and then Ctype >= Subtype_Conformant
7462 and then
7463 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7464 then
7465 return False;
7466 end if;
7468 Desig_1 := Find_Designated_Type (Type_1);
7469 Desig_2 := Find_Designated_Type (Type_2);
7471 -- If the context is an instance association for a formal
7472 -- access-to-subprogram type; formal access parameter designated
7473 -- types require mapping because they may denote other formal
7474 -- parameters of the generic unit.
7476 if Get_Inst then
7477 Desig_1 := Get_Instance_Of (Desig_1);
7478 Desig_2 := Get_Instance_Of (Desig_2);
7479 end if;
7481 -- It is possible for a Class_Wide_Type to be introduced for an
7482 -- incomplete type, in which case there is a separate class_ wide
7483 -- type for the full view. The types conform if their Etypes
7484 -- conform, i.e. one may be the full view of the other. This can
7485 -- only happen in the context of an access parameter, other uses
7486 -- of an incomplete Class_Wide_Type are illegal.
7488 if Is_Class_Wide_Type (Desig_1)
7489 and then
7490 Is_Class_Wide_Type (Desig_2)
7491 then
7492 return
7493 Conforming_Types
7494 (Etype (Base_Type (Desig_1)),
7495 Etype (Base_Type (Desig_2)), Ctype);
7497 elsif Are_Anonymous_Access_To_Subprogram_Types then
7498 if Ada_Version < Ada_2005 then
7499 return Ctype = Type_Conformant
7500 or else
7501 Subtypes_Statically_Match (Desig_1, Desig_2);
7503 -- We must check the conformance of the signatures themselves
7505 else
7506 declare
7507 Conformant : Boolean;
7508 begin
7509 Check_Conformance
7510 (Desig_1, Desig_2, Ctype, False, Conformant);
7511 return Conformant;
7512 end;
7513 end if;
7515 -- A limited view of an actual matches the corresponding
7516 -- incomplete formal.
7518 elsif Ekind (Desig_2) = E_Incomplete_Subtype
7519 and then From_Limited_With (Desig_2)
7520 and then Used_As_Generic_Actual (Etype (Desig_2))
7521 then
7522 return True;
7524 else
7525 return Base_Type (Desig_1) = Base_Type (Desig_2)
7526 and then (Ctype = Type_Conformant
7527 or else
7528 Subtypes_Statically_Match (Desig_1, Desig_2));
7529 end if;
7530 end;
7532 -- Otherwise definitely no match
7534 else
7535 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7536 and then Is_Access_Type (Type_2))
7537 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7538 and then Is_Access_Type (Type_1)))
7539 and then
7540 Conforming_Types
7541 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7542 then
7543 May_Hide_Profile := True;
7544 end if;
7546 return False;
7547 end if;
7548 end Conforming_Types;
7550 --------------------------
7551 -- Create_Extra_Formals --
7552 --------------------------
7554 procedure Create_Extra_Formals (E : Entity_Id) is
7555 First_Extra : Entity_Id := Empty;
7556 Formal : Entity_Id;
7557 Last_Extra : Entity_Id := Empty;
7559 function Add_Extra_Formal
7560 (Assoc_Entity : Entity_Id;
7561 Typ : Entity_Id;
7562 Scope : Entity_Id;
7563 Suffix : String) return Entity_Id;
7564 -- Add an extra formal to the current list of formals and extra formals.
7565 -- The extra formal is added to the end of the list of extra formals,
7566 -- and also returned as the result. These formals are always of mode IN.
7567 -- The new formal has the type Typ, is declared in Scope, and its name
7568 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7569 -- The following suffixes are currently used. They should not be changed
7570 -- without coordinating with CodePeer, which makes use of these to
7571 -- provide better messages.
7573 -- O denotes the Constrained bit.
7574 -- L denotes the accessibility level.
7575 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7576 -- the full list in exp_ch6.BIP_Formal_Kind.
7578 ----------------------
7579 -- Add_Extra_Formal --
7580 ----------------------
7582 function Add_Extra_Formal
7583 (Assoc_Entity : Entity_Id;
7584 Typ : Entity_Id;
7585 Scope : Entity_Id;
7586 Suffix : String) return Entity_Id
7588 EF : constant Entity_Id :=
7589 Make_Defining_Identifier (Sloc (Assoc_Entity),
7590 Chars => New_External_Name (Chars (Assoc_Entity),
7591 Suffix => Suffix));
7593 begin
7594 -- A little optimization. Never generate an extra formal for the
7595 -- _init operand of an initialization procedure, since it could
7596 -- never be used.
7598 if Chars (Formal) = Name_uInit then
7599 return Empty;
7600 end if;
7602 Set_Ekind (EF, E_In_Parameter);
7603 Set_Actual_Subtype (EF, Typ);
7604 Set_Etype (EF, Typ);
7605 Set_Scope (EF, Scope);
7606 Set_Mechanism (EF, Default_Mechanism);
7607 Set_Formal_Validity (EF);
7609 if No (First_Extra) then
7610 First_Extra := EF;
7611 Set_Extra_Formals (Scope, First_Extra);
7612 end if;
7614 if Present (Last_Extra) then
7615 Set_Extra_Formal (Last_Extra, EF);
7616 end if;
7618 Last_Extra := EF;
7620 return EF;
7621 end Add_Extra_Formal;
7623 -- Local variables
7625 Formal_Type : Entity_Id;
7626 P_Formal : Entity_Id := Empty;
7628 -- Start of processing for Create_Extra_Formals
7630 begin
7631 -- We never generate extra formals if expansion is not active because we
7632 -- don't need them unless we are generating code.
7634 if not Expander_Active then
7635 return;
7636 end if;
7638 -- No need to generate extra formals in interface thunks whose target
7639 -- primitive has no extra formals.
7641 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
7642 return;
7643 end if;
7645 -- If this is a derived subprogram then the subtypes of the parent
7646 -- subprogram's formal parameters will be used to determine the need
7647 -- for extra formals.
7649 if Is_Overloadable (E) and then Present (Alias (E)) then
7650 P_Formal := First_Formal (Alias (E));
7651 end if;
7653 Formal := First_Formal (E);
7654 while Present (Formal) loop
7655 Last_Extra := Formal;
7656 Next_Formal (Formal);
7657 end loop;
7659 -- If Extra_Formals were already created, don't do it again. This
7660 -- situation may arise for subprogram types created as part of
7661 -- dispatching calls (see Expand_Dispatching_Call)
7663 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
7664 return;
7665 end if;
7667 -- If the subprogram is a predefined dispatching subprogram then don't
7668 -- generate any extra constrained or accessibility level formals. In
7669 -- general we suppress these for internal subprograms (by not calling
7670 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
7671 -- generated stream attributes do get passed through because extra
7672 -- build-in-place formals are needed in some cases (limited 'Input).
7674 if Is_Predefined_Internal_Operation (E) then
7675 goto Test_For_Func_Result_Extras;
7676 end if;
7678 Formal := First_Formal (E);
7679 while Present (Formal) loop
7681 -- Create extra formal for supporting the attribute 'Constrained.
7682 -- The case of a private type view without discriminants also
7683 -- requires the extra formal if the underlying type has defaulted
7684 -- discriminants.
7686 if Ekind (Formal) /= E_In_Parameter then
7687 if Present (P_Formal) then
7688 Formal_Type := Etype (P_Formal);
7689 else
7690 Formal_Type := Etype (Formal);
7691 end if;
7693 -- Do not produce extra formals for Unchecked_Union parameters.
7694 -- Jump directly to the end of the loop.
7696 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
7697 goto Skip_Extra_Formal_Generation;
7698 end if;
7700 if not Has_Discriminants (Formal_Type)
7701 and then Ekind (Formal_Type) in Private_Kind
7702 and then Present (Underlying_Type (Formal_Type))
7703 then
7704 Formal_Type := Underlying_Type (Formal_Type);
7705 end if;
7707 -- Suppress the extra formal if formal's subtype is constrained or
7708 -- indefinite, or we're compiling for Ada 2012 and the underlying
7709 -- type is tagged and limited. In Ada 2012, a limited tagged type
7710 -- can have defaulted discriminants, but 'Constrained is required
7711 -- to return True, so the formal is never needed (see AI05-0214).
7712 -- Note that this ensures consistency of calling sequences for
7713 -- dispatching operations when some types in a class have defaults
7714 -- on discriminants and others do not (and requiring the extra
7715 -- formal would introduce distributed overhead).
7717 -- If the type does not have a completion yet, treat as prior to
7718 -- Ada 2012 for consistency.
7720 if Has_Discriminants (Formal_Type)
7721 and then not Is_Constrained (Formal_Type)
7722 and then Is_Definite_Subtype (Formal_Type)
7723 and then (Ada_Version < Ada_2012
7724 or else No (Underlying_Type (Formal_Type))
7725 or else not
7726 (Is_Limited_Type (Formal_Type)
7727 and then
7728 (Is_Tagged_Type
7729 (Underlying_Type (Formal_Type)))))
7730 then
7731 Set_Extra_Constrained
7732 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
7733 end if;
7734 end if;
7736 -- Create extra formal for supporting accessibility checking. This
7737 -- is done for both anonymous access formals and formals of named
7738 -- access types that are marked as controlling formals. The latter
7739 -- case can occur when Expand_Dispatching_Call creates a subprogram
7740 -- type and substitutes the types of access-to-class-wide actuals
7741 -- for the anonymous access-to-specific-type of controlling formals.
7742 -- Base_Type is applied because in cases where there is a null
7743 -- exclusion the formal may have an access subtype.
7745 -- This is suppressed if we specifically suppress accessibility
7746 -- checks at the package level for either the subprogram, or the
7747 -- package in which it resides. However, we do not suppress it
7748 -- simply if the scope has accessibility checks suppressed, since
7749 -- this could cause trouble when clients are compiled with a
7750 -- different suppression setting. The explicit checks at the
7751 -- package level are safe from this point of view.
7753 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
7754 or else (Is_Controlling_Formal (Formal)
7755 and then Is_Access_Type (Base_Type (Etype (Formal)))))
7756 and then not
7757 (Explicit_Suppress (E, Accessibility_Check)
7758 or else
7759 Explicit_Suppress (Scope (E), Accessibility_Check))
7760 and then
7761 (No (P_Formal)
7762 or else Present (Extra_Accessibility (P_Formal)))
7763 then
7764 Set_Extra_Accessibility
7765 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
7766 end if;
7768 -- This label is required when skipping extra formal generation for
7769 -- Unchecked_Union parameters.
7771 <<Skip_Extra_Formal_Generation>>
7773 if Present (P_Formal) then
7774 Next_Formal (P_Formal);
7775 end if;
7777 Next_Formal (Formal);
7778 end loop;
7780 <<Test_For_Func_Result_Extras>>
7782 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
7783 -- function call is ... determined by the point of call ...".
7785 if Needs_Result_Accessibility_Level (E) then
7786 Set_Extra_Accessibility_Of_Result
7787 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
7788 end if;
7790 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
7791 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
7793 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
7794 declare
7795 Result_Subt : constant Entity_Id := Etype (E);
7796 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
7797 Formal_Typ : Entity_Id;
7798 Subp_Decl : Node_Id;
7800 Discard : Entity_Id;
7801 pragma Warnings (Off, Discard);
7803 begin
7804 -- In the case of functions with unconstrained result subtypes,
7805 -- add a 4-state formal indicating whether the return object is
7806 -- allocated by the caller (1), or should be allocated by the
7807 -- callee on the secondary stack (2), in the global heap (3), or
7808 -- in a user-defined storage pool (4). For the moment we just use
7809 -- Natural for the type of this formal. Note that this formal
7810 -- isn't usually needed in the case where the result subtype is
7811 -- constrained, but it is needed when the function has a tagged
7812 -- result, because generally such functions can be called in a
7813 -- dispatching context and such calls must be handled like calls
7814 -- to a class-wide function.
7816 if Needs_BIP_Alloc_Form (E) then
7817 Discard :=
7818 Add_Extra_Formal
7819 (E, Standard_Natural,
7820 E, BIP_Formal_Suffix (BIP_Alloc_Form));
7822 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
7823 -- use a user-defined pool. This formal is not added on
7824 -- ZFP as those targets do not support pools.
7826 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
7827 Discard :=
7828 Add_Extra_Formal
7829 (E, RTE (RE_Root_Storage_Pool_Ptr),
7830 E, BIP_Formal_Suffix (BIP_Storage_Pool));
7831 end if;
7832 end if;
7834 -- In the case of functions whose result type needs finalization,
7835 -- add an extra formal which represents the finalization master.
7837 if Needs_BIP_Finalization_Master (E) then
7838 Discard :=
7839 Add_Extra_Formal
7840 (E, RTE (RE_Finalization_Master_Ptr),
7841 E, BIP_Formal_Suffix (BIP_Finalization_Master));
7842 end if;
7844 -- When the result type contains tasks, add two extra formals: the
7845 -- master of the tasks to be created, and the caller's activation
7846 -- chain.
7848 if Has_Task (Full_Subt) then
7849 Discard :=
7850 Add_Extra_Formal
7851 (E, RTE (RE_Master_Id),
7852 E, BIP_Formal_Suffix (BIP_Task_Master));
7853 Discard :=
7854 Add_Extra_Formal
7855 (E, RTE (RE_Activation_Chain_Access),
7856 E, BIP_Formal_Suffix (BIP_Activation_Chain));
7857 end if;
7859 -- All build-in-place functions get an extra formal that will be
7860 -- passed the address of the return object within the caller.
7862 Formal_Typ :=
7863 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
7865 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
7866 Set_Etype (Formal_Typ, Formal_Typ);
7867 Set_Depends_On_Private
7868 (Formal_Typ, Has_Private_Component (Formal_Typ));
7869 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
7870 Set_Is_Access_Constant (Formal_Typ, False);
7872 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
7873 -- the designated type comes from the limited view (for back-end
7874 -- purposes).
7876 Set_From_Limited_With
7877 (Formal_Typ, From_Limited_With (Result_Subt));
7879 Layout_Type (Formal_Typ);
7881 -- Force the definition of the Itype in case of internal function
7882 -- calls within the same or nested scope.
7884 if Is_Subprogram_Or_Generic_Subprogram (E) then
7885 Subp_Decl := Parent (E);
7887 -- The insertion point for an Itype reference should be after
7888 -- the unit declaration node of the subprogram. An exception
7889 -- to this are inherited operations from a parent type in which
7890 -- case the derived type acts as their parent.
7892 if Nkind_In (Subp_Decl, N_Function_Specification,
7893 N_Procedure_Specification)
7894 then
7895 Subp_Decl := Parent (Subp_Decl);
7896 end if;
7898 Build_Itype_Reference (Formal_Typ, Subp_Decl);
7899 end if;
7901 Discard :=
7902 Add_Extra_Formal
7903 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
7904 end;
7905 end if;
7906 end Create_Extra_Formals;
7908 -----------------------------
7909 -- Enter_Overloaded_Entity --
7910 -----------------------------
7912 procedure Enter_Overloaded_Entity (S : Entity_Id) is
7913 function Matches_Predefined_Op return Boolean;
7914 -- This returns an approximation of whether S matches a predefined
7915 -- operator, based on the operator symbol, and the parameter and result
7916 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
7918 ---------------------------
7919 -- Matches_Predefined_Op --
7920 ---------------------------
7922 function Matches_Predefined_Op return Boolean is
7923 Formal_1 : constant Entity_Id := First_Formal (S);
7924 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
7925 Op : constant Name_Id := Chars (S);
7926 Result_Type : constant Entity_Id := Base_Type (Etype (S));
7927 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
7929 begin
7930 -- Binary operator
7932 if Present (Formal_2) then
7933 declare
7934 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
7936 begin
7937 -- All but "&" and "**" have same-types parameters
7939 case Op is
7940 when Name_Op_Concat
7941 | Name_Op_Expon
7943 null;
7945 when others =>
7946 if Type_1 /= Type_2 then
7947 return False;
7948 end if;
7949 end case;
7951 -- Check parameter and result types
7953 case Op is
7954 when Name_Op_And
7955 | Name_Op_Or
7956 | Name_Op_Xor
7958 return
7959 Is_Boolean_Type (Result_Type)
7960 and then Result_Type = Type_1;
7962 when Name_Op_Mod
7963 | Name_Op_Rem
7965 return
7966 Is_Integer_Type (Result_Type)
7967 and then Result_Type = Type_1;
7969 when Name_Op_Add
7970 | Name_Op_Divide
7971 | Name_Op_Multiply
7972 | Name_Op_Subtract
7974 return
7975 Is_Numeric_Type (Result_Type)
7976 and then Result_Type = Type_1;
7978 when Name_Op_Eq
7979 | Name_Op_Ne
7981 return
7982 Is_Boolean_Type (Result_Type)
7983 and then not Is_Limited_Type (Type_1);
7985 when Name_Op_Ge
7986 | Name_Op_Gt
7987 | Name_Op_Le
7988 | Name_Op_Lt
7990 return
7991 Is_Boolean_Type (Result_Type)
7992 and then (Is_Array_Type (Type_1)
7993 or else Is_Scalar_Type (Type_1));
7995 when Name_Op_Concat =>
7996 return Is_Array_Type (Result_Type);
7998 when Name_Op_Expon =>
7999 return
8000 (Is_Integer_Type (Result_Type)
8001 or else Is_Floating_Point_Type (Result_Type))
8002 and then Result_Type = Type_1
8003 and then Type_2 = Standard_Integer;
8005 when others =>
8006 raise Program_Error;
8007 end case;
8008 end;
8010 -- Unary operator
8012 else
8013 case Op is
8014 when Name_Op_Abs
8015 | Name_Op_Add
8016 | Name_Op_Subtract
8018 return
8019 Is_Numeric_Type (Result_Type)
8020 and then Result_Type = Type_1;
8022 when Name_Op_Not =>
8023 return
8024 Is_Boolean_Type (Result_Type)
8025 and then Result_Type = Type_1;
8027 when others =>
8028 raise Program_Error;
8029 end case;
8030 end if;
8031 end Matches_Predefined_Op;
8033 -- Local variables
8035 E : Entity_Id := Current_Entity_In_Scope (S);
8036 C_E : Entity_Id := Current_Entity (S);
8038 -- Start of processing for Enter_Overloaded_Entity
8040 begin
8041 if Present (E) then
8042 Set_Has_Homonym (E);
8043 Set_Has_Homonym (S);
8044 end if;
8046 Set_Is_Immediately_Visible (S);
8047 Set_Scope (S, Current_Scope);
8049 -- Chain new entity if front of homonym in current scope, so that
8050 -- homonyms are contiguous.
