PR rtl-optimization/79386
[official-gcc.git] / gcc / ada / sem_aggr.adb
blobefa5d60b6aff80788a37da7e33097d94d7ff8686
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Tss; use Exp_Tss;
34 with Exp_Util; use Exp_Util;
35 with Freeze; use Freeze;
36 with Itypes; use Itypes;
37 with Lib; use Lib;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Namet.Sp; use Namet.Sp;
41 with Nmake; use Nmake;
42 with Nlists; use Nlists;
43 with Opt; use Opt;
44 with Restrict; use Restrict;
45 with Rident; use Rident;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Cat; use Sem_Cat;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Ch13; use Sem_Ch13;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Util; use Sem_Util;
56 with Sem_Type; use Sem_Type;
57 with Sem_Warn; use Sem_Warn;
58 with Sinfo; use Sinfo;
59 with Snames; use Snames;
60 with Stringt; use Stringt;
61 with Stand; use Stand;
62 with Style; use Style;
63 with Targparm; use Targparm;
64 with Tbuild; use Tbuild;
65 with Uintp; use Uintp;
67 package body Sem_Aggr is
69 type Case_Bounds is record
70 Lo : Node_Id;
71 -- Low bound of choice. Once we sort the Case_Table, then entries
72 -- will be in order of ascending Choice_Lo values.
74 Hi : Node_Id;
75 -- High Bound of choice. The sort does not pay any attention to the
76 -- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
78 Highest : Uint;
79 -- If there are duplicates or missing entries, then in the sorted
80 -- table, this records the highest value among Choice_Hi values
81 -- seen so far, including this entry.
83 Choice : Node_Id;
84 -- The node of the choice
85 end record;
87 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
88 -- Table type used by Check_Case_Choices procedure. Entry zero is not
89 -- used (reserved for the sort). Real entries start at one.
91 -----------------------
92 -- Local Subprograms --
93 -----------------------
95 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
96 -- Sort the Case Table using the Lower Bound of each Choice as the key. A
97 -- simple insertion sort is used since the choices in a case statement will
98 -- usually be in near sorted order.
100 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
101 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
102 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
103 -- the array case (the component type of the array will be used) or an
104 -- E_Component/E_Discriminant entity in the record case, in which case the
105 -- type of the component will be used for the test. If Typ is any other
106 -- kind of entity, the call is ignored. Expr is the component node in the
107 -- aggregate which is known to have a null value. A warning message will be
108 -- issued if the component is null excluding.
110 -- It would be better to pass the proper type for Typ ???
112 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
113 -- Check that Expr is either not limited or else is one of the cases of
114 -- expressions allowed for a limited component association (namely, an
115 -- aggregate, function call, or <> notation). Report error for violations.
116 -- Expression is also OK in an instance or inlining context, because we
117 -- have already pre-analyzed and it is known to be type correct.
119 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id);
120 -- Given aggregate Expr, check that sub-aggregates of Expr that are nested
121 -- at Level are qualified. If Level = 0, this applies to Expr directly.
122 -- Only issue errors in formal verification mode.
124 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean;
125 -- Return True of Expr is an aggregate not contained directly in another
126 -- aggregate.
128 ------------------------------------------------------
129 -- Subprograms used for RECORD AGGREGATE Processing --
130 ------------------------------------------------------
132 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
133 -- This procedure performs all the semantic checks required for record
134 -- aggregates. Note that for aggregates analysis and resolution go
135 -- hand in hand. Aggregate analysis has been delayed up to here and
136 -- it is done while resolving the aggregate.
138 -- N is the N_Aggregate node.
139 -- Typ is the record type for the aggregate resolution
141 -- While performing the semantic checks, this procedure builds a new
142 -- Component_Association_List where each record field appears alone in a
143 -- Component_Choice_List along with its corresponding expression. The
144 -- record fields in the Component_Association_List appear in the same order
145 -- in which they appear in the record type Typ.
147 -- Once this new Component_Association_List is built and all the semantic
148 -- checks performed, the original aggregate subtree is replaced with the
149 -- new named record aggregate just built. Note that subtree substitution is
150 -- performed with Rewrite so as to be able to retrieve the original
151 -- aggregate.
153 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
154 -- yields the aggregate format expected by Gigi. Typically, this kind of
155 -- tree manipulations are done in the expander. However, because the
156 -- semantic checks that need to be performed on record aggregates really go
157 -- hand in hand with the record aggregate normalization, the aggregate
158 -- subtree transformation is performed during resolution rather than
159 -- expansion. Had we decided otherwise we would have had to duplicate most
160 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
161 -- however, that all the expansion concerning aggregates for tagged records
162 -- is done in Expand_Record_Aggregate.
164 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
166 -- 1. Make sure that the record type against which the record aggregate
167 -- has to be resolved is not abstract. Furthermore if the type is a
168 -- null aggregate make sure the input aggregate N is also null.
170 -- 2. Verify that the structure of the aggregate is that of a record
171 -- aggregate. Specifically, look for component associations and ensure
172 -- that each choice list only has identifiers or the N_Others_Choice
173 -- node. Also make sure that if present, the N_Others_Choice occurs
174 -- last and by itself.
176 -- 3. If Typ contains discriminants, the values for each discriminant is
177 -- looked for. If the record type Typ has variants, we check that the
178 -- expressions corresponding to each discriminant ruling the (possibly
179 -- nested) variant parts of Typ, are static. This allows us to determine
180 -- the variant parts to which the rest of the aggregate must conform.
181 -- The names of discriminants with their values are saved in a new
182 -- association list, New_Assoc_List which is later augmented with the
183 -- names and values of the remaining components in the record type.
185 -- During this phase we also make sure that every discriminant is
186 -- assigned exactly one value. Note that when several values for a given
187 -- discriminant are found, semantic processing continues looking for
188 -- further errors. In this case it's the first discriminant value found
189 -- which we will be recorded.
191 -- IMPORTANT NOTE: For derived tagged types this procedure expects
192 -- First_Discriminant and Next_Discriminant to give the correct list
193 -- of discriminants, in the correct order.
195 -- 4. After all the discriminant values have been gathered, we can set the
196 -- Etype of the record aggregate. If Typ contains no discriminants this
197 -- is straightforward: the Etype of N is just Typ, otherwise a new
198 -- implicit constrained subtype of Typ is built to be the Etype of N.
200 -- 5. Gather the remaining record components according to the discriminant
201 -- values. This involves recursively traversing the record type
202 -- structure to see what variants are selected by the given discriminant
203 -- values. This processing is a little more convoluted if Typ is a
204 -- derived tagged types since we need to retrieve the record structure
205 -- of all the ancestors of Typ.
207 -- 6. After gathering the record components we look for their values in the
208 -- record aggregate and emit appropriate error messages should we not
209 -- find such values or should they be duplicated.
211 -- 7. We then make sure no illegal component names appear in the record
212 -- aggregate and make sure that the type of the record components
213 -- appearing in a same choice list is the same. Finally we ensure that
214 -- the others choice, if present, is used to provide the value of at
215 -- least a record component.
217 -- 8. The original aggregate node is replaced with the new named aggregate
218 -- built in steps 3 through 6, as explained earlier.
220 -- Given the complexity of record aggregate resolution, the primary goal of
221 -- this routine is clarity and simplicity rather than execution and storage
222 -- efficiency. If there are only positional components in the aggregate the
223 -- running time is linear. If there are associations the running time is
224 -- still linear as long as the order of the associations is not too far off
225 -- the order of the components in the record type. If this is not the case
226 -- the running time is at worst quadratic in the size of the association
227 -- list.
