PR rtl-optimization/79386
[official-gcc.git] / gcc / ada / sem_attr.ads
blob38463ff6df0068bbe8eb1d7d97091fbc6fa0365b
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A T T R --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- You should have received a copy of the GNU General Public License along --
19 -- with this program; see file COPYING3. If not see --
20 -- <http://www.gnu.org/licenses/>. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 -- Attribute handling is isolated in a separate package to ease the addition
28 -- of implementation defined attributes. Logically this processing belongs
29 -- in chapter 4. See Sem_Ch4 for a description of the relation of the
30 -- Analyze and Resolve routines for expression components.
32 -- This spec also documents all GNAT implementation defined pragmas
34 with Exp_Tss; use Exp_Tss;
35 with Namet; use Namet;
36 with Snames; use Snames;
37 with Types; use Types;
39 package Sem_Attr is
41 -----------------------------------------
42 -- Implementation Dependent Attributes --
43 -----------------------------------------
45 -- This section describes the implementation dependent attributes provided
46 -- in GNAT, as well as constructing an array of flags indicating which
47 -- attributes these are.
49 Attribute_Impl_Def : constant Attribute_Class_Array :=
50 Attribute_Class_Array'(
52 ------------------
53 -- Abort_Signal --
54 ------------------
56 Attribute_Abort_Signal => True,
57 -- Standard'Abort_Signal (Standard is the only allowed prefix) provides
58 -- the entity for the special exception used to signal task abort or
59 -- asynchronous transfer of control. Normally this attribute should only
60 -- be used in the tasking runtime (it is highly peculiar, and completely
61 -- outside the normal semantics of Ada, for a user program to intercept
62 -- the abort exception).
64 ------------------
65 -- Address_Size --
66 ------------------
68 Attribute_Address_Size => True,
69 -- Standard'Address_Size (Standard is the only allowed prefix) is
70 -- a static constant giving the number of bits in an Address. It
71 -- is used primarily for constructing the definition of Memory_Size
72 -- in package Standard, but may be freely used in user programs.
73 -- This is a static attribute.
75 ---------------
76 -- Asm_Input --
77 ---------------
79 Attribute_Asm_Input => True,
80 -- Used only in conjunction with the Asm subprograms in package
81 -- Machine_Code to construct machine instructions. See documentation
82 -- in package Machine_Code in file s-maccod.ads.
84 ----------------
85 -- Asm_Output --
86 ----------------
88 Attribute_Asm_Output => True,
89 -- Used only in conjunction with the Asm subprograms in package
90 -- Machine_Code to construct machine instructions. See documentation
91 -- in package Machine_Code in file s-maccod.ads.
93 ---------
94 -- Bit --
95 ---------
97 Attribute_Bit => True,
98 -- Obj'Bit, where Obj is any object, yields the bit offset within the
99 -- storage unit (byte) that contains the first bit of storage allocated
100 -- for the object. The attribute value is of type Universal_Integer,
101 -- and is always a non-negative number not exceeding the value of
102 -- System.Storage_Unit.
104 -- For an object that is a variable or a constant allocated in a
105 -- register, the value is zero. (The use of this attribute does not
106 -- force the allocation of a variable to memory).
108 -- For an object that is a formal parameter, this attribute applies to
109 -- either the matching actual parameter or to a copy of the matching
110 -- actual parameter.
112 -- For an access object the value is zero. Note that Obj.all'Bit is
113 -- subject to an Access_Check for the designated object. Similarly
114 -- for a record component X.C'Bit is subject to a discriminant check
115 -- and X(I).Bit and X(I1..I2)'Bit are subject to index checks.
117 -- This attribute is designed to be compatible with the DEC Ada
118 -- definition and implementation of the Bit attribute.
120 ------------------
121 -- Code_Address --
122 ------------------
124 Attribute_Code_Address => True,
125 -- The reference subp'Code_Address, where subp is a subprogram entity,
126 -- gives the address of the first generated instruction for the sub-
127 -- program. This is often, but not always the same as the 'Address
128 -- value, which is the address to be used in a call. The differences
129 -- occur in the case of a nested procedure (where Address yields the
130 -- address of the trampoline code used to load the static link), and on
131 -- some systems which use procedure descriptors (in which case Address
132 -- yields the address of the descriptor).
