1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Contracts
; use Contracts
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Disp
; use Exp_Disp
;
34 with Fname
; use Fname
;
35 with Fname
.UF
; use Fname
.UF
;
36 with Freeze
; use Freeze
;
37 with Ghost
; use Ghost
;
38 with Itypes
; use Itypes
;
40 with Lib
.Load
; use Lib
.Load
;
41 with Lib
.Xref
; use Lib
.Xref
;
42 with Nlists
; use Nlists
;
43 with Namet
; use Namet
;
44 with Nmake
; use Nmake
;
46 with Rident
; use Rident
;
47 with Restrict
; use Restrict
;
48 with Rtsfind
; use Rtsfind
;
50 with Sem_Aux
; use Sem_Aux
;
51 with Sem_Cat
; use Sem_Cat
;
52 with Sem_Ch3
; use Sem_Ch3
;
53 with Sem_Ch6
; use Sem_Ch6
;
54 with Sem_Ch7
; use Sem_Ch7
;
55 with Sem_Ch8
; use Sem_Ch8
;
56 with Sem_Ch10
; use Sem_Ch10
;
57 with Sem_Ch13
; use Sem_Ch13
;
58 with Sem_Dim
; use Sem_Dim
;
59 with Sem_Disp
; use Sem_Disp
;
60 with Sem_Elab
; use Sem_Elab
;
61 with Sem_Elim
; use Sem_Elim
;
62 with Sem_Eval
; use Sem_Eval
;
63 with Sem_Prag
; use Sem_Prag
;
64 with Sem_Res
; use Sem_Res
;
65 with Sem_Type
; use Sem_Type
;
66 with Sem_Util
; use Sem_Util
;
67 with Sem_Warn
; use Sem_Warn
;
68 with Stand
; use Stand
;
69 with Sinfo
; use Sinfo
;
70 with Sinfo
.CN
; use Sinfo
.CN
;
71 with Sinput
; use Sinput
;
72 with Sinput
.L
; use Sinput
.L
;
73 with Snames
; use Snames
;
74 with Stringt
; use Stringt
;
75 with Uname
; use Uname
;
77 with Tbuild
; use Tbuild
;
78 with Uintp
; use Uintp
;
79 with Urealp
; use Urealp
;
80 with Warnsw
; use Warnsw
;
84 package body Sem_Ch12
is
86 ----------------------------------------------------------
87 -- Implementation of Generic Analysis and Instantiation --
88 ----------------------------------------------------------
90 -- GNAT implements generics by macro expansion. No attempt is made to share
91 -- generic instantiations (for now). Analysis of a generic definition does
92 -- not perform any expansion action, but the expander must be called on the
93 -- tree for each instantiation, because the expansion may of course depend
94 -- on the generic actuals. All of this is best achieved as follows:
96 -- a) Semantic analysis of a generic unit is performed on a copy of the
97 -- tree for the generic unit. All tree modifications that follow analysis
98 -- do not affect the original tree. Links are kept between the original
99 -- tree and the copy, in order to recognize non-local references within
100 -- the generic, and propagate them to each instance (recall that name
101 -- resolution is done on the generic declaration: generics are not really
102 -- macros). This is summarized in the following diagram:
104 -- .-----------. .----------.
105 -- | semantic |<--------------| generic |
107 -- | |==============>| |
108 -- |___________| global |__________|
119 -- b) Each instantiation copies the original tree, and inserts into it a
120 -- series of declarations that describe the mapping between generic formals
121 -- and actuals. For example, a generic In OUT parameter is an object
122 -- renaming of the corresponding actual, etc. Generic IN parameters are
123 -- constant declarations.
125 -- c) In order to give the right visibility for these renamings, we use
126 -- a different scheme for package and subprogram instantiations. For
127 -- packages, the list of renamings is inserted into the package
128 -- specification, before the visible declarations of the package. The
129 -- renamings are analyzed before any of the text of the instance, and are
130 -- thus visible at the right place. Furthermore, outside of the instance,
131 -- the generic parameters are visible and denote their corresponding
134 -- For subprograms, we create a container package to hold the renamings
135 -- and the subprogram instance itself. Analysis of the package makes the
136 -- renaming declarations visible to the subprogram. After analyzing the
137 -- package, the defining entity for the subprogram is touched-up so that
138 -- it appears declared in the current scope, and not inside the container
141 -- If the instantiation is a compilation unit, the container package is
142 -- given the same name as the subprogram instance. This ensures that
143 -- the elaboration procedure called by the binder, using the compilation
144 -- unit name, calls in fact the elaboration procedure for the package.
146 -- Not surprisingly, private types complicate this approach. By saving in
147 -- the original generic object the non-local references, we guarantee that
148 -- the proper entities are referenced at the point of instantiation.
149 -- However, for private types, this by itself does not insure that the
150 -- proper VIEW of the entity is used (the full type may be visible at the
151 -- point of generic definition, but not at instantiation, or vice-versa).
152 -- In order to reference the proper view, we special-case any reference
153 -- to private types in the generic object, by saving both views, one in
154 -- the generic and one in the semantic copy. At time of instantiation, we
155 -- check whether the two views are consistent, and exchange declarations if
156 -- necessary, in order to restore the correct visibility. Similarly, if
157 -- the instance view is private when the generic view was not, we perform
158 -- the exchange. After completing the instantiation, we restore the
159 -- current visibility. The flag Has_Private_View marks identifiers in the
160 -- the generic unit that require checking.
162 -- Visibility within nested generic units requires special handling.
163 -- Consider the following scheme:
165 -- type Global is ... -- outside of generic unit.
169 -- type Semi_Global is ... -- global to inner.
172 -- procedure inner (X1 : Global; X2 : Semi_Global);
174 -- procedure in2 is new inner (...); -- 4
177 -- package New_Outer is new Outer (...); -- 2
178 -- procedure New_Inner is new New_Outer.Inner (...); -- 3
180 -- The semantic analysis of Outer captures all occurrences of Global.
181 -- The semantic analysis of Inner (at 1) captures both occurrences of
182 -- Global and Semi_Global.
184 -- At point 2 (instantiation of Outer), we also produce a generic copy
185 -- of Inner, even though Inner is, at that point, not being instantiated.
186 -- (This is just part of the semantic analysis of New_Outer).
188 -- Critically, references to Global within Inner must be preserved, while
189 -- references to Semi_Global should not preserved, because they must now
190 -- resolve to an entity within New_Outer. To distinguish between these, we
191 -- use a global variable, Current_Instantiated_Parent, which is set when
192 -- performing a generic copy during instantiation (at 2). This variable is
193 -- used when performing a generic copy that is not an instantiation, but
194 -- that is nested within one, as the occurrence of 1 within 2. The analysis
195 -- of a nested generic only preserves references that are global to the
196 -- enclosing Current_Instantiated_Parent. We use the Scope_Depth value to
197 -- determine whether a reference is external to the given parent.
199 -- The instantiation at point 3 requires no special treatment. The method
200 -- works as well for further nestings of generic units, but of course the
201 -- variable Current_Instantiated_Parent must be stacked because nested
202 -- instantiations can occur, e.g. the occurrence of 4 within 2.
204 -- The instantiation of package and subprogram bodies is handled in a
205 -- similar manner, except that it is delayed until after semantic
206 -- analysis is complete. In this fashion complex cross-dependencies
207 -- between several package declarations and bodies containing generics
208 -- can be compiled which otherwise would diagnose spurious circularities.
210 -- For example, it is possible to compile two packages A and B that
211 -- have the following structure:
213 -- package A is package B is
214 -- generic ... generic ...
215 -- package G_A is package G_B is
218 -- package body A is package body B is
219 -- package N_B is new G_B (..) package N_A is new G_A (..)
221 -- The table Pending_Instantiations in package Inline is used to keep
222 -- track of body instantiations that are delayed in this manner. Inline
223 -- handles the actual calls to do the body instantiations. This activity
224 -- is part of Inline, since the processing occurs at the same point, and
225 -- for essentially the same reason, as the handling of inlined routines.
227 ----------------------------------------------
228 -- Detection of Instantiation Circularities --
229 ----------------------------------------------
231 -- If we have a chain of instantiations that is circular, this is static
232 -- error which must be detected at compile time. The detection of these
233 -- circularities is carried out at the point that we insert a generic
234 -- instance spec or body. If there is a circularity, then the analysis of
235 -- the offending spec or body will eventually result in trying to load the
236 -- same unit again, and we detect this problem as we analyze the package
237 -- instantiation for the second time.
239 -- At least in some cases after we have detected the circularity, we get
240 -- into trouble if we try to keep going. The following flag is set if a
241 -- circularity is detected, and used to abandon compilation after the
242 -- messages have been posted.
244 -----------------------------------------
245 -- Implementation of Generic Contracts --
246 -----------------------------------------
248 -- A "contract" is a collection of aspects and pragmas that either verify a
249 -- property of a construct at runtime or classify the data flow to and from
250 -- the construct in some fashion.
252 -- Generic packages, subprograms and their respective bodies may be subject
253 -- to the following contract-related aspects or pragmas collectively known
256 -- package subprogram [body]
257 -- Abstract_State Contract_Cases
258 -- Initial_Condition Depends
259 -- Initializes Extensions_Visible
262 -- Refined_State Post_Class
272 -- Most package contract annotations utilize forward references to classify
273 -- data declared within the package [body]. Subprogram annotations then use
274 -- the classifications to further refine them. These inter dependencies are
275 -- problematic with respect to the implementation of generics because their
276 -- analysis, capture of global references and instantiation does not mesh
277 -- well with the existing mechanism.
279 -- 1) Analysis of generic contracts is carried out the same way non-generic
280 -- contracts are analyzed:
282 -- 1.1) General rule - a contract is analyzed after all related aspects
283 -- and pragmas are analyzed. This is done by routines
285 -- Analyze_Package_Body_Contract
286 -- Analyze_Package_Contract
287 -- Analyze_Subprogram_Body_Contract
288 -- Analyze_Subprogram_Contract
290 -- 1.2) Compilation unit - the contract is analyzed after Pragmas_After
293 -- 1.3) Compilation unit body - the contract is analyzed at the end of
294 -- the body declaration list.
296 -- 1.4) Package - the contract is analyzed at the end of the private or
297 -- visible declarations, prior to analyzing the contracts of any nested
298 -- packages or subprograms.
300 -- 1.5) Package body - the contract is analyzed at the end of the body
301 -- declaration list, prior to analyzing the contracts of any nested
302 -- packages or subprograms.
304 -- 1.6) Subprogram - if the subprogram is declared inside a block, a
305 -- package or a subprogram, then its contract is analyzed at the end of
306 -- the enclosing declarations, otherwise the subprogram is a compilation
309 -- 1.7) Subprogram body - if the subprogram body is declared inside a
310 -- block, a package body or a subprogram body, then its contract is
311 -- analyzed at the end of the enclosing declarations, otherwise the
312 -- subprogram is a compilation unit 1.3).
314 -- 2) Capture of global references within contracts is done after capturing
315 -- global references within the generic template. There are two reasons for
316 -- this delay - pragma annotations are not part of the generic template in
317 -- the case of a generic subprogram declaration, and analysis of contracts
320 -- Contract-related source pragmas within generic templates are prepared
321 -- for delayed capture of global references by routine
323 -- Create_Generic_Contract
325 -- The routine associates these pragmas with the contract of the template.
326 -- In the case of a generic subprogram declaration, the routine creates
327 -- generic templates for the pragmas declared after the subprogram because
328 -- they are not part of the template.
330 -- generic -- template starts
331 -- procedure Gen_Proc (Input : Integer); -- template ends
332 -- pragma Precondition (Input > 0); -- requires own template
334 -- 2.1) The capture of global references with aspect specifications and
335 -- source pragmas that apply to a generic unit must be suppressed when
336 -- the generic template is being processed because the contracts have not
337 -- been analyzed yet. Any attempts to capture global references at that
338 -- point will destroy the Associated_Node linkages and leave the template
339 -- undecorated. This delay is controlled by routine
341 -- Requires_Delayed_Save
343 -- 2.2) The real capture of global references within a contract is done
344 -- after the contract has been analyzed, by routine
346 -- Save_Global_References_In_Contract
348 -- 3) The instantiation of a generic contract occurs as part of the
349 -- instantiation of the contract owner. Generic subprogram declarations
350 -- require additional processing when the contract is specified by pragmas
351 -- because the pragmas are not part of the generic template. This is done
354 -- Instantiate_Subprogram_Contract
356 Circularity_Detected
: Boolean := False;
357 -- This should really be reset on encountering a new main unit, but in
358 -- practice we are not using multiple main units so it is not critical.
360 --------------------------------------------------
361 -- Formal packages and partial parameterization --
362 --------------------------------------------------
364 -- When compiling a generic, a formal package is a local instantiation. If
365 -- declared with a box, its generic formals are visible in the enclosing
366 -- generic. If declared with a partial list of actuals, those actuals that
367 -- are defaulted (covered by an Others clause, or given an explicit box
368 -- initialization) are also visible in the enclosing generic, while those
369 -- that have a corresponding actual are not.
371 -- In our source model of instantiation, the same visibility must be
372 -- present in the spec and body of an instance: the names of the formals
373 -- that are defaulted must be made visible within the instance, and made
374 -- invisible (hidden) after the instantiation is complete, so that they
375 -- are not accessible outside of the instance.
377 -- In a generic, a formal package is treated like a special instantiation.
378 -- Our Ada 95 compiler handled formals with and without box in different
379 -- ways. With partial parameterization, we use a single model for both.
380 -- We create a package declaration that consists of the specification of
381 -- the generic package, and a set of declarations that map the actuals
382 -- into local renamings, just as we do for bona fide instantiations. For
383 -- defaulted parameters and formals with a box, we copy directly the
384 -- declarations of the formal into this local package. The result is a
385 -- a package whose visible declarations may include generic formals. This
386 -- package is only used for type checking and visibility analysis, and
387 -- never reaches the back-end, so it can freely violate the placement
388 -- rules for generic formal declarations.
390 -- The list of declarations (renamings and copies of formals) is built
391 -- by Analyze_Associations, just as for regular instantiations.
393 -- At the point of instantiation, conformance checking must be applied only
394 -- to those parameters that were specified in the formal. We perform this
395 -- checking by creating another internal instantiation, this one including
396 -- only the renamings and the formals (the rest of the package spec is not
397 -- relevant to conformance checking). We can then traverse two lists: the
398 -- list of actuals in the instance that corresponds to the formal package,
399 -- and the list of actuals produced for this bogus instantiation. We apply
400 -- the conformance rules to those actuals that are not defaulted (i.e.
401 -- which still appear as generic formals.
403 -- When we compile an instance body we must make the right parameters
404 -- visible again. The predicate Is_Generic_Formal indicates which of the
405 -- formals should have its Is_Hidden flag reset.
407 -----------------------
408 -- Local subprograms --
409 -----------------------
411 procedure Abandon_Instantiation
(N
: Node_Id
);
412 pragma No_Return
(Abandon_Instantiation
);
413 -- Posts an error message "instantiation abandoned" at the indicated node
414 -- and then raises the exception Instantiation_Error to do it.
416 procedure Analyze_Formal_Array_Type
417 (T
: in out Entity_Id
;
419 -- A formal array type is treated like an array type declaration, and
420 -- invokes Array_Type_Declaration (sem_ch3) whose first parameter is
421 -- in-out, because in the case of an anonymous type the entity is
422 -- actually created in the procedure.
424 -- The following procedures treat other kinds of formal parameters
426 procedure Analyze_Formal_Derived_Interface_Type
431 procedure Analyze_Formal_Derived_Type
436 procedure Analyze_Formal_Interface_Type
441 -- The following subprograms create abbreviated declarations for formal
442 -- scalar types. We introduce an anonymous base of the proper class for
443 -- each of them, and define the formals as constrained first subtypes of
444 -- their bases. The bounds are expressions that are non-static in the
447 procedure Analyze_Formal_Decimal_Fixed_Point_Type
448 (T
: Entity_Id
; Def
: Node_Id
);
449 procedure Analyze_Formal_Discrete_Type
(T
: Entity_Id
; Def
: Node_Id
);
450 procedure Analyze_Formal_Floating_Type
(T
: Entity_Id
; Def
: Node_Id
);
451 procedure Analyze_Formal_Signed_Integer_Type
(T
: Entity_Id
; Def
: Node_Id
);
452 procedure Analyze_Formal_Modular_Type
(T
: Entity_Id
; Def
: Node_Id
);
453 procedure Analyze_Formal_Ordinary_Fixed_Point_Type
454 (T
: Entity_Id
; Def
: Node_Id
);
456 procedure Analyze_Formal_Private_Type
460 -- Creates a new private type, which does not require completion
462 procedure Analyze_Formal_Incomplete_Type
(T
: Entity_Id
; Def
: Node_Id
);
463 -- Ada 2012: Creates a new incomplete type whose actual does not freeze
465 procedure Analyze_Generic_Formal_Part
(N
: Node_Id
);
466 -- Analyze generic formal part
468 procedure Analyze_Generic_Access_Type
(T
: Entity_Id
; Def
: Node_Id
);
469 -- Create a new access type with the given designated type
471 function Analyze_Associations
474 F_Copy
: List_Id
) return List_Id
;
475 -- At instantiation time, build the list of associations between formals
476 -- and actuals. Each association becomes a renaming declaration for the
477 -- formal entity. F_Copy is the analyzed list of formals in the generic
478 -- copy. It is used to apply legality checks to the actuals. I_Node is the
479 -- instantiation node itself.
481 procedure Analyze_Subprogram_Instantiation
485 procedure Build_Instance_Compilation_Unit_Nodes
489 -- This procedure is used in the case where the generic instance of a
490 -- subprogram body or package body is a library unit. In this case, the
491 -- original library unit node for the generic instantiation must be
492 -- replaced by the resulting generic body, and a link made to a new
493 -- compilation unit node for the generic declaration. The argument N is
494 -- the original generic instantiation. Act_Body and Act_Decl are the body
495 -- and declaration of the instance (either package body and declaration
496 -- nodes or subprogram body and declaration nodes depending on the case).
497 -- On return, the node N has been rewritten with the actual body.
499 procedure Check_Access_Definition
(N
: Node_Id
);
500 -- Subsidiary routine to null exclusion processing. Perform an assertion
501 -- check on Ada version and the presence of an access definition in N.
503 procedure Check_Formal_Packages
(P_Id
: Entity_Id
);
504 -- Apply the following to all formal packages in generic associations
506 procedure Check_Formal_Package_Instance
507 (Formal_Pack
: Entity_Id
;
508 Actual_Pack
: Entity_Id
);
509 -- Verify that the actuals of the actual instance match the actuals of
510 -- the template for a formal package that is not declared with a box.
512 procedure Check_Forward_Instantiation
(Decl
: Node_Id
);
513 -- If the generic is a local entity and the corresponding body has not
514 -- been seen yet, flag enclosing packages to indicate that it will be
515 -- elaborated after the generic body. Subprograms declared in the same
516 -- package cannot be inlined by the front end because front-end inlining
517 -- requires a strict linear order of elaboration.
519 function Check_Hidden_Primitives
(Assoc_List
: List_Id
) return Elist_Id
;
520 -- Check if some association between formals and actuals requires to make
521 -- visible primitives of a tagged type, and make those primitives visible.
522 -- Return the list of primitives whose visibility is modified (to restore
523 -- their visibility later through Restore_Hidden_Primitives). If no
524 -- candidate is found then return No_Elist.
526 procedure Check_Hidden_Child_Unit
528 Gen_Unit
: Entity_Id
;
529 Act_Decl_Id
: Entity_Id
);
530 -- If the generic unit is an implicit child instance within a parent
531 -- instance, we need to make an explicit test that it is not hidden by
532 -- a child instance of the same name and parent.
534 procedure Check_Generic_Actuals
535 (Instance
: Entity_Id
;
536 Is_Formal_Box
: Boolean);
537 -- Similar to previous one. Check the actuals in the instantiation,
538 -- whose views can change between the point of instantiation and the point
539 -- of instantiation of the body. In addition, mark the generic renamings
540 -- as generic actuals, so that they are not compatible with other actuals.
541 -- Recurse on an actual that is a formal package whose declaration has
544 function Contains_Instance_Of
547 N
: Node_Id
) return Boolean;
548 -- Inner is instantiated within the generic Outer. Check whether Inner
549 -- directly or indirectly contains an instance of Outer or of one of its
550 -- parents, in the case of a subunit. Each generic unit holds a list of
551 -- the entities instantiated within (at any depth). This procedure
552 -- determines whether the set of such lists contains a cycle, i.e. an
553 -- illegal circular instantiation.
555 function Denotes_Formal_Package
557 On_Exit
: Boolean := False;
558 Instance
: Entity_Id
:= Empty
) return Boolean;
559 -- Returns True if E is a formal package of an enclosing generic, or
560 -- the actual for such a formal in an enclosing instantiation. If such
561 -- a package is used as a formal in an nested generic, or as an actual
562 -- in a nested instantiation, the visibility of ITS formals should not
563 -- be modified. When called from within Restore_Private_Views, the flag
564 -- On_Exit is true, to indicate that the search for a possible enclosing
565 -- instance should ignore the current one. In that case Instance denotes
566 -- the declaration for which this is an actual. This declaration may be
567 -- an instantiation in the source, or the internal instantiation that
568 -- corresponds to the actual for a formal package.
570 function Earlier
(N1
, N2
: Node_Id
) return Boolean;
571 -- Yields True if N1 and N2 appear in the same compilation unit,
572 -- ignoring subunits, and if N1 is to the left of N2 in a left-to-right
573 -- traversal of the tree for the unit. Used to determine the placement
574 -- of freeze nodes for instance bodies that may depend on other instances.
576 function Find_Actual_Type
578 Gen_Type
: Entity_Id
) return Entity_Id
;
579 -- When validating the actual types of a child instance, check whether
580 -- the formal is a formal type of the parent unit, and retrieve the current
581 -- actual for it. Typ is the entity in the analyzed formal type declaration
582 -- (component or index type of an array type, or designated type of an
583 -- access formal) and Gen_Type is the enclosing analyzed formal array
584 -- or access type. The desired actual may be a formal of a parent, or may
585 -- be declared in a formal package of a parent. In both cases it is a
586 -- generic actual type because it appears within a visible instance.
587 -- Finally, it may be declared in a parent unit without being a formal
588 -- of that unit, in which case it must be retrieved by visibility.
589 -- Ambiguities may still arise if two homonyms are declared in two formal
590 -- packages, and the prefix of the formal type may be needed to resolve
591 -- the ambiguity in the instance ???
593 procedure Freeze_Subprogram_Body
594 (Inst_Node
: Node_Id
;
596 Pack_Id
: Entity_Id
);
597 -- The generic body may appear textually after the instance, including
598 -- in the proper body of a stub, or within a different package instance.
599 -- Given that the instance can only be elaborated after the generic, we
600 -- place freeze_nodes for the instance and/or for packages that may enclose
601 -- the instance and the generic, so that the back-end can establish the
602 -- proper order of elaboration.
604 function Get_Associated_Node
(N
: Node_Id
) return Node_Id
;
605 -- In order to propagate semantic information back from the analyzed copy
606 -- to the original generic, we maintain links between selected nodes in the
607 -- generic and their corresponding copies. At the end of generic analysis,
608 -- the routine Save_Global_References traverses the generic tree, examines
609 -- the semantic information, and preserves the links to those nodes that
610 -- contain global information. At instantiation, the information from the
611 -- associated node is placed on the new copy, so that name resolution is
614 -- Three kinds of source nodes have associated nodes:
616 -- a) those that can reference (denote) entities, that is identifiers,
617 -- character literals, expanded_names, operator symbols, operators,
618 -- and attribute reference nodes. These nodes have an Entity field
619 -- and are the set of nodes that are in N_Has_Entity.
621 -- b) aggregates (N_Aggregate and N_Extension_Aggregate)
623 -- c) selected components (N_Selected_Component)
625 -- For the first class, the associated node preserves the entity if it is
626 -- global. If the generic contains nested instantiations, the associated
627 -- node itself has been recopied, and a chain of them must be followed.
629 -- For aggregates, the associated node allows retrieval of the type, which
630 -- may otherwise not appear in the generic. The view of this type may be
631 -- different between generic and instantiation, and the full view can be
632 -- installed before the instantiation is analyzed. For aggregates of type
633 -- extensions, the same view exchange may have to be performed for some of
634 -- the ancestor types, if their view is private at the point of
637 -- Nodes that are selected components in the parse tree may be rewritten
638 -- as expanded names after resolution, and must be treated as potential
639 -- entity holders, which is why they also have an Associated_Node.
641 -- Nodes that do not come from source, such as freeze nodes, do not appear
642 -- in the generic tree, and need not have an associated node.
644 -- The associated node is stored in the Associated_Node field. Note that
645 -- this field overlaps Entity, which is fine, because the whole point is
646 -- that we don't need or want the normal Entity field in this situation.
648 function Has_Been_Exchanged
(E
: Entity_Id
) return Boolean;
649 -- Traverse the Exchanged_Views list to see if a type was private
650 -- and has already been flipped during this phase of instantiation.
652 procedure Hide_Current_Scope
;
653 -- When instantiating a generic child unit, the parent context must be
654 -- present, but the instance and all entities that may be generated
655 -- must be inserted in the current scope. We leave the current scope
656 -- on the stack, but make its entities invisible to avoid visibility
657 -- problems. This is reversed at the end of the instantiation. This is
658 -- not done for the instantiation of the bodies, which only require the
659 -- instances of the generic parents to be in scope.
661 function In_Same_Declarative_Part
663 Inst
: Node_Id
) return Boolean;
664 -- True if the instantiation Inst and the given freeze_node F_Node appear
665 -- within the same declarative part, ignoring subunits, but with no inter-
666 -- vening subprograms or concurrent units. Used to find the proper plave
667 -- for the freeze node of an instance, when the generic is declared in a
668 -- previous instance. If predicate is true, the freeze node of the instance
669 -- can be placed after the freeze node of the previous instance, Otherwise
670 -- it has to be placed at the end of the current declarative part.
672 function In_Main_Context
(E
: Entity_Id
) return Boolean;
673 -- Check whether an instantiation is in the context of the main unit.
674 -- Used to determine whether its body should be elaborated to allow
675 -- front-end inlining.
677 procedure Inherit_Context
(Gen_Decl
: Node_Id
; Inst
: Node_Id
);
678 -- Add the context clause of the unit containing a generic unit to a
679 -- compilation unit that is, or contains, an instantiation.
682 -- Establish environment for subsequent instantiation. Separated from
683 -- Save_Env because data-structures for visibility handling must be
684 -- initialized before call to Check_Generic_Child_Unit.
686 procedure Inline_Instance_Body
688 Gen_Unit
: Entity_Id
;
690 -- If front-end inlining is requested, instantiate the package body,
691 -- and preserve the visibility of its compilation unit, to insure
692 -- that successive instantiations succeed.
694 procedure Insert_Freeze_Node_For_Instance
697 -- N denotes a package or a subprogram instantiation and F_Node is the
698 -- associated freeze node. Insert the freeze node before the first source
699 -- body which follows immediately after N. If no such body is found, the
700 -- freeze node is inserted at the end of the declarative region which
703 procedure Install_Body
708 -- If the instantiation happens textually before the body of the generic,
709 -- the instantiation of the body must be analyzed after the generic body,
710 -- and not at the point of instantiation. Such early instantiations can
711 -- happen if the generic and the instance appear in a package declaration
712 -- because the generic body can only appear in the corresponding package
713 -- body. Early instantiations can also appear if generic, instance and
714 -- body are all in the declarative part of a subprogram or entry. Entities
715 -- of packages that are early instantiations are delayed, and their freeze
716 -- node appears after the generic body. This rather complex machinery is
717 -- needed when nested instantiations are present, because the source does
718 -- not carry any indication of where the corresponding instance bodies must
719 -- be installed and frozen.
721 procedure Install_Formal_Packages
(Par
: Entity_Id
);
722 -- Install the visible part of any formal of the parent that is a formal
723 -- package. Note that for the case of a formal package with a box, this
724 -- includes the formal part of the formal package (12.7(10/2)).
726 procedure Install_Hidden_Primitives
727 (Prims_List
: in out Elist_Id
;
730 -- Remove suffix 'P' from hidden primitives of Act_T to match the
731 -- visibility of primitives of Gen_T. The list of primitives to which
732 -- the suffix is removed is added to Prims_List to restore them later.
734 procedure Install_Parent
(P
: Entity_Id
; In_Body
: Boolean := False);
735 -- When compiling an instance of a child unit the parent (which is
736 -- itself an instance) is an enclosing scope that must be made
737 -- immediately visible. This procedure is also used to install the non-
738 -- generic parent of a generic child unit when compiling its body, so
739 -- that full views of types in the parent are made visible.
741 -- The functions Instantiate_XXX perform various legality checks and build
742 -- the declarations for instantiated generic parameters. In all of these
743 -- Formal is the entity in the generic unit, Actual is the entity of
744 -- expression in the generic associations, and Analyzed_Formal is the
745 -- formal in the generic copy, which contains the semantic information to
746 -- be used to validate the actual.
748 function Instantiate_Object
751 Analyzed_Formal
: Node_Id
) return List_Id
;
753 function Instantiate_Type
756 Analyzed_Formal
: Node_Id
;
757 Actual_Decls
: List_Id
) return List_Id
;
759 function Instantiate_Formal_Subprogram
762 Analyzed_Formal
: Node_Id
) return Node_Id
;
764 function Instantiate_Formal_Package
767 Analyzed_Formal
: Node_Id
) return List_Id
;
768 -- If the formal package is declared with a box, special visibility rules
769 -- apply to its formals: they are in the visible part of the package. This
770 -- is true in the declarative region of the formal package, that is to say
771 -- in the enclosing generic or instantiation. For an instantiation, the
772 -- parameters of the formal package are made visible in an explicit step.
773 -- Furthermore, if the actual has a visible USE clause, these formals must
774 -- be made potentially use-visible as well. On exit from the enclosing
775 -- instantiation, the reverse must be done.
777 -- For a formal package declared without a box, there are conformance rules
778 -- that apply to the actuals in the generic declaration and the actuals of
779 -- the actual package in the enclosing instantiation. The simplest way to
780 -- apply these rules is to repeat the instantiation of the formal package
781 -- in the context of the enclosing instance, and compare the generic
782 -- associations of this instantiation with those of the actual package.
783 -- This internal instantiation only needs to contain the renamings of the
784 -- formals: the visible and private declarations themselves need not be
787 -- In Ada 2005, the formal package may be only partially parameterized.
788 -- In that case the visibility step must make visible those actuals whose
789 -- corresponding formals were given with a box. A final complication
790 -- involves inherited operations from formal derived types, which must
791 -- be visible if the type is.
793 function Is_In_Main_Unit
(N
: Node_Id
) return Boolean;
794 -- Test if given node is in the main unit
796 procedure Load_Parent_Of_Generic
799 Body_Optional
: Boolean := False);
800 -- If the generic appears in a separate non-generic library unit, load the
801 -- corresponding body to retrieve the body of the generic. N is the node
802 -- for the generic instantiation, Spec is the generic package declaration.
804 -- Body_Optional is a flag that indicates that the body is being loaded to
805 -- ensure that temporaries are generated consistently when there are other
806 -- instances in the current declarative part that precede the one being
807 -- loaded. In that case a missing body is acceptable.
809 procedure Map_Formal_Package_Entities
(Form
: Entity_Id
; Act
: Entity_Id
);
810 -- Within the generic part, entities in the formal package are
811 -- visible. To validate subsequent type declarations, indicate
812 -- the correspondence between the entities in the analyzed formal,
813 -- and the entities in the actual package. There are three packages
814 -- involved in the instantiation of a formal package: the parent
815 -- generic P1 which appears in the generic declaration, the fake
816 -- instantiation P2 which appears in the analyzed generic, and whose
817 -- visible entities may be used in subsequent formals, and the actual
818 -- P3 in the instance. To validate subsequent formals, me indicate
819 -- that the entities in P2 are mapped into those of P3. The mapping of
820 -- entities has to be done recursively for nested packages.
822 procedure Move_Freeze_Nodes
826 -- Freeze nodes can be generated in the analysis of a generic unit, but
827 -- will not be seen by the back-end. It is necessary to move those nodes
828 -- to the enclosing scope if they freeze an outer entity. We place them
829 -- at the end of the enclosing generic package, which is semantically
832 procedure Preanalyze_Actuals
(N
: Node_Id
; Inst
: Entity_Id
:= Empty
);
833 -- Analyze actuals to perform name resolution. Full resolution is done
834 -- later, when the expected types are known, but names have to be captured
835 -- before installing parents of generics, that are not visible for the
836 -- actuals themselves.
838 -- If Inst is present, it is the entity of the package instance. This
839 -- entity is marked as having a limited_view actual when some actual is
840 -- a limited view. This is used to place the instance body properly.
842 procedure Remove_Parent
(In_Body
: Boolean := False);
843 -- Reverse effect after instantiation of child is complete
845 procedure Restore_Hidden_Primitives
(Prims_List
: in out Elist_Id
);
846 -- Restore suffix 'P' to primitives of Prims_List and leave Prims_List
849 procedure Set_Instance_Env
850 (Gen_Unit
: Entity_Id
;
851 Act_Unit
: Entity_Id
);
852 -- Save current instance on saved environment, to be used to determine
853 -- the global status of entities in nested instances. Part of Save_Env.
854 -- called after verifying that the generic unit is legal for the instance,
855 -- The procedure also examines whether the generic unit is a predefined
856 -- unit, in order to set configuration switches accordingly. As a result
857 -- the procedure must be called after analyzing and freezing the actuals.
859 procedure Set_Instance_Of
(A
: Entity_Id
; B
: Entity_Id
);
860 -- Associate analyzed generic parameter with corresponding instance. Used
861 -- for semantic checks at instantiation time.
863 function True_Parent
(N
: Node_Id
) return Node_Id
;
864 -- For a subunit, return parent of corresponding stub, else return
867 procedure Valid_Default_Attribute
(Nam
: Entity_Id
; Def
: Node_Id
);
868 -- Verify that an attribute that appears as the default for a formal
869 -- subprogram is a function or procedure with the correct profile.
871 -------------------------------------------
872 -- Data Structures for Generic Renamings --
873 -------------------------------------------
875 -- The map Generic_Renamings associates generic entities with their
876 -- corresponding actuals. Currently used to validate type instances. It
877 -- will eventually be used for all generic parameters to eliminate the
878 -- need for overload resolution in the instance.
880 type Assoc_Ptr
is new Int
;
882 Assoc_Null
: constant Assoc_Ptr
:= -1;
887 Next_In_HTable
: Assoc_Ptr
;
890 package Generic_Renamings
is new Table
.Table
891 (Table_Component_Type
=> Assoc
,
892 Table_Index_Type
=> Assoc_Ptr
,
893 Table_Low_Bound
=> 0,
895 Table_Increment
=> 100,
896 Table_Name
=> "Generic_Renamings");
898 -- Variable to hold enclosing instantiation. When the environment is
899 -- saved for a subprogram inlining, the corresponding Act_Id is empty.
901 Current_Instantiated_Parent
: Assoc
:= (Empty
, Empty
, Assoc_Null
);
903 -- Hash table for associations
905 HTable_Size
: constant := 37;
906 type HTable_Range
is range 0 .. HTable_Size
- 1;
908 procedure Set_Next_Assoc
(E
: Assoc_Ptr
; Next
: Assoc_Ptr
);
909 function Next_Assoc
(E
: Assoc_Ptr
) return Assoc_Ptr
;
910 function Get_Gen_Id
(E
: Assoc_Ptr
) return Entity_Id
;
911 function Hash
(F
: Entity_Id
) return HTable_Range
;
913 package Generic_Renamings_HTable
is new GNAT
.HTable
.Static_HTable
(
914 Header_Num
=> HTable_Range
,
916 Elmt_Ptr
=> Assoc_Ptr
,
917 Null_Ptr
=> Assoc_Null
,
918 Set_Next
=> Set_Next_Assoc
,
921 Get_Key
=> Get_Gen_Id
,
925 Exchanged_Views
: Elist_Id
;
926 -- This list holds the private views that have been exchanged during
927 -- instantiation to restore the visibility of the generic declaration.
928 -- (see comments above). After instantiation, the current visibility is
929 -- reestablished by means of a traversal of this list.
931 Hidden_Entities
: Elist_Id
;
932 -- This list holds the entities of the current scope that are removed
933 -- from immediate visibility when instantiating a child unit. Their
934 -- visibility is restored in Remove_Parent.
936 -- Because instantiations can be recursive, the following must be saved
937 -- on entry and restored on exit from an instantiation (spec or body).
938 -- This is done by the two procedures Save_Env and Restore_Env. For
939 -- package and subprogram instantiations (but not for the body instances)
940 -- the action of Save_Env is done in two steps: Init_Env is called before
941 -- Check_Generic_Child_Unit, because setting the parent instances requires
942 -- that the visibility data structures be properly initialized. Once the
943 -- generic is unit is validated, Set_Instance_Env completes Save_Env.
945 Parent_Unit_Visible
: Boolean := False;
946 -- Parent_Unit_Visible is used when the generic is a child unit, and
947 -- indicates whether the ultimate parent of the generic is visible in the
948 -- instantiation environment. It is used to reset the visibility of the
949 -- parent at the end of the instantiation (see Remove_Parent).
951 Instance_Parent_Unit
: Entity_Id
:= Empty
;
952 -- This records the ultimate parent unit of an instance of a generic
953 -- child unit and is used in conjunction with Parent_Unit_Visible to
954 -- indicate the unit to which the Parent_Unit_Visible flag corresponds.
956 type Instance_Env
is record
957 Instantiated_Parent
: Assoc
;
958 Exchanged_Views
: Elist_Id
;
959 Hidden_Entities
: Elist_Id
;
960 Current_Sem_Unit
: Unit_Number_Type
;
961 Parent_Unit_Visible
: Boolean := False;
962 Instance_Parent_Unit
: Entity_Id
:= Empty
;
963 Switches
: Config_Switches_Type
;
966 package Instance_Envs
is new Table
.Table
(
967 Table_Component_Type
=> Instance_Env
,
968 Table_Index_Type
=> Int
,
969 Table_Low_Bound
=> 0,
971 Table_Increment
=> 100,
972 Table_Name
=> "Instance_Envs");
974 procedure Restore_Private_Views
975 (Pack_Id
: Entity_Id
;
976 Is_Package
: Boolean := True);
977 -- Restore the private views of external types, and unmark the generic
978 -- renamings of actuals, so that they become compatible subtypes again.
979 -- For subprograms, Pack_Id is the package constructed to hold the
982 procedure Switch_View
(T
: Entity_Id
);
983 -- Switch the partial and full views of a type and its private
984 -- dependents (i.e. its subtypes and derived types).
986 ------------------------------------
987 -- Structures for Error Reporting --
988 ------------------------------------
990 Instantiation_Node
: Node_Id
;
991 -- Used by subprograms that validate instantiation of formal parameters
992 -- where there might be no actual on which to place the error message.
993 -- Also used to locate the instantiation node for generic subunits.
995 Instantiation_Error
: exception;
996 -- When there is a semantic error in the generic parameter matching,
997 -- there is no point in continuing the instantiation, because the
998 -- number of cascaded errors is unpredictable. This exception aborts
999 -- the instantiation process altogether.
1001 S_Adjustment
: Sloc_Adjustment
;
1002 -- Offset created for each node in an instantiation, in order to keep
1003 -- track of the source position of the instantiation in each of its nodes.
1004 -- A subsequent semantic error or warning on a construct of the instance
1005 -- points to both places: the original generic node, and the point of
1006 -- instantiation. See Sinput and Sinput.L for additional details.
1008 ------------------------------------------------------------
1009 -- Data structure for keeping track when inside a Generic --
1010 ------------------------------------------------------------
1012 -- The following table is used to save values of the Inside_A_Generic
1013 -- flag (see spec of Sem) when they are saved by Start_Generic.
1015 package Generic_Flags
is new Table
.Table
(
1016 Table_Component_Type
=> Boolean,
1017 Table_Index_Type
=> Int
,
1018 Table_Low_Bound
=> 0,
1019 Table_Initial
=> 32,
1020 Table_Increment
=> 200,
1021 Table_Name
=> "Generic_Flags");
1023 ---------------------------
1024 -- Abandon_Instantiation --
1025 ---------------------------
1027 procedure Abandon_Instantiation
(N
: Node_Id
) is
1029 Error_Msg_N
("\instantiation abandoned!", N
);
1030 raise Instantiation_Error
;
1031 end Abandon_Instantiation
;
1033 --------------------------------
1034 -- Add_Pending_Instantiation --
1035 --------------------------------
1037 procedure Add_Pending_Instantiation
(Inst
: Node_Id
; Act_Decl
: Node_Id
) is
1040 -- Add to the instantiation node and the corresponding unit declaration
1041 -- the current values of global flags to be used when analyzing the
1044 Pending_Instantiations
.Append
1045 ((Inst_Node
=> Inst
,
1046 Act_Decl
=> Act_Decl
,
1047 Expander_Status
=> Expander_Active
,
1048 Current_Sem_Unit
=> Current_Sem_Unit
,
1049 Scope_Suppress
=> Scope_Suppress
,
1050 Local_Suppress_Stack_Top
=> Local_Suppress_Stack_Top
,
1051 Version
=> Ada_Version
,
1052 Version_Pragma
=> Ada_Version_Pragma
,
1053 Warnings
=> Save_Warnings
,
1054 SPARK_Mode
=> SPARK_Mode
,
1055 SPARK_Mode_Pragma
=> SPARK_Mode_Pragma
));
1056 end Add_Pending_Instantiation
;
1058 ----------------------------------
1059 -- Adjust_Inherited_Pragma_Sloc --
1060 ----------------------------------
1062 procedure Adjust_Inherited_Pragma_Sloc
(N
: Node_Id
) is
1064 Adjust_Instantiation_Sloc
(N
, S_Adjustment
);
1065 end Adjust_Inherited_Pragma_Sloc
;
1067 --------------------------
1068 -- Analyze_Associations --
1069 --------------------------
1071 function Analyze_Associations
1074 F_Copy
: List_Id
) return List_Id
1076 Actuals_To_Freeze
: constant Elist_Id
:= New_Elmt_List
;
1077 Assoc
: constant List_Id
:= New_List
;
1078 Default_Actuals
: constant List_Id
:= New_List
;
1079 Gen_Unit
: constant Entity_Id
:=
1080 Defining_Entity
(Parent
(F_Copy
));
1084 Analyzed_Formal
: Node_Id
;
1085 First_Named
: Node_Id
:= Empty
;
1089 Saved_Formal
: Node_Id
;
1091 Default_Formals
: constant List_Id
:= New_List
;
1092 -- If an Others_Choice is present, some of the formals may be defaulted.
1093 -- To simplify the treatment of visibility in an instance, we introduce
1094 -- individual defaults for each such formal. These defaults are
1095 -- appended to the list of associations and replace the Others_Choice.
1097 Found_Assoc
: Node_Id
;
1098 -- Association for the current formal being match. Empty if there are
1099 -- no remaining actuals, or if there is no named association with the
1100 -- name of the formal.
1102 Is_Named_Assoc
: Boolean;
1103 Num_Matched
: Nat
:= 0;
1104 Num_Actuals
: Nat
:= 0;
1106 Others_Present
: Boolean := False;
1107 Others_Choice
: Node_Id
:= Empty
;
1108 -- In Ada 2005, indicates partial parameterization of a formal
1109 -- package. As usual an other association must be last in the list.
1111 procedure Check_Fixed_Point_Actual
(Actual
: Node_Id
);
1112 -- Warn if an actual fixed-point type has user-defined arithmetic
1113 -- operations, but there is no corresponding formal in the generic,
1114 -- in which case the predefined operations will be used. This merits
1115 -- a warning because of the special semantics of fixed point ops.
1117 procedure Check_Overloaded_Formal_Subprogram
(Formal
: Entity_Id
);
1118 -- Apply RM 12.3(9): if a formal subprogram is overloaded, the instance
1119 -- cannot have a named association for it. AI05-0025 extends this rule
1120 -- to formals of formal packages by AI05-0025, and it also applies to
1121 -- box-initialized formals.
1123 function Has_Fully_Defined_Profile
(Subp
: Entity_Id
) return Boolean;
1124 -- Determine whether the parameter types and the return type of Subp
1125 -- are fully defined at the point of instantiation.
1127 function Matching_Actual
1129 A_F
: Entity_Id
) return Node_Id
;
1130 -- Find actual that corresponds to a given a formal parameter. If the
1131 -- actuals are positional, return the next one, if any. If the actuals
1132 -- are named, scan the parameter associations to find the right one.
1133 -- A_F is the corresponding entity in the analyzed generic, which is
1134 -- placed on the selector name for ASIS use.
1136 -- In Ada 2005, a named association may be given with a box, in which
1137 -- case Matching_Actual sets Found_Assoc to the generic association,
1138 -- but return Empty for the actual itself. In this case the code below
1139 -- creates a corresponding declaration for the formal.
1141 function Partial_Parameterization
return Boolean;
1142 -- Ada 2005: if no match is found for a given formal, check if the
1143 -- association for it includes a box, or whether the associations
1144 -- include an Others clause.
1146 procedure Process_Default
(F
: Entity_Id
);
1147 -- Add a copy of the declaration of generic formal F to the list of
1148 -- associations, and add an explicit box association for F if there
1149 -- is none yet, and the default comes from an Others_Choice.
1151 function Renames_Standard_Subprogram
(Subp
: Entity_Id
) return Boolean;
1152 -- Determine whether Subp renames one of the subprograms defined in the
1153 -- generated package Standard.
1155 procedure Set_Analyzed_Formal
;
1156 -- Find the node in the generic copy that corresponds to a given formal.
1157 -- The semantic information on this node is used to perform legality
1158 -- checks on the actuals. Because semantic analysis can introduce some
1159 -- anonymous entities or modify the declaration node itself, the
1160 -- correspondence between the two lists is not one-one. In addition to
1161 -- anonymous types, the presence a formal equality will introduce an
1162 -- implicit declaration for the corresponding inequality.
1164 ----------------------------------------
1165 -- Check_Overloaded_Formal_Subprogram --
1166 ----------------------------------------
1168 procedure Check_Overloaded_Formal_Subprogram
(Formal
: Entity_Id
) is
1169 Temp_Formal
: Entity_Id
;
1172 Temp_Formal
:= First
(Formals
);
1173 while Present
(Temp_Formal
) loop
1174 if Nkind
(Temp_Formal
) in N_Formal_Subprogram_Declaration
1175 and then Temp_Formal
/= Formal
1177 Chars
(Defining_Unit_Name
(Specification
(Formal
))) =
1178 Chars
(Defining_Unit_Name
(Specification
(Temp_Formal
)))
1180 if Present
(Found_Assoc
) then
1182 ("named association not allowed for overloaded formal",
1187 ("named association not allowed for overloaded formal",
1191 Abandon_Instantiation
(Instantiation_Node
);
1196 end Check_Overloaded_Formal_Subprogram
;
1198 -------------------------------
1199 -- Check_Fixed_Point_Actual --
1200 -------------------------------
1202 procedure Check_Fixed_Point_Actual
(Actual
: Node_Id
) is
1203 Typ
: constant Entity_Id
:= Entity
(Actual
);
1204 Prims
: constant Elist_Id
:= Collect_Primitive_Operations
(Typ
);
1209 -- Locate primitive operations of the type that are arithmetic
1212 Elem
:= First_Elmt
(Prims
);
1213 while Present
(Elem
) loop
1214 if Nkind
(Node
(Elem
)) = N_Defining_Operator_Symbol
then
1216 -- Check whether the generic unit has a formal subprogram of
1217 -- the same name. This does not check types but is good enough
1218 -- to justify a warning.
1220 Formal
:= First_Non_Pragma
(Formals
);
1221 while Present
(Formal
) loop
1222 if Nkind
(Formal
) = N_Formal_Concrete_Subprogram_Declaration
1223 and then Chars
(Defining_Entity
(Formal
)) =
1233 Error_Msg_Sloc
:= Sloc
(Node
(Elem
));
1235 ("?instance does not use primitive operation&#",
1236 Actual
, Node
(Elem
));
1242 end Check_Fixed_Point_Actual
;
1244 -------------------------------
1245 -- Has_Fully_Defined_Profile --
1246 -------------------------------
1248 function Has_Fully_Defined_Profile
(Subp
: Entity_Id
) return Boolean is
1249 function Is_Fully_Defined_Type
(Typ
: Entity_Id
) return Boolean;
1250 -- Determine whethet type Typ is fully defined
1252 ---------------------------
1253 -- Is_Fully_Defined_Type --
1254 ---------------------------
1256 function Is_Fully_Defined_Type
(Typ
: Entity_Id
) return Boolean is
1258 -- A private type without a full view is not fully defined
1260 if Is_Private_Type
(Typ
)
1261 and then No
(Full_View
(Typ
))
1265 -- An incomplete type is never fully defined
1267 elsif Is_Incomplete_Type
(Typ
) then
1270 -- All other types are fully defined
1275 end Is_Fully_Defined_Type
;
1277 -- Local declarations
1281 -- Start of processing for Has_Fully_Defined_Profile
1284 -- Check the parameters
1286 Param
:= First_Formal
(Subp
);
1287 while Present
(Param
) loop
1288 if not Is_Fully_Defined_Type
(Etype
(Param
)) then
1292 Next_Formal
(Param
);
1295 -- Check the return type
1297 return Is_Fully_Defined_Type
(Etype
(Subp
));
1298 end Has_Fully_Defined_Profile
;
1300 ---------------------
1301 -- Matching_Actual --
1302 ---------------------
1304 function Matching_Actual
1306 A_F
: Entity_Id
) return Node_Id
1312 Is_Named_Assoc
:= False;
1314 -- End of list of purely positional parameters
1316 if No
(Actual
) or else Nkind
(Actual
) = N_Others_Choice
then
1317 Found_Assoc
:= Empty
;
1320 -- Case of positional parameter corresponding to current formal
1322 elsif No
(Selector_Name
(Actual
)) then
1323 Found_Assoc
:= Actual
;
1324 Act
:= Explicit_Generic_Actual_Parameter
(Actual
);
1325 Num_Matched
:= Num_Matched
+ 1;
1328 -- Otherwise scan list of named actuals to find the one with the
1329 -- desired name. All remaining actuals have explicit names.
1332 Is_Named_Assoc
:= True;
1333 Found_Assoc
:= Empty
;
1337 while Present
(Actual
) loop
1338 if Nkind
(Actual
) = N_Others_Choice
then
1339 Found_Assoc
:= Empty
;
1342 elsif Chars
(Selector_Name
(Actual
)) = Chars
(F
) then
1343 Set_Entity
(Selector_Name
(Actual
), A_F
);
1344 Set_Etype
(Selector_Name
(Actual
), Etype
(A_F
));
1345 Generate_Reference
(A_F
, Selector_Name
(Actual
));
1347 Found_Assoc
:= Actual
;
1348 Act
:= Explicit_Generic_Actual_Parameter
(Actual
);
1349 Num_Matched
:= Num_Matched
+ 1;
1357 -- Reset for subsequent searches. In most cases the named
1358 -- associations are in order. If they are not, we reorder them
1359 -- to avoid scanning twice the same actual. This is not just a
1360 -- question of efficiency: there may be multiple defaults with
1361 -- boxes that have the same name. In a nested instantiation we
1362 -- insert actuals for those defaults, and cannot rely on their
1363 -- names to disambiguate them.
1365 if Actual
= First_Named
then
1368 elsif Present
(Actual
) then
1369 Insert_Before
(First_Named
, Remove_Next
(Prev
));
1372 Actual
:= First_Named
;
1375 if Is_Entity_Name
(Act
) and then Present
(Entity
(Act
)) then
1376 Set_Used_As_Generic_Actual
(Entity
(Act
));
1380 end Matching_Actual
;
1382 ------------------------------
1383 -- Partial_Parameterization --
1384 ------------------------------
1386 function Partial_Parameterization
return Boolean is
1388 return Others_Present
1389 or else (Present
(Found_Assoc
) and then Box_Present
(Found_Assoc
));
1390 end Partial_Parameterization
;
1392 ---------------------
1393 -- Process_Default --
1394 ---------------------
1396 procedure Process_Default
(F
: Entity_Id
) is
1397 Loc
: constant Source_Ptr
:= Sloc
(I_Node
);
1398 F_Id
: constant Entity_Id
:= Defining_Entity
(F
);
1404 -- Append copy of formal declaration to associations, and create new
1405 -- defining identifier for it.
1407 Decl
:= New_Copy_Tree
(F
);
1408 Id
:= Make_Defining_Identifier
(Sloc
(F_Id
), Chars
(F_Id
));
1410 if Nkind
(F
) in N_Formal_Subprogram_Declaration
then
1411 Set_Defining_Unit_Name
(Specification
(Decl
), Id
);
1414 Set_Defining_Identifier
(Decl
, Id
);
1417 Append
(Decl
, Assoc
);
1419 if No
(Found_Assoc
) then
1421 Make_Generic_Association
(Loc
,
1423 New_Occurrence_Of
(Id
, Loc
),
1424 Explicit_Generic_Actual_Parameter
=> Empty
);
1425 Set_Box_Present
(Default
);
1426 Append
(Default
, Default_Formals
);
1428 end Process_Default
;
1430 ---------------------------------
1431 -- Renames_Standard_Subprogram --
1432 ---------------------------------
1434 function Renames_Standard_Subprogram
(Subp
: Entity_Id
) return Boolean is
1439 while Present
(Id
) loop
1440 if Scope
(Id
) = Standard_Standard
then
1448 end Renames_Standard_Subprogram
;
1450 -------------------------
1451 -- Set_Analyzed_Formal --
1452 -------------------------
1454 procedure Set_Analyzed_Formal
is
1458 while Present
(Analyzed_Formal
) loop
1459 Kind
:= Nkind
(Analyzed_Formal
);
1461 case Nkind
(Formal
) is
1462 when N_Formal_Subprogram_Declaration
=>
1463 exit when Kind
in N_Formal_Subprogram_Declaration
1466 (Defining_Unit_Name
(Specification
(Formal
))) =
1468 (Defining_Unit_Name
(Specification
(Analyzed_Formal
)));
1470 when N_Formal_Package_Declaration
=>
1471 exit when Nkind_In
(Kind
, N_Formal_Package_Declaration
,
1472 N_Generic_Package_Declaration
,
1473 N_Package_Declaration
);
1475 when N_Use_Package_Clause
1482 -- Skip freeze nodes, and nodes inserted to replace
1483 -- unrecognized pragmas.
1486 Kind
not in N_Formal_Subprogram_Declaration
1487 and then not Nkind_In
(Kind
, N_Subprogram_Declaration
,
1491 and then Chars
(Defining_Identifier
(Formal
)) =
1492 Chars
(Defining_Identifier
(Analyzed_Formal
));
1495 Next
(Analyzed_Formal
);
1497 end Set_Analyzed_Formal
;
1499 -- Start of processing for Analyze_Associations
1502 Actuals
:= Generic_Associations
(I_Node
);
1504 if Present
(Actuals
) then
1506 -- Check for an Others choice, indicating a partial parameterization
1507 -- for a formal package.
1509 Actual
:= First
(Actuals
);
1510 while Present
(Actual
) loop
1511 if Nkind
(Actual
) = N_Others_Choice
then
1512 Others_Present
:= True;
1513 Others_Choice
:= Actual
;
1515 if Present
(Next
(Actual
)) then
1516 Error_Msg_N
("others must be last association", Actual
);
1519 -- This subprogram is used both for formal packages and for
1520 -- instantiations. For the latter, associations must all be
1523 if Nkind
(I_Node
) /= N_Formal_Package_Declaration
1524 and then Comes_From_Source
(I_Node
)
1527 ("others association not allowed in an instance",
1531 -- In any case, nothing to do after the others association
1535 elsif Box_Present
(Actual
)
1536 and then Comes_From_Source
(I_Node
)
1537 and then Nkind
(I_Node
) /= N_Formal_Package_Declaration
1540 ("box association not allowed in an instance", Actual
);
1546 -- If named associations are present, save first named association
1547 -- (it may of course be Empty) to facilitate subsequent name search.
1549 First_Named
:= First
(Actuals
);
1550 while Present
(First_Named
)
1551 and then Nkind
(First_Named
) /= N_Others_Choice
1552 and then No
(Selector_Name
(First_Named
))
1554 Num_Actuals
:= Num_Actuals
+ 1;
1559 Named
:= First_Named
;
1560 while Present
(Named
) loop
1561 if Nkind
(Named
) /= N_Others_Choice
1562 and then No
(Selector_Name
(Named
))
1564 Error_Msg_N
("invalid positional actual after named one", Named
);
1565 Abandon_Instantiation
(Named
);
1568 -- A named association may lack an actual parameter, if it was
1569 -- introduced for a default subprogram that turns out to be local
1570 -- to the outer instantiation. If it has a box association it must
1571 -- correspond to some formal in the generic.
1573 if Nkind
(Named
) /= N_Others_Choice
1574 and then (Present
(Explicit_Generic_Actual_Parameter
(Named
))
1575 or else Box_Present
(Named
))
1577 Num_Actuals
:= Num_Actuals
+ 1;
1583 if Present
(Formals
) then
1584 Formal
:= First_Non_Pragma
(Formals
);
1585 Analyzed_Formal
:= First_Non_Pragma
(F_Copy
);
1587 if Present
(Actuals
) then
1588 Actual
:= First
(Actuals
);
1590 -- All formals should have default values
1596 while Present
(Formal
) loop
1597 Set_Analyzed_Formal
;
1598 Saved_Formal
:= Next_Non_Pragma
(Formal
);
1600 case Nkind
(Formal
) is
1601 when N_Formal_Object_Declaration
=>
1604 (Defining_Identifier
(Formal
),
1605 Defining_Identifier
(Analyzed_Formal
));
1607 if No
(Match
) and then Partial_Parameterization
then
1608 Process_Default
(Formal
);
1612 (Instantiate_Object
(Formal
, Match
, Analyzed_Formal
),
1615 -- For a defaulted in_parameter, create an entry in the
1616 -- the list of defaulted actuals, for GNATProve use. Do
1617 -- not included these defaults for an instance nested
1618 -- within a generic, because the defaults are also used
1619 -- in the analysis of the enclosing generic, and only
1620 -- defaulted subprograms are relevant there.
1622 if No
(Match
) and then not Inside_A_Generic
then
1623 Append_To
(Default_Actuals
,
1624 Make_Generic_Association
(Sloc
(I_Node
),
1627 (Defining_Identifier
(Formal
), Sloc
(I_Node
)),
1628 Explicit_Generic_Actual_Parameter
=>
1629 New_Copy_Tree
(Default_Expression
(Formal
))));
1633 -- If the object is a call to an expression function, this
1634 -- is a freezing point for it.
1636 if Is_Entity_Name
(Match
)
1637 and then Present
(Entity
(Match
))
1639 (Original_Node
(Unit_Declaration_Node
(Entity
(Match
))))
1640 = N_Expression_Function
1642 Append_Elmt
(Entity
(Match
), Actuals_To_Freeze
);
1645 when N_Formal_Type_Declaration
=>
1648 (Defining_Identifier
(Formal
),
1649 Defining_Identifier
(Analyzed_Formal
));
1652 if Partial_Parameterization
then
1653 Process_Default
(Formal
);
1656 Error_Msg_Sloc
:= Sloc
(Gen_Unit
);
1659 Instantiation_Node
, Defining_Identifier
(Formal
));
1661 ("\in instantiation of & declared#",
1662 Instantiation_Node
, Gen_Unit
);
1663 Abandon_Instantiation
(Instantiation_Node
);
1670 (Formal
, Match
, Analyzed_Formal
, Assoc
),
1673 if Is_Fixed_Point_Type
(Entity
(Match
)) then
1674 Check_Fixed_Point_Actual
(Match
);
1677 -- An instantiation is a freeze point for the actuals,
1678 -- unless this is a rewritten formal package, or the
1679 -- formal is an Ada 2012 formal incomplete type.
1681 if Nkind
(I_Node
) = N_Formal_Package_Declaration
1683 (Ada_Version
>= Ada_2012
1685 Ekind
(Defining_Identifier
(Analyzed_Formal
)) =
1691 Append_Elmt
(Entity
(Match
), Actuals_To_Freeze
);
1695 -- A remote access-to-class-wide type is not a legal actual
1696 -- for a generic formal of an access type (E.2.2(17/2)).
1697 -- In GNAT an exception to this rule is introduced when
1698 -- the formal is marked as remote using implementation
1699 -- defined aspect/pragma Remote_Access_Type. In that case
1700 -- the actual must be remote as well.
1702 -- If the current instantiation is the construction of a
1703 -- local copy for a formal package the actuals may be
1704 -- defaulted, and there is no matching actual to check.
1706 if Nkind
(Analyzed_Formal
) = N_Formal_Type_Declaration
1708 Nkind
(Formal_Type_Definition
(Analyzed_Formal
)) =
1709 N_Access_To_Object_Definition
1710 and then Present
(Match
)
1713 Formal_Ent
: constant Entity_Id
:=
1714 Defining_Identifier
(Analyzed_Formal
);
1716 if Is_Remote_Access_To_Class_Wide_Type
(Entity
(Match
))
1717 = Is_Remote_Types
(Formal_Ent
)
1719 -- Remoteness of formal and actual match
1723 elsif Is_Remote_Types
(Formal_Ent
) then
1725 -- Remote formal, non-remote actual
1728 ("actual for& must be remote", Match
, Formal_Ent
);
1731 -- Non-remote formal, remote actual
1734 ("actual for& may not be remote",
1740 when N_Formal_Subprogram_Declaration
=>
1743 (Defining_Unit_Name
(Specification
(Formal
)),
1744 Defining_Unit_Name
(Specification
(Analyzed_Formal
)));
1746 -- If the formal subprogram has the same name as another
1747 -- formal subprogram of the generic, then a named
1748 -- association is illegal (12.3(9)). Exclude named
1749 -- associations that are generated for a nested instance.
1752 and then Is_Named_Assoc
1753 and then Comes_From_Source
(Found_Assoc
)
1755 Check_Overloaded_Formal_Subprogram
(Formal
);
1758 -- If there is no corresponding actual, this may be case
1759 -- of partial parameterization, or else the formal has a
1760 -- default or a box.
1762 if No
(Match
) and then Partial_Parameterization
then
1763 Process_Default
(Formal
);
1765 if Nkind
(I_Node
) = N_Formal_Package_Declaration
then
1766 Check_Overloaded_Formal_Subprogram
(Formal
);
1771 Instantiate_Formal_Subprogram
1772 (Formal
, Match
, Analyzed_Formal
));
1774 -- An instantiation is a freeze point for the actuals,
1775 -- unless this is a rewritten formal package.
1777 if Nkind
(I_Node
) /= N_Formal_Package_Declaration
1778 and then Nkind
(Match
) = N_Identifier
1779 and then Is_Subprogram
(Entity
(Match
))
1781 -- The actual subprogram may rename a routine defined
1782 -- in Standard. Avoid freezing such renamings because
1783 -- subprograms coming from Standard cannot be frozen.