229 procedure Check_Misspelled_Component
230 (Elements : Elist_Id;
231 Component : Node_Id);
232 -- Give possible misspelling diagnostic if Component is likely to be a
233 -- misspelling of one of the components of the Assoc_List. This is called
234 -- by Resolve_Aggr_Expr after producing an invalid component error message.
236 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
237 -- An optimization: determine whether a discriminated subtype has a static
238 -- constraint, and contains array components whose length is also static,
239 -- either because they are constrained by the discriminant, or because the
240 -- original component bounds are static.
242 -----------------------------------------------------
243 -- Subprograms used for ARRAY AGGREGATE Processing --
244 -----------------------------------------------------
246 function Resolve_Array_Aggregate
247 (N : Node_Id;
248 Index : Node_Id;
249 Index_Constr : Node_Id;
250 Component_Typ : Entity_Id;
251 Others_Allowed : Boolean) return Boolean;
252 -- This procedure performs the semantic checks for an array aggregate.
253 -- True is returned if the aggregate resolution succeeds.
255 -- The procedure works by recursively checking each nested aggregate.
256 -- Specifically, after checking a sub-aggregate nested at the i-th level
257 -- we recursively check all the subaggregates at the i+1-st level (if any).
258 -- Note that for aggregates analysis and resolution go hand in hand.
259 -- Aggregate analysis has been delayed up to here and it is done while
260 -- resolving the aggregate.
262 -- N is the current N_Aggregate node to be checked.
264 -- Index is the index node corresponding to the array sub-aggregate that
265 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
266 -- corresponding index type (or subtype).
268 -- Index_Constr is the node giving the applicable index constraint if
269 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
270 -- contexts [...] that can be used to determine the bounds of the array
271 -- value specified by the aggregate". If Others_Allowed below is False
272 -- there is no applicable index constraint and this node is set to Index.
274 -- Component_Typ is the array component type.
276 -- Others_Allowed indicates whether an others choice is allowed
277 -- in the context where the top-level aggregate appeared.
279 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
281 -- 1. Make sure that the others choice, if present, is by itself and
282 -- appears last in the sub-aggregate. Check that we do not have
283 -- positional and named components in the array sub-aggregate (unless
284 -- the named association is an others choice). Finally if an others
285 -- choice is present, make sure it is allowed in the aggregate context.
287 -- 2. If the array sub-aggregate contains discrete_choices:
289 -- (A) Verify their validity. Specifically verify that:
291 -- (a) If a null range is present it must be the only possible
292 -- choice in the array aggregate.
294 -- (b) Ditto for a non static range.
296 -- (c) Ditto for a non static expression.
298 -- In addition this step analyzes and resolves each discrete_choice,
299 -- making sure that its type is the type of the corresponding Index.
300 -- If we are not at the lowest array aggregate level (in the case of
301 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
302 -- recursively on each component expression. Otherwise, resolve the
303 -- bottom level component expressions against the expected component
304 -- type ONLY IF the component corresponds to a single discrete choice
305 -- which is not an others choice (to see why read the DELAYED
306 -- COMPONENT RESOLUTION below).
308 -- (B) Determine the bounds of the sub-aggregate and lowest and
309 -- highest choice values.
311 -- 3. For positional aggregates:
313 -- (A) Loop over the component expressions either recursively invoking
314 -- Resolve_Array_Aggregate on each of these for multi-dimensional
315 -- array aggregates or resolving the bottom level component
316 -- expressions against the expected component type.
318 -- (B) Determine the bounds of the positional sub-aggregates.
320 -- 4. Try to determine statically whether the evaluation of the array
321 -- sub-aggregate raises Constraint_Error. If yes emit proper
322 -- warnings. The precise checks are the following:
324 -- (A) Check that the index range defined by aggregate bounds is
325 -- compatible with corresponding index subtype.
326 -- We also check against the base type. In fact it could be that
327 -- Low/High bounds of the base type are static whereas those of
328 -- the index subtype are not. Thus if we can statically catch
329 -- a problem with respect to the base type we are guaranteed
330 -- that the same problem will arise with the index subtype
332 -- (B) If we are dealing with a named aggregate containing an others
333 -- choice and at least one discrete choice then make sure the range
334 -- specified by the discrete choices does not overflow the
335 -- aggregate bounds. We also check against the index type and base
336 -- type bounds for the same reasons given in (A).
338 -- (C) If we are dealing with a positional aggregate with an others
339 -- choice make sure the number of positional elements specified
340 -- does not overflow the aggregate bounds. We also check against
341 -- the index type and base type bounds as mentioned in (A).
343 -- Finally construct an N_Range node giving the sub-aggregate bounds.
344 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
345 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
346 -- to build the appropriate aggregate subtype. Aggregate_Bounds
347 -- information is needed during expansion.
349 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
350 -- expressions in an array aggregate may call Duplicate_Subexpr or some
351 -- other routine that inserts code just outside the outermost aggregate.
352 -- If the array aggregate contains discrete choices or an others choice,
353 -- this may be wrong. Consider for instance the following example.
355 -- type Rec is record
356 -- V : Integer := 0;
357 -- end record;
359 -- type Acc_Rec is access Rec;
360 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
362 -- Then the transformation of "new Rec" that occurs during resolution
363 -- entails the following code modifications
365 -- P7b : constant Acc_Rec := new Rec;
366 -- RecIP (P7b.all);
367 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
369 -- This code transformation is clearly wrong, since we need to call
370 -- "new Rec" for each of the 3 array elements. To avoid this problem we
371 -- delay resolution of the components of non positional array aggregates
372 -- to the expansion phase. As an optimization, if the discrete choice
373 -- specifies a single value we do not delay resolution.
375 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
376 -- This routine returns the type or subtype of an array aggregate.
378 -- N is the array aggregate node whose type we return.
380 -- Typ is the context type in which N occurs.
382 -- This routine creates an implicit array subtype whose bounds are
383 -- those defined by the aggregate. When this routine is invoked
384 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
385 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
386 -- sub-aggregate bounds. When building the aggregate itype, this function
387 -- traverses the array aggregate N collecting such Aggregate_Bounds and
388 -- constructs the proper array aggregate itype.
390 -- Note that in the case of multidimensional aggregates each inner
391 -- sub-aggregate corresponding to a given array dimension, may provide a
392 -- different bounds. If it is possible to determine statically that
393 -- some sub-aggregates corresponding to the same index do not have the
394 -- same bounds, then a warning is emitted. If such check is not possible
395 -- statically (because some sub-aggregate bounds are dynamic expressions)
396 -- then this job is left to the expander. In all cases the particular
397 -- bounds that this function will chose for a given dimension is the first
398 -- N_Range node for a sub-aggregate corresponding to that dimension.
400 -- Note that the Raises_Constraint_Error flag of an array aggregate
401 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
402 -- is set in Resolve_Array_Aggregate but the aggregate is not
403 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
404 -- first construct the proper itype for the aggregate (Gigi needs
405 -- this). After constructing the proper itype we will eventually replace
406 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
407 -- Of course in cases such as:
409 -- type Arr is array (integer range <>) of Integer;
410 -- A : Arr := (positive range -1 .. 2 => 0);
412 -- The bounds of the aggregate itype are cooked up to look reasonable
413 -- (in this particular case the bounds will be 1 .. 2).