8052 if Present (E) and then E /= C_E then
8053 while Homonym (C_E) /= E loop
8054 C_E := Homonym (C_E);
8055 end loop;
8057 Set_Homonym (C_E, S);
8059 else
8060 E := C_E;
8061 Set_Current_Entity (S);
8062 end if;
8064 Set_Homonym (S, E);
8066 if Is_Inherited_Operation (S) then
8067 Append_Inherited_Subprogram (S);
8068 else
8069 Append_Entity (S, Current_Scope);
8070 end if;
8072 Set_Public_Status (S);
8074 if Debug_Flag_E then
8075 Write_Str ("New overloaded entity chain: ");
8076 Write_Name (Chars (S));
8078 E := S;
8079 while Present (E) loop
8080 Write_Str (" "); Write_Int (Int (E));
8081 E := Homonym (E);
8082 end loop;
8084 Write_Eol;
8085 end if;
8087 -- Generate warning for hiding
8089 if Warn_On_Hiding
8090 and then Comes_From_Source (S)
8091 and then In_Extended_Main_Source_Unit (S)
8092 then
8093 E := S;
8094 loop
8095 E := Homonym (E);
8096 exit when No (E);
8098 -- Warn unless genuine overloading. Do not emit warning on
8099 -- hiding predefined operators in Standard (these are either an
8100 -- (artifact of our implicit declarations, or simple noise) but
8101 -- keep warning on a operator defined on a local subtype, because
8102 -- of the real danger that different operators may be applied in
8103 -- various parts of the program.
8105 -- Note that if E and S have the same scope, there is never any
8106 -- hiding. Either the two conflict, and the program is illegal,
8107 -- or S is overriding an implicit inherited subprogram.
8109 if Scope (E) /= Scope (S)
8110 and then (not Is_Overloadable (E)
8111 or else Subtype_Conformant (E, S))
8112 and then (Is_Immediately_Visible (E)
8113 or else Is_Potentially_Use_Visible (S))
8114 then
8115 if Scope (E) = Standard_Standard then
8116 if Nkind (S) = N_Defining_Operator_Symbol
8117 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
8118 Scope (S)
8119 and then Matches_Predefined_Op
8120 then
8121 Error_Msg_N
8122 ("declaration of & hides predefined operator?h?", S);
8123 end if;
8125 -- E not immediately within Standard
8127 else
8128 Error_Msg_Sloc := Sloc (E);
8129 Error_Msg_N ("declaration of & hides one #?h?", S);
8130 end if;
8131 end if;
8132 end loop;
8133 end if;
8134 end Enter_Overloaded_Entity;
8136 -----------------------------
8137 -- Check_Untagged_Equality --
8138 -----------------------------
8140 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8141 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8142 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8143 Obj_Decl : Node_Id;
8145 begin
8146 -- This check applies only if we have a subprogram declaration with an
8147 -- untagged record type.
8149 if Nkind (Decl) /= N_Subprogram_Declaration
8150 or else not Is_Record_Type (Typ)
8151 or else Is_Tagged_Type (Typ)
8152 then
8153 return;
8154 end if;
8156 -- In Ada 2012 case, we will output errors or warnings depending on
8157 -- the setting of debug flag -gnatd.E.
8159 if Ada_Version >= Ada_2012 then
8160 Error_Msg_Warn := Debug_Flag_Dot_EE;
8162 -- In earlier versions of Ada, nothing to do unless we are warning on
8163 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
8165 else
8166 if not Warn_On_Ada_2012_Compatibility then
8167 return;
8168 end if;
8169 end if;
8171 -- Cases where the type has already been frozen
8173 if Is_Frozen (Typ) then
8175 -- If the type is not declared in a package, or if we are in the body
8176 -- of the package or in some other scope, the new operation is not
8177 -- primitive, and therefore legal, though suspicious. Should we
8178 -- generate a warning in this case ???
8180 if Ekind (Scope (Typ)) /= E_Package
8181 or else Scope (Typ) /= Current_Scope
8182 then
8183 return;
8185 -- If the type is a generic actual (sub)type, the operation is not
8186 -- primitive either because the base type is declared elsewhere.
8188 elsif Is_Generic_Actual_Type (Typ) then
8189 return;
8191 -- Here we have a definite error of declaration after freezing
8193 else
8194 if Ada_Version >= Ada_2012 then
8195 Error_Msg_NE
8196 ("equality operator must be declared before type & is "
8197 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
8199 -- In Ada 2012 mode with error turned to warning, output one
8200 -- more warning to warn that the equality operation may not
8201 -- compose. This is the consequence of ignoring the error.
8203 if Error_Msg_Warn then
8204 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
8205 end if;
8207 else
8208 Error_Msg_NE
8209 ("equality operator must be declared before type& is "
8210 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
8211 end if;
8213 -- If we are in the package body, we could just move the
8214 -- declaration to the package spec, so add a message saying that.
8216 if In_Package_Body (Scope (Typ)) then
8217 if Ada_Version >= Ada_2012 then
8218 Error_Msg_N
8219 ("\move declaration to package spec<<", Eq_Op);
8220 else
8221 Error_Msg_N
8222 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
8223 end if;
8225 -- Otherwise try to find the freezing point
8227 else
8228 Obj_Decl := Next (Parent (Typ));
8229 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8230 if Nkind (Obj_Decl) = N_Object_Declaration
8231 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8232 then
8233 -- Freezing point, output warnings
8235 if Ada_Version >= Ada_2012 then
8236 Error_Msg_NE
8237 ("type& is frozen by declaration??", Obj_Decl, Typ);
8238 Error_Msg_N
8239 ("\an equality operator cannot be declared after "
8240 & "this point??",
8241 Obj_Decl);
8242 else
8243 Error_Msg_NE
8244 ("type& is frozen by declaration (Ada 2012)?y?",
8245 Obj_Decl, Typ);
8246 Error_Msg_N
8247 ("\an equality operator cannot be declared after "
8248 & "this point (Ada 2012)?y?",
8249 Obj_Decl);
8250 end if;
8252 exit;
8253 end if;
8255 Next (Obj_Decl);
8256 end loop;
8257 end if;
8258 end if;
8260 -- Here if type is not frozen yet. It is illegal to have a primitive
8261 -- equality declared in the private part if the type is visible.
8263 elsif not In_Same_List (Parent (Typ), Decl)
8264 and then not Is_Limited_Type (Typ)
8265 then
8266 -- Shouldn't we give an RM reference here???
8268 if Ada_Version >= Ada_2012 then
8269 Error_Msg_N
8270 ("equality operator appears too late<<", Eq_Op);
8271 else
8272 Error_Msg_N
8273 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
8274 end if;
8276 -- No error detected
8278 else
8279 return;
8280 end if;
8281 end Check_Untagged_Equality;
8283 -----------------------------
8284 -- Find_Corresponding_Spec --
8285 -----------------------------
8287 function Find_Corresponding_Spec
8288 (N : Node_Id;
8289 Post_Error : Boolean := True) return Entity_Id
8291 Spec : constant Node_Id := Specification (N);
8292 Designator : constant Entity_Id := Defining_Entity (Spec);
8294 E : Entity_Id;
8296 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8297 -- Even if fully conformant, a body may depend on a generic actual when
8298 -- the spec does not, or vice versa, in which case they were distinct
8299 -- entities in the generic.
8301 -------------------------------
8302 -- Different_Generic_Profile --
8303 -------------------------------
8305 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8306 F1, F2 : Entity_Id;
8308 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8309 -- Check that the types of corresponding formals have the same
8310 -- generic actual if any. We have to account for subtypes of a
8311 -- generic formal, declared between a spec and a body, which may
8312 -- appear distinct in an instance but matched in the generic, and
8313 -- the subtype may be used either in the spec or the body of the
8314 -- subprogram being checked.
8316 -------------------------
8317 -- Same_Generic_Actual --
8318 -------------------------
8320 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8322 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
8323 -- Predicate to check whether S1 is a subtype of S2 in the source
8324 -- of the instance.
8326 -------------------------
8327 -- Is_Declared_Subtype --
8328 -------------------------
8330 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
8331 begin
8332 return Comes_From_Source (Parent (S1))
8333 and then Nkind (Parent (S1)) = N_Subtype_Declaration
8334 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
8335 and then Entity (Subtype_Indication (Parent (S1))) = S2;
8336 end Is_Declared_Subtype;
8338 -- Start of processing for Same_Generic_Actual
8340 begin
8341 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8342 or else Is_Declared_Subtype (T1, T2)
8343 or else Is_Declared_Subtype (T2, T1);
8344 end Same_Generic_Actual;
8346 -- Start of processing for Different_Generic_Profile
8348 begin
8349 if not In_Instance then
8350 return False;
8352 elsif Ekind (E) = E_Function
8353 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8354 then
8355 return True;
8356 end if;
8358 F1 := First_Formal (Designator);
8359 F2 := First_Formal (E);
8360 while Present (F1) loop
8361 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8362 return True;
8363 end if;
8365 Next_Formal (F1);
8366 Next_Formal (F2);
8367 end loop;
8369 return False;
8370 end Different_Generic_Profile;
8372 -- Start of processing for Find_Corresponding_Spec
8374 begin
8375 E := Current_Entity (Designator);
8376 while Present (E) loop
8378 -- We are looking for a matching spec. It must have the same scope,
8379 -- and the same name, and either be type conformant, or be the case
8380 -- of a library procedure spec and its body (which belong to one
8381 -- another regardless of whether they are type conformant or not).
8383 if Scope (E) = Current_Scope then
8384 if Current_Scope = Standard_Standard
8385 or else (Ekind (E) = Ekind (Designator)
8386 and then Type_Conformant (E, Designator))
8387 then
8388 -- Within an instantiation, we know that spec and body are
8389 -- subtype conformant, because they were subtype conformant in
8390 -- the generic. We choose the subtype-conformant entity here as
8391 -- well, to resolve spurious ambiguities in the instance that
8392 -- were not present in the generic (i.e. when two different
8393 -- types are given the same actual). If we are looking for a
8394 -- spec to match a body, full conformance is expected.
8396 if In_Instance then
8398 -- Inherit the convention and "ghostness" of the matching
8399 -- spec to ensure proper full and subtype conformance.
8401 Set_Convention (Designator, Convention (E));
8403 -- Skip past subprogram bodies and subprogram renamings that
8404 -- may appear to have a matching spec, but that aren't fully
8405 -- conformant with it. That can occur in cases where an
8406 -- actual type causes unrelated homographs in the instance.
8408 if Nkind_In (N, N_Subprogram_Body,
8409 N_Subprogram_Renaming_Declaration)
8410 and then Present (Homonym (E))
8411 and then not Fully_Conformant (Designator, E)
8412 then
8413 goto Next_Entity;
8415 elsif not Subtype_Conformant (Designator, E) then
8416 goto Next_Entity;
8418 elsif Different_Generic_Profile (E) then
8419 goto Next_Entity;
8420 end if;
8421 end if;
8423 -- Ada 2012 (AI05-0165): For internally generated bodies of
8424 -- null procedures locate the internally generated spec. We
8425 -- enforce mode conformance since a tagged type may inherit
8426 -- from interfaces several null primitives which differ only
8427 -- in the mode of the formals.
8429 if not (Comes_From_Source (E))
8430 and then Is_Null_Procedure (E)
8431 and then not Mode_Conformant (Designator, E)
8432 then
8433 null;
8435 -- For null procedures coming from source that are completions,
8436 -- analysis of the generated body will establish the link.
8438 elsif Comes_From_Source (E)
8439 and then Nkind (Spec) = N_Procedure_Specification
8440 and then Null_Present (Spec)
8441 then
8442 return E;
8444 -- Expression functions can be completions, but cannot be
8445 -- completed by an explicit body.
8447 elsif Comes_From_Source (E)
8448 and then Comes_From_Source (N)
8449 and then Nkind (N) = N_Subprogram_Body
8450 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
8451 N_Expression_Function
8452 then
8453 Error_Msg_Sloc := Sloc (E);
8454 Error_Msg_N ("body conflicts with expression function#", N);
8455 return Empty;
8457 elsif not Has_Completion (E) then
8458 if Nkind (N) /= N_Subprogram_Body_Stub then
8459 Set_Corresponding_Spec (N, E);
8460 end if;
8462 Set_Has_Completion (E);
8463 return E;
8465 elsif Nkind (Parent (N)) = N_Subunit then
8467 -- If this is the proper body of a subunit, the completion
8468 -- flag is set when analyzing the stub.
8470 return E;
8472 -- If E is an internal function with a controlling result that
8473 -- was created for an operation inherited by a null extension,
8474 -- it may be overridden by a body without a previous spec (one
8475 -- more reason why these should be shunned). In that case we
8476 -- remove the generated body if present, because the current
8477 -- one is the explicit overriding.
8479 elsif Ekind (E) = E_Function
8480 and then Ada_Version >= Ada_2005
8481 and then not Comes_From_Source (E)
8482 and then Has_Controlling_Result (E)
8483 and then Is_Null_Extension (Etype (E))
8484 and then Comes_From_Source (Spec)
8485 then
8486 Set_Has_Completion (E, False);
8488 if Expander_Active
8489 and then Nkind (Parent (E)) = N_Function_Specification
8490 then
8491 Remove
8492 (Unit_Declaration_Node
8493 (Corresponding_Body (Unit_Declaration_Node (E))));
8495 return E;
8497 -- If expansion is disabled, or if the wrapper function has
8498 -- not been generated yet, this a late body overriding an
8499 -- inherited operation, or it is an overriding by some other
8500 -- declaration before the controlling result is frozen. In
8501 -- either case this is a declaration of a new entity.
8503 else
8504 return Empty;
8505 end if;
8507 -- If the body already exists, then this is an error unless
8508 -- the previous declaration is the implicit declaration of a
8509 -- derived subprogram. It is also legal for an instance to
8510 -- contain type conformant overloadable declarations (but the
8511 -- generic declaration may not), per 8.3(26/2).
8513 elsif No (Alias (E))
8514 and then not Is_Intrinsic_Subprogram (E)
8515 and then not In_Instance
8516 and then Post_Error
8517 then
8518 Error_Msg_Sloc := Sloc (E);
8520 if Is_Imported (E) then
8521 Error_Msg_NE
8522 ("body not allowed for imported subprogram & declared#",
8523 N, E);
8524 else
8525 Error_Msg_NE ("duplicate body for & declared#", N, E);
8526 end if;
8527 end if;
8529 -- Child units cannot be overloaded, so a conformance mismatch
8530 -- between body and a previous spec is an error.
8532 elsif Is_Child_Unit (E)
8533 and then
8534 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8535 and then
8536 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8537 N_Compilation_Unit
8538 and then Post_Error
8539 then
8540 Error_Msg_N
8541 ("body of child unit does not match previous declaration", N);
8542 end if;
8543 end if;
8545 <<Next_Entity>>
8546 E := Homonym (E);
8547 end loop;
8549 -- On exit, we know that no previous declaration of subprogram exists
8551 return Empty;
8552 end Find_Corresponding_Spec;
8554 ----------------------
8555 -- Fully_Conformant --
8556 ----------------------
8558 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8559 Result : Boolean;
8560 begin
8561 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8562 return Result;
8563 end Fully_Conformant;
8565 ----------------------------------
8566 -- Fully_Conformant_Expressions --
8567 ----------------------------------
8569 function Fully_Conformant_Expressions
8570 (Given_E1 : Node_Id;
8571 Given_E2 : Node_Id) return Boolean
8573 E1 : constant Node_Id := Original_Node (Given_E1);
8574 E2 : constant Node_Id := Original_Node (Given_E2);
8575 -- We always test conformance on original nodes, since it is possible
8576 -- for analysis and/or expansion to make things look as though they
8577 -- conform when they do not, e.g. by converting 1+2 into 3.