1786 not Renames_Standard_Subprogram
(Entity
(Match
))
1788 -- If the actual subprogram comes from a different
1789 -- unit, it is already frozen, either by a body in
1790 -- that unit or by the end of the declarative part
1791 -- of the unit. This check avoids the freezing of
1792 -- subprograms defined in Standard which are used
1793 -- as generic actuals.
1795 and then In_Same_Code_Unit
(Entity
(Match
), I_Node
)
1796 and then Has_Fully_Defined_Profile
(Entity
(Match
))
1798 -- Mark the subprogram as having a delayed freeze
1799 -- since this may be an out-of-order action.
1801 Set_Has_Delayed_Freeze
(Entity
(Match
));
1802 Append_Elmt
(Entity
(Match
), Actuals_To_Freeze
);
1806 -- If this is a nested generic, preserve default for later
1807 -- instantiations. We do this as well for GNATProve use,
1808 -- so that the list of generic associations is complete.
1810 if No
(Match
) and then Box_Present
(Formal
) then
1812 Subp
: constant Entity_Id
:=
1813 Defining_Unit_Name
(Specification
(Last
(Assoc
)));
1816 Append_To
(Default_Actuals
,
1817 Make_Generic_Association
(Sloc
(I_Node
),
1819 New_Occurrence_Of
(Subp
, Sloc
(I_Node
)),
1820 Explicit_Generic_Actual_Parameter
=>
1821 New_Occurrence_Of
(Subp
, Sloc
(I_Node
))));
1825 when N_Formal_Package_Declaration
=>
1828 (Defining_Identifier
(Formal
),
1829 Defining_Identifier
(Original_Node
(Analyzed_Formal
)));
1832 if Partial_Parameterization
then
1833 Process_Default
(Formal
);
1836 Error_Msg_Sloc
:= Sloc
(Gen_Unit
);
1839 Instantiation_Node
, Defining_Identifier
(Formal
));
1841 ("\in instantiation of & declared#",
1842 Instantiation_Node
, Gen_Unit
);
1844 Abandon_Instantiation
(Instantiation_Node
);
1850 (Instantiate_Formal_Package
1851 (Formal
, Match
, Analyzed_Formal
),
1855 -- For use type and use package appearing in the generic part,
1856 -- we have already copied them, so we can just move them where
1857 -- they belong (we mustn't recopy them since this would mess up
1858 -- the Sloc values).
1860 when N_Use_Package_Clause
1863 if Nkind
(Original_Node
(I_Node
)) =
1864 N_Formal_Package_Declaration
1866 Append
(New_Copy_Tree
(Formal
), Assoc
);
1869 Append
(Formal
, Assoc
);
1873 raise Program_Error
;
1876 Formal
:= Saved_Formal
;
1877 Next_Non_Pragma
(Analyzed_Formal
);
1880 if Num_Actuals
> Num_Matched
then
1881 Error_Msg_Sloc
:= Sloc
(Gen_Unit
);
1883 if Present
(Selector_Name
(Actual
)) then
1885 ("unmatched actual &", Actual
, Selector_Name
(Actual
));
1887 ("\in instantiation of & declared#", Actual
, Gen_Unit
);
1890 ("unmatched actual in instantiation of & declared#",
1895 elsif Present
(Actuals
) then
1897 ("too many actuals in generic instantiation", Instantiation_Node
);
1900 -- An instantiation freezes all generic actuals. The only exceptions
1901 -- to this are incomplete types and subprograms which are not fully
1902 -- defined at the point of instantiation.
1905 Elmt
: Elmt_Id
:= First_Elmt
(Actuals_To_Freeze
);
1907 while Present
(Elmt
) loop
1908 Freeze_Before
(I_Node
, Node
(Elmt
));
1913 -- If there are default subprograms, normalize the tree by adding
1914 -- explicit associations for them. This is required if the instance
1915 -- appears within a generic.
1917 if not Is_Empty_List
(Default_Actuals
) then
1922 Default
:= First
(Default_Actuals
);
1923 while Present
(Default
) loop
1924 Mark_Rewrite_Insertion
(Default
);
1928 if No
(Actuals
) then
1929 Set_Generic_Associations
(I_Node
, Default_Actuals
);
1931 Append_List_To
(Actuals
, Default_Actuals
);
1936 -- If this is a formal package, normalize the parameter list by adding
1937 -- explicit box associations for the formals that are covered by an
1940 if not Is_Empty_List
(Default_Formals
) then
1941 Append_List
(Default_Formals
, Formals
);
1945 end Analyze_Associations
;
1947 -------------------------------
1948 -- Analyze_Formal_Array_Type --
1949 -------------------------------
1951 procedure Analyze_Formal_Array_Type
1952 (T
: in out Entity_Id
;
1958 -- Treated like a non-generic array declaration, with additional
1963 if Nkind
(Def
) = N_Constrained_Array_Definition
then
1964 DSS
:= First
(Discrete_Subtype_Definitions
(Def
));
1965 while Present
(DSS
) loop
1966 if Nkind_In
(DSS
, N_Subtype_Indication
,
1968 N_Attribute_Reference
)
1970 Error_Msg_N
("only a subtype mark is allowed in a formal", DSS
);
1977 Array_Type_Declaration
(T
, Def
);
1978 Set_Is_Generic_Type
(Base_Type
(T
));
1980 if Ekind
(Component_Type
(T
)) = E_Incomplete_Type
1981 and then No
(Full_View
(Component_Type
(T
)))
1983 Error_Msg_N
("premature usage of incomplete type", Def
);
1985 -- Check that range constraint is not allowed on the component type
1986 -- of a generic formal array type (AARM 12.5.3(3))
1988 elsif Is_Internal
(Component_Type
(T
))
1989 and then Present
(Subtype_Indication
(Component_Definition
(Def
)))
1990 and then Nkind
(Original_Node
1991 (Subtype_Indication
(Component_Definition
(Def
)))) =
1992 N_Subtype_Indication
1995 ("in a formal, a subtype indication can only be "
1996 & "a subtype mark (RM 12.5.3(3))",
1997 Subtype_Indication
(Component_Definition
(Def
)));
2000 end Analyze_Formal_Array_Type
;
2002 ---------------------------------------------
2003 -- Analyze_Formal_Decimal_Fixed_Point_Type --
2004 ---------------------------------------------
2006 -- As for other generic types, we create a valid type representation with
2007 -- legal but arbitrary attributes, whose values are never considered
2008 -- static. For all scalar types we introduce an anonymous base type, with
2009 -- the same attributes. We choose the corresponding integer type to be
2010 -- Standard_Integer.
2011 -- Here and in other similar routines, the Sloc of the generated internal
2012 -- type must be the same as the sloc of the defining identifier of the
2013 -- formal type declaration, to provide proper source navigation.
2015 procedure Analyze_Formal_Decimal_Fixed_Point_Type
2019 Loc
: constant Source_Ptr
:= Sloc
(Def
);
2021 Base
: constant Entity_Id
:=
2023 (E_Decimal_Fixed_Point_Type
,
2025 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
2027 Int_Base
: constant Entity_Id
:= Standard_Integer
;
2028 Delta_Val
: constant Ureal
:= Ureal_1
;
2029 Digs_Val
: constant Uint
:= Uint_6
;
2031 function Make_Dummy_Bound
return Node_Id
;
2032 -- Return a properly typed universal real literal to use as a bound
2034 ----------------------
2035 -- Make_Dummy_Bound --
2036 ----------------------
2038 function Make_Dummy_Bound
return Node_Id
is
2039 Bound
: constant Node_Id
:= Make_Real_Literal
(Loc
, Ureal_1
);
2041 Set_Etype
(Bound
, Universal_Real
);
2043 end Make_Dummy_Bound
;
2045 -- Start of processing for Analyze_Formal_Decimal_Fixed_Point_Type
2050 Set_Etype
(Base
, Base
);
2051 Set_Size_Info
(Base
, Int_Base
);
2052 Set_RM_Size
(Base
, RM_Size
(Int_Base
));
2053 Set_First_Rep_Item
(Base
, First_Rep_Item
(Int_Base
));
2054 Set_Digits_Value
(Base
, Digs_Val
);
2055 Set_Delta_Value
(Base
, Delta_Val
);
2056 Set_Small_Value
(Base
, Delta_Val
);
2057 Set_Scalar_Range
(Base
,
2059 Low_Bound
=> Make_Dummy_Bound
,
2060 High_Bound
=> Make_Dummy_Bound
));
2062 Set_Is_Generic_Type
(Base
);
2063 Set_Parent
(Base
, Parent
(Def
));
2065 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
2066 Set_Etype
(T
, Base
);
2067 Set_Size_Info
(T
, Int_Base
);
2068 Set_RM_Size
(T
, RM_Size
(Int_Base
));
2069 Set_First_Rep_Item
(T
, First_Rep_Item
(Int_Base
));
2070 Set_Digits_Value
(T
, Digs_Val
);
2071 Set_Delta_Value
(T
, Delta_Val
);
2072 Set_Small_Value
(T
, Delta_Val
);
2073 Set_Scalar_Range
(T
, Scalar_Range
(Base
));
2074 Set_Is_Constrained
(T
);
2076 Check_Restriction
(No_Fixed_Point
, Def
);
2077 end Analyze_Formal_Decimal_Fixed_Point_Type
;
2079 -------------------------------------------
2080 -- Analyze_Formal_Derived_Interface_Type --
2081 -------------------------------------------
2083 procedure Analyze_Formal_Derived_Interface_Type
2088 Loc
: constant Source_Ptr
:= Sloc
(Def
);
2091 -- Rewrite as a type declaration of a derived type. This ensures that
2092 -- the interface list and primitive operations are properly captured.
2095 Make_Full_Type_Declaration
(Loc
,
2096 Defining_Identifier
=> T
,
2097 Type_Definition
=> Def
));
2099 Set_Is_Generic_Type
(T
);
2100 end Analyze_Formal_Derived_Interface_Type
;
2102 ---------------------------------
2103 -- Analyze_Formal_Derived_Type --
2104 ---------------------------------
2106 procedure Analyze_Formal_Derived_Type
2111 Loc
: constant Source_Ptr
:= Sloc
(Def
);
2112 Unk_Disc
: constant Boolean := Unknown_Discriminants_Present
(N
);
2116 Set_Is_Generic_Type
(T
);
2118 if Private_Present
(Def
) then
2120 Make_Private_Extension_Declaration
(Loc
,
2121 Defining_Identifier
=> T
,
2122 Discriminant_Specifications
=> Discriminant_Specifications
(N
),
2123 Unknown_Discriminants_Present
=> Unk_Disc
,
2124 Subtype_Indication
=> Subtype_Mark
(Def
),
2125 Interface_List
=> Interface_List
(Def
));
2127 Set_Abstract_Present
(New_N
, Abstract_Present
(Def
));
2128 Set_Limited_Present
(New_N
, Limited_Present
(Def
));
2129 Set_Synchronized_Present
(New_N
, Synchronized_Present
(Def
));
2133 Make_Full_Type_Declaration
(Loc
,
2134 Defining_Identifier
=> T
,
2135 Discriminant_Specifications
=>
2136 Discriminant_Specifications
(Parent
(T
)),
2138 Make_Derived_Type_Definition
(Loc
,
2139 Subtype_Indication
=> Subtype_Mark
(Def
)));
2141 Set_Abstract_Present
2142 (Type_Definition
(New_N
), Abstract_Present
(Def
));
2144 (Type_Definition
(New_N
), Limited_Present
(Def
));
2151 if not Is_Composite_Type
(T
) then
2153 ("unknown discriminants not allowed for elementary types", N
);
2155 Set_Has_Unknown_Discriminants
(T
);
2156 Set_Is_Constrained
(T
, False);
2160 -- If the parent type has a known size, so does the formal, which makes
2161 -- legal representation clauses that involve the formal.
2163 Set_Size_Known_At_Compile_Time
2164 (T
, Size_Known_At_Compile_Time
(Entity
(Subtype_Mark
(Def
))));
2165 end Analyze_Formal_Derived_Type
;
2167 ----------------------------------
2168 -- Analyze_Formal_Discrete_Type --
2169 ----------------------------------
2171 -- The operations defined for a discrete types are those of an enumeration
2172 -- type. The size is set to an arbitrary value, for use in analyzing the
2175 procedure Analyze_Formal_Discrete_Type
(T
: Entity_Id
; Def
: Node_Id
) is
2176 Loc
: constant Source_Ptr
:= Sloc
(Def
);
2180 Base
: constant Entity_Id
:=
2182 (E_Floating_Point_Type
, Current_Scope
,
2183 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
2187 Set_Ekind
(T
, E_Enumeration_Subtype
);
2188 Set_Etype
(T
, Base
);
2191 Set_Is_Generic_Type
(T
);
2192 Set_Is_Constrained
(T
);
2194 -- For semantic analysis, the bounds of the type must be set to some
2195 -- non-static value. The simplest is to create attribute nodes for those
2196 -- bounds, that refer to the type itself. These bounds are never
2197 -- analyzed but serve as place-holders.
2200 Make_Attribute_Reference
(Loc
,
2201 Attribute_Name
=> Name_First
,
2202 Prefix
=> New_Occurrence_Of
(T
, Loc
));
2206 Make_Attribute_Reference
(Loc
,
2207 Attribute_Name
=> Name_Last
,
2208 Prefix
=> New_Occurrence_Of
(T
, Loc
));
2211 Set_Scalar_Range
(T
,
2216 Set_Ekind
(Base
, E_Enumeration_Type
);
2217 Set_Etype
(Base
, Base
);
2218 Init_Size
(Base
, 8);
2219 Init_Alignment
(Base
);
2220 Set_Is_Generic_Type
(Base
);
2221 Set_Scalar_Range
(Base
, Scalar_Range
(T
));
2222 Set_Parent
(Base
, Parent
(Def
));
2223 end Analyze_Formal_Discrete_Type
;
2225 ----------------------------------
2226 -- Analyze_Formal_Floating_Type --
2227 ---------------------------------
2229 procedure Analyze_Formal_Floating_Type
(T
: Entity_Id
; Def
: Node_Id
) is
2230 Base
: constant Entity_Id
:=
2232 (E_Floating_Point_Type
, Current_Scope
,
2233 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
2236 -- The various semantic attributes are taken from the predefined type
2237 -- Float, just so that all of them are initialized. Their values are
2238 -- never used because no constant folding or expansion takes place in
2239 -- the generic itself.
2242 Set_Ekind
(T
, E_Floating_Point_Subtype
);
2243 Set_Etype
(T
, Base
);
2244 Set_Size_Info
(T
, (Standard_Float
));
2245 Set_RM_Size
(T
, RM_Size
(Standard_Float
));
2246 Set_Digits_Value
(T
, Digits_Value
(Standard_Float
));
2247 Set_Scalar_Range
(T
, Scalar_Range
(Standard_Float
));
2248 Set_Is_Constrained
(T
);
2250 Set_Is_Generic_Type
(Base
);
2251 Set_Etype
(Base
, Base
);
2252 Set_Size_Info
(Base
, (Standard_Float
));
2253 Set_RM_Size
(Base
, RM_Size
(Standard_Float
));
2254 Set_Digits_Value
(Base
, Digits_Value
(Standard_Float
));
2255 Set_Scalar_Range
(Base
, Scalar_Range
(Standard_Float
));
2256 Set_Parent
(Base
, Parent
(Def
));
2258 Check_Restriction
(No_Floating_Point
, Def
);
2259 end Analyze_Formal_Floating_Type
;
2261 -----------------------------------
2262 -- Analyze_Formal_Interface_Type;--
2263 -----------------------------------
2265 procedure Analyze_Formal_Interface_Type
2270 Loc
: constant Source_Ptr
:= Sloc
(N
);
2275 Make_Full_Type_Declaration
(Loc
,
2276 Defining_Identifier
=> T
,
2277 Type_Definition
=> Def
);
2281 Set_Is_Generic_Type
(T
);
2282 end Analyze_Formal_Interface_Type
;
2284 ---------------------------------
2285 -- Analyze_Formal_Modular_Type --
2286 ---------------------------------
2288 procedure Analyze_Formal_Modular_Type
(T
: Entity_Id
; Def
: Node_Id
) is
2290 -- Apart from their entity kind, generic modular types are treated like
2291 -- signed integer types, and have the same attributes.
2293 Analyze_Formal_Signed_Integer_Type
(T
, Def
);
2294 Set_Ekind
(T
, E_Modular_Integer_Subtype
);
2295 Set_Ekind
(Etype
(T
), E_Modular_Integer_Type
);
2297 end Analyze_Formal_Modular_Type
;
2299 ---------------------------------------
2300 -- Analyze_Formal_Object_Declaration --
2301 ---------------------------------------
2303 procedure Analyze_Formal_Object_Declaration
(N
: Node_Id
) is
2304 E
: constant Node_Id
:= Default_Expression
(N
);
2305 Id
: constant Node_Id
:= Defining_Identifier
(N
);
2312 -- Determine the mode of the formal object
2314 if Out_Present
(N
) then
2315 K
:= E_Generic_In_Out_Parameter
;
2317 if not In_Present
(N
) then
2318 Error_Msg_N
("formal generic objects cannot have mode OUT", N
);
2322 K
:= E_Generic_In_Parameter
;
2325 if Present
(Subtype_Mark
(N
)) then
2326 Find_Type
(Subtype_Mark
(N
));
2327 T
:= Entity
(Subtype_Mark
(N
));
2329 -- Verify that there is no redundant null exclusion
2331 if Null_Exclusion_Present
(N
) then
2332 if not Is_Access_Type
(T
) then
2334 ("null exclusion can only apply to an access type", N
);
2336 elsif Can_Never_Be_Null
(T
) then
2338 ("`NOT NULL` not allowed (& already excludes null)", N
, T
);
2342 -- Ada 2005 (AI-423): Formal object with an access definition
2345 Check_Access_Definition
(N
);
2346 T
:= Access_Definition
2348 N
=> Access_Definition
(N
));
2351 if Ekind
(T
) = E_Incomplete_Type
then
2353 Error_Node
: Node_Id
;
2356 if Present
(Subtype_Mark
(N
)) then
2357 Error_Node
:= Subtype_Mark
(N
);
2359 Check_Access_Definition
(N
);
2360 Error_Node
:= Access_Definition
(N
);
2363 Error_Msg_N
("premature usage of incomplete type", Error_Node
);
2367 if K
= E_Generic_In_Parameter
then
2369 -- Ada 2005 (AI-287): Limited aggregates allowed in generic formals
2371 if Ada_Version
< Ada_2005
and then Is_Limited_Type
(T
) then
2373 ("generic formal of mode IN must not be of limited type", N
);
2374 Explain_Limited_Type
(T
, N
);
2377 if Is_Abstract_Type
(T
) then
2379 ("generic formal of mode IN must not be of abstract type", N
);
2383 Preanalyze_Spec_Expression
(E
, T
);
2385 if Is_Limited_Type
(T
) and then not OK_For_Limited_Init
(T
, E
) then
2387 ("initialization not allowed for limited types", E
);
2388 Explain_Limited_Type
(T
, E
);
2395 -- Case of generic IN OUT parameter
2398 -- If the formal has an unconstrained type, construct its actual
2399 -- subtype, as is done for subprogram formals. In this fashion, all
2400 -- its uses can refer to specific bounds.
2405 if (Is_Array_Type
(T
) and then not Is_Constrained
(T
))
2406 or else (Ekind
(T
) = E_Record_Type
and then Has_Discriminants
(T
))
2409 Non_Freezing_Ref
: constant Node_Id
:=
2410 New_Occurrence_Of
(Id
, Sloc
(Id
));
2414 -- Make sure the actual subtype doesn't generate bogus freezing
2416 Set_Must_Not_Freeze
(Non_Freezing_Ref
);
2417 Decl
:= Build_Actual_Subtype
(T
, Non_Freezing_Ref
);
2418 Insert_Before_And_Analyze
(N
, Decl
);
2419 Set_Actual_Subtype
(Id
, Defining_Identifier
(Decl
));
2422 Set_Actual_Subtype
(Id
, T
);
2427 ("initialization not allowed for `IN OUT` formals", N
);
2431 if Has_Aspects
(N
) then
2432 Analyze_Aspect_Specifications
(N
, Id
);
2434 end Analyze_Formal_Object_Declaration
;
2436 ----------------------------------------------
2437 -- Analyze_Formal_Ordinary_Fixed_Point_Type --
2438 ----------------------------------------------
2440 procedure Analyze_Formal_Ordinary_Fixed_Point_Type
2444 Loc
: constant Source_Ptr
:= Sloc
(Def
);
2445 Base
: constant Entity_Id
:=
2447 (E_Ordinary_Fixed_Point_Type
, Current_Scope
,
2448 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
2451 -- The semantic attributes are set for completeness only, their values
2452 -- will never be used, since all properties of the type are non-static.
2455 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
2456 Set_Etype
(T
, Base
);
2457 Set_Size_Info
(T
, Standard_Integer
);
2458 Set_RM_Size
(T
, RM_Size
(Standard_Integer
));
2459 Set_Small_Value
(T
, Ureal_1
);
2460 Set_Delta_Value
(T
, Ureal_1
);
2461 Set_Scalar_Range
(T
,
2463 Low_Bound
=> Make_Real_Literal
(Loc
, Ureal_1
),
2464 High_Bound
=> Make_Real_Literal
(Loc
, Ureal_1
)));
2465 Set_Is_Constrained
(T
);
2467 Set_Is_Generic_Type
(Base
);
2468 Set_Etype
(Base
, Base
);
2469 Set_Size_Info
(Base
, Standard_Integer
);
2470 Set_RM_Size
(Base
, RM_Size
(Standard_Integer
));
2471 Set_Small_Value
(Base
, Ureal_1
);
2472 Set_Delta_Value
(Base
, Ureal_1
);
2473 Set_Scalar_Range
(Base
, Scalar_Range
(T
));
2474 Set_Parent
(Base
, Parent
(Def
));
2476 Check_Restriction
(No_Fixed_Point
, Def
);
2477 end Analyze_Formal_Ordinary_Fixed_Point_Type
;
2479 ----------------------------------------
2480 -- Analyze_Formal_Package_Declaration --
2481 ----------------------------------------
2483 procedure Analyze_Formal_Package_Declaration
(N
: Node_Id
) is
2484 Gen_Id
: constant Node_Id
:= Name
(N
);
2485 Loc
: constant Source_Ptr
:= Sloc
(N
);
2486 Pack_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2489 Gen_Unit
: Entity_Id
;
2492 Vis_Prims_List
: Elist_Id
:= No_Elist
;
2493 -- List of primitives made temporarily visible in the instantiation
2494 -- to match the visibility of the formal type.
2496 function Build_Local_Package
return Node_Id
;
2497 -- The formal package is rewritten so that its parameters are replaced
2498 -- with corresponding declarations. For parameters with bona fide
2499 -- associations these declarations are created by Analyze_Associations
2500 -- as for a regular instantiation. For boxed parameters, we preserve
2501 -- the formal declarations and analyze them, in order to introduce
2502 -- entities of the right kind in the environment of the formal.
2504 -------------------------
2505 -- Build_Local_Package --
2506 -------------------------
2508 function Build_Local_Package
return Node_Id
is
2510 Pack_Decl
: Node_Id
;
2513 -- Within the formal, the name of the generic package is a renaming
2514 -- of the formal (as for a regular instantiation).
2517 Make_Package_Declaration
(Loc
,
2520 (Specification
(Original_Node
(Gen_Decl
)),
2521 Empty
, Instantiating
=> True));
2524 Make_Package_Renaming_Declaration
(Loc
,
2525 Defining_Unit_Name
=>
2526 Make_Defining_Identifier
(Loc
, Chars
(Gen_Unit
)),
2527 Name
=> New_Occurrence_Of
(Formal
, Loc
));
2529 if Nkind
(Gen_Id
) = N_Identifier
2530 and then Chars
(Gen_Id
) = Chars
(Pack_Id
)
2533 ("& is hidden within declaration of instance", Gen_Id
, Gen_Unit
);
2536 -- If the formal is declared with a box, or with an others choice,
2537 -- create corresponding declarations for all entities in the formal
2538 -- part, so that names with the proper types are available in the
2539 -- specification of the formal package.
2541 -- On the other hand, if there are no associations, then all the
2542 -- formals must have defaults, and this will be checked by the
2543 -- call to Analyze_Associations.
2546 or else Nkind
(First
(Generic_Associations
(N
))) = N_Others_Choice
2549 Formal_Decl
: Node_Id
;
2552 -- TBA : for a formal package, need to recurse ???
2557 (Generic_Formal_Declarations
(Original_Node
(Gen_Decl
)));
2558 while Present
(Formal_Decl
) loop
2560 (Decls
, Copy_Generic_Node
(Formal_Decl
, Empty
, True));
2565 -- If generic associations are present, use Analyze_Associations to
2566 -- create the proper renaming declarations.
2570 Act_Tree
: constant Node_Id
:=
2572 (Original_Node
(Gen_Decl
), Empty
,
2573 Instantiating
=> True);
2576 Generic_Renamings
.Set_Last
(0);
2577 Generic_Renamings_HTable
.Reset
;
2578 Instantiation_Node
:= N
;
2581 Analyze_Associations
2582 (I_Node
=> Original_Node
(N
),
2583 Formals
=> Generic_Formal_Declarations
(Act_Tree
),
2584 F_Copy
=> Generic_Formal_Declarations
(Gen_Decl
));
2586 Vis_Prims_List
:= Check_Hidden_Primitives
(Decls
);
2590 Append
(Renaming
, To
=> Decls
);
2592 -- Add generated declarations ahead of local declarations in
2595 if No
(Visible_Declarations
(Specification
(Pack_Decl
))) then
2596 Set_Visible_Declarations
(Specification
(Pack_Decl
), Decls
);
2599 (First
(Visible_Declarations
(Specification
(Pack_Decl
))),
2604 end Build_Local_Package
;
2608 Save_IPSM
: constant Boolean := Ignore_Pragma_SPARK_Mode
;
2609 -- Save flag Ignore_Pragma_SPARK_Mode for restore on exit
2611 Associations
: Boolean := True;
2613 Parent_Installed
: Boolean := False;
2614 Parent_Instance
: Entity_Id
;
2615 Renaming_In_Par
: Entity_Id
;
2617 -- Start of processing for Analyze_Formal_Package_Declaration
2620 Check_Text_IO_Special_Unit
(Gen_Id
);
2623 Check_Generic_Child_Unit
(Gen_Id
, Parent_Installed
);
2624 Gen_Unit
:= Entity
(Gen_Id
);
2626 -- Check for a formal package that is a package renaming
2628 if Present
(Renamed_Object
(Gen_Unit
)) then
2630 -- Indicate that unit is used, before replacing it with renamed
2631 -- entity for use below.
2633 if In_Extended_Main_Source_Unit
(N
) then
2634 Set_Is_Instantiated
(Gen_Unit
);
2635 Generate_Reference
(Gen_Unit
, N
);
2638 Gen_Unit
:= Renamed_Object
(Gen_Unit
);
2641 if Ekind
(Gen_Unit
) /= E_Generic_Package
then
2642 Error_Msg_N
("expect generic package name", Gen_Id
);
2646 elsif Gen_Unit
= Current_Scope
then
2648 ("generic package cannot be used as a formal package of itself",
2653 elsif In_Open_Scopes
(Gen_Unit
) then
2654 if Is_Compilation_Unit
(Gen_Unit
)
2655 and then Is_Child_Unit
(Current_Scope
)
2657 -- Special-case the error when the formal is a parent, and
2658 -- continue analysis to minimize cascaded errors.
2661 ("generic parent cannot be used as formal package of a child "
2666 ("generic package cannot be used as a formal package within "
2667 & "itself", Gen_Id
);
2673 -- Check that name of formal package does not hide name of generic,
2674 -- or its leading prefix. This check must be done separately because
2675 -- the name of the generic has already been analyzed.
2678 Gen_Name
: Entity_Id
;
2682 while Nkind
(Gen_Name
) = N_Expanded_Name
loop
2683 Gen_Name
:= Prefix
(Gen_Name
);
2686 if Chars
(Gen_Name
) = Chars
(Pack_Id
) then
2688 ("& is hidden within declaration of formal package",
2694 or else No
(Generic_Associations
(N
))
2695 or else Nkind
(First
(Generic_Associations
(N
))) = N_Others_Choice
2697 Associations
:= False;
2700 -- If there are no generic associations, the generic parameters appear
2701 -- as local entities and are instantiated like them. We copy the generic
2702 -- package declaration as if it were an instantiation, and analyze it
2703 -- like a regular package, except that we treat the formals as
2704 -- additional visible components.
2706 Gen_Decl
:= Unit_Declaration_Node
(Gen_Unit
);
2708 if In_Extended_Main_Source_Unit
(N
) then
2709 Set_Is_Instantiated
(Gen_Unit
);
2710 Generate_Reference
(Gen_Unit
, N
);
2713 Formal
:= New_Copy
(Pack_Id
);
2714 Create_Instantiation_Source
(N
, Gen_Unit
, S_Adjustment
);
2716 -- Make local generic without formals. The formals will be replaced with
2717 -- internal declarations.
2720 New_N
:= Build_Local_Package
;
2722 -- If there are errors in the parameter list, Analyze_Associations
2723 -- raises Instantiation_Error. Patch the declaration to prevent further
2724 -- exception propagation.
2727 when Instantiation_Error
=>
2728 Enter_Name
(Formal
);
2729 Set_Ekind
(Formal
, E_Variable
);
2730 Set_Etype
(Formal
, Any_Type
);
2731 Restore_Hidden_Primitives
(Vis_Prims_List
);
2733 if Parent_Installed
then
2741 Set_Defining_Unit_Name
(Specification
(New_N
), Formal
);
2742 Set_Generic_Parent
(Specification
(N
), Gen_Unit
);
2743 Set_Instance_Env
(Gen_Unit
, Formal
);
2744 Set_Is_Generic_Instance
(Formal
);
2746 Enter_Name
(Formal
);
2747 Set_Ekind
(Formal
, E_Package
);
2748 Set_Etype
(Formal
, Standard_Void_Type
);
2749 Set_Inner_Instances
(Formal
, New_Elmt_List
);
2750 Push_Scope
(Formal
);
2752 -- Manually set the SPARK_Mode from the context because the package
2753 -- declaration is never analyzed.
2755 Set_SPARK_Pragma
(Formal
, SPARK_Mode_Pragma
);
2756 Set_SPARK_Aux_Pragma
(Formal
, SPARK_Mode_Pragma
);
2757 Set_SPARK_Pragma_Inherited
(Formal
);
2758 Set_SPARK_Aux_Pragma_Inherited
(Formal
);
2760 if Is_Child_Unit
(Gen_Unit
) and then Parent_Installed
then
2762 -- Similarly, we have to make the name of the formal visible in the
2763 -- parent instance, to resolve properly fully qualified names that
2764 -- may appear in the generic unit. The parent instance has been
2765 -- placed on the scope stack ahead of the current scope.
2767 Parent_Instance
:= Scope_Stack
.Table
(Scope_Stack
.Last
- 1).Entity
;
2770 Make_Defining_Identifier
(Loc
, Chars
(Gen_Unit
));
2771 Set_Ekind
(Renaming_In_Par
, E_Package
);
2772 Set_Etype
(Renaming_In_Par
, Standard_Void_Type
);
2773 Set_Scope
(Renaming_In_Par
, Parent_Instance
);
2774 Set_Parent
(Renaming_In_Par
, Parent
(Formal
));
2775 Set_Renamed_Object
(Renaming_In_Par
, Formal
);
2776 Append_Entity
(Renaming_In_Par
, Parent_Instance
);
2779 -- A formal package declaration behaves as a package instantiation with
2780 -- respect to SPARK_Mode "off". If the annotation is "off" or altogether
2781 -- missing, set the global flag which signals Analyze_Pragma to ingnore
2782 -- all SPARK_Mode pragmas within the generic_package_name.
2784 if SPARK_Mode
/= On
then
2785 Ignore_Pragma_SPARK_Mode
:= True;
2788 Analyze
(Specification
(N
));
2790 -- The formals for which associations are provided are not visible
2791 -- outside of the formal package. The others are still declared by a
2792 -- formal parameter declaration.
2794 -- If there are no associations, the only local entity to hide is the
2795 -- generated package renaming itself.
2801 E
:= First_Entity
(Formal
);
2802 while Present
(E
) loop
2803 if Associations
and then not Is_Generic_Formal
(E
) then
2807 if Ekind
(E
) = E_Package
and then Renamed_Entity
(E
) = Formal
then
2816 End_Package_Scope
(Formal
);
2817 Restore_Hidden_Primitives
(Vis_Prims_List
);
2819 if Parent_Installed
then
2825 -- Inside the generic unit, the formal package is a regular package, but
2826 -- no body is needed for it. Note that after instantiation, the defining
2827 -- unit name we need is in the new tree and not in the original (see
2828 -- Package_Instantiation). A generic formal package is an instance, and
2829 -- can be used as an actual for an inner instance.
2831 Set_Has_Completion
(Formal
, True);
2833 -- Add semantic information to the original defining identifier for ASIS
2836 Set_Ekind
(Pack_Id
, E_Package
);
2837 Set_Etype
(Pack_Id
, Standard_Void_Type
);
2838 Set_Scope
(Pack_Id
, Scope
(Formal
));
2839 Set_Has_Completion
(Pack_Id
, True);
2842 if Has_Aspects
(N
) then
2843 Analyze_Aspect_Specifications
(N
, Pack_Id
);
2846 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
2847 end Analyze_Formal_Package_Declaration
;
2849 ---------------------------------
2850 -- Analyze_Formal_Private_Type --
2851 ---------------------------------
2853 procedure Analyze_Formal_Private_Type
2859 New_Private_Type
(N
, T
, Def
);
2861 -- Set the size to an arbitrary but legal value
2863 Set_Size_Info
(T
, Standard_Integer
);
2864 Set_RM_Size
(T
, RM_Size
(Standard_Integer
));
2865 end Analyze_Formal_Private_Type
;
2867 ------------------------------------
2868 -- Analyze_Formal_Incomplete_Type --
2869 ------------------------------------
2871 procedure Analyze_Formal_Incomplete_Type
2877 Set_Ekind
(T
, E_Incomplete_Type
);
2879 Set_Private_Dependents
(T
, New_Elmt_List
);
2881 if Tagged_Present
(Def
) then
2882 Set_Is_Tagged_Type
(T
);
2883 Make_Class_Wide_Type
(T
);
2884 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
2886 end Analyze_Formal_Incomplete_Type
;
2888 ----------------------------------------
2889 -- Analyze_Formal_Signed_Integer_Type --
2890 ----------------------------------------
2892 procedure Analyze_Formal_Signed_Integer_Type
2896 Base
: constant Entity_Id
:=
2898 (E_Signed_Integer_Type
,
2900 Sloc
(Defining_Identifier
(Parent
(Def
))), 'G');
2905 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
2906 Set_Etype
(T
, Base
);
2907 Set_Size_Info
(T
, Standard_Integer
);
2908 Set_RM_Size
(T
, RM_Size
(Standard_Integer
));
2909 Set_Scalar_Range
(T
, Scalar_Range
(Standard_Integer
));
2910 Set_Is_Constrained
(T
);
2912 Set_Is_Generic_Type
(Base
);
2913 Set_Size_Info
(Base
, Standard_Integer
);
2914 Set_RM_Size
(Base
, RM_Size
(Standard_Integer
));
2915 Set_Etype
(Base
, Base
);
2916 Set_Scalar_Range
(Base
, Scalar_Range
(Standard_Integer
));
2917 Set_Parent
(Base
, Parent
(Def
));
2918 end Analyze_Formal_Signed_Integer_Type
;
2920 -------------------------------------------
2921 -- Analyze_Formal_Subprogram_Declaration --
2922 -------------------------------------------
2924 procedure Analyze_Formal_Subprogram_Declaration
(N
: Node_Id
) is
2925 Spec
: constant Node_Id
:= Specification
(N
);
2926 Def
: constant Node_Id
:= Default_Name
(N
);
2927 Nam
: constant Entity_Id
:= Defining_Unit_Name
(Spec
);
2935 if Nkind
(Nam
) = N_Defining_Program_Unit_Name
then
2936 Error_Msg_N
("name of formal subprogram must be a direct name", Nam
);
2940 Analyze_Subprogram_Declaration
(N
);
2941 Set_Is_Formal_Subprogram
(Nam
);
2942 Set_Has_Completion
(Nam
);
2944 if Nkind
(N
) = N_Formal_Abstract_Subprogram_Declaration
then
2945 Set_Is_Abstract_Subprogram
(Nam
);
2947 Set_Is_Dispatching_Operation
(Nam
);
2949 -- A formal abstract procedure cannot have a null default
2950 -- (RM 12.6(4.1/2)).
2952 if Nkind
(Spec
) = N_Procedure_Specification
2953 and then Null_Present
(Spec
)
2956 ("a formal abstract subprogram cannot default to null", Spec
);
2960 Ctrl_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Nam
);
2962 if No
(Ctrl_Type
) then
2964 ("abstract formal subprogram must have a controlling type",
2967 elsif Ada_Version
>= Ada_2012
2968 and then Is_Incomplete_Type
(Ctrl_Type
)
2971 ("controlling type of abstract formal subprogram cannot "
2972 & "be incomplete type", N
, Ctrl_Type
);
2975 Check_Controlling_Formals
(Ctrl_Type
, Nam
);
2980 -- Default name is resolved at the point of instantiation
2982 if Box_Present
(N
) then
2985 -- Else default is bound at the point of generic declaration
2987 elsif Present
(Def
) then
2988 if Nkind
(Def
) = N_Operator_Symbol
then
2989 Find_Direct_Name
(Def
);
2991 elsif Nkind
(Def
) /= N_Attribute_Reference
then
2995 -- For an attribute reference, analyze the prefix and verify
2996 -- that it has the proper profile for the subprogram.
2998 Analyze
(Prefix
(Def
));
2999 Valid_Default_Attribute
(Nam
, Def
);
3003 -- Default name may be overloaded, in which case the interpretation
3004 -- with the correct profile must be selected, as for a renaming.
3005 -- If the definition is an indexed component, it must denote a
3006 -- member of an entry family. If it is a selected component, it
3007 -- can be a protected operation.
3009 if Etype
(Def
) = Any_Type
then
3012 elsif Nkind
(Def
) = N_Selected_Component
then
3013 if not Is_Overloadable
(Entity
(Selector_Name
(Def
))) then
3014 Error_Msg_N
("expect valid subprogram name as default", Def
);
3017 elsif Nkind
(Def
) = N_Indexed_Component
then
3018 if Is_Entity_Name
(Prefix
(Def
)) then
3019 if Ekind
(Entity
(Prefix
(Def
))) /= E_Entry_Family
then
3020 Error_Msg_N
("expect valid subprogram name as default", Def
);
3023 elsif Nkind
(Prefix
(Def
)) = N_Selected_Component
then
3024 if Ekind
(Entity
(Selector_Name
(Prefix
(Def
)))) /=
3027 Error_Msg_N
("expect valid subprogram name as default", Def
);
3031 Error_Msg_N
("expect valid subprogram name as default", Def
);
3035 elsif Nkind
(Def
) = N_Character_Literal
then
3037 -- Needs some type checks: subprogram should be parameterless???
3039 Resolve
(Def
, (Etype
(Nam
)));
3041 elsif not Is_Entity_Name
(Def
)
3042 or else not Is_Overloadable
(Entity
(Def
))
3044 Error_Msg_N
("expect valid subprogram name as default", Def
);
3047 elsif not Is_Overloaded
(Def
) then
3048 Subp
:= Entity
(Def
);
3051 Error_Msg_N
("premature usage of formal subprogram", Def
);
3053 elsif not Entity_Matches_Spec
(Subp
, Nam
) then
3054 Error_Msg_N
("no visible entity matches specification", Def
);
3057 -- More than one interpretation, so disambiguate as for a renaming
3062 I1
: Interp_Index
:= 0;
3068 Get_First_Interp
(Def
, I
, It
);
3069 while Present
(It
.Nam
) loop
3070 if Entity_Matches_Spec
(It
.Nam
, Nam
) then
3071 if Subp
/= Any_Id
then
3072 It1
:= Disambiguate
(Def
, I1
, I
, Etype
(Subp
));
3074 if It1
= No_Interp
then
3075 Error_Msg_N
("ambiguous default subprogram", Def
);
3088 Get_Next_Interp
(I
, It
);
3092 if Subp
/= Any_Id
then
3094 -- Subprogram found, generate reference to it
3096 Set_Entity
(Def
, Subp
);
3097 Generate_Reference
(Subp
, Def
);
3100 Error_Msg_N
("premature usage of formal subprogram", Def
);
3102 elsif Ekind
(Subp
) /= E_Operator
then
3103 Check_Mode_Conformant
(Subp
, Nam
);
3107 Error_Msg_N
("no visible subprogram matches specification", N
);
3113 if Has_Aspects
(N
) then
3114 Analyze_Aspect_Specifications
(N
, Nam
);
3117 end Analyze_Formal_Subprogram_Declaration
;
3119 -------------------------------------
3120 -- Analyze_Formal_Type_Declaration --
3121 -------------------------------------
3123 procedure Analyze_Formal_Type_Declaration
(N
: Node_Id
) is
3124 Def
: constant Node_Id
:= Formal_Type_Definition
(N
);
3128 T
:= Defining_Identifier
(N
);
3130 if Present
(Discriminant_Specifications
(N
))
3131 and then Nkind
(Def
) /= N_Formal_Private_Type_Definition
3134 ("discriminants not allowed for this formal type", T
);
3137 -- Enter the new name, and branch to specific routine
3140 when N_Formal_Private_Type_Definition
=>
3141 Analyze_Formal_Private_Type
(N
, T
, Def
);
3143 when N_Formal_Derived_Type_Definition
=>
3144 Analyze_Formal_Derived_Type
(N
, T
, Def
);
3146 when N_Formal_Incomplete_Type_Definition
=>
3147 Analyze_Formal_Incomplete_Type
(T
, Def
);
3149 when N_Formal_Discrete_Type_Definition
=>
3150 Analyze_Formal_Discrete_Type
(T
, Def
);
3152 when N_Formal_Signed_Integer_Type_Definition
=>
3153 Analyze_Formal_Signed_Integer_Type
(T
, Def
);
3155 when N_Formal_Modular_Type_Definition
=>
3156 Analyze_Formal_Modular_Type
(T
, Def
);
3158 when N_Formal_Floating_Point_Definition
=>
3159 Analyze_Formal_Floating_Type
(T
, Def
);
3161 when N_Formal_Ordinary_Fixed_Point_Definition
=>
3162 Analyze_Formal_Ordinary_Fixed_Point_Type
(T
, Def
);
3164 when N_Formal_Decimal_Fixed_Point_Definition
=>
3165 Analyze_Formal_Decimal_Fixed_Point_Type
(T
, Def
);
3167 when N_Array_Type_Definition
=>
3168 Analyze_Formal_Array_Type
(T
, Def
);
3170 when N_Access_Function_Definition
3171 | N_Access_Procedure_Definition
3172 | N_Access_To_Object_Definition
3174 Analyze_Generic_Access_Type
(T
, Def
);
3176 -- Ada 2005: a interface declaration is encoded as an abstract
3177 -- record declaration or a abstract type derivation.
3179 when N_Record_Definition
=>
3180 Analyze_Formal_Interface_Type
(N
, T
, Def
);
3182 when N_Derived_Type_Definition
=>
3183 Analyze_Formal_Derived_Interface_Type
(N
, T
, Def
);
3189 raise Program_Error
;
3192 Set_Is_Generic_Type
(T
);
3194 if Has_Aspects
(N
) then
3195 Analyze_Aspect_Specifications
(N
, T
);
3197 end Analyze_Formal_Type_Declaration
;
3199 ------------------------------------
3200 -- Analyze_Function_Instantiation --
3201 ------------------------------------
3203 procedure Analyze_Function_Instantiation
(N
: Node_Id
) is
3205 Analyze_Subprogram_Instantiation
(N
, E_Function
);
3206 end Analyze_Function_Instantiation
;
3208 ---------------------------------
3209 -- Analyze_Generic_Access_Type --
3210 ---------------------------------
3212 procedure Analyze_Generic_Access_Type
(T
: Entity_Id
; Def
: Node_Id
) is
3216 if Nkind
(Def
) = N_Access_To_Object_Definition
then
3217 Access_Type_Declaration
(T
, Def
);
3219 if Is_Incomplete_Or_Private_Type
(Designated_Type
(T
))
3220 and then No
(Full_View
(Designated_Type
(T
)))
3221 and then not Is_Generic_Type
(Designated_Type
(T
))
3223 Error_Msg_N
("premature usage of incomplete type", Def
);
3225 elsif not Is_Entity_Name
(Subtype_Indication
(Def
)) then
3227 ("only a subtype mark is allowed in a formal", Def
);
3231 Access_Subprogram_Declaration
(T
, Def
);
3233 end Analyze_Generic_Access_Type
;
3235 ---------------------------------
3236 -- Analyze_Generic_Formal_Part --
3237 ---------------------------------
3239 procedure Analyze_Generic_Formal_Part
(N
: Node_Id
) is
3240 Gen_Parm_Decl
: Node_Id
;
3243 -- The generic formals are processed in the scope of the generic unit,
3244 -- where they are immediately visible. The scope is installed by the
3247 Gen_Parm_Decl
:= First
(Generic_Formal_Declarations
(N
));
3248 while Present
(Gen_Parm_Decl
) loop
3249 Analyze
(Gen_Parm_Decl
);
3250 Next
(Gen_Parm_Decl
);
3253 Generate_Reference_To_Generic_Formals
(Current_Scope
);
3254 end Analyze_Generic_Formal_Part
;
3256 ------------------------------------------
3257 -- Analyze_Generic_Package_Declaration --
3258 ------------------------------------------
3260 procedure Analyze_Generic_Package_Declaration
(N
: Node_Id
) is
3261 Loc
: constant Source_Ptr
:= Sloc
(N
);
3262 Decls
: constant List_Id
:=
3263 Visible_Declarations
(Specification
(N
));
3268 Save_Parent
: Node_Id
;
3271 Check_SPARK_05_Restriction
("generic is not allowed", N
);
3273 -- We introduce a renaming of the enclosing package, to have a usable
3274 -- entity as the prefix of an expanded name for a local entity of the
3275 -- form Par.P.Q, where P is the generic package. This is because a local
3276 -- entity named P may hide it, so that the usual visibility rules in
3277 -- the instance will not resolve properly.
3280 Make_Package_Renaming_Declaration
(Loc
,
3281 Defining_Unit_Name
=>
3282 Make_Defining_Identifier
(Loc
,
3283 Chars
=> New_External_Name
(Chars
(Defining_Entity
(N
)), "GH")),
3285 Make_Identifier
(Loc
, Chars
(Defining_Entity
(N
))));
3287 if Present
(Decls
) then
3288 Decl
:= First
(Decls
);
3289 while Present
(Decl
) and then Nkind
(Decl
) = N_Pragma
loop
3293 if Present
(Decl
) then
3294 Insert_Before
(Decl
, Renaming
);
3296 Append
(Renaming
, Visible_Declarations
(Specification
(N
)));
3300 Set_Visible_Declarations
(Specification
(N
), New_List
(Renaming
));
3303 -- Create copy of generic unit, and save for instantiation. If the unit
3304 -- is a child unit, do not copy the specifications for the parent, which
3305 -- are not part of the generic tree.
3307 Save_Parent
:= Parent_Spec
(N
);
3308 Set_Parent_Spec
(N
, Empty
);
3310 New_N
:= Copy_Generic_Node
(N
, Empty
, Instantiating
=> False);
3311 Set_Parent_Spec
(New_N
, Save_Parent
);
3314 -- Once the contents of the generic copy and the template are swapped,
3315 -- do the same for their respective aspect specifications.
3317 Exchange_Aspects
(N
, New_N
);
3319 -- Collect all contract-related source pragmas found within the template
3320 -- and attach them to the contract of the package spec. This contract is
3321 -- used in the capture of global references within annotations.
3323 Create_Generic_Contract
(N
);
3325 Id
:= Defining_Entity
(N
);
3326 Generate_Definition
(Id
);
3328 -- Expansion is not applied to generic units
3333 Set_Ekind
(Id
, E_Generic_Package
);
3334 Set_Etype
(Id
, Standard_Void_Type
);
3336 -- Analyze aspects now, so that generated pragmas appear in the
3337 -- declarations before building and analyzing the generic copy.
3339 if Has_Aspects
(N
) then
3340 Analyze_Aspect_Specifications
(N
, Id
);
3344 Enter_Generic_Scope
(Id
);
3345 Set_Inner_Instances
(Id
, New_Elmt_List
);
3347 Set_Categorization_From_Pragmas
(N
);
3348 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3350 -- Link the declaration of the generic homonym in the generic copy to
3351 -- the package it renames, so that it is always resolved properly.
3353 Set_Generic_Homonym
(Id
, Defining_Unit_Name
(Renaming
));
3354 Set_Entity
(Associated_Node
(Name
(Renaming
)), Id
);
3356 -- For a library unit, we have reconstructed the entity for the unit,
3357 -- and must reset it in the library tables.
3359 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3360 Set_Cunit_Entity
(Current_Sem_Unit
, Id
);
3363 Analyze_Generic_Formal_Part
(N
);
3365 -- After processing the generic formals, analysis proceeds as for a
3366 -- non-generic package.
3368 Analyze
(Specification
(N
));
3370 Validate_Categorization_Dependency
(N
, Id
);
3374 End_Package_Scope
(Id
);
3375 Exit_Generic_Scope
(Id
);
3377 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
3378 Move_Freeze_Nodes
(Id
, N
, Visible_Declarations
(Specification
(N
)));
3379 Move_Freeze_Nodes
(Id
, N
, Private_Declarations
(Specification
(N
)));
3380 Move_Freeze_Nodes
(Id
, N
, Generic_Formal_Declarations
(N
));
3383 Set_Body_Required
(Parent
(N
), Unit_Requires_Body
(Id
));
3384 Validate_RT_RAT_Component
(N
);
3386 -- If this is a spec without a body, check that generic parameters
3389 if not Body_Required
(Parent
(N
)) then
3390 Check_References
(Id
);
3394 -- If there is a specified storage pool in the context, create an
3395 -- aspect on the package declaration, so that it is used in any
3396 -- instance that does not override it.
3398 if Present
(Default_Pool
) then
3404 Make_Aspect_Specification
(Loc
,
3405 Identifier
=> Make_Identifier
(Loc
, Name_Default_Storage_Pool
),
3406 Expression
=> New_Copy
(Default_Pool
));
3408 if No
(Aspect_Specifications
(Specification
(N
))) then
3409 Set_Aspect_Specifications
(Specification
(N
), New_List
(ASN
));
3411 Append
(ASN
, Aspect_Specifications
(Specification
(N
)));
3415 end Analyze_Generic_Package_Declaration
;
3417 --------------------------------------------
3418 -- Analyze_Generic_Subprogram_Declaration --
3419 --------------------------------------------
3421 procedure Analyze_Generic_Subprogram_Declaration
(N
: Node_Id
) is
3425 Result_Type
: Entity_Id
;
3426 Save_Parent
: Node_Id
;
3431 Check_SPARK_05_Restriction
("generic is not allowed", N
);
3433 -- Create copy of generic unit, and save for instantiation. If the unit
3434 -- is a child unit, do not copy the specifications for the parent, which
3435 -- are not part of the generic tree.
3437 Save_Parent
:= Parent_Spec
(N
);
3438 Set_Parent_Spec
(N
, Empty
);
3440 New_N
:= Copy_Generic_Node
(N
, Empty
, Instantiating
=> False);
3441 Set_Parent_Spec
(New_N
, Save_Parent
);
3444 -- Once the contents of the generic copy and the template are swapped,
3445 -- do the same for their respective aspect specifications.
3447 Exchange_Aspects
(N
, New_N
);
3449 -- Collect all contract-related source pragmas found within the template
3450 -- and attach them to the contract of the subprogram spec. This contract
3451 -- is used in the capture of global references within annotations.
3453 Create_Generic_Contract
(N
);
3455 Spec
:= Specification
(N
);
3456 Id
:= Defining_Entity
(Spec
);
3457 Generate_Definition
(Id
);
3459 if Nkind
(Id
) = N_Defining_Operator_Symbol
then
3461 ("operator symbol not allowed for generic subprogram", Id
);
3467 Set_Scope_Depth_Value
(Id
, Scope_Depth
(Current_Scope
) + 1);
3469 -- Analyze the aspects of the generic copy to ensure that all generated
3470 -- pragmas (if any) perform their semantic effects.
3472 if Has_Aspects
(N
) then
3473 Analyze_Aspect_Specifications
(N
, Id
);
3477 Enter_Generic_Scope
(Id
);
3478 Set_Inner_Instances
(Id
, New_Elmt_List
);
3479 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3481 Analyze_Generic_Formal_Part
(N
);
3483 Formals
:= Parameter_Specifications
(Spec
);
3485 if Nkind
(Spec
) = N_Function_Specification
then
3486 Set_Ekind
(Id
, E_Generic_Function
);
3488 Set_Ekind
(Id
, E_Generic_Procedure
);
3491 if Present
(Formals
) then
3492 Process_Formals
(Formals
, Spec
);
3495 if Nkind
(Spec
) = N_Function_Specification
then
3496 if Nkind
(Result_Definition
(Spec
)) = N_Access_Definition
then
3497 Result_Type
:= Access_Definition
(Spec
, Result_Definition
(Spec
));
3498 Set_Etype
(Id
, Result_Type
);
3500 -- Check restriction imposed by AI05-073: a generic function
3501 -- cannot return an abstract type or an access to such.
3503 -- This is a binding interpretation should it apply to earlier
3504 -- versions of Ada as well as Ada 2012???
3506 if Is_Abstract_Type
(Designated_Type
(Result_Type
))
3507 and then Ada_Version
>= Ada_2012
3510 ("generic function cannot have an access result "
3511 & "that designates an abstract type", Spec
);
3515 Find_Type
(Result_Definition
(Spec
));
3516 Typ
:= Entity
(Result_Definition
(Spec
));
3518 if Is_Abstract_Type
(Typ
)
3519 and then Ada_Version
>= Ada_2012
3522 ("generic function cannot have abstract result type", Spec
);
3525 -- If a null exclusion is imposed on the result type, then create
3526 -- a null-excluding itype (an access subtype) and use it as the
3527 -- function's Etype.
3529 if Is_Access_Type
(Typ
)
3530 and then Null_Exclusion_Present
(Spec
)
3533 Create_Null_Excluding_Itype
3535 Related_Nod
=> Spec
,
3536 Scope_Id
=> Defining_Unit_Name
(Spec
)));
3538 Set_Etype
(Id
, Typ
);
3543 Set_Etype
(Id
, Standard_Void_Type
);
3546 -- For a library unit, we have reconstructed the entity for the unit,
3547 -- and must reset it in the library tables. We also make sure that
3548 -- Body_Required is set properly in the original compilation unit node.
3550 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3551 Set_Cunit_Entity
(Current_Sem_Unit
, Id
);
3552 Set_Body_Required
(Parent
(N
), Unit_Requires_Body
(Id
));
3555 Set_Categorization_From_Pragmas
(N
);
3556 Validate_Categorization_Dependency
(N
, Id
);
3558 -- Capture all global references that occur within the profile of the
3559 -- generic subprogram. Aspects are not part of this processing because
3560 -- they must be delayed. If processed now, Save_Global_References will
3561 -- destroy the Associated_Node links and prevent the capture of global
3562 -- references when the contract of the generic subprogram is analyzed.
3564 Save_Global_References
(Original_Node
(N
));
3568 Exit_Generic_Scope
(Id
);
3569 Generate_Reference_To_Formals
(Id
);
3571 List_Inherited_Pre_Post_Aspects
(Id
);
3572 end Analyze_Generic_Subprogram_Declaration
;
3574 -----------------------------------
3575 -- Analyze_Package_Instantiation --
3576 -----------------------------------
3578 -- WARNING: This routine manages Ghost regions. Return statements must be
3579 -- replaced by gotos which jump to the end of the routine and restore the
3582 procedure Analyze_Package_Instantiation
(N
: Node_Id
) is
3583 Loc
: constant Source_Ptr
:= Sloc
(N
);
3584 Gen_Id
: constant Node_Id
:= Name
(N
);
3587 Act_Decl_Name
: Node_Id
;
3588 Act_Decl_Id
: Entity_Id
;
3594 Gen_Unit
: Entity_Id
;
3596 Is_Actual_Pack
: constant Boolean :=
3597 Is_Internal
(Defining_Entity
(N
));
3599 Env_Installed
: Boolean := False;
3600 Parent_Installed
: Boolean := False;
3601 Renaming_List
: List_Id
;
3602 Unit_Renaming
: Node_Id
;
3603 Needs_Body
: Boolean;
3604 Inline_Now
: Boolean := False;
3605 Has_Inline_Always
: Boolean := False;
3607 Save_IPSM
: constant Boolean := Ignore_Pragma_SPARK_Mode
;
3608 -- Save flag Ignore_Pragma_SPARK_Mode for restore on exit
3610 Save_SM
: constant SPARK_Mode_Type
:= SPARK_Mode
;
3611 Save_SMP
: constant Node_Id
:= SPARK_Mode_Pragma
;
3612 -- Save the SPARK_Mode-related data for restore on exit
3614 Save_Style_Check
: constant Boolean := Style_Check
;
3615 -- Save style check mode for restore on exit
3617 procedure Delay_Descriptors
(E
: Entity_Id
);
3618 -- Delay generation of subprogram descriptors for given entity
3620 function Might_Inline_Subp
return Boolean;
3621 -- If inlining is active and the generic contains inlined subprograms,
3622 -- we instantiate the body. This may cause superfluous instantiations,
3623 -- but it is simpler than detecting the need for the body at the point
3624 -- of inlining, when the context of the instance is not available.
3626 -----------------------
3627 -- Delay_Descriptors --
3628 -----------------------
3630 procedure Delay_Descriptors
(E
: Entity_Id
) is
3632 if not Delay_Subprogram_Descriptors
(E
) then
3633 Set_Delay_Subprogram_Descriptors
(E
);
3634 Pending_Descriptor
.Append
(E
);
3636 end Delay_Descriptors
;
3638 -----------------------
3639 -- Might_Inline_Subp --
3640 -----------------------
3642 function Might_Inline_Subp
return Boolean is
3646 if not Inline_Processing_Required
then
3650 E
:= First_Entity
(Gen_Unit
);
3651 while Present
(E
) loop
3652 if Is_Subprogram
(E
) and then Is_Inlined
(E
) then
3653 -- Remember if there are any subprograms with Inline_Always
3655 if Has_Pragma_Inline_Always
(E
) then
3656 Has_Inline_Always
:= True;
3667 end Might_Inline_Subp
;
3669 -- Local declarations
3671 Mode
: Ghost_Mode_Type
;
3672 Mode_Set
: Boolean := False;
3674 Vis_Prims_List
: Elist_Id
:= No_Elist
;
3675 -- List of primitives made temporarily visible in the instantiation
3676 -- to match the visibility of the formal type
3678 -- Start of processing for Analyze_Package_Instantiation
3681 Check_SPARK_05_Restriction
("generic is not allowed", N
);
3683 -- Very first thing: check for Text_IO special unit in case we are
3684 -- instantiating one of the children of [[Wide_]Wide_]Text_IO.
3686 Check_Text_IO_Special_Unit
(Name
(N
));
3688 -- Make node global for error reporting
3690 Instantiation_Node
:= N
;
3692 -- Case of instantiation of a generic package
3694 if Nkind
(N
) = N_Package_Instantiation
then
3695 Act_Decl_Id
:= New_Copy
(Defining_Entity
(N
));
3696 Set_Comes_From_Source
(Act_Decl_Id
, True);
3698 if Nkind
(Defining_Unit_Name
(N
)) = N_Defining_Program_Unit_Name
then
3700 Make_Defining_Program_Unit_Name
(Loc
,
3702 New_Copy_Tree
(Name
(Defining_Unit_Name
(N
))),
3703 Defining_Identifier
=> Act_Decl_Id
);
3705 Act_Decl_Name
:= Act_Decl_Id
;
3708 -- Case of instantiation of a formal package
3711 Act_Decl_Id
:= Defining_Identifier
(N
);
3712 Act_Decl_Name
:= Act_Decl_Id
;
3715 Generate_Definition
(Act_Decl_Id
);
3716 Set_Ekind
(Act_Decl_Id
, E_Package
);
3718 -- Initialize list of incomplete actuals before analysis
3720 Set_Incomplete_Actuals
(Act_Decl_Id
, New_Elmt_List
);
3722 Preanalyze_Actuals
(N
, Act_Decl_Id
);
3724 -- Turn off style checking in instances. If the check is enabled on the
3725 -- generic unit, a warning in an instance would just be noise. If not
3726 -- enabled on the generic, then a warning in an instance is just wrong.
3728 Style_Check
:= False;
3731 Env_Installed
:= True;
3733 -- Reset renaming map for formal types. The mapping is established
3734 -- when analyzing the generic associations, but some mappings are
3735 -- inherited from formal packages of parent units, and these are
3736 -- constructed when the parents are installed.
3738 Generic_Renamings
.Set_Last
(0);
3739 Generic_Renamings_HTable
.Reset
;
3741 Check_Generic_Child_Unit
(Gen_Id
, Parent_Installed
);
3742 Gen_Unit
:= Entity
(Gen_Id
);
3744 -- A package instantiation is Ghost when it is subject to pragma Ghost
3745 -- or the generic template is Ghost. Set the mode now to ensure that
3746 -- any nodes generated during analysis and expansion are marked as
3749 Mark_And_Set_Ghost_Instantiation
(N
, Gen_Unit
, Mode
);
3752 -- Verify that it is the name of a generic package
3754 -- A visibility glitch: if the instance is a child unit and the generic
3755 -- is the generic unit of a parent instance (i.e. both the parent and
3756 -- the child units are instances of the same package) the name now
3757 -- denotes the renaming within the parent, not the intended generic
3758 -- unit. See if there is a homonym that is the desired generic. The
3759 -- renaming declaration must be visible inside the instance of the
3760 -- child, but not when analyzing the name in the instantiation itself.