415 procedure Make_String_Into_Aggregate (N : Node_Id);
416 -- A string literal can appear in a context in which a one dimensional
417 -- array of characters is expected. This procedure simply rewrites the
418 -- string as an aggregate, prior to resolution.
420 ------------------------
421 -- Array_Aggr_Subtype --
422 ------------------------
424 function Array_Aggr_Subtype
425 (N : Node_Id;
426 Typ : Entity_Id) return Entity_Id
428 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
429 -- Number of aggregate index dimensions
431 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
432 -- Constrained N_Range of each index dimension in our aggregate itype
434 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
435 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
436 -- Low and High bounds for each index dimension in our aggregate itype
438 Is_Fully_Positional : Boolean := True;
440 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
441 -- N is an array (sub-)aggregate. Dim is the dimension corresponding
442 -- to (sub-)aggregate N. This procedure collects and removes the side
443 -- effects of the constrained N_Range nodes corresponding to each index
444 -- dimension of our aggregate itype. These N_Range nodes are collected
445 -- in Aggr_Range above.
447 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
448 -- bounds of each index dimension. If, when collecting, two bounds
449 -- corresponding to the same dimension are static and found to differ,
450 -- then emit a warning, and mark N as raising Constraint_Error.
452 -------------------------
453 -- Collect_Aggr_Bounds --
454 -------------------------
456 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
457 This_Range : constant Node_Id := Aggregate_Bounds (N);
458 -- The aggregate range node of this specific sub-aggregate
460 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
461 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
462 -- The aggregate bounds of this specific sub-aggregate
464 Assoc : Node_Id;
465 Expr : Node_Id;
467 begin
468 Remove_Side_Effects (This_Low, Variable_Ref => True);
469 Remove_Side_Effects (This_High, Variable_Ref => True);
471 -- Collect the first N_Range for a given dimension that you find.
472 -- For a given dimension they must be all equal anyway.
474 if No (Aggr_Range (Dim)) then
475 Aggr_Low (Dim) := This_Low;
476 Aggr_High (Dim) := This_High;
477 Aggr_Range (Dim) := This_Range;
479 else
480 if Compile_Time_Known_Value (This_Low) then
481 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
482 Aggr_Low (Dim) := This_Low;
484 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
485 Set_Raises_Constraint_Error (N);
486 Error_Msg_Warn := SPARK_Mode /= On;
487 Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
488 Error_Msg_N ("\Constraint_Error [<<", N);
489 end if;
490 end if;
492 if Compile_Time_Known_Value (This_High) then
493 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
494 Aggr_High (Dim) := This_High;
496 elsif
497 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
498 then
499 Set_Raises_Constraint_Error (N);
500 Error_Msg_Warn := SPARK_Mode /= On;
501 Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
502 Error_Msg_N ("\Constraint_Error [<<", N);
503 end if;
504 end if;
505 end if;
507 if Dim < Aggr_Dimension then
509 -- Process positional components
511 if Present (Expressions (N)) then
512 Expr := First (Expressions (N));
513 while Present (Expr) loop
514 Collect_Aggr_Bounds (Expr, Dim + 1);
515 Next (Expr);
516 end loop;
517 end if;
519 -- Process component associations
521 if Present (Component_Associations (N)) then
522 Is_Fully_Positional := False;
524 Assoc := First (Component_Associations (N));
525 while Present (Assoc) loop
526 Expr := Expression (Assoc);
527 Collect_Aggr_Bounds (Expr, Dim + 1);
528 Next (Assoc);
529 end loop;
530 end if;
531 end if;
532 end Collect_Aggr_Bounds;
534 -- Array_Aggr_Subtype variables
536 Itype : Entity_Id;
537 -- The final itype of the overall aggregate
539 Index_Constraints : constant List_Id := New_List;
540 -- The list of index constraints of the aggregate itype
542 -- Start of processing for Array_Aggr_Subtype
544 begin
545 -- Make sure that the list of index constraints is properly attached to
546 -- the tree, and then collect the aggregate bounds.
548 Set_Parent (Index_Constraints, N);
549 Collect_Aggr_Bounds (N, 1);
551 -- Build the list of constrained indexes of our aggregate itype
553 for J in 1 .. Aggr_Dimension loop
554 Create_Index : declare
555 Index_Base : constant Entity_Id :=
556 Base_Type (Etype (Aggr_Range (J)));
557 Index_Typ : Entity_Id;
559 begin
560 -- Construct the Index subtype, and associate it with the range
561 -- construct that generates it.
563 Index_Typ :=
564 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
566 Set_Etype (Index_Typ, Index_Base);
568 if Is_Character_Type (Index_Base) then
569 Set_Is_Character_Type (Index_Typ);
570 end if;
572 Set_Size_Info (Index_Typ, (Index_Base));
573 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
574 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
575 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
577 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
578 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
579 end if;
581 Set_Etype (Aggr_Range (J), Index_Typ);
583 Append (Aggr_Range (J), To => Index_Constraints);
584 end Create_Index;
585 end loop;
587 -- Now build the Itype
589 Itype := Create_Itype (E_Array_Subtype, N);
591 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
592 Set_Convention (Itype, Convention (Typ));
593 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
594 Set_Etype (Itype, Base_Type (Typ));
595 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
596 Set_Is_Aliased (Itype, Is_Aliased (Typ));
597 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
599 Copy_Suppress_Status (Index_Check, Typ, Itype);
600 Copy_Suppress_Status (Length_Check, Typ, Itype);
602 Set_First_Index (Itype, First (Index_Constraints));
603 Set_Is_Constrained (Itype, True);
604 Set_Is_Internal (Itype, True);
606 -- A simple optimization: purely positional aggregates of static
607 -- components should be passed to gigi unexpanded whenever possible, and
608 -- regardless of the staticness of the bounds themselves. Subsequent
609 -- checks in exp_aggr verify that type is not packed, etc.
611 Set_Size_Known_At_Compile_Time
612 (Itype,
613 Is_Fully_Positional
614 and then Comes_From_Source (N)
615 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
617 -- We always need a freeze node for a packed array subtype, so that we
618 -- can build the Packed_Array_Impl_Type corresponding to the subtype. If
619 -- expansion is disabled, the packed array subtype is not built, and we
620 -- must not generate a freeze node for the type, or else it will appear
621 -- incomplete to gigi.
623 if Is_Packed (Itype)
624 and then not In_Spec_Expression
625 and then Expander_Active
626 then
627 Freeze_Itype (Itype, N);
628 end if;
630 return Itype;
631 end Array_Aggr_Subtype;
633 --------------------------------
634 -- Check_Misspelled_Component --
635 --------------------------------
637 procedure Check_Misspelled_Component
638 (Elements : Elist_Id;
639 Component : Node_Id)
641 Max_Suggestions : constant := 2;
643 Nr_Of_Suggestions : Natural := 0;
644 Suggestion_1 : Entity_Id := Empty;
645 Suggestion_2 : Entity_Id := Empty;
646 Component_Elmt : Elmt_Id;
648 begin
649 -- All the components of List are matched against Component and a count
650 -- is maintained of possible misspellings. When at the end of the
651 -- analysis there are one or two (not more) possible misspellings,
652 -- these misspellings will be suggested as possible corrections.