8579 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
8580 renames Fully_Conformant_Expressions;
8582 function FCL (L1, L2 : List_Id) return Boolean;
8583 -- Compare elements of two lists for conformance. Elements have to be
8584 -- conformant, and actuals inserted as default parameters do not match
8585 -- explicit actuals with the same value.
8587 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
8588 -- Compare an operator node with a function call
8590 ---------
8591 -- FCL --
8592 ---------
8594 function FCL (L1, L2 : List_Id) return Boolean is
8595 N1, N2 : Node_Id;
8597 begin
8598 if L1 = No_List then
8599 N1 := Empty;
8600 else
8601 N1 := First (L1);
8602 end if;
8604 if L2 = No_List then
8605 N2 := Empty;
8606 else
8607 N2 := First (L2);
8608 end if;
8610 -- Compare two lists, skipping rewrite insertions (we want to compare
8611 -- the original trees, not the expanded versions).
8613 loop
8614 if Is_Rewrite_Insertion (N1) then
8615 Next (N1);
8616 elsif Is_Rewrite_Insertion (N2) then
8617 Next (N2);
8618 elsif No (N1) then
8619 return No (N2);
8620 elsif No (N2) then
8621 return False;
8622 elsif not FCE (N1, N2) then
8623 return False;
8624 else
8625 Next (N1);
8626 Next (N2);
8627 end if;
8628 end loop;
8629 end FCL;
8631 ---------
8632 -- FCO --
8633 ---------
8635 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
8636 Actuals : constant List_Id := Parameter_Associations (Call_Node);
8637 Act : Node_Id;
8639 begin
8640 if No (Actuals)
8641 or else Entity (Op_Node) /= Entity (Name (Call_Node))
8642 then
8643 return False;
8645 else
8646 Act := First (Actuals);
8648 if Nkind (Op_Node) in N_Binary_Op then
8649 if not FCE (Left_Opnd (Op_Node), Act) then
8650 return False;
8651 end if;
8653 Next (Act);
8654 end if;
8656 return Present (Act)
8657 and then FCE (Right_Opnd (Op_Node), Act)
8658 and then No (Next (Act));
8659 end if;
8660 end FCO;
8662 -- Start of processing for Fully_Conformant_Expressions
8664 begin
8665 -- Nonconformant if paren count does not match. Note: if some idiot
8666 -- complains that we don't do this right for more than 3 levels of
8667 -- parentheses, they will be treated with the respect they deserve.
8669 if Paren_Count (E1) /= Paren_Count (E2) then
8670 return False;
8672 -- If same entities are referenced, then they are conformant even if
8673 -- they have different forms (RM 8.3.1(19-20)).
8675 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
8676 if Present (Entity (E1)) then
8677 return Entity (E1) = Entity (E2)
8679 -- One may be a discriminant that has been replaced by
8680 -- the corresponding discriminal.
8682 or else (Chars (Entity (E1)) = Chars (Entity (E2))
8683 and then Ekind (Entity (E1)) = E_Discriminant
8684 and then Ekind (Entity (E2)) = E_In_Parameter)
8686 -- AI12-050: The loop variables of quantified expressions
8687 -- match if they have the same identifier, even though they
8688 -- are different entities.
8690 or else (Chars (Entity (E1)) = Chars (Entity (E2))
8691 and then Ekind (Entity (E1)) = E_Loop_Parameter
8692 and then Ekind (Entity (E2)) = E_Loop_Parameter);
8694 elsif Nkind (E1) = N_Expanded_Name
8695 and then Nkind (E2) = N_Expanded_Name
8696 and then Nkind (Selector_Name (E1)) = N_Character_Literal
8697 and then Nkind (Selector_Name (E2)) = N_Character_Literal
8698 then
8699 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
8701 else
8702 -- Identifiers in component associations don't always have
8703 -- entities, but their names must conform.
8705 return Nkind (E1) = N_Identifier
8706 and then Nkind (E2) = N_Identifier
8707 and then Chars (E1) = Chars (E2);
8708 end if;
8710 elsif Nkind (E1) = N_Character_Literal
8711 and then Nkind (E2) = N_Expanded_Name
8712 then
8713 return Nkind (Selector_Name (E2)) = N_Character_Literal
8714 and then Chars (E1) = Chars (Selector_Name (E2));
8716 elsif Nkind (E2) = N_Character_Literal
8717 and then Nkind (E1) = N_Expanded_Name
8718 then
8719 return Nkind (Selector_Name (E1)) = N_Character_Literal
8720 and then Chars (E2) = Chars (Selector_Name (E1));
8722 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
8723 return FCO (E1, E2);
8725 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
8726 return FCO (E2, E1);
8728 -- Otherwise we must have the same syntactic entity
8730 elsif Nkind (E1) /= Nkind (E2) then
8731 return False;
8733 -- At this point, we specialize by node type
8735 else
8736 case Nkind (E1) is
8737 when N_Aggregate =>
8738 return
8739 FCL (Expressions (E1), Expressions (E2))
8740 and then
8741 FCL (Component_Associations (E1),
8742 Component_Associations (E2));
8744 when N_Allocator =>
8745 if Nkind (Expression (E1)) = N_Qualified_Expression
8746 or else
8747 Nkind (Expression (E2)) = N_Qualified_Expression
8748 then
8749 return FCE (Expression (E1), Expression (E2));
8751 -- Check that the subtype marks and any constraints
8752 -- are conformant
8754 else
8755 declare
8756 Indic1 : constant Node_Id := Expression (E1);
8757 Indic2 : constant Node_Id := Expression (E2);
8758 Elt1 : Node_Id;
8759 Elt2 : Node_Id;
8761 begin
8762 if Nkind (Indic1) /= N_Subtype_Indication then
8763 return
8764 Nkind (Indic2) /= N_Subtype_Indication
8765 and then Entity (Indic1) = Entity (Indic2);
8767 elsif Nkind (Indic2) /= N_Subtype_Indication then
8768 return
8769 Nkind (Indic1) /= N_Subtype_Indication
8770 and then Entity (Indic1) = Entity (Indic2);
8772 else
8773 if Entity (Subtype_Mark (Indic1)) /=
8774 Entity (Subtype_Mark (Indic2))
8775 then
8776 return False;
8777 end if;
8779 Elt1 := First (Constraints (Constraint (Indic1)));
8780 Elt2 := First (Constraints (Constraint (Indic2)));
8781 while Present (Elt1) and then Present (Elt2) loop
8782 if not FCE (Elt1, Elt2) then
8783 return False;
8784 end if;
8786 Next (Elt1);
8787 Next (Elt2);
8788 end loop;
8790 return True;
8791 end if;
8792 end;
8793 end if;
8795 when N_Attribute_Reference =>
8796 return
8797 Attribute_Name (E1) = Attribute_Name (E2)
8798 and then FCL (Expressions (E1), Expressions (E2));
8800 when N_Binary_Op =>
8801 return
8802 Entity (E1) = Entity (E2)
8803 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
8804 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
8806 when N_Membership_Test
8807 | N_Short_Circuit
8809 return
8810 FCE (Left_Opnd (E1), Left_Opnd (E2))
8811 and then
8812 FCE (Right_Opnd (E1), Right_Opnd (E2));
8814 when N_Case_Expression =>
8815 declare
8816 Alt1 : Node_Id;
8817 Alt2 : Node_Id;
8819 begin
8820 if not FCE (Expression (E1), Expression (E2)) then
8821 return False;
8823 else
8824 Alt1 := First (Alternatives (E1));
8825 Alt2 := First (Alternatives (E2));
8826 loop
8827 if Present (Alt1) /= Present (Alt2) then
8828 return False;
8829 elsif No (Alt1) then
8830 return True;
8831 end if;
8833 if not FCE (Expression (Alt1), Expression (Alt2))
8834 or else not FCL (Discrete_Choices (Alt1),
8835 Discrete_Choices (Alt2))
8836 then
8837 return False;
8838 end if;
8840 Next (Alt1);
8841 Next (Alt2);
8842 end loop;
8843 end if;
8844 end;
8846 when N_Character_Literal =>
8847 return
8848 Char_Literal_Value (E1) = Char_Literal_Value (E2);
8850 when N_Component_Association =>
8851 return
8852 FCL (Choices (E1), Choices (E2))
8853 and then
8854 FCE (Expression (E1), Expression (E2));
8856 when N_Explicit_Dereference =>
8857 return
8858 FCE (Prefix (E1), Prefix (E2));
8860 when N_Extension_Aggregate =>
8861 return
8862 FCL (Expressions (E1), Expressions (E2))
8863 and then Null_Record_Present (E1) =
8864 Null_Record_Present (E2)
8865 and then FCL (Component_Associations (E1),
8866 Component_Associations (E2));
8868 when N_Function_Call =>
8869 return
8870 FCE (Name (E1), Name (E2))
8871 and then
8872 FCL (Parameter_Associations (E1),
8873 Parameter_Associations (E2));
8875 when N_If_Expression =>
8876 return
8877 FCL (Expressions (E1), Expressions (E2));
8879 when N_Indexed_Component =>
8880 return
8881 FCE (Prefix (E1), Prefix (E2))
8882 and then
8883 FCL (Expressions (E1), Expressions (E2));
8885 when N_Integer_Literal =>
8886 return (Intval (E1) = Intval (E2));
8888 when N_Null =>
8889 return True;
8891 when N_Operator_Symbol =>
8892 return
8893 Chars (E1) = Chars (E2);
8895 when N_Others_Choice =>
8896 return True;
8898 when N_Parameter_Association =>
8899 return
8900 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
8901 and then FCE (Explicit_Actual_Parameter (E1),
8902 Explicit_Actual_Parameter (E2));
8904 when N_Qualified_Expression =>
8905 return
8906 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8907 and then
8908 FCE (Expression (E1), Expression (E2));
8910 when N_Quantified_Expression =>
8911 if not FCE (Condition (E1), Condition (E2)) then
8912 return False;
8913 end if;
8915 if Present (Loop_Parameter_Specification (E1))
8916 and then Present (Loop_Parameter_Specification (E2))
8917 then
8918 declare
8919 L1 : constant Node_Id :=
8920 Loop_Parameter_Specification (E1);
8921 L2 : constant Node_Id :=
8922 Loop_Parameter_Specification (E2);
8924 begin
8925 return
8926 Reverse_Present (L1) = Reverse_Present (L2)
8927 and then
8928 FCE (Defining_Identifier (L1),
8929 Defining_Identifier (L2))
8930 and then
8931 FCE (Discrete_Subtype_Definition (L1),
8932 Discrete_Subtype_Definition (L2));
8933 end;
8935 elsif Present (Iterator_Specification (E1))
8936 and then Present (Iterator_Specification (E2))
8937 then
8938 declare
8939 I1 : constant Node_Id := Iterator_Specification (E1);
8940 I2 : constant Node_Id := Iterator_Specification (E2);
8942 begin
8943 return
8944 FCE (Defining_Identifier (I1),
8945 Defining_Identifier (I2))
8946 and then
8947 Of_Present (I1) = Of_Present (I2)
8948 and then
8949 Reverse_Present (I1) = Reverse_Present (I2)
8950 and then FCE (Name (I1), Name (I2))
8951 and then FCE (Subtype_Indication (I1),
8952 Subtype_Indication (I2));
8953 end;
8955 -- The quantified expressions used different specifications to
8956 -- walk their respective ranges.
8958 else
8959 return False;
8960 end if;
8962 when N_Range =>
8963 return
8964 FCE (Low_Bound (E1), Low_Bound (E2))
8965 and then
8966 FCE (High_Bound (E1), High_Bound (E2));
8968 when N_Real_Literal =>
8969 return (Realval (E1) = Realval (E2));
8971 when N_Selected_Component =>
8972 return
8973 FCE (Prefix (E1), Prefix (E2))
8974 and then
8975 FCE (Selector_Name (E1), Selector_Name (E2));
8977 when N_Slice =>
8978 return
8979 FCE (Prefix (E1), Prefix (E2))
8980 and then
8981 FCE (Discrete_Range (E1), Discrete_Range (E2));
8983 when N_String_Literal =>
8984 declare
8985 S1 : constant String_Id := Strval (E1);
8986 S2 : constant String_Id := Strval (E2);
8987 L1 : constant Nat := String_Length (S1);
8988 L2 : constant Nat := String_Length (S2);
8990 begin
8991 if L1 /= L2 then
8992 return False;
8994 else
8995 for J in 1 .. L1 loop
8996 if Get_String_Char (S1, J) /=
8997 Get_String_Char (S2, J)
8998 then
8999 return False;
9000 end if;
9001 end loop;
9003 return True;
9004 end if;
9005 end;
9007 when N_Type_Conversion =>
9008 return
9009 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9010 and then
9011 FCE (Expression (E1), Expression (E2));
9013 when N_Unary_Op =>
9014 return
9015 Entity (E1) = Entity (E2)
9016 and then
9017 FCE (Right_Opnd (E1), Right_Opnd (E2));
9019 when N_Unchecked_Type_Conversion =>
9020 return
9021 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9022 and then
9023 FCE (Expression (E1), Expression (E2));
9025 -- All other node types cannot appear in this context. Strictly
9026 -- we should raise a fatal internal error. Instead we just ignore
9027 -- the nodes. This means that if anyone makes a mistake in the
9028 -- expander and mucks an expression tree irretrievably, the result
9029 -- will be a failure to detect a (probably very obscure) case
9030 -- of non-conformance, which is better than bombing on some
9031 -- case where two expressions do in fact conform.
9033 when others =>
9034 return True;
9035 end case;
9036 end if;
9037 end Fully_Conformant_Expressions;
9039 ----------------------------------------
9040 -- Fully_Conformant_Discrete_Subtypes --
9041 ----------------------------------------
9043 function Fully_Conformant_Discrete_Subtypes
9044 (Given_S1 : Node_Id;
9045 Given_S2 : Node_Id) return Boolean
9047 S1 : constant Node_Id := Original_Node (Given_S1);
9048 S2 : constant Node_Id := Original_Node (Given_S2);
9050 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9051 -- Special-case for a bound given by a discriminant, which in the body
9052 -- is replaced with the discriminal of the enclosing type.
9054 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9055 -- Check both bounds
9057 -----------------------
9058 -- Conforming_Bounds --
9059 -----------------------
9061 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9062 begin
9063 if Is_Entity_Name (B1)
9064 and then Is_Entity_Name (B2)
9065 and then Ekind (Entity (B1)) = E_Discriminant
9066 then
9067 return Chars (B1) = Chars (B2);
9069 else
9070 return Fully_Conformant_Expressions (B1, B2);
9071 end if;
9072 end Conforming_Bounds;
9074 -----------------------
9075 -- Conforming_Ranges --
9076 -----------------------
9078 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9079 begin
9080 return
9081 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9082 and then
9083 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9084 end Conforming_Ranges;
9086 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9088 begin
9089 if Nkind (S1) /= Nkind (S2) then
9090 return False;
9092 elsif Is_Entity_Name (S1) then
9093 return Entity (S1) = Entity (S2);
9095 elsif Nkind (S1) = N_Range then
9096 return Conforming_Ranges (S1, S2);
9098 elsif Nkind (S1) = N_Subtype_Indication then
9099 return
9100 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9101 and then
9102 Conforming_Ranges
9103 (Range_Expression (Constraint (S1)),
9104 Range_Expression (Constraint (S2)));
9105 else
9106 return True;
9107 end if;
9108 end Fully_Conformant_Discrete_Subtypes;
9110 --------------------
9111 -- Install_Entity --
9112 --------------------
9114 procedure Install_Entity (E : Entity_Id) is
9115 Prev : constant Entity_Id := Current_Entity (E);
9116 begin
9117 Set_Is_Immediately_Visible (E);
9118 Set_Current_Entity (E);
9119 Set_Homonym (E, Prev);
9120 end Install_Entity;
9122 ---------------------
9123 -- Install_Formals --
9124 ---------------------
9126 procedure Install_Formals (Id : Entity_Id) is
9127 F : Entity_Id;
9128 begin
9129 F := First_Formal (Id);
9130 while Present (F) loop
9131 Install_Entity (F);
9132 Next_Formal (F);
9133 end loop;
9134 end Install_Formals;
9136 -----------------------------
9137 -- Is_Interface_Conformant --
9138 -----------------------------
9140 function Is_Interface_Conformant
9141 (Tagged_Type : Entity_Id;
9142 Iface_Prim : Entity_Id;
9143 Prim : Entity_Id) return Boolean
9145 -- The operation may in fact be an inherited (implicit) operation
9146 -- rather than the original interface primitive, so retrieve the
9147 -- ultimate ancestor.