3762 if Ekind
(Gen_Unit
) = E_Package
3763 and then Present
(Renamed_Entity
(Gen_Unit
))
3764 and then In_Open_Scopes
(Renamed_Entity
(Gen_Unit
))
3765 and then Is_Generic_Instance
(Renamed_Entity
(Gen_Unit
))
3766 and then Present
(Homonym
(Gen_Unit
))
3768 Gen_Unit
:= Homonym
(Gen_Unit
);
3771 if Etype
(Gen_Unit
) = Any_Type
then
3775 elsif Ekind
(Gen_Unit
) /= E_Generic_Package
then
3777 -- Ada 2005 (AI-50217): Cannot use instance in limited with_clause
3779 if From_Limited_With
(Gen_Unit
) then
3781 ("cannot instantiate a limited withed package", Gen_Id
);
3784 ("& is not the name of a generic package", Gen_Id
, Gen_Unit
);
3791 if In_Extended_Main_Source_Unit
(N
) then
3792 Set_Is_Instantiated
(Gen_Unit
);
3793 Generate_Reference
(Gen_Unit
, N
);
3795 if Present
(Renamed_Object
(Gen_Unit
)) then
3796 Set_Is_Instantiated
(Renamed_Object
(Gen_Unit
));
3797 Generate_Reference
(Renamed_Object
(Gen_Unit
), N
);
3801 if Nkind
(Gen_Id
) = N_Identifier
3802 and then Chars
(Gen_Unit
) = Chars
(Defining_Entity
(N
))
3805 ("& is hidden within declaration of instance", Gen_Id
, Gen_Unit
);
3807 elsif Nkind
(Gen_Id
) = N_Expanded_Name
3808 and then Is_Child_Unit
(Gen_Unit
)
3809 and then Nkind
(Prefix
(Gen_Id
)) = N_Identifier
3810 and then Chars
(Act_Decl_Id
) = Chars
(Prefix
(Gen_Id
))
3813 ("& is hidden within declaration of instance ", Prefix
(Gen_Id
));
3816 Set_Entity
(Gen_Id
, Gen_Unit
);
3818 -- If generic is a renaming, get original generic unit
3820 if Present
(Renamed_Object
(Gen_Unit
))
3821 and then Ekind
(Renamed_Object
(Gen_Unit
)) = E_Generic_Package
3823 Gen_Unit
:= Renamed_Object
(Gen_Unit
);
3826 -- Verify that there are no circular instantiations
3828 if In_Open_Scopes
(Gen_Unit
) then
3829 Error_Msg_NE
("instantiation of & within itself", N
, Gen_Unit
);
3833 elsif Contains_Instance_Of
(Gen_Unit
, Current_Scope
, Gen_Id
) then
3834 Error_Msg_Node_2
:= Current_Scope
;
3836 ("circular Instantiation: & instantiated in &!", N
, Gen_Unit
);
3837 Circularity_Detected
:= True;
3842 -- If the context of the instance is subject to SPARK_Mode "off" or
3843 -- the annotation is altogether missing, set the global flag which
3844 -- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within
3847 if SPARK_Mode
/= On
then
3848 Ignore_Pragma_SPARK_Mode
:= True;
3851 Gen_Decl
:= Unit_Declaration_Node
(Gen_Unit
);
3852 Gen_Spec
:= Specification
(Gen_Decl
);
3854 -- Initialize renamings map, for error checking, and the list that
3855 -- holds private entities whose views have changed between generic
3856 -- definition and instantiation. If this is the instance created to
3857 -- validate an actual package, the instantiation environment is that
3858 -- of the enclosing instance.
3860 Create_Instantiation_Source
(N
, Gen_Unit
, S_Adjustment
);
3862 -- Copy original generic tree, to produce text for instantiation
3866 (Original_Node
(Gen_Decl
), Empty
, Instantiating
=> True);
3868 Act_Spec
:= Specification
(Act_Tree
);
3870 -- If this is the instance created to validate an actual package,
3871 -- only the formals matter, do not examine the package spec itself.
3873 if Is_Actual_Pack
then
3874 Set_Visible_Declarations
(Act_Spec
, New_List
);
3875 Set_Private_Declarations
(Act_Spec
, New_List
);
3879 Analyze_Associations
3881 Formals
=> Generic_Formal_Declarations
(Act_Tree
),
3882 F_Copy
=> Generic_Formal_Declarations
(Gen_Decl
));
3884 Vis_Prims_List
:= Check_Hidden_Primitives
(Renaming_List
);
3886 Set_Instance_Env
(Gen_Unit
, Act_Decl_Id
);
3887 Set_Defining_Unit_Name
(Act_Spec
, Act_Decl_Name
);
3888 Set_Is_Generic_Instance
(Act_Decl_Id
);
3889 Set_Generic_Parent
(Act_Spec
, Gen_Unit
);
3891 -- References to the generic in its own declaration or its body are
3892 -- references to the instance. Add a renaming declaration for the
3893 -- generic unit itself. This declaration, as well as the renaming
3894 -- declarations for the generic formals, must remain private to the
3895 -- unit: the formals, because this is the language semantics, and
3896 -- the unit because its use is an artifact of the implementation.
3899 Make_Package_Renaming_Declaration
(Loc
,
3900 Defining_Unit_Name
=>
3901 Make_Defining_Identifier
(Loc
, Chars
(Gen_Unit
)),
3902 Name
=> New_Occurrence_Of
(Act_Decl_Id
, Loc
));
3904 Append
(Unit_Renaming
, Renaming_List
);
3906 -- The renaming declarations are the first local declarations of the
3909 if Is_Non_Empty_List
(Visible_Declarations
(Act_Spec
)) then
3911 (First
(Visible_Declarations
(Act_Spec
)), Renaming_List
);
3913 Set_Visible_Declarations
(Act_Spec
, Renaming_List
);
3916 Act_Decl
:= Make_Package_Declaration
(Loc
, Specification
=> Act_Spec
);
3918 -- Propagate the aspect specifications from the package declaration
3919 -- template to the instantiated version of the package declaration.
3921 if Has_Aspects
(Act_Tree
) then
3922 Set_Aspect_Specifications
(Act_Decl
,
3923 New_Copy_List_Tree
(Aspect_Specifications
(Act_Tree
)));
3926 -- The generic may have a generated Default_Storage_Pool aspect,
3927 -- set at the point of generic declaration. If the instance has
3928 -- that aspect, it overrides the one inherited from the generic.
3930 if Has_Aspects
(Gen_Spec
) then
3931 if No
(Aspect_Specifications
(N
)) then
3932 Set_Aspect_Specifications
(N
,
3934 (Aspect_Specifications
(Gen_Spec
))));
3938 ASN1
, ASN2
: Node_Id
;
3941 ASN1
:= First
(Aspect_Specifications
(N
));
3942 while Present
(ASN1
) loop
3943 if Chars
(Identifier
(ASN1
)) = Name_Default_Storage_Pool
3945 -- If generic carries a default storage pool, remove
3946 -- it in favor of the instance one.
3948 ASN2
:= First
(Aspect_Specifications
(Gen_Spec
));
3949 while Present
(ASN2
) loop
3950 if Chars
(Identifier
(ASN2
)) =
3951 Name_Default_Storage_Pool
3964 Prepend_List_To
(Aspect_Specifications
(N
),
3966 (Aspect_Specifications
(Gen_Spec
))));
3971 -- Save the instantiation node, for subsequent instantiation of the
3972 -- body, if there is one and we are generating code for the current
3973 -- unit. Mark unit as having a body (avoids premature error message).
3975 -- We instantiate the body if we are generating code, if we are
3976 -- generating cross-reference information, or if we are building
3977 -- trees for ASIS use or GNATprove use.
3980 Enclosing_Body_Present
: Boolean := False;
3981 -- If the generic unit is not a compilation unit, then a body may
3982 -- be present in its parent even if none is required. We create a
3983 -- tentative pending instantiation for the body, which will be
3984 -- discarded if none is actually present.
3989 if Scope
(Gen_Unit
) /= Standard_Standard
3990 and then not Is_Child_Unit
(Gen_Unit
)
3992 Scop
:= Scope
(Gen_Unit
);
3993 while Present
(Scop
) and then Scop
/= Standard_Standard
loop
3994 if Unit_Requires_Body
(Scop
) then
3995 Enclosing_Body_Present
:= True;
3998 elsif In_Open_Scopes
(Scop
)
3999 and then In_Package_Body
(Scop
)
4001 Enclosing_Body_Present
:= True;
4005 exit when Is_Compilation_Unit
(Scop
);
4006 Scop
:= Scope
(Scop
);
4010 -- If front-end inlining is enabled or there are any subprograms
4011 -- marked with Inline_Always, and this is a unit for which code
4012 -- will be generated, we instantiate the body at once.
4014 -- This is done if the instance is not the main unit, and if the
4015 -- generic is not a child unit of another generic, to avoid scope
4016 -- problems and the reinstallation of parent instances.
4019 and then (not Is_Child_Unit
(Gen_Unit
)
4020 or else not Is_Generic_Unit
(Scope
(Gen_Unit
)))
4021 and then Might_Inline_Subp
4022 and then not Is_Actual_Pack
4024 if not Back_End_Inlining
4025 and then (Front_End_Inlining
or else Has_Inline_Always
)
4026 and then (Is_In_Main_Unit
(N
)
4027 or else In_Main_Context
(Current_Scope
))
4028 and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
4032 -- In configurable_run_time mode we force the inlining of
4033 -- predefined subprograms marked Inline_Always, to minimize
4034 -- the use of the run-time library.
4036 elsif Is_Predefined_File_Name
4037 (Unit_File_Name
(Get_Source_Unit
(Gen_Decl
)))
4038 and then Configurable_Run_Time_Mode
4039 and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
4044 -- If the current scope is itself an instance within a child
4045 -- unit, there will be duplications in the scope stack, and the
4046 -- unstacking mechanism in Inline_Instance_Body will fail.
4047 -- This loses some rare cases of optimization, and might be
4048 -- improved some day, if we can find a proper abstraction for
4049 -- "the complete compilation context" that can be saved and
4052 if Is_Generic_Instance
(Current_Scope
) then
4054 Curr_Unit
: constant Entity_Id
:=
4055 Cunit_Entity
(Current_Sem_Unit
);
4057 if Curr_Unit
/= Current_Scope
4058 and then Is_Child_Unit
(Curr_Unit
)
4060 Inline_Now
:= False;
4067 (Unit_Requires_Body
(Gen_Unit
)
4068 or else Enclosing_Body_Present
4069 or else Present
(Corresponding_Body
(Gen_Decl
)))
4070 and then (Is_In_Main_Unit
(N
) or else Might_Inline_Subp
)
4071 and then not Is_Actual_Pack
4072 and then not Inline_Now
4073 and then (Operating_Mode
= Generate_Code
4075 -- Need comment for this check ???
4077 or else (Operating_Mode
= Check_Semantics
4078 and then (ASIS_Mode
or GNATprove_Mode
)));
4080 -- If front-end inlining is enabled or there are any subprograms
4081 -- marked with Inline_Always, do not instantiate body when within
4082 -- a generic context.
4084 if ((Front_End_Inlining
or else Has_Inline_Always
)
4085 and then not Expander_Active
)
4086 or else Is_Generic_Unit
(Cunit_Entity
(Main_Unit
))
4088 Needs_Body
:= False;
4091 -- If the current context is generic, and the package being
4092 -- instantiated is declared within a formal package, there is no
4093 -- body to instantiate until the enclosing generic is instantiated
4094 -- and there is an actual for the formal package. If the formal
4095 -- package has parameters, we build a regular package instance for
4096 -- it, that precedes the original formal package declaration.
4098 if In_Open_Scopes
(Scope
(Scope
(Gen_Unit
))) then
4100 Decl
: constant Node_Id
:=
4102 (Unit_Declaration_Node
(Scope
(Gen_Unit
)));
4104 if Nkind
(Decl
) = N_Formal_Package_Declaration
4105 or else (Nkind
(Decl
) = N_Package_Declaration
4106 and then Is_List_Member
(Decl
)
4107 and then Present
(Next
(Decl
))
4109 Nkind
(Next
(Decl
)) =
4110 N_Formal_Package_Declaration
)
4112 Needs_Body
:= False;
4118 -- For RCI unit calling stubs, we omit the instance body if the
4119 -- instance is the RCI library unit itself.
4121 -- However there is a special case for nested instances: in this case
4122 -- we do generate the instance body, as it might be required, e.g.
4123 -- because it provides stream attributes for some type used in the
4124 -- profile of a remote subprogram. This is consistent with 12.3(12),
4125 -- which indicates that the instance body occurs at the place of the
4126 -- instantiation, and thus is part of the RCI declaration, which is
4127 -- present on all client partitions (this is E.2.3(18)).
4129 -- Note that AI12-0002 may make it illegal at some point to have
4130 -- stream attributes defined in an RCI unit, in which case this
4131 -- special case will become unnecessary. In the meantime, there
4132 -- is known application code in production that depends on this
4133 -- being possible, so we definitely cannot eliminate the body in
4134 -- the case of nested instances for the time being.
4136 -- When we generate a nested instance body, calling stubs for any
4137 -- relevant subprogram will be be inserted immediately after the
4138 -- subprogram declarations, and will take precedence over the
4139 -- subsequent (original) body. (The stub and original body will be
4140 -- complete homographs, but this is permitted in an instance).
4141 -- (Could we do better and remove the original body???)
4143 if Distribution_Stub_Mode
= Generate_Caller_Stub_Body
4144 and then Comes_From_Source
(N
)
4145 and then Nkind
(Parent
(N
)) = N_Compilation_Unit
4147 Needs_Body
:= False;
4152 -- Here is a defence against a ludicrous number of instantiations
4153 -- caused by a circular set of instantiation attempts.
4155 if Pending_Instantiations
.Last
> Maximum_Instantiations
then
4156 Error_Msg_Uint_1
:= UI_From_Int
(Maximum_Instantiations
);
4157 Error_Msg_N
("too many instantiations, exceeds max of^", N
);
4158 Error_Msg_N
("\limit can be changed using -gnateinn switch", N
);
4159 raise Unrecoverable_Error
;
4162 -- Indicate that the enclosing scopes contain an instantiation,
4163 -- and that cleanup actions should be delayed until after the
4164 -- instance body is expanded.
4166 Check_Forward_Instantiation
(Gen_Decl
);
4167 if Nkind
(N
) = N_Package_Instantiation
then
4169 Enclosing_Master
: Entity_Id
;
4172 -- Loop to search enclosing masters
4174 Enclosing_Master
:= Current_Scope
;
4175 Scope_Loop
: while Enclosing_Master
/= Standard_Standard
loop
4176 if Ekind
(Enclosing_Master
) = E_Package
then
4177 if Is_Compilation_Unit
(Enclosing_Master
) then
4178 if In_Package_Body
(Enclosing_Master
) then
4180 (Body_Entity
(Enclosing_Master
));
4189 Enclosing_Master
:= Scope
(Enclosing_Master
);
4192 elsif Is_Generic_Unit
(Enclosing_Master
)
4193 or else Ekind
(Enclosing_Master
) = E_Void
4195 -- Cleanup actions will eventually be performed on the
4196 -- enclosing subprogram or package instance, if any.
4197 -- Enclosing scope is void in the formal part of a
4198 -- generic subprogram.
4203 if Ekind
(Enclosing_Master
) = E_Entry
4205 Ekind
(Scope
(Enclosing_Master
)) = E_Protected_Type
4207 if not Expander_Active
then
4211 Protected_Body_Subprogram
(Enclosing_Master
);
4215 Set_Delay_Cleanups
(Enclosing_Master
);
4217 while Ekind
(Enclosing_Master
) = E_Block
loop
4218 Enclosing_Master
:= Scope
(Enclosing_Master
);
4221 if Is_Subprogram
(Enclosing_Master
) then
4222 Delay_Descriptors
(Enclosing_Master
);
4224 elsif Is_Task_Type
(Enclosing_Master
) then
4226 TBP
: constant Node_Id
:=
4227 Get_Task_Body_Procedure
4230 if Present
(TBP
) then
4231 Delay_Descriptors
(TBP
);
4232 Set_Delay_Cleanups
(TBP
);
4239 end loop Scope_Loop
;
4242 -- Make entry in table
4244 Add_Pending_Instantiation
(N
, Act_Decl
);
4248 Set_Categorization_From_Pragmas
(Act_Decl
);
4250 if Parent_Installed
then
4254 Set_Instance_Spec
(N
, Act_Decl
);
4256 -- If not a compilation unit, insert the package declaration before
4257 -- the original instantiation node.
4259 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
4260 Mark_Rewrite_Insertion
(Act_Decl
);
4261 Insert_Before
(N
, Act_Decl
);
4263 if Has_Aspects
(N
) then
4264 Analyze_Aspect_Specifications
(N
, Act_Decl_Id
);
4266 -- The pragma created for a Default_Storage_Pool aspect must
4267 -- appear ahead of the declarations in the instance spec.
4268 -- Analysis has placed it after the instance node, so remove
4269 -- it and reinsert it properly now.
4272 ASN
: constant Node_Id
:= First
(Aspect_Specifications
(N
));
4273 A_Name
: constant Name_Id
:= Chars
(Identifier
(ASN
));
4277 if A_Name
= Name_Default_Storage_Pool
then
4278 if No
(Visible_Declarations
(Act_Spec
)) then
4279 Set_Visible_Declarations
(Act_Spec
, New_List
);
4283 while Present
(Decl
) loop
4284 if Nkind
(Decl
) = N_Pragma
then
4286 Prepend
(Decl
, Visible_Declarations
(Act_Spec
));
4298 -- For an instantiation that is a compilation unit, place
4299 -- declaration on current node so context is complete for analysis
4300 -- (including nested instantiations). If this is the main unit,
4301 -- the declaration eventually replaces the instantiation node.
4302 -- If the instance body is created later, it replaces the
4303 -- instance node, and the declaration is attached to it
4304 -- (see Build_Instance_Compilation_Unit_Nodes).
4307 if Cunit_Entity
(Current_Sem_Unit
) = Defining_Entity
(N
) then
4309 -- The entity for the current unit is the newly created one,
4310 -- and all semantic information is attached to it.
4312 Set_Cunit_Entity
(Current_Sem_Unit
, Act_Decl_Id
);
4314 -- If this is the main unit, replace the main entity as well
4316 if Current_Sem_Unit
= Main_Unit
then
4317 Main_Unit_Entity
:= Act_Decl_Id
;
4321 Set_Unit
(Parent
(N
), Act_Decl
);
4322 Set_Parent_Spec
(Act_Decl
, Parent_Spec
(N
));
4323 Set_Package_Instantiation
(Act_Decl_Id
, N
);
4325 -- Process aspect specifications of the instance node, if any, to
4326 -- take into account categorization pragmas before analyzing the
4329 if Has_Aspects
(N
) then
4330 Analyze_Aspect_Specifications
(N
, Act_Decl_Id
);
4334 Set_Unit
(Parent
(N
), N
);
4335 Set_Body_Required
(Parent
(N
), False);
4337 -- We never need elaboration checks on instantiations, since by
4338 -- definition, the body instantiation is elaborated at the same
4339 -- time as the spec instantiation.
4341 Set_Suppress_Elaboration_Warnings
(Act_Decl_Id
);
4342 Set_Kill_Elaboration_Checks
(Act_Decl_Id
);
4345 Check_Elab_Instantiation
(N
);
4347 if ABE_Is_Certain
(N
) and then Needs_Body
then
4348 Pending_Instantiations
.Decrement_Last
;
4351 Check_Hidden_Child_Unit
(N
, Gen_Unit
, Act_Decl_Id
);
4353 Set_First_Private_Entity
(Defining_Unit_Name
(Unit_Renaming
),
4354 First_Private_Entity
(Act_Decl_Id
));
4356 -- If the instantiation will receive a body, the unit will be
4357 -- transformed into a package body, and receive its own elaboration
4358 -- entity. Otherwise, the nature of the unit is now a package
4361 if Nkind
(Parent
(N
)) = N_Compilation_Unit
4362 and then not Needs_Body
4364 Rewrite
(N
, Act_Decl
);
4367 if Present
(Corresponding_Body
(Gen_Decl
))
4368 or else Unit_Requires_Body
(Gen_Unit
)
4370 Set_Has_Completion
(Act_Decl_Id
);
4373 Check_Formal_Packages
(Act_Decl_Id
);
4375 Restore_Hidden_Primitives
(Vis_Prims_List
);
4376 Restore_Private_Views
(Act_Decl_Id
);
4378 Inherit_Context
(Gen_Decl
, N
);
4380 if Parent_Installed
then
4385 Env_Installed
:= False;
4388 Validate_Categorization_Dependency
(N
, Act_Decl_Id
);
4390 -- There used to be a check here to prevent instantiations in local
4391 -- contexts if the No_Local_Allocators restriction was active. This
4392 -- check was removed by a binding interpretation in AI-95-00130/07,
4393 -- but we retain the code for documentation purposes.
4395 -- if Ekind (Act_Decl_Id) /= E_Void
4396 -- and then not Is_Library_Level_Entity (Act_Decl_Id)
4398 -- Check_Restriction (No_Local_Allocators, N);
4402 Inline_Instance_Body
(N
, Gen_Unit
, Act_Decl
);
4405 -- The following is a tree patch for ASIS: ASIS needs separate nodes to
4406 -- be used as defining identifiers for a formal package and for the
4407 -- corresponding expanded package.
4409 if Nkind
(N
) = N_Formal_Package_Declaration
then
4410 Act_Decl_Id
:= New_Copy
(Defining_Entity
(N
));
4411 Set_Comes_From_Source
(Act_Decl_Id
, True);
4412 Set_Is_Generic_Instance
(Act_Decl_Id
, False);
4413 Set_Defining_Identifier
(N
, Act_Decl_Id
);
4416 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
4417 SPARK_Mode
:= Save_SM
;
4418 SPARK_Mode_Pragma
:= Save_SMP
;
4419 Style_Check
:= Save_Style_Check
;
4421 -- Check that if N is an instantiation of System.Dim_Float_IO or
4422 -- System.Dim_Integer_IO, the formal type has a dimension system.
4424 if Nkind
(N
) = N_Package_Instantiation
4425 and then Is_Dim_IO_Package_Instantiation
(N
)
4428 Assoc
: constant Node_Id
:= First
(Generic_Associations
(N
));
4430 if not Has_Dimension_System
4431 (Etype
(Explicit_Generic_Actual_Parameter
(Assoc
)))
4433 Error_Msg_N
("type with a dimension system expected", Assoc
);
4439 if Has_Aspects
(N
) and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
4440 Analyze_Aspect_Specifications
(N
, Act_Decl_Id
);
4444 Restore_Ghost_Mode
(Mode
);
4448 when Instantiation_Error
=>
4449 if Parent_Installed
then
4453 if Env_Installed
then
4457 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
4458 SPARK_Mode
:= Save_SM
;
4459 SPARK_Mode_Pragma
:= Save_SMP
;
4460 Style_Check
:= Save_Style_Check
;
4463 Restore_Ghost_Mode
(Mode
);
4465 end Analyze_Package_Instantiation
;
4467 --------------------------
4468 -- Inline_Instance_Body --
4469 --------------------------
4471 procedure Inline_Instance_Body
4473 Gen_Unit
: Entity_Id
;
4476 Curr_Comp
: constant Node_Id
:= Cunit
(Current_Sem_Unit
);
4477 Curr_Unit
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
4478 Gen_Comp
: constant Entity_Id
:=
4479 Cunit_Entity
(Get_Source_Unit
(Gen_Unit
));
4481 Save_SM
: constant SPARK_Mode_Type
:= SPARK_Mode
;
4482 Save_SMP
: constant Node_Id
:= SPARK_Mode_Pragma
;
4483 -- Save all SPARK_Mode-related attributes as removing enclosing scopes
4484 -- to provide a clean environment for analysis of the inlined body will
4485 -- eliminate any previously set SPARK_Mode.
4487 Scope_Stack_Depth
: constant Pos
:=
4488 Scope_Stack
.Last
- Scope_Stack
.First
+ 1;
4490 Use_Clauses
: array (1 .. Scope_Stack_Depth
) of Node_Id
;
4491 Instances
: array (1 .. Scope_Stack_Depth
) of Entity_Id
;
4492 Inner_Scopes
: array (1 .. Scope_Stack_Depth
) of Entity_Id
;
4493 Curr_Scope
: Entity_Id
:= Empty
;
4495 Num_Inner
: Nat
:= 0;
4496 Num_Scopes
: Nat
:= 0;
4497 N_Instances
: Nat
:= 0;
4498 Removed
: Boolean := False;
4503 -- Case of generic unit defined in another unit. We must remove the
4504 -- complete context of the current unit to install that of the generic.
4506 if Gen_Comp
/= Cunit_Entity
(Current_Sem_Unit
) then
4508 -- Add some comments for the following two loops ???
4511 while Present
(S
) and then S
/= Standard_Standard
loop
4513 Num_Scopes
:= Num_Scopes
+ 1;
4515 Use_Clauses
(Num_Scopes
) :=
4517 (Scope_Stack
.Last
- Num_Scopes
+ 1).
4519 End_Use_Clauses
(Use_Clauses
(Num_Scopes
));
4521 exit when Scope_Stack
.Last
- Num_Scopes
+ 1 = Scope_Stack
.First
4522 or else Scope_Stack
.Table
4523 (Scope_Stack
.Last
- Num_Scopes
).Entity
= Scope
(S
);
4526 exit when Is_Generic_Instance
(S
)
4527 and then (In_Package_Body
(S
)
4528 or else Ekind
(S
) = E_Procedure
4529 or else Ekind
(S
) = E_Function
);
4533 Vis
:= Is_Immediately_Visible
(Gen_Comp
);
4535 -- Find and save all enclosing instances
4540 and then S
/= Standard_Standard
4542 if Is_Generic_Instance
(S
) then
4543 N_Instances
:= N_Instances
+ 1;
4544 Instances
(N_Instances
) := S
;
4546 exit when In_Package_Body
(S
);
4552 -- Remove context of current compilation unit, unless we are within a
4553 -- nested package instantiation, in which case the context has been
4554 -- removed previously.
4556 -- If current scope is the body of a child unit, remove context of
4557 -- spec as well. If an enclosing scope is an instance body, the
4558 -- context has already been removed, but the entities in the body
4559 -- must be made invisible as well.
4562 while Present
(S
) and then S
/= Standard_Standard
loop
4563 if Is_Generic_Instance
(S
)
4564 and then (In_Package_Body
(S
)
4565 or else Ekind_In
(S
, E_Procedure
, E_Function
))
4567 -- We still have to remove the entities of the enclosing
4568 -- instance from direct visibility.
4573 E
:= First_Entity
(S
);
4574 while Present
(E
) loop
4575 Set_Is_Immediately_Visible
(E
, False);
4584 or else (Ekind
(Curr_Unit
) = E_Package_Body
4585 and then S
= Spec_Entity
(Curr_Unit
))
4586 or else (Ekind
(Curr_Unit
) = E_Subprogram_Body
4587 and then S
= Corresponding_Spec
4588 (Unit_Declaration_Node
(Curr_Unit
)))
4592 -- Remove entities in current scopes from visibility, so that
4593 -- instance body is compiled in a clean environment.
4595 List
:= Save_Scope_Stack
(Handle_Use
=> False);
4597 if Is_Child_Unit
(S
) then
4599 -- Remove child unit from stack, as well as inner scopes.
4600 -- Removing the context of a child unit removes parent units
4603 while Current_Scope
/= S
loop
4604 Num_Inner
:= Num_Inner
+ 1;
4605 Inner_Scopes
(Num_Inner
) := Current_Scope
;
4610 Remove_Context
(Curr_Comp
);
4614 Remove_Context
(Curr_Comp
);
4617 if Ekind
(Curr_Unit
) = E_Package_Body
then
4618 Remove_Context
(Library_Unit
(Curr_Comp
));
4625 pragma Assert
(Num_Inner
< Num_Scopes
);
4627 -- The inlined package body must be analyzed with the SPARK_Mode of
4628 -- the enclosing context, otherwise the body may cause bogus errors
4629 -- if a configuration SPARK_Mode pragma in in effect.
4631 Push_Scope
(Standard_Standard
);
4632 Scope_Stack
.Table
(Scope_Stack
.Last
).Is_Active_Stack_Base
:= True;
4633 Instantiate_Package_Body
4636 Act_Decl
=> Act_Decl
,
4637 Expander_Status
=> Expander_Active
,
4638 Current_Sem_Unit
=> Current_Sem_Unit
,
4639 Scope_Suppress
=> Scope_Suppress
,
4640 Local_Suppress_Stack_Top
=> Local_Suppress_Stack_Top
,
4641 Version
=> Ada_Version
,
4642 Version_Pragma
=> Ada_Version_Pragma
,
4643 Warnings
=> Save_Warnings
,
4644 SPARK_Mode
=> Save_SM
,
4645 SPARK_Mode_Pragma
=> Save_SMP
)),
4646 Inlined_Body
=> True);
4652 Set_Is_Immediately_Visible
(Gen_Comp
, Vis
);
4654 -- Reset Generic_Instance flag so that use clauses can be installed
4655 -- in the proper order. (See Use_One_Package for effect of enclosing
4656 -- instances on processing of use clauses).
4658 for J
in 1 .. N_Instances
loop
4659 Set_Is_Generic_Instance
(Instances
(J
), False);
4663 Install_Context
(Curr_Comp
);
4665 if Present
(Curr_Scope
)
4666 and then Is_Child_Unit
(Curr_Scope
)
4668 Push_Scope
(Curr_Scope
);
4669 Set_Is_Immediately_Visible
(Curr_Scope
);
4671 -- Finally, restore inner scopes as well
4673 for J
in reverse 1 .. Num_Inner
loop
4674 Push_Scope
(Inner_Scopes
(J
));
4678 Restore_Scope_Stack
(List
, Handle_Use
=> False);
4680 if Present
(Curr_Scope
)
4682 (In_Private_Part
(Curr_Scope
)
4683 or else In_Package_Body
(Curr_Scope
))
4685 -- Install private declaration of ancestor units, which are
4686 -- currently available. Restore_Scope_Stack and Install_Context
4687 -- only install the visible part of parents.
4692 Par
:= Scope
(Curr_Scope
);
4693 while (Present
(Par
)) and then Par
/= Standard_Standard
loop
4694 Install_Private_Declarations
(Par
);
4701 -- Restore use clauses. For a child unit, use clauses in the parents
4702 -- are restored when installing the context, so only those in inner
4703 -- scopes (and those local to the child unit itself) need to be
4704 -- installed explicitly.
4706 if Is_Child_Unit
(Curr_Unit
) and then Removed
then
4707 for J
in reverse 1 .. Num_Inner
+ 1 loop
4708 Scope_Stack
.Table
(Scope_Stack
.Last
- J
+ 1).First_Use_Clause
:=
4710 Install_Use_Clauses
(Use_Clauses
(J
));
4714 for J
in reverse 1 .. Num_Scopes
loop
4715 Scope_Stack
.Table
(Scope_Stack
.Last
- J
+ 1).First_Use_Clause
:=
4717 Install_Use_Clauses
(Use_Clauses
(J
));
4721 -- Restore status of instances. If one of them is a body, make its
4722 -- local entities visible again.
4729 for J
in 1 .. N_Instances
loop
4730 Inst
:= Instances
(J
);
4731 Set_Is_Generic_Instance
(Inst
, True);
4733 if In_Package_Body
(Inst
)
4734 or else Ekind_In
(S
, E_Procedure
, E_Function
)
4736 E
:= First_Entity
(Instances
(J
));
4737 while Present
(E
) loop
4738 Set_Is_Immediately_Visible
(E
);
4745 -- If generic unit is in current unit, current context is correct. Note
4746 -- that the context is guaranteed to carry the correct SPARK_Mode as no
4747 -- enclosing scopes were removed.
4750 Instantiate_Package_Body
4753 Act_Decl
=> Act_Decl
,
4754 Expander_Status
=> Expander_Active
,
4755 Current_Sem_Unit
=> Current_Sem_Unit
,
4756 Scope_Suppress
=> Scope_Suppress
,
4757 Local_Suppress_Stack_Top
=> Local_Suppress_Stack_Top
,
4758 Version
=> Ada_Version
,
4759 Version_Pragma
=> Ada_Version_Pragma
,
4760 Warnings
=> Save_Warnings
,
4761 SPARK_Mode
=> SPARK_Mode
,
4762 SPARK_Mode_Pragma
=> SPARK_Mode_Pragma
)),
4763 Inlined_Body
=> True);
4765 end Inline_Instance_Body
;
4767 -------------------------------------
4768 -- Analyze_Procedure_Instantiation --
4769 -------------------------------------
4771 procedure Analyze_Procedure_Instantiation
(N
: Node_Id
) is
4773 Analyze_Subprogram_Instantiation
(N
, E_Procedure
);
4774 end Analyze_Procedure_Instantiation
;
4776 -----------------------------------
4777 -- Need_Subprogram_Instance_Body --
4778 -----------------------------------
4780 function Need_Subprogram_Instance_Body
4782 Subp
: Entity_Id
) return Boolean
4785 function Is_Inlined_Or_Child_Of_Inlined
(E
: Entity_Id
) return Boolean;
4786 -- Return True if E is an inlined subprogram, an inlined renaming or a
4787 -- subprogram nested in an inlined subprogram. The inlining machinery
4788 -- totally disregards nested subprograms since it considers that they
4789 -- will always be compiled if the parent is (see Inline.Is_Nested).
4791 ------------------------------------
4792 -- Is_Inlined_Or_Child_Of_Inlined --
4793 ------------------------------------
4795 function Is_Inlined_Or_Child_Of_Inlined
(E
: Entity_Id
) return Boolean is
4799 if Is_Inlined
(E
) or else Is_Inlined
(Alias
(E
)) then
4804 while Scop
/= Standard_Standard
loop
4805 if Ekind
(Scop
) in Subprogram_Kind
and then Is_Inlined
(Scop
) then
4809 Scop
:= Scope
(Scop
);
4813 end Is_Inlined_Or_Child_Of_Inlined
;
4816 -- Must be in the main unit or inlined (or child of inlined)
4818 if (Is_In_Main_Unit
(N
) or else Is_Inlined_Or_Child_Of_Inlined
(Subp
))
4820 -- Must be generating code or analyzing code in ASIS/GNATprove mode
4822 and then (Operating_Mode
= Generate_Code
4823 or else (Operating_Mode
= Check_Semantics
4824 and then (ASIS_Mode
or GNATprove_Mode
)))
4826 -- The body is needed when generating code (full expansion), in ASIS
4827 -- mode for other tools, and in GNATprove mode (special expansion) for
4828 -- formal verification of the body itself.
4830 and then (Expander_Active
or ASIS_Mode
or GNATprove_Mode
)
4832 -- No point in inlining if ABE is inevitable
4834 and then not ABE_Is_Certain
(N
)
4836 -- Or if subprogram is eliminated
4838 and then not Is_Eliminated
(Subp
)
4840 Add_Pending_Instantiation
(N
, Unit_Declaration_Node
(Subp
));
4843 -- Here if not inlined, or we ignore the inlining
4848 end Need_Subprogram_Instance_Body
;
4850 --------------------------------------
4851 -- Analyze_Subprogram_Instantiation --
4852 --------------------------------------
4854 -- WARNING: This routine manages Ghost regions. Return statements must be
4855 -- replaced by gotos which jump to the end of the routine and restore the
4858 procedure Analyze_Subprogram_Instantiation
4862 Loc
: constant Source_Ptr
:= Sloc
(N
);
4863 Gen_Id
: constant Node_Id
:= Name
(N
);
4865 Anon_Id
: constant Entity_Id
:=
4866 Make_Defining_Identifier
(Sloc
(Defining_Entity
(N
)),
4867 Chars
=> New_External_Name
4868 (Chars
(Defining_Entity
(N
)), 'R'));
4870 Act_Decl_Id
: Entity_Id
;
4875 Env_Installed
: Boolean := False;
4876 Gen_Unit
: Entity_Id
;
4878 Pack_Id
: Entity_Id
;
4879 Parent_Installed
: Boolean := False;
4881 Renaming_List
: List_Id
;
4882 -- The list of declarations that link formals and actuals of the
4883 -- instance. These are subtype declarations for formal types, and
4884 -- renaming declarations for other formals. The subprogram declaration
4885 -- for the instance is then appended to the list, and the last item on
4886 -- the list is the renaming declaration for the instance.
4888 procedure Analyze_Instance_And_Renamings
;
4889 -- The instance must be analyzed in a context that includes the mappings
4890 -- of generic parameters into actuals. We create a package declaration
4891 -- for this purpose, and a subprogram with an internal name within the
4892 -- package. The subprogram instance is simply an alias for the internal
4893 -- subprogram, declared in the current scope.
4895 procedure Build_Subprogram_Renaming
;
4896 -- If the subprogram is recursive, there are occurrences of the name of
4897 -- the generic within the body, which must resolve to the current
4898 -- instance. We add a renaming declaration after the declaration, which
4899 -- is available in the instance body, as well as in the analysis of
4900 -- aspects that appear in the generic. This renaming declaration is
4901 -- inserted after the instance declaration which it renames.
4903 ------------------------------------
4904 -- Analyze_Instance_And_Renamings --
4905 ------------------------------------
4907 procedure Analyze_Instance_And_Renamings
is
4908 Def_Ent
: constant Entity_Id
:= Defining_Entity
(N
);
4909 Pack_Decl
: Node_Id
;
4912 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
4914 -- For the case of a compilation unit, the container package has
4915 -- the same name as the instantiation, to insure that the binder
4916 -- calls the elaboration procedure with the right name. Copy the
4917 -- entity of the instance, which may have compilation level flags
4918 -- (e.g. Is_Child_Unit) set.
4920 Pack_Id
:= New_Copy
(Def_Ent
);
4923 -- Otherwise we use the name of the instantiation concatenated
4924 -- with its source position to ensure uniqueness if there are
4925 -- several instantiations with the same name.
4928 Make_Defining_Identifier
(Loc
,
4929 Chars
=> New_External_Name
4930 (Related_Id
=> Chars
(Def_Ent
),
4932 Suffix_Index
=> Source_Offset
(Sloc
(Def_Ent
))));
4936 Make_Package_Declaration
(Loc
,
4937 Specification
=> Make_Package_Specification
(Loc
,
4938 Defining_Unit_Name
=> Pack_Id
,
4939 Visible_Declarations
=> Renaming_List
,
4940 End_Label
=> Empty
));
4942 Set_Instance_Spec
(N
, Pack_Decl
);
4943 Set_Is_Generic_Instance
(Pack_Id
);
4944 Set_Debug_Info_Needed
(Pack_Id
);
4946 -- Case of not a compilation unit
4948 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
4949 Mark_Rewrite_Insertion
(Pack_Decl
);
4950 Insert_Before
(N
, Pack_Decl
);
4951 Set_Has_Completion
(Pack_Id
);
4953 -- Case of an instantiation that is a compilation unit
4955 -- Place declaration on current node so context is complete for
4956 -- analysis (including nested instantiations), and for use in a
4957 -- context_clause (see Analyze_With_Clause).
4960 Set_Unit
(Parent
(N
), Pack_Decl
);
4961 Set_Parent_Spec
(Pack_Decl
, Parent_Spec
(N
));
4964 Analyze
(Pack_Decl
);
4965 Check_Formal_Packages
(Pack_Id
);
4966 Set_Is_Generic_Instance
(Pack_Id
, False);
4968 -- Why do we clear Is_Generic_Instance??? We set it 20 lines
4971 -- Body of the enclosing package is supplied when instantiating the
4972 -- subprogram body, after semantic analysis is completed.
4974 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
4976 -- Remove package itself from visibility, so it does not
4977 -- conflict with subprogram.
4979 Set_Name_Entity_Id
(Chars
(Pack_Id
), Homonym
(Pack_Id
));
4981 -- Set name and scope of internal subprogram so that the proper
4982 -- external name will be generated. The proper scope is the scope
4983 -- of the wrapper package. We need to generate debugging info for
4984 -- the internal subprogram, so set flag accordingly.
4986 Set_Chars
(Anon_Id
, Chars
(Defining_Entity
(N
)));
4987 Set_Scope
(Anon_Id
, Scope
(Pack_Id
));
4989 -- Mark wrapper package as referenced, to avoid spurious warnings
4990 -- if the instantiation appears in various with_ clauses of
4991 -- subunits of the main unit.
4993 Set_Referenced
(Pack_Id
);
4996 Set_Is_Generic_Instance
(Anon_Id
);
4997 Set_Debug_Info_Needed
(Anon_Id
);
4998 Act_Decl_Id
:= New_Copy
(Anon_Id
);
5000 Set_Parent
(Act_Decl_Id
, Parent
(Anon_Id
));
5001 Set_Chars
(Act_Decl_Id
, Chars
(Defining_Entity
(N
)));
5002 Set_Sloc
(Act_Decl_Id
, Sloc
(Defining_Entity
(N
)));
5004 -- Subprogram instance comes from source only if generic does
5006 Set_Comes_From_Source
(Act_Decl_Id
, Comes_From_Source
(Gen_Unit
));
5008 -- If the instance is a child unit, mark the Id accordingly. Mark
5009 -- the anonymous entity as well, which is the real subprogram and
5010 -- which is used when the instance appears in a context clause.
5011 -- Similarly, propagate the Is_Eliminated flag to handle properly
5012 -- nested eliminated subprograms.
5014 Set_Is_Child_Unit
(Act_Decl_Id
, Is_Child_Unit
(Defining_Entity
(N
)));
5015 Set_Is_Child_Unit
(Anon_Id
, Is_Child_Unit
(Defining_Entity
(N
)));
5016 New_Overloaded_Entity
(Act_Decl_Id
);
5017 Check_Eliminated
(Act_Decl_Id
);
5018 Set_Is_Eliminated
(Anon_Id
, Is_Eliminated
(Act_Decl_Id
));
5020 -- In compilation unit case, kill elaboration checks on the
5021 -- instantiation, since they are never needed -- the body is
5022 -- instantiated at the same point as the spec.
5024 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5025 Set_Suppress_Elaboration_Warnings
(Act_Decl_Id
);
5026 Set_Kill_Elaboration_Checks
(Act_Decl_Id
);
5027 Set_Is_Compilation_Unit
(Anon_Id
);
5029 Set_Cunit_Entity
(Current_Sem_Unit
, Pack_Id
);
5032 -- The instance is not a freezing point for the new subprogram.
5033 -- The anonymous subprogram may have a freeze node, created for
5034 -- some delayed aspects. This freeze node must not be inherited
5035 -- by the visible subprogram entity.
5037 Set_Is_Frozen
(Act_Decl_Id
, False);
5038 Set_Freeze_Node
(Act_Decl_Id
, Empty
);
5040 if Nkind
(Defining_Entity
(N
)) = N_Defining_Operator_Symbol
then
5041 Valid_Operator_Definition
(Act_Decl_Id
);
5044 Set_Alias
(Act_Decl_Id
, Anon_Id
);
5045 Set_Parent
(Act_Decl_Id
, Parent
(Anon_Id
));
5046 Set_Has_Completion
(Act_Decl_Id
);
5047 Set_Related_Instance
(Pack_Id
, Act_Decl_Id
);
5049 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5050 Set_Body_Required
(Parent
(N
), False);
5052 end Analyze_Instance_And_Renamings
;
5054 -------------------------------
5055 -- Build_Subprogram_Renaming --
5056 -------------------------------
5058 procedure Build_Subprogram_Renaming
is
5059 Renaming_Decl
: Node_Id
;
5060 Unit_Renaming
: Node_Id
;
5064 Make_Subprogram_Renaming_Declaration
(Loc
,
5067 (Specification
(Original_Node
(Gen_Decl
)),
5069 Instantiating
=> True),
5070 Name
=> New_Occurrence_Of
(Anon_Id
, Loc
));
5072 -- The generic may be a a child unit. The renaming needs an
5073 -- identifier with the proper name.
5075 Set_Defining_Unit_Name
(Specification
(Unit_Renaming
),
5076 Make_Defining_Identifier
(Loc
, Chars
(Gen_Unit
)));
5078 -- If there is a formal subprogram with the same name as the unit
5079 -- itself, do not add this renaming declaration, to prevent
5080 -- ambiguities when there is a call with that name in the body.
5081 -- This is a partial and ugly fix for one ACATS test. ???
5083 Renaming_Decl
:= First
(Renaming_List
);
5084 while Present
(Renaming_Decl
) loop
5085 if Nkind
(Renaming_Decl
) = N_Subprogram_Renaming_Declaration
5087 Chars
(Defining_Entity
(Renaming_Decl
)) = Chars
(Gen_Unit
)
5092 Next
(Renaming_Decl
);
5095 if No
(Renaming_Decl
) then
5096 Append
(Unit_Renaming
, Renaming_List
);
5098 end Build_Subprogram_Renaming
;
5102 Save_IPSM
: constant Boolean := Ignore_Pragma_SPARK_Mode
;
5103 -- Save flag Ignore_Pragma_SPARK_Mode for restore on exit
5105 Save_SM
: constant SPARK_Mode_Type
:= SPARK_Mode
;
5106 Save_SMP
: constant Node_Id
:= SPARK_Mode_Pragma
;
5107 -- Save the SPARK_Mode-related data for restore on exit
5109 Mode
: Ghost_Mode_Type
;
5110 Mode_Set
: Boolean := False;
5112 Vis_Prims_List
: Elist_Id
:= No_Elist
;
5113 -- List of primitives made temporarily visible in the instantiation
5114 -- to match the visibility of the formal type
5116 -- Start of processing for Analyze_Subprogram_Instantiation
5119 Check_SPARK_05_Restriction
("generic is not allowed", N
);
5121 -- Very first thing: check for special Text_IO unit in case we are
5122 -- instantiating one of the children of [[Wide_]Wide_]Text_IO. Of course
5123 -- such an instantiation is bogus (these are packages, not subprograms),
5124 -- but we get a better error message if we do this.
5126 Check_Text_IO_Special_Unit
(Gen_Id
);
5128 -- Make node global for error reporting
5130 Instantiation_Node
:= N
;
5132 -- For package instantiations we turn off style checks, because they
5133 -- will have been emitted in the generic. For subprogram instantiations
5134 -- we want to apply at least the check on overriding indicators so we
5135 -- do not modify the style check status.
5137 -- The renaming declarations for the actuals do not come from source and
5138 -- will not generate spurious warnings.
5140 Preanalyze_Actuals
(N
);
5143 Env_Installed
:= True;
5144 Check_Generic_Child_Unit
(Gen_Id
, Parent_Installed
);
5145 Gen_Unit
:= Entity
(Gen_Id
);
5147 -- A subprogram instantiation is Ghost when it is subject to pragma
5148 -- Ghost or the generic template is Ghost. Set the mode now to ensure
5149 -- that any nodes generated during analysis and expansion are marked as
5152 Mark_And_Set_Ghost_Instantiation
(N
, Gen_Unit
, Mode
);
5155 Generate_Reference
(Gen_Unit
, Gen_Id
);
5157 if Nkind
(Gen_Id
) = N_Identifier
5158 and then Chars
(Gen_Unit
) = Chars
(Defining_Entity
(N
))
5161 ("& is hidden within declaration of instance", Gen_Id
, Gen_Unit
);
5164 if Etype
(Gen_Unit
) = Any_Type
then
5169 -- Verify that it is a generic subprogram of the right kind, and that
5170 -- it does not lead to a circular instantiation.
5172 if K
= E_Procedure
and then Ekind
(Gen_Unit
) /= E_Generic_Procedure
then
5174 ("& is not the name of a generic procedure", Gen_Id
, Gen_Unit
);
5176 elsif K
= E_Function
and then Ekind
(Gen_Unit
) /= E_Generic_Function
then
5178 ("& is not the name of a generic function", Gen_Id
, Gen_Unit
);
5180 elsif In_Open_Scopes
(Gen_Unit
) then
5181 Error_Msg_NE
("instantiation of & within itself", N
, Gen_Unit
);
5184 -- If the context of the instance is subject to SPARK_Mode "off" or
5185 -- the annotation is altogether missing, set the global flag which
5186 -- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within
5189 if SPARK_Mode
/= On
then
5190 Ignore_Pragma_SPARK_Mode
:= True;
5193 Set_Entity
(Gen_Id
, Gen_Unit
);
5194 Set_Is_Instantiated
(Gen_Unit
);
5196 if In_Extended_Main_Source_Unit
(N
) then
5197 Generate_Reference
(Gen_Unit
, N
);
5200 -- If renaming, get original unit
5202 if Present
(Renamed_Object
(Gen_Unit
))
5203 and then Ekind_In
(Renamed_Object
(Gen_Unit
), E_Generic_Procedure
,
5206 Gen_Unit
:= Renamed_Object
(Gen_Unit
);
5207 Set_Is_Instantiated
(Gen_Unit
);
5208 Generate_Reference
(Gen_Unit
, N
);
5211 if Contains_Instance_Of
(Gen_Unit
, Current_Scope
, Gen_Id
) then
5212 Error_Msg_Node_2
:= Current_Scope
;
5214 ("circular Instantiation: & instantiated in &!", N
, Gen_Unit
);
5215 Circularity_Detected
:= True;
5216 Restore_Hidden_Primitives
(Vis_Prims_List
);
5220 Gen_Decl
:= Unit_Declaration_Node
(Gen_Unit
);
5222 -- Initialize renamings map, for error checking
5224 Generic_Renamings
.Set_Last
(0);
5225 Generic_Renamings_HTable
.Reset
;
5227 Create_Instantiation_Source
(N
, Gen_Unit
, S_Adjustment
);
5229 -- Copy original generic tree, to produce text for instantiation
5233 (Original_Node
(Gen_Decl
), Empty
, Instantiating
=> True);
5235 -- Inherit overriding indicator from instance node
5237 Act_Spec
:= Specification
(Act_Tree
);
5238 Set_Must_Override
(Act_Spec
, Must_Override
(N
));
5239 Set_Must_Not_Override
(Act_Spec
, Must_Not_Override
(N
));
5242 Analyze_Associations
5244 Formals
=> Generic_Formal_Declarations
(Act_Tree
),
5245 F_Copy
=> Generic_Formal_Declarations
(Gen_Decl
));
5247 Vis_Prims_List
:= Check_Hidden_Primitives
(Renaming_List
);
5249 -- The subprogram itself cannot contain a nested instance, so the
5250 -- current parent is left empty.
5252 Set_Instance_Env
(Gen_Unit
, Empty
);
5254 -- Build the subprogram declaration, which does not appear in the
5255 -- generic template, and give it a sloc consistent with that of the
5258 Set_Defining_Unit_Name
(Act_Spec
, Anon_Id
);
5259 Set_Generic_Parent
(Act_Spec
, Gen_Unit
);
5261 Make_Subprogram_Declaration
(Sloc
(Act_Spec
),
5262 Specification
=> Act_Spec
);
5264 -- The aspects have been copied previously, but they have to be
5265 -- linked explicitly to the new subprogram declaration. Explicit
5266 -- pre/postconditions on the instance are analyzed below, in a
5269 Move_Aspects
(Act_Tree
, To
=> Act_Decl
);
5270 Set_Categorization_From_Pragmas
(Act_Decl
);
5272 if Parent_Installed
then
5276 Append
(Act_Decl
, Renaming_List
);
5278 -- Contract-related source pragmas that follow a generic subprogram
5279 -- must be instantiated explicitly because they are not part of the
5280 -- subprogram template.
5282 Instantiate_Subprogram_Contract
5283 (Original_Node
(Gen_Decl
), Renaming_List
);
5285 Build_Subprogram_Renaming
;
5286 Analyze_Instance_And_Renamings
;
5288 -- If the generic is marked Import (Intrinsic), then so is the
5289 -- instance. This indicates that there is no body to instantiate. If
5290 -- generic is marked inline, so it the instance, and the anonymous
5291 -- subprogram it renames. If inlined, or else if inlining is enabled
5292 -- for the compilation, we generate the instance body even if it is
5293 -- not within the main unit.
5295 if Is_Intrinsic_Subprogram
(Gen_Unit
) then
5296 Set_Is_Intrinsic_Subprogram
(Anon_Id
);
5297 Set_Is_Intrinsic_Subprogram
(Act_Decl_Id
);
5299 if Chars
(Gen_Unit
) = Name_Unchecked_Conversion
then
5300 Validate_Unchecked_Conversion
(N
, Act_Decl_Id
);
5304 -- Inherit convention from generic unit. Intrinsic convention, as for
5305 -- an instance of unchecked conversion, is not inherited because an
5306 -- explicit Ada instance has been created.
5308 if Has_Convention_Pragma
(Gen_Unit
)
5309 and then Convention
(Gen_Unit
) /= Convention_Intrinsic
5311 Set_Convention
(Act_Decl_Id
, Convention
(Gen_Unit
));
5312 Set_Is_Exported
(Act_Decl_Id
, Is_Exported
(Gen_Unit
));
5315 Generate_Definition
(Act_Decl_Id
);
5317 -- Inherit all inlining-related flags which apply to the generic in
5318 -- the subprogram and its declaration.
5320 Set_Is_Inlined
(Act_Decl_Id
, Is_Inlined
(Gen_Unit
));
5321 Set_Is_Inlined
(Anon_Id
, Is_Inlined
(Gen_Unit
));
5323 Set_Has_Pragma_Inline
(Act_Decl_Id
, Has_Pragma_Inline
(Gen_Unit
));
5324 Set_Has_Pragma_Inline
(Anon_Id
, Has_Pragma_Inline
(Gen_Unit
));
5326 Set_Has_Pragma_Inline_Always
5327 (Act_Decl_Id
, Has_Pragma_Inline_Always
(Gen_Unit
));
5328 Set_Has_Pragma_Inline_Always
5329 (Anon_Id
, Has_Pragma_Inline_Always
(Gen_Unit
));
5331 if not Is_Intrinsic_Subprogram
(Gen_Unit
) then
5332 Check_Elab_Instantiation
(N
);
5335 if Is_Dispatching_Operation
(Act_Decl_Id
)
5336 and then Ada_Version
>= Ada_2005
5342 Formal
:= First_Formal
(Act_Decl_Id
);
5343 while Present
(Formal
) loop
5344 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
5345 and then Is_Controlling_Formal
(Formal
)
5346 and then not Can_Never_Be_Null
(Formal
)
5349 ("access parameter& is controlling,", N
, Formal
);
5351 ("\corresponding parameter of & must be explicitly "
5352 & "null-excluding", N
, Gen_Id
);
5355 Next_Formal
(Formal
);
5360 Check_Hidden_Child_Unit
(N
, Gen_Unit
, Act_Decl_Id
);
5362 Validate_Categorization_Dependency
(N
, Act_Decl_Id
);
5364 if not Is_Intrinsic_Subprogram
(Act_Decl_Id
) then
5365 Inherit_Context
(Gen_Decl
, N
);
5367 Restore_Private_Views
(Pack_Id
, False);
5369 -- If the context requires a full instantiation, mark node for
5370 -- subsequent construction of the body.
5372 if Need_Subprogram_Instance_Body
(N
, Act_Decl_Id
) then
5373 Check_Forward_Instantiation
(Gen_Decl
);
5375 -- The wrapper package is always delayed, because it does not
5376 -- constitute a freeze point, but to insure that the freeze node
5377 -- is placed properly, it is created directly when instantiating
5378 -- the body (otherwise the freeze node might appear to early for
5379 -- nested instantiations). For ASIS purposes, indicate that the
5380 -- wrapper package has replaced the instantiation node.
5382 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5383 Rewrite
(N
, Unit
(Parent
(N
)));
5384 Set_Unit
(Parent
(N
), N
);
5387 -- Replace instance node for library-level instantiations of
5388 -- intrinsic subprograms, for ASIS use.
5390 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
5391 Rewrite
(N
, Unit
(Parent
(N
)));
5392 Set_Unit
(Parent
(N
), N
);
5395 if Parent_Installed
then
5399 Restore_Hidden_Primitives
(Vis_Prims_List
);
5401 Env_Installed
:= False;
5402 Generic_Renamings
.Set_Last
(0);
5403 Generic_Renamings_HTable
.Reset
;
5405 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
5406 SPARK_Mode
:= Save_SM
;
5407 SPARK_Mode_Pragma
:= Save_SMP
;
5411 if Has_Aspects
(N
) then
5412 Analyze_Aspect_Specifications
(N
, Act_Decl_Id
);
5416 Restore_Ghost_Mode
(Mode
);
5420 when Instantiation_Error
=>
5421 if Parent_Installed
then
5425 if Env_Installed
then
5429 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
5430 SPARK_Mode
:= Save_SM
;
5431 SPARK_Mode_Pragma
:= Save_SMP
;
5434 Restore_Ghost_Mode
(Mode
);
5436 end Analyze_Subprogram_Instantiation
;
5438 -------------------------
5439 -- Get_Associated_Node --
5440 -------------------------
5442 function Get_Associated_Node
(N
: Node_Id
) return Node_Id
is
5446 Assoc
:= Associated_Node
(N
);
5448 if Nkind
(Assoc
) /= Nkind
(N
) then
5451 elsif Nkind_In
(Assoc
, N_Aggregate
, N_Extension_Aggregate
) then
5455 -- If the node is part of an inner generic, it may itself have been
5456 -- remapped into a further generic copy. Associated_Node is otherwise
5457 -- used for the entity of the node, and will be of a different node
5458 -- kind, or else N has been rewritten as a literal or function call.
5460 while Present
(Associated_Node
(Assoc
))
5461 and then Nkind
(Associated_Node
(Assoc
)) = Nkind
(Assoc
)
5463 Assoc
:= Associated_Node
(Assoc
);
5466 -- Follow and additional link in case the final node was rewritten.
5467 -- This can only happen with nested generic units.
5469 if (Nkind
(Assoc
) = N_Identifier
or else Nkind
(Assoc
) in N_Op
)
5470 and then Present
(Associated_Node
(Assoc
))
5471 and then (Nkind_In
(Associated_Node
(Assoc
), N_Function_Call
,
5472 N_Explicit_Dereference
,
5477 Assoc
:= Associated_Node
(Assoc
);
5480 -- An additional special case: an unconstrained type in an object
5481 -- declaration may have been rewritten as a local subtype constrained
5482 -- by the expression in the declaration. We need to recover the
5483 -- original entity which may be global.
5485 if Present
(Original_Node
(Assoc
))
5486 and then Nkind
(Parent
(N
)) = N_Object_Declaration
5488 Assoc
:= Original_Node
(Assoc
);
5493 end Get_Associated_Node
;
5495 ----------------------------
5496 -- Build_Function_Wrapper --
5497 ----------------------------
5499 function Build_Function_Wrapper
5500 (Formal_Subp
: Entity_Id
;
5501 Actual_Subp
: Entity_Id
) return Node_Id
5503 Loc
: constant Source_Ptr
:= Sloc
(Current_Scope
);
5504 Ret_Type
: constant Entity_Id
:= Get_Instance_Of
(Etype
(Formal_Subp
));
5507 Func_Name
: Node_Id
;
5509 Parm_Type
: Node_Id
;
5510 Profile
: List_Id
:= New_List
;
5517 Func_Name
:= New_Occurrence_Of
(Actual_Subp
, Loc
);
5519 Func
:= Make_Defining_Identifier
(Loc
, Chars
(Formal_Subp
));
5520 Set_Ekind
(Func
, E_Function
);
5521 Set_Is_Generic_Actual_Subprogram
(Func
);
5523 Actuals
:= New_List
;
5524 Profile
:= New_List
;
5526 Act_F
:= First_Formal
(Actual_Subp
);
5527 Form_F
:= First_Formal
(Formal_Subp
);
5528 while Present
(Form_F
) loop
5530 -- Create new formal for profile of wrapper, and add a reference
5531 -- to it in the list of actuals for the enclosing call. The name
5532 -- must be that of the formal in the formal subprogram, because
5533 -- calls to it in the generic body may use named associations.
5535 New_F
:= Make_Defining_Identifier
(Loc
, Chars
(Form_F
));
5538 New_Occurrence_Of
(Get_Instance_Of
(Etype
(Form_F
)), Loc
);
5541 Make_Parameter_Specification
(Loc
,
5542 Defining_Identifier
=> New_F
,
5543 Parameter_Type
=> Parm_Type
));
5545 Append_To
(Actuals
, New_Occurrence_Of
(New_F
, Loc
));
5546 Next_Formal
(Form_F
);
5548 if Present
(Act_F
) then
5549 Next_Formal
(Act_F
);
5554 Make_Function_Specification
(Loc
,
5555 Defining_Unit_Name
=> Func
,
5556 Parameter_Specifications
=> Profile
,
5557 Result_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
5560 Make_Expression_Function
(Loc
,
5561 Specification
=> Spec
,
5563 Make_Function_Call
(Loc
,
5565 Parameter_Associations
=> Actuals
));
5568 end Build_Function_Wrapper
;
5570 ----------------------------
5571 -- Build_Operator_Wrapper --
5572 ----------------------------
5574 function Build_Operator_Wrapper
5575 (Formal_Subp
: Entity_Id
;
5576 Actual_Subp
: Entity_Id
) return Node_Id
5578 Loc
: constant Source_Ptr
:= Sloc
(Current_Scope
);
5579 Ret_Type
: constant Entity_Id
:=
5580 Get_Instance_Of
(Etype
(Formal_Subp
));
5581 Op_Type
: constant Entity_Id
:=
5582 Get_Instance_Of
(Etype
(First_Formal
(Formal_Subp
)));
5583 Is_Binary
: constant Boolean :=
5584 Present
(Next_Formal
(First_Formal
(Formal_Subp
)));
5595 Op_Name
:= Chars
(Actual_Subp
);
5597 -- Create entities for wrapper function and its formals
5599 F1
:= Make_Temporary
(Loc
, 'A');
5600 F2
:= Make_Temporary
(Loc
, 'B');
5601 L
:= New_Occurrence_Of
(F1
, Loc
);
5602 R
:= New_Occurrence_Of
(F2
, Loc
);
5604 Func
:= Make_Defining_Identifier
(Loc
, Chars
(Formal_Subp
));
5605 Set_Ekind
(Func
, E_Function
);
5606 Set_Is_Generic_Actual_Subprogram
(Func
);
5609 Make_Function_Specification
(Loc
,
5610 Defining_Unit_Name
=> Func
,
5611 Parameter_Specifications
=> New_List
(
5612 Make_Parameter_Specification
(Loc
,
5613 Defining_Identifier
=> F1
,
5614 Parameter_Type
=> New_Occurrence_Of
(Op_Type
, Loc
))),
5615 Result_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
5618 Append_To
(Parameter_Specifications
(Spec
),
5619 Make_Parameter_Specification
(Loc
,
5620 Defining_Identifier
=> F2
,
5621 Parameter_Type
=> New_Occurrence_Of
(Op_Type
, Loc
)));
5624 -- Build expression as a function call, or as an operator node
5625 -- that corresponds to the name of the actual, starting with
5626 -- binary operators.