654 Component_Elmt := First_Elmt (Elements);
655 while Nr_Of_Suggestions <= Max_Suggestions
656 and then Present (Component_Elmt)
657 loop
658 if Is_Bad_Spelling_Of
659 (Chars (Node (Component_Elmt)),
660 Chars (Component))
661 then
662 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
664 case Nr_Of_Suggestions is
665 when 1 => Suggestion_1 := Node (Component_Elmt);
666 when 2 => Suggestion_2 := Node (Component_Elmt);
667 when others => null;
668 end case;
669 end if;
671 Next_Elmt (Component_Elmt);
672 end loop;
674 -- Report at most two suggestions
676 if Nr_Of_Suggestions = 1 then
677 Error_Msg_NE -- CODEFIX
678 ("\possible misspelling of&", Component, Suggestion_1);
680 elsif Nr_Of_Suggestions = 2 then
681 Error_Msg_Node_2 := Suggestion_2;
682 Error_Msg_NE -- CODEFIX
683 ("\possible misspelling of& or&", Component, Suggestion_1);
684 end if;
685 end Check_Misspelled_Component;
687 ----------------------------------------
688 -- Check_Expr_OK_In_Limited_Aggregate --
689 ----------------------------------------
691 procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
692 begin
693 if Is_Limited_Type (Etype (Expr))
694 and then Comes_From_Source (Expr)
695 then
696 if In_Instance_Body or else In_Inlined_Body then
697 null;
699 elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
700 Error_Msg_N
701 ("initialization not allowed for limited types", Expr);
702 Explain_Limited_Type (Etype (Expr), Expr);
703 end if;
704 end if;
705 end Check_Expr_OK_In_Limited_Aggregate;
707 -------------------------------
708 -- Check_Qualified_Aggregate --
709 -------------------------------
711 procedure Check_Qualified_Aggregate (Level : Nat; Expr : Node_Id) is
712 Comp_Expr : Node_Id;
713 Comp_Assn : Node_Id;
715 begin
716 if Level = 0 then
717 if Nkind (Parent (Expr)) /= N_Qualified_Expression then
718 Check_SPARK_05_Restriction ("aggregate should be qualified", Expr);
719 end if;
721 else
722 Comp_Expr := First (Expressions (Expr));
723 while Present (Comp_Expr) loop
724 if Nkind (Comp_Expr) = N_Aggregate then
725 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
726 end if;
728 Comp_Expr := Next (Comp_Expr);
729 end loop;
731 Comp_Assn := First (Component_Associations (Expr));
732 while Present (Comp_Assn) loop
733 Comp_Expr := Expression (Comp_Assn);
735 if Nkind (Comp_Expr) = N_Aggregate then
736 Check_Qualified_Aggregate (Level - 1, Comp_Expr);
737 end if;
739 Comp_Assn := Next (Comp_Assn);
740 end loop;
741 end if;
742 end Check_Qualified_Aggregate;
744 ----------------------------------------
745 -- Check_Static_Discriminated_Subtype --
746 ----------------------------------------
748 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
749 Disc : constant Entity_Id := First_Discriminant (T);
750 Comp : Entity_Id;
751 Ind : Entity_Id;
753 begin
754 if Has_Record_Rep_Clause (T) then
755 return;
757 elsif Present (Next_Discriminant (Disc)) then
758 return;
760 elsif Nkind (V) /= N_Integer_Literal then
761 return;
762 end if;
764 Comp := First_Component (T);
765 while Present (Comp) loop
766 if Is_Scalar_Type (Etype (Comp)) then
767 null;
769 elsif Is_Private_Type (Etype (Comp))
770 and then Present (Full_View (Etype (Comp)))
771 and then Is_Scalar_Type (Full_View (Etype (Comp)))
772 then
773 null;
775 elsif Is_Array_Type (Etype (Comp)) then
776 if Is_Bit_Packed_Array (Etype (Comp)) then
777 return;
778 end if;
780 Ind := First_Index (Etype (Comp));
781 while Present (Ind) loop
782 if Nkind (Ind) /= N_Range
783 or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
784 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
785 then
786 return;
787 end if;
789 Next_Index (Ind);
790 end loop;
792 else
793 return;
794 end if;
796 Next_Component (Comp);
797 end loop;
799 -- On exit, all components have statically known sizes
801 Set_Size_Known_At_Compile_Time (T);
802 end Check_Static_Discriminated_Subtype;
804 -------------------------
805 -- Is_Others_Aggregate --
806 -------------------------
808 function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
809 begin
810 return No (Expressions (Aggr))
811 and then
812 Nkind (First (Choice_List (First (Component_Associations (Aggr))))) =
813 N_Others_Choice;
814 end Is_Others_Aggregate;
816 ----------------------------
817 -- Is_Top_Level_Aggregate --
818 ----------------------------
820 function Is_Top_Level_Aggregate (Expr : Node_Id) return Boolean is
821 begin
822 return Nkind (Parent (Expr)) /= N_Aggregate
823 and then (Nkind (Parent (Expr)) /= N_Component_Association
824 or else Nkind (Parent (Parent (Expr))) /= N_Aggregate);
825 end Is_Top_Level_Aggregate;
827 --------------------------------
828 -- Make_String_Into_Aggregate --
829 --------------------------------
831 procedure Make_String_Into_Aggregate (N : Node_Id) is
832 Exprs : constant List_Id := New_List;
833 Loc : constant Source_Ptr := Sloc (N);
834 Str : constant String_Id := Strval (N);
835 Strlen : constant Nat := String_Length (Str);
836 C : Char_Code;
837 C_Node : Node_Id;
838 New_N : Node_Id;
839 P : Source_Ptr;
841 begin
842 P := Loc + 1;
843 for J in 1 .. Strlen loop
844 C := Get_String_Char (Str, J);
845 Set_Character_Literal_Name (C);
847 C_Node :=
848 Make_Character_Literal (P,
849 Chars => Name_Find,
850 Char_Literal_Value => UI_From_CC (C));
851 Set_Etype (C_Node, Any_Character);
852 Append_To (Exprs, C_Node);
854 P := P + 1;
855 -- Something special for wide strings???
856 end loop;
858 New_N := Make_Aggregate (Loc, Expressions => Exprs);
859 Set_Analyzed (New_N);
860 Set_Etype (New_N, Any_Composite);
862 Rewrite (N, New_N);
863 end Make_String_Into_Aggregate;
865 -----------------------
866 -- Resolve_Aggregate --
867 -----------------------
869 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
870 Loc : constant Source_Ptr := Sloc (N);
871 Pkind : constant Node_Kind := Nkind (Parent (N));
873 Aggr_Subtyp : Entity_Id;
874 -- The actual aggregate subtype. This is not necessarily the same as Typ
875 -- which is the subtype of the context in which the aggregate was found.
877 begin
878 -- Ignore junk empty aggregate resulting from parser error
880 if No (Expressions (N))
881 and then No (Component_Associations (N))
882 and then not Null_Record_Present (N)
883 then
884 return;
885 end if;
887 -- If the aggregate has box-initialized components, its type must be
888 -- frozen so that initialization procedures can properly be called
889 -- in the resolution that follows. The replacement of boxes with
890 -- initialization calls is properly an expansion activity but it must
891 -- be done during resolution.
893 if Expander_Active
894 and then Present (Component_Associations (N))
895 then
896 declare
897 Comp : Node_Id;
899 begin
900 Comp := First (Component_Associations (N));
901 while Present (Comp) loop
902 if Box_Present (Comp) then
903 Insert_Actions (N, Freeze_Entity (Typ, N));
904 exit;
905 end if;
907 Next (Comp);
908 end loop;
909 end;
910 end if;
912 -- An unqualified aggregate is restricted in SPARK to:
914 -- An aggregate item inside an aggregate for a multi-dimensional array
916 -- An expression being assigned to an unconstrained array, but only if
917 -- the aggregate specifies a value for OTHERS only.