9149 Iface : constant Entity_Id :=
9150 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9151 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9153 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9154 -- Return the controlling formal of Prim
9156 ------------------------
9157 -- Controlling_Formal --
9158 ------------------------
9160 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9161 E : Entity_Id;
9163 begin
9164 E := First_Entity (Prim);
9165 while Present (E) loop
9166 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9167 return E;
9168 end if;
9170 Next_Entity (E);
9171 end loop;
9173 return Empty;
9174 end Controlling_Formal;
9176 -- Local variables
9178 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9179 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9181 -- Start of processing for Is_Interface_Conformant
9183 begin
9184 pragma Assert (Is_Subprogram (Iface_Prim)
9185 and then Is_Subprogram (Prim)
9186 and then Is_Dispatching_Operation (Iface_Prim)
9187 and then Is_Dispatching_Operation (Prim));
9189 pragma Assert (Is_Interface (Iface)
9190 or else (Present (Alias (Iface_Prim))
9191 and then
9192 Is_Interface
9193 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9195 if Prim = Iface_Prim
9196 or else not Is_Subprogram (Prim)
9197 or else Ekind (Prim) /= Ekind (Iface_Prim)
9198 or else not Is_Dispatching_Operation (Prim)
9199 or else Scope (Prim) /= Scope (Tagged_Type)
9200 or else No (Typ)
9201 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9202 or else not Primitive_Names_Match (Iface_Prim, Prim)
9203 then
9204 return False;
9206 -- The mode of the controlling formals must match
9208 elsif Present (Iface_Ctrl_F)
9209 and then Present (Prim_Ctrl_F)
9210 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9211 then
9212 return False;
9214 -- Case of a procedure, or a function whose result type matches the
9215 -- result type of the interface primitive, or a function that has no
9216 -- controlling result (I or access I).
9218 elsif Ekind (Iface_Prim) = E_Procedure
9219 or else Etype (Prim) = Etype (Iface_Prim)
9220 or else not Has_Controlling_Result (Prim)
9221 then
9222 return Type_Conformant
9223 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9225 -- Case of a function returning an interface, or an access to one. Check
9226 -- that the return types correspond.
9228 elsif Implements_Interface (Typ, Iface) then
9229 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9231 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9232 then
9233 return False;
9234 else
9235 return
9236 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9237 Skip_Controlling_Formals => True);
9238 end if;
9240 else
9241 return False;
9242 end if;
9243 end Is_Interface_Conformant;
9245 ---------------------------------
9246 -- Is_Non_Overriding_Operation --
9247 ---------------------------------
9249 function Is_Non_Overriding_Operation
9250 (Prev_E : Entity_Id;
9251 New_E : Entity_Id) return Boolean
9253 Formal : Entity_Id;
9254 F_Typ : Entity_Id;
9255 G_Typ : Entity_Id := Empty;
9257 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9258 -- If F_Type is a derived type associated with a generic actual subtype,
9259 -- then return its Generic_Parent_Type attribute, else return Empty.
9261 function Types_Correspond
9262 (P_Type : Entity_Id;
9263 N_Type : Entity_Id) return Boolean;
9264 -- Returns true if and only if the types (or designated types in the
9265 -- case of anonymous access types) are the same or N_Type is derived
9266 -- directly or indirectly from P_Type.
9268 -----------------------------
9269 -- Get_Generic_Parent_Type --
9270 -----------------------------
9272 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9273 G_Typ : Entity_Id;
9274 Defn : Node_Id;
9275 Indic : Node_Id;
9277 begin
9278 if Is_Derived_Type (F_Typ)
9279 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9280 then
9281 -- The tree must be traversed to determine the parent subtype in
9282 -- the generic unit, which unfortunately isn't always available
9283 -- via semantic attributes. ??? (Note: The use of Original_Node
9284 -- is needed for cases where a full derived type has been
9285 -- rewritten.)
9287 -- If the parent type is a scalar type, the derivation creates
9288 -- an anonymous base type for it, and the source type is its
9289 -- first subtype.
9291 if Is_Scalar_Type (F_Typ)
9292 and then not Comes_From_Source (F_Typ)
9293 then
9294 Defn :=
9295 Type_Definition
9296 (Original_Node (Parent (First_Subtype (F_Typ))));
9297 else
9298 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9299 end if;
9300 if Nkind (Defn) = N_Derived_Type_Definition then
9301 Indic := Subtype_Indication (Defn);
9303 if Nkind (Indic) = N_Subtype_Indication then
9304 G_Typ := Entity (Subtype_Mark (Indic));
9305 else
9306 G_Typ := Entity (Indic);
9307 end if;
9309 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9310 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9311 then
9312 return Generic_Parent_Type (Parent (G_Typ));
9313 end if;
9314 end if;
9315 end if;
9317 return Empty;
9318 end Get_Generic_Parent_Type;
9320 ----------------------
9321 -- Types_Correspond --
9322 ----------------------
9324 function Types_Correspond
9325 (P_Type : Entity_Id;
9326 N_Type : Entity_Id) return Boolean
9328 Prev_Type : Entity_Id := Base_Type (P_Type);
9329 New_Type : Entity_Id := Base_Type (N_Type);
9331 begin
9332 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9333 Prev_Type := Designated_Type (Prev_Type);
9334 end if;
9336 if Ekind (New_Type) = E_Anonymous_Access_Type then
9337 New_Type := Designated_Type (New_Type);
9338 end if;
9340 if Prev_Type = New_Type then
9341 return True;
9343 elsif not Is_Class_Wide_Type (New_Type) then
9344 while Etype (New_Type) /= New_Type loop
9345 New_Type := Etype (New_Type);
9347 if New_Type = Prev_Type then
9348 return True;
9349 end if;
9350 end loop;
9351 end if;
9352 return False;
9353 end Types_Correspond;
9355 -- Start of processing for Is_Non_Overriding_Operation
9357 begin
9358 -- In the case where both operations are implicit derived subprograms
9359 -- then neither overrides the other. This can only occur in certain
9360 -- obscure cases (e.g., derivation from homographs created in a generic
9361 -- instantiation).
9363 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9364 return True;
9366 elsif Ekind (Current_Scope) = E_Package
9367 and then Is_Generic_Instance (Current_Scope)
9368 and then In_Private_Part (Current_Scope)
9369 and then Comes_From_Source (New_E)
9370 then
9371 -- We examine the formals and result type of the inherited operation,
9372 -- to determine whether their type is derived from (the instance of)
9373 -- a generic type. The first such formal or result type is the one
9374 -- tested.
9376 Formal := First_Formal (Prev_E);
9377 F_Typ := Empty;
9378 while Present (Formal) loop
9379 F_Typ := Base_Type (Etype (Formal));
9381 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9382 F_Typ := Designated_Type (F_Typ);
9383 end if;
9385 G_Typ := Get_Generic_Parent_Type (F_Typ);
9386 exit when Present (G_Typ);
9388 Next_Formal (Formal);
9389 end loop;
9391 -- If the function dispatches on result check the result type
9393 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9394 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9395 end if;
9397 if No (G_Typ) then
9398 return False;
9399 end if;
9401 -- If the generic type is a private type, then the original operation
9402 -- was not overriding in the generic, because there was no primitive
9403 -- operation to override.
9405 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9406 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9407 N_Formal_Private_Type_Definition
9408 then
9409 return True;
9411 -- The generic parent type is the ancestor of a formal derived
9412 -- type declaration. We need to check whether it has a primitive
9413 -- operation that should be overridden by New_E in the generic.
9415 else
9416 declare
9417 P_Formal : Entity_Id;
9418 N_Formal : Entity_Id;
9419 P_Typ : Entity_Id;
9420 N_Typ : Entity_Id;
9421 P_Prim : Entity_Id;
9422 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9424 begin
9425 while Present (Prim_Elt) loop
9426 P_Prim := Node (Prim_Elt);
9428 if Chars (P_Prim) = Chars (New_E)
9429 and then Ekind (P_Prim) = Ekind (New_E)
9430 then
9431 P_Formal := First_Formal (P_Prim);
9432 N_Formal := First_Formal (New_E);
9433 while Present (P_Formal) and then Present (N_Formal) loop
9434 P_Typ := Etype (P_Formal);
9435 N_Typ := Etype (N_Formal);
9437 if not Types_Correspond (P_Typ, N_Typ) then
9438 exit;
9439 end if;
9441 Next_Entity (P_Formal);
9442 Next_Entity (N_Formal);
9443 end loop;
9445 -- Found a matching primitive operation belonging to the
9446 -- formal ancestor type, so the new subprogram is
9447 -- overriding.
9449 if No (P_Formal)
9450 and then No (N_Formal)
9451 and then (Ekind (New_E) /= E_Function
9452 or else
9453 Types_Correspond
9454 (Etype (P_Prim), Etype (New_E)))
9455 then
9456 return False;
9457 end if;
9458 end if;
9460 Next_Elmt (Prim_Elt);
9461 end loop;
9463 -- If no match found, then the new subprogram does not override
9464 -- in the generic (nor in the instance).
9466 -- If the type in question is not abstract, and the subprogram
9467 -- is, this will be an error if the new operation is in the
9468 -- private part of the instance. Emit a warning now, which will
9469 -- make the subsequent error message easier to understand.
9471 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
9472 and then Is_Abstract_Subprogram (Prev_E)
9473 and then In_Private_Part (Current_Scope)
9474 then
9475 Error_Msg_Node_2 := F_Typ;
9476 Error_Msg_NE
9477 ("private operation& in generic unit does not override "
9478 & "any primitive operation of& (RM 12.3 (18))??",
9479 New_E, New_E);
9480 end if;
9482 return True;
9483 end;
9484 end if;
9485 else
9486 return False;
9487 end if;
9488 end Is_Non_Overriding_Operation;
9490 -------------------------------------
9491 -- List_Inherited_Pre_Post_Aspects --
9492 -------------------------------------
9494 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9495 begin
9496 if Opt.List_Inherited_Aspects
9497 and then Is_Subprogram_Or_Generic_Subprogram (E)
9498 then
9499 declare
9500 Subps : constant Subprogram_List := Inherited_Subprograms (E);
9501 Items : Node_Id;
9502 Prag : Node_Id;
9504 begin
9505 for Index in Subps'Range loop
9506 Items := Contract (Subps (Index));
9508 if Present (Items) then
9509 Prag := Pre_Post_Conditions (Items);
9510 while Present (Prag) loop
9511 Error_Msg_Sloc := Sloc (Prag);
9513 if Class_Present (Prag)
9514 and then not Split_PPC (Prag)
9515 then
9516 if Pragma_Name (Prag) = Name_Precondition then
9517 Error_Msg_N
9518 ("info: & inherits `Pre''Class` aspect from "
9519 & "#?L?", E);
9520 else
9521 Error_Msg_N
9522 ("info: & inherits `Post''Class` aspect from "
9523 & "#?L?", E);
9524 end if;
9525 end if;
9527 Prag := Next_Pragma (Prag);
9528 end loop;
9529 end if;
9530 end loop;
9531 end;
9532 end if;
9533 end List_Inherited_Pre_Post_Aspects;
9535 ------------------------------
9536 -- Make_Inequality_Operator --
9537 ------------------------------
9539 -- S is the defining identifier of an equality operator. We build a
9540 -- subprogram declaration with the right signature. This operation is
9541 -- intrinsic, because it is always expanded as the negation of the
9542 -- call to the equality function.
9544 procedure Make_Inequality_Operator (S : Entity_Id) is
9545 Loc : constant Source_Ptr := Sloc (S);
9546 Decl : Node_Id;
9547 Formals : List_Id;
9548 Op_Name : Entity_Id;
9550 FF : constant Entity_Id := First_Formal (S);
9551 NF : constant Entity_Id := Next_Formal (FF);
9553 begin
9554 -- Check that equality was properly defined, ignore call if not
9556 if No (NF) then
9557 return;
9558 end if;
9560 declare
9561 A : constant Entity_Id :=
9562 Make_Defining_Identifier (Sloc (FF),
9563 Chars => Chars (FF));
9565 B : constant Entity_Id :=
9566 Make_Defining_Identifier (Sloc (NF),
9567 Chars => Chars (NF));
9569 begin
9570 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9572 Formals := New_List (
9573 Make_Parameter_Specification (Loc,
9574 Defining_Identifier => A,
9575 Parameter_Type =>
9576 New_Occurrence_Of (Etype (First_Formal (S)),
9577 Sloc (Etype (First_Formal (S))))),
9579 Make_Parameter_Specification (Loc,
9580 Defining_Identifier => B,
9581 Parameter_Type =>
9582 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
9583 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9585 Decl :=
9586 Make_Subprogram_Declaration (Loc,
9587 Specification =>
9588 Make_Function_Specification (Loc,
9589 Defining_Unit_Name => Op_Name,
9590 Parameter_Specifications => Formals,
9591 Result_Definition =>
9592 New_Occurrence_Of (Standard_Boolean, Loc)));
9594 -- Insert inequality right after equality if it is explicit or after
9595 -- the derived type when implicit. These entities are created only
9596 -- for visibility purposes, and eventually replaced in the course
9597 -- of expansion, so they do not need to be attached to the tree and
9598 -- seen by the back-end. Keeping them internal also avoids spurious
9599 -- freezing problems. The declaration is inserted in the tree for
9600 -- analysis, and removed afterwards. If the equality operator comes
9601 -- from an explicit declaration, attach the inequality immediately
9602 -- after. Else the equality is inherited from a derived type
9603 -- declaration, so insert inequality after that declaration.
9605 if No (Alias (S)) then
9606 Insert_After (Unit_Declaration_Node (S), Decl);
9607 elsif Is_List_Member (Parent (S)) then
9608 Insert_After (Parent (S), Decl);
9609 else
9610 Insert_After (Parent (Etype (First_Formal (S))), Decl);
9611 end if;
9613 Mark_Rewrite_Insertion (Decl);
9614 Set_Is_Intrinsic_Subprogram (Op_Name);
9615 Analyze (Decl);
9616 Remove (Decl);
9617 Set_Has_Completion (Op_Name);
9618 Set_Corresponding_Equality (Op_Name, S);
9619 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
9620 end;
9621 end Make_Inequality_Operator;
9623 ----------------------
9624 -- May_Need_Actuals --
9625 ----------------------
9627 procedure May_Need_Actuals (Fun : Entity_Id) is
9628 F : Entity_Id;
9629 B : Boolean;
9631 begin
9632 F := First_Formal (Fun);
9633 B := True;
9634 while Present (F) loop
9635 if No (Default_Value (F)) then
9636 B := False;
9637 exit;
9638 end if;
9640 Next_Formal (F);
9641 end loop;
9643 Set_Needs_No_Actuals (Fun, B);
9644 end May_Need_Actuals;
9646 ---------------------
9647 -- Mode_Conformant --
9648 ---------------------
9650 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9651 Result : Boolean;
9652 begin
9653 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
9654 return Result;
9655 end Mode_Conformant;
9657 ---------------------------
9658 -- New_Overloaded_Entity --
9659 ---------------------------
9661 procedure New_Overloaded_Entity
9662 (S : Entity_Id;
9663 Derived_Type : Entity_Id := Empty)
9665 Overridden_Subp : Entity_Id := Empty;
9666 -- Set if the current scope has an operation that is type-conformant
9667 -- with S, and becomes hidden by S.
9669 Is_Primitive_Subp : Boolean;
9670 -- Set to True if the new subprogram is primitive
9672 E : Entity_Id;
9673 -- Entity that S overrides
9675 Prev_Vis : Entity_Id := Empty;
9676 -- Predecessor of E in Homonym chain
9678 procedure Check_For_Primitive_Subprogram
9679 (Is_Primitive : out Boolean;
9680 Is_Overriding : Boolean := False);
9681 -- If the subprogram being analyzed is a primitive operation of the type
9682 -- of a formal or result, set the Has_Primitive_Operations flag on the
9683 -- type, and set Is_Primitive to True (otherwise set to False). Set the
9684 -- corresponding flag on the entity itself for later use.
9686 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
9687 -- True if a) E is a subprogram whose first formal is a concurrent type
9688 -- defined in the scope of E that has some entry or subprogram whose
9689 -- profile matches E, or b) E is an internally built dispatching
9690 -- subprogram of a protected type and there is a matching subprogram
9691 -- defined in the enclosing scope of the protected type, or c) E is
9692 -- an entry of a synchronized type and a matching procedure has been
9693 -- previously defined in the enclosing scope of the synchronized type.
9695 function Is_Private_Declaration (E : Entity_Id) return Boolean;
9696 -- Check that E is declared in the private part of the current package,
9697 -- or in the package body, where it may hide a previous declaration.
9698 -- We can't use In_Private_Part by itself because this flag is also
9699 -- set when freezing entities, so we must examine the place of the
9700 -- declaration in the tree, and recognize wrapper packages as well.
9702 function Is_Overriding_Alias
9703 (Old_E : Entity_Id;
9704 New_E : Entity_Id) return Boolean;
9705 -- Check whether new subprogram and old subprogram are both inherited
9706 -- from subprograms that have distinct dispatch table entries. This can
9707 -- occur with derivations from instances with accidental homonyms. The
9708 -- function is conservative given that the converse is only true within
9709 -- instances that contain accidental overloadings.
9711 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
9712 -- Report conflict between entities S and E
9714 ------------------------------------
9715 -- Check_For_Primitive_Subprogram --
9716 ------------------------------------
9718 procedure Check_For_Primitive_Subprogram
9719 (Is_Primitive : out Boolean;
9720 Is_Overriding : Boolean := False)
9722 Formal : Entity_Id;
9723 F_Typ : Entity_Id;
9724 B_Typ : Entity_Id;
9726 function Visible_Part_Type (T : Entity_Id) return Boolean;
9727 -- Returns true if T is declared in the visible part of the current
9728 -- package scope; otherwise returns false. Assumes that T is declared
9729 -- in a package.