134 -----------------------
135 -- Default_Bit_Order --
136 -----------------------
138 Attribute_Default_Bit_Order => True,
139 -- Standard'Default_Bit_Order (Standard is the only permissible prefix)
140 -- provides the value System.Default_Bit_Order as a Pos value (0 for
141 -- High_Order_First, 1 for Low_Order_First). This is used to construct
142 -- the definition of Default_Bit_Order in package System. This is a
143 -- static attribute.
145 ----------------------------------
146 -- Default_Scalar_Storage_Order --
147 ----------------------------------
149 Attribute_Default_Scalar_Storage_Order => True,
150 -- Standard'Default_Scalar_Storage_Order (Standard is the
151 -- only permissible prefix) provides the current value of the
152 -- default scalar storage order (as specified using pragma
153 -- Default_Scalar_Storage_Order, or equal to Default_Bit_Order if
154 -- unspecified) as a System.Bit_Order value. This is a static attribute.
156 -----------
157 -- Deref --
158 -----------
160 Attribute_Deref => True,
161 -- typ'Deref (expr) is valid only if expr is of type System'Address.
162 -- The result is an object of type typ that is obtained by treating the
163 -- address as an access-to-typ value that points to the result. It is
164 -- basically equivalent to (atyp!expr).all where atyp is an access type
165 -- for the type.
167 ---------------
168 -- Elab_Body --
169 ---------------
171 Attribute_Elab_Body => True,
172 -- This attribute can only be applied to a program unit name. It
173 -- returns the entity for the corresponding elaboration procedure for
174 -- elaborating the body of the referenced unit. This is used in the main
175 -- generated elaboration procedure by the binder, and is not normally
176 -- used in any other context, but there may be specialized situations in
177 -- which it is useful to be able to call this elaboration procedure from
178 -- Ada code, e.g. if it is necessary to do selective reelaboration to
179 -- fix some error.
181 --------------------
182 -- Elab_Subp_Body --
183 --------------------
185 Attribute_Elab_Subp_Body => True,
186 -- This attribute can only be applied to a library level subprogram
187 -- name and is only relevant in CodePeer mode. It returns the entity
188 -- for the corresponding elaboration procedure for elaborating the body
189 -- of the referenced subprogram unit. This is used in the main generated
190 -- elaboration procedure by the binder in CodePeer mode only.
192 ---------------
193 -- Elab_Spec --
194 ---------------
196 Attribute_Elab_Spec => True,
197 -- This attribute can only be applied to a program unit name. It
198 -- returns the entity for the corresponding elaboration procedure for
199 -- elaborating the spec of the referenced unit. This is used in the main
200 -- generated elaboration procedure by the binder, and is not normally
201 -- used in any other context, but there may be specialized situations in
202 -- which it is useful to be able to call this elaboration procedure from
203 -- Ada code, e.g. if it is necessary to do selective reelaboration to
204 -- fix some error.
206 ----------------
207 -- Elaborated --
208 ----------------
210 Attribute_Elaborated => True,
211 -- Lunit'Elaborated, where Lunit is a library unit, yields a boolean
212 -- value indicating whether or not the body of the designated library
213 -- unit has been elaborated yet.
215 --------------
216 -- Enum_Rep --
217 --------------
219 Attribute_Enum_Rep => True,
220 -- For every enumeration subtype S, S'Enum_Rep denotes a function
221 -- with the following specification:
223 -- function S'Enum_Rep (Arg : S'Base) return universal_integer;
225 -- The function returns the representation value for the given
226 -- enumeration value. This will be equal to the 'Pos value in the
227 -- absence of an enumeration representation clause. This is a static
228 -- attribute (i.e. the result is static if the argument is static).
230 --------------
231 -- Enum_Val --
232 --------------
234 Attribute_Enum_Val => True,
235 -- For every enumeration subtype S, S'Enum_Val denotes a function with
236 -- the following specification:
238 -- function S'Enum_Val (Arg : universal_integer) return S'Base;
240 -- This function performs the inverse transformation to Enum_Rep. Given
241 -- a representation value for the type, it returns the corresponding
242 -- enumeration value. Constraint_Error is raised if no value of the
243 -- enumeration type corresponds to the given integer value.
245 -----------------------
246 -- Finalization_Size --
247 -----------------------
249 Attribute_Finalization_Size => True,
250 -- For every object or non-class-wide-type, Finalization_Size returns
251 -- the size of the hidden header used for finalization purposes as if
252 -- the object or type was allocated on the heap. The size of the header
253 -- does take into account any extra padding due to alignment issues.