5628 if Op_Name
not in Any_Operator_Name
then
5630 Make_Function_Call
(Loc
,
5632 New_Occurrence_Of
(Actual_Subp
, Loc
),
5633 Parameter_Associations
=> New_List
(L
));
5636 Append_To
(Parameter_Associations
(Expr
), R
);
5641 elsif Is_Binary
then
5642 if Op_Name
= Name_Op_And
then
5643 Expr
:= Make_Op_And
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5644 elsif Op_Name
= Name_Op_Or
then
5645 Expr
:= Make_Op_Or
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5646 elsif Op_Name
= Name_Op_Xor
then
5647 Expr
:= Make_Op_Xor
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5648 elsif Op_Name
= Name_Op_Eq
then
5649 Expr
:= Make_Op_Eq
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5650 elsif Op_Name
= Name_Op_Ne
then
5651 Expr
:= Make_Op_Ne
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5652 elsif Op_Name
= Name_Op_Le
then
5653 Expr
:= Make_Op_Le
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5654 elsif Op_Name
= Name_Op_Gt
then
5655 Expr
:= Make_Op_Gt
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5656 elsif Op_Name
= Name_Op_Ge
then
5657 Expr
:= Make_Op_Ge
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5658 elsif Op_Name
= Name_Op_Lt
then
5659 Expr
:= Make_Op_Lt
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5660 elsif Op_Name
= Name_Op_Add
then
5661 Expr
:= Make_Op_Add
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5662 elsif Op_Name
= Name_Op_Subtract
then
5663 Expr
:= Make_Op_Subtract
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5664 elsif Op_Name
= Name_Op_Concat
then
5665 Expr
:= Make_Op_Concat
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5666 elsif Op_Name
= Name_Op_Multiply
then
5667 Expr
:= Make_Op_Multiply
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5668 elsif Op_Name
= Name_Op_Divide
then
5669 Expr
:= Make_Op_Divide
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5670 elsif Op_Name
= Name_Op_Mod
then
5671 Expr
:= Make_Op_Mod
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5672 elsif Op_Name
= Name_Op_Rem
then
5673 Expr
:= Make_Op_Rem
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5674 elsif Op_Name
= Name_Op_Expon
then
5675 Expr
:= Make_Op_Expon
(Loc
, Left_Opnd
=> L
, Right_Opnd
=> R
);
5681 if Op_Name
= Name_Op_Add
then
5682 Expr
:= Make_Op_Plus
(Loc
, Right_Opnd
=> L
);
5683 elsif Op_Name
= Name_Op_Subtract
then
5684 Expr
:= Make_Op_Minus
(Loc
, Right_Opnd
=> L
);
5685 elsif Op_Name
= Name_Op_Abs
then
5686 Expr
:= Make_Op_Abs
(Loc
, Right_Opnd
=> L
);
5687 elsif Op_Name
= Name_Op_Not
then
5688 Expr
:= Make_Op_Not
(Loc
, Right_Opnd
=> L
);
5693 Make_Expression_Function
(Loc
,
5694 Specification
=> Spec
,
5695 Expression
=> Expr
);
5698 end Build_Operator_Wrapper
;
5700 -------------------------------------------
5701 -- Build_Instance_Compilation_Unit_Nodes --
5702 -------------------------------------------
5704 procedure Build_Instance_Compilation_Unit_Nodes
5709 Decl_Cunit
: Node_Id
;
5710 Body_Cunit
: Node_Id
;
5712 New_Main
: constant Entity_Id
:= Defining_Entity
(Act_Decl
);
5713 Old_Main
: constant Entity_Id
:= Cunit_Entity
(Main_Unit
);
5716 -- A new compilation unit node is built for the instance declaration
5719 Make_Compilation_Unit
(Sloc
(N
),
5720 Context_Items
=> Empty_List
,
5722 Aux_Decls_Node
=> Make_Compilation_Unit_Aux
(Sloc
(N
)));
5724 Set_Parent_Spec
(Act_Decl
, Parent_Spec
(N
));
5726 -- The new compilation unit is linked to its body, but both share the
5727 -- same file, so we do not set Body_Required on the new unit so as not
5728 -- to create a spurious dependency on a non-existent body in the ali.
5729 -- This simplifies CodePeer unit traversal.
5731 -- We use the original instantiation compilation unit as the resulting
5732 -- compilation unit of the instance, since this is the main unit.
5734 Rewrite
(N
, Act_Body
);
5736 -- Propagate the aspect specifications from the package body template to
5737 -- the instantiated version of the package body.
5739 if Has_Aspects
(Act_Body
) then
5740 Set_Aspect_Specifications
5741 (N
, New_Copy_List_Tree
(Aspect_Specifications
(Act_Body
)));
5744 Body_Cunit
:= Parent
(N
);
5746 -- The two compilation unit nodes are linked by the Library_Unit field
5748 Set_Library_Unit
(Decl_Cunit
, Body_Cunit
);
5749 Set_Library_Unit
(Body_Cunit
, Decl_Cunit
);
5751 -- Preserve the private nature of the package if needed
5753 Set_Private_Present
(Decl_Cunit
, Private_Present
(Body_Cunit
));
5755 -- If the instance is not the main unit, its context, categorization
5756 -- and elaboration entity are not relevant to the compilation.
5758 if Body_Cunit
/= Cunit
(Main_Unit
) then
5759 Make_Instance_Unit
(Body_Cunit
, In_Main
=> False);
5763 -- The context clause items on the instantiation, which are now attached
5764 -- to the body compilation unit (since the body overwrote the original
5765 -- instantiation node), semantically belong on the spec, so copy them
5766 -- there. It's harmless to leave them on the body as well. In fact one
5767 -- could argue that they belong in both places.
5769 Citem
:= First
(Context_Items
(Body_Cunit
));
5770 while Present
(Citem
) loop
5771 Append
(New_Copy
(Citem
), Context_Items
(Decl_Cunit
));
5775 -- Propagate categorization flags on packages, so that they appear in
5776 -- the ali file for the spec of the unit.
5778 if Ekind
(New_Main
) = E_Package
then
5779 Set_Is_Pure
(Old_Main
, Is_Pure
(New_Main
));
5780 Set_Is_Preelaborated
(Old_Main
, Is_Preelaborated
(New_Main
));
5781 Set_Is_Remote_Types
(Old_Main
, Is_Remote_Types
(New_Main
));
5782 Set_Is_Shared_Passive
(Old_Main
, Is_Shared_Passive
(New_Main
));
5783 Set_Is_Remote_Call_Interface
5784 (Old_Main
, Is_Remote_Call_Interface
(New_Main
));
5787 -- Make entry in Units table, so that binder can generate call to
5788 -- elaboration procedure for body, if any.
5790 Make_Instance_Unit
(Body_Cunit
, In_Main
=> True);
5791 Main_Unit_Entity
:= New_Main
;
5792 Set_Cunit_Entity
(Main_Unit
, Main_Unit_Entity
);
5794 -- Build elaboration entity, since the instance may certainly generate
5795 -- elaboration code requiring a flag for protection.
5797 Build_Elaboration_Entity
(Decl_Cunit
, New_Main
);
5798 end Build_Instance_Compilation_Unit_Nodes
;
5800 -----------------------------
5801 -- Check_Access_Definition --
5802 -----------------------------
5804 procedure Check_Access_Definition
(N
: Node_Id
) is
5807 (Ada_Version
>= Ada_2005
and then Present
(Access_Definition
(N
)));
5809 end Check_Access_Definition
;
5811 -----------------------------------
5812 -- Check_Formal_Package_Instance --
5813 -----------------------------------
5815 -- If the formal has specific parameters, they must match those of the
5816 -- actual. Both of them are instances, and the renaming declarations for
5817 -- their formal parameters appear in the same order in both. The analyzed
5818 -- formal has been analyzed in the context of the current instance.
5820 procedure Check_Formal_Package_Instance
5821 (Formal_Pack
: Entity_Id
;
5822 Actual_Pack
: Entity_Id
)
5824 E1
: Entity_Id
:= First_Entity
(Actual_Pack
);
5825 E2
: Entity_Id
:= First_Entity
(Formal_Pack
);
5826 Prev_E1
: Entity_Id
;
5831 procedure Check_Mismatch
(B
: Boolean);
5832 -- Common error routine for mismatch between the parameters of the
5833 -- actual instance and those of the formal package.
5835 function Same_Instantiated_Constant
(E1
, E2
: Entity_Id
) return Boolean;
5836 -- The formal may come from a nested formal package, and the actual may
5837 -- have been constant-folded. To determine whether the two denote the
5838 -- same entity we may have to traverse several definitions to recover
5839 -- the ultimate entity that they refer to.
5841 function Same_Instantiated_Function
(E1
, E2
: Entity_Id
) return Boolean;
5842 -- The formal and the actual must be identical, but if both are
5843 -- given by attributes they end up renaming different generated bodies,
5844 -- and we must verify that the attributes themselves match.
5846 function Same_Instantiated_Variable
(E1
, E2
: Entity_Id
) return Boolean;
5847 -- Similarly, if the formal comes from a nested formal package, the
5848 -- actual may designate the formal through multiple renamings, which
5849 -- have to be followed to determine the original variable in question.
5851 --------------------
5852 -- Check_Mismatch --
5853 --------------------
5855 procedure Check_Mismatch
(B
: Boolean) is
5856 -- A Formal_Type_Declaration for a derived private type is rewritten
5857 -- as a private extension decl. (see Analyze_Formal_Derived_Type),
5858 -- which is why we examine the original node.
5860 Kind
: constant Node_Kind
:= Nkind
(Original_Node
(Parent
(E2
)));
5863 if Kind
= N_Formal_Type_Declaration
then
5866 elsif Nkind_In
(Kind
, N_Formal_Object_Declaration
,
5867 N_Formal_Package_Declaration
)
5868 or else Kind
in N_Formal_Subprogram_Declaration
5872 -- Ada 2012: If both formal and actual are incomplete types they
5875 elsif Is_Incomplete_Type
(E1
) and then Is_Incomplete_Type
(E2
) then
5880 ("actual for & in actual instance does not match formal",
5881 Parent
(Actual_Pack
), E1
);
5885 --------------------------------
5886 -- Same_Instantiated_Constant --
5887 --------------------------------
5889 function Same_Instantiated_Constant
5890 (E1
, E2
: Entity_Id
) return Boolean
5896 while Present
(Ent
) loop
5900 elsif Ekind
(Ent
) /= E_Constant
then
5903 elsif Is_Entity_Name
(Constant_Value
(Ent
)) then
5904 if Entity
(Constant_Value
(Ent
)) = E1
then
5907 Ent
:= Entity
(Constant_Value
(Ent
));
5910 -- The actual may be a constant that has been folded. Recover
5913 elsif Is_Entity_Name
(Original_Node
(Constant_Value
(Ent
))) then
5914 Ent
:= Entity
(Original_Node
(Constant_Value
(Ent
)));
5922 end Same_Instantiated_Constant
;
5924 --------------------------------
5925 -- Same_Instantiated_Function --
5926 --------------------------------
5928 function Same_Instantiated_Function
5929 (E1
, E2
: Entity_Id
) return Boolean
5933 if Alias
(E1
) = Alias
(E2
) then
5936 elsif Present
(Alias
(E2
)) then
5937 U1
:= Original_Node
(Unit_Declaration_Node
(E1
));
5938 U2
:= Original_Node
(Unit_Declaration_Node
(Alias
(E2
)));
5940 return Nkind
(U1
) = N_Subprogram_Renaming_Declaration
5941 and then Nkind
(Name
(U1
)) = N_Attribute_Reference
5943 and then Nkind
(U2
) = N_Subprogram_Renaming_Declaration
5944 and then Nkind
(Name
(U2
)) = N_Attribute_Reference
5947 Attribute_Name
(Name
(U1
)) = Attribute_Name
(Name
(U2
));
5951 end Same_Instantiated_Function
;
5953 --------------------------------
5954 -- Same_Instantiated_Variable --
5955 --------------------------------
5957 function Same_Instantiated_Variable
5958 (E1
, E2
: Entity_Id
) return Boolean
5960 function Original_Entity
(E
: Entity_Id
) return Entity_Id
;
5961 -- Follow chain of renamings to the ultimate ancestor
5963 ---------------------
5964 -- Original_Entity --
5965 ---------------------
5967 function Original_Entity
(E
: Entity_Id
) return Entity_Id
is
5972 while Nkind
(Parent
(Orig
)) = N_Object_Renaming_Declaration
5973 and then Present
(Renamed_Object
(Orig
))
5974 and then Is_Entity_Name
(Renamed_Object
(Orig
))
5976 Orig
:= Entity
(Renamed_Object
(Orig
));
5980 end Original_Entity
;
5982 -- Start of processing for Same_Instantiated_Variable
5985 return Ekind
(E1
) = Ekind
(E2
)
5986 and then Original_Entity
(E1
) = Original_Entity
(E2
);
5987 end Same_Instantiated_Variable
;
5989 -- Start of processing for Check_Formal_Package_Instance
5993 while Present
(E1
) and then Present
(E2
) loop
5994 exit when Ekind
(E1
) = E_Package
5995 and then Renamed_Entity
(E1
) = Renamed_Entity
(Actual_Pack
);
5997 -- If the formal is the renaming of the formal package, this
5998 -- is the end of its formal part, which may occur before the
5999 -- end of the formal part in the actual in the presence of
6000 -- defaulted parameters in the formal package.
6002 exit when Nkind
(Parent
(E2
)) = N_Package_Renaming_Declaration
6003 and then Renamed_Entity
(E2
) = Scope
(E2
);
6005 -- The analysis of the actual may generate additional internal
6006 -- entities. If the formal is defaulted, there is no corresponding
6007 -- analysis and the internal entities must be skipped, until we
6008 -- find corresponding entities again.
6010 if Comes_From_Source
(E2
)
6011 and then not Comes_From_Source
(E1
)
6012 and then Chars
(E1
) /= Chars
(E2
)
6014 while Present
(E1
) and then Chars
(E1
) /= Chars
(E2
) loop
6022 -- Entities may be declared without full declaration, such as
6023 -- itypes and predefined operators (concatenation for arrays, eg).
6024 -- Skip it and keep the formal entity to find a later match for it.
6026 elsif No
(Parent
(E2
)) and then Ekind
(E1
) /= Ekind
(E2
) then
6030 -- If the formal entity comes from a formal declaration, it was
6031 -- defaulted in the formal package, and no check is needed on it.
6033 elsif Nkind_In
(Original_Node
(Parent
(E2
)),
6034 N_Formal_Object_Declaration
,
6035 N_Formal_Type_Declaration
)
6037 -- If the formal is a tagged type the corresponding class-wide
6038 -- type has been generated as well, and it must be skipped.
6040 if Is_Type
(E2
) and then Is_Tagged_Type
(E2
) then
6046 -- Ditto for defaulted formal subprograms.
6048 elsif Is_Overloadable
(E1
)
6049 and then Nkind
(Unit_Declaration_Node
(E2
)) in
6050 N_Formal_Subprogram_Declaration
6054 elsif Is_Type
(E1
) then
6056 -- Subtypes must statically match. E1, E2 are the local entities
6057 -- that are subtypes of the actuals. Itypes generated for other
6058 -- parameters need not be checked, the check will be performed
6059 -- on the parameters themselves.
6061 -- If E2 is a formal type declaration, it is a defaulted parameter
6062 -- and needs no checking.
6064 if not Is_Itype
(E1
) and then not Is_Itype
(E2
) then
6067 or else Etype
(E1
) /= Etype
(E2
)
6068 or else not Subtypes_Statically_Match
(E1
, E2
));
6071 elsif Ekind
(E1
) = E_Constant
then
6073 -- IN parameters must denote the same static value, or the same
6074 -- constant, or the literal null.
6076 Expr1
:= Expression
(Parent
(E1
));
6078 if Ekind
(E2
) /= E_Constant
then
6079 Check_Mismatch
(True);
6082 Expr2
:= Expression
(Parent
(E2
));
6085 if Is_OK_Static_Expression
(Expr1
) then
6086 if not Is_OK_Static_Expression
(Expr2
) then
6087 Check_Mismatch
(True);
6089 elsif Is_Discrete_Type
(Etype
(E1
)) then
6091 V1
: constant Uint
:= Expr_Value
(Expr1
);
6092 V2
: constant Uint
:= Expr_Value
(Expr2
);
6094 Check_Mismatch
(V1
/= V2
);
6097 elsif Is_Real_Type
(Etype
(E1
)) then
6099 V1
: constant Ureal
:= Expr_Value_R
(Expr1
);
6100 V2
: constant Ureal
:= Expr_Value_R
(Expr2
);
6102 Check_Mismatch
(V1
/= V2
);
6105 elsif Is_String_Type
(Etype
(E1
))
6106 and then Nkind
(Expr1
) = N_String_Literal
6108 if Nkind
(Expr2
) /= N_String_Literal
then
6109 Check_Mismatch
(True);
6112 (not String_Equal
(Strval
(Expr1
), Strval
(Expr2
)));
6116 elsif Is_Entity_Name
(Expr1
) then
6117 if Is_Entity_Name
(Expr2
) then
6118 if Entity
(Expr1
) = Entity
(Expr2
) then
6122 (not Same_Instantiated_Constant
6123 (Entity
(Expr1
), Entity
(Expr2
)));
6127 Check_Mismatch
(True);
6130 elsif Is_Entity_Name
(Original_Node
(Expr1
))
6131 and then Is_Entity_Name
(Expr2
)
6132 and then Same_Instantiated_Constant
6133 (Entity
(Original_Node
(Expr1
)), Entity
(Expr2
))
6137 elsif Nkind
(Expr1
) = N_Null
then
6138 Check_Mismatch
(Nkind
(Expr1
) /= N_Null
);
6141 Check_Mismatch
(True);
6144 elsif Ekind
(E1
) = E_Variable
then
6145 Check_Mismatch
(not Same_Instantiated_Variable
(E1
, E2
));
6147 elsif Ekind
(E1
) = E_Package
then
6149 (Ekind
(E1
) /= Ekind
(E2
)
6150 or else Renamed_Object
(E1
) /= Renamed_Object
(E2
));
6152 elsif Is_Overloadable
(E1
) then
6154 -- Verify that the actual subprograms match. Note that actuals
6155 -- that are attributes are rewritten as subprograms. If the
6156 -- subprogram in the formal package is defaulted, no check is
6157 -- needed. Note that this can only happen in Ada 2005 when the
6158 -- formal package can be partially parameterized.
6160 if Nkind
(Unit_Declaration_Node
(E1
)) =
6161 N_Subprogram_Renaming_Declaration
6162 and then From_Default
(Unit_Declaration_Node
(E1
))
6166 -- If the formal package has an "others" box association that
6167 -- covers this formal, there is no need for a check either.
6169 elsif Nkind
(Unit_Declaration_Node
(E2
)) in
6170 N_Formal_Subprogram_Declaration
6171 and then Box_Present
(Unit_Declaration_Node
(E2
))
6175 -- No check needed if subprogram is a defaulted null procedure
6177 elsif No
(Alias
(E2
))
6178 and then Ekind
(E2
) = E_Procedure
6180 Null_Present
(Specification
(Unit_Declaration_Node
(E2
)))
6184 -- Otherwise the actual in the formal and the actual in the
6185 -- instantiation of the formal must match, up to renamings.
6189 (Ekind
(E2
) /= Ekind
(E1
)
6190 or else not Same_Instantiated_Function
(E1
, E2
));
6194 raise Program_Error
;
6202 end Check_Formal_Package_Instance
;
6204 ---------------------------
6205 -- Check_Formal_Packages --
6206 ---------------------------
6208 procedure Check_Formal_Packages
(P_Id
: Entity_Id
) is
6210 Formal_P
: Entity_Id
;
6211 Formal_Decl
: Node_Id
;
6214 -- Iterate through the declarations in the instance, looking for package
6215 -- renaming declarations that denote instances of formal packages. Stop
6216 -- when we find the renaming of the current package itself. The
6217 -- declaration for a formal package without a box is followed by an
6218 -- internal entity that repeats the instantiation.
6220 E
:= First_Entity
(P_Id
);
6221 while Present
(E
) loop
6222 if Ekind
(E
) = E_Package
then
6223 if Renamed_Object
(E
) = P_Id
then
6226 elsif Nkind
(Parent
(E
)) /= N_Package_Renaming_Declaration
then
6230 Formal_Decl
:= Parent
(Associated_Formal_Package
(E
));
6232 -- Nothing to check if the formal has a box or an others_clause
6233 -- (necessarily with a box).
6235 if Box_Present
(Formal_Decl
) then
6238 elsif Nkind
(First
(Generic_Associations
(Formal_Decl
))) =
6241 -- The internal validating package was generated but formal
6242 -- and instance are known to be compatible.
6244 Formal_P
:= Next_Entity
(E
);
6245 Remove
(Unit_Declaration_Node
(Formal_P
));
6248 Formal_P
:= Next_Entity
(E
);
6249 Check_Formal_Package_Instance
(Formal_P
, E
);
6251 -- After checking, remove the internal validating package.
6252 -- It is only needed for semantic checks, and as it may
6253 -- contain generic formal declarations it should not reach
6256 Remove
(Unit_Declaration_Node
(Formal_P
));
6263 end Check_Formal_Packages
;
6265 ---------------------------------
6266 -- Check_Forward_Instantiation --
6267 ---------------------------------
6269 procedure Check_Forward_Instantiation
(Decl
: Node_Id
) is
6271 Gen_Comp
: Entity_Id
:= Cunit_Entity
(Get_Source_Unit
(Decl
));
6274 -- The instantiation appears before the generic body if we are in the
6275 -- scope of the unit containing the generic, either in its spec or in
6276 -- the package body, and before the generic body.
6278 if Ekind
(Gen_Comp
) = E_Package_Body
then
6279 Gen_Comp
:= Spec_Entity
(Gen_Comp
);
6282 if In_Open_Scopes
(Gen_Comp
)
6283 and then No
(Corresponding_Body
(Decl
))
6288 and then not Is_Compilation_Unit
(S
)
6289 and then not Is_Child_Unit
(S
)
6291 if Ekind
(S
) = E_Package
then
6292 Set_Has_Forward_Instantiation
(S
);
6298 end Check_Forward_Instantiation
;
6300 ---------------------------
6301 -- Check_Generic_Actuals --
6302 ---------------------------
6304 -- The visibility of the actuals may be different between the point of
6305 -- generic instantiation and the instantiation of the body.
6307 procedure Check_Generic_Actuals
6308 (Instance
: Entity_Id
;
6309 Is_Formal_Box
: Boolean)
6314 function Denotes_Previous_Actual
(Typ
: Entity_Id
) return Boolean;
6315 -- For a formal that is an array type, the component type is often a
6316 -- previous formal in the same unit. The privacy status of the component
6317 -- type will have been examined earlier in the traversal of the
6318 -- corresponding actuals, and this status should not be modified for
6319 -- the array (sub)type itself. However, if the base type of the array
6320 -- (sub)type is private, its full view must be restored in the body to
6321 -- be consistent with subsequent index subtypes, etc.
6323 -- To detect this case we have to rescan the list of formals, which is
6324 -- usually short enough to ignore the resulting inefficiency.
6326 -----------------------------
6327 -- Denotes_Previous_Actual --
6328 -----------------------------
6330 function Denotes_Previous_Actual
(Typ
: Entity_Id
) return Boolean is
6334 Prev
:= First_Entity
(Instance
);
6335 while Present
(Prev
) loop
6337 and then Nkind
(Parent
(Prev
)) = N_Subtype_Declaration
6338 and then Is_Entity_Name
(Subtype_Indication
(Parent
(Prev
)))
6339 and then Entity
(Subtype_Indication
(Parent
(Prev
))) = Typ
6352 end Denotes_Previous_Actual
;
6354 -- Start of processing for Check_Generic_Actuals
6357 E
:= First_Entity
(Instance
);
6358 while Present
(E
) loop
6360 and then Nkind
(Parent
(E
)) = N_Subtype_Declaration
6361 and then Scope
(Etype
(E
)) /= Instance
6362 and then Is_Entity_Name
(Subtype_Indication
(Parent
(E
)))
6364 if Is_Array_Type
(E
)
6365 and then not Is_Private_Type
(Etype
(E
))
6366 and then Denotes_Previous_Actual
(Component_Type
(E
))
6370 Check_Private_View
(Subtype_Indication
(Parent
(E
)));
6373 Set_Is_Generic_Actual_Type
(E
, True);
6374 Set_Is_Hidden
(E
, False);
6375 Set_Is_Potentially_Use_Visible
(E
, In_Use
(Instance
));
6377 -- We constructed the generic actual type as a subtype of the
6378 -- supplied type. This means that it normally would not inherit
6379 -- subtype specific attributes of the actual, which is wrong for
6380 -- the generic case.
6382 Astype
:= Ancestor_Subtype
(E
);
6386 -- This can happen when E is an itype that is the full view of
6387 -- a private type completed, e.g. with a constrained array. In
6388 -- that case, use the first subtype, which will carry size
6389 -- information. The base type itself is unconstrained and will
6392 Astype
:= First_Subtype
(E
);
6395 Set_Size_Info
(E
, (Astype
));
6396 Set_RM_Size
(E
, RM_Size
(Astype
));
6397 Set_First_Rep_Item
(E
, First_Rep_Item
(Astype
));
6399 if Is_Discrete_Or_Fixed_Point_Type
(E
) then
6400 Set_RM_Size
(E
, RM_Size
(Astype
));
6402 -- In nested instances, the base type of an access actual may
6403 -- itself be private, and need to be exchanged.
6405 elsif Is_Access_Type
(E
)
6406 and then Is_Private_Type
(Etype
(E
))
6409 (New_Occurrence_Of
(Etype
(E
), Sloc
(Instance
)));
6412 elsif Ekind
(E
) = E_Package
then
6414 -- If this is the renaming for the current instance, we're done.
6415 -- Otherwise it is a formal package. If the corresponding formal
6416 -- was declared with a box, the (instantiations of the) generic
6417 -- formal part are also visible. Otherwise, ignore the entity
6418 -- created to validate the actuals.
6420 if Renamed_Object
(E
) = Instance
then
6423 elsif Nkind
(Parent
(E
)) /= N_Package_Renaming_Declaration
then
6426 -- The visibility of a formal of an enclosing generic is already
6429 elsif Denotes_Formal_Package
(E
) then
6432 elsif Present
(Associated_Formal_Package
(E
))
6433 and then not Is_Generic_Formal
(E
)
6435 if Box_Present
(Parent
(Associated_Formal_Package
(E
))) then
6436 Check_Generic_Actuals
(Renamed_Object
(E
), True);
6439 Check_Generic_Actuals
(Renamed_Object
(E
), False);
6442 Set_Is_Hidden
(E
, False);
6445 -- If this is a subprogram instance (in a wrapper package) the
6446 -- actual is fully visible.
6448 elsif Is_Wrapper_Package
(Instance
) then
6449 Set_Is_Hidden
(E
, False);
6451 -- If the formal package is declared with a box, or if the formal
6452 -- parameter is defaulted, it is visible in the body.
6454 elsif Is_Formal_Box
or else Is_Visible_Formal
(E
) then
6455 Set_Is_Hidden
(E
, False);
6458 if Ekind
(E
) = E_Constant
then
6460 -- If the type of the actual is a private type declared in the
6461 -- enclosing scope of the generic unit, the body of the generic
6462 -- sees the full view of the type (because it has to appear in
6463 -- the corresponding package body). If the type is private now,
6464 -- exchange views to restore the proper visiblity in the instance.
6467 Typ
: constant Entity_Id
:= Base_Type
(Etype
(E
));
6468 -- The type of the actual
6473 Parent_Scope
: Entity_Id
;
6474 -- The enclosing scope of the generic unit
6477 if Is_Wrapper_Package
(Instance
) then
6481 (Unit_Declaration_Node
6482 (Related_Instance
(Instance
))));
6485 Generic_Parent
(Package_Specification
(Instance
));
6488 Parent_Scope
:= Scope
(Gen_Id
);
6490 -- The exchange is only needed if the generic is defined
6491 -- within a package which is not a common ancestor of the
6492 -- scope of the instance, and is not already in scope.
6494 if Is_Private_Type
(Typ
)
6495 and then Scope
(Typ
) = Parent_Scope
6496 and then Scope
(Instance
) /= Parent_Scope
6497 and then Ekind
(Parent_Scope
) = E_Package
6498 and then not Is_Child_Unit
(Gen_Id
)
6502 -- If the type of the entity is a subtype, it may also have
6503 -- to be made visible, together with the base type of its
6504 -- full view, after exchange.
6506 if Is_Private_Type
(Etype
(E
)) then
6507 Switch_View
(Etype
(E
));
6508 Switch_View
(Base_Type
(Etype
(E
)));
6516 end Check_Generic_Actuals
;
6518 ------------------------------
6519 -- Check_Generic_Child_Unit --
6520 ------------------------------
6522 procedure Check_Generic_Child_Unit
6524 Parent_Installed
: in out Boolean)
6526 Loc
: constant Source_Ptr
:= Sloc
(Gen_Id
);
6527 Gen_Par
: Entity_Id
:= Empty
;
6529 Inst_Par
: Entity_Id
;
6532 function Find_Generic_Child
6534 Id
: Node_Id
) return Entity_Id
;
6535 -- Search generic parent for possible child unit with the given name
6537 function In_Enclosing_Instance
return Boolean;
6538 -- Within an instance of the parent, the child unit may be denoted by
6539 -- a simple name, or an abbreviated expanded name. Examine enclosing
6540 -- scopes to locate a possible parent instantiation.
6542 ------------------------
6543 -- Find_Generic_Child --
6544 ------------------------
6546 function Find_Generic_Child
6548 Id
: Node_Id
) return Entity_Id
6553 -- If entity of name is already set, instance has already been
6554 -- resolved, e.g. in an enclosing instantiation.
6556 if Present
(Entity
(Id
)) then
6557 if Scope
(Entity
(Id
)) = Scop
then
6564 E
:= First_Entity
(Scop
);
6565 while Present
(E
) loop
6566 if Chars
(E
) = Chars
(Id
)
6567 and then Is_Child_Unit
(E
)
6569 if Is_Child_Unit
(E
)
6570 and then not Is_Visible_Lib_Unit
(E
)
6573 ("generic child unit& is not visible", Gen_Id
, E
);
6585 end Find_Generic_Child
;
6587 ---------------------------
6588 -- In_Enclosing_Instance --
6589 ---------------------------
6591 function In_Enclosing_Instance
return Boolean is
6592 Enclosing_Instance
: Node_Id
;
6593 Instance_Decl
: Node_Id
;
6596 -- We do not inline any call that contains instantiations, except
6597 -- for instantiations of Unchecked_Conversion, so if we are within
6598 -- an inlined body the current instance does not require parents.
6600 if In_Inlined_Body
then
6601 pragma Assert
(Chars
(Gen_Id
) = Name_Unchecked_Conversion
);
6605 -- Loop to check enclosing scopes
6607 Enclosing_Instance
:= Current_Scope
;
6608 while Present
(Enclosing_Instance
) loop
6609 Instance_Decl
:= Unit_Declaration_Node
(Enclosing_Instance
);
6611 if Ekind
(Enclosing_Instance
) = E_Package
6612 and then Is_Generic_Instance
(Enclosing_Instance
)
6614 (Generic_Parent
(Specification
(Instance_Decl
)))
6616 -- Check whether the generic we are looking for is a child of
6619 E
:= Find_Generic_Child
6620 (Generic_Parent
(Specification
(Instance_Decl
)), Gen_Id
);
6621 exit when Present
(E
);
6627 Enclosing_Instance
:= Scope
(Enclosing_Instance
);
6639 Make_Expanded_Name
(Loc
,
6641 Prefix
=> New_Occurrence_Of
(Enclosing_Instance
, Loc
),
6642 Selector_Name
=> New_Occurrence_Of
(E
, Loc
)));
6644 Set_Entity
(Gen_Id
, E
);
6645 Set_Etype
(Gen_Id
, Etype
(E
));
6646 Parent_Installed
:= False; -- Already in scope.
6649 end In_Enclosing_Instance
;
6651 -- Start of processing for Check_Generic_Child_Unit
6654 -- If the name of the generic is given by a selected component, it may
6655 -- be the name of a generic child unit, and the prefix is the name of an
6656 -- instance of the parent, in which case the child unit must be visible.
6657 -- If this instance is not in scope, it must be placed there and removed
6658 -- after instantiation, because what is being instantiated is not the
6659 -- original child, but the corresponding child present in the instance
6662 -- If the child is instantiated within the parent, it can be given by
6663 -- a simple name. In this case the instance is already in scope, but
6664 -- the child generic must be recovered from the generic parent as well.
6666 if Nkind
(Gen_Id
) = N_Selected_Component
then
6667 S
:= Selector_Name
(Gen_Id
);
6668 Analyze
(Prefix
(Gen_Id
));
6669 Inst_Par
:= Entity
(Prefix
(Gen_Id
));
6671 if Ekind
(Inst_Par
) = E_Package
6672 and then Present
(Renamed_Object
(Inst_Par
))
6674 Inst_Par
:= Renamed_Object
(Inst_Par
);
6677 if Ekind
(Inst_Par
) = E_Package
then
6678 if Nkind
(Parent
(Inst_Par
)) = N_Package_Specification
then
6679 Gen_Par
:= Generic_Parent
(Parent
(Inst_Par
));
6681 elsif Nkind
(Parent
(Inst_Par
)) = N_Defining_Program_Unit_Name
6683 Nkind
(Parent
(Parent
(Inst_Par
))) = N_Package_Specification
6685 Gen_Par
:= Generic_Parent
(Parent
(Parent
(Inst_Par
)));
6688 elsif Ekind
(Inst_Par
) = E_Generic_Package
6689 and then Nkind
(Parent
(Gen_Id
)) = N_Formal_Package_Declaration
6691 -- A formal package may be a real child package, and not the
6692 -- implicit instance within a parent. In this case the child is
6693 -- not visible and has to be retrieved explicitly as well.
6695 Gen_Par
:= Inst_Par
;
6698 if Present
(Gen_Par
) then
6700 -- The prefix denotes an instantiation. The entity itself may be a
6701 -- nested generic, or a child unit.
6703 E
:= Find_Generic_Child
(Gen_Par
, S
);
6706 Change_Selected_Component_To_Expanded_Name
(Gen_Id
);
6707 Set_Entity
(Gen_Id
, E
);
6708 Set_Etype
(Gen_Id
, Etype
(E
));
6710 Set_Etype
(S
, Etype
(E
));
6712 -- Indicate that this is a reference to the parent
6714 if In_Extended_Main_Source_Unit
(Gen_Id
) then
6715 Set_Is_Instantiated
(Inst_Par
);
6718 -- A common mistake is to replicate the naming scheme of a
6719 -- hierarchy by instantiating a generic child directly, rather
6720 -- than the implicit child in a parent instance:
6722 -- generic .. package Gpar is ..
6723 -- generic .. package Gpar.Child is ..
6724 -- package Par is new Gpar ();
6727 -- package Par.Child is new Gpar.Child ();
6728 -- rather than Par.Child
6730 -- In this case the instantiation is within Par, which is an
6731 -- instance, but Gpar does not denote Par because we are not IN
6732 -- the instance of Gpar, so this is illegal. The test below
6733 -- recognizes this particular case.
6735 if Is_Child_Unit
(E
)
6736 and then not Comes_From_Source
(Entity
(Prefix
(Gen_Id
)))
6737 and then (not In_Instance
6738 or else Nkind
(Parent
(Parent
(Gen_Id
))) =
6742 ("prefix of generic child unit must be instance of parent",
6746 if not In_Open_Scopes
(Inst_Par
)
6747 and then Nkind
(Parent
(Gen_Id
)) not in
6748 N_Generic_Renaming_Declaration
6750 Install_Parent
(Inst_Par
);
6751 Parent_Installed
:= True;
6753 elsif In_Open_Scopes
(Inst_Par
) then
6755 -- If the parent is already installed, install the actuals
6756 -- for its formal packages. This is necessary when the child
6757 -- instance is a child of the parent instance: in this case,
6758 -- the parent is placed on the scope stack but the formal
6759 -- packages are not made visible.
6761 Install_Formal_Packages
(Inst_Par
);
6765 -- If the generic parent does not contain an entity that
6766 -- corresponds to the selector, the instance doesn't either.
6767 -- Analyzing the node will yield the appropriate error message.
6768 -- If the entity is not a child unit, then it is an inner
6769 -- generic in the parent.
6777 if Is_Child_Unit
(Entity
(Gen_Id
))
6779 Nkind
(Parent
(Gen_Id
)) not in N_Generic_Renaming_Declaration
6780 and then not In_Open_Scopes
(Inst_Par
)
6782 Install_Parent
(Inst_Par
);
6783 Parent_Installed
:= True;
6785 -- The generic unit may be the renaming of the implicit child
6786 -- present in an instance. In that case the parent instance is
6787 -- obtained from the name of the renamed entity.
6789 elsif Ekind
(Entity
(Gen_Id
)) = E_Generic_Package
6790 and then Present
(Renamed_Entity
(Entity
(Gen_Id
)))
6791 and then Is_Child_Unit
(Renamed_Entity
(Entity
(Gen_Id
)))
6794 Renamed_Package
: constant Node_Id
:=
6795 Name
(Parent
(Entity
(Gen_Id
)));
6797 if Nkind
(Renamed_Package
) = N_Expanded_Name
then
6798 Inst_Par
:= Entity
(Prefix
(Renamed_Package
));
6799 Install_Parent
(Inst_Par
);
6800 Parent_Installed
:= True;
6806 elsif Nkind
(Gen_Id
) = N_Expanded_Name
then
6808 -- Entity already present, analyze prefix, whose meaning may be an
6809 -- instance in the current context. If it is an instance of a
6810 -- relative within another, the proper parent may still have to be
6811 -- installed, if they are not of the same generation.
6813 Analyze
(Prefix
(Gen_Id
));
6815 -- Prevent cascaded errors
6817 if Etype
(Prefix
(Gen_Id
)) = Any_Type
then
6821 -- In the unlikely case that a local declaration hides the name of
6822 -- the parent package, locate it on the homonym chain. If the context
6823 -- is an instance of the parent, the renaming entity is flagged as
6826 Inst_Par
:= Entity
(Prefix
(Gen_Id
));
6827 while Present
(Inst_Par
)
6828 and then not Is_Package_Or_Generic_Package
(Inst_Par
)
6830 Inst_Par
:= Homonym
(Inst_Par
);
6833 pragma Assert
(Present
(Inst_Par
));
6834 Set_Entity
(Prefix
(Gen_Id
), Inst_Par
);
6836 if In_Enclosing_Instance
then
6839 elsif Present
(Entity
(Gen_Id
))
6840 and then Is_Child_Unit
(Entity
(Gen_Id
))
6841 and then not In_Open_Scopes
(Inst_Par
)
6843 Install_Parent
(Inst_Par
);
6844 Parent_Installed
:= True;
6847 elsif In_Enclosing_Instance
then
6849 -- The child unit is found in some enclosing scope
6856 -- If this is the renaming of the implicit child in a parent
6857 -- instance, recover the parent name and install it.
6859 if Is_Entity_Name
(Gen_Id
) then
6860 E
:= Entity
(Gen_Id
);
6862 if Is_Generic_Unit
(E
)
6863 and then Nkind
(Parent
(E
)) in N_Generic_Renaming_Declaration
6864 and then Is_Child_Unit
(Renamed_Object
(E
))
6865 and then Is_Generic_Unit
(Scope
(Renamed_Object
(E
)))
6866 and then Nkind
(Name
(Parent
(E
))) = N_Expanded_Name
6868 Rewrite
(Gen_Id
, New_Copy_Tree
(Name
(Parent
(E
))));
6869 Inst_Par
:= Entity
(Prefix
(Gen_Id
));
6871 if not In_Open_Scopes
(Inst_Par
) then
6872 Install_Parent
(Inst_Par
);
6873 Parent_Installed
:= True;
6876 -- If it is a child unit of a non-generic parent, it may be
6877 -- use-visible and given by a direct name. Install parent as
6880 elsif Is_Generic_Unit
(E
)
6881 and then Is_Child_Unit
(E
)
6883 Nkind
(Parent
(Gen_Id
)) not in N_Generic_Renaming_Declaration
6884 and then not Is_Generic_Unit
(Scope
(E
))
6886 if not In_Open_Scopes
(Scope
(E
)) then
6887 Install_Parent
(Scope
(E
));
6888 Parent_Installed
:= True;
6893 end Check_Generic_Child_Unit
;
6895 -----------------------------
6896 -- Check_Hidden_Child_Unit --
6897 -----------------------------
6899 procedure Check_Hidden_Child_Unit
6901 Gen_Unit
: Entity_Id
;
6902 Act_Decl_Id
: Entity_Id
)
6904 Gen_Id
: constant Node_Id
:= Name
(N
);
6907 if Is_Child_Unit
(Gen_Unit
)
6908 and then Is_Child_Unit
(Act_Decl_Id
)
6909 and then Nkind
(Gen_Id
) = N_Expanded_Name
6910 and then Entity
(Prefix
(Gen_Id
)) = Scope
(Act_Decl_Id
)
6911 and then Chars
(Gen_Unit
) = Chars
(Act_Decl_Id
)
6913 Error_Msg_Node_2
:= Scope
(Act_Decl_Id
);
6915 ("generic unit & is implicitly declared in &",
6916 Defining_Unit_Name
(N
), Gen_Unit
);
6917 Error_Msg_N
("\instance must have different name",
6918 Defining_Unit_Name
(N
));
6920 end Check_Hidden_Child_Unit
;
6922 ------------------------
6923 -- Check_Private_View --
6924 ------------------------
6926 procedure Check_Private_View
(N
: Node_Id
) is
6927 T
: constant Entity_Id
:= Etype
(N
);
6931 -- Exchange views if the type was not private in the generic but is
6932 -- private at the point of instantiation. Do not exchange views if
6933 -- the scope of the type is in scope. This can happen if both generic
6934 -- and instance are sibling units, or if type is defined in a parent.
6935 -- In this case the visibility of the type will be correct for all
6939 BT
:= Base_Type
(T
);
6941 if Is_Private_Type
(T
)
6942 and then not Has_Private_View
(N
)
6943 and then Present
(Full_View
(T
))
6944 and then not In_Open_Scopes
(Scope
(T
))
6946 -- In the generic, the full type was visible. Save the private
6947 -- entity, for subsequent exchange.
6951 elsif Has_Private_View
(N
)
6952 and then not Is_Private_Type
(T
)
6953 and then not Has_Been_Exchanged
(T
)
6954 and then Etype
(Get_Associated_Node
(N
)) /= T
6956 -- Only the private declaration was visible in the generic. If
6957 -- the type appears in a subtype declaration, the subtype in the
6958 -- instance must have a view compatible with that of its parent,
6959 -- which must be exchanged (see corresponding code in Restore_
6960 -- Private_Views). Otherwise, if the type is defined in a parent
6961 -- unit, leave full visibility within instance, which is safe.
6963 if In_Open_Scopes
(Scope
(Base_Type
(T
)))
6964 and then not Is_Private_Type
(Base_Type
(T
))
6965 and then Comes_From_Source
(Base_Type
(T
))
6969 elsif Nkind
(Parent
(N
)) = N_Subtype_Declaration
6970 or else not In_Private_Part
(Scope
(Base_Type
(T
)))
6972 Prepend_Elmt
(T
, Exchanged_Views
);
6973 Exchange_Declarations
(Etype
(Get_Associated_Node
(N
)));
6976 -- For composite types with inconsistent representation exchange
6977 -- component types accordingly.
6979 elsif Is_Access_Type
(T
)
6980 and then Is_Private_Type
(Designated_Type
(T
))
6981 and then not Has_Private_View
(N
)
6982 and then Present
(Full_View
(Designated_Type
(T
)))
6984 Switch_View
(Designated_Type
(T
));
6986 elsif Is_Array_Type
(T
) then
6987 if Is_Private_Type
(Component_Type
(T
))
6988 and then not Has_Private_View
(N
)
6989 and then Present
(Full_View
(Component_Type
(T
)))
6991 Switch_View
(Component_Type
(T
));
6994 -- The normal exchange mechanism relies on the setting of a
6995 -- flag on the reference in the generic. However, an additional
6996 -- mechanism is needed for types that are not explicitly
6997 -- mentioned in the generic, but may be needed in expanded code
6998 -- in the instance. This includes component types of arrays and
6999 -- designated types of access types. This processing must also
7000 -- include the index types of arrays which we take care of here.
7007 Indx
:= First_Index
(T
);
7008 while Present
(Indx
) loop
7009 Typ
:= Base_Type
(Etype
(Indx
));
7011 if Is_Private_Type
(Typ
)
7012 and then Present
(Full_View
(Typ
))
7021 elsif Is_Private_Type
(T
)
7022 and then Present
(Full_View
(T
))
7023 and then Is_Array_Type
(Full_View
(T
))
7024 and then Is_Private_Type
(Component_Type
(Full_View
(T
)))
7028 -- Finally, a non-private subtype may have a private base type, which
7029 -- must be exchanged for consistency. This can happen when a package
7030 -- body is instantiated, when the scope stack is empty but in fact
7031 -- the subtype and the base type are declared in an enclosing scope.
7033 -- Note that in this case we introduce an inconsistency in the view
7034 -- set, because we switch the base type BT, but there could be some
7035 -- private dependent subtypes of BT which remain unswitched. Such
7036 -- subtypes might need to be switched at a later point (see specific
7037 -- provision for that case in Switch_View).
7039 elsif not Is_Private_Type
(T
)
7040 and then not Has_Private_View
(N
)
7041 and then Is_Private_Type
(BT
)
7042 and then Present
(Full_View
(BT
))
7043 and then not Is_Generic_Type
(BT
)
7044 and then not In_Open_Scopes
(BT
)
7046 Prepend_Elmt
(Full_View
(BT
), Exchanged_Views
);
7047 Exchange_Declarations
(BT
);
7050 end Check_Private_View
;
7052 -----------------------------
7053 -- Check_Hidden_Primitives --
7054 -----------------------------
7056 function Check_Hidden_Primitives
(Assoc_List
: List_Id
) return Elist_Id
is
7059 Result
: Elist_Id
:= No_Elist
;
7062 if No
(Assoc_List
) then
7066 -- Traverse the list of associations between formals and actuals
7067 -- searching for renamings of tagged types
7069 Actual
:= First
(Assoc_List
);
7070 while Present
(Actual
) loop
7071 if Nkind
(Actual
) = N_Subtype_Declaration
then
7072 Gen_T
:= Generic_Parent_Type
(Actual
);
7074 if Present
(Gen_T
) and then Is_Tagged_Type
(Gen_T
) then
7076 -- Traverse the list of primitives of the actual types
7077 -- searching for hidden primitives that are visible in the
7078 -- corresponding generic formal; leave them visible and
7079 -- append them to Result to restore their decoration later.
7081 Install_Hidden_Primitives
7082 (Prims_List
=> Result
,
7084 Act_T
=> Entity
(Subtype_Indication
(Actual
)));
7092 end Check_Hidden_Primitives
;
7094 --------------------------
7095 -- Contains_Instance_Of --
7096 --------------------------
7098 function Contains_Instance_Of
7101 N
: Node_Id
) return Boolean
7109 -- Verify that there are no circular instantiations. We check whether
7110 -- the unit contains an instance of the current scope or some enclosing
7111 -- scope (in case one of the instances appears in a subunit). Longer
7112 -- circularities involving subunits might seem too pathological to
7113 -- consider, but they were not too pathological for the authors of
7114 -- DEC bc30vsq, so we loop over all enclosing scopes, and mark all
7115 -- enclosing generic scopes as containing an instance.
7118 -- Within a generic subprogram body, the scope is not generic, to
7119 -- allow for recursive subprograms. Use the declaration to determine
7120 -- whether this is a generic unit.
7122 if Ekind
(Scop
) = E_Generic_Package
7123 or else (Is_Subprogram
(Scop
)
7124 and then Nkind
(Unit_Declaration_Node
(Scop
)) =
7125 N_Generic_Subprogram_Declaration
)
7127 Elmt
:= First_Elmt
(Inner_Instances
(Inner
));
7129 while Present
(Elmt
) loop
7130 if Node
(Elmt
) = Scop
then
7131 Error_Msg_Node_2
:= Inner
;
7133 ("circular Instantiation: & instantiated within &!",
7137 elsif Node
(Elmt
) = Inner
then
7140 elsif Contains_Instance_Of
(Node
(Elmt
), Scop
, N
) then
7141 Error_Msg_Node_2
:= Inner
;
7143 ("circular Instantiation: & instantiated within &!",
7151 -- Indicate that Inner is being instantiated within Scop
7153 Append_Elmt
(Inner
, Inner_Instances
(Scop
));
7156 if Scop
= Standard_Standard
then
7159 Scop
:= Scope
(Scop
);
7164 end Contains_Instance_Of
;
7166 -----------------------
7167 -- Copy_Generic_Node --
7168 -----------------------
7170 function Copy_Generic_Node
7172 Parent_Id
: Node_Id
;
7173 Instantiating
: Boolean) return Node_Id
7178 function Copy_Generic_Descendant
(D
: Union_Id
) return Union_Id
;
7179 -- Check the given value of one of the Fields referenced by the current
7180 -- node to determine whether to copy it recursively. The field may hold
7181 -- a Node_Id, a List_Id, or an Elist_Id, or a plain value (Sloc, Uint,
7182 -- Char) in which case it need not be copied.
7184 procedure Copy_Descendants
;
7185 -- Common utility for various nodes
7187 function Copy_Generic_Elist
(E
: Elist_Id
) return Elist_Id
;
7188 -- Make copy of element list
7190 function Copy_Generic_List
7192 Parent_Id
: Node_Id
) return List_Id
;
7193 -- Apply Copy_Node recursively to the members of a node list
7195 function In_Defining_Unit_Name
(Nam
: Node_Id
) return Boolean;
7196 -- True if an identifier is part of the defining program unit name of
7197 -- a child unit. The entity of such an identifier must be kept (for
7198 -- ASIS use) even though as the name of an enclosing generic it would
7199 -- otherwise not be preserved in the generic tree.
7201 ----------------------
7202 -- Copy_Descendants --
7203 ----------------------
7205 procedure Copy_Descendants
is
7206 use Atree
.Unchecked_Access
;
7207 -- This code section is part of the implementation of an untyped
7208 -- tree traversal, so it needs direct access to node fields.
7211 Set_Field1
(New_N
, Copy_Generic_Descendant
(Field1
(N
)));
7212 Set_Field2
(New_N
, Copy_Generic_Descendant
(Field2
(N
)));
7213 Set_Field3
(New_N
, Copy_Generic_Descendant
(Field3
(N
)));
7214 Set_Field4
(New_N
, Copy_Generic_Descendant
(Field4
(N
)));
7215 Set_Field5
(New_N
, Copy_Generic_Descendant
(Field5
(N
)));
7216 end Copy_Descendants
;
7218 -----------------------------
7219 -- Copy_Generic_Descendant --
7220 -----------------------------
7222 function Copy_Generic_Descendant
(D
: Union_Id
) return Union_Id
is
7224 if D
= Union_Id
(Empty
) then
7227 elsif D
in Node_Range
then
7229 (Copy_Generic_Node
(Node_Id
(D
), New_N
, Instantiating
));
7231 elsif D
in List_Range
then
7232 return Union_Id
(Copy_Generic_List
(List_Id
(D
), New_N
));
7234 elsif D
in Elist_Range
then
7235 return Union_Id
(Copy_Generic_Elist
(Elist_Id
(D
)));
7237 -- Nothing else is copyable (e.g. Uint values), return as is
7242 end Copy_Generic_Descendant
;
7244 ------------------------
7245 -- Copy_Generic_Elist --
7246 ------------------------
7248 function Copy_Generic_Elist
(E
: Elist_Id
) return Elist_Id
is
7255 M
:= First_Elmt
(E
);
7256 while Present
(M
) loop
7258 (Copy_Generic_Node
(Node
(M
), Empty
, Instantiating
), L
);
7267 end Copy_Generic_Elist
;
7269 -----------------------
7270 -- Copy_Generic_List --
7271 -----------------------
7273 function Copy_Generic_List
7275 Parent_Id
: Node_Id
) return List_Id
7283 Set_Parent
(New_L
, Parent_Id
);
7286 while Present
(N
) loop
7287 Append
(Copy_Generic_Node
(N
, Empty
, Instantiating
), New_L
);
7296 end Copy_Generic_List
;
7298 ---------------------------
7299 -- In_Defining_Unit_Name --
7300 ---------------------------
7302 function In_Defining_Unit_Name
(Nam
: Node_Id
) return Boolean is
7305 Present
(Parent
(Nam
))
7306 and then (Nkind
(Parent
(Nam
)) = N_Defining_Program_Unit_Name
7308 (Nkind
(Parent
(Nam
)) = N_Expanded_Name
7309 and then In_Defining_Unit_Name
(Parent
(Nam
))));
7310 end In_Defining_Unit_Name
;
7312 -- Start of processing for Copy_Generic_Node
7319 New_N
:= New_Copy
(N
);
7321 -- Copy aspects if present
7323 if Has_Aspects
(N
) then
7324 Set_Has_Aspects
(New_N
, False);
7325 Set_Aspect_Specifications
7326 (New_N
, Copy_Generic_List
(Aspect_Specifications
(N
), Parent_Id
));
7329 if Instantiating
then
7330 Adjust_Instantiation_Sloc
(New_N
, S_Adjustment
);
7333 if not Is_List_Member
(N
) then
7334 Set_Parent
(New_N
, Parent_Id
);
7337 -- Special casing for identifiers and other entity names and operators
7339 if Nkind_In
(New_N
, N_Character_Literal
,
7343 or else Nkind
(New_N
) in N_Op
7345 if not Instantiating
then
7347 -- Link both nodes in order to assign subsequently the entity of
7348 -- the copy to the original node, in case this is a global
7351 Set_Associated_Node
(N
, New_N
);
7353 -- If we are within an instantiation, this is a nested generic
7354 -- that has already been analyzed at the point of definition.
7355 -- We must preserve references that were global to the enclosing
7356 -- parent at that point. Other occurrences, whether global or
7357 -- local to the current generic, must be resolved anew, so we
7358 -- reset the entity in the generic copy. A global reference has a
7359 -- smaller depth than the parent, or else the same depth in case
7360 -- both are distinct compilation units.
7362 -- A child unit is implicitly declared within the enclosing parent
7363 -- but is in fact global to it, and must be preserved.
7365 -- It is also possible for Current_Instantiated_Parent to be
7366 -- defined, and for this not to be a nested generic, namely if
7367 -- the unit is loaded through Rtsfind. In that case, the entity of
7368 -- New_N is only a link to the associated node, and not a defining
7371 -- The entities for parent units in the defining_program_unit of a
7372 -- generic child unit are established when the context of the unit
7373 -- is first analyzed, before the generic copy is made. They are
7374 -- preserved in the copy for use in ASIS queries.
7376 Ent
:= Entity
(New_N
);
7378 if No
(Current_Instantiated_Parent
.Gen_Id
) then
7380 or else Nkind
(Ent
) /= N_Defining_Identifier
7381 or else not In_Defining_Unit_Name
(N
)
7383 Set_Associated_Node
(New_N
, Empty
);
7388 not Nkind_In
(Ent
, N_Defining_Identifier
,
7389 N_Defining_Character_Literal
,
7390 N_Defining_Operator_Symbol
)
7391 or else No
(Scope
(Ent
))
7393 (Scope
(Ent
) = Current_Instantiated_Parent
.Gen_Id
7394 and then not Is_Child_Unit
(Ent
))
7396 (Scope_Depth
(Scope
(Ent
)) >
7397 Scope_Depth
(Current_Instantiated_Parent
.Gen_Id
)
7399 Get_Source_Unit
(Ent
) =
7400 Get_Source_Unit
(Current_Instantiated_Parent
.Gen_Id
))
7402 Set_Associated_Node
(New_N
, Empty
);
7405 -- Case of instantiating identifier or some other name or operator
7408 -- If the associated node is still defined, the entity in it
7409 -- is global, and must be copied to the instance. If this copy
7410 -- is being made for a body to inline, it is applied to an
7411 -- instantiated tree, and the entity is already present and
7412 -- must be also preserved.
7415 Assoc
: constant Node_Id
:= Get_Associated_Node
(N
);
7418 if Present
(Assoc
) then
7419 if Nkind
(Assoc
) = Nkind
(N
) then
7420 Set_Entity
(New_N
, Entity
(Assoc
));
7421 Check_Private_View
(N
);
7423 -- The node is a reference to a global type and acts as the
7424 -- subtype mark of a qualified expression created in order
7425 -- to aid resolution of accidental overloading in instances.
7426 -- Since N is a reference to a type, the Associated_Node of
7427 -- N denotes an entity rather than another identifier. See
7428 -- Qualify_Universal_Operands for details.
7430 elsif Nkind
(N
) = N_Identifier
7431 and then Nkind
(Parent
(N
)) = N_Qualified_Expression
7432 and then Subtype_Mark
(Parent
(N
)) = N
7433 and then Is_Qualified_Universal_Literal
(Parent
(N
))
7435 Set_Entity
(New_N
, Assoc
);
7437 -- The name in the call may be a selected component if the
7438 -- call has not been analyzed yet, as may be the case for
7439 -- pre/post conditions in a generic unit.
7441 elsif Nkind
(Assoc
) = N_Function_Call
7442 and then Is_Entity_Name
(Name
(Assoc
))
7444 Set_Entity
(New_N
, Entity
(Name
(Assoc
)));
7446 elsif Nkind_In
(Assoc
, N_Defining_Identifier
,
7447 N_Defining_Character_Literal
,
7448 N_Defining_Operator_Symbol
)
7449 and then Expander_Active
7451 -- Inlining case: we are copying a tree that contains
7452 -- global entities, which are preserved in the copy to be
7453 -- used for subsequent inlining.
7458 Set_Entity
(New_N
, Empty
);
7464 -- For expanded name, we must copy the Prefix and Selector_Name
7466 if Nkind
(N
) = N_Expanded_Name
then
7468 (New_N
, Copy_Generic_Node
(Prefix
(N
), New_N
, Instantiating
));
7470 Set_Selector_Name
(New_N
,
7471 Copy_Generic_Node
(Selector_Name
(N
), New_N
, Instantiating
));
7473 -- For operators, we must copy the right operand
7475 elsif Nkind
(N
) in N_Op
then
7476 Set_Right_Opnd
(New_N
,
7477 Copy_Generic_Node
(Right_Opnd
(N
), New_N
, Instantiating
));
7479 -- And for binary operators, the left operand as well
7481 if Nkind
(N
) in N_Binary_Op
then
7482 Set_Left_Opnd
(New_N
,
7483 Copy_Generic_Node
(Left_Opnd
(N
), New_N
, Instantiating
));
7487 -- Establish a link between an entity from the generic template and the
7488 -- corresponding entity in the generic copy to be analyzed.
7490 elsif Nkind
(N
) in N_Entity
then
7491 if not Instantiating
then
7492 Set_Associated_Entity
(N
, New_N
);
7495 -- Clear any existing link the copy may inherit from the replicated
7496 -- generic template entity.
7498 Set_Associated_Entity
(New_N
, Empty
);
7500 -- Special casing for stubs
7502 elsif Nkind
(N
) in N_Body_Stub
then
7504 -- In any case, we must copy the specification or defining
7505 -- identifier as appropriate.
7507 if Nkind
(N
) = N_Subprogram_Body_Stub
then
7508 Set_Specification
(New_N
,
7509 Copy_Generic_Node
(Specification
(N
), New_N
, Instantiating
));
7512 Set_Defining_Identifier
(New_N
,
7514 (Defining_Identifier
(N
), New_N
, Instantiating
));
7517 -- If we are not instantiating, then this is where we load and
7518 -- analyze subunits, i.e. at the point where the stub occurs. A
7519 -- more permissive system might defer this analysis to the point
7520 -- of instantiation, but this seems too complicated for now.
7522 if not Instantiating
then
7524 Subunit_Name
: constant Unit_Name_Type
:= Get_Unit_Name
(N
);
7526 Unum
: Unit_Number_Type
;
7530 -- Make sure that, if it is a subunit of the main unit that is
7531 -- preprocessed and if -gnateG is specified, the preprocessed
7532 -- file will be written.
7534 Lib
.Analysing_Subunit_Of_Main
:=
7535 Lib
.In_Extended_Main_Source_Unit
(N
);
7538 (Load_Name
=> Subunit_Name
,
7542 Lib
.Analysing_Subunit_Of_Main
:= False;
7544 -- If the proper body is not found, a warning message will be
7545 -- emitted when analyzing the stub, or later at the point of
7546 -- instantiation. Here we just leave the stub as is.
7548 if Unum
= No_Unit
then
7549 Subunits_Missing
:= True;
7550 goto Subunit_Not_Found
;
7553 Subunit
:= Cunit
(Unum
);
7555 if Nkind
(Unit
(Subunit
)) /= N_Subunit
then
7557 ("found child unit instead of expected SEPARATE subunit",
7559 Error_Msg_Sloc
:= Sloc
(N
);
7560 Error_Msg_N
("\to complete stub #", Subunit
);
7561 goto Subunit_Not_Found
;
7564 -- We must create a generic copy of the subunit, in order to
7565 -- perform semantic analysis on it, and we must replace the
7566 -- stub in the original generic unit with the subunit, in order
7567 -- to preserve non-local references within.
7569 -- Only the proper body needs to be copied. Library_Unit and
7570 -- context clause are simply inherited by the generic copy.
7571 -- Note that the copy (which may be recursive if there are
7572 -- nested subunits) must be done first, before attaching it to
7573 -- the enclosing generic.
7577 (Proper_Body
(Unit
(Subunit
)),
7578 Empty
, Instantiating
=> False);
7580 -- Now place the original proper body in the original generic
7581 -- unit. This is a body, not a compilation unit.
7583 Rewrite
(N
, Proper_Body
(Unit
(Subunit
)));
7584 Set_Is_Compilation_Unit
(Defining_Entity
(N
), False);
7585 Set_Was_Originally_Stub
(N
);
7587 -- Finally replace the body of the subunit with its copy, and
7588 -- make this new subunit into the library unit of the generic
7589 -- copy, which does not have stubs any longer.
7591 Set_Proper_Body
(Unit
(Subunit
), New_Body
);
7592 Set_Library_Unit
(New_N
, Subunit
);
7593 Inherit_Context
(Unit
(Subunit
), N
);
7596 -- If we are instantiating, this must be an error case, since
7597 -- otherwise we would have replaced the stub node by the proper body
7598 -- that corresponds. So just ignore it in the copy (i.e. we have
7599 -- copied it, and that is good enough).
7605 <<Subunit_Not_Found
>> null;
7607 -- If the node is a compilation unit, it is the subunit of a stub, which
7608 -- has been loaded already (see code below). In this case, the library
7609 -- unit field of N points to the parent unit (which is a compilation
7610 -- unit) and need not (and cannot) be copied.
7612 -- When the proper body of the stub is analyzed, the library_unit link
7613 -- is used to establish the proper context (see sem_ch10).
7615 -- The other fields of a compilation unit are copied as usual
7617 elsif Nkind
(N
) = N_Compilation_Unit
then
7619 -- This code can only be executed when not instantiating, because in
7620 -- the copy made for an instantiation, the compilation unit node has
7621 -- disappeared at the point that a stub is replaced by its proper
7624 pragma Assert
(not Instantiating
);
7626 Set_Context_Items
(New_N
,
7627 Copy_Generic_List
(Context_Items
(N
), New_N
));
7630 Copy_Generic_Node
(Unit
(N
), New_N
, False));
7632 Set_First_Inlined_Subprogram
(New_N
,
7634 (First_Inlined_Subprogram
(N
), New_N
, False));
7636 Set_Aux_Decls_Node
(New_N
,
7637 Copy_Generic_Node
(Aux_Decls_Node
(N
), New_N
, False));
7639 -- For an assignment node, the assignment is known to be semantically
7640 -- legal if we are instantiating the template. This avoids incorrect
7641 -- diagnostics in generated code.
7643 elsif Nkind
(N
) = N_Assignment_Statement
then
7645 -- Copy name and expression fields in usual manner
7648 Copy_Generic_Node
(Name
(N
), New_N
, Instantiating
));
7650 Set_Expression
(New_N
,
7651 Copy_Generic_Node
(Expression
(N
), New_N
, Instantiating
));
7653 if Instantiating
then
7654 Set_Assignment_OK
(Name
(New_N
), True);
7657 elsif Nkind_In
(N
, N_Aggregate
, N_Extension_Aggregate
) then
7658 if not Instantiating
then
7659 Set_Associated_Node
(N
, New_N
);
7662 if Present
(Get_Associated_Node
(N
))
7663 and then Nkind
(Get_Associated_Node
(N
)) = Nkind
(N
)
7665 -- In the generic the aggregate has some composite type. If at
7666 -- the point of instantiation the type has a private view,
7667 -- install the full view (and that of its ancestors, if any).