9731 procedure Check_Private_Overriding (T : Entity_Id);
9732 -- Checks that if a primitive abstract subprogram of a visible
9733 -- abstract type is declared in a private part, then it must override
9734 -- an abstract subprogram declared in the visible part. Also checks
9735 -- that if a primitive function with a controlling result is declared
9736 -- in a private part, then it must override a function declared in
9737 -- the visible part.
9739 ------------------------------
9740 -- Check_Private_Overriding --
9741 ------------------------------
9743 procedure Check_Private_Overriding (T : Entity_Id) is
9744 function Overrides_Private_Part_Op return Boolean;
9745 -- This detects the special case where the overriding subprogram
9746 -- is overriding a subprogram that was declared in the same
9747 -- private part. That case is illegal by 3.9.3(10).
9749 function Overrides_Visible_Function
9750 (Partial_View : Entity_Id) return Boolean;
9751 -- True if S overrides a function in the visible part. The
9752 -- overridden function could be explicitly or implicitly declared.
9754 -------------------------------
9755 -- Overrides_Private_Part_Op --
9756 -------------------------------
9758 function Overrides_Private_Part_Op return Boolean is
9759 Over_Decl : constant Node_Id :=
9760 Unit_Declaration_Node (Overridden_Operation (S));
9761 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
9763 begin
9764 pragma Assert (Is_Overriding);
9765 pragma Assert
9766 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
9767 pragma Assert
9768 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
9770 return In_Same_List (Over_Decl, Subp_Decl);
9771 end Overrides_Private_Part_Op;
9773 --------------------------------
9774 -- Overrides_Visible_Function --
9775 --------------------------------
9777 function Overrides_Visible_Function
9778 (Partial_View : Entity_Id) return Boolean
9780 begin
9781 if not Is_Overriding or else not Has_Homonym (S) then
9782 return False;
9783 end if;
9785 if not Present (Partial_View) then
9786 return True;
9787 end if;
9789 -- Search through all the homonyms H of S in the current
9790 -- package spec, and return True if we find one that matches.
9791 -- Note that Parent (H) will be the declaration of the
9792 -- partial view of T for a match.
9794 declare
9795 H : Entity_Id := S;
9796 begin
9797 loop
9798 H := Homonym (H);
9799 exit when not Present (H) or else Scope (H) /= Scope (S);
9801 if Nkind_In
9802 (Parent (H),
9803 N_Private_Extension_Declaration,
9804 N_Private_Type_Declaration)
9805 and then Defining_Identifier (Parent (H)) = Partial_View
9806 then
9807 return True;
9808 end if;
9809 end loop;
9810 end;
9812 return False;
9813 end Overrides_Visible_Function;
9815 -- Start of processing for Check_Private_Overriding
9817 begin
9818 if Is_Package_Or_Generic_Package (Current_Scope)
9819 and then In_Private_Part (Current_Scope)
9820 and then Visible_Part_Type (T)
9821 and then not In_Instance
9822 then
9823 if Is_Abstract_Type (T)
9824 and then Is_Abstract_Subprogram (S)
9825 and then (not Is_Overriding
9826 or else not Is_Abstract_Subprogram (E)
9827 or else Overrides_Private_Part_Op)
9828 then
9829 Error_Msg_N
9830 ("abstract subprograms must be visible (RM 3.9.3(10))!",
9833 elsif Ekind (S) = E_Function then
9834 declare
9835 Partial_View : constant Entity_Id :=
9836 Incomplete_Or_Partial_View (T);
9838 begin
9839 if not Overrides_Visible_Function (Partial_View) then
9841 -- Here, S is "function ... return T;" declared in
9842 -- the private part, not overriding some visible
9843 -- operation. That's illegal in the tagged case
9844 -- (but not if the private type is untagged).
9846 if ((Present (Partial_View)
9847 and then Is_Tagged_Type (Partial_View))
9848 or else (not Present (Partial_View)
9849 and then Is_Tagged_Type (T)))
9850 and then T = Base_Type (Etype (S))
9851 then
9852 Error_Msg_N
9853 ("private function with tagged result must"
9854 & " override visible-part function", S);
9855 Error_Msg_N
9856 ("\move subprogram to the visible part"
9857 & " (RM 3.9.3(10))", S);
9859 -- AI05-0073: extend this test to the case of a
9860 -- function with a controlling access result.
9862 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
9863 and then Is_Tagged_Type (Designated_Type (Etype (S)))
9864 and then
9865 not Is_Class_Wide_Type
9866 (Designated_Type (Etype (S)))
9867 and then Ada_Version >= Ada_2012
9868 then
9869 Error_Msg_N
9870 ("private function with controlling access "
9871 & "result must override visible-part function",
9873 Error_Msg_N
9874 ("\move subprogram to the visible part"
9875 & " (RM 3.9.3(10))", S);
9876 end if;
9877 end if;
9878 end;
9879 end if;
9880 end if;
9881 end Check_Private_Overriding;
9883 -----------------------
9884 -- Visible_Part_Type --
9885 -----------------------
9887 function Visible_Part_Type (T : Entity_Id) return Boolean is
9888 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
9889 N : Node_Id;
9891 begin
9892 -- If the entity is a private type, then it must be declared in a
9893 -- visible part.
9895 if Ekind (T) in Private_Kind then
9896 return True;
9897 end if;
9899 -- Otherwise, we traverse the visible part looking for its
9900 -- corresponding declaration. We cannot use the declaration
9901 -- node directly because in the private part the entity of a
9902 -- private type is the one in the full view, which does not
9903 -- indicate that it is the completion of something visible.
9905 N := First (Visible_Declarations (Specification (P)));
9906 while Present (N) loop
9907 if Nkind (N) = N_Full_Type_Declaration
9908 and then Present (Defining_Identifier (N))
9909 and then T = Defining_Identifier (N)
9910 then
9911 return True;
9913 elsif Nkind_In (N, N_Private_Type_Declaration,
9914 N_Private_Extension_Declaration)
9915 and then Present (Defining_Identifier (N))
9916 and then T = Full_View (Defining_Identifier (N))
9917 then
9918 return True;
9919 end if;
9921 Next (N);
9922 end loop;
9924 return False;
9925 end Visible_Part_Type;
9927 -- Start of processing for Check_For_Primitive_Subprogram
9929 begin
9930 Is_Primitive := False;
9932 if not Comes_From_Source (S) then
9933 null;
9935 -- If subprogram is at library level, it is not primitive operation
9937 elsif Current_Scope = Standard_Standard then
9938 null;
9940 elsif (Is_Package_Or_Generic_Package (Current_Scope)
9941 and then not In_Package_Body (Current_Scope))
9942 or else Is_Overriding
9943 then
9944 -- For function, check return type
9946 if Ekind (S) = E_Function then
9947 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
9948 F_Typ := Designated_Type (Etype (S));
9949 else
9950 F_Typ := Etype (S);
9951 end if;
9953 B_Typ := Base_Type (F_Typ);
9955 if Scope (B_Typ) = Current_Scope
9956 and then not Is_Class_Wide_Type (B_Typ)
9957 and then not Is_Generic_Type (B_Typ)
9958 then
9959 Is_Primitive := True;
9960 Set_Has_Primitive_Operations (B_Typ);
9961 Set_Is_Primitive (S);
9962 Check_Private_Overriding (B_Typ);
9964 -- The Ghost policy in effect at the point of declaration
9965 -- or a tagged type and a primitive operation must match
9966 -- (SPARK RM 6.9(16)).
9968 Check_Ghost_Primitive (S, B_Typ);
9969 end if;
9970 end if;
9972 -- For all subprograms, check formals
9974 Formal := First_Formal (S);
9975 while Present (Formal) loop
9976 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
9977 F_Typ := Designated_Type (Etype (Formal));
9978 else
9979 F_Typ := Etype (Formal);
9980 end if;
9982 B_Typ := Base_Type (F_Typ);
9984 if Ekind (B_Typ) = E_Access_Subtype then
9985 B_Typ := Base_Type (B_Typ);
9986 end if;
9988 if Scope (B_Typ) = Current_Scope
9989 and then not Is_Class_Wide_Type (B_Typ)
9990 and then not Is_Generic_Type (B_Typ)
9991 then
9992 Is_Primitive := True;
9993 Set_Is_Primitive (S);
9994 Set_Has_Primitive_Operations (B_Typ);
9995 Check_Private_Overriding (B_Typ);
9997 -- The Ghost policy in effect at the point of declaration
9998 -- of a tagged type and a primitive operation must match
9999 -- (SPARK RM 6.9(16)).
10001 Check_Ghost_Primitive (S, B_Typ);
10002 end if;
10004 Next_Formal (Formal);
10005 end loop;
10007 -- Special case: An equality function can be redefined for a type
10008 -- occurring in a declarative part, and won't otherwise be treated as
10009 -- a primitive because it doesn't occur in a package spec and doesn't
10010 -- override an inherited subprogram. It's important that we mark it
10011 -- primitive so it can be returned by Collect_Primitive_Operations
10012 -- and be used in composing the equality operation of later types
10013 -- that have a component of the type.
10015 elsif Chars (S) = Name_Op_Eq
10016 and then Etype (S) = Standard_Boolean
10017 then
10018 B_Typ := Base_Type (Etype (First_Formal (S)));
10020 if Scope (B_Typ) = Current_Scope
10021 and then
10022 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
10023 and then not Is_Limited_Type (B_Typ)
10024 then
10025 Is_Primitive := True;
10026 Set_Is_Primitive (S);
10027 Set_Has_Primitive_Operations (B_Typ);
10028 Check_Private_Overriding (B_Typ);
10030 -- The Ghost policy in effect at the point of declaration of a
10031 -- tagged type and a primitive operation must match
10032 -- (SPARK RM 6.9(16)).
10034 Check_Ghost_Primitive (S, B_Typ);
10035 end if;
10036 end if;
10037 end Check_For_Primitive_Subprogram;
10039 --------------------------------------
10040 -- Has_Matching_Entry_Or_Subprogram --
10041 --------------------------------------
10043 function Has_Matching_Entry_Or_Subprogram
10044 (E : Entity_Id) return Boolean
10046 function Check_Conforming_Parameters
10047 (E1_Param : Node_Id;
10048 E2_Param : Node_Id) return Boolean;
10049 -- Starting from the given parameters, check that all the parameters
10050 -- of two entries or subprograms are subtype conformant. Used to skip
10051 -- the check on the controlling argument.
10053 function Matching_Entry_Or_Subprogram
10054 (Conc_Typ : Entity_Id;
10055 Subp : Entity_Id) return Entity_Id;
10056 -- Return the first entry or subprogram of the given concurrent type
10057 -- whose name matches the name of Subp and has a profile conformant
10058 -- with Subp; return Empty if not found.
10060 function Matching_Dispatching_Subprogram
10061 (Conc_Typ : Entity_Id;
10062 Ent : Entity_Id) return Entity_Id;
10063 -- Return the first dispatching primitive of Conc_Type defined in the
10064 -- enclosing scope of Conc_Type (i.e. before the full definition of
10065 -- this concurrent type) whose name matches the entry Ent and has a
10066 -- profile conformant with the profile of the corresponding (not yet
10067 -- built) dispatching primitive of Ent; return Empty if not found.
10069 function Matching_Original_Protected_Subprogram
10070 (Prot_Typ : Entity_Id;
10071 Subp : Entity_Id) return Entity_Id;
10072 -- Return the first subprogram defined in the enclosing scope of
10073 -- Prot_Typ (before the full definition of this protected type)
10074 -- whose name matches the original name of Subp and has a profile
10075 -- conformant with the profile of Subp; return Empty if not found.
10077 ---------------------------------
10078 -- Check_Confirming_Parameters --
10079 ---------------------------------
10081 function Check_Conforming_Parameters
10082 (E1_Param : Node_Id;
10083 E2_Param : Node_Id) return Boolean
10085 Param_E1 : Node_Id := E1_Param;
10086 Param_E2 : Node_Id := E2_Param;
10088 begin
10089 while Present (Param_E1) and then Present (Param_E2) loop
10090 if Ekind (Defining_Identifier (Param_E1)) /=
10091 Ekind (Defining_Identifier (Param_E2))
10092 or else not
10093 Conforming_Types
10094 (Find_Parameter_Type (Param_E1),
10095 Find_Parameter_Type (Param_E2),
10096 Subtype_Conformant)
10097 then
10098 return False;
10099 end if;
10101 Next (Param_E1);
10102 Next (Param_E2);
10103 end loop;
10105 -- The candidate is not valid if one of the two lists contains
10106 -- more parameters than the other
10108 return No (Param_E1) and then No (Param_E2);
10109 end Check_Conforming_Parameters;
10111 ----------------------------------
10112 -- Matching_Entry_Or_Subprogram --
10113 ----------------------------------
10115 function Matching_Entry_Or_Subprogram
10116 (Conc_Typ : Entity_Id;
10117 Subp : Entity_Id) return Entity_Id
10119 E : Entity_Id;
10121 begin
10122 E := First_Entity (Conc_Typ);
10123 while Present (E) loop
10124 if Chars (Subp) = Chars (E)
10125 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
10126 and then
10127 Check_Conforming_Parameters
10128 (First (Parameter_Specifications (Parent (E))),
10129 Next (First (Parameter_Specifications (Parent (Subp)))))
10130 then
10131 return E;
10132 end if;
10134 Next_Entity (E);
10135 end loop;
10137 return Empty;
10138 end Matching_Entry_Or_Subprogram;
10140 -------------------------------------
10141 -- Matching_Dispatching_Subprogram --
10142 -------------------------------------
10144 function Matching_Dispatching_Subprogram
10145 (Conc_Typ : Entity_Id;
10146 Ent : Entity_Id) return Entity_Id
10148 E : Entity_Id;
10150 begin
10151 -- Search for entities in the enclosing scope of this synchonized
10152 -- type.
10154 pragma Assert (Is_Concurrent_Type (Conc_Typ));
10155 Push_Scope (Scope (Conc_Typ));
10156 E := Current_Entity_In_Scope (Ent);
10157 Pop_Scope;
10159 while Present (E) loop
10160 if Scope (E) = Scope (Conc_Typ)
10161 and then Comes_From_Source (E)
10162 and then Ekind (E) = E_Procedure
10163 and then Present (First_Entity (E))
10164 and then Is_Controlling_Formal (First_Entity (E))
10165 and then Etype (First_Entity (E)) = Conc_Typ
10166 and then
10167 Check_Conforming_Parameters
10168 (First (Parameter_Specifications (Parent (Ent))),
10169 Next (First (Parameter_Specifications (Parent (E)))))
10170 then
10171 return E;
10172 end if;
10174 E := Homonym (E);
10175 end loop;
10177 return Empty;
10178 end Matching_Dispatching_Subprogram;
10180 --------------------------------------------
10181 -- Matching_Original_Protected_Subprogram --
10182 --------------------------------------------
10184 function Matching_Original_Protected_Subprogram
10185 (Prot_Typ : Entity_Id;
10186 Subp : Entity_Id) return Entity_Id
10188 ICF : constant Boolean :=
10189 Is_Controlling_Formal (First_Entity (Subp));
10190 E : Entity_Id;
10192 begin
10193 -- Temporarily decorate the first parameter of Subp as controlling
10194 -- formal, required to invoke Subtype_Conformant.
10196 Set_Is_Controlling_Formal (First_Entity (Subp));
10198 E :=
10199 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
10201 while Present (E) loop
10202 if Scope (E) = Scope (Prot_Typ)
10203 and then Comes_From_Source (E)
10204 and then Ekind (Subp) = Ekind (E)
10205 and then Present (First_Entity (E))
10206 and then Is_Controlling_Formal (First_Entity (E))
10207 and then Etype (First_Entity (E)) = Prot_Typ
10208 and then Subtype_Conformant (Subp, E,
10209 Skip_Controlling_Formals => True)
10210 then
10211 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10212 return E;
10213 end if;
10215 E := Homonym (E);
10216 end loop;
10218 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
10220 return Empty;
10221 end Matching_Original_Protected_Subprogram;
10223 -- Start of processing for Has_Matching_Entry_Or_Subprogram
10225 begin
10226 -- Case 1: E is a subprogram whose first formal is a concurrent type
10227 -- defined in the scope of E that has an entry or subprogram whose
10228 -- profile matches E.
10230 if Comes_From_Source (E)
10231 and then Is_Subprogram (E)
10232 and then Present (First_Entity (E))
10233 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10234 then
10235 if Scope (E) =
10236 Scope (Corresponding_Concurrent_Type
10237 (Etype (First_Entity (E))))
10238 and then
10239 Present
10240 (Matching_Entry_Or_Subprogram
10241 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10242 Subp => E))
10243 then
10244 Report_Conflict (E,
10245 Matching_Entry_Or_Subprogram
10246 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10247 Subp => E));
10248 return True;
10249 end if;
10251 -- Case 2: E is an internally built dispatching subprogram of a
10252 -- protected type and there is a subprogram defined in the enclosing
10253 -- scope of the protected type that has the original name of E and
10254 -- its profile is conformant with the profile of E. We check the
10255 -- name of the original protected subprogram associated with E since
10256 -- the expander builds dispatching primitives of protected functions
10257 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
10259 elsif not Comes_From_Source (E)
10260 and then Is_Subprogram (E)
10261 and then Present (First_Entity (E))
10262 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
10263 and then Present (Original_Protected_Subprogram (E))
10264 and then
10265 Present
10266 (Matching_Original_Protected_Subprogram
10267 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10268 Subp => E))
10269 then
10270 Report_Conflict (E,
10271 Matching_Original_Protected_Subprogram
10272 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
10273 Subp => E));
10274 return True;
10276 -- Case 3: E is an entry of a synchronized type and a matching
10277 -- procedure has been previously defined in the enclosing scope
10278 -- of the synchronized type.