255 -----------------
256 -- Fixed_Value --
257 -----------------
259 Attribute_Fixed_Value => True,
260 -- For every fixed-point type S, S'Fixed_Value denotes a function
261 -- with the following specification:
263 -- function S'Fixed_Value (Arg : universal_integer) return S;
265 -- The value returned is the fixed-point value V such that
267 -- V = Arg * S'Small
269 -- The effect is thus equivalent to first converting the argument to
270 -- the integer type used to represent S, and then doing an unchecked
271 -- conversion to the fixed-point type. This attribute is primarily
272 -- intended for use in implementation of the input-output functions
273 -- for fixed-point values.
275 -----------------------
276 -- Has_Discriminants --
277 -----------------------
279 Attribute_Has_Discriminants => True,
280 -- Gtyp'Has_Discriminants, where Gtyp is a generic formal type, yields
281 -- a Boolean value indicating whether or not the actual instantiation
282 -- type has discriminants.
284 ---------
285 -- Img --
286 ---------
288 Attribute_Img => True,
289 -- The 'Img function is defined for any prefix, P, that denotes an
290 -- object of scalar type T. P'Img is equivalent to T'Image (P). This
291 -- is convenient for debugging. For example:
293 -- Put_Line ("X = " & X'Img);
295 -- has the same meaning as the more verbose:
297 -- Put_Line ("X = " & Temperature_Type'Image (X));
299 -- where Temperature_Type is the subtype of the object X.
301 -------------------
302 -- Integer_Value --
303 -------------------
305 Attribute_Integer_Value => True,
306 -- For every integer type S, S'Integer_Value denotes a function
307 -- with the following specification:
309 -- function S'Integer_Value (Arg : universal_fixed) return S;
311 -- The value returned is the integer value V, such that
313 -- Arg = V * fixed-type'Small
315 -- The effect is thus equivalent to first doing an unchecked convert
316 -- from the fixed-point type to its corresponding implementation type,
317 -- and then converting the result to the target integer type. This
318 -- attribute is primarily intended for use in implementation of the
319 -- standard input-output functions for fixed-point values.
321 Attribute_Invalid_Value => True,
322 -- For every scalar type, S'Invalid_Value designates an undefined value
323 -- of the type. If possible this value is an invalid value, and in fact
324 -- is identical to the value that would be set if Initialize_Scalars
325 -- mode were in effect (including the behavior of its value on
326 -- environment variables or binder switches). The intended use is to
327 -- set a value where initialization is required (e.g. as a result of the
328 -- coding standards in use), but logically no initialization is needed,
329 -- and the value should never be accessed.
331 Attribute_Loop_Entry => True,
332 -- For every object of a non-limited type, S'Loop_Entry [(Loop_Name)]
333 -- denotes the constant value of prefix S at the point of entry into the
334 -- related loop. The type of the attribute is the type of the prefix.
336 ------------------
337 -- Machine_Size --
338 ------------------
340 Attribute_Machine_Size => True,
341 -- This attribute is identical to the Object_Size attribute. It is
342 -- provided for compatibility with the DEC attribute of this name.
344 -----------------------
345 -- Maximum_Alignment --
346 -----------------------
348 Attribute_Maximum_Alignment => True,
349 -- Standard'Maximum_Alignment (Standard is the only permissible prefix)
350 -- provides the maximum useful alignment value for the target. This is a
351 -- static value that can be used to specify the alignment for an object,
352 -- guaranteeing that it is properly aligned in all cases. The time this
353 -- is useful is when an external object is imported and its alignment
354 -- requirements are unknown. This is a static attribute.