7670 T
: Entity_Id
:= (Etype
(Get_Associated_Node
(New_N
)));
7674 if Present
(T
) and then Is_Private_Type
(T
) then
7679 and then Is_Tagged_Type
(T
)
7680 and then Is_Derived_Type
(T
)
7682 Rt
:= Root_Type
(T
);
7687 if Is_Private_Type
(T
) then
7698 -- Do not copy the associated node, which points to the generic copy
7699 -- of the aggregate.
7702 use Atree
.Unchecked_Access
;
7703 -- This code section is part of the implementation of an untyped
7704 -- tree traversal, so it needs direct access to node fields.
7707 Set_Field1
(New_N
, Copy_Generic_Descendant
(Field1
(N
)));
7708 Set_Field2
(New_N
, Copy_Generic_Descendant
(Field2
(N
)));
7709 Set_Field3
(New_N
, Copy_Generic_Descendant
(Field3
(N
)));
7710 Set_Field5
(New_N
, Copy_Generic_Descendant
(Field5
(N
)));
7713 -- Allocators do not have an identifier denoting the access type, so we
7714 -- must locate it through the expression to check whether the views are
7717 elsif Nkind
(N
) = N_Allocator
7718 and then Nkind
(Expression
(N
)) = N_Qualified_Expression
7719 and then Is_Entity_Name
(Subtype_Mark
(Expression
(N
)))
7720 and then Instantiating
7723 T
: constant Node_Id
:=
7724 Get_Associated_Node
(Subtype_Mark
(Expression
(N
)));
7730 -- Retrieve the allocator node in the generic copy
7732 Acc_T
:= Etype
(Parent
(Parent
(T
)));
7734 if Present
(Acc_T
) and then Is_Private_Type
(Acc_T
) then
7735 Switch_View
(Acc_T
);
7742 -- For a proper body, we must catch the case of a proper body that
7743 -- replaces a stub. This represents the point at which a separate
7744 -- compilation unit, and hence template file, may be referenced, so we
7745 -- must make a new source instantiation entry for the template of the
7746 -- subunit, and ensure that all nodes in the subunit are adjusted using
7747 -- this new source instantiation entry.
7749 elsif Nkind
(N
) in N_Proper_Body
then
7751 Save_Adjustment
: constant Sloc_Adjustment
:= S_Adjustment
;
7754 if Instantiating
and then Was_Originally_Stub
(N
) then
7755 Create_Instantiation_Source
7756 (Instantiation_Node
,
7757 Defining_Entity
(N
),
7761 -- Now copy the fields of the proper body, using the new
7762 -- adjustment factor if one was needed as per test above.
7766 -- Restore the original adjustment factor in case changed
7768 S_Adjustment
:= Save_Adjustment
;
7771 elsif Nkind
(N
) = N_Pragma
and then Instantiating
then
7773 -- Do not copy Comment or Ident pragmas their content is relevant to
7774 -- the generic unit, not to the instantiating unit.
7776 if Nam_In
(Pragma_Name_Unmapped
(N
), Name_Comment
, Name_Ident
) then
7777 New_N
:= Make_Null_Statement
(Sloc
(N
));
7779 -- Do not copy pragmas generated from aspects because the pragmas do
7780 -- not carry any semantic information, plus they will be regenerated
7783 -- However, generating C we need to copy them since postconditions
7784 -- are inlined by the front end, and the front-end inlining machinery
7785 -- relies on this routine to perform inlining.
7787 elsif From_Aspect_Specification
(N
)
7788 and then not Modify_Tree_For_C
7790 New_N
:= Make_Null_Statement
(Sloc
(N
));
7796 elsif Nkind_In
(N
, N_Integer_Literal
, N_Real_Literal
) then
7798 -- No descendant fields need traversing
7802 elsif Nkind
(N
) = N_String_Literal
7803 and then Present
(Etype
(N
))
7804 and then Instantiating
7806 -- If the string is declared in an outer scope, the string_literal
7807 -- subtype created for it may have the wrong scope. Force reanalysis
7808 -- of the constant to generate a new itype in the proper context.
7810 Set_Etype
(New_N
, Empty
);
7811 Set_Analyzed
(New_N
, False);
7813 -- For the remaining nodes, copy their descendants recursively
7818 if Instantiating
and then Nkind
(N
) = N_Subprogram_Body
then
7819 Set_Generic_Parent
(Specification
(New_N
), N
);
7821 -- Should preserve Corresponding_Spec??? (12.3(14))
7825 -- Propagate dimensions if present, so that they are reflected in the
7828 if Nkind
(N
) in N_Has_Etype
7829 and then (Nkind
(N
) in N_Op
or else Is_Entity_Name
(N
))
7830 and then Present
(Etype
(N
))
7831 and then Is_Floating_Point_Type
(Etype
(N
))
7832 and then Has_Dimension_System
(Etype
(N
))
7834 Copy_Dimensions
(N
, New_N
);
7838 end Copy_Generic_Node
;
7840 ----------------------------
7841 -- Denotes_Formal_Package --
7842 ----------------------------
7844 function Denotes_Formal_Package
7846 On_Exit
: Boolean := False;
7847 Instance
: Entity_Id
:= Empty
) return Boolean
7850 Scop
: constant Entity_Id
:= Scope
(Pack
);
7853 function Is_Actual_Of_Previous_Formal
(P
: Entity_Id
) return Boolean;
7854 -- The package in question may be an actual for a previous formal
7855 -- package P of the current instance, so examine its actuals as well.
7856 -- This must be recursive over other formal packages.
7858 ----------------------------------
7859 -- Is_Actual_Of_Previous_Formal --
7860 ----------------------------------
7862 function Is_Actual_Of_Previous_Formal
(P
: Entity_Id
) return Boolean is
7866 E1
:= First_Entity
(P
);
7867 while Present
(E1
) and then E1
/= Instance
loop
7868 if Ekind
(E1
) = E_Package
7869 and then Nkind
(Parent
(E1
)) = N_Package_Renaming_Declaration
7871 if Renamed_Object
(E1
) = Pack
then
7874 elsif E1
= P
or else Renamed_Object
(E1
) = P
then
7877 elsif Is_Actual_Of_Previous_Formal
(E1
) then
7886 end Is_Actual_Of_Previous_Formal
;
7888 -- Start of processing for Denotes_Formal_Package
7894 (Instance_Envs
.Last
).Instantiated_Parent
.Act_Id
;
7896 Par
:= Current_Instantiated_Parent
.Act_Id
;
7899 if Ekind
(Scop
) = E_Generic_Package
7900 or else Nkind
(Unit_Declaration_Node
(Scop
)) =
7901 N_Generic_Subprogram_Declaration
7905 elsif Nkind
(Original_Node
(Unit_Declaration_Node
(Pack
))) =
7906 N_Formal_Package_Declaration
7914 -- Check whether this package is associated with a formal package of
7915 -- the enclosing instantiation. Iterate over the list of renamings.
7917 E
:= First_Entity
(Par
);
7918 while Present
(E
) loop
7919 if Ekind
(E
) /= E_Package
7920 or else Nkind
(Parent
(E
)) /= N_Package_Renaming_Declaration
7924 elsif Renamed_Object
(E
) = Par
then
7927 elsif Renamed_Object
(E
) = Pack
then
7930 elsif Is_Actual_Of_Previous_Formal
(E
) then
7940 end Denotes_Formal_Package
;
7946 procedure End_Generic
is
7948 -- ??? More things could be factored out in this routine. Should
7949 -- probably be done at a later stage.
7951 Inside_A_Generic
:= Generic_Flags
.Table
(Generic_Flags
.Last
);
7952 Generic_Flags
.Decrement_Last
;
7954 Expander_Mode_Restore
;
7961 function Earlier
(N1
, N2
: Node_Id
) return Boolean is
7962 procedure Find_Depth
(P
: in out Node_Id
; D
: in out Integer);
7963 -- Find distance from given node to enclosing compilation unit
7969 procedure Find_Depth
(P
: in out Node_Id
; D
: in out Integer) is
7972 and then Nkind
(P
) /= N_Compilation_Unit
7974 P
:= True_Parent
(P
);
7979 -- Local declarations
7988 -- Start of processing for Earlier
7991 Find_Depth
(P1
, D1
);
7992 Find_Depth
(P2
, D2
);
8002 P1
:= True_Parent
(P1
);
8007 P2
:= True_Parent
(P2
);
8011 -- At this point P1 and P2 are at the same distance from the root.
8012 -- We examine their parents until we find a common declarative list.
8013 -- If we reach the root, N1 and N2 do not descend from the same
8014 -- declarative list (e.g. one is nested in the declarative part and
8015 -- the other is in a block in the statement part) and the earlier
8016 -- one is already frozen.
8018 while not Is_List_Member
(P1
)
8019 or else not Is_List_Member
(P2
)
8020 or else List_Containing
(P1
) /= List_Containing
(P2
)
8022 P1
:= True_Parent
(P1
);
8023 P2
:= True_Parent
(P2
);
8025 if Nkind
(Parent
(P1
)) = N_Subunit
then
8026 P1
:= Corresponding_Stub
(Parent
(P1
));
8029 if Nkind
(Parent
(P2
)) = N_Subunit
then
8030 P2
:= Corresponding_Stub
(Parent
(P2
));
8038 -- Expanded code usually shares the source location of the original
8039 -- construct it was generated for. This however may not necessarily
8040 -- reflect the true location of the code within the tree.
8042 -- Before comparing the slocs of the two nodes, make sure that we are
8043 -- working with correct source locations. Assume that P1 is to the left
8044 -- of P2. If either one does not come from source, traverse the common
8045 -- list heading towards the other node and locate the first source
8049 -- ----+===+===+--------------+===+===+----
8050 -- expanded code expanded code
8052 if not Comes_From_Source
(P1
) then
8053 while Present
(P1
) loop
8055 -- Neither P2 nor a source statement were located during the
8056 -- search. If we reach the end of the list, then P1 does not
8057 -- occur earlier than P2.
8060 -- start --- P2 ----- P1 --- end
8062 if No
(Next
(P1
)) then
8065 -- We encounter P2 while going to the right of the list. This
8066 -- means that P1 does indeed appear earlier.
8069 -- start --- P1 ===== P2 --- end
8070 -- expanded code in between
8075 -- No need to look any further since we have located a source
8078 elsif Comes_From_Source
(P1
) then
8088 if not Comes_From_Source
(P2
) then
8089 while Present
(P2
) loop
8091 -- Neither P1 nor a source statement were located during the
8092 -- search. If we reach the start of the list, then P1 does not
8093 -- occur earlier than P2.
8096 -- start --- P2 --- P1 --- end
8098 if No
(Prev
(P2
)) then
8101 -- We encounter P1 while going to the left of the list. This
8102 -- means that P1 does indeed appear earlier.
8105 -- start --- P1 ===== P2 --- end
8106 -- expanded code in between
8111 -- No need to look any further since we have located a source
8114 elsif Comes_From_Source
(P2
) then
8124 -- At this point either both nodes came from source or we approximated
8125 -- their source locations through neighboring source statements.
8127 T1
:= Top_Level_Location
(Sloc
(P1
));
8128 T2
:= Top_Level_Location
(Sloc
(P2
));
8130 -- When two nodes come from the same instance, they have identical top
8131 -- level locations. To determine proper relation within the tree, check
8132 -- their locations within the template.
8135 return Sloc
(P1
) < Sloc
(P2
);
8137 -- The two nodes either come from unrelated instances or do not come
8138 -- from instantiated code at all.
8145 ----------------------
8146 -- Find_Actual_Type --
8147 ----------------------
8149 function Find_Actual_Type
8151 Gen_Type
: Entity_Id
) return Entity_Id
8153 Gen_Scope
: constant Entity_Id
:= Scope
(Gen_Type
);
8157 -- Special processing only applies to child units
8159 if not Is_Child_Unit
(Gen_Scope
) then
8160 return Get_Instance_Of
(Typ
);
8162 -- If designated or component type is itself a formal of the child unit,
8163 -- its instance is available.
8165 elsif Scope
(Typ
) = Gen_Scope
then
8166 return Get_Instance_Of
(Typ
);
8168 -- If the array or access type is not declared in the parent unit,
8169 -- no special processing needed.
8171 elsif not Is_Generic_Type
(Typ
)
8172 and then Scope
(Gen_Scope
) /= Scope
(Typ
)
8174 return Get_Instance_Of
(Typ
);
8176 -- Otherwise, retrieve designated or component type by visibility
8179 T
:= Current_Entity
(Typ
);
8180 while Present
(T
) loop
8181 if In_Open_Scopes
(Scope
(T
)) then
8183 elsif Is_Generic_Actual_Type
(T
) then
8192 end Find_Actual_Type
;
8194 ----------------------------
8195 -- Freeze_Subprogram_Body --
8196 ----------------------------
8198 procedure Freeze_Subprogram_Body
8199 (Inst_Node
: Node_Id
;
8201 Pack_Id
: Entity_Id
)
8203 Gen_Unit
: constant Entity_Id
:= Get_Generic_Entity
(Inst_Node
);
8204 Par
: constant Entity_Id
:= Scope
(Gen_Unit
);
8210 function Enclosing_Package_Body
(N
: Node_Id
) return Node_Id
;
8211 -- Find innermost package body that encloses the given node, and which
8212 -- is not a compilation unit. Freeze nodes for the instance, or for its
8213 -- enclosing body, may be inserted after the enclosing_body of the
8214 -- generic unit. Used to determine proper placement of freeze node for
8215 -- both package and subprogram instances.
8217 function Package_Freeze_Node
(B
: Node_Id
) return Node_Id
;
8218 -- Find entity for given package body, and locate or create a freeze
8221 ----------------------------
8222 -- Enclosing_Package_Body --
8223 ----------------------------
8225 function Enclosing_Package_Body
(N
: Node_Id
) return Node_Id
is
8231 and then Nkind
(Parent
(P
)) /= N_Compilation_Unit
8233 if Nkind
(P
) = N_Package_Body
then
8234 if Nkind
(Parent
(P
)) = N_Subunit
then
8235 return Corresponding_Stub
(Parent
(P
));
8241 P
:= True_Parent
(P
);
8245 end Enclosing_Package_Body
;
8247 -------------------------
8248 -- Package_Freeze_Node --
8249 -------------------------
8251 function Package_Freeze_Node
(B
: Node_Id
) return Node_Id
is
8255 if Nkind
(B
) = N_Package_Body
then
8256 Id
:= Corresponding_Spec
(B
);
8257 else pragma Assert
(Nkind
(B
) = N_Package_Body_Stub
);
8258 Id
:= Corresponding_Spec
(Proper_Body
(Unit
(Library_Unit
(B
))));
8261 Ensure_Freeze_Node
(Id
);
8262 return Freeze_Node
(Id
);
8263 end Package_Freeze_Node
;
8265 -- Start of processing for Freeze_Subprogram_Body
8268 -- If the instance and the generic body appear within the same unit, and
8269 -- the instance precedes the generic, the freeze node for the instance
8270 -- must appear after that of the generic. If the generic is nested
8271 -- within another instance I2, then current instance must be frozen
8272 -- after I2. In both cases, the freeze nodes are those of enclosing
8273 -- packages. Otherwise, the freeze node is placed at the end of the
8274 -- current declarative part.
8276 Enc_G
:= Enclosing_Package_Body
(Gen_Body
);
8277 Enc_I
:= Enclosing_Package_Body
(Inst_Node
);
8278 Ensure_Freeze_Node
(Pack_Id
);
8279 F_Node
:= Freeze_Node
(Pack_Id
);
8281 if Is_Generic_Instance
(Par
)
8282 and then Present
(Freeze_Node
(Par
))
8283 and then In_Same_Declarative_Part
(Freeze_Node
(Par
), Inst_Node
)
8285 -- The parent was a premature instantiation. Insert freeze node at
8286 -- the end the current declarative part.
8288 if ABE_Is_Certain
(Get_Package_Instantiation_Node
(Par
)) then
8289 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
8291 -- Handle the following case:
8293 -- package Parent_Inst is new ...
8296 -- procedure P ... -- this body freezes Parent_Inst
8298 -- package Inst is new ...
8300 -- In this particular scenario, the freeze node for Inst must be
8301 -- inserted in the same manner as that of Parent_Inst - before the
8302 -- next source body or at the end of the declarative list (body not
8303 -- available). If body P did not exist and Parent_Inst was frozen
8304 -- after Inst, either by a body following Inst or at the end of the
8305 -- declarative region, the freeze node for Inst must be inserted
8306 -- after that of Parent_Inst. This relation is established by
8307 -- comparing the Slocs of Parent_Inst freeze node and Inst.
8309 elsif List_Containing
(Get_Package_Instantiation_Node
(Par
)) =
8310 List_Containing
(Inst_Node
)
8311 and then Sloc
(Freeze_Node
(Par
)) < Sloc
(Inst_Node
)
8313 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
8316 Insert_After
(Freeze_Node
(Par
), F_Node
);
8319 -- The body enclosing the instance should be frozen after the body that
8320 -- includes the generic, because the body of the instance may make
8321 -- references to entities therein. If the two are not in the same
8322 -- declarative part, or if the one enclosing the instance is frozen
8323 -- already, freeze the instance at the end of the current declarative
8326 elsif Is_Generic_Instance
(Par
)
8327 and then Present
(Freeze_Node
(Par
))
8328 and then Present
(Enc_I
)
8330 if In_Same_Declarative_Part
(Freeze_Node
(Par
), Enc_I
)
8332 (Nkind
(Enc_I
) = N_Package_Body
8334 In_Same_Declarative_Part
(Freeze_Node
(Par
), Parent
(Enc_I
)))
8336 -- The enclosing package may contain several instances. Rather
8337 -- than computing the earliest point at which to insert its freeze
8338 -- node, we place it at the end of the declarative part of the
8339 -- parent of the generic.
8341 Insert_Freeze_Node_For_Instance
8342 (Freeze_Node
(Par
), Package_Freeze_Node
(Enc_I
));
8345 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
8347 elsif Present
(Enc_G
)
8348 and then Present
(Enc_I
)
8349 and then Enc_G
/= Enc_I
8350 and then Earlier
(Inst_Node
, Gen_Body
)
8352 if Nkind
(Enc_G
) = N_Package_Body
then
8354 Corresponding_Spec
(Enc_G
);
8355 else pragma Assert
(Nkind
(Enc_G
) = N_Package_Body_Stub
);
8357 Corresponding_Spec
(Proper_Body
(Unit
(Library_Unit
(Enc_G
))));
8360 -- Freeze package that encloses instance, and place node after the
8361 -- package that encloses generic. If enclosing package is already
8362 -- frozen we have to assume it is at the proper place. This may be a
8363 -- potential ABE that requires dynamic checking. Do not add a freeze
8364 -- node if the package that encloses the generic is inside the body
8365 -- that encloses the instance, because the freeze node would be in
8366 -- the wrong scope. Additional contortions needed if the bodies are
8367 -- within a subunit.
8370 Enclosing_Body
: Node_Id
;
8373 if Nkind
(Enc_I
) = N_Package_Body_Stub
then
8374 Enclosing_Body
:= Proper_Body
(Unit
(Library_Unit
(Enc_I
)));
8376 Enclosing_Body
:= Enc_I
;
8379 if Parent
(List_Containing
(Enc_G
)) /= Enclosing_Body
then
8380 Insert_Freeze_Node_For_Instance
8381 (Enc_G
, Package_Freeze_Node
(Enc_I
));
8385 -- Freeze enclosing subunit before instance
8387 Ensure_Freeze_Node
(E_G_Id
);
8389 if not Is_List_Member
(Freeze_Node
(E_G_Id
)) then
8390 Insert_After
(Enc_G
, Freeze_Node
(E_G_Id
));
8393 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
8396 -- If none of the above, insert freeze node at the end of the current
8397 -- declarative part.
8399 Insert_Freeze_Node_For_Instance
(Inst_Node
, F_Node
);
8401 end Freeze_Subprogram_Body
;
8407 function Get_Gen_Id
(E
: Assoc_Ptr
) return Entity_Id
is
8409 return Generic_Renamings
.Table
(E
).Gen_Id
;
8412 ---------------------
8413 -- Get_Instance_Of --
8414 ---------------------
8416 function Get_Instance_Of
(A
: Entity_Id
) return Entity_Id
is
8417 Res
: constant Assoc_Ptr
:= Generic_Renamings_HTable
.Get
(A
);
8420 if Res
/= Assoc_Null
then
8421 return Generic_Renamings
.Table
(Res
).Act_Id
;
8424 -- On exit, entity is not instantiated: not a generic parameter, or
8425 -- else parameter of an inner generic unit.
8429 end Get_Instance_Of
;
8431 ------------------------------------
8432 -- Get_Package_Instantiation_Node --
8433 ------------------------------------
8435 function Get_Package_Instantiation_Node
(A
: Entity_Id
) return Node_Id
is
8436 Decl
: Node_Id
:= Unit_Declaration_Node
(A
);
8440 -- If the Package_Instantiation attribute has been set on the package
8441 -- entity, then use it directly when it (or its Original_Node) refers
8442 -- to an N_Package_Instantiation node. In principle it should be
8443 -- possible to have this field set in all cases, which should be
8444 -- investigated, and would allow this function to be significantly
8447 Inst
:= Package_Instantiation
(A
);
8449 if Present
(Inst
) then
8450 if Nkind
(Inst
) = N_Package_Instantiation
then
8453 elsif Nkind
(Original_Node
(Inst
)) = N_Package_Instantiation
then
8454 return Original_Node
(Inst
);
8458 -- If the instantiation is a compilation unit that does not need body
8459 -- then the instantiation node has been rewritten as a package
8460 -- declaration for the instance, and we return the original node.
8462 -- If it is a compilation unit and the instance node has not been
8463 -- rewritten, then it is still the unit of the compilation. Finally, if
8464 -- a body is present, this is a parent of the main unit whose body has
8465 -- been compiled for inlining purposes, and the instantiation node has
8466 -- been rewritten with the instance body.
8468 -- Otherwise the instantiation node appears after the declaration. If
8469 -- the entity is a formal package, the declaration may have been
8470 -- rewritten as a generic declaration (in the case of a formal with box)
8471 -- or left as a formal package declaration if it has actuals, and is
8472 -- found with a forward search.
8474 if Nkind
(Parent
(Decl
)) = N_Compilation_Unit
then
8475 if Nkind
(Decl
) = N_Package_Declaration
8476 and then Present
(Corresponding_Body
(Decl
))
8478 Decl
:= Unit_Declaration_Node
(Corresponding_Body
(Decl
));
8481 if Nkind
(Original_Node
(Decl
)) = N_Package_Instantiation
then
8482 return Original_Node
(Decl
);
8484 return Unit
(Parent
(Decl
));
8487 elsif Nkind
(Decl
) = N_Package_Declaration
8488 and then Nkind
(Original_Node
(Decl
)) = N_Formal_Package_Declaration
8490 return Original_Node
(Decl
);
8493 Inst
:= Next
(Decl
);
8494 while not Nkind_In
(Inst
, N_Package_Instantiation
,
8495 N_Formal_Package_Declaration
)
8502 end Get_Package_Instantiation_Node
;
8504 ------------------------
8505 -- Has_Been_Exchanged --
8506 ------------------------
8508 function Has_Been_Exchanged
(E
: Entity_Id
) return Boolean is
8512 Next
:= First_Elmt
(Exchanged_Views
);
8513 while Present
(Next
) loop
8514 if Full_View
(Node
(Next
)) = E
then
8522 end Has_Been_Exchanged
;
8528 function Hash
(F
: Entity_Id
) return HTable_Range
is
8530 return HTable_Range
(F
mod HTable_Size
);
8533 ------------------------
8534 -- Hide_Current_Scope --
8535 ------------------------
8537 procedure Hide_Current_Scope
is
8538 C
: constant Entity_Id
:= Current_Scope
;
8542 Set_Is_Hidden_Open_Scope
(C
);
8544 E
:= First_Entity
(C
);
8545 while Present
(E
) loop
8546 if Is_Immediately_Visible
(E
) then
8547 Set_Is_Immediately_Visible
(E
, False);
8548 Append_Elmt
(E
, Hidden_Entities
);
8554 -- Make the scope name invisible as well. This is necessary, but might
8555 -- conflict with calls to Rtsfind later on, in case the scope is a
8556 -- predefined one. There is no clean solution to this problem, so for
8557 -- now we depend on the user not redefining Standard itself in one of
8558 -- the parent units.
8560 if Is_Immediately_Visible
(C
) and then C
/= Standard_Standard
then
8561 Set_Is_Immediately_Visible
(C
, False);
8562 Append_Elmt
(C
, Hidden_Entities
);
8565 end Hide_Current_Scope
;
8571 procedure Init_Env
is
8572 Saved
: Instance_Env
;
8575 Saved
.Instantiated_Parent
:= Current_Instantiated_Parent
;
8576 Saved
.Exchanged_Views
:= Exchanged_Views
;
8577 Saved
.Hidden_Entities
:= Hidden_Entities
;
8578 Saved
.Current_Sem_Unit
:= Current_Sem_Unit
;
8579 Saved
.Parent_Unit_Visible
:= Parent_Unit_Visible
;
8580 Saved
.Instance_Parent_Unit
:= Instance_Parent_Unit
;
8582 -- Save configuration switches. These may be reset if the unit is a
8583 -- predefined unit, and the current mode is not Ada 2005.
8585 Save_Opt_Config_Switches
(Saved
.Switches
);
8587 Instance_Envs
.Append
(Saved
);
8589 Exchanged_Views
:= New_Elmt_List
;
8590 Hidden_Entities
:= New_Elmt_List
;
8592 -- Make dummy entry for Instantiated parent. If generic unit is legal,
8593 -- this is set properly in Set_Instance_Env.
8595 Current_Instantiated_Parent
:=
8596 (Current_Scope
, Current_Scope
, Assoc_Null
);
8599 ------------------------------
8600 -- In_Same_Declarative_Part --
8601 ------------------------------
8603 function In_Same_Declarative_Part
8605 Inst
: Node_Id
) return Boolean
8607 Decls
: constant Node_Id
:= Parent
(F_Node
);
8611 Nod
:= Parent
(Inst
);
8612 while Present
(Nod
) loop
8616 elsif Nkind_In
(Nod
, N_Subprogram_Body
,
8618 N_Package_Declaration
,
8625 elsif Nkind
(Nod
) = N_Subunit
then
8626 Nod
:= Corresponding_Stub
(Nod
);
8628 elsif Nkind
(Nod
) = N_Compilation_Unit
then
8632 Nod
:= Parent
(Nod
);
8637 end In_Same_Declarative_Part
;
8639 ---------------------
8640 -- In_Main_Context --
8641 ---------------------
8643 function In_Main_Context
(E
: Entity_Id
) return Boolean is
8649 if not Is_Compilation_Unit
(E
)
8650 or else Ekind
(E
) /= E_Package
8651 or else In_Private_Part
(E
)
8656 Context
:= Context_Items
(Cunit
(Main_Unit
));
8658 Clause
:= First
(Context
);
8659 while Present
(Clause
) loop
8660 if Nkind
(Clause
) = N_With_Clause
then
8661 Nam
:= Name
(Clause
);
8663 -- If the current scope is part of the context of the main unit,
8664 -- analysis of the corresponding with_clause is not complete, and
8665 -- the entity is not set. We use the Chars field directly, which
8666 -- might produce false positives in rare cases, but guarantees
8667 -- that we produce all the instance bodies we will need.
8669 if (Is_Entity_Name
(Nam
) and then Chars
(Nam
) = Chars
(E
))
8670 or else (Nkind
(Nam
) = N_Selected_Component
8671 and then Chars
(Selector_Name
(Nam
)) = Chars
(E
))
8681 end In_Main_Context
;
8683 ---------------------
8684 -- Inherit_Context --
8685 ---------------------
8687 procedure Inherit_Context
(Gen_Decl
: Node_Id
; Inst
: Node_Id
) is
8688 Current_Context
: List_Id
;
8689 Current_Unit
: Node_Id
;
8698 if Nkind
(Parent
(Gen_Decl
)) = N_Compilation_Unit
then
8700 -- The inherited context is attached to the enclosing compilation
8701 -- unit. This is either the main unit, or the declaration for the
8702 -- main unit (in case the instantiation appears within the package
8703 -- declaration and the main unit is its body).
8705 Current_Unit
:= Parent
(Inst
);
8706 while Present
(Current_Unit
)
8707 and then Nkind
(Current_Unit
) /= N_Compilation_Unit
8709 Current_Unit
:= Parent
(Current_Unit
);
8712 Current_Context
:= Context_Items
(Current_Unit
);
8714 Item
:= First
(Context_Items
(Parent
(Gen_Decl
)));
8715 while Present
(Item
) loop
8716 if Nkind
(Item
) = N_With_Clause
then
8717 Lib_Unit
:= Library_Unit
(Item
);
8719 -- Take care to prevent direct cyclic with's
8721 if Lib_Unit
/= Current_Unit
then
8723 -- Do not add a unit if it is already in the context
8725 Clause
:= First
(Current_Context
);
8727 while Present
(Clause
) loop
8728 if Nkind
(Clause
) = N_With_Clause
and then
8729 Library_Unit
(Clause
) = Lib_Unit
8739 New_I
:= New_Copy
(Item
);
8740 Set_Implicit_With
(New_I
, True);
8741 Set_Implicit_With_From_Instantiation
(New_I
, True);
8742 Append
(New_I
, Current_Context
);
8750 end Inherit_Context
;
8756 procedure Initialize
is
8758 Generic_Renamings
.Init
;
8761 Generic_Renamings_HTable
.Reset
;
8762 Circularity_Detected
:= False;
8763 Exchanged_Views
:= No_Elist
;
8764 Hidden_Entities
:= No_Elist
;
8767 -------------------------------------
8768 -- Insert_Freeze_Node_For_Instance --
8769 -------------------------------------
8771 procedure Insert_Freeze_Node_For_Instance
8780 function Enclosing_Body
(N
: Node_Id
) return Node_Id
;
8781 -- Find enclosing package or subprogram body, if any. Freeze node may
8782 -- be placed at end of current declarative list if previous instance
8783 -- and current one have different enclosing bodies.
8785 function Previous_Instance
(Gen
: Entity_Id
) return Entity_Id
;
8786 -- Find the local instance, if any, that declares the generic that is
8787 -- being instantiated. If present, the freeze node for this instance
8788 -- must follow the freeze node for the previous instance.
8790 --------------------
8791 -- Enclosing_Body --
8792 --------------------
8794 function Enclosing_Body
(N
: Node_Id
) return Node_Id
is
8800 and then Nkind
(Parent
(P
)) /= N_Compilation_Unit
8802 if Nkind_In
(P
, N_Package_Body
, N_Subprogram_Body
) then
8803 if Nkind
(Parent
(P
)) = N_Subunit
then
8804 return Corresponding_Stub
(Parent
(P
));
8810 P
:= True_Parent
(P
);
8816 -----------------------
8817 -- Previous_Instance --
8818 -----------------------
8820 function Previous_Instance
(Gen
: Entity_Id
) return Entity_Id
is
8825 while Present
(S
) and then S
/= Standard_Standard
loop
8826 if Is_Generic_Instance
(S
)
8827 and then In_Same_Source_Unit
(S
, N
)
8836 end Previous_Instance
;
8838 -- Start of processing for Insert_Freeze_Node_For_Instance
8841 if not Is_List_Member
(F_Node
) then
8843 Decls
:= List_Containing
(N
);
8844 Inst
:= Entity
(F_Node
);
8845 Par_N
:= Parent
(Decls
);
8847 -- When processing a subprogram instantiation, utilize the actual
8848 -- subprogram instantiation rather than its package wrapper as it
8849 -- carries all the context information.
8851 if Is_Wrapper_Package
(Inst
) then
8852 Inst
:= Related_Instance
(Inst
);
8855 -- If this is a package instance, check whether the generic is
8856 -- declared in a previous instance and the current instance is
8857 -- not within the previous one.
8859 if Present
(Generic_Parent
(Parent
(Inst
)))
8860 and then Is_In_Main_Unit
(N
)
8863 Enclosing_N
: constant Node_Id
:= Enclosing_Body
(N
);
8864 Par_I
: constant Entity_Id
:=
8866 (Generic_Parent
(Parent
(Inst
)));
8871 and then Earlier
(N
, Freeze_Node
(Par_I
))
8873 Scop
:= Scope
(Inst
);
8875 -- If the current instance is within the one that contains
8876 -- the generic, the freeze node for the current one must
8877 -- appear in the current declarative part. Ditto, if the
8878 -- current instance is within another package instance or
8879 -- within a body that does not enclose the current instance.
8880 -- In these three cases the freeze node of the previous
8881 -- instance is not relevant.
8883 while Present
(Scop
) and then Scop
/= Standard_Standard
loop
8884 exit when Scop
= Par_I
8886 (Is_Generic_Instance
(Scop
)
8887 and then Scope_Depth
(Scop
) > Scope_Depth
(Par_I
));
8888 Scop
:= Scope
(Scop
);
8891 -- Previous instance encloses current instance
8893 if Scop
= Par_I
then
8896 -- If the next node is a source body we must freeze in
8897 -- the current scope as well.
8899 elsif Present
(Next
(N
))
8900 and then Nkind_In
(Next
(N
), N_Subprogram_Body
,
8902 and then Comes_From_Source
(Next
(N
))
8906 -- Current instance is within an unrelated instance
8908 elsif Is_Generic_Instance
(Scop
) then
8911 -- Current instance is within an unrelated body
8913 elsif Present
(Enclosing_N
)
8914 and then Enclosing_N
/= Enclosing_Body
(Par_I
)
8919 Insert_After
(Freeze_Node
(Par_I
), F_Node
);
8926 -- When the instantiation occurs in a package declaration, append the
8927 -- freeze node to the private declarations (if any).
8929 if Nkind
(Par_N
) = N_Package_Specification
8930 and then Decls
= Visible_Declarations
(Par_N
)
8931 and then Present
(Private_Declarations
(Par_N
))
8932 and then not Is_Empty_List
(Private_Declarations
(Par_N
))
8934 Decls
:= Private_Declarations
(Par_N
);
8935 Decl
:= First
(Decls
);
8938 -- Determine the proper freeze point of a package instantiation. We
8939 -- adhere to the general rule of a package or subprogram body causing
8940 -- freezing of anything before it in the same declarative region. In
8941 -- this case, the proper freeze point of a package instantiation is
8942 -- before the first source body which follows, or before a stub. This
8943 -- ensures that entities coming from the instance are already frozen
8944 -- and usable in source bodies.
8946 if Nkind
(Par_N
) /= N_Package_Declaration
8947 and then Ekind
(Inst
) = E_Package
8948 and then Is_Generic_Instance
(Inst
)
8950 not In_Same_Source_Unit
(Generic_Parent
(Parent
(Inst
)), Inst
)
8952 while Present
(Decl
) loop
8953 if (Nkind
(Decl
) in N_Unit_Body
8955 Nkind
(Decl
) in N_Body_Stub
)
8956 and then Comes_From_Source
(Decl
)
8958 Insert_Before
(Decl
, F_Node
);
8966 -- In a package declaration, or if no previous body, insert at end
8969 Set_Sloc
(F_Node
, Sloc
(Last
(Decls
)));
8970 Insert_After
(Last
(Decls
), F_Node
);
8972 end Insert_Freeze_Node_For_Instance
;
8978 procedure Install_Body
8979 (Act_Body
: Node_Id
;
8984 function In_Same_Scope
(Gen_Id
, Act_Id
: Node_Id
) return Boolean;
8985 -- Check if the generic definition and the instantiation come from
8986 -- a common scope, in which case the instance must be frozen after
8987 -- the generic body.
8989 function True_Sloc
(N
, Act_Unit
: Node_Id
) return Source_Ptr
;
8990 -- If the instance is nested inside a generic unit, the Sloc of the
8991 -- instance indicates the place of the original definition, not the
8992 -- point of the current enclosing instance. Pending a better usage of
8993 -- Slocs to indicate instantiation places, we determine the place of
8994 -- origin of a node by finding the maximum sloc of any ancestor node.
8995 -- Why is this not equivalent to Top_Level_Location ???
9001 function In_Same_Scope
(Gen_Id
, Act_Id
: Node_Id
) return Boolean is
9002 Act_Scop
: Entity_Id
:= Scope
(Act_Id
);
9003 Gen_Scop
: Entity_Id
:= Scope
(Gen_Id
);
9006 while Act_Scop
/= Standard_Standard
9007 and then Gen_Scop
/= Standard_Standard
9009 if Act_Scop
= Gen_Scop
then
9013 Act_Scop
:= Scope
(Act_Scop
);
9014 Gen_Scop
:= Scope
(Gen_Scop
);
9024 function True_Sloc
(N
, Act_Unit
: Node_Id
) return Source_Ptr
is
9031 while Present
(N1
) and then N1
/= Act_Unit
loop
9032 if Sloc
(N1
) > Res
then
9042 Act_Id
: constant Entity_Id
:= Corresponding_Spec
(Act_Body
);
9043 Act_Unit
: constant Node_Id
:= Unit
(Cunit
(Get_Source_Unit
(N
)));
9044 Gen_Id
: constant Entity_Id
:= Corresponding_Spec
(Gen_Body
);
9045 Par
: constant Entity_Id
:= Scope
(Gen_Id
);
9046 Gen_Unit
: constant Node_Id
:=
9047 Unit
(Cunit
(Get_Source_Unit
(Gen_Decl
)));
9049 Body_Unit
: Node_Id
;
9051 Must_Delay
: Boolean;
9052 Orig_Body
: Node_Id
:= Gen_Body
;
9054 -- Start of processing for Install_Body
9057 -- Handle first the case of an instance with incomplete actual types.
9058 -- The instance body cannot be placed after the declaration because
9059 -- full views have not been seen yet. Any use of the non-limited views
9060 -- in the instance body requires the presence of a regular with_clause
9061 -- in the enclosing unit, and will fail if this with_clause is missing.
9062 -- We place the instance body at the beginning of the enclosing body,
9063 -- which is the unit being compiled. The freeze node for the instance
9064 -- is then placed after the instance body.
9066 if not Is_Empty_Elmt_List
(Incomplete_Actuals
(Act_Id
))
9067 and then Expander_Active
9068 and then Ekind
(Scope
(Act_Id
)) = E_Package
9071 Scop
: constant Entity_Id
:= Scope
(Act_Id
);
9072 Body_Id
: constant Node_Id
:=
9073 Corresponding_Body
(Unit_Declaration_Node
(Scop
));
9076 Ensure_Freeze_Node
(Act_Id
);
9077 F_Node
:= Freeze_Node
(Act_Id
);
9078 if Present
(Body_Id
) then
9079 Set_Is_Frozen
(Act_Id
, False);
9080 Prepend
(Act_Body
, Declarations
(Parent
(Body_Id
)));
9081 if Is_List_Member
(F_Node
) then
9085 Insert_After
(Act_Body
, F_Node
);
9091 -- If the body is a subunit, the freeze point is the corresponding stub
9092 -- in the current compilation, not the subunit itself.
9094 if Nkind
(Parent
(Gen_Body
)) = N_Subunit
then
9095 Orig_Body
:= Corresponding_Stub
(Parent
(Gen_Body
));
9097 Orig_Body
:= Gen_Body
;
9100 Body_Unit
:= Unit
(Cunit
(Get_Source_Unit
(Orig_Body
)));
9102 -- If the instantiation and the generic definition appear in the same
9103 -- package declaration, this is an early instantiation. If they appear
9104 -- in the same declarative part, it is an early instantiation only if
9105 -- the generic body appears textually later, and the generic body is
9106 -- also in the main unit.
9108 -- If instance is nested within a subprogram, and the generic body
9109 -- is not, the instance is delayed because the enclosing body is. If
9110 -- instance and body are within the same scope, or the same subprogram
9111 -- body, indicate explicitly that the instance is delayed.
9114 (Gen_Unit
= Act_Unit
9115 and then (Nkind_In
(Gen_Unit
, N_Generic_Package_Declaration
,
9116 N_Package_Declaration
)
9117 or else (Gen_Unit
= Body_Unit
9118 and then True_Sloc
(N
, Act_Unit
)
9119 < Sloc
(Orig_Body
)))
9120 and then Is_In_Main_Unit
(Original_Node
(Gen_Unit
))
9121 and then In_Same_Scope
(Gen_Id
, Act_Id
));
9123 -- If this is an early instantiation, the freeze node is placed after
9124 -- the generic body. Otherwise, if the generic appears in an instance,
9125 -- we cannot freeze the current instance until the outer one is frozen.
9126 -- This is only relevant if the current instance is nested within some
9127 -- inner scope not itself within the outer instance. If this scope is
9128 -- a package body in the same declarative part as the outer instance,
9129 -- then that body needs to be frozen after the outer instance. Finally,
9130 -- if no delay is needed, we place the freeze node at the end of the
9131 -- current declarative part.
9133 if Expander_Active
then
9134 Ensure_Freeze_Node
(Act_Id
);
9135 F_Node
:= Freeze_Node
(Act_Id
);
9138 Insert_After
(Orig_Body
, F_Node
);
9140 elsif Is_Generic_Instance
(Par
)
9141 and then Present
(Freeze_Node
(Par
))
9142 and then Scope
(Act_Id
) /= Par
9144 -- Freeze instance of inner generic after instance of enclosing
9147 if In_Same_Declarative_Part
(Freeze_Node
(Par
), N
) then
9149 -- Handle the following case:
9151 -- package Parent_Inst is new ...
9154 -- procedure P ... -- this body freezes Parent_Inst
9156 -- package Inst is new ...
9158 -- In this particular scenario, the freeze node for Inst must
9159 -- be inserted in the same manner as that of Parent_Inst,
9160 -- before the next source body or at the end of the declarative
9161 -- list (body not available). If body P did not exist and
9162 -- Parent_Inst was frozen after Inst, either by a body
9163 -- following Inst or at the end of the declarative region,
9164 -- the freeze node for Inst must be inserted after that of
9165 -- Parent_Inst. This relation is established by comparing
9166 -- the Slocs of Parent_Inst freeze node and Inst.
9168 if List_Containing
(Get_Package_Instantiation_Node
(Par
)) =
9170 and then Sloc
(Freeze_Node
(Par
)) < Sloc
(N
)
9172 Insert_Freeze_Node_For_Instance
(N
, F_Node
);
9174 Insert_After
(Freeze_Node
(Par
), F_Node
);
9177 -- Freeze package enclosing instance of inner generic after
9178 -- instance of enclosing generic.
9180 elsif Nkind_In
(Parent
(N
), N_Package_Body
, N_Subprogram_Body
)
9181 and then In_Same_Declarative_Part
(Freeze_Node
(Par
), Parent
(N
))
9184 Enclosing
: Entity_Id
;
9187 Enclosing
:= Corresponding_Spec
(Parent
(N
));
9189 if No
(Enclosing
) then
9190 Enclosing
:= Defining_Entity
(Parent
(N
));
9193 Insert_Freeze_Node_For_Instance
(N
, F_Node
);
9194 Ensure_Freeze_Node
(Enclosing
);
9196 if not Is_List_Member
(Freeze_Node
(Enclosing
)) then
9198 -- The enclosing context is a subunit, insert the freeze
9199 -- node after the stub.
9201 if Nkind
(Parent
(Parent
(N
))) = N_Subunit
then
9202 Insert_Freeze_Node_For_Instance
9203 (Corresponding_Stub
(Parent
(Parent
(N
))),
9204 Freeze_Node
(Enclosing
));
9206 -- The enclosing context is a package with a stub body
9207 -- which has already been replaced by the real body.
9208 -- Insert the freeze node after the actual body.
9210 elsif Ekind
(Enclosing
) = E_Package
9211 and then Present
(Body_Entity
(Enclosing
))
9212 and then Was_Originally_Stub
9213 (Parent
(Body_Entity
(Enclosing
)))
9215 Insert_Freeze_Node_For_Instance
9216 (Parent
(Body_Entity
(Enclosing
)),
9217 Freeze_Node
(Enclosing
));
9219 -- The parent instance has been frozen before the body of
9220 -- the enclosing package, insert the freeze node after
9223 elsif List_Containing
(Freeze_Node
(Par
)) =
9224 List_Containing
(Parent
(N
))
9225 and then Sloc
(Freeze_Node
(Par
)) < Sloc
(Parent
(N
))
9227 Insert_Freeze_Node_For_Instance
9228 (Parent
(N
), Freeze_Node
(Enclosing
));
9232 (Freeze_Node
(Par
), Freeze_Node
(Enclosing
));
9238 Insert_Freeze_Node_For_Instance
(N
, F_Node
);
9242 Insert_Freeze_Node_For_Instance
(N
, F_Node
);
9246 Set_Is_Frozen
(Act_Id
);
9247 Insert_Before
(N
, Act_Body
);
9248 Mark_Rewrite_Insertion
(Act_Body
);
9251 -----------------------------
9252 -- Install_Formal_Packages --
9253 -----------------------------
9255 procedure Install_Formal_Packages
(Par
: Entity_Id
) is
9258 Gen_E
: Entity_Id
:= Empty
;
9261 E
:= First_Entity
(Par
);
9263 -- If we are installing an instance parent, locate the formal packages
9264 -- of its generic parent.
9266 if Is_Generic_Instance
(Par
) then
9267 Gen
:= Generic_Parent
(Package_Specification
(Par
));
9268 Gen_E
:= First_Entity
(Gen
);
9271 while Present
(E
) loop
9272 if Ekind
(E
) = E_Package
9273 and then Nkind
(Parent
(E
)) = N_Package_Renaming_Declaration
9275 -- If this is the renaming for the parent instance, done
9277 if Renamed_Object
(E
) = Par
then
9280 -- The visibility of a formal of an enclosing generic is already
9283 elsif Denotes_Formal_Package
(E
) then
9286 elsif Present
(Associated_Formal_Package
(E
)) then
9287 Check_Generic_Actuals
(Renamed_Object
(E
), True);
9288 Set_Is_Hidden
(E
, False);
9290 -- Find formal package in generic unit that corresponds to
9291 -- (instance of) formal package in instance.
9293 while Present
(Gen_E
) and then Chars
(Gen_E
) /= Chars
(E
) loop
9294 Next_Entity
(Gen_E
);
9297 if Present
(Gen_E
) then
9298 Map_Formal_Package_Entities
(Gen_E
, E
);
9305 if Present
(Gen_E
) then
9306 Next_Entity
(Gen_E
);
9309 end Install_Formal_Packages
;
9311 --------------------
9312 -- Install_Parent --
9313 --------------------
9315 procedure Install_Parent
(P
: Entity_Id
; In_Body
: Boolean := False) is
9316 Ancestors
: constant Elist_Id
:= New_Elmt_List
;
9317 S
: constant Entity_Id
:= Current_Scope
;
9318 Inst_Par
: Entity_Id
;
9319 First_Par
: Entity_Id
;
9320 Inst_Node
: Node_Id
;
9321 Gen_Par
: Entity_Id
;
9322 First_Gen
: Entity_Id
;
9325 procedure Install_Noninstance_Specs
(Par
: Entity_Id
);
9326 -- Install the scopes of noninstance parent units ending with Par
9328 procedure Install_Spec
(Par
: Entity_Id
);
9329 -- The child unit is within the declarative part of the parent, so the
9330 -- declarations within the parent are immediately visible.
9332 -------------------------------
9333 -- Install_Noninstance_Specs --
9334 -------------------------------
9336 procedure Install_Noninstance_Specs
(Par
: Entity_Id
) is
9339 and then Par
/= Standard_Standard
9340 and then not In_Open_Scopes
(Par
)
9342 Install_Noninstance_Specs
(Scope
(Par
));
9345 end Install_Noninstance_Specs
;
9351 procedure Install_Spec
(Par
: Entity_Id
) is
9352 Spec
: constant Node_Id
:= Package_Specification
(Par
);
9355 -- If this parent of the child instance is a top-level unit,
9356 -- then record the unit and its visibility for later resetting in
9357 -- Remove_Parent. We exclude units that are generic instances, as we
9358 -- only want to record this information for the ultimate top-level
9359 -- noninstance parent (is that always correct???).
9361 if Scope
(Par
) = Standard_Standard
9362 and then not Is_Generic_Instance
(Par
)
9364 Parent_Unit_Visible
:= Is_Immediately_Visible
(Par
);
9365 Instance_Parent_Unit
:= Par
;
9368 -- Open the parent scope and make it and its declarations visible.
9369 -- If this point is not within a body, then only the visible
9370 -- declarations should be made visible, and installation of the
9371 -- private declarations is deferred until the appropriate point
9372 -- within analysis of the spec being instantiated (see the handling
9373 -- of parent visibility in Analyze_Package_Specification). This is
9374 -- relaxed in the case where the parent unit is Ada.Tags, to avoid
9375 -- private view problems that occur when compiling instantiations of
9376 -- a generic child of that package (Generic_Dispatching_Constructor).
9377 -- If the instance freezes a tagged type, inlinings of operations
9378 -- from Ada.Tags may need the full view of type Tag. If inlining took
9379 -- proper account of establishing visibility of inlined subprograms'
9380 -- parents then it should be possible to remove this
9381 -- special check. ???
9384 Set_Is_Immediately_Visible
(Par
);
9385 Install_Visible_Declarations
(Par
);
9386 Set_Use
(Visible_Declarations
(Spec
));
9388 if In_Body
or else Is_RTU
(Par
, Ada_Tags
) then
9389 Install_Private_Declarations
(Par
);
9390 Set_Use
(Private_Declarations
(Spec
));
9394 -- Start of processing for Install_Parent
9397 -- We need to install the parent instance to compile the instantiation
9398 -- of the child, but the child instance must appear in the current
9399 -- scope. Given that we cannot place the parent above the current scope
9400 -- in the scope stack, we duplicate the current scope and unstack both
9401 -- after the instantiation is complete.
9403 -- If the parent is itself the instantiation of a child unit, we must
9404 -- also stack the instantiation of its parent, and so on. Each such
9405 -- ancestor is the prefix of the name in a prior instantiation.
9407 -- If this is a nested instance, the parent unit itself resolves to
9408 -- a renaming of the parent instance, whose declaration we need.
9410 -- Finally, the parent may be a generic (not an instance) when the
9411 -- child unit appears as a formal package.
9415 if Present
(Renamed_Entity
(Inst_Par
)) then
9416 Inst_Par
:= Renamed_Entity
(Inst_Par
);
9419 First_Par
:= Inst_Par
;
9421 Gen_Par
:= Generic_Parent
(Package_Specification
(Inst_Par
));
9423 First_Gen
:= Gen_Par
;
9425 while Present
(Gen_Par
) and then Is_Child_Unit
(Gen_Par
) loop
9427 -- Load grandparent instance as well
9429 Inst_Node
:= Get_Package_Instantiation_Node
(Inst_Par
);
9431 if Nkind
(Name
(Inst_Node
)) = N_Expanded_Name
then
9432 Inst_Par
:= Entity
(Prefix
(Name
(Inst_Node
)));
9434 if Present
(Renamed_Entity
(Inst_Par
)) then
9435 Inst_Par
:= Renamed_Entity
(Inst_Par
);
9438 Gen_Par
:= Generic_Parent
(Package_Specification
(Inst_Par
));
9440 if Present
(Gen_Par
) then
9441 Prepend_Elmt
(Inst_Par
, Ancestors
);
9444 -- Parent is not the name of an instantiation
9446 Install_Noninstance_Specs
(Inst_Par
);
9457 if Present
(First_Gen
) then
9458 Append_Elmt
(First_Par
, Ancestors
);
9460 Install_Noninstance_Specs
(First_Par
);
9463 if not Is_Empty_Elmt_List
(Ancestors
) then
9464 Elmt
:= First_Elmt
(Ancestors
);
9465 while Present
(Elmt
) loop
9466 Install_Spec
(Node
(Elmt
));
9467 Install_Formal_Packages
(Node
(Elmt
));
9477 -------------------------------
9478 -- Install_Hidden_Primitives --
9479 -------------------------------
9481 procedure Install_Hidden_Primitives
9482 (Prims_List
: in out Elist_Id
;
9487 List
: Elist_Id
:= No_Elist
;
9488 Prim_G_Elmt
: Elmt_Id
;
9489 Prim_A_Elmt
: Elmt_Id
;
9494 -- No action needed in case of serious errors because we cannot trust
9495 -- in the order of primitives
9497 if Serious_Errors_Detected
> 0 then
9500 -- No action possible if we don't have available the list of primitive
9504 or else not Is_Record_Type
(Gen_T
)
9505 or else not Is_Tagged_Type
(Gen_T
)
9506 or else not Is_Record_Type
(Act_T
)
9507 or else not Is_Tagged_Type
(Act_T
)
9511 -- There is no need to handle interface types since their primitives
9514 elsif Is_Interface
(Gen_T
) then
9518 Prim_G_Elmt
:= First_Elmt
(Primitive_Operations
(Gen_T
));
9520 if not Is_Class_Wide_Type
(Act_T
) then
9521 Prim_A_Elmt
:= First_Elmt
(Primitive_Operations
(Act_T
));
9523 Prim_A_Elmt
:= First_Elmt
(Primitive_Operations
(Root_Type
(Act_T
)));
9527 -- Skip predefined primitives in the generic formal
9529 while Present
(Prim_G_Elmt
)
9530 and then Is_Predefined_Dispatching_Operation
(Node
(Prim_G_Elmt
))
9532 Next_Elmt
(Prim_G_Elmt
);
9535 -- Skip predefined primitives in the generic actual
9537 while Present
(Prim_A_Elmt
)
9538 and then Is_Predefined_Dispatching_Operation
(Node
(Prim_A_Elmt
))
9540 Next_Elmt
(Prim_A_Elmt
);
9543 exit when No
(Prim_G_Elmt
) or else No
(Prim_A_Elmt
);
9545 Prim_G
:= Node
(Prim_G_Elmt
);
9546 Prim_A
:= Node
(Prim_A_Elmt
);
9548 -- There is no need to handle interface primitives because their
9549 -- primitives are not hidden
9551 exit when Present
(Interface_Alias
(Prim_G
));
9553 -- Here we install one hidden primitive
9555 if Chars
(Prim_G
) /= Chars
(Prim_A
)
9556 and then Has_Suffix
(Prim_A
, 'P')
9557 and then Remove_Suffix
(Prim_A
, 'P') = Chars
(Prim_G
)
9559 Set_Chars
(Prim_A
, Chars
(Prim_G
));
9560 Append_New_Elmt
(Prim_A
, To
=> List
);
9563 Next_Elmt
(Prim_A_Elmt
);
9564 Next_Elmt
(Prim_G_Elmt
);
9567 -- Append the elements to the list of temporarily visible primitives
9568 -- avoiding duplicates.
9570 if Present
(List
) then
9571 if No
(Prims_List
) then
9572 Prims_List
:= New_Elmt_List
;
9575 Elmt
:= First_Elmt
(List
);
9576 while Present
(Elmt
) loop
9577 Append_Unique_Elmt
(Node
(Elmt
), Prims_List
);
9581 end Install_Hidden_Primitives
;
9583 -------------------------------
9584 -- Restore_Hidden_Primitives --
9585 -------------------------------
9587 procedure Restore_Hidden_Primitives
(Prims_List
: in out Elist_Id
) is
9588 Prim_Elmt
: Elmt_Id
;
9592 if Prims_List
/= No_Elist
then
9593 Prim_Elmt
:= First_Elmt
(Prims_List
);
9594 while Present
(Prim_Elmt
) loop
9595 Prim
:= Node
(Prim_Elmt
);
9596 Set_Chars
(Prim
, Add_Suffix
(Prim
, 'P'));
9597 Next_Elmt
(Prim_Elmt
);
9600 Prims_List
:= No_Elist
;
9602 end Restore_Hidden_Primitives
;
9604 --------------------------------
9605 -- Instantiate_Formal_Package --
9606 --------------------------------
9608 function Instantiate_Formal_Package
9611 Analyzed_Formal
: Node_Id
) return List_Id
9613 Loc
: constant Source_Ptr
:= Sloc
(Actual
);
9614 Actual_Pack
: Entity_Id
;
9615 Formal_Pack
: Entity_Id
;
9616 Gen_Parent
: Entity_Id
;
9619 Parent_Spec
: Node_Id
;
9621 procedure Find_Matching_Actual
9623 Act
: in out Entity_Id
);
9624 -- We need to associate each formal entity in the formal package with
9625 -- the corresponding entity in the actual package. The actual package
9626 -- has been analyzed and possibly expanded, and as a result there is
9627 -- no one-to-one correspondence between the two lists (for example,
9628 -- the actual may include subtypes, itypes, and inherited primitive
9629 -- operations, interspersed among the renaming declarations for the
9630 -- actuals). We retrieve the corresponding actual by name because each
9631 -- actual has the same name as the formal, and they do appear in the
9634 function Get_Formal_Entity
(N
: Node_Id
) return Entity_Id
;
9635 -- Retrieve entity of defining entity of generic formal parameter.
9636 -- Only the declarations of formals need to be considered when
9637 -- linking them to actuals, but the declarative list may include
9638 -- internal entities generated during analysis, and those are ignored.
9640 procedure Match_Formal_Entity
9641 (Formal_Node
: Node_Id
;
9642 Formal_Ent
: Entity_Id
;
9643 Actual_Ent
: Entity_Id
);
9644 -- Associates the formal entity with the actual. In the case where
9645 -- Formal_Ent is a formal package, this procedure iterates through all
9646 -- of its formals and enters associations between the actuals occurring
9647 -- in the formal package's corresponding actual package (given by
9648 -- Actual_Ent) and the formal package's formal parameters. This
9649 -- procedure recurses if any of the parameters is itself a package.
9651 function Is_Instance_Of
9652 (Act_Spec
: Entity_Id
;
9653 Gen_Anc
: Entity_Id
) return Boolean;
9654 -- The actual can be an instantiation of a generic within another
9655 -- instance, in which case there is no direct link from it to the
9656 -- original generic ancestor. In that case, we recognize that the
9657 -- ultimate ancestor is the same by examining names and scopes.
9659 procedure Process_Nested_Formal
(Formal
: Entity_Id
);
9660 -- If the current formal is declared with a box, its own formals are
9661 -- visible in the instance, as they were in the generic, and their
9662 -- Hidden flag must be reset. If some of these formals are themselves
9663 -- packages declared with a box, the processing must be recursive.
9665 --------------------------
9666 -- Find_Matching_Actual --
9667 --------------------------
9669 procedure Find_Matching_Actual
9671 Act
: in out Entity_Id
)
9673 Formal_Ent
: Entity_Id
;
9676 case Nkind
(Original_Node
(F
)) is
9677 when N_Formal_Object_Declaration
9678 | N_Formal_Type_Declaration
9680 Formal_Ent
:= Defining_Identifier
(F
);
9682 while Chars
(Act
) /= Chars
(Formal_Ent
) loop
9686 when N_Formal_Package_Declaration
9687 | N_Formal_Subprogram_Declaration
9688 | N_Generic_Package_Declaration
9689 | N_Package_Declaration
9691 Formal_Ent
:= Defining_Entity
(F
);
9693 while Chars
(Act
) /= Chars
(Formal_Ent
) loop
9698 raise Program_Error
;
9700 end Find_Matching_Actual
;
9702 -------------------------
9703 -- Match_Formal_Entity --
9704 -------------------------
9706 procedure Match_Formal_Entity
9707 (Formal_Node
: Node_Id
;
9708 Formal_Ent
: Entity_Id
;
9709 Actual_Ent
: Entity_Id
)
9711 Act_Pkg
: Entity_Id
;
9714 Set_Instance_Of
(Formal_Ent
, Actual_Ent
);
9716 if Ekind
(Actual_Ent
) = E_Package
then
9718 -- Record associations for each parameter
9720 Act_Pkg
:= Actual_Ent
;
9723 A_Ent
: Entity_Id
:= First_Entity
(Act_Pkg
);
9732 -- Retrieve the actual given in the formal package declaration
9734 Actual
:= Entity
(Name
(Original_Node
(Formal_Node
)));
9736 -- The actual in the formal package declaration may be a
9737 -- renamed generic package, in which case we want to retrieve
9738 -- the original generic in order to traverse its formal part.
9740 if Present
(Renamed_Entity
(Actual
)) then
9741 Gen_Decl
:= Unit_Declaration_Node
(Renamed_Entity
(Actual
));
9743 Gen_Decl
:= Unit_Declaration_Node
(Actual
);
9746 Formals
:= Generic_Formal_Declarations
(Gen_Decl
);
9748 if Present
(Formals
) then
9749 F_Node
:= First_Non_Pragma
(Formals
);
9754 while Present
(A_Ent
)
9755 and then Present
(F_Node
)
9756 and then A_Ent
/= First_Private_Entity
(Act_Pkg
)
9758 F_Ent
:= Get_Formal_Entity
(F_Node
);
9760 if Present
(F_Ent
) then
9762 -- This is a formal of the original package. Record
9763 -- association and recurse.
9765 Find_Matching_Actual
(F_Node
, A_Ent
);
9766 Match_Formal_Entity
(F_Node
, F_Ent
, A_Ent
);
9767 Next_Entity
(A_Ent
);
9770 Next_Non_Pragma
(F_Node
);
9774 end Match_Formal_Entity
;
9776 -----------------------
9777 -- Get_Formal_Entity --
9778 -----------------------
9780 function Get_Formal_Entity
(N
: Node_Id
) return Entity_Id
is
9781 Kind
: constant Node_Kind
:= Nkind
(Original_Node
(N
));
9784 when N_Formal_Object_Declaration
=>
9785 return Defining_Identifier
(N
);
9787 when N_Formal_Type_Declaration
=>
9788 return Defining_Identifier
(N
);
9790 when N_Formal_Subprogram_Declaration
=>
9791 return Defining_Unit_Name
(Specification
(N
));
9793 when N_Formal_Package_Declaration
=>
9794 return Defining_Identifier
(Original_Node
(N
));
9796 when N_Generic_Package_Declaration
=>
9797 return Defining_Identifier
(Original_Node
(N
));
9799 -- All other declarations are introduced by semantic analysis and
9800 -- have no match in the actual.
9805 end Get_Formal_Entity
;
9807 --------------------
9808 -- Is_Instance_Of --
9809 --------------------
9811 function Is_Instance_Of
9812 (Act_Spec
: Entity_Id
;
9813 Gen_Anc
: Entity_Id
) return Boolean
9815 Gen_Par
: constant Entity_Id
:= Generic_Parent
(Act_Spec
);
9818 if No
(Gen_Par
) then
9821 -- Simplest case: the generic parent of the actual is the formal
9823 elsif Gen_Par
= Gen_Anc
then
9826 elsif Chars
(Gen_Par
) /= Chars
(Gen_Anc
) then
9829 -- The actual may be obtained through several instantiations. Its
9830 -- scope must itself be an instance of a generic declared in the
9831 -- same scope as the formal. Any other case is detected above.