10280 elsif Comes_From_Source (E)
10281 and then Ekind (E) = E_Entry
10282 and then
10283 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
10284 then
10285 Report_Conflict (E,
10286 Matching_Dispatching_Subprogram (Current_Scope, E));
10287 return True;
10288 end if;
10290 return False;
10291 end Has_Matching_Entry_Or_Subprogram;
10293 ----------------------------
10294 -- Is_Private_Declaration --
10295 ----------------------------
10297 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10298 Decl : constant Node_Id := Unit_Declaration_Node (E);
10299 Priv_Decls : List_Id;
10301 begin
10302 if Is_Package_Or_Generic_Package (Current_Scope)
10303 and then In_Private_Part (Current_Scope)
10304 then
10305 Priv_Decls :=
10306 Private_Declarations (Package_Specification (Current_Scope));
10308 return In_Package_Body (Current_Scope)
10309 or else
10310 (Is_List_Member (Decl)
10311 and then List_Containing (Decl) = Priv_Decls)
10312 or else (Nkind (Parent (Decl)) = N_Package_Specification
10313 and then not
10314 Is_Compilation_Unit
10315 (Defining_Entity (Parent (Decl)))
10316 and then List_Containing (Parent (Parent (Decl))) =
10317 Priv_Decls);
10318 else
10319 return False;
10320 end if;
10321 end Is_Private_Declaration;
10323 --------------------------
10324 -- Is_Overriding_Alias --
10325 --------------------------
10327 function Is_Overriding_Alias
10328 (Old_E : Entity_Id;
10329 New_E : Entity_Id) return Boolean
10331 AO : constant Entity_Id := Alias (Old_E);
10332 AN : constant Entity_Id := Alias (New_E);
10334 begin
10335 return Scope (AO) /= Scope (AN)
10336 or else No (DTC_Entity (AO))
10337 or else No (DTC_Entity (AN))
10338 or else DT_Position (AO) = DT_Position (AN);
10339 end Is_Overriding_Alias;
10341 ---------------------
10342 -- Report_Conflict --
10343 ---------------------
10345 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
10346 begin
10347 Error_Msg_Sloc := Sloc (E);
10349 -- Generate message, with useful additional warning if in generic
10351 if Is_Generic_Unit (E) then
10352 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10353 Error_Msg_N ("\& conflicts with declaration#", S);
10354 else
10355 Error_Msg_N ("& conflicts with declaration#", S);
10356 end if;
10357 end Report_Conflict;
10359 -- Start of processing for New_Overloaded_Entity
10361 begin
10362 -- We need to look for an entity that S may override. This must be a
10363 -- homonym in the current scope, so we look for the first homonym of
10364 -- S in the current scope as the starting point for the search.
10366 E := Current_Entity_In_Scope (S);
10368 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10369 -- They are directly added to the list of primitive operations of
10370 -- Derived_Type, unless this is a rederivation in the private part
10371 -- of an operation that was already derived in the visible part of
10372 -- the current package.
10374 if Ada_Version >= Ada_2005
10375 and then Present (Derived_Type)
10376 and then Present (Alias (S))
10377 and then Is_Dispatching_Operation (Alias (S))
10378 and then Present (Find_Dispatching_Type (Alias (S)))
10379 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10380 then
10381 -- For private types, when the full-view is processed we propagate to
10382 -- the full view the non-overridden entities whose attribute "alias"
10383 -- references an interface primitive. These entities were added by
10384 -- Derive_Subprograms to ensure that interface primitives are
10385 -- covered.
10387 -- Inside_Freeze_Actions is non zero when S corresponds with an
10388 -- internal entity that links an interface primitive with its
10389 -- covering primitive through attribute Interface_Alias (see
10390 -- Add_Internal_Interface_Entities).
10392 if Inside_Freezing_Actions = 0
10393 and then Is_Package_Or_Generic_Package (Current_Scope)
10394 and then In_Private_Part (Current_Scope)
10395 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10396 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10397 and then Full_View (Defining_Identifier (Parent (E)))
10398 = Defining_Identifier (Parent (S))
10399 and then Alias (E) = Alias (S)
10400 then
10401 Check_Operation_From_Private_View (S, E);
10402 Set_Is_Dispatching_Operation (S);
10404 -- Common case
10406 else
10407 Enter_Overloaded_Entity (S);
10408 Check_Dispatching_Operation (S, Empty);
10409 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10410 end if;
10412 return;
10413 end if;
10415 -- For synchronized types check conflicts of this entity with previously
10416 -- defined entities.
10418 if Ada_Version >= Ada_2005
10419 and then Has_Matching_Entry_Or_Subprogram (S)
10420 then
10421 return;
10422 end if;
10424 -- If there is no homonym then this is definitely not overriding
10426 if No (E) then
10427 Enter_Overloaded_Entity (S);
10428 Check_Dispatching_Operation (S, Empty);
10429 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10431 -- If subprogram has an explicit declaration, check whether it has an
10432 -- overriding indicator.
10434 if Comes_From_Source (S) then
10435 Check_Synchronized_Overriding (S, Overridden_Subp);
10437 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10438 -- it may have overridden some hidden inherited primitive. Update
10439 -- Overridden_Subp to avoid spurious errors when checking the
10440 -- overriding indicator.
10442 if Ada_Version >= Ada_2012
10443 and then No (Overridden_Subp)
10444 and then Is_Dispatching_Operation (S)
10445 and then Present (Overridden_Operation (S))
10446 then
10447 Overridden_Subp := Overridden_Operation (S);
10448 end if;
10450 Check_Overriding_Indicator
10451 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10453 -- The Ghost policy in effect at the point of declaration of a
10454 -- parent subprogram and an overriding subprogram must match
10455 -- (SPARK RM 6.9(17)).
10457 Check_Ghost_Overriding (S, Overridden_Subp);
10458 end if;
10460 -- If there is a homonym that is not overloadable, then we have an
10461 -- error, except for the special cases checked explicitly below.
10463 elsif not Is_Overloadable (E) then
10465 -- Check for spurious conflict produced by a subprogram that has the
10466 -- same name as that of the enclosing generic package. The conflict
10467 -- occurs within an instance, between the subprogram and the renaming
10468 -- declaration for the package. After the subprogram, the package
10469 -- renaming declaration becomes hidden.
10471 if Ekind (E) = E_Package
10472 and then Present (Renamed_Object (E))
10473 and then Renamed_Object (E) = Current_Scope
10474 and then Nkind (Parent (Renamed_Object (E))) =
10475 N_Package_Specification
10476 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10477 then
10478 Set_Is_Hidden (E);
10479 Set_Is_Immediately_Visible (E, False);
10480 Enter_Overloaded_Entity (S);
10481 Set_Homonym (S, Homonym (E));
10482 Check_Dispatching_Operation (S, Empty);
10483 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10485 -- If the subprogram is implicit it is hidden by the previous
10486 -- declaration. However if it is dispatching, it must appear in the
10487 -- dispatch table anyway, because it can be dispatched to even if it
10488 -- cannot be called directly.
10490 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10491 Set_Scope (S, Current_Scope);
10493 if Is_Dispatching_Operation (Alias (S)) then
10494 Check_Dispatching_Operation (S, Empty);
10495 end if;
10497 return;
10499 else
10500 Report_Conflict (S, E);
10501 return;
10502 end if;
10504 -- E exists and is overloadable
10506 else
10507 Check_Synchronized_Overriding (S, Overridden_Subp);
10509 -- Loop through E and its homonyms to determine if any of them is
10510 -- the candidate for overriding by S.
10512 while Present (E) loop
10514 -- Definitely not interesting if not in the current scope
10516 if Scope (E) /= Current_Scope then
10517 null;
10519 -- A function can overload the name of an abstract state. The
10520 -- state can be viewed as a function with a profile that cannot
10521 -- be matched by anything.
10523 elsif Ekind (S) = E_Function
10524 and then Ekind (E) = E_Abstract_State
10525 then
10526 Enter_Overloaded_Entity (S);
10527 return;
10529 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10530 -- procedures locate the internally generated spec. We enforce
10531 -- mode conformance since a tagged type may inherit from
10532 -- interfaces several null primitives which differ only in
10533 -- the mode of the formals.
10535 elsif not Comes_From_Source (S)
10536 and then Is_Null_Procedure (S)
10537 and then not Mode_Conformant (E, S)
10538 then
10539 null;
10541 -- Check if we have type conformance
10543 elsif Type_Conformant (E, S) then
10545 -- If the old and new entities have the same profile and one
10546 -- is not the body of the other, then this is an error, unless
10547 -- one of them is implicitly declared.
10549 -- There are some cases when both can be implicit, for example
10550 -- when both a literal and a function that overrides it are
10551 -- inherited in a derivation, or when an inherited operation
10552 -- of a tagged full type overrides the inherited operation of
10553 -- a private extension. Ada 83 had a special rule for the
10554 -- literal case. In Ada 95, the later implicit operation hides
10555 -- the former, and the literal is always the former. In the
10556 -- odd case where both are derived operations declared at the
10557 -- same point, both operations should be declared, and in that
10558 -- case we bypass the following test and proceed to the next
10559 -- part. This can only occur for certain obscure cases in
10560 -- instances, when an operation on a type derived from a formal
10561 -- private type does not override a homograph inherited from
10562 -- the actual. In subsequent derivations of such a type, the
10563 -- DT positions of these operations remain distinct, if they
10564 -- have been set.
10566 if Present (Alias (S))
10567 and then (No (Alias (E))
10568 or else Comes_From_Source (E)
10569 or else Is_Abstract_Subprogram (S)
10570 or else
10571 (Is_Dispatching_Operation (E)
10572 and then Is_Overriding_Alias (E, S)))
10573 and then Ekind (E) /= E_Enumeration_Literal
10574 then
10575 -- When an derived operation is overloaded it may be due to
10576 -- the fact that the full view of a private extension
10577 -- re-inherits. It has to be dealt with.
10579 if Is_Package_Or_Generic_Package (Current_Scope)
10580 and then In_Private_Part (Current_Scope)
10581 then
10582 Check_Operation_From_Private_View (S, E);
10583 end if;
10585 -- In any case the implicit operation remains hidden by the
10586 -- existing declaration, which is overriding. Indicate that
10587 -- E overrides the operation from which S is inherited.
10589 if Present (Alias (S)) then
10590 Set_Overridden_Operation (E, Alias (S));
10591 Inherit_Subprogram_Contract (E, Alias (S));
10593 else
10594 Set_Overridden_Operation (E, S);
10595 Inherit_Subprogram_Contract (E, S);
10596 end if;
10598 if Comes_From_Source (E) then
10599 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10601 -- The Ghost policy in effect at the point of declaration
10602 -- of a parent subprogram and an overriding subprogram
10603 -- must match (SPARK RM 6.9(17)).
10605 Check_Ghost_Overriding (E, S);
10606 end if;
10608 return;
10610 -- Within an instance, the renaming declarations for actual
10611 -- subprograms may become ambiguous, but they do not hide each
10612 -- other.
10614 elsif Ekind (E) /= E_Entry
10615 and then not Comes_From_Source (E)
10616 and then not Is_Generic_Instance (E)
10617 and then (Present (Alias (E))
10618 or else Is_Intrinsic_Subprogram (E))
10619 and then (not In_Instance
10620 or else No (Parent (E))
10621 or else Nkind (Unit_Declaration_Node (E)) /=
10622 N_Subprogram_Renaming_Declaration)
10623 then
10624 -- A subprogram child unit is not allowed to override an
10625 -- inherited subprogram (10.1.1(20)).
10627 if Is_Child_Unit (S) then
10628 Error_Msg_N
10629 ("child unit overrides inherited subprogram in parent",
10631 return;
10632 end if;
10634 if Is_Non_Overriding_Operation (E, S) then
10635 Enter_Overloaded_Entity (S);
10637 if No (Derived_Type)
10638 or else Is_Tagged_Type (Derived_Type)
10639 then
10640 Check_Dispatching_Operation (S, Empty);
10641 end if;
10643 return;
10644 end if;
10646 -- E is a derived operation or an internal operator which
10647 -- is being overridden. Remove E from further visibility.
10648 -- Furthermore, if E is a dispatching operation, it must be
10649 -- replaced in the list of primitive operations of its type
10650 -- (see Override_Dispatching_Operation).
10652 Overridden_Subp := E;
10654 declare
10655 Prev : Entity_Id;
10657 begin
10658 Prev := First_Entity (Current_Scope);
10659 while Present (Prev) and then Next_Entity (Prev) /= E loop
10660 Next_Entity (Prev);
10661 end loop;
10663 -- It is possible for E to be in the current scope and
10664 -- yet not in the entity chain. This can only occur in a
10665 -- generic context where E is an implicit concatenation
10666 -- in the formal part, because in a generic body the
10667 -- entity chain starts with the formals.
10669 -- In GNATprove mode, a wrapper for an operation with
10670 -- axiomatization may be a homonym of another declaration
10671 -- for an actual subprogram (needs refinement ???).
10673 if No (Prev) then
10674 if In_Instance
10675 and then GNATprove_Mode
10676 and then
10677 Nkind (Original_Node (Unit_Declaration_Node (S))) =
10678 N_Subprogram_Renaming_Declaration
10679 then
10680 return;
10681 else
10682 pragma Assert (Chars (E) = Name_Op_Concat);
10683 null;
10684 end if;
10685 end if;
10687 -- E must be removed both from the entity_list of the
10688 -- current scope, and from the visibility chain.
10690 if Debug_Flag_E then
10691 Write_Str ("Override implicit operation ");
10692 Write_Int (Int (E));
10693 Write_Eol;
10694 end if;
10696 -- If E is a predefined concatenation, it stands for four
10697 -- different operations. As a result, a single explicit
10698 -- declaration does not hide it. In a possible ambiguous
10699 -- situation, Disambiguate chooses the user-defined op,
10700 -- so it is correct to retain the previous internal one.
10702 if Chars (E) /= Name_Op_Concat
10703 or else Ekind (E) /= E_Operator
10704 then
10705 -- For nondispatching derived operations that are
10706 -- overridden by a subprogram declared in the private
10707 -- part of a package, we retain the derived subprogram
10708 -- but mark it as not immediately visible. If the
10709 -- derived operation was declared in the visible part
10710 -- then this ensures that it will still be visible
10711 -- outside the package with the proper signature
10712 -- (calls from outside must also be directed to this
10713 -- version rather than the overriding one, unlike the
10714 -- dispatching case). Calls from inside the package
10715 -- will still resolve to the overriding subprogram
10716 -- since the derived one is marked as not visible
10717 -- within the package.
10719 -- If the private operation is dispatching, we achieve
10720 -- the overriding by keeping the implicit operation
10721 -- but setting its alias to be the overriding one. In
10722 -- this fashion the proper body is executed in all
10723 -- cases, but the original signature is used outside
10724 -- of the package.
10726 -- If the overriding is not in the private part, we
10727 -- remove the implicit operation altogether.
10729 if Is_Private_Declaration (S) then
10730 if not Is_Dispatching_Operation (E) then
10731 Set_Is_Immediately_Visible (E, False);
10732 else
10733 -- Work done in Override_Dispatching_Operation,
10734 -- so nothing else needs to be done here.
10736 null;
10737 end if;
10739 else
10740 -- Find predecessor of E in Homonym chain
10742 if E = Current_Entity (E) then
10743 Prev_Vis := Empty;
10744 else
10745 Prev_Vis := Current_Entity (E);
10746 while Homonym (Prev_Vis) /= E loop
10747 Prev_Vis := Homonym (Prev_Vis);
10748 end loop;
10749 end if;
10751 if Prev_Vis /= Empty then
10753 -- Skip E in the visibility chain
10755 Set_Homonym (Prev_Vis, Homonym (E));
10757 else
10758 Set_Name_Entity_Id (Chars (E), Homonym (E));
10759 end if;
10761 Set_Next_Entity (Prev, Next_Entity (E));
10763 if No (Next_Entity (Prev)) then
10764 Set_Last_Entity (Current_Scope, Prev);
10765 end if;
10766 end if;
10767 end if;
10769 Enter_Overloaded_Entity (S);
10771 -- For entities generated by Derive_Subprograms the
10772 -- overridden operation is the inherited primitive
10773 -- (which is available through the attribute alias).
10775 if not (Comes_From_Source (E))
10776 and then Is_Dispatching_Operation (E)
10777 and then Find_Dispatching_Type (E) =
10778 Find_Dispatching_Type (S)
10779 and then Present (Alias (E))
10780 and then Comes_From_Source (Alias (E))
10781 then
10782 Set_Overridden_Operation (S, Alias (E));
10783 Inherit_Subprogram_Contract (S, Alias (E));
10785 -- Normal case of setting entity as overridden
10787 -- Note: Static_Initialization and Overridden_Operation
10788 -- attributes use the same field in subprogram entities.