356 --------------------
357 -- Mechanism_Code --
358 --------------------
360 Attribute_Mechanism_Code => True,
361 -- function'Mechanism_Code yields an integer code for the mechanism
362 -- used for the result of function, and subprogram'Mechanism_Code (n)
363 -- yields the mechanism used for formal parameter number n (a static
364 -- integer value, 1 = first parameter). The code returned is:
366 -- 1 = by copy (value)
367 -- 2 = by reference
368 -- 3 = by descriptor (default descriptor type)
369 -- 4 = by descriptor (UBS unaligned bit string)
370 -- 5 = by descriptor (UBSB aligned bit string with arbitrary bounds)
371 -- 6 = by descriptor (UBA unaligned bit array)
372 -- 7 = by descriptor (S string, also scalar access type parameter)
373 -- 8 = by descriptor (SB string with arbitrary bounds)
374 -- 9 = by descriptor (A contiguous array)
375 -- 10 = by descriptor (NCA non-contiguous array)
377 --------------------
378 -- Null_Parameter --
379 --------------------
381 Attribute_Null_Parameter => True,
382 -- A reference T'Null_Parameter denotes an (imaginary) object of type
383 -- or subtype T allocated at (machine) address zero. The attribute is
384 -- allowed only as the default expression of a formal parameter, or
385 -- as an actual expression of a subprogram call. In either case, the
386 -- subprogram must be imported.
388 -- The identity of the object is represented by the address zero in
389 -- the argument list, independent of the passing mechanism (explicit
390 -- or default).
392 -- The reason that this capability is needed is that for a record or
393 -- other composite object passed by reference, there is no other way
394 -- of specifying that a zero address should be passed.
396 -----------------
397 -- Object_Size --
398 -----------------
400 Attribute_Object_Size => True,
401 -- Type'Object_Size is the same as Type'Size for all types except
402 -- fixed-point types and discrete types. For fixed-point types and
403 -- discrete types, this attribute gives the size used for default
404 -- allocation of objects and components of the size. See section in
405 -- Einfo ("Handling of Type'Size values") for further details.
407 -------------------------
408 -- Passed_By_Reference --
409 -------------------------
411 Attribute_Passed_By_Reference => True,
412 -- T'Passed_By_Reference for any subtype T returns a boolean value that
413 -- is true if the type is normally passed by reference and false if the
414 -- type is normally passed by copy in calls. For scalar types, the
415 -- result is always False and is static. For non-scalar types, the
416 -- result is non-static (since it is computed by Gigi).
418 ------------------
419 -- Range_Length --
420 ------------------
422 Attribute_Range_Length => True,
423 -- T'Range_Length for any discrete type T yields the number of values
424 -- represented by the subtype (zero for a null range). The result is
425 -- static for static subtypes. Note that Range_Length applied to the
426 -- index subtype of a one dimensional array always gives the same result
427 -- as Range applied to the array itself. The result is of type universal
428 -- integer.
430 ---------
431 -- Ref --
432 ---------
434 Attribute_Ref => True,
435 -- System.Address'Ref (Address is the only permissible prefix) is
436 -- equivalent to System'To_Address, provided for compatibility with
437 -- other compilers.
439 ------------------
440 -- Storage_Unit --
441 ------------------
443 Attribute_Storage_Unit => True,
444 -- Standard'Storage_Unit (Standard is the only permissible prefix)
445 -- provides the value System.Storage_Unit, and is intended primarily
446 -- for constructing this definition in package System (see note above
447 -- in Default_Bit_Order description). The is a static attribute.
449 ---------------
450 -- Stub_Type --
451 ---------------
453 Attribute_Stub_Type => True,
454 -- The GNAT implementation of remote access-to-classwide types is
455 -- organised as described in AARM E.4(20.t): a value of an RACW type
456 -- (designating a remote object) is represented as a normal access
457 -- value, pointing to a "stub" object which in turn contains the
458 -- necessary information to contact the designated remote object. A
459 -- call on any dispatching operation of such a stub object does the
460 -- remote call, if necessary, using the information in the stub object
461 -- to locate the target partition, etc.
463 -- For a prefix T that denotes a remote access-to-classwide type,
464 -- T'Stub_Type denotes the type of the corresponding stub objects.
466 -- By construction, the layout of T'Stub_Type is identical to that of
467 -- System.Partition_Interface.RACW_Stub_Type (see implementation notes
468 -- in body of Exp_Dist).
470 -----------------
471 -- Target_Name --
472 -----------------
474 Attribute_Target_Name => True,
475 -- Standard'Target_Name yields the string identifying the target for the
476 -- compilation, taken from Sdefault.Target_Name.