9833 elsif not Is_Generic_Instance
(Scope
(Gen_Par
)) then
9837 return Generic_Parent
(Parent
(Scope
(Gen_Par
))) = Scope
(Gen_Anc
);
9841 ---------------------------
9842 -- Process_Nested_Formal --
9843 ---------------------------
9845 procedure Process_Nested_Formal
(Formal
: Entity_Id
) is
9849 if Present
(Associated_Formal_Package
(Formal
))
9850 and then Box_Present
(Parent
(Associated_Formal_Package
(Formal
)))
9852 Ent
:= First_Entity
(Formal
);
9853 while Present
(Ent
) loop
9854 Set_Is_Hidden
(Ent
, False);
9855 Set_Is_Visible_Formal
(Ent
);
9856 Set_Is_Potentially_Use_Visible
9857 (Ent
, Is_Potentially_Use_Visible
(Formal
));
9859 if Ekind
(Ent
) = E_Package
then
9860 exit when Renamed_Entity
(Ent
) = Renamed_Entity
(Formal
);
9861 Process_Nested_Formal
(Ent
);
9867 end Process_Nested_Formal
;
9869 -- Start of processing for Instantiate_Formal_Package
9874 if not Is_Entity_Name
(Actual
)
9875 or else Ekind
(Entity
(Actual
)) /= E_Package
9878 ("expect package instance to instantiate formal", Actual
);
9879 Abandon_Instantiation
(Actual
);
9880 raise Program_Error
;
9883 Actual_Pack
:= Entity
(Actual
);
9884 Set_Is_Instantiated
(Actual_Pack
);
9886 -- The actual may be a renamed package, or an outer generic formal
9887 -- package whose instantiation is converted into a renaming.
9889 if Present
(Renamed_Object
(Actual_Pack
)) then
9890 Actual_Pack
:= Renamed_Object
(Actual_Pack
);
9893 if Nkind
(Analyzed_Formal
) = N_Formal_Package_Declaration
then
9894 Gen_Parent
:= Get_Instance_Of
(Entity
(Name
(Analyzed_Formal
)));
9895 Formal_Pack
:= Defining_Identifier
(Analyzed_Formal
);
9898 Generic_Parent
(Specification
(Analyzed_Formal
));
9900 Defining_Unit_Name
(Specification
(Analyzed_Formal
));
9903 if Nkind
(Parent
(Actual_Pack
)) = N_Defining_Program_Unit_Name
then
9904 Parent_Spec
:= Package_Specification
(Actual_Pack
);
9906 Parent_Spec
:= Parent
(Actual_Pack
);
9909 if Gen_Parent
= Any_Id
then
9911 ("previous error in declaration of formal package", Actual
);
9912 Abandon_Instantiation
(Actual
);
9915 Is_Instance_Of
(Parent_Spec
, Get_Instance_Of
(Gen_Parent
))
9921 ("actual parameter must be instance of&", Actual
, Gen_Parent
);
9922 Abandon_Instantiation
(Actual
);
9925 Set_Instance_Of
(Defining_Identifier
(Formal
), Actual_Pack
);
9926 Map_Formal_Package_Entities
(Formal_Pack
, Actual_Pack
);
9929 Make_Package_Renaming_Declaration
(Loc
,
9930 Defining_Unit_Name
=> New_Copy
(Defining_Identifier
(Formal
)),
9931 Name
=> New_Occurrence_Of
(Actual_Pack
, Loc
));
9933 Set_Associated_Formal_Package
9934 (Defining_Unit_Name
(Nod
), Defining_Identifier
(Formal
));
9935 Decls
:= New_List
(Nod
);
9937 -- If the formal F has a box, then the generic declarations are
9938 -- visible in the generic G. In an instance of G, the corresponding
9939 -- entities in the actual for F (which are the actuals for the
9940 -- instantiation of the generic that F denotes) must also be made
9941 -- visible for analysis of the current instance. On exit from the
9942 -- current instance, those entities are made private again. If the
9943 -- actual is currently in use, these entities are also use-visible.
9945 -- The loop through the actual entities also steps through the formal
9946 -- entities and enters associations from formals to actuals into the
9947 -- renaming map. This is necessary to properly handle checking of
9948 -- actual parameter associations for later formals that depend on
9949 -- actuals declared in the formal package.
9951 -- In Ada 2005, partial parameterization requires that we make
9952 -- visible the actuals corresponding to formals that were defaulted
9953 -- in the formal package. There formals are identified because they
9954 -- remain formal generics within the formal package, rather than
9955 -- being renamings of the actuals supplied.
9958 Gen_Decl
: constant Node_Id
:=
9959 Unit_Declaration_Node
(Gen_Parent
);
9960 Formals
: constant List_Id
:=
9961 Generic_Formal_Declarations
(Gen_Decl
);
9963 Actual_Ent
: Entity_Id
;
9964 Actual_Of_Formal
: Node_Id
;
9965 Formal_Node
: Node_Id
;
9966 Formal_Ent
: Entity_Id
;
9969 if Present
(Formals
) then
9970 Formal_Node
:= First_Non_Pragma
(Formals
);
9972 Formal_Node
:= Empty
;
9975 Actual_Ent
:= First_Entity
(Actual_Pack
);
9977 First
(Visible_Declarations
(Specification
(Analyzed_Formal
)));
9978 while Present
(Actual_Ent
)
9979 and then Actual_Ent
/= First_Private_Entity
(Actual_Pack
)
9981 if Present
(Formal_Node
) then
9982 Formal_Ent
:= Get_Formal_Entity
(Formal_Node
);
9984 if Present
(Formal_Ent
) then
9985 Find_Matching_Actual
(Formal_Node
, Actual_Ent
);
9986 Match_Formal_Entity
(Formal_Node
, Formal_Ent
, Actual_Ent
);
9988 -- We iterate at the same time over the actuals of the
9989 -- local package created for the formal, to determine
9990 -- which one of the formals of the original generic were
9991 -- defaulted in the formal. The corresponding actual
9992 -- entities are visible in the enclosing instance.
9994 if Box_Present
(Formal
)
9996 (Present
(Actual_Of_Formal
)
9999 (Get_Formal_Entity
(Actual_Of_Formal
)))
10001 Set_Is_Hidden
(Actual_Ent
, False);
10002 Set_Is_Visible_Formal
(Actual_Ent
);
10003 Set_Is_Potentially_Use_Visible
10004 (Actual_Ent
, In_Use
(Actual_Pack
));
10006 if Ekind
(Actual_Ent
) = E_Package
then
10007 Process_Nested_Formal
(Actual_Ent
);
10011 Set_Is_Hidden
(Actual_Ent
);
10012 Set_Is_Potentially_Use_Visible
(Actual_Ent
, False);
10016 Next_Non_Pragma
(Formal_Node
);
10017 Next
(Actual_Of_Formal
);
10020 -- No further formals to match, but the generic part may
10021 -- contain inherited operation that are not hidden in the
10022 -- enclosing instance.
10024 Next_Entity
(Actual_Ent
);
10028 -- Inherited subprograms generated by formal derived types are
10029 -- also visible if the types are.
10031 Actual_Ent
:= First_Entity
(Actual_Pack
);
10032 while Present
(Actual_Ent
)
10033 and then Actual_Ent
/= First_Private_Entity
(Actual_Pack
)
10035 if Is_Overloadable
(Actual_Ent
)
10037 Nkind
(Parent
(Actual_Ent
)) = N_Subtype_Declaration
10039 not Is_Hidden
(Defining_Identifier
(Parent
(Actual_Ent
)))
10041 Set_Is_Hidden
(Actual_Ent
, False);
10042 Set_Is_Potentially_Use_Visible
10043 (Actual_Ent
, In_Use
(Actual_Pack
));
10046 Next_Entity
(Actual_Ent
);
10050 -- If the formal is not declared with a box, reanalyze it as an
10051 -- abbreviated instantiation, to verify the matching rules of 12.7.
10052 -- The actual checks are performed after the generic associations
10053 -- have been analyzed, to guarantee the same visibility for this
10054 -- instantiation and for the actuals.
10056 -- In Ada 2005, the generic associations for the formal can include
10057 -- defaulted parameters. These are ignored during check. This
10058 -- internal instantiation is removed from the tree after conformance
10059 -- checking, because it contains formal declarations for those
10060 -- defaulted parameters, and those should not reach the back-end.
10062 if not Box_Present
(Formal
) then
10064 I_Pack
: constant Entity_Id
:=
10065 Make_Temporary
(Sloc
(Actual
), 'P');
10068 Set_Is_Internal
(I_Pack
);
10071 Make_Package_Instantiation
(Sloc
(Actual
),
10072 Defining_Unit_Name
=> I_Pack
,
10075 (Get_Instance_Of
(Gen_Parent
), Sloc
(Actual
)),
10076 Generic_Associations
=> Generic_Associations
(Formal
)));
10082 end Instantiate_Formal_Package
;
10084 -----------------------------------
10085 -- Instantiate_Formal_Subprogram --
10086 -----------------------------------
10088 function Instantiate_Formal_Subprogram
10091 Analyzed_Formal
: Node_Id
) return Node_Id
10093 Analyzed_S
: constant Entity_Id
:=
10094 Defining_Unit_Name
(Specification
(Analyzed_Formal
));
10095 Formal_Sub
: constant Entity_Id
:=
10096 Defining_Unit_Name
(Specification
(Formal
));
10098 function From_Parent_Scope
(Subp
: Entity_Id
) return Boolean;
10099 -- If the generic is a child unit, the parent has been installed on the
10100 -- scope stack, but a default subprogram cannot resolve to something
10101 -- on the parent because that parent is not really part of the visible
10102 -- context (it is there to resolve explicit local entities). If the
10103 -- default has resolved in this way, we remove the entity from immediate
10104 -- visibility and analyze the node again to emit an error message or
10105 -- find another visible candidate.
10107 procedure Valid_Actual_Subprogram
(Act
: Node_Id
);
10108 -- Perform legality check and raise exception on failure
10110 -----------------------
10111 -- From_Parent_Scope --
10112 -----------------------
10114 function From_Parent_Scope
(Subp
: Entity_Id
) return Boolean is
10115 Gen_Scope
: Node_Id
;
10118 Gen_Scope
:= Scope
(Analyzed_S
);
10119 while Present
(Gen_Scope
) and then Is_Child_Unit
(Gen_Scope
) loop
10120 if Scope
(Subp
) = Scope
(Gen_Scope
) then
10124 Gen_Scope
:= Scope
(Gen_Scope
);
10128 end From_Parent_Scope
;
10130 -----------------------------
10131 -- Valid_Actual_Subprogram --
10132 -----------------------------
10134 procedure Valid_Actual_Subprogram
(Act
: Node_Id
) is
10138 if Is_Entity_Name
(Act
) then
10139 Act_E
:= Entity
(Act
);
10141 elsif Nkind
(Act
) = N_Selected_Component
10142 and then Is_Entity_Name
(Selector_Name
(Act
))
10144 Act_E
:= Entity
(Selector_Name
(Act
));
10150 if (Present
(Act_E
) and then Is_Overloadable
(Act_E
))
10151 or else Nkind_In
(Act
, N_Attribute_Reference
,
10152 N_Indexed_Component
,
10153 N_Character_Literal
,
10154 N_Explicit_Dereference
)
10160 ("expect subprogram or entry name in instantiation of &",
10161 Instantiation_Node
, Formal_Sub
);
10162 Abandon_Instantiation
(Instantiation_Node
);
10163 end Valid_Actual_Subprogram
;
10167 Decl_Node
: Node_Id
;
10170 New_Spec
: Node_Id
;
10171 New_Subp
: Entity_Id
;
10173 -- Start of processing for Instantiate_Formal_Subprogram
10176 New_Spec
:= New_Copy_Tree
(Specification
(Formal
));
10178 -- The tree copy has created the proper instantiation sloc for the
10179 -- new specification. Use this location for all other constructed
10182 Loc
:= Sloc
(Defining_Unit_Name
(New_Spec
));
10184 -- Create new entity for the actual (New_Copy_Tree does not), and
10185 -- indicate that it is an actual.
10187 New_Subp
:= Make_Defining_Identifier
(Loc
, Chars
(Formal_Sub
));
10188 Set_Ekind
(New_Subp
, Ekind
(Analyzed_S
));
10189 Set_Is_Generic_Actual_Subprogram
(New_Subp
);
10190 Set_Defining_Unit_Name
(New_Spec
, New_Subp
);
10192 -- Create new entities for the each of the formals in the specification
10193 -- of the renaming declaration built for the actual.
10195 if Present
(Parameter_Specifications
(New_Spec
)) then
10201 F
:= First
(Parameter_Specifications
(New_Spec
));
10202 while Present
(F
) loop
10203 F_Id
:= Defining_Identifier
(F
);
10205 Set_Defining_Identifier
(F
,
10206 Make_Defining_Identifier
(Sloc
(F_Id
), Chars
(F_Id
)));
10212 -- Find entity of actual. If the actual is an attribute reference, it
10213 -- cannot be resolved here (its formal is missing) but is handled
10214 -- instead in Attribute_Renaming. If the actual is overloaded, it is
10215 -- fully resolved subsequently, when the renaming declaration for the
10216 -- formal is analyzed. If it is an explicit dereference, resolve the
10217 -- prefix but not the actual itself, to prevent interpretation as call.
10219 if Present
(Actual
) then
10220 Loc
:= Sloc
(Actual
);
10221 Set_Sloc
(New_Spec
, Loc
);
10223 if Nkind
(Actual
) = N_Operator_Symbol
then
10224 Find_Direct_Name
(Actual
);
10226 elsif Nkind
(Actual
) = N_Explicit_Dereference
then
10227 Analyze
(Prefix
(Actual
));
10229 elsif Nkind
(Actual
) /= N_Attribute_Reference
then
10233 Valid_Actual_Subprogram
(Actual
);
10236 elsif Present
(Default_Name
(Formal
)) then
10237 if not Nkind_In
(Default_Name
(Formal
), N_Attribute_Reference
,
10238 N_Selected_Component
,
10239 N_Indexed_Component
,
10240 N_Character_Literal
)
10241 and then Present
(Entity
(Default_Name
(Formal
)))
10243 Nam
:= New_Occurrence_Of
(Entity
(Default_Name
(Formal
)), Loc
);
10245 Nam
:= New_Copy
(Default_Name
(Formal
));
10246 Set_Sloc
(Nam
, Loc
);
10249 elsif Box_Present
(Formal
) then
10251 -- Actual is resolved at the point of instantiation. Create an
10252 -- identifier or operator with the same name as the formal.
10254 if Nkind
(Formal_Sub
) = N_Defining_Operator_Symbol
then
10256 Make_Operator_Symbol
(Loc
,
10257 Chars
=> Chars
(Formal_Sub
),
10258 Strval
=> No_String
);
10260 Nam
:= Make_Identifier
(Loc
, Chars
(Formal_Sub
));
10263 elsif Nkind
(Specification
(Formal
)) = N_Procedure_Specification
10264 and then Null_Present
(Specification
(Formal
))
10266 -- Generate null body for procedure, for use in the instance
10269 Make_Subprogram_Body
(Loc
,
10270 Specification
=> New_Spec
,
10271 Declarations
=> New_List
,
10272 Handled_Statement_Sequence
=>
10273 Make_Handled_Sequence_Of_Statements
(Loc
,
10274 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
10276 Set_Is_Intrinsic_Subprogram
(Defining_Unit_Name
(New_Spec
));
10280 Error_Msg_Sloc
:= Sloc
(Scope
(Analyzed_S
));
10282 ("missing actual&", Instantiation_Node
, Formal_Sub
);
10284 ("\in instantiation of & declared#",
10285 Instantiation_Node
, Scope
(Analyzed_S
));
10286 Abandon_Instantiation
(Instantiation_Node
);
10290 Make_Subprogram_Renaming_Declaration
(Loc
,
10291 Specification
=> New_Spec
,
10294 -- If we do not have an actual and the formal specified <> then set to
10295 -- get proper default.
10297 if No
(Actual
) and then Box_Present
(Formal
) then
10298 Set_From_Default
(Decl_Node
);
10301 -- Gather possible interpretations for the actual before analyzing the
10302 -- instance. If overloaded, it will be resolved when analyzing the
10303 -- renaming declaration.
10305 if Box_Present
(Formal
) and then No
(Actual
) then
10308 if Is_Child_Unit
(Scope
(Analyzed_S
))
10309 and then Present
(Entity
(Nam
))
10311 if not Is_Overloaded
(Nam
) then
10312 if From_Parent_Scope
(Entity
(Nam
)) then
10313 Set_Is_Immediately_Visible
(Entity
(Nam
), False);
10314 Set_Entity
(Nam
, Empty
);
10315 Set_Etype
(Nam
, Empty
);
10318 Set_Is_Immediately_Visible
(Entity
(Nam
));
10327 Get_First_Interp
(Nam
, I
, It
);
10328 while Present
(It
.Nam
) loop
10329 if From_Parent_Scope
(It
.Nam
) then
10333 Get_Next_Interp
(I
, It
);
10340 -- The generic instantiation freezes the actual. This can only be done
10341 -- once the actual is resolved, in the analysis of the renaming
10342 -- declaration. To make the formal subprogram entity available, we set
10343 -- Corresponding_Formal_Spec to point to the formal subprogram entity.
10344 -- This is also needed in Analyze_Subprogram_Renaming for the processing
10345 -- of formal abstract subprograms.
10347 Set_Corresponding_Formal_Spec
(Decl_Node
, Analyzed_S
);
10349 -- We cannot analyze the renaming declaration, and thus find the actual,
10350 -- until all the actuals are assembled in the instance. For subsequent
10351 -- checks of other actuals, indicate the node that will hold the
10352 -- instance of this formal.
10354 Set_Instance_Of
(Analyzed_S
, Nam
);
10356 if Nkind
(Actual
) = N_Selected_Component
10357 and then Is_Task_Type
(Etype
(Prefix
(Actual
)))
10358 and then not Is_Frozen
(Etype
(Prefix
(Actual
)))
10360 -- The renaming declaration will create a body, which must appear
10361 -- outside of the instantiation, We move the renaming declaration
10362 -- out of the instance, and create an additional renaming inside,
10363 -- to prevent freezing anomalies.
10366 Anon_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'E');
10369 Set_Defining_Unit_Name
(New_Spec
, Anon_Id
);
10370 Insert_Before
(Instantiation_Node
, Decl_Node
);
10371 Analyze
(Decl_Node
);
10373 -- Now create renaming within the instance
10376 Make_Subprogram_Renaming_Declaration
(Loc
,
10377 Specification
=> New_Copy_Tree
(New_Spec
),
10378 Name
=> New_Occurrence_Of
(Anon_Id
, Loc
));
10380 Set_Defining_Unit_Name
(Specification
(Decl_Node
),
10381 Make_Defining_Identifier
(Loc
, Chars
(Formal_Sub
)));
10386 end Instantiate_Formal_Subprogram
;
10388 ------------------------
10389 -- Instantiate_Object --
10390 ------------------------
10392 function Instantiate_Object
10395 Analyzed_Formal
: Node_Id
) return List_Id
10397 Gen_Obj
: constant Entity_Id
:= Defining_Identifier
(Formal
);
10398 A_Gen_Obj
: constant Entity_Id
:=
10399 Defining_Identifier
(Analyzed_Formal
);
10400 Acc_Def
: Node_Id
:= Empty
;
10401 Act_Assoc
: constant Node_Id
:= Parent
(Actual
);
10402 Actual_Decl
: Node_Id
:= Empty
;
10403 Decl_Node
: Node_Id
;
10406 List
: constant List_Id
:= New_List
;
10407 Loc
: constant Source_Ptr
:= Sloc
(Actual
);
10408 Orig_Ftyp
: constant Entity_Id
:= Etype
(A_Gen_Obj
);
10409 Subt_Decl
: Node_Id
:= Empty
;
10410 Subt_Mark
: Node_Id
:= Empty
;
10412 function Copy_Access_Def
return Node_Id
;
10413 -- If formal is an anonymous access, copy access definition of formal
10414 -- for generated object declaration.
10416 ---------------------
10417 -- Copy_Access_Def --
10418 ---------------------
10420 function Copy_Access_Def
return Node_Id
is
10422 Def
:= New_Copy_Tree
(Acc_Def
);
10424 -- In addition, if formal is an access to subprogram we need to
10425 -- generate new formals for the signature of the default, so that
10426 -- the tree is properly formatted for ASIS use.
10428 if Present
(Access_To_Subprogram_Definition
(Acc_Def
)) then
10430 Par_Spec
: Node_Id
;
10433 First
(Parameter_Specifications
10434 (Access_To_Subprogram_Definition
(Def
)));
10435 while Present
(Par_Spec
) loop
10436 Set_Defining_Identifier
(Par_Spec
,
10437 Make_Defining_Identifier
(Sloc
(Acc_Def
),
10438 Chars
=> Chars
(Defining_Identifier
(Par_Spec
))));
10445 end Copy_Access_Def
;
10447 -- Start of processing for Instantiate_Object
10450 -- Formal may be an anonymous access
10452 if Present
(Subtype_Mark
(Formal
)) then
10453 Subt_Mark
:= Subtype_Mark
(Formal
);
10455 Check_Access_Definition
(Formal
);
10456 Acc_Def
:= Access_Definition
(Formal
);
10459 -- Sloc for error message on missing actual
10461 Error_Msg_Sloc
:= Sloc
(Scope
(A_Gen_Obj
));
10463 if Get_Instance_Of
(Gen_Obj
) /= Gen_Obj
then
10464 Error_Msg_N
("duplicate instantiation of generic parameter", Actual
);
10467 Set_Parent
(List
, Parent
(Actual
));
10471 if Out_Present
(Formal
) then
10473 -- An IN OUT generic actual must be a name. The instantiation is a
10474 -- renaming declaration. The actual is the name being renamed. We
10475 -- use the actual directly, rather than a copy, because it is not
10476 -- used further in the list of actuals, and because a copy or a use
10477 -- of relocate_node is incorrect if the instance is nested within a
10478 -- generic. In order to simplify ASIS searches, the Generic_Parent
10479 -- field links the declaration to the generic association.
10481 if No
(Actual
) then
10483 ("missing actual &",
10484 Instantiation_Node
, Gen_Obj
);
10486 ("\in instantiation of & declared#",
10487 Instantiation_Node
, Scope
(A_Gen_Obj
));
10488 Abandon_Instantiation
(Instantiation_Node
);
10491 if Present
(Subt_Mark
) then
10493 Make_Object_Renaming_Declaration
(Loc
,
10494 Defining_Identifier
=> New_Copy
(Gen_Obj
),
10495 Subtype_Mark
=> New_Copy_Tree
(Subt_Mark
),
10498 else pragma Assert
(Present
(Acc_Def
));
10500 Make_Object_Renaming_Declaration
(Loc
,
10501 Defining_Identifier
=> New_Copy
(Gen_Obj
),
10502 Access_Definition
=> New_Copy_Tree
(Acc_Def
),
10506 Set_Corresponding_Generic_Association
(Decl_Node
, Act_Assoc
);
10508 -- The analysis of the actual may produce Insert_Action nodes, so
10509 -- the declaration must have a context in which to attach them.
10511 Append
(Decl_Node
, List
);
10514 -- Return if the analysis of the actual reported some error
10516 if Etype
(Actual
) = Any_Type
then
10520 -- This check is performed here because Analyze_Object_Renaming will
10521 -- not check it when Comes_From_Source is False. Note though that the
10522 -- check for the actual being the name of an object will be performed
10523 -- in Analyze_Object_Renaming.
10525 if Is_Object_Reference
(Actual
)
10526 and then Is_Dependent_Component_Of_Mutable_Object
(Actual
)
10529 ("illegal discriminant-dependent component for in out parameter",
10533 -- The actual has to be resolved in order to check that it is a
10534 -- variable (due to cases such as F (1), where F returns access to
10535 -- an array, and for overloaded prefixes).
10537 Ftyp
:= Get_Instance_Of
(Etype
(A_Gen_Obj
));
10539 -- If the type of the formal is not itself a formal, and the current
10540 -- unit is a child unit, the formal type must be declared in a
10541 -- parent, and must be retrieved by visibility.
10543 if Ftyp
= Orig_Ftyp
10544 and then Is_Generic_Unit
(Scope
(Ftyp
))
10545 and then Is_Child_Unit
(Scope
(A_Gen_Obj
))
10548 Temp
: constant Node_Id
:=
10549 New_Copy_Tree
(Subtype_Mark
(Analyzed_Formal
));
10551 Set_Entity
(Temp
, Empty
);
10553 Ftyp
:= Entity
(Temp
);
10557 if Is_Private_Type
(Ftyp
)
10558 and then not Is_Private_Type
(Etype
(Actual
))
10559 and then (Base_Type
(Full_View
(Ftyp
)) = Base_Type
(Etype
(Actual
))
10560 or else Base_Type
(Etype
(Actual
)) = Ftyp
)
10562 -- If the actual has the type of the full view of the formal, or
10563 -- else a non-private subtype of the formal, then the visibility
10564 -- of the formal type has changed. Add to the actuals a subtype
10565 -- declaration that will force the exchange of views in the body
10566 -- of the instance as well.
10569 Make_Subtype_Declaration
(Loc
,
10570 Defining_Identifier
=> Make_Temporary
(Loc
, 'P'),
10571 Subtype_Indication
=> New_Occurrence_Of
(Ftyp
, Loc
));
10573 Prepend
(Subt_Decl
, List
);
10575 Prepend_Elmt
(Full_View
(Ftyp
), Exchanged_Views
);
10576 Exchange_Declarations
(Ftyp
);
10579 Resolve
(Actual
, Ftyp
);
10581 if not Denotes_Variable
(Actual
) then
10582 Error_Msg_NE
("actual for& must be a variable", Actual
, Gen_Obj
);
10584 elsif Base_Type
(Ftyp
) /= Base_Type
(Etype
(Actual
)) then
10586 -- Ada 2005 (AI-423): For a generic formal object of mode in out,
10587 -- the type of the actual shall resolve to a specific anonymous
10590 if Ada_Version
< Ada_2005
10591 or else Ekind
(Base_Type
(Ftyp
)) /=
10592 E_Anonymous_Access_Type
10593 or else Ekind
(Base_Type
(Etype
(Actual
))) /=
10594 E_Anonymous_Access_Type
10597 ("type of actual does not match type of&", Actual
, Gen_Obj
);
10601 Note_Possible_Modification
(Actual
, Sure
=> True);
10603 -- Check for instantiation of atomic/volatile actual for
10604 -- non-atomic/volatile formal (RM C.6 (12)).
10606 if Is_Atomic_Object
(Actual
) and then not Is_Atomic
(Orig_Ftyp
) then
10608 ("cannot instantiate non-atomic formal object "
10609 & "with atomic actual", Actual
);
10611 elsif Is_Volatile_Object
(Actual
) and then not Is_Volatile
(Orig_Ftyp
)
10614 ("cannot instantiate non-volatile formal object "
10615 & "with volatile actual", Actual
);
10618 -- Formal in-parameter
10621 -- The instantiation of a generic formal in-parameter is constant
10622 -- declaration. The actual is the expression for that declaration.
10623 -- Its type is a full copy of the type of the formal. This may be
10624 -- an access to subprogram, for which we need to generate entities
10625 -- for the formals in the new signature.
10627 if Present
(Actual
) then
10628 if Present
(Subt_Mark
) then
10629 Def
:= New_Copy_Tree
(Subt_Mark
);
10630 else pragma Assert
(Present
(Acc_Def
));
10631 Def
:= Copy_Access_Def
;
10635 Make_Object_Declaration
(Loc
,
10636 Defining_Identifier
=> New_Copy
(Gen_Obj
),
10637 Constant_Present
=> True,
10638 Null_Exclusion_Present
=> Null_Exclusion_Present
(Formal
),
10639 Object_Definition
=> Def
,
10640 Expression
=> Actual
);
10642 Set_Corresponding_Generic_Association
(Decl_Node
, Act_Assoc
);
10644 -- A generic formal object of a tagged type is defined to be
10645 -- aliased so the new constant must also be treated as aliased.
10647 if Is_Tagged_Type
(Etype
(A_Gen_Obj
)) then
10648 Set_Aliased_Present
(Decl_Node
);
10651 Append
(Decl_Node
, List
);
10653 -- No need to repeat (pre-)analysis of some expression nodes
10654 -- already handled in Preanalyze_Actuals.
10656 if Nkind
(Actual
) /= N_Allocator
then
10659 -- Return if the analysis of the actual reported some error
10661 if Etype
(Actual
) = Any_Type
then
10667 Formal_Type
: constant Entity_Id
:= Etype
(A_Gen_Obj
);
10671 Typ
:= Get_Instance_Of
(Formal_Type
);
10673 -- If the actual appears in the current or an enclosing scope,
10674 -- use its type directly. This is relevant if it has an actual
10675 -- subtype that is distinct from its nominal one. This cannot
10676 -- be done in general because the type of the actual may
10677 -- depend on other actuals, and only be fully determined when
10678 -- the enclosing instance is analyzed.
10680 if Present
(Etype
(Actual
))
10681 and then Is_Constr_Subt_For_U_Nominal
(Etype
(Actual
))
10683 Freeze_Before
(Instantiation_Node
, Etype
(Actual
));
10685 Freeze_Before
(Instantiation_Node
, Typ
);
10688 -- If the actual is an aggregate, perform name resolution on
10689 -- its components (the analysis of an aggregate does not do it)
10690 -- to capture local names that may be hidden if the generic is
10693 if Nkind
(Actual
) = N_Aggregate
then
10694 Preanalyze_And_Resolve
(Actual
, Typ
);
10697 if Is_Limited_Type
(Typ
)
10698 and then not OK_For_Limited_Init
(Typ
, Actual
)
10701 ("initialization not allowed for limited types", Actual
);
10702 Explain_Limited_Type
(Typ
, Actual
);
10706 elsif Present
(Default_Expression
(Formal
)) then
10708 -- Use default to construct declaration
10710 if Present
(Subt_Mark
) then
10711 Def
:= New_Copy
(Subt_Mark
);
10712 else pragma Assert
(Present
(Acc_Def
));
10713 Def
:= Copy_Access_Def
;
10717 Make_Object_Declaration
(Sloc
(Formal
),
10718 Defining_Identifier
=> New_Copy
(Gen_Obj
),
10719 Constant_Present
=> True,
10720 Null_Exclusion_Present
=> Null_Exclusion_Present
(Formal
),
10721 Object_Definition
=> Def
,
10722 Expression
=> New_Copy_Tree
10723 (Default_Expression
(Formal
)));
10725 Append
(Decl_Node
, List
);
10726 Set_Analyzed
(Expression
(Decl_Node
), False);
10729 Error_Msg_NE
("missing actual&", Instantiation_Node
, Gen_Obj
);
10730 Error_Msg_NE
("\in instantiation of & declared#",
10731 Instantiation_Node
, Scope
(A_Gen_Obj
));
10733 if Is_Scalar_Type
(Etype
(A_Gen_Obj
)) then
10735 -- Create dummy constant declaration so that instance can be
10736 -- analyzed, to minimize cascaded visibility errors.
10738 if Present
(Subt_Mark
) then
10740 else pragma Assert
(Present
(Acc_Def
));
10745 Make_Object_Declaration
(Loc
,
10746 Defining_Identifier
=> New_Copy
(Gen_Obj
),
10747 Constant_Present
=> True,
10748 Null_Exclusion_Present
=> Null_Exclusion_Present
(Formal
),
10749 Object_Definition
=> New_Copy
(Def
),
10751 Make_Attribute_Reference
(Sloc
(Gen_Obj
),
10752 Attribute_Name
=> Name_First
,
10753 Prefix
=> New_Copy
(Def
)));
10755 Append
(Decl_Node
, List
);
10758 Abandon_Instantiation
(Instantiation_Node
);
10763 if Nkind
(Actual
) in N_Has_Entity
then
10764 Actual_Decl
:= Parent
(Entity
(Actual
));
10767 -- Ada 2005 (AI-423): For a formal object declaration with a null
10768 -- exclusion or an access definition that has a null exclusion: If the
10769 -- actual matching the formal object declaration denotes a generic
10770 -- formal object of another generic unit G, and the instantiation
10771 -- containing the actual occurs within the body of G or within the body
10772 -- of a generic unit declared within the declarative region of G, then
10773 -- the declaration of the formal object of G must have a null exclusion.
10774 -- Otherwise, the subtype of the actual matching the formal object
10775 -- declaration shall exclude null.
10777 if Ada_Version
>= Ada_2005
10778 and then Present
(Actual_Decl
)
10779 and then Nkind_In
(Actual_Decl
, N_Formal_Object_Declaration
,
10780 N_Object_Declaration
)
10781 and then Nkind
(Analyzed_Formal
) = N_Formal_Object_Declaration
10782 and then not Has_Null_Exclusion
(Actual_Decl
)
10783 and then Has_Null_Exclusion
(Analyzed_Formal
)
10785 Error_Msg_Sloc
:= Sloc
(Analyzed_Formal
);
10787 ("actual must exclude null to match generic formal#", Actual
);
10790 -- An effectively volatile object cannot be used as an actual in a
10791 -- generic instantiation (SPARK RM 7.1.3(7)). The following check is
10792 -- relevant only when SPARK_Mode is on as it is not a standard Ada
10793 -- legality rule, and also verifies that the actual is an object.
10796 and then Present
(Actual
)
10797 and then Is_Object_Reference
(Actual
)
10798 and then Is_Effectively_Volatile_Object
(Actual
)
10801 ("volatile object cannot act as actual in generic instantiation",
10806 end Instantiate_Object
;
10808 ------------------------------
10809 -- Instantiate_Package_Body --
10810 ------------------------------
10812 -- WARNING: This routine manages Ghost regions. Return statements must be
10813 -- replaced by gotos which jump to the end of the routine and restore the
10816 procedure Instantiate_Package_Body
10817 (Body_Info
: Pending_Body_Info
;
10818 Inlined_Body
: Boolean := False;
10819 Body_Optional
: Boolean := False)
10821 Act_Decl
: constant Node_Id
:= Body_Info
.Act_Decl
;
10822 Act_Decl_Id
: constant Entity_Id
:= Defining_Entity
(Act_Decl
);
10823 Act_Spec
: constant Node_Id
:= Specification
(Act_Decl
);
10824 Inst_Node
: constant Node_Id
:= Body_Info
.Inst_Node
;
10825 Gen_Id
: constant Node_Id
:= Name
(Inst_Node
);
10826 Gen_Unit
: constant Entity_Id
:= Get_Generic_Entity
(Inst_Node
);
10827 Gen_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Gen_Unit
);
10828 Loc
: constant Source_Ptr
:= Sloc
(Inst_Node
);
10830 Save_IPSM
: constant Boolean := Ignore_Pragma_SPARK_Mode
;
10831 Save_Style_Check
: constant Boolean := Style_Check
;
10833 procedure Check_Initialized_Types
;
10834 -- In a generic package body, an entity of a generic private type may
10835 -- appear uninitialized. This is suspicious, unless the actual is a
10836 -- fully initialized type.
10838 -----------------------------
10839 -- Check_Initialized_Types --
10840 -----------------------------
10842 procedure Check_Initialized_Types
is
10844 Formal
: Entity_Id
;
10845 Actual
: Entity_Id
;
10846 Uninit_Var
: Entity_Id
;
10849 Decl
:= First
(Generic_Formal_Declarations
(Gen_Decl
));
10850 while Present
(Decl
) loop
10851 Uninit_Var
:= Empty
;
10853 if Nkind
(Decl
) = N_Private_Extension_Declaration
then
10854 Uninit_Var
:= Uninitialized_Variable
(Decl
);
10856 elsif Nkind
(Decl
) = N_Formal_Type_Declaration
10857 and then Nkind
(Formal_Type_Definition
(Decl
)) =
10858 N_Formal_Private_Type_Definition
10861 Uninitialized_Variable
(Formal_Type_Definition
(Decl
));
10864 if Present
(Uninit_Var
) then
10865 Formal
:= Defining_Identifier
(Decl
);
10866 Actual
:= First_Entity
(Act_Decl_Id
);
10868 -- For each formal there is a subtype declaration that renames
10869 -- the actual and has the same name as the formal. Locate the
10870 -- formal for warning message about uninitialized variables
10871 -- in the generic, for which the actual type should be a fully
10872 -- initialized type.
10874 while Present
(Actual
) loop
10875 exit when Ekind
(Actual
) = E_Package
10876 and then Present
(Renamed_Object
(Actual
));
10878 if Chars
(Actual
) = Chars
(Formal
)
10879 and then not Is_Scalar_Type
(Actual
)
10880 and then not Is_Fully_Initialized_Type
(Actual
)
10881 and then Warn_On_No_Value_Assigned
10883 Error_Msg_Node_2
:= Formal
;
10885 ("generic unit has uninitialized variable& of "
10886 & "formal private type &?v?", Actual
, Uninit_Var
);
10888 ("actual type for& should be fully initialized type?v?",
10893 Next_Entity
(Actual
);
10899 end Check_Initialized_Types
;
10903 Act_Body
: Node_Id
;
10904 Act_Body_Id
: Entity_Id
;
10905 Act_Body_Name
: Node_Id
;
10906 Gen_Body
: Node_Id
;
10907 Gen_Body_Id
: Node_Id
;
10908 Mode
: Ghost_Mode_Type
;
10909 Par_Ent
: Entity_Id
:= Empty
;
10910 Par_Vis
: Boolean := False;
10912 Parent_Installed
: Boolean := False;
10914 Vis_Prims_List
: Elist_Id
:= No_Elist
;
10915 -- List of primitives made temporarily visible in the instantiation
10916 -- to match the visibility of the formal type.
10918 -- Start of processing for Instantiate_Package_Body
10921 Gen_Body_Id
:= Corresponding_Body
(Gen_Decl
);
10923 -- The instance body may already have been processed, as the parent of
10924 -- another instance that is inlined (Load_Parent_Of_Generic).
10926 if Present
(Corresponding_Body
(Instance_Spec
(Inst_Node
))) then
10930 -- The package being instantiated may be subject to pragma Ghost. Set
10931 -- the mode now to ensure that any nodes generated during instantiation
10932 -- are properly marked as Ghost.
10934 Set_Ghost_Mode
(Act_Decl_Id
, Mode
);
10936 Expander_Mode_Save_And_Set
(Body_Info
.Expander_Status
);
10938 -- Re-establish the state of information on which checks are suppressed.
10939 -- This information was set in Body_Info at the point of instantiation,
10940 -- and now we restore it so that the instance is compiled using the
10941 -- check status at the instantiation (RM 11.5(7.2/2), AI95-00224-01).
10943 Local_Suppress_Stack_Top
:= Body_Info
.Local_Suppress_Stack_Top
;
10944 Scope_Suppress
:= Body_Info
.Scope_Suppress
;
10945 Opt
.Ada_Version
:= Body_Info
.Version
;
10946 Opt
.Ada_Version_Pragma
:= Body_Info
.Version_Pragma
;
10947 Restore_Warnings
(Body_Info
.Warnings
);
10948 Opt
.SPARK_Mode
:= Body_Info
.SPARK_Mode
;
10949 Opt
.SPARK_Mode_Pragma
:= Body_Info
.SPARK_Mode_Pragma
;
10951 if No
(Gen_Body_Id
) then
10953 -- Do not look for parent of generic body if none is required.
10954 -- This may happen when the routine is called as part of the
10955 -- Pending_Instantiations processing, when nested instances
10956 -- may precede the one generated from the main unit.
10958 if not Unit_Requires_Body
(Defining_Entity
(Gen_Decl
))
10959 and then Body_Optional
10963 Load_Parent_Of_Generic
10964 (Inst_Node
, Specification
(Gen_Decl
), Body_Optional
);
10965 Gen_Body_Id
:= Corresponding_Body
(Gen_Decl
);
10969 -- Establish global variable for sloc adjustment and for error recovery
10970 -- In the case of an instance body for an instantiation with actuals
10971 -- from a limited view, the instance body is placed at the beginning
10972 -- of the enclosing package body: use the body entity as the source
10973 -- location for nodes of the instance body.
10975 if not Is_Empty_Elmt_List
(Incomplete_Actuals
(Act_Decl_Id
)) then
10977 Scop
: constant Entity_Id
:= Scope
(Act_Decl_Id
);
10978 Body_Id
: constant Node_Id
:=
10979 Corresponding_Body
(Unit_Declaration_Node
(Scop
));
10982 Instantiation_Node
:= Body_Id
;
10985 Instantiation_Node
:= Inst_Node
;
10988 if Present
(Gen_Body_Id
) then
10989 Save_Env
(Gen_Unit
, Act_Decl_Id
);
10990 Style_Check
:= False;
10992 -- If the context of the instance is subject to SPARK_Mode "off" or
10993 -- the annotation is altogether missing, set the global flag which
10994 -- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within
10997 if SPARK_Mode
/= On
then
10998 Ignore_Pragma_SPARK_Mode
:= True;
11001 Current_Sem_Unit
:= Body_Info
.Current_Sem_Unit
;
11002 Gen_Body
:= Unit_Declaration_Node
(Gen_Body_Id
);
11004 Create_Instantiation_Source
11005 (Inst_Node
, Gen_Body_Id
, S_Adjustment
);
11009 (Original_Node
(Gen_Body
), Empty
, Instantiating
=> True);
11011 -- Create proper (possibly qualified) defining name for the body, to
11012 -- correspond to the one in the spec.
11015 Make_Defining_Identifier
(Sloc
(Act_Decl_Id
), Chars
(Act_Decl_Id
));
11016 Set_Comes_From_Source
(Act_Body_Id
, Comes_From_Source
(Act_Decl_Id
));
11018 -- Some attributes of spec entity are not inherited by body entity
11020 Set_Handler_Records
(Act_Body_Id
, No_List
);
11022 if Nkind
(Defining_Unit_Name
(Act_Spec
)) =
11023 N_Defining_Program_Unit_Name
11026 Make_Defining_Program_Unit_Name
(Loc
,
11028 New_Copy_Tree
(Name
(Defining_Unit_Name
(Act_Spec
))),
11029 Defining_Identifier
=> Act_Body_Id
);
11031 Act_Body_Name
:= Act_Body_Id
;
11034 Set_Defining_Unit_Name
(Act_Body
, Act_Body_Name
);
11036 Set_Corresponding_Spec
(Act_Body
, Act_Decl_Id
);
11037 Check_Generic_Actuals
(Act_Decl_Id
, False);
11038 Check_Initialized_Types
;
11040 -- Install primitives hidden at the point of the instantiation but
11041 -- visible when processing the generic formals
11047 E
:= First_Entity
(Act_Decl_Id
);
11048 while Present
(E
) loop
11050 and then not Is_Itype
(E
)
11051 and then Is_Generic_Actual_Type
(E
)
11052 and then Is_Tagged_Type
(E
)
11054 Install_Hidden_Primitives
11055 (Prims_List
=> Vis_Prims_List
,
11056 Gen_T
=> Generic_Parent_Type
(Parent
(E
)),
11064 -- If it is a child unit, make the parent instance (which is an
11065 -- instance of the parent of the generic) visible. The parent
11066 -- instance is the prefix of the name of the generic unit.
11068 if Ekind
(Scope
(Gen_Unit
)) = E_Generic_Package
11069 and then Nkind
(Gen_Id
) = N_Expanded_Name
11071 Par_Ent
:= Entity
(Prefix
(Gen_Id
));
11072 Par_Vis
:= Is_Immediately_Visible
(Par_Ent
);
11073 Install_Parent
(Par_Ent
, In_Body
=> True);
11074 Parent_Installed
:= True;
11076 elsif Is_Child_Unit
(Gen_Unit
) then
11077 Par_Ent
:= Scope
(Gen_Unit
);
11078 Par_Vis
:= Is_Immediately_Visible
(Par_Ent
);
11079 Install_Parent
(Par_Ent
, In_Body
=> True);
11080 Parent_Installed
:= True;
11083 -- If the instantiation is a library unit, and this is the main unit,
11084 -- then build the resulting compilation unit nodes for the instance.
11085 -- If this is a compilation unit but it is not the main unit, then it
11086 -- is the body of a unit in the context, that is being compiled
11087 -- because it is encloses some inlined unit or another generic unit
11088 -- being instantiated. In that case, this body is not part of the
11089 -- current compilation, and is not attached to the tree, but its
11090 -- parent must be set for analysis.
11092 if Nkind
(Parent
(Inst_Node
)) = N_Compilation_Unit
then
11094 -- Replace instance node with body of instance, and create new
11095 -- node for corresponding instance declaration.
11097 Build_Instance_Compilation_Unit_Nodes
11098 (Inst_Node
, Act_Body
, Act_Decl
);
11099 Analyze
(Inst_Node
);
11101 if Parent
(Inst_Node
) = Cunit
(Main_Unit
) then
11103 -- If the instance is a child unit itself, then set the scope
11104 -- of the expanded body to be the parent of the instantiation
11105 -- (ensuring that the fully qualified name will be generated
11106 -- for the elaboration subprogram).
11108 if Nkind
(Defining_Unit_Name
(Act_Spec
)) =
11109 N_Defining_Program_Unit_Name
11111 Set_Scope
(Defining_Entity
(Inst_Node
), Scope
(Act_Decl_Id
));
11115 -- Case where instantiation is not a library unit
11118 -- If this is an early instantiation, i.e. appears textually
11119 -- before the corresponding body and must be elaborated first,
11120 -- indicate that the body instance is to be delayed.
11122 Install_Body
(Act_Body
, Inst_Node
, Gen_Body
, Gen_Decl
);
11124 -- Now analyze the body. We turn off all checks if this is an
11125 -- internal unit, since there is no reason to have checks on for
11126 -- any predefined run-time library code. All such code is designed
11127 -- to be compiled with checks off.
11129 -- Note that we do NOT apply this criterion to children of GNAT
11130 -- The latter units must suppress checks explicitly if needed.
11132 -- We also do not suppress checks in CodePeer mode where we are
11133 -- interested in finding possible runtime errors.
11135 if not CodePeer_Mode
11136 and then Is_Predefined_File_Name
11137 (Unit_File_Name
(Get_Source_Unit
(Gen_Decl
)))
11139 Analyze
(Act_Body
, Suppress
=> All_Checks
);
11141 Analyze
(Act_Body
);
11145 Inherit_Context
(Gen_Body
, Inst_Node
);
11147 -- Remove the parent instances if they have been placed on the scope
11148 -- stack to compile the body.
11150 if Parent_Installed
then
11151 Remove_Parent
(In_Body
=> True);
11153 -- Restore the previous visibility of the parent
11155 Set_Is_Immediately_Visible
(Par_Ent
, Par_Vis
);
11158 Restore_Hidden_Primitives
(Vis_Prims_List
);
11159 Restore_Private_Views
(Act_Decl_Id
);
11161 -- Remove the current unit from visibility if this is an instance
11162 -- that is not elaborated on the fly for inlining purposes.
11164 if not Inlined_Body
then
11165 Set_Is_Immediately_Visible
(Act_Decl_Id
, False);
11169 Ignore_Pragma_SPARK_Mode
:= Save_IPSM
;
11170 Style_Check
:= Save_Style_Check
;
11172 -- If we have no body, and the unit requires a body, then complain. This
11173 -- complaint is suppressed if we have detected other errors (since a
11174 -- common reason for missing the body is that it had errors).
11175 -- In CodePeer mode, a warning has been emitted already, no need for
11176 -- further messages.
11178 elsif Unit_Requires_Body
(Gen_Unit
)
11179 and then not Body_Optional
11181 if CodePeer_Mode
then
11184 elsif Serious_Errors_Detected
= 0 then
11186 ("cannot find body of generic package &", Inst_Node
, Gen_Unit
);
11188 -- Don't attempt to perform any cleanup actions if some other error
11189 -- was already detected, since this can cause blowups.
11195 -- Case of package that does not need a body
11198 -- If the instantiation of the declaration is a library unit, rewrite
11199 -- the original package instantiation as a package declaration in the
11200 -- compilation unit node.
11202 if Nkind
(Parent
(Inst_Node
)) = N_Compilation_Unit
then
11203 Set_Parent_Spec
(Act_Decl
, Parent_Spec
(Inst_Node
));
11204 Rewrite
(Inst_Node
, Act_Decl
);
11206 -- Generate elaboration entity, in case spec has elaboration code.
11207 -- This cannot be done when the instance is analyzed, because it
11208 -- is not known yet whether the body exists.
11210 Set_Elaboration_Entity_Required
(Act_Decl_Id
, False);
11211 Build_Elaboration_Entity
(Parent
(Inst_Node
), Act_Decl_Id
);
11213 -- If the instantiation is not a library unit, then append the
11214 -- declaration to the list of implicitly generated entities, unless
11215 -- it is already a list member which means that it was already
11218 elsif not Is_List_Member
(Act_Decl
) then
11219 Mark_Rewrite_Insertion
(Act_Decl
);
11220 Insert_Before
(Inst_Node
, Act_Decl
);
11224 Expander_Mode_Restore
;
11227 Restore_Ghost_Mode
(Mode
);
11228 end Instantiate_Package_Body
;
11230 ---------------------------------
11231 -- Instantiate_Subprogram_Body --
11232 ---------------------------------
11234 -- WARNING: This routine manages Ghost regions. Return statements must be
11235 -- replaced by gotos which jump to the end of the routine and restore the
11238 procedure Instantiate_Subprogram_Body
11239 (Body_Info
: Pending_Body_Info
;
11240 Body_Optional
: Boolean := False)
11242 Act_Decl
: constant Node_Id
:= Body_Info
.Act_Decl
;
11243 Act_Decl_Id
: constant Entity_Id
:= Defining_Entity
(Act_Decl
);
11244 Inst_Node
: constant Node_Id
:= Body_Info
.Inst_Node
;
11245 Gen_Id
: constant Node_Id
:= Name
(Inst_Node
);
11246 Gen_Unit
: constant Entity_Id
:= Get_Generic_Entity
(Inst_Node
);
11247 Gen_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Gen_Unit
);
11248 Loc
: constant Source_Ptr
:= Sloc
(Inst_Node
);
11249 Pack_Id
: constant Entity_Id
:=
11250 Defining_Unit_Name
(Parent
(Act_Decl
));
11252 Saved_IPSM
: constant Boolean := Ignore_Pragma_SPARK_Mode
;
11253 Saved_Style_Check
: constant Boolean := Style_Check
;
11254 Saved_Warnings
: constant Warning_Record
:= Save_Warnings
;
11256 Act_Body
: Node_Id
;
11257 Act_Body_Id
: Entity_Id
;
11258 Gen_Body
: Node_Id
;
11259 Gen_Body_Id
: Node_Id
;
11260 Mode
: Ghost_Mode_Type
;
11261 Pack_Body
: Node_Id
;
11262 Par_Ent
: Entity_Id
:= Empty
;
11263 Par_Vis
: Boolean := False;
11264 Ret_Expr
: Node_Id
;
11266 Parent_Installed
: Boolean := False;
11269 Gen_Body_Id
:= Corresponding_Body
(Gen_Decl
);
11271 -- Subprogram body may have been created already because of an inline
11272 -- pragma, or because of multiple elaborations of the enclosing package
11273 -- when several instances of the subprogram appear in the main unit.
11275 if Present
(Corresponding_Body
(Act_Decl
)) then
11279 -- The subprogram being instantiated may be subject to pragma Ghost. Set
11280 -- the mode now to ensure that any nodes generated during instantiation
11281 -- are properly marked as Ghost.
11283 Set_Ghost_Mode
(Act_Decl_Id
, Mode
);
11285 Expander_Mode_Save_And_Set
(Body_Info
.Expander_Status
);
11287 -- Re-establish the state of information on which checks are suppressed.
11288 -- This information was set in Body_Info at the point of instantiation,
11289 -- and now we restore it so that the instance is compiled using the
11290 -- check status at the instantiation (RM 11.5(7.2/2), AI95-00224-01).
11292 Local_Suppress_Stack_Top
:= Body_Info
.Local_Suppress_Stack_Top
;
11293 Scope_Suppress
:= Body_Info
.Scope_Suppress
;
11294 Opt
.Ada_Version
:= Body_Info
.Version
;
11295 Opt
.Ada_Version_Pragma
:= Body_Info
.Version_Pragma
;
11296 Restore_Warnings
(Body_Info
.Warnings
);
11297 Opt
.SPARK_Mode
:= Body_Info
.SPARK_Mode
;
11298 Opt
.SPARK_Mode_Pragma
:= Body_Info
.SPARK_Mode_Pragma
;
11300 if No
(Gen_Body_Id
) then
11302 -- For imported generic subprogram, no body to compile, complete
11303 -- the spec entity appropriately.
11305 if Is_Imported
(Gen_Unit
) then
11306 Set_Is_Imported
(Act_Decl_Id
);
11307 Set_First_Rep_Item
(Act_Decl_Id
, First_Rep_Item
(Gen_Unit
));
11308 Set_Interface_Name
(Act_Decl_Id
, Interface_Name
(Gen_Unit
));
11309 Set_Convention
(Act_Decl_Id
, Convention
(Gen_Unit
));
11310 Set_Has_Completion
(Act_Decl_Id
);
11313 -- For other cases, compile the body
11316 Load_Parent_Of_Generic
11317 (Inst_Node
, Specification
(Gen_Decl
), Body_Optional
);
11318 Gen_Body_Id
:= Corresponding_Body
(Gen_Decl
);
11322 Instantiation_Node
:= Inst_Node
;
11324 if Present
(Gen_Body_Id
) then
11325 Gen_Body
:= Unit_Declaration_Node
(Gen_Body_Id
);
11327 if Nkind
(Gen_Body
) = N_Subprogram_Body_Stub
then
11329 -- Either body is not present, or context is non-expanding, as
11330 -- when compiling a subunit. Mark the instance as completed, and
11331 -- diagnose a missing body when needed.
11334 and then Operating_Mode
= Generate_Code
11336 Error_Msg_N
("missing proper body for instantiation", Gen_Body
);
11339 Set_Has_Completion
(Act_Decl_Id
);
11343 Save_Env
(Gen_Unit
, Act_Decl_Id
);
11344 Style_Check
:= False;
11346 -- If the context of the instance is subject to SPARK_Mode "off" or
11347 -- the annotation is altogether missing, set the global flag which
11348 -- signals Analyze_Pragma to ignore all SPARK_Mode pragmas within
11351 if SPARK_Mode
/= On
then
11352 Ignore_Pragma_SPARK_Mode
:= True;
11355 Current_Sem_Unit
:= Body_Info
.Current_Sem_Unit
;
11356 Create_Instantiation_Source
11363 (Original_Node
(Gen_Body
), Empty
, Instantiating
=> True);
11365 -- Create proper defining name for the body, to correspond to the one
11369 Make_Defining_Identifier
(Sloc
(Act_Decl_Id
), Chars
(Act_Decl_Id
));
11371 Set_Comes_From_Source
(Act_Body_Id
, Comes_From_Source
(Act_Decl_Id
));
11372 Set_Defining_Unit_Name
(Specification
(Act_Body
), Act_Body_Id
);
11374 Set_Corresponding_Spec
(Act_Body
, Act_Decl_Id
);
11375 Set_Has_Completion
(Act_Decl_Id
);
11376 Check_Generic_Actuals
(Pack_Id
, False);
11378 -- Generate a reference to link the visible subprogram instance to
11379 -- the generic body, which for navigation purposes is the only
11380 -- available source for the instance.
11383 (Related_Instance
(Pack_Id
),
11384 Gen_Body_Id
, 'b', Set_Ref
=> False, Force
=> True);
11386 -- If it is a child unit, make the parent instance (which is an
11387 -- instance of the parent of the generic) visible. The parent
11388 -- instance is the prefix of the name of the generic unit.
11390 if Ekind
(Scope
(Gen_Unit
)) = E_Generic_Package
11391 and then Nkind
(Gen_Id
) = N_Expanded_Name
11393 Par_Ent
:= Entity
(Prefix
(Gen_Id
));
11394 Par_Vis
:= Is_Immediately_Visible
(Par_Ent
);
11395 Install_Parent
(Par_Ent
, In_Body
=> True);
11396 Parent_Installed
:= True;
11398 elsif Is_Child_Unit
(Gen_Unit
) then
11399 Par_Ent
:= Scope
(Gen_Unit
);
11400 Par_Vis
:= Is_Immediately_Visible
(Par_Ent
);
11401 Install_Parent
(Par_Ent
, In_Body
=> True);
11402 Parent_Installed
:= True;
11405 -- Subprogram body is placed in the body of wrapper package,
11406 -- whose spec contains the subprogram declaration as well as
11407 -- the renaming declarations for the generic parameters.
11410 Make_Package_Body
(Loc
,
11411 Defining_Unit_Name
=> New_Copy
(Pack_Id
),
11412 Declarations
=> New_List
(Act_Body
));
11414 Set_Corresponding_Spec
(Pack_Body
, Pack_Id
);
11416 -- If the instantiation is a library unit, then build resulting
11417 -- compilation unit nodes for the instance. The declaration of
11418 -- the enclosing package is the grandparent of the subprogram
11419 -- declaration. First replace the instantiation node as the unit
11420 -- of the corresponding compilation.
11422 if Nkind
(Parent
(Inst_Node
)) = N_Compilation_Unit
then
11423 if Parent
(Inst_Node
) = Cunit
(Main_Unit
) then
11424 Set_Unit
(Parent
(Inst_Node
), Inst_Node
);
11425 Build_Instance_Compilation_Unit_Nodes
11426 (Inst_Node
, Pack_Body
, Parent
(Parent
(Act_Decl
)));
11427 Analyze
(Inst_Node
);
11429 Set_Parent
(Pack_Body
, Parent
(Inst_Node
));
11430 Analyze
(Pack_Body
);
11434 Insert_Before
(Inst_Node
, Pack_Body
);
11435 Mark_Rewrite_Insertion
(Pack_Body
);
11436 Analyze
(Pack_Body
);
11438 if Expander_Active
then
11439 Freeze_Subprogram_Body
(Inst_Node
, Gen_Body
, Pack_Id
);
11443 Inherit_Context
(Gen_Body
, Inst_Node
);
11445 Restore_Private_Views
(Pack_Id
, False);
11447 if Parent_Installed
then
11448 Remove_Parent
(In_Body
=> True);
11450 -- Restore the previous visibility of the parent
11452 Set_Is_Immediately_Visible
(Par_Ent
, Par_Vis
);
11456 Ignore_Pragma_SPARK_Mode
:= Saved_IPSM
;
11457 Style_Check
:= Saved_Style_Check
;
11458 Restore_Warnings
(Saved_Warnings
);
11460 -- Body not found. Error was emitted already. If there were no previous
11461 -- errors, this may be an instance whose scope is a premature instance.
11462 -- In that case we must insure that the (legal) program does raise
11463 -- program error if executed. We generate a subprogram body for this
11464 -- purpose. See DEC ac30vso.
11466 -- Should not reference proprietary DEC tests in comments ???
11468 elsif Serious_Errors_Detected
= 0
11469 and then Nkind
(Parent
(Inst_Node
)) /= N_Compilation_Unit
11471 if Body_Optional
then
11474 elsif Ekind
(Act_Decl_Id
) = E_Procedure
then
11476 Make_Subprogram_Body
(Loc
,
11478 Make_Procedure_Specification
(Loc
,
11479 Defining_Unit_Name
=>
11480 Make_Defining_Identifier
(Loc
, Chars
(Act_Decl_Id
)),
11481 Parameter_Specifications
=>
11483 (Parameter_Specifications
(Parent
(Act_Decl_Id
)))),
11485 Declarations
=> Empty_List
,
11486 Handled_Statement_Sequence
=>
11487 Make_Handled_Sequence_Of_Statements
(Loc
,
11488 Statements
=> New_List
(
11489 Make_Raise_Program_Error
(Loc
,
11490 Reason
=> PE_Access_Before_Elaboration
))));
11494 Make_Raise_Program_Error
(Loc
,
11495 Reason
=> PE_Access_Before_Elaboration
);
11497 Set_Etype
(Ret_Expr
, (Etype
(Act_Decl_Id
)));
11498 Set_Analyzed
(Ret_Expr
);
11501 Make_Subprogram_Body
(Loc
,
11503 Make_Function_Specification
(Loc
,
11504 Defining_Unit_Name
=>
11505 Make_Defining_Identifier
(Loc
, Chars
(Act_Decl_Id
)),
11506 Parameter_Specifications
=>
11508 (Parameter_Specifications
(Parent
(Act_Decl_Id
))),
11509 Result_Definition
=>
11510 New_Occurrence_Of
(Etype
(Act_Decl_Id
), Loc
)),
11512 Declarations
=> Empty_List
,
11513 Handled_Statement_Sequence
=>
11514 Make_Handled_Sequence_Of_Statements
(Loc
,
11515 Statements
=> New_List
(
11516 Make_Simple_Return_Statement
(Loc
, Ret_Expr
))));
11520 Make_Package_Body
(Loc
,
11521 Defining_Unit_Name
=> New_Copy
(Pack_Id
),
11522 Declarations
=> New_List
(Act_Body
));
11524 Insert_After
(Inst_Node
, Pack_Body
);
11525 Set_Corresponding_Spec
(Pack_Body
, Pack_Id
);
11526 Analyze
(Pack_Body
);
11529 Expander_Mode_Restore
;
11532 Restore_Ghost_Mode
(Mode
);
11533 end Instantiate_Subprogram_Body
;
11535 ----------------------
11536 -- Instantiate_Type --
11537 ----------------------
11539 function Instantiate_Type
11542 Analyzed_Formal
: Node_Id
;
11543 Actual_Decls
: List_Id
) return List_Id
11545 Gen_T
: constant Entity_Id
:= Defining_Identifier
(Formal
);
11546 A_Gen_T
: constant Entity_Id
:=
11547 Defining_Identifier
(Analyzed_Formal
);
11548 Ancestor
: Entity_Id
:= Empty
;
11549 Def
: constant Node_Id
:= Formal_Type_Definition
(Formal
);
11551 Decl_Node
: Node_Id
;
11552 Decl_Nodes
: List_Id
;
11556 procedure Diagnose_Predicated_Actual
;
11557 -- There are a number of constructs in which a discrete type with
11558 -- predicates is illegal, e.g. as an index in an array type declaration.
11559 -- If a generic type is used is such a construct in a generic package
11560 -- declaration, it carries the flag No_Predicate_On_Actual. it is part
11561 -- of the generic contract that the actual cannot have predicates.
11563 procedure Validate_Array_Type_Instance
;
11564 procedure Validate_Access_Subprogram_Instance
;
11565 procedure Validate_Access_Type_Instance
;
11566 procedure Validate_Derived_Type_Instance
;
11567 procedure Validate_Derived_Interface_Type_Instance
;
11568 procedure Validate_Discriminated_Formal_Type
;
11569 procedure Validate_Interface_Type_Instance
;
11570 procedure Validate_Private_Type_Instance
;
11571 procedure Validate_Incomplete_Type_Instance
;
11572 -- These procedures perform validation tests for the named case.
11573 -- Validate_Discriminated_Formal_Type is shared by formal private
11574 -- types and Ada 2012 formal incomplete types.
11576 function Subtypes_Match
(Gen_T
, Act_T
: Entity_Id
) return Boolean;
11577 -- Check that base types are the same and that the subtypes match
11578 -- statically. Used in several of the above.