10789 -- Static_Initialization is only defined for internal
10790 -- initialization procedures, where Overridden_Operation
10791 -- is irrelevant. Therefore the setting of this attribute
10792 -- must check whether the target is an init_proc.
10794 elsif not Is_Init_Proc (S) then
10795 Set_Overridden_Operation (S, E);
10796 Inherit_Subprogram_Contract (S, E);
10797 end if;
10799 Check_Overriding_Indicator (S, E, Is_Primitive => True);
10801 -- The Ghost policy in effect at the point of declaration
10802 -- of a parent subprogram and an overriding subprogram
10803 -- must match (SPARK RM 6.9(17)).
10805 Check_Ghost_Overriding (S, E);
10807 -- If S is a user-defined subprogram or a null procedure
10808 -- expanded to override an inherited null procedure, or a
10809 -- predefined dispatching primitive then indicate that E
10810 -- overrides the operation from which S is inherited.
10812 if Comes_From_Source (S)
10813 or else
10814 (Present (Parent (S))
10815 and then
10816 Nkind (Parent (S)) = N_Procedure_Specification
10817 and then
10818 Null_Present (Parent (S)))
10819 or else
10820 (Present (Alias (E))
10821 and then
10822 Is_Predefined_Dispatching_Operation (Alias (E)))
10823 then
10824 if Present (Alias (E)) then
10825 Set_Overridden_Operation (S, Alias (E));
10826 Inherit_Subprogram_Contract (S, Alias (E));
10827 end if;
10828 end if;
10830 if Is_Dispatching_Operation (E) then
10832 -- An overriding dispatching subprogram inherits the
10833 -- convention of the overridden subprogram (AI-117).
10835 Set_Convention (S, Convention (E));
10836 Check_Dispatching_Operation (S, E);
10838 else
10839 Check_Dispatching_Operation (S, Empty);
10840 end if;
10842 Check_For_Primitive_Subprogram
10843 (Is_Primitive_Subp, Is_Overriding => True);
10844 goto Check_Inequality;
10845 end;
10847 -- Apparent redeclarations in instances can occur when two
10848 -- formal types get the same actual type. The subprograms in
10849 -- in the instance are legal, even if not callable from the
10850 -- outside. Calls from within are disambiguated elsewhere.
10851 -- For dispatching operations in the visible part, the usual
10852 -- rules apply, and operations with the same profile are not
10853 -- legal (B830001).
10855 elsif (In_Instance_Visible_Part
10856 and then not Is_Dispatching_Operation (E))
10857 or else In_Instance_Not_Visible
10858 then
10859 null;
10861 -- Here we have a real error (identical profile)
10863 else
10864 Error_Msg_Sloc := Sloc (E);
10866 -- Avoid cascaded errors if the entity appears in
10867 -- subsequent calls.
10869 Set_Scope (S, Current_Scope);
10871 -- Generate error, with extra useful warning for the case
10872 -- of a generic instance with no completion.
10874 if Is_Generic_Instance (S)
10875 and then not Has_Completion (E)
10876 then
10877 Error_Msg_N
10878 ("instantiation cannot provide body for&", S);
10879 Error_Msg_N ("\& conflicts with declaration#", S);
10880 else
10881 Error_Msg_N ("& conflicts with declaration#", S);
10882 end if;
10884 return;
10885 end if;
10887 else
10888 -- If one subprogram has an access parameter and the other
10889 -- a parameter of an access type, calls to either might be
10890 -- ambiguous. Verify that parameters match except for the
10891 -- access parameter.
10893 if May_Hide_Profile then
10894 declare
10895 F1 : Entity_Id;
10896 F2 : Entity_Id;
10898 begin
10899 F1 := First_Formal (S);
10900 F2 := First_Formal (E);
10901 while Present (F1) and then Present (F2) loop
10902 if Is_Access_Type (Etype (F1)) then
10903 if not Is_Access_Type (Etype (F2))
10904 or else not Conforming_Types
10905 (Designated_Type (Etype (F1)),
10906 Designated_Type (Etype (F2)),
10907 Type_Conformant)
10908 then
10909 May_Hide_Profile := False;
10910 end if;
10912 elsif
10913 not Conforming_Types
10914 (Etype (F1), Etype (F2), Type_Conformant)
10915 then
10916 May_Hide_Profile := False;
10917 end if;
10919 Next_Formal (F1);
10920 Next_Formal (F2);
10921 end loop;
10923 if May_Hide_Profile
10924 and then No (F1)
10925 and then No (F2)
10926 then
10927 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
10928 end if;
10929 end;
10930 end if;
10931 end if;
10933 E := Homonym (E);
10934 end loop;
10936 -- On exit, we know that S is a new entity
10938 Enter_Overloaded_Entity (S);
10939 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10940 Check_Overriding_Indicator
10941 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10943 -- The Ghost policy in effect at the point of declaration of a parent
10944 -- subprogram and an overriding subprogram must match
10945 -- (SPARK RM 6.9(17)).
10947 Check_Ghost_Overriding (S, Overridden_Subp);
10949 -- Overloading is not allowed in SPARK, except for operators
10951 if Nkind (S) /= N_Defining_Operator_Symbol then
10952 Error_Msg_Sloc := Sloc (Homonym (S));
10953 Check_SPARK_05_Restriction
10954 ("overloading not allowed with entity#", S);
10955 end if;
10957 -- If S is a derived operation for an untagged type then by
10958 -- definition it's not a dispatching operation (even if the parent
10959 -- operation was dispatching), so Check_Dispatching_Operation is not
10960 -- called in that case.
10962 if No (Derived_Type)
10963 or else Is_Tagged_Type (Derived_Type)
10964 then
10965 Check_Dispatching_Operation (S, Empty);
10966 end if;
10967 end if;
10969 -- If this is a user-defined equality operator that is not a derived
10970 -- subprogram, create the corresponding inequality. If the operation is
10971 -- dispatching, the expansion is done elsewhere, and we do not create
10972 -- an explicit inequality operation.
10974 <<Check_Inequality>>
10975 if Chars (S) = Name_Op_Eq
10976 and then Etype (S) = Standard_Boolean
10977 and then Present (Parent (S))
10978 and then not Is_Dispatching_Operation (S)
10979 then
10980 Make_Inequality_Operator (S);
10981 Check_Untagged_Equality (S);
10982 end if;
10983 end New_Overloaded_Entity;
10985 ---------------------
10986 -- Process_Formals --
10987 ---------------------
10989 procedure Process_Formals
10990 (T : List_Id;
10991 Related_Nod : Node_Id)
10993 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
10994 -- Determine whether an access type designates a type coming from a
10995 -- limited view.
10997 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
10998 -- Check whether the default has a class-wide type. After analysis the
10999 -- default has the type of the formal, so we must also check explicitly
11000 -- for an access attribute.
11002 ----------------------------------
11003 -- Designates_From_Limited_With --
11004 ----------------------------------
11006 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
11007 Desig : Entity_Id := Typ;
11009 begin
11010 if Is_Access_Type (Desig) then
11011 Desig := Directly_Designated_Type (Desig);
11012 end if;
11014 if Is_Class_Wide_Type (Desig) then
11015 Desig := Root_Type (Desig);
11016 end if;
11018 return
11019 Ekind (Desig) = E_Incomplete_Type
11020 and then From_Limited_With (Desig);
11021 end Designates_From_Limited_With;
11023 ---------------------------
11024 -- Is_Class_Wide_Default --
11025 ---------------------------
11027 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
11028 begin
11029 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
11030 or else (Nkind (D) = N_Attribute_Reference
11031 and then Attribute_Name (D) = Name_Access
11032 and then Is_Class_Wide_Type (Etype (Prefix (D))));
11033 end Is_Class_Wide_Default;
11035 -- Local variables
11037 Context : constant Node_Id := Parent (Parent (T));
11038 Default : Node_Id;
11039 Formal : Entity_Id;
11040 Formal_Type : Entity_Id;
11041 Param_Spec : Node_Id;
11042 Ptype : Entity_Id;
11044 Num_Out_Params : Nat := 0;
11045 First_Out_Param : Entity_Id := Empty;
11046 -- Used for setting Is_Only_Out_Parameter
11048 -- Start of processing for Process_Formals
11050 begin
11051 -- In order to prevent premature use of the formals in the same formal
11052 -- part, the Ekind is left undefined until all default expressions are
11053 -- analyzed. The Ekind is established in a separate loop at the end.
11055 Param_Spec := First (T);
11056 while Present (Param_Spec) loop
11057 Formal := Defining_Identifier (Param_Spec);
11058 Set_Never_Set_In_Source (Formal, True);
11059 Enter_Name (Formal);
11061 -- Case of ordinary parameters
11063 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11064 Find_Type (Parameter_Type (Param_Spec));
11065 Ptype := Parameter_Type (Param_Spec);
11067 if Ptype = Error then
11068 goto Continue;
11069 end if;
11071 Formal_Type := Entity (Ptype);
11073 if Is_Incomplete_Type (Formal_Type)
11074 or else
11075 (Is_Class_Wide_Type (Formal_Type)
11076 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11077 then
11078 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11079 -- primitive operations, as long as their completion is
11080 -- in the same declarative part. If in the private part
11081 -- this means that the type cannot be a Taft-amendment type.
11082 -- Check is done on package exit. For access to subprograms,
11083 -- the use is legal for Taft-amendment types.
11085 -- Ada 2012: tagged incomplete types are allowed as generic
11086 -- formal types. They do not introduce dependencies and the
11087 -- corresponding generic subprogram does not have a delayed
11088 -- freeze, because it does not need a freeze node. However,
11089 -- it is still the case that untagged incomplete types cannot
11090 -- be Taft-amendment types and must be completed in private
11091 -- part, so the subprogram must appear in the list of private
11092 -- dependents of the type.
11094 if Is_Tagged_Type (Formal_Type)
11095 or else (Ada_Version >= Ada_2012
11096 and then not From_Limited_With (Formal_Type)
11097 and then not Is_Generic_Type (Formal_Type))
11098 then
11099 if Ekind (Scope (Current_Scope)) = E_Package
11100 and then not Is_Generic_Type (Formal_Type)
11101 and then not Is_Class_Wide_Type (Formal_Type)
11102 then
11103 if not Nkind_In
11104 (Parent (T), N_Access_Function_Definition,
11105 N_Access_Procedure_Definition)
11106 then
11107 Append_Elmt (Current_Scope,
11108 Private_Dependents (Base_Type (Formal_Type)));
11110 -- Freezing is delayed to ensure that Register_Prim
11111 -- will get called for this operation, which is needed
11112 -- in cases where static dispatch tables aren't built.
11113 -- (Note that the same is done for controlling access
11114 -- parameter cases in function Access_Definition.)
11116 if not Is_Thunk (Current_Scope) then
11117 Set_Has_Delayed_Freeze (Current_Scope);
11118 end if;
11119 end if;
11120 end if;
11122 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11123 N_Access_Procedure_Definition)
11124 then
11125 -- AI05-0151: Tagged incomplete types are allowed in all
11126 -- formal parts. Untagged incomplete types are not allowed
11127 -- in bodies. Limited views of either kind are not allowed
11128 -- if there is no place at which the non-limited view can
11129 -- become available.
11131 -- Incomplete formal untagged types are not allowed in
11132 -- subprogram bodies (but are legal in their declarations).
11133 -- This excludes bodies created for null procedures, which
11134 -- are basic declarations.
11136 if Is_Generic_Type (Formal_Type)
11137 and then not Is_Tagged_Type (Formal_Type)
11138 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
11139 then
11140 Error_Msg_N
11141 ("invalid use of formal incomplete type", Param_Spec);
11143 elsif Ada_Version >= Ada_2012 then
11144 if Is_Tagged_Type (Formal_Type)
11145 and then (not From_Limited_With (Formal_Type)
11146 or else not In_Package_Body)
11147 then
11148 null;
11150 elsif Nkind_In (Context, N_Accept_Statement,
11151 N_Accept_Alternative,
11152 N_Entry_Body)
11153 or else (Nkind (Context) = N_Subprogram_Body
11154 and then Comes_From_Source (Context))
11155 then
11156 Error_Msg_NE
11157 ("invalid use of untagged incomplete type &",
11158 Ptype, Formal_Type);
11159 end if;
11161 else
11162 Error_Msg_NE
11163 ("invalid use of incomplete type&",
11164 Param_Spec, Formal_Type);
11166 -- Further checks on the legality of incomplete types
11167 -- in formal parts are delayed until the freeze point
11168 -- of the enclosing subprogram or access to subprogram.
11169 end if;
11170 end if;
11172 elsif Ekind (Formal_Type) = E_Void then
11173 Error_Msg_NE
11174 ("premature use of&",
11175 Parameter_Type (Param_Spec), Formal_Type);
11176 end if;
11178 -- Ada 2012 (AI-142): Handle aliased parameters
11180 if Ada_Version >= Ada_2012
11181 and then Aliased_Present (Param_Spec)
11182 then
11183 Set_Is_Aliased (Formal);
11184 end if;
11186 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11187 -- declaration corresponding to the null-excluding type of the
11188 -- formal in the enclosing scope. Finally, replace the parameter
11189 -- type of the formal with the internal subtype.
11191 if Ada_Version >= Ada_2005
11192 and then Null_Exclusion_Present (Param_Spec)
11193 then
11194 if not Is_Access_Type (Formal_Type) then
11195 Error_Msg_N
11196 ("`NOT NULL` allowed only for an access type", Param_Spec);
11198 else
11199 if Can_Never_Be_Null (Formal_Type)
11200 and then Comes_From_Source (Related_Nod)
11201 then
11202 Error_Msg_NE
11203 ("`NOT NULL` not allowed (& already excludes null)",
11204 Param_Spec, Formal_Type);
11205 end if;
11207 Formal_Type :=
11208 Create_Null_Excluding_Itype
11209 (T => Formal_Type,
11210 Related_Nod => Related_Nod,
11211 Scope_Id => Scope (Current_Scope));
11213 -- If the designated type of the itype is an itype that is
11214 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11215 -- on the access subtype, to prevent order-of-elaboration
11216 -- issues in the backend.
11218 -- Example:
11219 -- type T is access procedure;
11220 -- procedure Op (O : not null T);
11222 if Is_Itype (Directly_Designated_Type (Formal_Type))
11223 and then
11224 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11225 then
11226 Set_Has_Delayed_Freeze (Formal_Type);
11227 end if;
11228 end if;
11229 end if;
11231 -- An access formal type
11233 else
11234 Formal_Type :=
11235 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11237 -- No need to continue if we already notified errors
11239 if not Present (Formal_Type) then
11240 return;
11241 end if;
11243 -- Ada 2005 (AI-254)
11245 declare
11246 AD : constant Node_Id :=
11247 Access_To_Subprogram_Definition
11248 (Parameter_Type (Param_Spec));
11249 begin
11250 if Present (AD) and then Protected_Present (AD) then
11251 Formal_Type :=
11252 Replace_Anonymous_Access_To_Protected_Subprogram
11253 (Param_Spec);
11254 end if;
11255 end;
11256 end if;
11258 Set_Etype (Formal, Formal_Type);
11260 -- Deal with default expression if present
11262 Default := Expression (Param_Spec);
11264 if Present (Default) then
11265 Check_SPARK_05_Restriction
11266 ("default expression is not allowed", Default);
11268 if Out_Present (Param_Spec) then
11269 Error_Msg_N
11270 ("default initialization only allowed for IN parameters",
11271 Param_Spec);
11272 end if;
11274 -- Do the special preanalysis of the expression (see section on
11275 -- "Handling of Default Expressions" in the spec of package Sem).
11277 Preanalyze_Spec_Expression (Default, Formal_Type);
11279 -- An access to constant cannot be the default for
11280 -- an access parameter that is an access to variable.
11282 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11283 and then not Is_Access_Constant (Formal_Type)
11284 and then Is_Access_Type (Etype (Default))
11285 and then Is_Access_Constant (Etype (Default))
11286 then
11287 Error_Msg_N
11288 ("formal that is access to variable cannot be initialized "
11289 & "with an access-to-constant expression", Default);
11290 end if;
11292 -- Check that the designated type of an access parameter's default
11293 -- is not a class-wide type unless the parameter's designated type
11294 -- is also class-wide.
11296 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11297 and then not Designates_From_Limited_With (Formal_Type)
11298 and then Is_Class_Wide_Default (Default)
11299 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11300 then
11301 Error_Msg_N
11302 ("access to class-wide expression not allowed here", Default);
11303 end if;
11305 -- Check incorrect use of dynamically tagged expressions
11307 if Is_Tagged_Type (Formal_Type) then
11308 Check_Dynamically_Tagged_Expression
11309 (Expr => Default,
11310 Typ => Formal_Type,
11311 Related_Nod => Default);
11312 end if;
11313 end if;
11315 -- Ada 2005 (AI-231): Static checks
11317 if Ada_Version >= Ada_2005
11318 and then Is_Access_Type (Etype (Formal))
11319 and then Can_Never_Be_Null (Etype (Formal))
11320 then
11321 Null_Exclusion_Static_Checks (Param_Spec);
11322 end if;
11324 -- The following checks are relevant only when SPARK_Mode is on as
11325 -- these are not standard Ada legality rules.