478 ----------------
479 -- To_Address --
480 ----------------
482 Attribute_To_Address => True,
483 -- System'To_Address (System is the only permissible prefix) is a
484 -- function that takes any integer value, and converts it into an
485 -- address value. The semantics is to first convert the integer value to
486 -- type Integer_Address according to normal conversion rules, and then
487 -- to convert this to an address using the same semantics as the
488 -- System.Storage_Elements.To_Address function. The important difference
489 -- is that this is a static attribute so it can be used in
490 -- initializations in preelaborate packages.
492 ----------------
493 -- Type_Class --
494 ----------------
496 Attribute_Type_Class => True,
497 -- T'Type_Class for any type or subtype T yields the value of the type
498 -- class for the full type of T. If T is a generic formal type, then the
499 -- value is the value for the corresponding actual subtype. The value of
500 -- this attribute is of type System.Aux_DEC.Type_Class, which has the
501 -- following definition:
503 -- type Type_Class is
504 -- (Type_Class_Enumeration,
505 -- Type_Class_Integer,
506 -- Type_Class_Fixed_Point,
507 -- Type_Class_Floating_Point,
508 -- Type_Class_Array,
509 -- Type_Class_Record,
510 -- Type_Class_Access,
511 -- Type_Class_Task,
512 -- Type_Class_Address);
514 -- Protected types yield the value Type_Class_Task, which thus applies
515 -- to all concurrent types. This attribute is designed to be compatible
516 -- with the DEC Ada attribute of the same name.
518 -- Note: if pragma Extend_System is used to merge the definitions of
519 -- Aux_DEC into System, then the type Type_Class can be referenced
520 -- as an entity within System, as can its enumeration literals.
522 ------------------------------
523 -- Universal_Literal_String --
524 ------------------------------
526 Attribute_Universal_Literal_String => True,
527 -- The prefix of 'Universal_Literal_String must be a named number.
528 -- The static result is the string consisting of the characters of
529 -- the number as defined in the original source. This allows the
530 -- user program to access the actual text of named numbers without
531 -- intermediate conversions and without the need to enclose the
532 -- strings in quotes (which would preclude their use as numbers).
534 -------------------------
535 -- Unrestricted_Access --
536 -------------------------
538 Attribute_Unrestricted_Access => True,
539 -- The Unrestricted_Access attribute is similar to Access except that
540 -- all accessibility and aliased view checks are omitted. This is very
541 -- much a user-beware attribute. Basically its status is very similar
542 -- to Address, for which it is a desirable replacement where the value
543 -- desired is an access type. In other words, its effect is identical
544 -- to first taking 'Address and then doing an unchecked conversion to
545 -- a desired access type. Note that in GNAT, but not necessarily in
546 -- other implementations, the use of static chains for inner level
547 -- subprograms means that Unrestricted_Access applied to a subprogram
548 -- yields a value that can be called as long as the subprogram is in
549 -- scope (normal Ada 95 accessibility rules restrict this usage).
551 ---------------
552 -- VADS_Size --
553 ---------------
555 Attribute_VADS_Size => True,
556 -- Typ'VADS_Size yields the Size value typically yielded by some Ada 83
557 -- compilers. The differences between VADS_Size and Size is that for
558 -- scalar types for which no Size has been specified, VADS_Size yields
559 -- the Object_Size rather than the Value_Size. For example, while
560 -- Natural'Size is typically 31, the value of Natural'VADS_Size is 32.
561 -- For all other types, Size and VADS_Size yield the same value.
563 -------------------
564 -- Valid_Scalars --
565 -------------------
567 Attribute_Valid_Scalars => True,
568 -- Obj'Valid_Scalars can be applied to any object. The result depends
569 -- on the type of the object:
571 -- For a scalar type, the result is the same as obj'Valid
573 -- For an array object, the result is True if the result of applying
574 -- Valid_Scalars to every component is True. For an empty array the
575 -- result is True.
577 -- For a record object, the result is True if the result of applying
578 -- Valid_Scalars to every component is True. For class-wide types,
579 -- only the components of the base type are checked. For variant
580 -- records, only the components actually present are checked. The
581 -- discriminants, if any, are also checked. If there are no components
582 -- or discriminants, the result is True.
584 -- For any other type that has discriminants, the result is True if
585 -- the result of applying Valid_Scalars to each discriminant is True.
587 -- For all other types, the result is always True
589 -- A warning is given for a trivially True result, when the attribute
590 -- is applied to an object that is not of scalar, array, or record
591 -- type, or in the composite case if no scalar subcomponents exist. For
592 -- a variant record, the warning is given only if none of the variants
593 -- have scalar subcomponents. In addition, the warning is suppressed
594 -- for private types, or generic formal types in an instance.