919 if Nkind (Parent (N)) = N_Qualified_Expression then
920 if Is_Array_Type (Typ) then
921 Check_Qualified_Aggregate (Number_Dimensions (Typ), N);
922 else
923 Check_Qualified_Aggregate (1, N);
924 end if;
925 else
926 if Is_Array_Type (Typ)
927 and then Nkind (Parent (N)) = N_Assignment_Statement
928 and then not Is_Constrained (Etype (Name (Parent (N))))
929 then
930 if not Is_Others_Aggregate (N) then
931 Check_SPARK_05_Restriction
932 ("array aggregate should have only OTHERS", N);
933 end if;
935 elsif Is_Top_Level_Aggregate (N) then
936 Check_SPARK_05_Restriction ("aggregate should be qualified", N);
938 -- The legality of this unqualified aggregate is checked by calling
939 -- Check_Qualified_Aggregate from one of its enclosing aggregate,
940 -- unless one of these already causes an error to be issued.
942 else
943 null;
944 end if;
945 end if;
947 -- Check for aggregates not allowed in configurable run-time mode.
948 -- We allow all cases of aggregates that do not come from source, since
949 -- these are all assumed to be small (e.g. bounds of a string literal).
950 -- We also allow aggregates of types we know to be small.
952 if not Support_Aggregates_On_Target
953 and then Comes_From_Source (N)
954 and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
955 then
956 Error_Msg_CRT ("aggregate", N);
957 end if;
959 -- Ada 2005 (AI-287): Limited aggregates allowed
961 -- In an instance, ignore aggregate subcomponents tnat may be limited,
962 -- because they originate in view conflicts. If the original aggregate
963 -- is legal and the actuals are legal, the aggregate itself is legal.
965 if Is_Limited_Type (Typ)
966 and then Ada_Version < Ada_2005
967 and then not In_Instance
968 then
969 Error_Msg_N ("aggregate type cannot be limited", N);
970 Explain_Limited_Type (Typ, N);
972 elsif Is_Class_Wide_Type (Typ) then
973 Error_Msg_N ("type of aggregate cannot be class-wide", N);
975 elsif Typ = Any_String
976 or else Typ = Any_Composite
977 then
978 Error_Msg_N ("no unique type for aggregate", N);
979 Set_Etype (N, Any_Composite);
981 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
982 Error_Msg_N ("null record forbidden in array aggregate", N);
984 elsif Is_Record_Type (Typ) then
985 Resolve_Record_Aggregate (N, Typ);
987 elsif Is_Array_Type (Typ) then
989 -- First a special test, for the case of a positional aggregate of
990 -- characters which can be replaced by a string literal.
992 -- Do not perform this transformation if this was a string literal
993 -- to start with, whose components needed constraint checks, or if
994 -- the component type is non-static, because it will require those
995 -- checks and be transformed back into an aggregate. If the index
996 -- type is not Integer the aggregate may represent a user-defined
997 -- string type but the context might need the original type so we
998 -- do not perform the transformation at this point.
1000 if Number_Dimensions (Typ) = 1
1001 and then Is_Standard_Character_Type (Component_Type (Typ))
1002 and then No (Component_Associations (N))
1003 and then not Is_Limited_Composite (Typ)
1004 and then not Is_Private_Composite (Typ)
1005 and then not Is_Bit_Packed_Array (Typ)
1006 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
1007 and then Is_OK_Static_Subtype (Component_Type (Typ))
1008 and then Base_Type (Etype (First_Index (Typ))) =
1009 Base_Type (Standard_Integer)
1010 then
1011 declare
1012 Expr : Node_Id;
1014 begin
1015 Expr := First (Expressions (N));
1016 while Present (Expr) loop
1017 exit when Nkind (Expr) /= N_Character_Literal;
1018 Next (Expr);
1019 end loop;
1021 if No (Expr) then
1022 Start_String;
1024 Expr := First (Expressions (N));
1025 while Present (Expr) loop
1026 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
1027 Next (Expr);
1028 end loop;
1030 Rewrite (N, Make_String_Literal (Loc, End_String));
1032 Analyze_And_Resolve (N, Typ);
1033 return;
1034 end if;
1035 end;
1036 end if;
1038 -- Here if we have a real aggregate to deal with
1040 Array_Aggregate : declare
1041 Aggr_Resolved : Boolean;
1043 Aggr_Typ : constant Entity_Id := Etype (Typ);
1044 -- This is the unconstrained array type, which is the type against
1045 -- which the aggregate is to be resolved. Typ itself is the array
1046 -- type of the context which may not be the same subtype as the
1047 -- subtype for the final aggregate.
1049 begin
1050 -- In the following we determine whether an OTHERS choice is
1051 -- allowed inside the array aggregate. The test checks the context
1052 -- in which the array aggregate occurs. If the context does not
1053 -- permit it, or the aggregate type is unconstrained, an OTHERS
1054 -- choice is not allowed (except that it is always allowed on the
1055 -- right-hand side of an assignment statement; in this case the
1056 -- constrainedness of the type doesn't matter).
1058 -- If expansion is disabled (generic context, or semantics-only
1059 -- mode) actual subtypes cannot be constructed, and the type of an
1060 -- object may be its unconstrained nominal type. However, if the
1061 -- context is an assignment, we assume that OTHERS is allowed,
1062 -- because the target of the assignment will have a constrained
1063 -- subtype when fully compiled.
1065 -- Note that there is no node for Explicit_Actual_Parameter.
1066 -- To test for this context we therefore have to test for node
1067 -- N_Parameter_Association which itself appears only if there is a
1068 -- formal parameter. Consequently we also need to test for
1069 -- N_Procedure_Call_Statement or N_Function_Call.
1071 -- The context may be an N_Reference node, created by expansion.
1072 -- Legality of the others clause was established in the source,
1073 -- so the context is legal.
1075 Set_Etype (N, Aggr_Typ); -- May be overridden later on
1077 if Pkind = N_Assignment_Statement
1078 or else (Is_Constrained (Typ)
1079 and then
1080 (Pkind = N_Parameter_Association or else
1081 Pkind = N_Function_Call or else
1082 Pkind = N_Procedure_Call_Statement or else
1083 Pkind = N_Generic_Association or else
1084 Pkind = N_Formal_Object_Declaration or else
1085 Pkind = N_Simple_Return_Statement or else
1086 Pkind = N_Object_Declaration or else
1087 Pkind = N_Component_Declaration or else
1088 Pkind = N_Parameter_Specification or else
1089 Pkind = N_Qualified_Expression or else
1090 Pkind = N_Reference or else
1091 Pkind = N_Aggregate or else
1092 Pkind = N_Extension_Aggregate or else
1093 Pkind = N_Component_Association))
1094 then
1095 Aggr_Resolved :=
1096 Resolve_Array_Aggregate
1098 Index => First_Index (Aggr_Typ),
1099 Index_Constr => First_Index (Typ),
1100 Component_Typ => Component_Type (Typ),
1101 Others_Allowed => True);
1102 else
1103 Aggr_Resolved :=
1104 Resolve_Array_Aggregate
1106 Index => First_Index (Aggr_Typ),
1107 Index_Constr => First_Index (Aggr_Typ),
1108 Component_Typ => Component_Type (Typ),
1109 Others_Allowed => False);
1110 end if;
1112 if not Aggr_Resolved then
1114 -- A parenthesized expression may have been intended as an
1115 -- aggregate, leading to a type error when analyzing the
1116 -- component. This can also happen for a nested component
1117 -- (see Analyze_Aggr_Expr).