11327 if SPARK_Mode = On then
11328 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
11330 -- A function cannot have a parameter of mode IN OUT or OUT
11331 -- (SPARK RM 6.1).
11333 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
11334 Error_Msg_N
11335 ("function cannot have parameter of mode `OUT` or "
11336 & "`IN OUT`", Formal);
11337 end if;
11339 -- A procedure cannot have an effectively volatile formal
11340 -- parameter of mode IN because it behaves as a constant
11341 -- (SPARK RM 7.1.3(6)). -- ??? maybe 7.1.3(4)
11343 elsif Ekind (Scope (Formal)) = E_Procedure
11344 and then Ekind (Formal) = E_In_Parameter
11345 and then Is_Effectively_Volatile (Formal)
11346 then
11347 Error_Msg_N
11348 ("formal parameter of mode `IN` cannot be volatile", Formal);
11349 end if;
11350 end if;
11352 <<Continue>>
11353 Next (Param_Spec);
11354 end loop;
11356 -- If this is the formal part of a function specification, analyze the
11357 -- subtype mark in the context where the formals are visible but not
11358 -- yet usable, and may hide outer homographs.
11360 if Nkind (Related_Nod) = N_Function_Specification then
11361 Analyze_Return_Type (Related_Nod);
11362 end if;
11364 -- Now set the kind (mode) of each formal
11366 Param_Spec := First (T);
11367 while Present (Param_Spec) loop
11368 Formal := Defining_Identifier (Param_Spec);
11369 Set_Formal_Mode (Formal);
11371 if Ekind (Formal) = E_In_Parameter then
11372 Set_Default_Value (Formal, Expression (Param_Spec));
11374 if Present (Expression (Param_Spec)) then
11375 Default := Expression (Param_Spec);
11377 if Is_Scalar_Type (Etype (Default)) then
11378 if Nkind (Parameter_Type (Param_Spec)) /=
11379 N_Access_Definition
11380 then
11381 Formal_Type := Entity (Parameter_Type (Param_Spec));
11382 else
11383 Formal_Type :=
11384 Access_Definition
11385 (Related_Nod, Parameter_Type (Param_Spec));
11386 end if;
11388 Apply_Scalar_Range_Check (Default, Formal_Type);
11389 end if;
11390 end if;
11392 elsif Ekind (Formal) = E_Out_Parameter then
11393 Num_Out_Params := Num_Out_Params + 1;
11395 if Num_Out_Params = 1 then
11396 First_Out_Param := Formal;
11397 end if;
11399 elsif Ekind (Formal) = E_In_Out_Parameter then
11400 Num_Out_Params := Num_Out_Params + 1;
11401 end if;
11403 -- Skip remaining processing if formal type was in error
11405 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11406 goto Next_Parameter;
11407 end if;
11409 -- Force call by reference if aliased
11411 declare
11412 Conv : constant Convention_Id := Convention (Etype (Formal));
11413 begin
11414 if Is_Aliased (Formal) then
11415 Set_Mechanism (Formal, By_Reference);
11417 -- Warn if user asked this to be passed by copy
11419 if Conv = Convention_Ada_Pass_By_Copy then
11420 Error_Msg_N
11421 ("cannot pass aliased parameter & by copy??", Formal);
11422 end if;
11424 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11426 elsif Conv = Convention_Ada_Pass_By_Copy then
11427 Set_Mechanism (Formal, By_Copy);
11429 elsif Conv = Convention_Ada_Pass_By_Reference then
11430 Set_Mechanism (Formal, By_Reference);
11431 end if;
11432 end;
11434 <<Next_Parameter>>
11435 Next (Param_Spec);
11436 end loop;
11438 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11439 Set_Is_Only_Out_Parameter (First_Out_Param);
11440 end if;
11441 end Process_Formals;
11443 ----------------------------
11444 -- Reference_Body_Formals --
11445 ----------------------------
11447 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11448 Fs : Entity_Id;
11449 Fb : Entity_Id;
11451 begin
11452 if Error_Posted (Spec) then
11453 return;
11454 end if;
11456 -- Iterate over both lists. They may be of different lengths if the two
11457 -- specs are not conformant.
11459 Fs := First_Formal (Spec);
11460 Fb := First_Formal (Bod);
11461 while Present (Fs) and then Present (Fb) loop
11462 Generate_Reference (Fs, Fb, 'b');
11464 if Style_Check then
11465 Style.Check_Identifier (Fb, Fs);
11466 end if;
11468 Set_Spec_Entity (Fb, Fs);
11469 Set_Referenced (Fs, False);
11470 Next_Formal (Fs);
11471 Next_Formal (Fb);
11472 end loop;
11473 end Reference_Body_Formals;
11475 -------------------------
11476 -- Set_Actual_Subtypes --
11477 -------------------------
11479 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11480 Decl : Node_Id;
11481 Formal : Entity_Id;
11482 T : Entity_Id;
11483 First_Stmt : Node_Id := Empty;
11484 AS_Needed : Boolean;
11486 begin
11487 -- If this is an empty initialization procedure, no need to create
11488 -- actual subtypes (small optimization).
11490 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11491 return;
11492 end if;
11494 -- The subtype declarations may freeze the formals. The body generated
11495 -- for an expression function is not a freeze point, so do not emit
11496 -- these declarations (small loss of efficiency in rare cases).
11498 if Nkind (N) = N_Subprogram_Body
11499 and then Was_Expression_Function (N)
11500 then
11501 return;
11502 end if;
11504 Formal := First_Formal (Subp);
11505 while Present (Formal) loop
11506 T := Etype (Formal);
11508 -- We never need an actual subtype for a constrained formal
11510 if Is_Constrained (T) then
11511 AS_Needed := False;
11513 -- If we have unknown discriminants, then we do not need an actual
11514 -- subtype, or more accurately we cannot figure it out. Note that
11515 -- all class-wide types have unknown discriminants.
11517 elsif Has_Unknown_Discriminants (T) then
11518 AS_Needed := False;
11520 -- At this stage we have an unconstrained type that may need an
11521 -- actual subtype. For sure the actual subtype is needed if we have
11522 -- an unconstrained array type. However, in an instance, the type
11523 -- may appear as a subtype of the full view, while the actual is
11524 -- in fact private (in which case no actual subtype is needed) so
11525 -- check the kind of the base type.
11527 elsif Is_Array_Type (Base_Type (T)) then
11528 AS_Needed := True;
11530 -- The only other case needing an actual subtype is an unconstrained
11531 -- record type which is an IN parameter (we cannot generate actual
11532 -- subtypes for the OUT or IN OUT case, since an assignment can
11533 -- change the discriminant values. However we exclude the case of
11534 -- initialization procedures, since discriminants are handled very
11535 -- specially in this context, see the section entitled "Handling of
11536 -- Discriminants" in Einfo.
11538 -- We also exclude the case of Discrim_SO_Functions (functions used
11539 -- in front-end layout mode for size/offset values), since in such
11540 -- functions only discriminants are referenced, and not only are such
11541 -- subtypes not needed, but they cannot always be generated, because
11542 -- of order of elaboration issues.
11544 elsif Is_Record_Type (T)
11545 and then Ekind (Formal) = E_In_Parameter
11546 and then Chars (Formal) /= Name_uInit
11547 and then not Is_Unchecked_Union (T)
11548 and then not Is_Discrim_SO_Function (Subp)
11549 then
11550 AS_Needed := True;
11552 -- All other cases do not need an actual subtype
11554 else
11555 AS_Needed := False;
11556 end if;
11558 -- Generate actual subtypes for unconstrained arrays and
11559 -- unconstrained discriminated records.
11561 if AS_Needed then
11562 if Nkind (N) = N_Accept_Statement then
11564 -- If expansion is active, the formal is replaced by a local
11565 -- variable that renames the corresponding entry of the
11566 -- parameter block, and it is this local variable that may
11567 -- require an actual subtype.
11569 if Expander_Active then
11570 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11571 else
11572 Decl := Build_Actual_Subtype (T, Formal);
11573 end if;
11575 if Present (Handled_Statement_Sequence (N)) then
11576 First_Stmt :=
11577 First (Statements (Handled_Statement_Sequence (N)));
11578 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11579 Mark_Rewrite_Insertion (Decl);
11580 else
11581 -- If the accept statement has no body, there will be no
11582 -- reference to the actuals, so no need to compute actual
11583 -- subtypes.
11585 return;
11586 end if;
11588 else
11589 Decl := Build_Actual_Subtype (T, Formal);
11590 Prepend (Decl, Declarations (N));
11591 Mark_Rewrite_Insertion (Decl);
11592 end if;
11594 -- The declaration uses the bounds of an existing object, and
11595 -- therefore needs no constraint checks.
11597 Analyze (Decl, Suppress => All_Checks);
11598 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
11600 -- We need to freeze manually the generated type when it is
11601 -- inserted anywhere else than in a declarative part.
11603 if Present (First_Stmt) then
11604 Insert_List_Before_And_Analyze (First_Stmt,
11605 Freeze_Entity (Defining_Identifier (Decl), N));
11607 -- Ditto if the type has a dynamic predicate, because the
11608 -- generated function will mention the actual subtype. The
11609 -- predicate may come from an explicit aspect of be inherited.
11611 elsif Has_Predicates (T) then
11612 Insert_List_Before_And_Analyze (Decl,
11613 Freeze_Entity (Defining_Identifier (Decl), N));
11614 end if;
11616 if Nkind (N) = N_Accept_Statement
11617 and then Expander_Active
11618 then
11619 Set_Actual_Subtype (Renamed_Object (Formal),
11620 Defining_Identifier (Decl));
11621 else
11622 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
11623 end if;
11624 end if;
11626 Next_Formal (Formal);
11627 end loop;
11628 end Set_Actual_Subtypes;
11630 ---------------------
11631 -- Set_Formal_Mode --
11632 ---------------------
11634 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
11635 Spec : constant Node_Id := Parent (Formal_Id);
11636 Id : constant Entity_Id := Scope (Formal_Id);
11638 begin
11639 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11640 -- since we ensure that corresponding actuals are always valid at the
11641 -- point of the call.
11643 if Out_Present (Spec) then
11644 if Ekind_In (Id, E_Entry, E_Entry_Family)
11645 or else Is_Subprogram_Or_Generic_Subprogram (Id)
11646 then
11647 Set_Has_Out_Or_In_Out_Parameter (Id, True);
11648 end if;
11650 if Ekind_In (Id, E_Function, E_Generic_Function) then
11652 -- [IN] OUT parameters allowed for functions in Ada 2012
11654 if Ada_Version >= Ada_2012 then
11656 -- Even in Ada 2012 operators can only have IN parameters
11658 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11659 Error_Msg_N ("operators can only have IN parameters", Spec);
11660 end if;
11662 if In_Present (Spec) then
11663 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11664 else
11665 Set_Ekind (Formal_Id, E_Out_Parameter);
11666 end if;
11668 -- But not in earlier versions of Ada
11670 else
11671 Error_Msg_N ("functions can only have IN parameters", Spec);
11672 Set_Ekind (Formal_Id, E_In_Parameter);
11673 end if;
11675 elsif In_Present (Spec) then
11676 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11678 else
11679 Set_Ekind (Formal_Id, E_Out_Parameter);
11680 Set_Never_Set_In_Source (Formal_Id, True);
11681 Set_Is_True_Constant (Formal_Id, False);
11682 Set_Current_Value (Formal_Id, Empty);
11683 end if;
11685 else
11686 Set_Ekind (Formal_Id, E_In_Parameter);
11687 end if;
11689 -- Set Is_Known_Non_Null for access parameters since the language
11690 -- guarantees that access parameters are always non-null. We also set
11691 -- Can_Never_Be_Null, since there is no way to change the value.
11693 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
11695 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
11696 -- null; In Ada 2005, only if then null_exclusion is explicit.
11698 if Ada_Version < Ada_2005
11699 or else Can_Never_Be_Null (Etype (Formal_Id))
11700 then
11701 Set_Is_Known_Non_Null (Formal_Id);
11702 Set_Can_Never_Be_Null (Formal_Id);
11703 end if;
11705 -- Ada 2005 (AI-231): Null-exclusion access subtype
11707 elsif Is_Access_Type (Etype (Formal_Id))
11708 and then Can_Never_Be_Null (Etype (Formal_Id))
11709 then
11710 Set_Is_Known_Non_Null (Formal_Id);
11712 -- We can also set Can_Never_Be_Null (thus preventing some junk
11713 -- access checks) for the case of an IN parameter, which cannot
11714 -- be changed, or for an IN OUT parameter, which can be changed but
11715 -- not to a null value. But for an OUT parameter, the initial value
11716 -- passed in can be null, so we can't set this flag in that case.
11718 if Ekind (Formal_Id) /= E_Out_Parameter then
11719 Set_Can_Never_Be_Null (Formal_Id);
11720 end if;
11721 end if;
11723 Set_Mechanism (Formal_Id, Default_Mechanism);
11724 Set_Formal_Validity (Formal_Id);
11725 end Set_Formal_Mode;
11727 -------------------------
11728 -- Set_Formal_Validity --
11729 -------------------------
11731 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
11732 begin
11733 -- If no validity checking, then we cannot assume anything about the
11734 -- validity of parameters, since we do not know there is any checking
11735 -- of the validity on the call side.
11737 if not Validity_Checks_On then
11738 return;
11740 -- If validity checking for parameters is enabled, this means we are
11741 -- not supposed to make any assumptions about argument values.
11743 elsif Validity_Check_Parameters then
11744 return;
11746 -- If we are checking in parameters, we will assume that the caller is
11747 -- also checking parameters, so we can assume the parameter is valid.
11749 elsif Ekind (Formal_Id) = E_In_Parameter
11750 and then Validity_Check_In_Params
11751 then
11752 Set_Is_Known_Valid (Formal_Id, True);
11754 -- Similar treatment for IN OUT parameters
11756 elsif Ekind (Formal_Id) = E_In_Out_Parameter
11757 and then Validity_Check_In_Out_Params
11758 then
11759 Set_Is_Known_Valid (Formal_Id, True);
11760 end if;
11761 end Set_Formal_Validity;
11763 ------------------------
11764 -- Subtype_Conformant --
11765 ------------------------
11767 function Subtype_Conformant
11768 (New_Id : Entity_Id;
11769 Old_Id : Entity_Id;
11770 Skip_Controlling_Formals : Boolean := False) return Boolean
11772 Result : Boolean;
11773 begin
11774 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
11775 Skip_Controlling_Formals => Skip_Controlling_Formals);
11776 return Result;
11777 end Subtype_Conformant;
11779 ---------------------
11780 -- Type_Conformant --
11781 ---------------------
11783 function Type_Conformant
11784 (New_Id : Entity_Id;
11785 Old_Id : Entity_Id;
11786 Skip_Controlling_Formals : Boolean := False) return Boolean
11788 Result : Boolean;
11789 begin
11790 May_Hide_Profile := False;
11791 Check_Conformance
11792 (New_Id, Old_Id, Type_Conformant, False, Result,
11793 Skip_Controlling_Formals => Skip_Controlling_Formals);
11794 return Result;
11795 end Type_Conformant;
11797 -------------------------------
11798 -- Valid_Operator_Definition --
11799 -------------------------------
11801 procedure Valid_Operator_Definition (Designator : Entity_Id) is
11802 N : Integer := 0;
11803 F : Entity_Id;
11804 Id : constant Name_Id := Chars (Designator);
11805 N_OK : Boolean;
11807 begin
11808 F := First_Formal (Designator);
11809 while Present (F) loop
11810 N := N + 1;
11812 if Present (Default_Value (F)) then
11813 Error_Msg_N
11814 ("default values not allowed for operator parameters",
11815 Parent (F));
11817 -- For function instantiations that are operators, we must check
11818 -- separately that the corresponding generic only has in-parameters.
11819 -- For subprogram declarations this is done in Set_Formal_Mode. Such
11820 -- an error could not arise in earlier versions of the language.
11822 elsif Ekind (F) /= E_In_Parameter then
11823 Error_Msg_N ("operators can only have IN parameters", F);
11824 end if;
11826 Next_Formal (F);
11827 end loop;
11829 -- Verify that user-defined operators have proper number of arguments
11830 -- First case of operators which can only be unary
11832 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
11833 N_OK := (N = 1);
11835 -- Case of operators which can be unary or binary
11837 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
11838 N_OK := (N in 1 .. 2);
11840 -- All other operators can only be binary
11842 else
11843 N_OK := (N = 2);
11844 end if;
11846 if not N_OK then
11847 Error_Msg_N
11848 ("incorrect number of arguments for operator", Designator);
11849 end if;
11851 if Id = Name_Op_Ne
11852 and then Base_Type (Etype (Designator)) = Standard_Boolean
11853 and then not Is_Intrinsic_Subprogram (Designator)
11854 then
11855 Error_Msg_N
11856 ("explicit definition of inequality not allowed", Designator);
11857 end if;
11858 end Valid_Operator_Definition;
11860 end Sem_Ch6;