11580 ---------------------------------
11581 -- Diagnose_Predicated_Actual --
11582 ---------------------------------
11584 procedure Diagnose_Predicated_Actual
is
11586 if No_Predicate_On_Actual
(A_Gen_T
)
11587 and then Has_Predicates
(Act_T
)
11590 ("actual for& cannot be a type with predicate",
11591 Instantiation_Node
, A_Gen_T
);
11593 elsif No_Dynamic_Predicate_On_Actual
(A_Gen_T
)
11594 and then Has_Predicates
(Act_T
)
11595 and then not Has_Static_Predicate_Aspect
(Act_T
)
11598 ("actual for& cannot be a type with a dynamic predicate",
11599 Instantiation_Node
, A_Gen_T
);
11601 end Diagnose_Predicated_Actual
;
11603 --------------------
11604 -- Subtypes_Match --
11605 --------------------
11607 function Subtypes_Match
(Gen_T
, Act_T
: Entity_Id
) return Boolean is
11608 T
: constant Entity_Id
:= Get_Instance_Of
(Gen_T
);
11611 -- Some detailed comments would be useful here ???
11613 return ((Base_Type
(T
) = Act_T
11614 or else Base_Type
(T
) = Base_Type
(Act_T
))
11615 and then Subtypes_Statically_Match
(T
, Act_T
))
11617 or else (Is_Class_Wide_Type
(Gen_T
)
11618 and then Is_Class_Wide_Type
(Act_T
)
11619 and then Subtypes_Match
11620 (Get_Instance_Of
(Root_Type
(Gen_T
)),
11621 Root_Type
(Act_T
)))
11624 (Ekind_In
(Gen_T
, E_Anonymous_Access_Subprogram_Type
,
11625 E_Anonymous_Access_Type
)
11626 and then Ekind
(Act_T
) = Ekind
(Gen_T
)
11627 and then Subtypes_Statically_Match
11628 (Designated_Type
(Gen_T
), Designated_Type
(Act_T
)));
11629 end Subtypes_Match
;
11631 -----------------------------------------
11632 -- Validate_Access_Subprogram_Instance --
11633 -----------------------------------------
11635 procedure Validate_Access_Subprogram_Instance
is
11637 if not Is_Access_Type
(Act_T
)
11638 or else Ekind
(Designated_Type
(Act_T
)) /= E_Subprogram_Type
11641 ("expect access type in instantiation of &", Actual
, Gen_T
);
11642 Abandon_Instantiation
(Actual
);
11645 -- According to AI05-288, actuals for access_to_subprograms must be
11646 -- subtype conformant with the generic formal. Previous to AI05-288
11647 -- only mode conformance was required.
11649 -- This is a binding interpretation that applies to previous versions
11650 -- of the language, no need to maintain previous weaker checks.
11652 Check_Subtype_Conformant
11653 (Designated_Type
(Act_T
),
11654 Designated_Type
(A_Gen_T
),
11658 if Ekind
(Base_Type
(Act_T
)) = E_Access_Protected_Subprogram_Type
then
11659 if Ekind
(A_Gen_T
) = E_Access_Subprogram_Type
then
11661 ("protected access type not allowed for formal &",
11665 elsif Ekind
(A_Gen_T
) = E_Access_Protected_Subprogram_Type
then
11667 ("expect protected access type for formal &",
11671 -- If the formal has a specified convention (which in most cases
11672 -- will be StdCall) verify that the actual has the same convention.
11674 if Has_Convention_Pragma
(A_Gen_T
)
11675 and then Convention
(A_Gen_T
) /= Convention
(Act_T
)
11677 Error_Msg_Name_1
:= Get_Convention_Name
(Convention
(A_Gen_T
));
11679 ("actual for formal & must have convention %", Actual
, Gen_T
);
11681 end Validate_Access_Subprogram_Instance
;
11683 -----------------------------------
11684 -- Validate_Access_Type_Instance --
11685 -----------------------------------
11687 procedure Validate_Access_Type_Instance
is
11688 Desig_Type
: constant Entity_Id
:=
11689 Find_Actual_Type
(Designated_Type
(A_Gen_T
), A_Gen_T
);
11690 Desig_Act
: Entity_Id
;
11693 if not Is_Access_Type
(Act_T
) then
11695 ("expect access type in instantiation of &", Actual
, Gen_T
);
11696 Abandon_Instantiation
(Actual
);
11699 if Is_Access_Constant
(A_Gen_T
) then
11700 if not Is_Access_Constant
(Act_T
) then
11702 ("actual type must be access-to-constant type", Actual
);
11703 Abandon_Instantiation
(Actual
);
11706 if Is_Access_Constant
(Act_T
) then
11708 ("actual type must be access-to-variable type", Actual
);
11709 Abandon_Instantiation
(Actual
);
11711 elsif Ekind
(A_Gen_T
) = E_General_Access_Type
11712 and then Ekind
(Base_Type
(Act_T
)) /= E_General_Access_Type
11714 Error_Msg_N
-- CODEFIX
11715 ("actual must be general access type!", Actual
);
11716 Error_Msg_NE
-- CODEFIX
11717 ("add ALL to }!", Actual
, Act_T
);
11718 Abandon_Instantiation
(Actual
);
11722 -- The designated subtypes, that is to say the subtypes introduced
11723 -- by an access type declaration (and not by a subtype declaration)
11726 Desig_Act
:= Designated_Type
(Base_Type
(Act_T
));
11728 -- The designated type may have been introduced through a limited_
11729 -- with clause, in which case retrieve the non-limited view. This
11730 -- applies to incomplete types as well as to class-wide types.
11732 if From_Limited_With
(Desig_Act
) then
11733 Desig_Act
:= Available_View
(Desig_Act
);
11736 if not Subtypes_Match
(Desig_Type
, Desig_Act
) then
11738 ("designated type of actual does not match that of formal &",
11741 if not Predicates_Match
(Desig_Type
, Desig_Act
) then
11742 Error_Msg_N
("\predicates do not match", Actual
);
11745 Abandon_Instantiation
(Actual
);
11747 elsif Is_Access_Type
(Designated_Type
(Act_T
))
11748 and then Is_Constrained
(Designated_Type
(Designated_Type
(Act_T
)))
11750 Is_Constrained
(Designated_Type
(Desig_Type
))
11753 ("designated type of actual does not match that of formal &",
11756 if not Predicates_Match
(Desig_Type
, Desig_Act
) then
11757 Error_Msg_N
("\predicates do not match", Actual
);
11760 Abandon_Instantiation
(Actual
);
11763 -- Ada 2005: null-exclusion indicators of the two types must agree
11765 if Can_Never_Be_Null
(A_Gen_T
) /= Can_Never_Be_Null
(Act_T
) then
11767 ("non null exclusion of actual and formal & do not match",
11770 end Validate_Access_Type_Instance
;
11772 ----------------------------------
11773 -- Validate_Array_Type_Instance --
11774 ----------------------------------
11776 procedure Validate_Array_Type_Instance
is
11781 function Formal_Dimensions
return Nat
;
11782 -- Count number of dimensions in array type formal
11784 -----------------------
11785 -- Formal_Dimensions --
11786 -----------------------
11788 function Formal_Dimensions
return Nat
is
11793 if Nkind
(Def
) = N_Constrained_Array_Definition
then
11794 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
11796 Index
:= First
(Subtype_Marks
(Def
));
11799 while Present
(Index
) loop
11801 Next_Index
(Index
);
11805 end Formal_Dimensions
;
11807 -- Start of processing for Validate_Array_Type_Instance
11810 if not Is_Array_Type
(Act_T
) then
11812 ("expect array type in instantiation of &", Actual
, Gen_T
);
11813 Abandon_Instantiation
(Actual
);
11815 elsif Nkind
(Def
) = N_Constrained_Array_Definition
then
11816 if not (Is_Constrained
(Act_T
)) then
11818 ("expect constrained array in instantiation of &",
11820 Abandon_Instantiation
(Actual
);
11824 if Is_Constrained
(Act_T
) then
11826 ("expect unconstrained array in instantiation of &",
11828 Abandon_Instantiation
(Actual
);
11832 if Formal_Dimensions
/= Number_Dimensions
(Act_T
) then
11834 ("dimensions of actual do not match formal &", Actual
, Gen_T
);
11835 Abandon_Instantiation
(Actual
);
11838 I1
:= First_Index
(A_Gen_T
);
11839 I2
:= First_Index
(Act_T
);
11840 for J
in 1 .. Formal_Dimensions
loop
11842 -- If the indexes of the actual were given by a subtype_mark,
11843 -- the index was transformed into a range attribute. Retrieve
11844 -- the original type mark for checking.
11846 if Is_Entity_Name
(Original_Node
(I2
)) then
11847 T2
:= Entity
(Original_Node
(I2
));
11852 if not Subtypes_Match
11853 (Find_Actual_Type
(Etype
(I1
), A_Gen_T
), T2
)
11856 ("index types of actual do not match those of formal &",
11858 Abandon_Instantiation
(Actual
);
11865 -- Check matching subtypes. Note that there are complex visibility
11866 -- issues when the generic is a child unit and some aspect of the
11867 -- generic type is declared in a parent unit of the generic. We do
11868 -- the test to handle this special case only after a direct check
11869 -- for static matching has failed. The case where both the component
11870 -- type and the array type are separate formals, and the component
11871 -- type is a private view may also require special checking in
11875 (Component_Type
(A_Gen_T
), Component_Type
(Act_T
))
11878 (Find_Actual_Type
(Component_Type
(A_Gen_T
), A_Gen_T
),
11879 Component_Type
(Act_T
))
11884 ("component subtype of actual does not match that of formal &",
11886 Abandon_Instantiation
(Actual
);
11889 if Has_Aliased_Components
(A_Gen_T
)
11890 and then not Has_Aliased_Components
(Act_T
)
11893 ("actual must have aliased components to match formal type &",
11896 end Validate_Array_Type_Instance
;
11898 -----------------------------------------------
11899 -- Validate_Derived_Interface_Type_Instance --
11900 -----------------------------------------------
11902 procedure Validate_Derived_Interface_Type_Instance
is
11903 Par
: constant Entity_Id
:= Entity
(Subtype_Indication
(Def
));
11907 -- First apply interface instance checks
11909 Validate_Interface_Type_Instance
;
11911 -- Verify that immediate parent interface is an ancestor of
11915 and then not Interface_Present_In_Ancestor
(Act_T
, Par
)
11918 ("interface actual must include progenitor&", Actual
, Par
);
11921 -- Now verify that the actual includes all other ancestors of
11924 Elmt
:= First_Elmt
(Interfaces
(A_Gen_T
));
11925 while Present
(Elmt
) loop
11926 if not Interface_Present_In_Ancestor
11927 (Act_T
, Get_Instance_Of
(Node
(Elmt
)))
11930 ("interface actual must include progenitor&",
11931 Actual
, Node
(Elmt
));
11936 end Validate_Derived_Interface_Type_Instance
;
11938 ------------------------------------
11939 -- Validate_Derived_Type_Instance --
11940 ------------------------------------
11942 procedure Validate_Derived_Type_Instance
is
11943 Actual_Discr
: Entity_Id
;
11944 Ancestor_Discr
: Entity_Id
;
11947 -- If the parent type in the generic declaration is itself a previous
11948 -- formal type, then it is local to the generic and absent from the
11949 -- analyzed generic definition. In that case the ancestor is the
11950 -- instance of the formal (which must have been instantiated
11951 -- previously), unless the ancestor is itself a formal derived type.
11952 -- In this latter case (which is the subject of Corrigendum 8652/0038
11953 -- (AI-202) the ancestor of the formals is the ancestor of its
11954 -- parent. Otherwise, the analyzed generic carries the parent type.
11955 -- If the parent type is defined in a previous formal package, then
11956 -- the scope of that formal package is that of the generic type
11957 -- itself, and it has already been mapped into the corresponding type
11958 -- in the actual package.
11960 -- Common case: parent type defined outside of the generic
11962 if Is_Entity_Name
(Subtype_Mark
(Def
))
11963 and then Present
(Entity
(Subtype_Mark
(Def
)))
11965 Ancestor
:= Get_Instance_Of
(Entity
(Subtype_Mark
(Def
)));
11967 -- Check whether parent is defined in a previous formal package
11970 Scope
(Scope
(Base_Type
(Etype
(A_Gen_T
)))) = Scope
(A_Gen_T
)
11973 Get_Instance_Of
(Base_Type
(Etype
(A_Gen_T
)));
11975 -- The type may be a local derivation, or a type extension of a
11976 -- previous formal, or of a formal of a parent package.
11978 elsif Is_Derived_Type
(Get_Instance_Of
(A_Gen_T
))
11980 Ekind
(Get_Instance_Of
(A_Gen_T
)) = E_Record_Type_With_Private
11982 -- Check whether the parent is another derived formal type in the
11983 -- same generic unit.
11985 if Etype
(A_Gen_T
) /= A_Gen_T
11986 and then Is_Generic_Type
(Etype
(A_Gen_T
))
11987 and then Scope
(Etype
(A_Gen_T
)) = Scope
(A_Gen_T
)
11988 and then Etype
(Etype
(A_Gen_T
)) /= Etype
(A_Gen_T
)
11990 -- Locate ancestor of parent from the subtype declaration
11991 -- created for the actual.
11997 Decl
:= First
(Actual_Decls
);
11998 while Present
(Decl
) loop
11999 if Nkind
(Decl
) = N_Subtype_Declaration
12000 and then Chars
(Defining_Identifier
(Decl
)) =
12001 Chars
(Etype
(A_Gen_T
))
12003 Ancestor
:= Generic_Parent_Type
(Decl
);
12011 pragma Assert
(Present
(Ancestor
));
12013 -- The ancestor itself may be a previous formal that has been
12016 Ancestor
:= Get_Instance_Of
(Ancestor
);
12020 Get_Instance_Of
(Base_Type
(Get_Instance_Of
(A_Gen_T
)));
12023 -- Check whether parent is a previous formal of the current generic
12025 elsif Is_Derived_Type
(A_Gen_T
)
12026 and then Is_Generic_Type
(Etype
(A_Gen_T
))
12027 and then Scope
(A_Gen_T
) = Scope
(Etype
(A_Gen_T
))
12029 Ancestor
:= Get_Instance_Of
(First_Subtype
(Etype
(A_Gen_T
)));
12031 -- An unusual case: the actual is a type declared in a parent unit,
12032 -- but is not a formal type so there is no instance_of for it.
12033 -- Retrieve it by analyzing the record extension.
12035 elsif Is_Child_Unit
(Scope
(A_Gen_T
))
12036 and then In_Open_Scopes
(Scope
(Act_T
))
12037 and then Is_Generic_Instance
(Scope
(Act_T
))
12039 Analyze
(Subtype_Mark
(Def
));
12040 Ancestor
:= Entity
(Subtype_Mark
(Def
));
12043 Ancestor
:= Get_Instance_Of
(Etype
(Base_Type
(A_Gen_T
)));
12046 -- If the formal derived type has pragma Preelaborable_Initialization
12047 -- then the actual type must have preelaborable initialization.
12049 if Known_To_Have_Preelab_Init
(A_Gen_T
)
12050 and then not Has_Preelaborable_Initialization
(Act_T
)
12053 ("actual for & must have preelaborable initialization",
12057 -- Ada 2005 (AI-251)
12059 if Ada_Version
>= Ada_2005
and then Is_Interface
(Ancestor
) then
12060 if not Interface_Present_In_Ancestor
(Act_T
, Ancestor
) then
12062 ("(Ada 2005) expected type implementing & in instantiation",
12066 -- Finally verify that the (instance of) the ancestor is an ancestor
12069 elsif not Is_Ancestor
(Base_Type
(Ancestor
), Act_T
) then
12071 ("expect type derived from & in instantiation",
12072 Actual
, First_Subtype
(Ancestor
));
12073 Abandon_Instantiation
(Actual
);
12076 -- Ada 2005 (AI-443): Synchronized formal derived type checks. Note
12077 -- that the formal type declaration has been rewritten as a private
12080 if Ada_Version
>= Ada_2005
12081 and then Nkind
(Parent
(A_Gen_T
)) = N_Private_Extension_Declaration
12082 and then Synchronized_Present
(Parent
(A_Gen_T
))
12084 -- The actual must be a synchronized tagged type
12086 if not Is_Tagged_Type
(Act_T
) then
12088 ("actual of synchronized type must be tagged", Actual
);
12089 Abandon_Instantiation
(Actual
);
12091 elsif Nkind
(Parent
(Act_T
)) = N_Full_Type_Declaration
12092 and then Nkind
(Type_Definition
(Parent
(Act_T
))) =
12093 N_Derived_Type_Definition
12094 and then not Synchronized_Present
12095 (Type_Definition
(Parent
(Act_T
)))
12098 ("actual of synchronized type must be synchronized", Actual
);
12099 Abandon_Instantiation
(Actual
);
12103 -- Perform atomic/volatile checks (RM C.6(12)). Note that AI05-0218-1
12104 -- removes the second instance of the phrase "or allow pass by copy".
12106 if Is_Atomic
(Act_T
) and then not Is_Atomic
(Ancestor
) then
12108 ("cannot have atomic actual type for non-atomic formal type",
12111 elsif Is_Volatile
(Act_T
) and then not Is_Volatile
(Ancestor
) then
12113 ("cannot have volatile actual type for non-volatile formal type",
12117 -- It should not be necessary to check for unknown discriminants on
12118 -- Formal, but for some reason Has_Unknown_Discriminants is false for
12119 -- A_Gen_T, so Is_Definite_Subtype incorrectly returns True. This
12120 -- needs fixing. ???
12122 if Is_Definite_Subtype
(A_Gen_T
)
12123 and then not Unknown_Discriminants_Present
(Formal
)
12124 and then not Is_Definite_Subtype
(Act_T
)
12126 Error_Msg_N
("actual subtype must be constrained", Actual
);
12127 Abandon_Instantiation
(Actual
);
12130 if not Unknown_Discriminants_Present
(Formal
) then
12131 if Is_Constrained
(Ancestor
) then
12132 if not Is_Constrained
(Act_T
) then
12133 Error_Msg_N
("actual subtype must be constrained", Actual
);
12134 Abandon_Instantiation
(Actual
);
12137 -- Ancestor is unconstrained, Check if generic formal and actual
12138 -- agree on constrainedness. The check only applies to array types
12139 -- and discriminated types.
12141 elsif Is_Constrained
(Act_T
) then
12142 if Ekind
(Ancestor
) = E_Access_Type
12143 or else (not Is_Constrained
(A_Gen_T
)
12144 and then Is_Composite_Type
(A_Gen_T
))
12146 Error_Msg_N
("actual subtype must be unconstrained", Actual
);
12147 Abandon_Instantiation
(Actual
);
12150 -- A class-wide type is only allowed if the formal has unknown
12153 elsif Is_Class_Wide_Type
(Act_T
)
12154 and then not Has_Unknown_Discriminants
(Ancestor
)
12157 ("actual for & cannot be a class-wide type", Actual
, Gen_T
);
12158 Abandon_Instantiation
(Actual
);
12160 -- Otherwise, the formal and actual must have the same number
12161 -- of discriminants and each discriminant of the actual must
12162 -- correspond to a discriminant of the formal.
12164 elsif Has_Discriminants
(Act_T
)
12165 and then not Has_Unknown_Discriminants
(Act_T
)
12166 and then Has_Discriminants
(Ancestor
)
12168 Actual_Discr
:= First_Discriminant
(Act_T
);
12169 Ancestor_Discr
:= First_Discriminant
(Ancestor
);
12170 while Present
(Actual_Discr
)
12171 and then Present
(Ancestor_Discr
)
12173 if Base_Type
(Act_T
) /= Base_Type
(Ancestor
) and then
12174 No
(Corresponding_Discriminant
(Actual_Discr
))
12177 ("discriminant & does not correspond "
12178 & "to ancestor discriminant", Actual
, Actual_Discr
);
12179 Abandon_Instantiation
(Actual
);
12182 Next_Discriminant
(Actual_Discr
);
12183 Next_Discriminant
(Ancestor_Discr
);
12186 if Present
(Actual_Discr
) or else Present
(Ancestor_Discr
) then
12188 ("actual for & must have same number of discriminants",
12190 Abandon_Instantiation
(Actual
);
12193 -- This case should be caught by the earlier check for
12194 -- constrainedness, but the check here is added for completeness.
12196 elsif Has_Discriminants
(Act_T
)
12197 and then not Has_Unknown_Discriminants
(Act_T
)
12200 ("actual for & must not have discriminants", Actual
, Gen_T
);
12201 Abandon_Instantiation
(Actual
);
12203 elsif Has_Discriminants
(Ancestor
) then
12205 ("actual for & must have known discriminants", Actual
, Gen_T
);
12206 Abandon_Instantiation
(Actual
);
12209 if not Subtypes_Statically_Compatible
12210 (Act_T
, Ancestor
, Formal_Derived_Matching
=> True)
12213 ("constraint on actual is incompatible with formal", Actual
);
12214 Abandon_Instantiation
(Actual
);
12218 -- If the formal and actual types are abstract, check that there
12219 -- are no abstract primitives of the actual type that correspond to
12220 -- nonabstract primitives of the formal type (second sentence of
12223 if Is_Abstract_Type
(A_Gen_T
) and then Is_Abstract_Type
(Act_T
) then
12224 Check_Abstract_Primitives
: declare
12225 Gen_Prims
: constant Elist_Id
:=
12226 Primitive_Operations
(A_Gen_T
);
12227 Gen_Elmt
: Elmt_Id
;
12228 Gen_Subp
: Entity_Id
;
12229 Anc_Subp
: Entity_Id
;
12230 Anc_Formal
: Entity_Id
;
12231 Anc_F_Type
: Entity_Id
;
12233 Act_Prims
: constant Elist_Id
:= Primitive_Operations
(Act_T
);
12234 Act_Elmt
: Elmt_Id
;
12235 Act_Subp
: Entity_Id
;
12236 Act_Formal
: Entity_Id
;
12237 Act_F_Type
: Entity_Id
;
12239 Subprograms_Correspond
: Boolean;
12241 function Is_Tagged_Ancestor
(T1
, T2
: Entity_Id
) return Boolean;
12242 -- Returns true if T2 is derived directly or indirectly from
12243 -- T1, including derivations from interfaces. T1 and T2 are
12244 -- required to be specific tagged base types.
12246 ------------------------
12247 -- Is_Tagged_Ancestor --
12248 ------------------------
12250 function Is_Tagged_Ancestor
(T1
, T2
: Entity_Id
) return Boolean
12252 Intfc_Elmt
: Elmt_Id
;
12255 -- The predicate is satisfied if the types are the same
12260 -- If we've reached the top of the derivation chain then
12261 -- we know that T1 is not an ancestor of T2.
12263 elsif Etype
(T2
) = T2
then
12266 -- Proceed to check T2's immediate parent
12268 elsif Is_Ancestor
(T1
, Base_Type
(Etype
(T2
))) then
12271 -- Finally, check to see if T1 is an ancestor of any of T2's
12275 Intfc_Elmt
:= First_Elmt
(Interfaces
(T2
));
12276 while Present
(Intfc_Elmt
) loop
12277 if Is_Ancestor
(T1
, Node
(Intfc_Elmt
)) then
12281 Next_Elmt
(Intfc_Elmt
);
12286 end Is_Tagged_Ancestor
;
12288 -- Start of processing for Check_Abstract_Primitives
12291 -- Loop over all of the formal derived type's primitives
12293 Gen_Elmt
:= First_Elmt
(Gen_Prims
);
12294 while Present
(Gen_Elmt
) loop
12295 Gen_Subp
:= Node
(Gen_Elmt
);
12297 -- If the primitive of the formal is not abstract, then
12298 -- determine whether there is a corresponding primitive of
12299 -- the actual type that's abstract.
12301 if not Is_Abstract_Subprogram
(Gen_Subp
) then
12302 Act_Elmt
:= First_Elmt
(Act_Prims
);
12303 while Present
(Act_Elmt
) loop
12304 Act_Subp
:= Node
(Act_Elmt
);
12306 -- If we find an abstract primitive of the actual,
12307 -- then we need to test whether it corresponds to the
12308 -- subprogram from which the generic formal primitive
12311 if Is_Abstract_Subprogram
(Act_Subp
) then
12312 Anc_Subp
:= Alias
(Gen_Subp
);
12314 -- Test whether we have a corresponding primitive
12315 -- by comparing names, kinds, formal types, and
12318 if Chars
(Anc_Subp
) = Chars
(Act_Subp
)
12319 and then Ekind
(Anc_Subp
) = Ekind
(Act_Subp
)
12321 Anc_Formal
:= First_Formal
(Anc_Subp
);
12322 Act_Formal
:= First_Formal
(Act_Subp
);
12323 while Present
(Anc_Formal
)
12324 and then Present
(Act_Formal
)
12326 Anc_F_Type
:= Etype
(Anc_Formal
);
12327 Act_F_Type
:= Etype
(Act_Formal
);
12329 if Ekind
(Anc_F_Type
) =
12330 E_Anonymous_Access_Type
12332 Anc_F_Type
:= Designated_Type
(Anc_F_Type
);
12334 if Ekind
(Act_F_Type
) =
12335 E_Anonymous_Access_Type
12338 Designated_Type
(Act_F_Type
);
12344 Ekind
(Act_F_Type
) = E_Anonymous_Access_Type
12349 Anc_F_Type
:= Base_Type
(Anc_F_Type
);
12350 Act_F_Type
:= Base_Type
(Act_F_Type
);
12352 -- If the formal is controlling, then the
12353 -- the type of the actual primitive's formal
12354 -- must be derived directly or indirectly
12355 -- from the type of the ancestor primitive's
12358 if Is_Controlling_Formal
(Anc_Formal
) then
12359 if not Is_Tagged_Ancestor
12360 (Anc_F_Type
, Act_F_Type
)
12365 -- Otherwise the types of the formals must
12368 elsif Anc_F_Type
/= Act_F_Type
then
12372 Next_Entity
(Anc_Formal
);
12373 Next_Entity
(Act_Formal
);
12376 -- If we traversed through all of the formals
12377 -- then so far the subprograms correspond, so
12378 -- now check that any result types correspond.
12380 if No
(Anc_Formal
) and then No
(Act_Formal
) then
12381 Subprograms_Correspond
:= True;
12383 if Ekind
(Act_Subp
) = E_Function
then
12384 Anc_F_Type
:= Etype
(Anc_Subp
);
12385 Act_F_Type
:= Etype
(Act_Subp
);
12387 if Ekind
(Anc_F_Type
) =
12388 E_Anonymous_Access_Type
12391 Designated_Type
(Anc_F_Type
);
12393 if Ekind
(Act_F_Type
) =
12394 E_Anonymous_Access_Type
12397 Designated_Type
(Act_F_Type
);
12399 Subprograms_Correspond
:= False;
12404 = E_Anonymous_Access_Type
12406 Subprograms_Correspond
:= False;
12409 Anc_F_Type
:= Base_Type
(Anc_F_Type
);
12410 Act_F_Type
:= Base_Type
(Act_F_Type
);
12412 -- Now either the result types must be
12413 -- the same or, if the result type is
12414 -- controlling, the result type of the
12415 -- actual primitive must descend from the
12416 -- result type of the ancestor primitive.
12418 if Subprograms_Correspond
12419 and then Anc_F_Type
/= Act_F_Type
12421 Has_Controlling_Result
(Anc_Subp
)
12422 and then not Is_Tagged_Ancestor
12423 (Anc_F_Type
, Act_F_Type
)
12425 Subprograms_Correspond
:= False;
12429 -- Found a matching subprogram belonging to
12430 -- formal ancestor type, so actual subprogram
12431 -- corresponds and this violates 3.9.3(9).
12433 if Subprograms_Correspond
then
12435 ("abstract subprogram & overrides "
12436 & "nonabstract subprogram of ancestor",
12443 Next_Elmt
(Act_Elmt
);
12447 Next_Elmt
(Gen_Elmt
);
12449 end Check_Abstract_Primitives
;
12452 -- Verify that limitedness matches. If parent is a limited
12453 -- interface then the generic formal is not unless declared
12454 -- explicitly so. If not declared limited, the actual cannot be
12455 -- limited (see AI05-0087).
12457 -- Even though this AI is a binding interpretation, we enable the
12458 -- check only in Ada 2012 mode, because this improper construct
12459 -- shows up in user code and in existing B-tests.
12461 if Is_Limited_Type
(Act_T
)
12462 and then not Is_Limited_Type
(A_Gen_T
)
12463 and then Ada_Version
>= Ada_2012
12465 if In_Instance
then
12469 ("actual for non-limited & cannot be a limited type",
12471 Explain_Limited_Type
(Act_T
, Actual
);
12472 Abandon_Instantiation
(Actual
);
12475 end Validate_Derived_Type_Instance
;
12477 ----------------------------------------
12478 -- Validate_Discriminated_Formal_Type --
12479 ----------------------------------------
12481 procedure Validate_Discriminated_Formal_Type
is
12482 Formal_Discr
: Entity_Id
;
12483 Actual_Discr
: Entity_Id
;
12484 Formal_Subt
: Entity_Id
;
12487 if Has_Discriminants
(A_Gen_T
) then
12488 if not Has_Discriminants
(Act_T
) then
12490 ("actual for & must have discriminants", Actual
, Gen_T
);
12491 Abandon_Instantiation
(Actual
);
12493 elsif Is_Constrained
(Act_T
) then
12495 ("actual for & must be unconstrained", Actual
, Gen_T
);
12496 Abandon_Instantiation
(Actual
);
12499 Formal_Discr
:= First_Discriminant
(A_Gen_T
);
12500 Actual_Discr
:= First_Discriminant
(Act_T
);
12501 while Formal_Discr
/= Empty
loop
12502 if Actual_Discr
= Empty
then
12504 ("discriminants on actual do not match formal",
12506 Abandon_Instantiation
(Actual
);
12509 Formal_Subt
:= Get_Instance_Of
(Etype
(Formal_Discr
));
12511 -- Access discriminants match if designated types do
12513 if Ekind
(Base_Type
(Formal_Subt
)) = E_Anonymous_Access_Type
12514 and then (Ekind
(Base_Type
(Etype
(Actual_Discr
)))) =
12515 E_Anonymous_Access_Type
12518 (Designated_Type
(Base_Type
(Formal_Subt
))) =
12519 Designated_Type
(Base_Type
(Etype
(Actual_Discr
)))
12523 elsif Base_Type
(Formal_Subt
) /=
12524 Base_Type
(Etype
(Actual_Discr
))
12527 ("types of actual discriminants must match formal",
12529 Abandon_Instantiation
(Actual
);
12531 elsif not Subtypes_Statically_Match
12532 (Formal_Subt
, Etype
(Actual_Discr
))
12533 and then Ada_Version
>= Ada_95
12536 ("subtypes of actual discriminants must match formal",
12538 Abandon_Instantiation
(Actual
);
12541 Next_Discriminant
(Formal_Discr
);
12542 Next_Discriminant
(Actual_Discr
);
12545 if Actual_Discr
/= Empty
then
12547 ("discriminants on actual do not match formal",
12549 Abandon_Instantiation
(Actual
);
12553 end Validate_Discriminated_Formal_Type
;
12555 ---------------------------------------
12556 -- Validate_Incomplete_Type_Instance --
12557 ---------------------------------------
12559 procedure Validate_Incomplete_Type_Instance
is
12561 if not Is_Tagged_Type
(Act_T
)
12562 and then Is_Tagged_Type
(A_Gen_T
)
12565 ("actual for & must be a tagged type", Actual
, Gen_T
);
12568 Validate_Discriminated_Formal_Type
;
12569 end Validate_Incomplete_Type_Instance
;
12571 --------------------------------------
12572 -- Validate_Interface_Type_Instance --
12573 --------------------------------------
12575 procedure Validate_Interface_Type_Instance
is
12577 if not Is_Interface
(Act_T
) then
12579 ("actual for formal interface type must be an interface",
12582 elsif Is_Limited_Type
(Act_T
) /= Is_Limited_Type
(A_Gen_T
)
12583 or else Is_Task_Interface
(A_Gen_T
) /= Is_Task_Interface
(Act_T
)
12584 or else Is_Protected_Interface
(A_Gen_T
) /=
12585 Is_Protected_Interface
(Act_T
)
12586 or else Is_Synchronized_Interface
(A_Gen_T
) /=
12587 Is_Synchronized_Interface
(Act_T
)
12590 ("actual for interface& does not match (RM 12.5.5(4))",
12593 end Validate_Interface_Type_Instance
;
12595 ------------------------------------
12596 -- Validate_Private_Type_Instance --
12597 ------------------------------------
12599 procedure Validate_Private_Type_Instance
is
12601 if Is_Limited_Type
(Act_T
)
12602 and then not Is_Limited_Type
(A_Gen_T
)
12604 if In_Instance
then
12608 ("actual for non-limited & cannot be a limited type", Actual
,
12610 Explain_Limited_Type
(Act_T
, Actual
);
12611 Abandon_Instantiation
(Actual
);
12614 elsif Known_To_Have_Preelab_Init
(A_Gen_T
)
12615 and then not Has_Preelaborable_Initialization
(Act_T
)
12618 ("actual for & must have preelaborable initialization", Actual
,
12621 elsif not Is_Definite_Subtype
(Act_T
)
12622 and then Is_Definite_Subtype
(A_Gen_T
)
12623 and then Ada_Version
>= Ada_95
12626 ("actual for & must be a definite subtype", Actual
, Gen_T
);
12628 elsif not Is_Tagged_Type
(Act_T
)
12629 and then Is_Tagged_Type
(A_Gen_T
)
12632 ("actual for & must be a tagged type", Actual
, Gen_T
);
12635 Validate_Discriminated_Formal_Type
;
12637 end Validate_Private_Type_Instance
;
12639 -- Start of processing for Instantiate_Type
12642 if Get_Instance_Of
(A_Gen_T
) /= A_Gen_T
then
12643 Error_Msg_N
("duplicate instantiation of generic type", Actual
);
12644 return New_List
(Error
);
12646 elsif not Is_Entity_Name
(Actual
)
12647 or else not Is_Type
(Entity
(Actual
))
12650 ("expect valid subtype mark to instantiate &", Actual
, Gen_T
);
12651 Abandon_Instantiation
(Actual
);
12654 Act_T
:= Entity
(Actual
);
12656 -- Ada 2005 (AI-216): An Unchecked_Union subtype shall only be passed
12657 -- as a generic actual parameter if the corresponding formal type
12658 -- does not have a known_discriminant_part, or is a formal derived
12659 -- type that is an Unchecked_Union type.
12661 if Is_Unchecked_Union
(Base_Type
(Act_T
)) then
12662 if not Has_Discriminants
(A_Gen_T
)
12663 or else (Is_Derived_Type
(A_Gen_T
)
12664 and then Is_Unchecked_Union
(A_Gen_T
))
12668 Error_Msg_N
("unchecked union cannot be the actual for a "
12669 & "discriminated formal type", Act_T
);
12674 -- Deal with fixed/floating restrictions
12676 if Is_Floating_Point_Type
(Act_T
) then
12677 Check_Restriction
(No_Floating_Point
, Actual
);
12678 elsif Is_Fixed_Point_Type
(Act_T
) then
12679 Check_Restriction
(No_Fixed_Point
, Actual
);
12682 -- Deal with error of using incomplete type as generic actual.
12683 -- This includes limited views of a type, even if the non-limited
12684 -- view may be available.
12686 if Ekind
(Act_T
) = E_Incomplete_Type
12687 or else (Is_Class_Wide_Type
(Act_T
)
12688 and then Ekind
(Root_Type
(Act_T
)) = E_Incomplete_Type
)
12690 -- If the formal is an incomplete type, the actual can be
12691 -- incomplete as well.
12693 if Ekind
(A_Gen_T
) = E_Incomplete_Type
then
12696 elsif Is_Class_Wide_Type
(Act_T
)
12697 or else No
(Full_View
(Act_T
))
12699 Error_Msg_N
("premature use of incomplete type", Actual
);
12700 Abandon_Instantiation
(Actual
);
12702 Act_T
:= Full_View
(Act_T
);
12703 Set_Entity
(Actual
, Act_T
);
12705 if Has_Private_Component
(Act_T
) then
12707 ("premature use of type with private component", Actual
);
12711 -- Deal with error of premature use of private type as generic actual
12713 elsif Is_Private_Type
(Act_T
)
12714 and then Is_Private_Type
(Base_Type
(Act_T
))
12715 and then not Is_Generic_Type
(Act_T
)
12716 and then not Is_Derived_Type
(Act_T
)
12717 and then No
(Full_View
(Root_Type
(Act_T
)))
12719 -- If the formal is an incomplete type, the actual can be
12720 -- private or incomplete as well.
12722 if Ekind
(A_Gen_T
) = E_Incomplete_Type
then
12725 Error_Msg_N
("premature use of private type", Actual
);
12728 elsif Has_Private_Component
(Act_T
) then
12730 ("premature use of type with private component", Actual
);
12733 Set_Instance_Of
(A_Gen_T
, Act_T
);
12735 -- If the type is generic, the class-wide type may also be used
12737 if Is_Tagged_Type
(A_Gen_T
)
12738 and then Is_Tagged_Type
(Act_T
)
12739 and then not Is_Class_Wide_Type
(A_Gen_T
)
12741 Set_Instance_Of
(Class_Wide_Type
(A_Gen_T
),
12742 Class_Wide_Type
(Act_T
));
12745 if not Is_Abstract_Type
(A_Gen_T
)
12746 and then Is_Abstract_Type
(Act_T
)
12749 ("actual of non-abstract formal cannot be abstract", Actual
);
12752 -- A generic scalar type is a first subtype for which we generate
12753 -- an anonymous base type. Indicate that the instance of this base
12754 -- is the base type of the actual.
12756 if Is_Scalar_Type
(A_Gen_T
) then
12757 Set_Instance_Of
(Etype
(A_Gen_T
), Etype
(Act_T
));
12761 if Error_Posted
(Act_T
) then
12764 case Nkind
(Def
) is
12765 when N_Formal_Private_Type_Definition
=>
12766 Validate_Private_Type_Instance
;
12768 when N_Formal_Incomplete_Type_Definition
=>
12769 Validate_Incomplete_Type_Instance
;
12771 when N_Formal_Derived_Type_Definition
=>
12772 Validate_Derived_Type_Instance
;
12774 when N_Formal_Discrete_Type_Definition
=>
12775 if not Is_Discrete_Type
(Act_T
) then
12777 ("expect discrete type in instantiation of&",
12779 Abandon_Instantiation
(Actual
);
12782 Diagnose_Predicated_Actual
;
12784 when N_Formal_Signed_Integer_Type_Definition
=>
12785 if not Is_Signed_Integer_Type
(Act_T
) then
12787 ("expect signed integer type in instantiation of&",
12789 Abandon_Instantiation
(Actual
);
12792 Diagnose_Predicated_Actual
;
12794 when N_Formal_Modular_Type_Definition
=>
12795 if not Is_Modular_Integer_Type
(Act_T
) then
12797 ("expect modular type in instantiation of &",
12799 Abandon_Instantiation
(Actual
);
12802 Diagnose_Predicated_Actual
;
12804 when N_Formal_Floating_Point_Definition
=>
12805 if not Is_Floating_Point_Type
(Act_T
) then
12807 ("expect float type in instantiation of &", Actual
, Gen_T
);
12808 Abandon_Instantiation
(Actual
);
12811 when N_Formal_Ordinary_Fixed_Point_Definition
=>
12812 if not Is_Ordinary_Fixed_Point_Type
(Act_T
) then
12814 ("expect ordinary fixed point type in instantiation of &",
12816 Abandon_Instantiation
(Actual
);
12819 when N_Formal_Decimal_Fixed_Point_Definition
=>
12820 if not Is_Decimal_Fixed_Point_Type
(Act_T
) then
12822 ("expect decimal type in instantiation of &",
12824 Abandon_Instantiation
(Actual
);
12827 when N_Array_Type_Definition
=>
12828 Validate_Array_Type_Instance
;
12830 when N_Access_To_Object_Definition
=>
12831 Validate_Access_Type_Instance
;
12833 when N_Access_Function_Definition
12834 | N_Access_Procedure_Definition
12836 Validate_Access_Subprogram_Instance
;
12838 when N_Record_Definition
=>
12839 Validate_Interface_Type_Instance
;
12841 when N_Derived_Type_Definition
=>
12842 Validate_Derived_Interface_Type_Instance
;
12845 raise Program_Error
;
12849 Subt
:= New_Copy
(Gen_T
);
12851 -- Use adjusted sloc of subtype name as the location for other nodes in
12852 -- the subtype declaration.
12854 Loc
:= Sloc
(Subt
);
12857 Make_Subtype_Declaration
(Loc
,
12858 Defining_Identifier
=> Subt
,
12859 Subtype_Indication
=> New_Occurrence_Of
(Act_T
, Loc
));
12861 if Is_Private_Type
(Act_T
) then
12862 Set_Has_Private_View
(Subtype_Indication
(Decl_Node
));
12864 elsif Is_Access_Type
(Act_T
)
12865 and then Is_Private_Type
(Designated_Type
(Act_T
))
12867 Set_Has_Private_View
(Subtype_Indication
(Decl_Node
));
12870 -- In Ada 2012 the actual may be a limited view. Indicate that
12871 -- the local subtype must be treated as such.
12873 if From_Limited_With
(Act_T
) then
12874 Set_Ekind
(Subt
, E_Incomplete_Subtype
);
12875 Set_From_Limited_With
(Subt
);
12878 Decl_Nodes
:= New_List
(Decl_Node
);
12880 -- Flag actual derived types so their elaboration produces the
12881 -- appropriate renamings for the primitive operations of the ancestor.
12882 -- Flag actual for formal private types as well, to determine whether
12883 -- operations in the private part may override inherited operations.
12884 -- If the formal has an interface list, the ancestor is not the
12885 -- parent, but the analyzed formal that includes the interface
12886 -- operations of all its progenitors.
12888 -- Same treatment for formal private types, so we can check whether the
12889 -- type is tagged limited when validating derivations in the private
12890 -- part. (See AI05-096).
12892 if Nkind
(Def
) = N_Formal_Derived_Type_Definition
then
12893 if Present
(Interface_List
(Def
)) then
12894 Set_Generic_Parent_Type
(Decl_Node
, A_Gen_T
);
12896 Set_Generic_Parent_Type
(Decl_Node
, Ancestor
);
12899 elsif Nkind_In
(Def
, N_Formal_Private_Type_Definition
,
12900 N_Formal_Incomplete_Type_Definition
)
12902 Set_Generic_Parent_Type
(Decl_Node
, A_Gen_T
);
12905 -- If the actual is a synchronized type that implements an interface,
12906 -- the primitive operations are attached to the corresponding record,
12907 -- and we have to treat it as an additional generic actual, so that its
12908 -- primitive operations become visible in the instance. The task or
12909 -- protected type itself does not carry primitive operations.
12911 if Is_Concurrent_Type
(Act_T
)
12912 and then Is_Tagged_Type
(Act_T
)
12913 and then Present
(Corresponding_Record_Type
(Act_T
))
12914 and then Present
(Ancestor
)
12915 and then Is_Interface
(Ancestor
)
12918 Corr_Rec
: constant Entity_Id
:=
12919 Corresponding_Record_Type
(Act_T
);
12920 New_Corr
: Entity_Id
;
12921 Corr_Decl
: Node_Id
;
12924 New_Corr
:= Make_Temporary
(Loc
, 'S');
12926 Make_Subtype_Declaration
(Loc
,
12927 Defining_Identifier
=> New_Corr
,
12928 Subtype_Indication
=>
12929 New_Occurrence_Of
(Corr_Rec
, Loc
));
12930 Append_To
(Decl_Nodes
, Corr_Decl
);
12932 if Ekind
(Act_T
) = E_Task_Type
then
12933 Set_Ekind
(Subt
, E_Task_Subtype
);
12935 Set_Ekind
(Subt
, E_Protected_Subtype
);
12938 Set_Corresponding_Record_Type
(Subt
, Corr_Rec
);
12939 Set_Generic_Parent_Type
(Corr_Decl
, Ancestor
);
12940 Set_Generic_Parent_Type
(Decl_Node
, Empty
);
12944 -- For a floating-point type, capture dimension info if any, because
12945 -- the generated subtype declaration does not come from source and
12946 -- will not process dimensions.
12948 if Is_Floating_Point_Type
(Act_T
) then
12949 Copy_Dimensions
(Act_T
, Subt
);
12953 end Instantiate_Type
;
12955 ---------------------
12956 -- Is_In_Main_Unit --
12957 ---------------------
12959 function Is_In_Main_Unit
(N
: Node_Id
) return Boolean is
12960 Unum
: constant Unit_Number_Type
:= Get_Source_Unit
(N
);
12961 Current_Unit
: Node_Id
;
12964 if Unum
= Main_Unit
then
12967 -- If the current unit is a subunit then it is either the main unit or
12968 -- is being compiled as part of the main unit.
12970 elsif Nkind
(N
) = N_Compilation_Unit
then
12971 return Nkind
(Unit
(N
)) = N_Subunit
;
12974 Current_Unit
:= Parent
(N
);
12975 while Present
(Current_Unit
)
12976 and then Nkind
(Current_Unit
) /= N_Compilation_Unit
12978 Current_Unit
:= Parent
(Current_Unit
);
12981 -- The instantiation node is in the main unit, or else the current node
12982 -- (perhaps as the result of nested instantiations) is in the main unit,
12983 -- or in the declaration of the main unit, which in this last case must
12987 Current_Unit
= Cunit
(Main_Unit
)
12988 or else Current_Unit
= Library_Unit
(Cunit
(Main_Unit
))
12989 or else (Present
(Current_Unit
)
12990 and then Present
(Library_Unit
(Current_Unit
))
12991 and then Is_In_Main_Unit
(Library_Unit
(Current_Unit
)));
12992 end Is_In_Main_Unit
;
12994 ----------------------------
12995 -- Load_Parent_Of_Generic --
12996 ----------------------------
12998 procedure Load_Parent_Of_Generic
13001 Body_Optional
: Boolean := False)
13003 Comp_Unit
: constant Node_Id
:= Cunit
(Get_Source_Unit
(Spec
));
13004 Saved_Style_Check
: constant Boolean := Style_Check
;
13005 Saved_Warnings
: constant Warning_Record
:= Save_Warnings
;
13006 True_Parent
: Node_Id
;
13007 Inst_Node
: Node_Id
;
13009 Previous_Instances
: constant Elist_Id
:= New_Elmt_List
;
13011 procedure Collect_Previous_Instances
(Decls
: List_Id
);
13012 -- Collect all instantiations in the given list of declarations, that
13013 -- precede the generic that we need to load. If the bodies of these
13014 -- instantiations are available, we must analyze them, to ensure that
13015 -- the public symbols generated are the same when the unit is compiled
13016 -- to generate code, and when it is compiled in the context of a unit
13017 -- that needs a particular nested instance. This process is applied to
13018 -- both package and subprogram instances.
13020 --------------------------------
13021 -- Collect_Previous_Instances --
13022 --------------------------------
13024 procedure Collect_Previous_Instances
(Decls
: List_Id
) is
13028 Decl
:= First
(Decls
);
13029 while Present
(Decl
) loop
13030 if Sloc
(Decl
) >= Sloc
(Inst_Node
) then
13033 -- If Decl is an instantiation, then record it as requiring
13034 -- instantiation of the corresponding body, except if it is an
13035 -- abbreviated instantiation generated internally for conformance
13036 -- checking purposes only for the case of a formal package
13037 -- declared without a box (see Instantiate_Formal_Package). Such
13038 -- an instantiation does not generate any code (the actual code
13039 -- comes from actual) and thus does not need to be analyzed here.
13040 -- If the instantiation appears with a generic package body it is
13041 -- not analyzed here either.
13043 elsif Nkind
(Decl
) = N_Package_Instantiation
13044 and then not Is_Internal
(Defining_Entity
(Decl
))
13046 Append_Elmt
(Decl
, Previous_Instances
);
13048 -- For a subprogram instantiation, omit instantiations intrinsic
13049 -- operations (Unchecked_Conversions, etc.) that have no bodies.
13051 elsif Nkind_In
(Decl
, N_Function_Instantiation
,
13052 N_Procedure_Instantiation
)
13053 and then not Is_Intrinsic_Subprogram
(Entity
(Name
(Decl
)))
13055 Append_Elmt
(Decl
, Previous_Instances
);
13057 elsif Nkind
(Decl
) = N_Package_Declaration
then
13058 Collect_Previous_Instances
13059 (Visible_Declarations
(Specification
(Decl
)));
13060 Collect_Previous_Instances
13061 (Private_Declarations
(Specification
(Decl
)));
13063 -- Previous non-generic bodies may contain instances as well
13065 elsif Nkind
(Decl
) = N_Package_Body
13066 and then Ekind
(Corresponding_Spec
(Decl
)) /= E_Generic_Package
13068 Collect_Previous_Instances
(Declarations
(Decl
));
13070 elsif Nkind
(Decl
) = N_Subprogram_Body
13071 and then not Acts_As_Spec
(Decl
)
13072 and then not Is_Generic_Subprogram
(Corresponding_Spec
(Decl
))
13074 Collect_Previous_Instances
(Declarations
(Decl
));
13079 end Collect_Previous_Instances
;
13081 -- Start of processing for Load_Parent_Of_Generic
13084 if not In_Same_Source_Unit
(N
, Spec
)
13085 or else Nkind
(Unit
(Comp_Unit
)) = N_Package_Declaration
13086 or else (Nkind
(Unit
(Comp_Unit
)) = N_Package_Body
13087 and then not Is_In_Main_Unit
(Spec
))
13089 -- Find body of parent of spec, and analyze it. A special case arises
13090 -- when the parent is an instantiation, that is to say when we are
13091 -- currently instantiating a nested generic. In that case, there is
13092 -- no separate file for the body of the enclosing instance. Instead,
13093 -- the enclosing body must be instantiated as if it were a pending
13094 -- instantiation, in order to produce the body for the nested generic
13095 -- we require now. Note that in that case the generic may be defined
13096 -- in a package body, the instance defined in the same package body,
13097 -- and the original enclosing body may not be in the main unit.
13099 Inst_Node
:= Empty
;
13101 True_Parent
:= Parent
(Spec
);
13102 while Present
(True_Parent
)
13103 and then Nkind
(True_Parent
) /= N_Compilation_Unit
13105 if Nkind
(True_Parent
) = N_Package_Declaration
13107 Nkind
(Original_Node
(True_Parent
)) = N_Package_Instantiation
13109 -- Parent is a compilation unit that is an instantiation.
13110 -- Instantiation node has been replaced with package decl.
13112 Inst_Node
:= Original_Node
(True_Parent
);
13115 elsif Nkind
(True_Parent
) = N_Package_Declaration
13116 and then Present
(Generic_Parent
(Specification
(True_Parent
)))
13117 and then Nkind
(Parent
(True_Parent
)) /= N_Compilation_Unit
13119 -- Parent is an instantiation within another specification.
13120 -- Declaration for instance has been inserted before original
13121 -- instantiation node. A direct link would be preferable?
13123 Inst_Node
:= Next
(True_Parent
);
13124 while Present
(Inst_Node
)
13125 and then Nkind
(Inst_Node
) /= N_Package_Instantiation
13130 -- If the instance appears within a generic, and the generic
13131 -- unit is defined within a formal package of the enclosing
13132 -- generic, there is no generic body available, and none
13133 -- needed. A more precise test should be used ???
13135 if No
(Inst_Node
) then
13142 True_Parent
:= Parent
(True_Parent
);
13146 -- Case where we are currently instantiating a nested generic
13148 if Present
(Inst_Node
) then
13149 if Nkind
(Parent
(True_Parent
)) = N_Compilation_Unit
then
13151 -- Instantiation node and declaration of instantiated package
13152 -- were exchanged when only the declaration was needed.
13153 -- Restore instantiation node before proceeding with body.
13155 Set_Unit
(Parent
(True_Parent
), Inst_Node
);
13158 -- Now complete instantiation of enclosing body, if it appears in
13159 -- some other unit. If it appears in the current unit, the body
13160 -- will have been instantiated already.
13162 if No
(Corresponding_Body
(Instance_Spec
(Inst_Node
))) then
13164 -- We need to determine the expander mode to instantiate the
13165 -- enclosing body. Because the generic body we need may use
13166 -- global entities declared in the enclosing package (including
13167 -- aggregates) it is in general necessary to compile this body
13168 -- with expansion enabled, except if we are within a generic
13169 -- package, in which case the usual generic rule applies.
13172 Exp_Status
: Boolean := True;
13176 -- Loop through scopes looking for generic package
13178 Scop
:= Scope
(Defining_Entity
(Instance_Spec
(Inst_Node
)));
13179 while Present
(Scop
)
13180 and then Scop
/= Standard_Standard
13182 if Ekind
(Scop
) = E_Generic_Package
then
13183 Exp_Status
:= False;
13187 Scop
:= Scope
(Scop
);
13190 -- Collect previous instantiations in the unit that contains
13191 -- the desired generic.
13193 if Nkind
(Parent
(True_Parent
)) /= N_Compilation_Unit
13194 and then not Body_Optional
13198 Info
: Pending_Body_Info
;
13202 Par
:= Parent
(Inst_Node
);
13203 while Present
(Par
) loop
13204 exit when Nkind
(Parent
(Par
)) = N_Compilation_Unit
;
13205 Par
:= Parent
(Par
);
13208 pragma Assert
(Present
(Par
));
13210 if Nkind
(Par
) = N_Package_Body
then
13211 Collect_Previous_Instances
(Declarations
(Par
));
13213 elsif Nkind
(Par
) = N_Package_Declaration
then
13214 Collect_Previous_Instances
13215 (Visible_Declarations
(Specification
(Par
)));
13216 Collect_Previous_Instances
13217 (Private_Declarations
(Specification
(Par
)));
13220 -- Enclosing unit is a subprogram body. In this
13221 -- case all instance bodies are processed in order
13222 -- and there is no need to collect them separately.
13227 Decl
:= First_Elmt
(Previous_Instances
);
13228 while Present
(Decl
) loop
13230 (Inst_Node
=> Node
(Decl
),
13232 Instance_Spec
(Node
(Decl
)),
13233 Expander_Status
=> Exp_Status
,
13234 Current_Sem_Unit
=>
13235 Get_Code_Unit
(Sloc
(Node
(Decl
))),
13236 Scope_Suppress
=> Scope_Suppress
,
13237 Local_Suppress_Stack_Top
=>
13238 Local_Suppress_Stack_Top
,
13239 Version
=> Ada_Version
,
13240 Version_Pragma
=> Ada_Version_Pragma
,
13241 Warnings
=> Save_Warnings
,
13242 SPARK_Mode
=> SPARK_Mode
,
13243 SPARK_Mode_Pragma
=> SPARK_Mode_Pragma
);
13245 -- Package instance
13248 Nkind
(Node
(Decl
)) = N_Package_Instantiation
13250 Instantiate_Package_Body
13251 (Info
, Body_Optional
=> True);
13253 -- Subprogram instance
13256 -- The instance_spec is in the wrapper package,
13257 -- usually followed by its local renaming
13258 -- declaration. See Build_Subprogram_Renaming
13259 -- for details. If the instance carries aspects,
13260 -- these result in the corresponding pragmas,
13261 -- inserted after the subprogram declaration.
13262 -- They must be skipped as well when retrieving
13263 -- the desired spec. A direct link would be
13268 (Last
(Visible_Declarations
13269 (Specification
(Info
.Act_Decl
))));
13271 while Nkind_In
(Decl
,
13272 N_Subprogram_Renaming_Declaration
, N_Pragma
)
13274 Decl
:= Prev
(Decl
);
13277 Info
.Act_Decl
:= Decl
;
13280 Instantiate_Subprogram_Body
13281 (Info
, Body_Optional
=> True);
13289 Instantiate_Package_Body
13291 ((Inst_Node
=> Inst_Node
,
13292 Act_Decl
=> True_Parent
,
13293 Expander_Status
=> Exp_Status
,
13294 Current_Sem_Unit
=> Get_Code_Unit
13295 (Sloc
(Inst_Node
)),
13296 Scope_Suppress
=> Scope_Suppress
,
13297 Local_Suppress_Stack_Top
=> Local_Suppress_Stack_Top
,
13298 Version
=> Ada_Version
,
13299 Version_Pragma
=> Ada_Version_Pragma
,
13300 Warnings
=> Save_Warnings
,
13301 SPARK_Mode
=> SPARK_Mode
,
13302 SPARK_Mode_Pragma
=> SPARK_Mode_Pragma
)),
13303 Body_Optional
=> Body_Optional
);
13307 -- Case where we are not instantiating a nested generic
13310 Opt
.Style_Check
:= False;
13311 Expander_Mode_Save_And_Set
(True);
13312 Load_Needed_Body
(Comp_Unit
, OK
);
13313 Opt
.Style_Check
:= Saved_Style_Check
;
13314 Restore_Warnings
(Saved_Warnings
);
13315 Expander_Mode_Restore
;
13318 and then Unit_Requires_Body
(Defining_Entity
(Spec
))
13319 and then not Body_Optional
13322 Bname
: constant Unit_Name_Type
:=
13323 Get_Body_Name
(Get_Unit_Name
(Unit
(Comp_Unit
)));
13326 -- In CodePeer mode, the missing body may make the analysis
13327 -- incomplete, but we do not treat it as fatal.
13329 if CodePeer_Mode
then
13333 Error_Msg_Unit_1
:= Bname
;
13334 Error_Msg_N
("this instantiation requires$!", N
);
13335 Error_Msg_File_1
:=
13336 Get_File_Name
(Bname
, Subunit
=> False);
13337 Error_Msg_N
("\but file{ was not found!", N
);
13338 raise Unrecoverable_Error
;
13345 -- If loading parent of the generic caused an instantiation circularity,
13346 -- we abandon compilation at this point, because otherwise in some cases
13347 -- we get into trouble with infinite recursions after this point.
13349 if Circularity_Detected
then
13350 raise Unrecoverable_Error
;
13352 end Load_Parent_Of_Generic
;
13354 ---------------------------------
13355 -- Map_Formal_Package_Entities --
13356 ---------------------------------
13358 procedure Map_Formal_Package_Entities
(Form
: Entity_Id
; Act
: Entity_Id
) is
13363 Set_Instance_Of
(Form
, Act
);
13365 -- Traverse formal and actual package to map the corresponding entities.
13366 -- We skip over internal entities that may be generated during semantic
13367 -- analysis, and find the matching entities by name, given that they
13368 -- must appear in the same order.
13370 E1
:= First_Entity
(Form
);
13371 E2
:= First_Entity
(Act
);
13372 while Present
(E1
) and then E1
/= First_Private_Entity
(Form
) loop
13373 -- Could this test be a single condition??? Seems like it could, and
13374 -- isn't FPE (Form) a constant anyway???
13376 if not Is_Internal
(E1
)
13377 and then Present
(Parent
(E1
))
13378 and then not Is_Class_Wide_Type
(E1
)
13379 and then not Is_Internal_Name
(Chars
(E1
))
13381 while Present
(E2
) and then Chars
(E2
) /= Chars
(E1
) loop
13388 Set_Instance_Of
(E1
, E2
);
13390 if Is_Type
(E1
) and then Is_Tagged_Type
(E2
) then
13391 Set_Instance_Of
(Class_Wide_Type
(E1
), Class_Wide_Type
(E2
));
13394 if Is_Constrained
(E1
) then
13395 Set_Instance_Of
(Base_Type
(E1
), Base_Type
(E2
));
13398 if Ekind
(E1
) = E_Package
and then No
(Renamed_Object
(E1
)) then
13399 Map_Formal_Package_Entities
(E1
, E2
);
13406 end Map_Formal_Package_Entities
;
13408 -----------------------
13409 -- Move_Freeze_Nodes --
13410 -----------------------
13412 procedure Move_Freeze_Nodes
13413 (Out_Of
: Entity_Id
;
13418 Next_Decl
: Node_Id
;
13419 Next_Node
: Node_Id
:= After
;
13422 function Is_Outer_Type
(T
: Entity_Id
) return Boolean;
13423 -- Check whether entity is declared in a scope external to that of the
13426 -------------------
13427 -- Is_Outer_Type --
13428 -------------------
13430 function Is_Outer_Type
(T
: Entity_Id
) return Boolean is
13431 Scop
: Entity_Id
:= Scope
(T
);
13434 if Scope_Depth
(Scop
) < Scope_Depth
(Out_Of
) then
13438 while Scop
/= Standard_Standard
loop
13439 if Scop
= Out_Of
then
13442 Scop
:= Scope
(Scop
);
13450 -- Start of processing for Move_Freeze_Nodes
13457 -- First remove the freeze nodes that may appear before all other
13461 while Present
(Decl
)
13462 and then Nkind
(Decl
) = N_Freeze_Entity
13463 and then Is_Outer_Type
(Entity
(Decl
))
13465 Decl
:= Remove_Head
(L
);
13466 Insert_After
(Next_Node
, Decl
);
13467 Set_Analyzed
(Decl
, False);
13472 -- Next scan the list of declarations and remove each freeze node that
13473 -- appears ahead of the current node.
13475 while Present
(Decl
) loop
13476 while Present
(Next
(Decl
))
13477 and then Nkind
(Next
(Decl
)) = N_Freeze_Entity
13478 and then Is_Outer_Type
(Entity
(Next
(Decl
)))
13480 Next_Decl
:= Remove_Next
(Decl
);
13481 Insert_After
(Next_Node
, Next_Decl
);
13482 Set_Analyzed
(Next_Decl
, False);
13483 Next_Node
:= Next_Decl
;
13486 -- If the declaration is a nested package or concurrent type, then
13487 -- recurse. Nested generic packages will have been processed from the
13490 case Nkind
(Decl
) is
13491 when N_Package_Declaration
=>
13492 Spec
:= Specification
(Decl
);
13494 when N_Task_Type_Declaration
=>
13495 Spec
:= Task_Definition
(Decl
);
13497 when N_Protected_Type_Declaration
=>
13498 Spec
:= Protected_Definition
(Decl
);
13504 if Present
(Spec
) then
13505 Move_Freeze_Nodes
(Out_Of
, Next_Node
, Visible_Declarations
(Spec
));
13506 Move_Freeze_Nodes
(Out_Of
, Next_Node
, Private_Declarations
(Spec
));
13511 end Move_Freeze_Nodes
;
13517 function Next_Assoc
(E
: Assoc_Ptr
) return Assoc_Ptr
is
13519 return Generic_Renamings
.Table
(E
).Next_In_HTable
;
13522 ------------------------
13523 -- Preanalyze_Actuals --
13524 ------------------------
13526 procedure Preanalyze_Actuals
(N
: Node_Id
; Inst
: Entity_Id
:= Empty
) is
13529 Errs
: constant Nat
:= Serious_Errors_Detected
;
13531 Cur
: Entity_Id
:= Empty
;
13532 -- Current homograph of the instance name
13535 -- Saved visibility status of the current homograph
13538 Assoc
:= First
(Generic_Associations
(N
));
13540 -- If the instance is a child unit, its name may hide an outer homonym,
13541 -- so make it invisible to perform name resolution on the actuals.