1119 if Paren_Count (N) > 0 then
1120 Error_Msg_N
1121 ("positional aggregate cannot have one component", N);
1122 end if;
1124 Aggr_Subtyp := Any_Composite;
1126 else
1127 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1128 end if;
1130 Set_Etype (N, Aggr_Subtyp);
1131 end Array_Aggregate;
1133 elsif Is_Private_Type (Typ)
1134 and then Present (Full_View (Typ))
1135 and then (In_Inlined_Body or In_Instance_Body)
1136 and then Is_Composite_Type (Full_View (Typ))
1137 then
1138 Resolve (N, Full_View (Typ));
1140 else
1141 Error_Msg_N ("illegal context for aggregate", N);
1142 end if;
1144 -- If we can determine statically that the evaluation of the aggregate
1145 -- raises Constraint_Error, then replace the aggregate with an
1146 -- N_Raise_Constraint_Error node, but set the Etype to the right
1147 -- aggregate subtype. Gigi needs this.
1149 if Raises_Constraint_Error (N) then
1150 Aggr_Subtyp := Etype (N);
1151 Rewrite (N,
1152 Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
1153 Set_Raises_Constraint_Error (N);
1154 Set_Etype (N, Aggr_Subtyp);
1155 Set_Analyzed (N);
1156 end if;
1158 Check_Function_Writable_Actuals (N);
1159 end Resolve_Aggregate;
1161 -----------------------------
1162 -- Resolve_Array_Aggregate --
1163 -----------------------------
1165 function Resolve_Array_Aggregate
1166 (N : Node_Id;
1167 Index : Node_Id;
1168 Index_Constr : Node_Id;
1169 Component_Typ : Entity_Id;
1170 Others_Allowed : Boolean) return Boolean
1172 Loc : constant Source_Ptr := Sloc (N);
1174 Failure : constant Boolean := False;
1175 Success : constant Boolean := True;
1177 Index_Typ : constant Entity_Id := Etype (Index);
1178 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1179 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
1180 -- The type of the index corresponding to the array sub-aggregate along
1181 -- with its low and upper bounds.
1183 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1184 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1185 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
1186 -- Ditto for the base type
1188 Others_Present : Boolean := False;
1190 Nb_Choices : Nat := 0;
1191 -- Contains the overall number of named choices in this sub-aggregate
1193 function Add (Val : Uint; To : Node_Id) return Node_Id;
1194 -- Creates a new expression node where Val is added to expression To.
1195 -- Tries to constant fold whenever possible. To must be an already
1196 -- analyzed expression.
1198 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1199 -- Checks that AH (the upper bound of an array aggregate) is less than
1200 -- or equal to BH (the upper bound of the index base type). If the check
1201 -- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
1202 -- set, and AH is replaced with a duplicate of BH.
1204 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1205 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1206 -- warning if not and sets the Raises_Constraint_Error flag in N.
1208 procedure Check_Length (L, H : Node_Id; Len : Uint);
1209 -- Checks that range L .. H contains at least Len elements. Emits a
1210 -- warning if not and sets the Raises_Constraint_Error flag in N.
1212 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1213 -- Returns True if range L .. H is dynamic or null
1215 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1216 -- Given expression node From, this routine sets OK to False if it
1217 -- cannot statically evaluate From. Otherwise it stores this static
1218 -- value into Value.
1220 function Resolve_Aggr_Expr
1221 (Expr : Node_Id;
1222 Single_Elmt : Boolean) return Boolean;
1223 -- Resolves aggregate expression Expr. Returns False if resolution
1224 -- fails. If Single_Elmt is set to False, the expression Expr may be
1225 -- used to initialize several array aggregate elements (this can happen
1226 -- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
1227 -- In this event we do not resolve Expr unless expansion is disabled.
1228 -- To know why, see the DELAYED COMPONENT RESOLUTION note above.
1230 -- NOTE: In the case of "... => <>", we pass the in the
1231 -- N_Component_Association node as Expr, since there is no Expression in
1232 -- that case, and we need a Sloc for the error message.
1234 procedure Resolve_Iterated_Component_Association
1235 (N : Node_Id;
1236 Index_Typ : Entity_Id);
1237 -- For AI12-061
1239 ---------
1240 -- Add --
1241 ---------
1243 function Add (Val : Uint; To : Node_Id) return Node_Id is
1244 Expr_Pos : Node_Id;
1245 Expr : Node_Id;
1246 To_Pos : Node_Id;
1248 begin
1249 if Raises_Constraint_Error (To) then
1250 return To;
1251 end if;
1253 -- First test if we can do constant folding
1255 if Compile_Time_Known_Value (To)
1256 or else Nkind (To) = N_Integer_Literal
1257 then
1258 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1259 Set_Is_Static_Expression (Expr_Pos);
1260 Set_Etype (Expr_Pos, Etype (To));
1261 Set_Analyzed (Expr_Pos, Analyzed (To));
1263 if not Is_Enumeration_Type (Index_Typ) then
1264 Expr := Expr_Pos;
1266 -- If we are dealing with enumeration return
1267 -- Index_Typ'Val (Expr_Pos)
1269 else
1270 Expr :=
1271 Make_Attribute_Reference
1272 (Loc,
1273 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1274 Attribute_Name => Name_Val,
1275 Expressions => New_List (Expr_Pos));
1276 end if;
1278 return Expr;
1279 end if;
1281 -- If we are here no constant folding possible
1283 if not Is_Enumeration_Type (Index_Base) then
1284 Expr :=
1285 Make_Op_Add (Loc,
1286 Left_Opnd => Duplicate_Subexpr (To),
1287 Right_Opnd => Make_Integer_Literal (Loc, Val));
1289 -- If we are dealing with enumeration return
1290 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1292 else
1293 To_Pos :=
1294 Make_Attribute_Reference
1295 (Loc,
1296 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1297 Attribute_Name => Name_Pos,
1298 Expressions => New_List (Duplicate_Subexpr (To)));
1300 Expr_Pos :=
1301 Make_Op_Add (Loc,
1302 Left_Opnd => To_Pos,
1303 Right_Opnd => Make_Integer_Literal (Loc, Val));
1305 Expr :=
1306 Make_Attribute_Reference
1307 (Loc,
1308 Prefix => New_Occurrence_Of (Index_Typ, Loc),
1309 Attribute_Name => Name_Val,
1310 Expressions => New_List (Expr_Pos));
1312 -- If the index type has a non standard representation, the
1313 -- attributes 'Val and 'Pos expand into function calls and the
1314 -- resulting expression is considered non-safe for reevaluation
1315 -- by the backend. Relocate it into a constant temporary in order
1316 -- to make it safe for reevaluation.