596 ----------------
597 -- Value_Size --
598 ----------------
600 Attribute_Value_Size => True,
601 -- Type'Value_Size is the number of bits required to represent value of
602 -- the given subtype. It is the same as Type'Size, but, unlike Size, may
603 -- be set for non-first subtypes. See section in Einfo ("Handling of
604 -- type'Size values") for further details.
606 ---------------
607 -- Word_Size --
608 ---------------
610 Attribute_Word_Size => True,
611 -- Standard'Word_Size (Standard is the only permissible prefix)
612 -- provides the value System.Word_Size, and is intended primarily
613 -- for constructing this definition in package System (see note above
614 -- in Default_Bit_Order description). This is a static attribute.
616 others => False);
618 -- The following table lists all attributes that yield a result of a
619 -- universal type.
621 Universal_Type_Attribute : constant array (Attribute_Id) of Boolean :=
622 (Attribute_Aft => True,
623 Attribute_Alignment => True,
624 Attribute_Component_Size => True,
625 Attribute_Count => True,
626 Attribute_Delta => True,
627 Attribute_Digits => True,
628 Attribute_Exponent => True,
629 Attribute_First_Bit => True,
630 Attribute_Fore => True,
631 Attribute_Last_Bit => True,
632 Attribute_Length => True,
633 Attribute_Machine_Emax => True,
634 Attribute_Machine_Emin => True,
635 Attribute_Machine_Mantissa => True,
636 Attribute_Machine_Radix => True,
637 Attribute_Max_Alignment_For_Allocation => True,
638 Attribute_Max_Size_In_Storage_Elements => True,
639 Attribute_Model_Emin => True,
640 Attribute_Model_Epsilon => True,
641 Attribute_Model_Mantissa => True,
642 Attribute_Model_Small => True,
643 Attribute_Modulus => True,
644 Attribute_Pos => True,
645 Attribute_Position => True,
646 Attribute_Safe_First => True,
647 Attribute_Safe_Last => True,
648 Attribute_Scale => True,
649 Attribute_Size => True,
650 Attribute_Small => True,
651 Attribute_Wide_Wide_Width => True,
652 Attribute_Wide_Width => True,
653 Attribute_Width => True,
654 others => False);
656 -----------------
657 -- Subprograms --
658 -----------------
660 procedure Analyze_Attribute (N : Node_Id);
661 -- Performs bottom up semantic analysis of an attribute. Note that the
662 -- parser has already checked that type returning attributes appear only
663 -- in appropriate contexts (i.e. in subtype marks, or as prefixes for
664 -- other attributes).
666 function Name_Implies_Lvalue_Prefix (Nam : Name_Id) return Boolean;
667 -- Determine whether the name of an attribute reference categorizes its
668 -- prefix as an lvalue. The following attributes fall under this bracket
669 -- by directly or indirectly modifying their prefixes.
670 -- Access
671 -- Address
672 -- Input
673 -- Read
674 -- Unchecked_Access
675 -- Unrestricted_Access
677 procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id);
678 -- Performs type resolution of attribute. If the attribute yields a
679 -- universal value, mark its type as that of the context. On the other
680 -- hand, if the context itself is universal (as in T'Val (T'Pos (X)), mark
681 -- the type as being the largest type of that class that can be used at
682 -- run-time. This is correct since either the value gets folded (in which
683 -- case it doesn't matter what type of the class we give if, since the
684 -- folding uses universal arithmetic anyway) or it doesn't get folded (in
685 -- which case it is going to be dealt with at runtime, and the largest type
686 -- is right).
688 function Stream_Attribute_Available
689 (Typ : Entity_Id;
690 Nam : TSS_Name_Type;
691 Partial_View : Entity_Id := Empty) return Boolean;
692 -- For a limited type Typ, return True if and only if the given attribute
693 -- is available. For Ada 2005, availability is defined by 13.13.2(36/1).
694 -- For Ada 95, an attribute is considered to be available if it has been
695 -- specified using an attribute definition clause for the type, or for its
696 -- full view, or for an ancestor of either. Parameter Partial_View is used
697 -- only internally, when checking for an attribute definition clause that
698 -- is not visible (Ada 95 only).
700 end Sem_Attr;