13543 if Nkind
(Defining_Unit_Name
(N
)) = N_Defining_Program_Unit_Name
13545 (Current_Entity
(Defining_Identifier
(Defining_Unit_Name
(N
))))
13547 Cur
:= Current_Entity
(Defining_Identifier
(Defining_Unit_Name
(N
)));
13549 if Is_Compilation_Unit
(Cur
) then
13550 Vis
:= Is_Immediately_Visible
(Cur
);
13551 Set_Is_Immediately_Visible
(Cur
, False);
13557 while Present
(Assoc
) loop
13558 if Nkind
(Assoc
) /= N_Others_Choice
then
13559 Act
:= Explicit_Generic_Actual_Parameter
(Assoc
);
13561 -- Within a nested instantiation, a defaulted actual is an empty
13562 -- association, so nothing to analyze. If the subprogram actual
13563 -- is an attribute, analyze prefix only, because actual is not a
13564 -- complete attribute reference.
13566 -- If actual is an allocator, analyze expression only. The full
13567 -- analysis can generate code, and if instance is a compilation
13568 -- unit we have to wait until the package instance is installed
13569 -- to have a proper place to insert this code.
13571 -- String literals may be operators, but at this point we do not
13572 -- know whether the actual is a formal subprogram or a string.
13577 elsif Nkind
(Act
) = N_Attribute_Reference
then
13578 Analyze
(Prefix
(Act
));
13580 elsif Nkind
(Act
) = N_Explicit_Dereference
then
13581 Analyze
(Prefix
(Act
));
13583 elsif Nkind
(Act
) = N_Allocator
then
13585 Expr
: constant Node_Id
:= Expression
(Act
);
13588 if Nkind
(Expr
) = N_Subtype_Indication
then
13589 Analyze
(Subtype_Mark
(Expr
));
13591 -- Analyze separately each discriminant constraint, when
13592 -- given with a named association.
13598 Constr
:= First
(Constraints
(Constraint
(Expr
)));
13599 while Present
(Constr
) loop
13600 if Nkind
(Constr
) = N_Discriminant_Association
then
13601 Analyze
(Expression
(Constr
));
13615 elsif Nkind
(Act
) /= N_Operator_Symbol
then
13618 -- Within a package instance, mark actuals that are limited
13619 -- views, so their use can be moved to the body of the
13622 if Is_Entity_Name
(Act
)
13623 and then Is_Type
(Entity
(Act
))
13624 and then From_Limited_With
(Entity
(Act
))
13625 and then Present
(Inst
)
13627 Append_Elmt
(Entity
(Act
), Incomplete_Actuals
(Inst
));
13631 if Errs
/= Serious_Errors_Detected
then
13633 -- Do a minimal analysis of the generic, to prevent spurious
13634 -- warnings complaining about the generic being unreferenced,
13635 -- before abandoning the instantiation.
13637 Analyze
(Name
(N
));
13639 if Is_Entity_Name
(Name
(N
))
13640 and then Etype
(Name
(N
)) /= Any_Type
13642 Generate_Reference
(Entity
(Name
(N
)), Name
(N
));
13643 Set_Is_Instantiated
(Entity
(Name
(N
)));
13646 if Present
(Cur
) then
13648 -- For the case of a child instance hiding an outer homonym,
13649 -- provide additional warning which might explain the error.
13651 Set_Is_Immediately_Visible
(Cur
, Vis
);
13653 ("& hides outer unit with the same name??",
13654 N
, Defining_Unit_Name
(N
));
13657 Abandon_Instantiation
(Act
);
13664 if Present
(Cur
) then
13665 Set_Is_Immediately_Visible
(Cur
, Vis
);
13667 end Preanalyze_Actuals
;
13669 -------------------
13670 -- Remove_Parent --
13671 -------------------
13673 procedure Remove_Parent
(In_Body
: Boolean := False) is
13674 S
: Entity_Id
:= Current_Scope
;
13675 -- S is the scope containing the instantiation just completed. The scope
13676 -- stack contains the parent instances of the instantiation, followed by
13685 -- After child instantiation is complete, remove from scope stack the
13686 -- extra copy of the current scope, and then remove parent instances.
13688 if not In_Body
then
13691 while Current_Scope
/= S
loop
13692 P
:= Current_Scope
;
13693 End_Package_Scope
(Current_Scope
);
13695 if In_Open_Scopes
(P
) then
13696 E
:= First_Entity
(P
);
13697 while Present
(E
) loop
13698 Set_Is_Immediately_Visible
(E
, True);
13702 -- If instantiation is declared in a block, it is the enclosing
13703 -- scope that might be a parent instance. Note that only one
13704 -- block can be involved, because the parent instances have
13705 -- been installed within it.
13707 if Ekind
(P
) = E_Block
then
13708 Cur_P
:= Scope
(P
);
13713 if Is_Generic_Instance
(Cur_P
) and then P
/= Current_Scope
then
13714 -- We are within an instance of some sibling. Retain
13715 -- visibility of parent, for proper subsequent cleanup, and
13716 -- reinstall private declarations as well.
13718 Set_In_Private_Part
(P
);
13719 Install_Private_Declarations
(P
);
13722 -- If the ultimate parent is a top-level unit recorded in
13723 -- Instance_Parent_Unit, then reset its visibility to what it was
13724 -- before instantiation. (It's not clear what the purpose is of
13725 -- testing whether Scope (P) is In_Open_Scopes, but that test was
13726 -- present before the ultimate parent test was added.???)
13728 elsif not In_Open_Scopes
(Scope
(P
))
13729 or else (P
= Instance_Parent_Unit
13730 and then not Parent_Unit_Visible
)
13732 Set_Is_Immediately_Visible
(P
, False);
13734 -- If the current scope is itself an instantiation of a generic
13735 -- nested within P, and we are in the private part of body of this
13736 -- instantiation, restore the full views of P, that were removed
13737 -- in End_Package_Scope above. This obscure case can occur when a
13738 -- subunit of a generic contains an instance of a child unit of
13739 -- its generic parent unit.
13741 elsif S
= Current_Scope
and then Is_Generic_Instance
(S
) then
13743 Par
: constant Entity_Id
:=
13744 Generic_Parent
(Package_Specification
(S
));
13747 and then P
= Scope
(Par
)
13748 and then (In_Package_Body
(S
) or else In_Private_Part
(S
))
13750 Set_In_Private_Part
(P
);
13751 Install_Private_Declarations
(P
);
13757 -- Reset visibility of entities in the enclosing scope
13759 Set_Is_Hidden_Open_Scope
(Current_Scope
, False);
13761 Hidden
:= First_Elmt
(Hidden_Entities
);
13762 while Present
(Hidden
) loop
13763 Set_Is_Immediately_Visible
(Node
(Hidden
), True);
13764 Next_Elmt
(Hidden
);
13768 -- Each body is analyzed separately, and there is no context that
13769 -- needs preserving from one body instance to the next, so remove all
13770 -- parent scopes that have been installed.
13772 while Present
(S
) loop
13773 End_Package_Scope
(S
);
13774 Set_Is_Immediately_Visible
(S
, False);
13775 S
:= Current_Scope
;
13776 exit when S
= Standard_Standard
;
13785 procedure Restore_Env
is
13786 Saved
: Instance_Env
renames Instance_Envs
.Table
(Instance_Envs
.Last
);
13789 if No
(Current_Instantiated_Parent
.Act_Id
) then
13790 -- Restore environment after subprogram inlining
13792 Restore_Private_Views
(Empty
);
13795 Current_Instantiated_Parent
:= Saved
.Instantiated_Parent
;
13796 Exchanged_Views
:= Saved
.Exchanged_Views
;
13797 Hidden_Entities
:= Saved
.Hidden_Entities
;
13798 Current_Sem_Unit
:= Saved
.Current_Sem_Unit
;
13799 Parent_Unit_Visible
:= Saved
.Parent_Unit_Visible
;
13800 Instance_Parent_Unit
:= Saved
.Instance_Parent_Unit
;
13802 Restore_Opt_Config_Switches
(Saved
.Switches
);
13804 Instance_Envs
.Decrement_Last
;
13807 ---------------------------
13808 -- Restore_Private_Views --
13809 ---------------------------
13811 procedure Restore_Private_Views
13812 (Pack_Id
: Entity_Id
;
13813 Is_Package
: Boolean := True)
13818 Dep_Elmt
: Elmt_Id
;
13821 procedure Restore_Nested_Formal
(Formal
: Entity_Id
);
13822 -- Hide the generic formals of formal packages declared with box which
13823 -- were reachable in the current instantiation.
13825 ---------------------------
13826 -- Restore_Nested_Formal --
13827 ---------------------------
13829 procedure Restore_Nested_Formal
(Formal
: Entity_Id
) is
13833 if Present
(Renamed_Object
(Formal
))
13834 and then Denotes_Formal_Package
(Renamed_Object
(Formal
), True)
13838 elsif Present
(Associated_Formal_Package
(Formal
)) then
13839 Ent
:= First_Entity
(Formal
);
13840 while Present
(Ent
) loop
13841 exit when Ekind
(Ent
) = E_Package
13842 and then Renamed_Entity
(Ent
) = Renamed_Entity
(Formal
);
13844 Set_Is_Hidden
(Ent
);
13845 Set_Is_Potentially_Use_Visible
(Ent
, False);
13847 -- If package, then recurse
13849 if Ekind
(Ent
) = E_Package
then
13850 Restore_Nested_Formal
(Ent
);
13856 end Restore_Nested_Formal
;
13858 -- Start of processing for Restore_Private_Views
13861 M
:= First_Elmt
(Exchanged_Views
);
13862 while Present
(M
) loop
13865 -- Subtypes of types whose views have been exchanged, and that are
13866 -- defined within the instance, were not on the Private_Dependents
13867 -- list on entry to the instance, so they have to be exchanged
13868 -- explicitly now, in order to remain consistent with the view of the
13871 if Ekind_In
(Typ
, E_Private_Type
,
13872 E_Limited_Private_Type
,
13873 E_Record_Type_With_Private
)
13875 Dep_Elmt
:= First_Elmt
(Private_Dependents
(Typ
));
13876 while Present
(Dep_Elmt
) loop
13877 Dep_Typ
:= Node
(Dep_Elmt
);
13879 if Scope
(Dep_Typ
) = Pack_Id
13880 and then Present
(Full_View
(Dep_Typ
))
13882 Replace_Elmt
(Dep_Elmt
, Full_View
(Dep_Typ
));
13883 Exchange_Declarations
(Dep_Typ
);
13886 Next_Elmt
(Dep_Elmt
);
13890 Exchange_Declarations
(Node
(M
));
13894 if No
(Pack_Id
) then
13898 -- Make the generic formal parameters private, and make the formal types
13899 -- into subtypes of the actuals again.
13901 E
:= First_Entity
(Pack_Id
);
13902 while Present
(E
) loop
13903 Set_Is_Hidden
(E
, True);
13906 and then Nkind
(Parent
(E
)) = N_Subtype_Declaration
13908 -- If the actual for E is itself a generic actual type from
13909 -- an enclosing instance, E is still a generic actual type
13910 -- outside of the current instance. This matter when resolving
13911 -- an overloaded call that may be ambiguous in the enclosing
13912 -- instance, when two of its actuals coincide.
13914 if Is_Entity_Name
(Subtype_Indication
(Parent
(E
)))
13915 and then Is_Generic_Actual_Type
13916 (Entity
(Subtype_Indication
(Parent
(E
))))
13920 Set_Is_Generic_Actual_Type
(E
, False);
13923 -- An unusual case of aliasing: the actual may also be directly
13924 -- visible in the generic, and be private there, while it is fully
13925 -- visible in the context of the instance. The internal subtype
13926 -- is private in the instance but has full visibility like its
13927 -- parent in the enclosing scope. This enforces the invariant that
13928 -- the privacy status of all private dependents of a type coincide
13929 -- with that of the parent type. This can only happen when a
13930 -- generic child unit is instantiated within a sibling.
13932 if Is_Private_Type
(E
)
13933 and then not Is_Private_Type
(Etype
(E
))
13935 Exchange_Declarations
(E
);
13938 elsif Ekind
(E
) = E_Package
then
13940 -- The end of the renaming list is the renaming of the generic
13941 -- package itself. If the instance is a subprogram, all entities
13942 -- in the corresponding package are renamings. If this entity is
13943 -- a formal package, make its own formals private as well. The
13944 -- actual in this case is itself the renaming of an instantiation.
13945 -- If the entity is not a package renaming, it is the entity
13946 -- created to validate formal package actuals: ignore it.
13948 -- If the actual is itself a formal package for the enclosing
13949 -- generic, or the actual for such a formal package, it remains
13950 -- visible on exit from the instance, and therefore nothing needs
13951 -- to be done either, except to keep it accessible.
13953 if Is_Package
and then Renamed_Object
(E
) = Pack_Id
then
13956 elsif Nkind
(Parent
(E
)) /= N_Package_Renaming_Declaration
then
13960 Denotes_Formal_Package
(Renamed_Object
(E
), True, Pack_Id
)
13962 Set_Is_Hidden
(E
, False);
13966 Act_P
: constant Entity_Id
:= Renamed_Object
(E
);
13970 Id
:= First_Entity
(Act_P
);
13972 and then Id
/= First_Private_Entity
(Act_P
)
13974 exit when Ekind
(Id
) = E_Package
13975 and then Renamed_Object
(Id
) = Act_P
;
13977 Set_Is_Hidden
(Id
, True);
13978 Set_Is_Potentially_Use_Visible
(Id
, In_Use
(Act_P
));
13980 if Ekind
(Id
) = E_Package
then
13981 Restore_Nested_Formal
(Id
);
13992 end Restore_Private_Views
;
13999 (Gen_Unit
: Entity_Id
;
14000 Act_Unit
: Entity_Id
)
14004 Set_Instance_Env
(Gen_Unit
, Act_Unit
);
14007 ----------------------------
14008 -- Save_Global_References --
14009 ----------------------------
14011 procedure Save_Global_References
(Templ
: Node_Id
) is
14013 -- ??? it is horrible to use global variables in highly recursive code
14016 -- The entity of the current associated node
14018 Gen_Scope
: Entity_Id
;
14019 -- The scope of the generic for which references are being saved
14022 -- The current associated node
14024 function Is_Global
(E
: Entity_Id
) return Boolean;
14025 -- Check whether entity is defined outside of generic unit. Examine the
14026 -- scope of an entity, and the scope of the scope, etc, until we find
14027 -- either Standard, in which case the entity is global, or the generic
14028 -- unit itself, which indicates that the entity is local. If the entity
14029 -- is the generic unit itself, as in the case of a recursive call, or
14030 -- the enclosing generic unit, if different from the current scope, then
14031 -- it is local as well, because it will be replaced at the point of
14032 -- instantiation. On the other hand, if it is a reference to a child
14033 -- unit of a common ancestor, which appears in an instantiation, it is
14034 -- global because it is used to denote a specific compilation unit at
14035 -- the time the instantiations will be analyzed.
14037 procedure Qualify_Universal_Operands
14039 Func_Call
: Node_Id
);
14040 -- Op denotes a binary or unary operator in generic template Templ. Node
14041 -- Func_Call is the function call alternative of the operator within the
14042 -- the analyzed copy of the template. Change each operand which yields a
14043 -- universal type by wrapping it into a qualified expression
14045 -- Actual_Typ'(Operand)
14047 -- where Actual_Typ is the type of corresponding actual parameter of
14048 -- Operand in Func_Call.
14050 procedure Reset_Entity
(N
: Node_Id
);
14051 -- Save semantic information on global entity so that it is not resolved
14052 -- again at instantiation time.
14054 procedure Save_Entity_Descendants
(N
: Node_Id
);
14055 -- Apply Save_Global_References to the two syntactic descendants of
14056 -- non-terminal nodes that carry an Associated_Node and are processed
14057 -- through Reset_Entity. Once the global entity (if any) has been
14058 -- captured together with its type, only two syntactic descendants need
14059 -- to be traversed to complete the processing of the tree rooted at N.
14060 -- This applies to Selected_Components, Expanded_Names, and to Operator
14061 -- nodes. N can also be a character literal, identifier, or operator
14062 -- symbol node, but the call has no effect in these cases.
14064 procedure Save_Global_Defaults
(N1
: Node_Id
; N2
: Node_Id
);
14065 -- Default actuals in nested instances must be handled specially
14066 -- because there is no link to them from the original tree. When an
14067 -- actual subprogram is given by a default, we add an explicit generic
14068 -- association for it in the instantiation node. When we save the
14069 -- global references on the name of the instance, we recover the list
14070 -- of generic associations, and add an explicit one to the original
14071 -- generic tree, through which a global actual can be preserved.
14072 -- Similarly, if a child unit is instantiated within a sibling, in the
14073 -- context of the parent, we must preserve the identifier of the parent
14074 -- so that it can be properly resolved in a subsequent instantiation.
14076 procedure Save_Global_Descendant
(D
: Union_Id
);
14077 -- Apply Save_References recursively to the descendants of node D
14079 procedure Save_References
(N
: Node_Id
);
14080 -- This is the recursive procedure that does the work, once the
14081 -- enclosing generic scope has been established.
14087 function Is_Global
(E
: Entity_Id
) return Boolean is
14090 function Is_Instance_Node
(Decl
: Node_Id
) return Boolean;
14091 -- Determine whether the parent node of a reference to a child unit
14092 -- denotes an instantiation or a formal package, in which case the
14093 -- reference to the child unit is global, even if it appears within
14094 -- the current scope (e.g. when the instance appears within the body
14095 -- of an ancestor).
14097 ----------------------
14098 -- Is_Instance_Node --
14099 ----------------------
14101 function Is_Instance_Node
(Decl
: Node_Id
) return Boolean is
14103 return Nkind
(Decl
) in N_Generic_Instantiation
14105 Nkind
(Original_Node
(Decl
)) = N_Formal_Package_Declaration
;
14106 end Is_Instance_Node
;
14108 -- Start of processing for Is_Global
14111 if E
= Gen_Scope
then
14114 elsif E
= Standard_Standard
then
14117 elsif Is_Child_Unit
(E
)
14118 and then (Is_Instance_Node
(Parent
(N2
))
14119 or else (Nkind
(Parent
(N2
)) = N_Expanded_Name
14120 and then N2
= Selector_Name
(Parent
(N2
))
14122 Is_Instance_Node
(Parent
(Parent
(N2
)))))
14128 while Se
/= Gen_Scope
loop
14129 if Se
= Standard_Standard
then
14140 --------------------------------
14141 -- Qualify_Universal_Operands --
14142 --------------------------------
14144 procedure Qualify_Universal_Operands
14146 Func_Call
: Node_Id
)
14148 procedure Qualify_Operand
(Opnd
: Node_Id
; Actual
: Node_Id
);
14149 -- Rewrite operand Opnd as a qualified expression of the form
14151 -- Actual_Typ'(Opnd)
14153 -- where Actual is the corresponding actual parameter of Opnd in
14154 -- function call Func_Call.
14156 function Qualify_Type
14158 Typ
: Entity_Id
) return Node_Id
;
14159 -- Qualify type Typ by creating a selected component of the form
14161 -- Scope_Of_Typ.Typ
14163 ---------------------
14164 -- Qualify_Operand --
14165 ---------------------
14167 procedure Qualify_Operand
(Opnd
: Node_Id
; Actual
: Node_Id
) is
14168 Loc
: constant Source_Ptr
:= Sloc
(Opnd
);
14169 Typ
: constant Entity_Id
:= Etype
(Actual
);
14174 -- Qualify the operand when it is of a universal type. Note that
14175 -- the template is unanalyzed and it is not possible to directly
14176 -- query the type. This transformation is not done when the type
14177 -- of the actual is internally generated because the type will be
14178 -- regenerated in the instance.
14180 if Yields_Universal_Type
(Opnd
)
14181 and then Comes_From_Source
(Typ
)
14182 and then not Is_Hidden
(Typ
)
14184 -- The type of the actual may be a global reference. Save this
14185 -- information by creating a reference to it.
14187 if Is_Global
(Typ
) then
14188 Mark
:= New_Occurrence_Of
(Typ
, Loc
);
14190 -- Otherwise rely on resolution to find the proper type within
14194 Mark
:= Qualify_Type
(Loc
, Typ
);
14198 Make_Qualified_Expression
(Loc
,
14199 Subtype_Mark
=> Mark
,
14200 Expression
=> Relocate_Node
(Opnd
));
14202 -- Mark the qualification to distinguish it from other source
14203 -- constructs and signal the instantiation mechanism that this
14204 -- node requires special processing. See Copy_Generic_Node for
14207 Set_Is_Qualified_Universal_Literal
(Qual
);
14209 Rewrite
(Opnd
, Qual
);
14211 end Qualify_Operand
;
14217 function Qualify_Type
14219 Typ
: Entity_Id
) return Node_Id
14221 Scop
: constant Entity_Id
:= Scope
(Typ
);
14225 Result
:= Make_Identifier
(Loc
, Chars
(Typ
));
14227 if Present
(Scop
) and then not Is_Generic_Unit
(Scop
) then
14229 Make_Selected_Component
(Loc
,
14230 Prefix
=> Make_Identifier
(Loc
, Chars
(Scop
)),
14231 Selector_Name
=> Result
);
14239 Actuals
: constant List_Id
:= Parameter_Associations
(Func_Call
);
14241 -- Start of processing for Qualify_Universal_Operands
14244 if Nkind
(Op
) in N_Binary_Op
then
14245 Qualify_Operand
(Left_Opnd
(Op
), First
(Actuals
));
14246 Qualify_Operand
(Right_Opnd
(Op
), Next
(First
(Actuals
)));
14248 elsif Nkind
(Op
) in N_Unary_Op
then
14249 Qualify_Operand
(Right_Opnd
(Op
), First
(Actuals
));
14251 end Qualify_Universal_Operands
;
14257 procedure Reset_Entity
(N
: Node_Id
) is
14258 procedure Set_Global_Type
(N
: Node_Id
; N2
: Node_Id
);
14259 -- If the type of N2 is global to the generic unit, save the type in
14260 -- the generic node. Just as we perform name capture for explicit
14261 -- references within the generic, we must capture the global types
14262 -- of local entities because they may participate in resolution in
14265 function Top_Ancestor
(E
: Entity_Id
) return Entity_Id
;
14266 -- Find the ultimate ancestor of the current unit. If it is not a
14267 -- generic unit, then the name of the current unit in the prefix of
14268 -- an expanded name must be replaced with its generic homonym to
14269 -- ensure that it will be properly resolved in an instance.
14271 ---------------------
14272 -- Set_Global_Type --
14273 ---------------------
14275 procedure Set_Global_Type
(N
: Node_Id
; N2
: Node_Id
) is
14276 Typ
: constant Entity_Id
:= Etype
(N2
);
14279 Set_Etype
(N
, Typ
);
14281 -- If the entity of N is not the associated node, this is a
14282 -- nested generic and it has an associated node as well, whose
14283 -- type is already the full view (see below). Indicate that the
14284 -- original node has a private view.
14286 if Entity
(N
) /= N2
and then Has_Private_View
(Entity
(N
)) then
14287 Set_Has_Private_View
(N
);
14290 -- If not a private type, nothing else to do
14292 if not Is_Private_Type
(Typ
) then
14293 if Is_Array_Type
(Typ
)
14294 and then Is_Private_Type
(Component_Type
(Typ
))
14296 Set_Has_Private_View
(N
);
14299 -- If it is a derivation of a private type in a context where no
14300 -- full view is needed, nothing to do either.
14302 elsif No
(Full_View
(Typ
)) and then Typ
/= Etype
(Typ
) then
14305 -- Otherwise mark the type for flipping and use the full view when
14309 Set_Has_Private_View
(N
);
14311 if Present
(Full_View
(Typ
)) then
14312 Set_Etype
(N2
, Full_View
(Typ
));
14316 if Is_Floating_Point_Type
(Typ
)
14317 and then Has_Dimension_System
(Typ
)
14319 Copy_Dimensions
(N2
, N
);
14321 end Set_Global_Type
;
14327 function Top_Ancestor
(E
: Entity_Id
) return Entity_Id
is
14332 while Is_Child_Unit
(Par
) loop
14333 Par
:= Scope
(Par
);
14339 -- Start of processing for Reset_Entity
14342 N2
:= Get_Associated_Node
(N
);
14345 if Present
(E
) then
14347 -- If the node is an entry call to an entry in an enclosing task,
14348 -- it is rewritten as a selected component. No global entity to
14349 -- preserve in this case, since the expansion will be redone in
14352 if not Nkind_In
(E
, N_Defining_Character_Literal
,
14353 N_Defining_Identifier
,
14354 N_Defining_Operator_Symbol
)
14356 Set_Associated_Node
(N
, Empty
);
14357 Set_Etype
(N
, Empty
);
14361 -- If the entity is an itype created as a subtype of an access
14362 -- type with a null exclusion restore source entity for proper
14363 -- visibility. The itype will be created anew in the instance.
14366 and then Ekind
(E
) = E_Access_Subtype
14367 and then Is_Entity_Name
(N
)
14368 and then Chars
(Etype
(E
)) = Chars
(N
)
14371 Set_Entity
(N2
, E
);
14375 if Is_Global
(E
) then
14377 -- If the entity is a package renaming that is the prefix of
14378 -- an expanded name, it has been rewritten as the renamed
14379 -- package, which is necessary semantically but complicates
14380 -- ASIS tree traversal, so we recover the original entity to
14381 -- expose the renaming. Take into account that the context may
14382 -- be a nested generic, that the original node may itself have
14383 -- an associated node that had better be an entity, and that
14384 -- the current node is still a selected component.
14386 if Ekind
(E
) = E_Package
14387 and then Nkind
(N
) = N_Selected_Component
14388 and then Nkind
(Parent
(N
)) = N_Expanded_Name
14389 and then Present
(Original_Node
(N2
))
14390 and then Is_Entity_Name
(Original_Node
(N2
))
14391 and then Present
(Entity
(Original_Node
(N2
)))
14393 if Is_Global
(Entity
(Original_Node
(N2
))) then
14394 N2
:= Original_Node
(N2
);
14395 Set_Associated_Node
(N
, N2
);
14396 Set_Global_Type
(N
, N2
);
14398 -- Renaming is local, and will be resolved in instance
14401 Set_Associated_Node
(N
, Empty
);
14402 Set_Etype
(N
, Empty
);
14406 Set_Global_Type
(N
, N2
);
14409 elsif Nkind
(N
) = N_Op_Concat
14410 and then Is_Generic_Type
(Etype
(N2
))
14411 and then (Base_Type
(Etype
(Right_Opnd
(N2
))) = Etype
(N2
)
14413 Base_Type
(Etype
(Left_Opnd
(N2
))) = Etype
(N2
))
14414 and then Is_Intrinsic_Subprogram
(E
)
14418 -- Entity is local. Mark generic node as unresolved. Note that now
14419 -- it does not have an entity.
14422 Set_Associated_Node
(N
, Empty
);
14423 Set_Etype
(N
, Empty
);
14426 if Nkind
(Parent
(N
)) in N_Generic_Instantiation
14427 and then N
= Name
(Parent
(N
))
14429 Save_Global_Defaults
(Parent
(N
), Parent
(N2
));
14432 elsif Nkind
(Parent
(N
)) = N_Selected_Component
14433 and then Nkind
(Parent
(N2
)) = N_Expanded_Name
14435 if Is_Global
(Entity
(Parent
(N2
))) then
14436 Change_Selected_Component_To_Expanded_Name
(Parent
(N
));
14437 Set_Associated_Node
(Parent
(N
), Parent
(N2
));
14438 Set_Global_Type
(Parent
(N
), Parent
(N2
));
14439 Save_Entity_Descendants
(N
);
14441 -- If this is a reference to the current generic entity, replace
14442 -- by the name of the generic homonym of the current package. This
14443 -- is because in an instantiation Par.P.Q will not resolve to the
14444 -- name of the instance, whose enclosing scope is not necessarily
14445 -- Par. We use the generic homonym rather that the name of the
14446 -- generic itself because it may be hidden by a local declaration.
14448 elsif In_Open_Scopes
(Entity
(Parent
(N2
)))
14450 Is_Generic_Unit
(Top_Ancestor
(Entity
(Prefix
(Parent
(N2
)))))
14452 if Ekind
(Entity
(Parent
(N2
))) = E_Generic_Package
then
14453 Rewrite
(Parent
(N
),
14454 Make_Identifier
(Sloc
(N
),
14456 Chars
(Generic_Homonym
(Entity
(Parent
(N2
))))));
14458 Rewrite
(Parent
(N
),
14459 Make_Identifier
(Sloc
(N
),
14460 Chars
=> Chars
(Selector_Name
(Parent
(N2
)))));
14464 if Nkind
(Parent
(Parent
(N
))) in N_Generic_Instantiation
14465 and then Parent
(N
) = Name
(Parent
(Parent
(N
)))
14467 Save_Global_Defaults
14468 (Parent
(Parent
(N
)), Parent
(Parent
(N2
)));
14471 -- A selected component may denote a static constant that has been
14472 -- folded. If the static constant is global to the generic, capture
14473 -- its value. Otherwise the folding will happen in any instantiation.
14475 elsif Nkind
(Parent
(N
)) = N_Selected_Component
14476 and then Nkind_In
(Parent
(N2
), N_Integer_Literal
, N_Real_Literal
)
14478 if Present
(Entity
(Original_Node
(Parent
(N2
))))
14479 and then Is_Global
(Entity
(Original_Node
(Parent
(N2
))))
14481 Rewrite
(Parent
(N
), New_Copy
(Parent
(N2
)));
14482 Set_Analyzed
(Parent
(N
), False);
14485 -- A selected component may be transformed into a parameterless
14486 -- function call. If the called entity is global, rewrite the node
14487 -- appropriately, i.e. as an extended name for the global entity.
14489 elsif Nkind
(Parent
(N
)) = N_Selected_Component
14490 and then Nkind
(Parent
(N2
)) = N_Function_Call
14491 and then N
= Selector_Name
(Parent
(N
))
14493 if No
(Parameter_Associations
(Parent
(N2
))) then
14494 if Is_Global
(Entity
(Name
(Parent
(N2
)))) then
14495 Change_Selected_Component_To_Expanded_Name
(Parent
(N
));
14496 Set_Associated_Node
(Parent
(N
), Name
(Parent
(N2
)));
14497 Set_Global_Type
(Parent
(N
), Name
(Parent
(N2
)));
14498 Save_Entity_Descendants
(N
);
14501 Set_Is_Prefixed_Call
(Parent
(N
));
14502 Set_Associated_Node
(N
, Empty
);
14503 Set_Etype
(N
, Empty
);
14506 -- In Ada 2005, X.F may be a call to a primitive operation,
14507 -- rewritten as F (X). This rewriting will be done again in an
14508 -- instance, so keep the original node. Global entities will be
14509 -- captured as for other constructs. Indicate that this must
14510 -- resolve as a call, to prevent accidental overloading in the
14511 -- instance, if both a component and a primitive operation appear
14515 Set_Is_Prefixed_Call
(Parent
(N
));
14518 -- Entity is local. Reset in generic unit, so that node is resolved
14519 -- anew at the point of instantiation.
14522 Set_Associated_Node
(N
, Empty
);
14523 Set_Etype
(N
, Empty
);
14527 -----------------------------
14528 -- Save_Entity_Descendants --
14529 -----------------------------
14531 procedure Save_Entity_Descendants
(N
: Node_Id
) is
14534 when N_Binary_Op
=>
14535 Save_Global_Descendant
(Union_Id
(Left_Opnd
(N
)));
14536 Save_Global_Descendant
(Union_Id
(Right_Opnd
(N
)));
14539 Save_Global_Descendant
(Union_Id
(Right_Opnd
(N
)));
14541 when N_Expanded_Name
14542 | N_Selected_Component
14544 Save_Global_Descendant
(Union_Id
(Prefix
(N
)));
14545 Save_Global_Descendant
(Union_Id
(Selector_Name
(N
)));
14547 when N_Character_Literal
14549 | N_Operator_Symbol
14554 raise Program_Error
;
14556 end Save_Entity_Descendants
;
14558 --------------------------
14559 -- Save_Global_Defaults --
14560 --------------------------
14562 procedure Save_Global_Defaults
(N1
: Node_Id
; N2
: Node_Id
) is
14563 Loc
: constant Source_Ptr
:= Sloc
(N1
);
14564 Assoc2
: constant List_Id
:= Generic_Associations
(N2
);
14565 Gen_Id
: constant Entity_Id
:= Get_Generic_Entity
(N2
);
14572 Actual
: Entity_Id
;
14575 Assoc1
:= Generic_Associations
(N1
);
14577 if Present
(Assoc1
) then
14578 Act1
:= First
(Assoc1
);
14581 Set_Generic_Associations
(N1
, New_List
);
14582 Assoc1
:= Generic_Associations
(N1
);
14585 if Present
(Assoc2
) then
14586 Act2
:= First
(Assoc2
);
14591 while Present
(Act1
) and then Present
(Act2
) loop
14596 -- Find the associations added for default subprograms
14598 if Present
(Act2
) then
14599 while Nkind
(Act2
) /= N_Generic_Association
14600 or else No
(Entity
(Selector_Name
(Act2
)))
14601 or else not Is_Overloadable
(Entity
(Selector_Name
(Act2
)))
14606 -- Add a similar association if the default is global. The
14607 -- renaming declaration for the actual has been analyzed, and
14608 -- its alias is the program it renames. Link the actual in the
14609 -- original generic tree with the node in the analyzed tree.
14611 while Present
(Act2
) loop
14612 Subp
:= Entity
(Selector_Name
(Act2
));
14613 Def
:= Explicit_Generic_Actual_Parameter
(Act2
);
14615 -- Following test is defence against rubbish errors
14617 if No
(Alias
(Subp
)) then
14621 -- Retrieve the resolved actual from the renaming declaration
14622 -- created for the instantiated formal.
14624 Actual
:= Entity
(Name
(Parent
(Parent
(Subp
))));
14625 Set_Entity
(Def
, Actual
);
14626 Set_Etype
(Def
, Etype
(Actual
));
14628 if Is_Global
(Actual
) then
14630 Make_Generic_Association
(Loc
,
14632 New_Occurrence_Of
(Subp
, Loc
),
14633 Explicit_Generic_Actual_Parameter
=>
14634 New_Occurrence_Of
(Actual
, Loc
));
14636 Set_Associated_Node
14637 (Explicit_Generic_Actual_Parameter
(Ndec
), Def
);
14639 Append
(Ndec
, Assoc1
);
14641 -- If there are other defaults, add a dummy association in case
14642 -- there are other defaulted formals with the same name.
14644 elsif Present
(Next
(Act2
)) then
14646 Make_Generic_Association
(Loc
,
14648 New_Occurrence_Of
(Subp
, Loc
),
14649 Explicit_Generic_Actual_Parameter
=> Empty
);
14651 Append
(Ndec
, Assoc1
);
14658 if Nkind
(Name
(N1
)) = N_Identifier
14659 and then Is_Child_Unit
(Gen_Id
)
14660 and then Is_Global
(Gen_Id
)
14661 and then Is_Generic_Unit
(Scope
(Gen_Id
))
14662 and then In_Open_Scopes
(Scope
(Gen_Id
))
14664 -- This is an instantiation of a child unit within a sibling, so
14665 -- that the generic parent is in scope. An eventual instance must
14666 -- occur within the scope of an instance of the parent. Make name
14667 -- in instance into an expanded name, to preserve the identifier
14668 -- of the parent, so it can be resolved subsequently.
14670 Rewrite
(Name
(N2
),
14671 Make_Expanded_Name
(Loc
,
14672 Chars
=> Chars
(Gen_Id
),
14673 Prefix
=> New_Occurrence_Of
(Scope
(Gen_Id
), Loc
),
14674 Selector_Name
=> New_Occurrence_Of
(Gen_Id
, Loc
)));
14675 Set_Entity
(Name
(N2
), Gen_Id
);
14677 Rewrite
(Name
(N1
),
14678 Make_Expanded_Name
(Loc
,
14679 Chars
=> Chars
(Gen_Id
),
14680 Prefix
=> New_Occurrence_Of
(Scope
(Gen_Id
), Loc
),
14681 Selector_Name
=> New_Occurrence_Of
(Gen_Id
, Loc
)));
14683 Set_Associated_Node
(Name
(N1
), Name
(N2
));
14684 Set_Associated_Node
(Prefix
(Name
(N1
)), Empty
);
14685 Set_Associated_Node
14686 (Selector_Name
(Name
(N1
)), Selector_Name
(Name
(N2
)));
14687 Set_Etype
(Name
(N1
), Etype
(Gen_Id
));
14689 end Save_Global_Defaults
;
14691 ----------------------------
14692 -- Save_Global_Descendant --
14693 ----------------------------
14695 procedure Save_Global_Descendant
(D
: Union_Id
) is
14699 if D
in Node_Range
then
14700 if D
= Union_Id
(Empty
) then
14703 elsif Nkind
(Node_Id
(D
)) /= N_Compilation_Unit
then
14704 Save_References
(Node_Id
(D
));
14707 elsif D
in List_Range
then
14708 pragma Assert
(D
/= Union_Id
(No_List
));
14709 -- Because No_List = Empty, which is in Node_Range above
14711 if Is_Empty_List
(List_Id
(D
)) then
14715 N1
:= First
(List_Id
(D
));
14716 while Present
(N1
) loop
14717 Save_References
(N1
);
14722 -- Element list or other non-node field, nothing to do
14727 end Save_Global_Descendant
;
14729 ---------------------
14730 -- Save_References --
14731 ---------------------
14733 -- This is the recursive procedure that does the work once the enclosing
14734 -- generic scope has been established. We have to treat specially a
14735 -- number of node rewritings that are required by semantic processing
14736 -- and which change the kind of nodes in the generic copy: typically
14737 -- constant-folding, replacing an operator node by a string literal, or
14738 -- a selected component by an expanded name. In each of those cases, the
14739 -- transformation is propagated to the generic unit.
14741 procedure Save_References
(N
: Node_Id
) is
14742 Loc
: constant Source_Ptr
:= Sloc
(N
);
14744 function Requires_Delayed_Save
(Nod
: Node_Id
) return Boolean;
14745 -- Determine whether arbitrary node Nod requires delayed capture of
14746 -- global references within its aspect specifications.
14748 procedure Save_References_In_Aggregate
(N
: Node_Id
);
14749 -- Save all global references in [extension] aggregate node N
14751 procedure Save_References_In_Char_Lit_Or_Op_Symbol
(N
: Node_Id
);
14752 -- Save all global references in a character literal or operator
14753 -- symbol denoted by N.
14755 procedure Save_References_In_Descendants
(N
: Node_Id
);
14756 -- Save all global references in all descendants of node N
14758 procedure Save_References_In_Identifier
(N
: Node_Id
);
14759 -- Save all global references in identifier node N
14761 procedure Save_References_In_Operator
(N
: Node_Id
);
14762 -- Save all global references in operator node N
14764 procedure Save_References_In_Pragma
(Prag
: Node_Id
);
14765 -- Save all global references found within the expression of pragma
14768 ---------------------------
14769 -- Requires_Delayed_Save --
14770 ---------------------------
14772 function Requires_Delayed_Save
(Nod
: Node_Id
) return Boolean is
14774 -- Generic packages and subprograms require delayed capture of
14775 -- global references within their aspects due to the timing of
14776 -- annotation analysis.
14778 if Nkind_In
(Nod
, N_Generic_Package_Declaration
,
14779 N_Generic_Subprogram_Declaration
,
14781 N_Package_Body_Stub
,
14783 N_Subprogram_Body_Stub
)
14785 -- Since the capture of global references is done on the
14786 -- unanalyzed generic template, there is no information around
14787 -- to infer the context. Use the Associated_Entity linkages to
14788 -- peek into the analyzed generic copy and determine what the
14789 -- template corresponds to.
14791 if Nod
= Templ
then
14793 Is_Generic_Declaration_Or_Body
14794 (Unit_Declaration_Node
14795 (Associated_Entity
(Defining_Entity
(Nod
))));
14797 -- Otherwise the generic unit being processed is not the top
14798 -- level template. It is safe to capture of global references
14799 -- within the generic unit because at this point the top level
14800 -- copy is fully analyzed.
14806 -- Otherwise capture the global references without interference
14811 end Requires_Delayed_Save
;
14813 ----------------------------------
14814 -- Save_References_In_Aggregate --
14815 ----------------------------------
14817 procedure Save_References_In_Aggregate
(N
: Node_Id
) is
14819 Qual
: Node_Id
:= Empty
;
14820 Typ
: Entity_Id
:= Empty
;
14822 use Atree
.Unchecked_Access
;
14823 -- This code section is part of implementing an untyped tree
14824 -- traversal, so it needs direct access to node fields.
14827 N2
:= Get_Associated_Node
(N
);
14829 if Present
(N2
) then
14832 -- In an instance within a generic, use the name of the actual
14833 -- and not the original generic parameter. If the actual is
14834 -- global in the current generic it must be preserved for its
14837 if Nkind
(Parent
(Typ
)) = N_Subtype_Declaration
14838 and then Present
(Generic_Parent_Type
(Parent
(Typ
)))
14840 Typ
:= Base_Type
(Typ
);
14841 Set_Etype
(N2
, Typ
);
14845 if No
(N2
) or else No
(Typ
) or else not Is_Global
(Typ
) then
14846 Set_Associated_Node
(N
, Empty
);
14848 -- If the aggregate is an actual in a call, it has been
14849 -- resolved in the current context, to some local type. The
14850 -- enclosing call may have been disambiguated by the aggregate,
14851 -- and this disambiguation might fail at instantiation time
14852 -- because the type to which the aggregate did resolve is not
14853 -- preserved. In order to preserve some of this information,
14854 -- wrap the aggregate in a qualified expression, using the id
14855 -- of its type. For further disambiguation we qualify the type
14856 -- name with its scope (if visible) because both id's will have
14857 -- corresponding entities in an instance. This resolves most of
14858 -- the problems with missing type information on aggregates in
14862 and then Nkind
(N2
) = Nkind
(N
)
14863 and then Nkind
(Parent
(N2
)) in N_Subprogram_Call
14864 and then Present
(Typ
)
14865 and then Comes_From_Source
(Typ
)
14867 Nam
:= Make_Identifier
(Loc
, Chars
(Typ
));
14869 if Is_Immediately_Visible
(Scope
(Typ
)) then
14871 Make_Selected_Component
(Loc
,
14873 Make_Identifier
(Loc
, Chars
(Scope
(Typ
))),
14874 Selector_Name
=> Nam
);
14878 Make_Qualified_Expression
(Loc
,
14879 Subtype_Mark
=> Nam
,
14880 Expression
=> Relocate_Node
(N
));
14884 Save_Global_Descendant
(Field1
(N
));
14885 Save_Global_Descendant
(Field2
(N
));
14886 Save_Global_Descendant
(Field3
(N
));
14887 Save_Global_Descendant
(Field5
(N
));
14889 if Present
(Qual
) then
14892 end Save_References_In_Aggregate
;
14894 ----------------------------------------------
14895 -- Save_References_In_Char_Lit_Or_Op_Symbol --
14896 ----------------------------------------------
14898 procedure Save_References_In_Char_Lit_Or_Op_Symbol
(N
: Node_Id
) is
14900 if Nkind
(N
) = Nkind
(Get_Associated_Node
(N
)) then
14903 elsif Nkind
(N
) = N_Operator_Symbol
14904 and then Nkind
(Get_Associated_Node
(N
)) = N_String_Literal
14906 Change_Operator_Symbol_To_String_Literal
(N
);
14908 end Save_References_In_Char_Lit_Or_Op_Symbol
;
14910 ------------------------------------
14911 -- Save_References_In_Descendants --
14912 ------------------------------------
14914 procedure Save_References_In_Descendants
(N
: Node_Id
) is
14915 use Atree
.Unchecked_Access
;
14916 -- This code section is part of implementing an untyped tree
14917 -- traversal, so it needs direct access to node fields.
14920 Save_Global_Descendant
(Field1
(N
));
14921 Save_Global_Descendant
(Field2
(N
));
14922 Save_Global_Descendant
(Field3
(N
));
14923 Save_Global_Descendant
(Field4
(N
));
14924 Save_Global_Descendant
(Field5
(N
));
14925 end Save_References_In_Descendants
;
14927 -----------------------------------
14928 -- Save_References_In_Identifier --
14929 -----------------------------------
14931 procedure Save_References_In_Identifier
(N
: Node_Id
) is
14933 -- The node did not undergo a transformation
14935 if Nkind
(N
) = Nkind
(Get_Associated_Node
(N
)) then
14937 Aux_N2
: constant Node_Id
:= Get_Associated_Node
(N
);
14938 Orig_N2_Parent
: constant Node_Id
:=
14939 Original_Node
(Parent
(Aux_N2
));
14941 -- The parent of this identifier is a selected component
14942 -- which denotes a named number that was constant folded.
14943 -- Preserve the original name for ASIS and link the parent
14944 -- with its expanded name. The constant folding will be
14945 -- repeated in the instance.
14947 if Nkind
(Parent
(N
)) = N_Selected_Component
14948 and then Nkind_In
(Parent
(Aux_N2
), N_Integer_Literal
,
14950 and then Is_Entity_Name
(Orig_N2_Parent
)
14951 and then Ekind
(Entity
(Orig_N2_Parent
)) in Named_Kind
14952 and then Is_Global
(Entity
(Orig_N2_Parent
))
14955 Set_Associated_Node
14956 (Parent
(N
), Original_Node
(Parent
(N2
)));
14961 -- If this is a discriminant reference, always save it.
14962 -- It is used in the instance to find the corresponding
14963 -- discriminant positionally rather than by name.
14965 Set_Original_Discriminant
14966 (N
, Original_Discriminant
(Get_Associated_Node
(N
)));
14972 -- The analysis of the generic copy transformed the identifier
14973 -- into another construct. Propagate the changes to the template.
14976 N2
:= Get_Associated_Node
(N
);
14978 -- The identifier denotes a call to a parameterless function.
14979 -- Mark the node as resolved when the function is external.
14981 if Nkind
(N2
) = N_Function_Call
then
14982 E
:= Entity
(Name
(N2
));
14984 if Present
(E
) and then Is_Global
(E
) then
14985 Set_Etype
(N
, Etype
(N2
));
14987 Set_Associated_Node
(N
, Empty
);
14988 Set_Etype
(N
, Empty
);
14991 -- The identifier denotes a named number that was constant
14992 -- folded. Preserve the original name for ASIS and undo the
14993 -- constant folding which will be repeated in the instance.
14995 elsif Nkind_In
(N2
, N_Integer_Literal
, N_Real_Literal
)
14996 and then Is_Entity_Name
(Original_Node
(N2
))
14998 Set_Associated_Node
(N
, Original_Node
(N2
));
15001 -- The identifier resolved to a string literal. Propagate this
15002 -- information to the generic template.
15004 elsif Nkind
(N2
) = N_String_Literal
then
15005 Rewrite
(N
, New_Copy
(N2
));
15007 -- The identifier is rewritten as a dereference if it is the
15008 -- prefix of an implicit dereference. Preserve the original
15009 -- tree as the analysis of the instance will expand the node
15010 -- again, but preserve the resolved entity if it is global.
15012 elsif Nkind
(N2
) = N_Explicit_Dereference
then
15013 if Is_Entity_Name
(Prefix
(N2
))
15014 and then Present
(Entity
(Prefix
(N2
)))
15015 and then Is_Global
(Entity
(Prefix
(N2
)))
15017 Set_Associated_Node
(N
, Prefix
(N2
));
15019 elsif Nkind
(Prefix
(N2
)) = N_Function_Call
15020 and then Present
(Entity
(Name
(Prefix
(N2
))))
15021 and then Is_Global
(Entity
(Name
(Prefix
(N2
))))
15024 Make_Explicit_Dereference
(Loc
,
15026 Make_Function_Call
(Loc
,
15029 (Entity
(Name
(Prefix
(N2
))), Loc
))));
15032 Set_Associated_Node
(N
, Empty
);
15033 Set_Etype
(N
, Empty
);
15036 -- The subtype mark of a nominally unconstrained object is
15037 -- rewritten as a subtype indication using the bounds of the
15038 -- expression. Recover the original subtype mark.
15040 elsif Nkind
(N2
) = N_Subtype_Indication
15041 and then Is_Entity_Name
(Original_Node
(N2
))
15043 Set_Associated_Node
(N
, Original_Node
(N2
));
15047 end Save_References_In_Identifier
;
15049 ---------------------------------
15050 -- Save_References_In_Operator --
15051 ---------------------------------
15053 procedure Save_References_In_Operator
(N
: Node_Id
) is
15055 -- The node did not undergo a transformation
15057 if Nkind
(N
) = Nkind
(Get_Associated_Node
(N
)) then
15058 if Nkind
(N
) = N_Op_Concat
then
15059 Set_Is_Component_Left_Opnd
(N
,
15060 Is_Component_Left_Opnd
(Get_Associated_Node
(N
)));
15062 Set_Is_Component_Right_Opnd
(N
,
15063 Is_Component_Right_Opnd
(Get_Associated_Node
(N
)));
15068 -- The analysis of the generic copy transformed the operator into
15069 -- some other construct. Propagate the changes to the template if
15073 N2
:= Get_Associated_Node
(N
);
15075 -- The operator resoved to a function call
15077 if Nkind
(N2
) = N_Function_Call
then
15079 -- Add explicit qualifications in the generic template for
15080 -- all operands of universal type. This aids resolution by
15081 -- preserving the actual type of a literal or an attribute
15082 -- that yields a universal result.
15084 Qualify_Universal_Operands
(N
, N2
);
15086 E
:= Entity
(Name
(N2
));
15088 if Present
(E
) and then Is_Global
(E
) then
15089 Set_Etype
(N
, Etype
(N2
));
15091 Set_Associated_Node
(N
, Empty
);
15092 Set_Etype
(N
, Empty
);
15095 -- The operator was folded into a literal
15097 elsif Nkind_In
(N2
, N_Integer_Literal
,
15101 if Present
(Original_Node
(N2
))
15102 and then Nkind
(Original_Node
(N2
)) = Nkind
(N
)
15104 -- Operation was constant-folded. Whenever possible,
15105 -- recover semantic information from unfolded node,
15108 Set_Associated_Node
(N
, Original_Node
(N2
));
15110 if Nkind
(N
) = N_Op_Concat
then
15111 Set_Is_Component_Left_Opnd
(N
,
15112 Is_Component_Left_Opnd
(Get_Associated_Node
(N
)));
15113 Set_Is_Component_Right_Opnd
(N
,
15114 Is_Component_Right_Opnd
(Get_Associated_Node
(N
)));
15119 -- Propagate the constant folding back to the template
15122 Rewrite
(N
, New_Copy
(N2
));
15123 Set_Analyzed
(N
, False);
15126 -- The operator was folded into an enumeration literal. Retain
15127 -- the entity to avoid spurious ambiguities if it is overloaded
15128 -- at the point of instantiation or inlining.
15130 elsif Nkind
(N2
) = N_Identifier
15131 and then Ekind
(Entity
(N2
)) = E_Enumeration_Literal
15133 Rewrite
(N
, New_Copy
(N2
));
15134 Set_Analyzed
(N
, False);
15138 -- Complete the operands check if node has not been constant
15141 if Nkind
(N
) in N_Op
then
15142 Save_Entity_Descendants
(N
);
15144 end Save_References_In_Operator
;
15146 -------------------------------
15147 -- Save_References_In_Pragma --
15148 -------------------------------
15150 procedure Save_References_In_Pragma
(Prag
: Node_Id
) is
15152 Do_Save
: Boolean := True;
15154 use Atree
.Unchecked_Access
;
15155 -- This code section is part of implementing an untyped tree
15156 -- traversal, so it needs direct access to node fields.
15159 -- Do not save global references in pragmas generated from aspects
15160 -- because the pragmas will be regenerated at instantiation time.
15162 if From_Aspect_Specification
(Prag
) then
15165 -- The capture of global references within contract-related source
15166 -- pragmas associated with generic packages, subprograms or their
15167 -- respective bodies must be delayed due to timing of annotation
15168 -- analysis. Global references are still captured in routine
15169 -- Save_Global_References_In_Contract.
15171 elsif Is_Generic_Contract_Pragma
(Prag
) and then Prag
/= Templ
then
15172 if Is_Package_Contract_Annotation
(Prag
) then
15173 Context
:= Find_Related_Package_Or_Body
(Prag
);
15175 pragma Assert
(Is_Subprogram_Contract_Annotation
(Prag
));
15176 Context
:= Find_Related_Declaration_Or_Body
(Prag
);
15179 -- The use of Original_Node accounts for the case when the
15180 -- related context is generic template.
15182 if Requires_Delayed_Save
(Original_Node
(Context
)) then
15187 -- For all other cases, save all global references within the
15188 -- descendants, but skip the following semantic fields:
15190 -- Field1 - Next_Pragma
15191 -- Field3 - Corresponding_Aspect
15192 -- Field5 - Next_Rep_Item
15195 Save_Global_Descendant
(Field2
(Prag
));
15196 Save_Global_Descendant
(Field4
(Prag
));
15198 end Save_References_In_Pragma
;
15200 -- Start of processing for Save_References
15208 elsif Nkind_In
(N
, N_Aggregate
, N_Extension_Aggregate
) then
15209 Save_References_In_Aggregate
(N
);
15211 -- Character literals, operator symbols
15213 elsif Nkind_In
(N
, N_Character_Literal
, N_Operator_Symbol
) then
15214 Save_References_In_Char_Lit_Or_Op_Symbol
(N
);
15216 -- Defining identifiers
15218 elsif Nkind
(N
) in N_Entity
then
15223 elsif Nkind
(N
) = N_Identifier
then
15224 Save_References_In_Identifier
(N
);
15228 elsif Nkind
(N
) in N_Op
then
15229 Save_References_In_Operator
(N
);
15233 elsif Nkind
(N
) = N_Pragma
then
15234 Save_References_In_Pragma
(N
);
15237 Save_References_In_Descendants
(N
);
15240 -- Save all global references found within the aspect specifications
15241 -- of the related node.
15243 if Permits_Aspect_Specifications
(N
) and then Has_Aspects
(N
) then
15245 -- The capture of global references within aspects associated with
15246 -- generic packages, subprograms or their bodies must be delayed
15247 -- due to timing of annotation analysis. Global references are
15248 -- still captured in routine Save_Global_References_In_Contract.
15250 if Requires_Delayed_Save
(N
) then
15253 -- Otherwise save all global references within the aspects
15256 Save_Global_References_In_Aspects
(N
);
15259 end Save_References
;
15261 -- Start of processing for Save_Global_References
15264 Gen_Scope
:= Current_Scope
;
15266 -- If the generic unit is a child unit, references to entities in the
15267 -- parent are treated as local, because they will be resolved anew in
15268 -- the context of the instance of the parent.
15270 while Is_Child_Unit
(Gen_Scope
)
15271 and then Ekind
(Scope
(Gen_Scope
)) = E_Generic_Package
15273 Gen_Scope
:= Scope
(Gen_Scope
);
15276 Save_References
(Templ
);
15277 end Save_Global_References
;
15279 ---------------------------------------
15280 -- Save_Global_References_In_Aspects --
15281 ---------------------------------------
15283 procedure Save_Global_References_In_Aspects
(N
: Node_Id
) is
15288 Asp
:= First
(Aspect_Specifications
(N
));
15289 while Present
(Asp
) loop
15290 Expr
:= Expression
(Asp
);
15292 if Present
(Expr
) then
15293 Save_Global_References
(Expr
);
15298 end Save_Global_References_In_Aspects
;
15300 ------------------------------------------
15301 -- Set_Copied_Sloc_For_Inherited_Pragma --
15302 ------------------------------------------
15304 procedure Set_Copied_Sloc_For_Inherited_Pragma
15309 Create_Instantiation_Source
(N
, E
,
15310 Inlined_Body
=> False,
15311 Inherited_Pragma
=> True,
15312 Factor
=> S_Adjustment
);
15313 end Set_Copied_Sloc_For_Inherited_Pragma
;
15315 --------------------------------------
15316 -- Set_Copied_Sloc_For_Inlined_Body --
15317 --------------------------------------
15319 procedure Set_Copied_Sloc_For_Inlined_Body
(N
: Node_Id
; E
: Entity_Id
) is
15321 Create_Instantiation_Source
(N
, E
,
15322 Inlined_Body
=> True,
15323 Inherited_Pragma
=> False,
15324 Factor
=> S_Adjustment
);
15325 end Set_Copied_Sloc_For_Inlined_Body
;
15327 ---------------------
15328 -- Set_Instance_Of --
15329 ---------------------
15331 procedure Set_Instance_Of
(A
: Entity_Id
; B
: Entity_Id
) is
15333 Generic_Renamings
.Table
(Generic_Renamings
.Last
) := (A
, B
, Assoc_Null
);
15334 Generic_Renamings_HTable
.Set
(Generic_Renamings
.Last
);
15335 Generic_Renamings
.Increment_Last
;
15336 end Set_Instance_Of
;
15338 --------------------
15339 -- Set_Next_Assoc --
15340 --------------------
15342 procedure Set_Next_Assoc
(E
: Assoc_Ptr
; Next
: Assoc_Ptr
) is
15344 Generic_Renamings
.Table
(E
).Next_In_HTable
:= Next
;
15345 end Set_Next_Assoc
;
15347 -------------------
15348 -- Start_Generic --
15349 -------------------
15351 procedure Start_Generic
is
15353 -- ??? More things could be factored out in this routine.
15354 -- Should probably be done at a later stage.
15356 Generic_Flags
.Append
(Inside_A_Generic
);
15357 Inside_A_Generic
:= True;
15359 Expander_Mode_Save_And_Set
(False);
15362 ----------------------
15363 -- Set_Instance_Env --
15364 ----------------------
15366 procedure Set_Instance_Env
15367 (Gen_Unit
: Entity_Id
;
15368 Act_Unit
: Entity_Id
)
15370 Assertion_Status
: constant Boolean := Assertions_Enabled
;
15371 Save_SPARK_Mode
: constant SPARK_Mode_Type
:= SPARK_Mode
;
15372 Save_SPARK_Mode_Pragma
: constant Node_Id
:= SPARK_Mode_Pragma
;
15375 -- Regardless of the current mode, predefined units are analyzed in the
15376 -- most current Ada mode, and earlier version Ada checks do not apply
15377 -- to predefined units. Nothing needs to be done for non-internal units.
15378 -- These are always analyzed in the current mode.
15380 if Is_Internal_File_Name
15381 (Fname
=> Unit_File_Name
(Get_Source_Unit
(Gen_Unit
)),
15382 Renamings_Included
=> True)
15384 Set_Opt_Config_Switches
(True, Current_Sem_Unit
= Main_Unit
);
15386 -- In Ada2012 we may want to enable assertions in an instance of a
15387 -- predefined unit, in which case we need to preserve the current
15388 -- setting for the Assertions_Enabled flag. This will become more
15389 -- critical when pre/postconditions are added to predefined units,
15390 -- as is already the case for some numeric libraries.
15392 if Ada_Version
>= Ada_2012
then
15393 Assertions_Enabled
:= Assertion_Status
;
15396 -- SPARK_Mode for an instance is the one applicable at the point of
15399 SPARK_Mode
:= Save_SPARK_Mode
;
15400 SPARK_Mode_Pragma
:= Save_SPARK_Mode_Pragma
;
15403 Current_Instantiated_Parent
:=
15404 (Gen_Id
=> Gen_Unit
,
15405 Act_Id
=> Act_Unit
,
15406 Next_In_HTable
=> Assoc_Null
);
15407 end Set_Instance_Env
;
15413 procedure Switch_View
(T
: Entity_Id
) is
15414 BT
: constant Entity_Id
:= Base_Type
(T
);
15415 Priv_Elmt
: Elmt_Id
:= No_Elmt
;
15416 Priv_Sub
: Entity_Id
;
15419 -- T may be private but its base type may have been exchanged through
15420 -- some other occurrence, in which case there is nothing to switch
15421 -- besides T itself. Note that a private dependent subtype of a private
15422 -- type might not have been switched even if the base type has been,
15423 -- because of the last branch of Check_Private_View (see comment there).
15425 if not Is_Private_Type
(BT
) then
15426 Prepend_Elmt
(Full_View
(T
), Exchanged_Views
);
15427 Exchange_Declarations
(T
);
15431 Priv_Elmt
:= First_Elmt
(Private_Dependents
(BT
));
15433 if Present
(Full_View
(BT
)) then
15434 Prepend_Elmt
(Full_View
(BT
), Exchanged_Views
);
15435 Exchange_Declarations
(BT
);
15438 while Present
(Priv_Elmt
) loop
15439 Priv_Sub
:= (Node
(Priv_Elmt
));
15441 -- We avoid flipping the subtype if the Etype of its full view is
15442 -- private because this would result in a malformed subtype. This
15443 -- occurs when the Etype of the subtype full view is the full view of
15444 -- the base type (and since the base types were just switched, the
15445 -- subtype is pointing to the wrong view). This is currently the case
15446 -- for tagged record types, access types (maybe more?) and needs to
15447 -- be resolved. ???
15449 if Present
(Full_View
(Priv_Sub
))
15450 and then not Is_Private_Type
(Etype
(Full_View
(Priv_Sub
)))
15452 Prepend_Elmt
(Full_View
(Priv_Sub
), Exchanged_Views
);
15453 Exchange_Declarations
(Priv_Sub
);
15456 Next_Elmt
(Priv_Elmt
);
15464 function True_Parent
(N
: Node_Id
) return Node_Id
is
15466 if Nkind
(Parent
(N
)) = N_Subunit
then
15467 return Parent
(Corresponding_Stub
(Parent
(N
)));
15473 -----------------------------
15474 -- Valid_Default_Attribute --
15475 -----------------------------
15477 procedure Valid_Default_Attribute
(Nam
: Entity_Id
; Def
: Node_Id
) is
15478 Attr_Id
: constant Attribute_Id
:=
15479 Get_Attribute_Id
(Attribute_Name
(Def
));
15480 T
: constant Entity_Id
:= Entity
(Prefix
(Def
));
15481 Is_Fun
: constant Boolean := (Ekind
(Nam
) = E_Function
);
15487 if No
(T
) or else T
= Any_Id
then
15492 F
:= First_Formal
(Nam
);
15493 while Present
(F
) loop
15494 Num_F
:= Num_F
+ 1;
15499 when Attribute_Adjacent
15500 | Attribute_Ceiling
15501 | Attribute_Copy_Sign
15503 | Attribute_Fraction
15504 | Attribute_Machine
15506 | Attribute_Remainder
15507 | Attribute_Rounding
15508 | Attribute_Unbiased_Rounding
15512 and then Is_Floating_Point_Type
(T
);
15514 when Attribute_Image
15518 | Attribute_Wide_Image
15519 | Attribute_Wide_Value
15521 OK
:= Is_Fun
and then Num_F
= 1 and then Is_Scalar_Type
(T
);
15526 OK
:= Is_Fun
and then Num_F
= 2 and then Is_Scalar_Type
(T
);
15528 when Attribute_Input
=>
15529 OK
:= (Is_Fun
and then Num_F
= 1);
15531 when Attribute_Output
15535 OK
:= not Is_Fun
and then Num_F
= 2;
15543 ("attribute reference has wrong profile for subprogram", Def
);
15545 end Valid_Default_Attribute
;