1318 if Has_Non_Standard_Rep (Etype (N)) then
1319 declare
1320 Def_Id : Entity_Id;
1322 begin
1323 Def_Id := Make_Temporary (Loc, 'R', Expr);
1324 Set_Etype (Def_Id, Index_Typ);
1325 Insert_Action (N,
1326 Make_Object_Declaration (Loc,
1327 Defining_Identifier => Def_Id,
1328 Object_Definition =>
1329 New_Occurrence_Of (Index_Typ, Loc),
1330 Constant_Present => True,
1331 Expression => Relocate_Node (Expr)));
1333 Expr := New_Occurrence_Of (Def_Id, Loc);
1334 end;
1335 end if;
1336 end if;
1338 return Expr;
1339 end Add;
1341 -----------------
1342 -- Check_Bound --
1343 -----------------
1345 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1346 Val_BH : Uint;
1347 Val_AH : Uint;
1349 OK_BH : Boolean;
1350 OK_AH : Boolean;
1352 begin
1353 Get (Value => Val_BH, From => BH, OK => OK_BH);
1354 Get (Value => Val_AH, From => AH, OK => OK_AH);
1356 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1357 Set_Raises_Constraint_Error (N);
1358 Error_Msg_Warn := SPARK_Mode /= On;
1359 Error_Msg_N ("upper bound out of range<<", AH);
1360 Error_Msg_N ("\Constraint_Error [<<", AH);
1362 -- You need to set AH to BH or else in the case of enumerations
1363 -- indexes we will not be able to resolve the aggregate bounds.
1365 AH := Duplicate_Subexpr (BH);
1366 end if;
1367 end Check_Bound;
1369 ------------------
1370 -- Check_Bounds --
1371 ------------------
1373 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1374 Val_L : Uint;
1375 Val_H : Uint;
1376 Val_AL : Uint;
1377 Val_AH : Uint;
1379 OK_L : Boolean;
1380 OK_H : Boolean;
1382 OK_AL : Boolean;
1383 OK_AH : Boolean;
1384 pragma Warnings (Off, OK_AL);
1385 pragma Warnings (Off, OK_AH);
1387 begin
1388 if Raises_Constraint_Error (N)
1389 or else Dynamic_Or_Null_Range (AL, AH)
1390 then
1391 return;
1392 end if;
1394 Get (Value => Val_L, From => L, OK => OK_L);
1395 Get (Value => Val_H, From => H, OK => OK_H);
1397 Get (Value => Val_AL, From => AL, OK => OK_AL);
1398 Get (Value => Val_AH, From => AH, OK => OK_AH);
1400 if OK_L and then Val_L > Val_AL then
1401 Set_Raises_Constraint_Error (N);
1402 Error_Msg_Warn := SPARK_Mode /= On;
1403 Error_Msg_N ("lower bound of aggregate out of range<<", N);
1404 Error_Msg_N ("\Constraint_Error [<<", N);
1405 end if;
1407 if OK_H and then Val_H < Val_AH then
1408 Set_Raises_Constraint_Error (N);
1409 Error_Msg_Warn := SPARK_Mode /= On;
1410 Error_Msg_N ("upper bound of aggregate out of range<<", N);
1411 Error_Msg_N ("\Constraint_Error [<<", N);
1412 end if;
1413 end Check_Bounds;
1415 ------------------
1416 -- Check_Length --
1417 ------------------
1419 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1420 Val_L : Uint;
1421 Val_H : Uint;
1423 OK_L : Boolean;
1424 OK_H : Boolean;
1426 Range_Len : Uint;
1428 begin
1429 if Raises_Constraint_Error (N) then
1430 return;
1431 end if;
1433 Get (Value => Val_L, From => L, OK => OK_L);
1434 Get (Value => Val_H, From => H, OK => OK_H);
1436 if not OK_L or else not OK_H then
1437 return;
1438 end if;
1440 -- If null range length is zero
1442 if Val_L > Val_H then
1443 Range_Len := Uint_0;
1444 else
1445 Range_Len := Val_H - Val_L + 1;
1446 end if;
1448 if Range_Len < Len then
1449 Set_Raises_Constraint_Error (N);
1450 Error_Msg_Warn := SPARK_Mode /= On;
1451 Error_Msg_N ("too many elements<<", N);
1452 Error_Msg_N ("\Constraint_Error [<<", N);
1453 end if;
1454 end Check_Length;
1456 ---------------------------
1457 -- Dynamic_Or_Null_Range --
1458 ---------------------------
1460 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1461 Val_L : Uint;
1462 Val_H : Uint;
1464 OK_L : Boolean;
1465 OK_H : Boolean;
1467 begin
1468 Get (Value => Val_L, From => L, OK => OK_L);
1469 Get (Value => Val_H, From => H, OK => OK_H);
1471 return not OK_L or else not OK_H
1472 or else not Is_OK_Static_Expression (L)
1473 or else not Is_OK_Static_Expression (H)
1474 or else Val_L > Val_H;
1475 end Dynamic_Or_Null_Range;
1477 ---------
1478 -- Get --
1479 ---------
1481 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1482 begin
1483 OK := True;
1485 if Compile_Time_Known_Value (From) then
1486 Value := Expr_Value (From);
1488 -- If expression From is something like Some_Type'Val (10) then
1489 -- Value = 10.
1491 elsif Nkind (From) = N_Attribute_Reference
1492 and then Attribute_Name (From) = Name_Val
1493 and then Compile_Time_Known_Value (First (Expressions (From)))
1494 then
1495 Value := Expr_Value (First (Expressions (From)));
1496 else
1497 Value := Uint_0;
1498 OK := False;
1499 end if;
1500 end Get;
1502 -----------------------
1503 -- Resolve_Aggr_Expr --
1504 -----------------------
1506 function Resolve_Aggr_Expr
1507 (Expr : Node_Id;
1508 Single_Elmt : Boolean) return Boolean
1510 Nxt_Ind : constant Node_Id := Next_Index (Index);
1511 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1512 -- Index is the current index corresponding to the expression
1514 Resolution_OK : Boolean := True;
1515 -- Set to False if resolution of the expression failed
1517 begin
1518 -- Defend against previous errors
1520 if Nkind (Expr) = N_Error
1521 or else Error_Posted (Expr)
1522 then
1523 return True;
1524 end if;
1526 -- If the array type against which we are resolving the aggregate
1527 -- has several dimensions, the expressions nested inside the
1528 -- aggregate must be further aggregates (or strings).
1530 if Present (Nxt_Ind) then
1531 if Nkind (Expr) /= N_Aggregate then
1533 -- A string literal can appear where a one-dimensional array
1534 -- of characters is expected. If the literal looks like an
1535 -- operator, it is still an operator symbol, which will be
1536 -- transformed into a string when analyzed.
1538 if Is_Character_Type (Component_Typ)
1539 and then No (Next_Index (Nxt_Ind))
1540 and then Nkind_In (Expr, N_String_Literal, N_Operator_Symbol)
1541 then
1542 -- A string literal used in a multidimensional array
1543 -- aggregate in place of the final one-dimensional
1544 -- aggregate must not be enclosed in parentheses.
1546 if Paren_Count (Expr) /= 0 then
1547 Error_Msg_N ("no parenthesis allowed here", Expr);
1548 end if;
1550 Make_String_Into_Aggregate (Expr);
1552 else
1553 Error_Msg_N ("nested array aggregate expected", Expr);
1555 -- If the expression is parenthesized, this may be
1556 -- a missing component association for a 1-aggregate.
1558 if Paren_Count (Expr) > 0 then
1559 Error_Msg_N
1560 ("\if single-component aggregate is intended, "
1561 & "write e.g. (1 ='> ...)", Expr);
1562 end if;
1564 return Failure;
1565 end if;
1566 end if;
1568 -- If it's "... => <>", nothing to resolve
1570 if Nkind (Expr) = N_Component_Association then
1571 pragma Assert (Box_Present (Expr));
1572 return Success;
1573 end if;
1575 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1576 -- Required to check the null-exclusion attribute (if present).
1577 -- This value may be overridden later on.
1579 Set_Etype (Expr, Etype (N));
1581 Resolution_OK := Resolve_Array_Aggregate
1582 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1584 else
1585 -- If it's "... => <>", nothing to resolve
1587 if Nkind (Expr) = N_Component_Association then
1588 pragma Assert (Box_Present (Expr));
1589 return Success;
1590 end if;
1592 -- Do not resolve the expressions of discrete or others choices
1593 -- unless the expression covers a single component, or the
1594 -- expander is inactive.
1596 -- In SPARK mode, expressions that can perform side-effects will
1597 -- be recognized by the gnat2why back-end, and the whole
1598 -- subprogram will be ignored. So semantic analysis can be
1599 -- performed safely.
1601 if Single_Elmt
1602 or else not Expander_Active
1603 or else In_Spec_Expression
1604 then
1605 Analyze_And_Resolve (Expr, Component_Typ);
1606 Check_Expr_OK_In_Limited_Aggregate (Expr);
1607 Check_Non_Static_Context (Expr);
1608 Aggregate_Constraint_Checks (Expr, Component_Typ);
1609 Check_Unset_Reference (Expr);
1610 end if;
1611 end if;
1613 -- If an aggregate component has a type with predicates, an explicit
1614 -- predicate check must be applied, as for an assignment statement,
1615 -- because the aggegate might not be expanded into individual
1616 -- component assignments. If the expression covers several components
1617 -- the analysis and the predicate check take place later.
1619 if Present (Predicate_Function (Component_Typ))
1620 and then Analyzed (Expr)
1621 then
1622 Apply_Predicate_Check (Expr, Component_Typ);
1623 end if;
1625 if Raises_Constraint_Error (Expr)
1626 and then Nkind (Parent (Expr)) /= N_Component_Association
1627 then
1628 Set_Raises_Constraint_Error (N);
1629 end if;
1631 -- If the expression has been marked as requiring a range check,
1632 -- then generate it here. It's a bit odd to be generating such
1633 -- checks in the analyzer, but harmless since Generate_Range_Check
1634 -- does nothing (other than making sure Do_Range_Check is set) if
1635 -- the expander is not active.
1637 if Do_Range_Check (Expr) then
1638 Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
1639 end if;
1641 return Resolution_OK;
1642 end Resolve_Aggr_Expr;
1644 --------------------------------------------
1645 -- Resolve_Iterated_Component_Association --
1646 --------------------------------------------
1648 procedure Resolve_Iterated_Component_Association
1649 (N : Node_Id;
1650 Index_Typ : Entity_Id)
1652 Id : constant Entity_Id := Defining_Identifier (N);
1653 Loc : constant Source_Ptr := Sloc (N);
1655 Choice : Node_Id;
1656 Dummy : Boolean;
1657 Ent : Entity_Id;
1659 begin
1660 Choice := First (Discrete_Choices (N));
1662 while Present (Choice) loop
1663 if Nkind (Choice) = N_Others_Choice then
1664 Others_Present := True;
1666 else
1667 Analyze_And_Resolve (Choice, Index_Typ);
1668 end if;
1670 Next (Choice);
1671 end loop;
1673 -- Create a scope in which to introduce an index, which is usually
1674 -- visible in the expression for the component, and needed for its
1675 -- analysis.
1677 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
1678 Set_Etype (Ent, Standard_Void_Type);
1679 Set_Parent (Ent, Parent (N));
1681 -- Decorate the index variable in the current scope. The association
1682 -- may have several choices, each one leading to a loop, so we create
1683 -- this variable only once to prevent homonyms in this scope.
1685 if No (Scope (Id)) then
1686 Enter_Name (Id);
1687 Set_Etype (Id, Index_Typ);
1688 Set_Ekind (Id, E_Variable);
1689 Set_Scope (Id, Ent);
1690 end if;
1692 Push_Scope (Ent);
1693 Dummy := Resolve_Aggr_Expr (Expression (N), False);
1694 End_Scope;
1695 end Resolve_Iterated_Component_Association;
1697 -- Local variables
1699 Assoc : Node_Id;
1700 Choice : Node_Id;
1701 Expr : Node_Id;
1702 Discard : Node_Id;
1704 Aggr_Low : Node_Id := Empty;
1705 Aggr_High : Node_Id := Empty;
1706 -- The actual low and high bounds of this sub-aggregate
1708 Case_Table_Size : Nat;
1709 -- Contains the size of the case table needed to sort aggregate choices
1711 Choices_Low : Node_Id := Empty;
1712 Choices_High : Node_Id := Empty;
1713 -- The lowest and highest discrete choices values for a named aggregate
1715 Delete_Choice : Boolean;
1716 -- Used when replacing a subtype choice with predicate by a list
1718 Nb_Elements : Uint := Uint_0;
1719 -- The number of elements in a positional aggregate
1721 Nb_Discrete_Choices : Nat := 0;
1722 -- The overall number of discrete choices (not counting others choice)
1724 -- Start of processing for Resolve_Array_Aggregate
1726 begin
1727 -- Ignore junk empty aggregate resulting from parser error
1729 if No (Expressions (N))
1730 and then No (Component_Associations (N))
1731 and then not Null_Record_Present (N)
1732 then
1733 return False;
1734 end if;
1736 -- STEP 1: make sure the aggregate is correctly formatted
1738 if Present (Component_Associations (N)) then
1739 Assoc := First (Component_Associations (N));
1740 while Present (Assoc) loop
1741 if Nkind (Assoc) = N_Iterated_Component_Association then
1742 Resolve_Iterated_Component_Association (Assoc, Index_Typ);
1743 end if;
1745 Choice := First (Choice_List (Assoc));
1746 Delete_Choice := False;
1747 while Present (Choice) loop
1748 if Nkind (Choice) = N_Others_Choice then
1749 Others_Present := True;
1751 if Choice /= First (Choice_List (Assoc))
1752 or else Present (Next (Choice))
1753 then
1754 Error_Msg_N
1755 ("OTHERS must appear alone in a choice list", Choice);
1756 return Failure;
1757 end if;
1759 if Present (Next (Assoc)) then
1760 Error_Msg_N
1761 ("OTHERS must appear last in an aggregate", Choice);
1762 return Failure;
1763 end if;
1765 if Ada_Version = Ada_83
1766 and then Assoc /= First (Component_Associations (N))
1767 and then Nkind_In (Parent (N), N_Assignment_Statement,
1768 N_Object_Declaration)
1769 then
1770 Error_Msg_N
1771 ("(Ada 83) illegal context for OTHERS choice", N);
1772 end if;
1774 elsif Is_Entity_Name (Choice) then
1775 Analyze (Choice);
1777 declare
1778 E : constant Entity_Id := Entity (Choice);
1779 New_Cs : List_Id;
1780 P : Node_Id;
1781 C : Node_Id;
1783 begin
1784 if Is_Type (E) and then Has_Predicates (E) then
1785 Freeze_Before (N, E);
1787 if Has_Dynamic_Predicate_Aspect (E) then
1788 Error_Msg_NE
1789 ("subtype& has dynamic predicate, not allowed "
1790 & "in aggregate choice", Choice, E);
1792 elsif not Is_OK_Static_Subtype (E) then
1793 Error_Msg_NE
1794 ("non-static subtype& has predicate, not allowed "
1795 & "in aggregate choice", Choice, E);
1796 end if;
1798 -- If the subtype has a static predicate, replace the
1799 -- original choice with the list of individual values
1800 -- covered by the predicate. Do not perform this
1801 -- transformation if we need to preserve the source
1802 -- for ASIS use.
1803 -- This should be deferred to expansion time ???
1805 if Present (Static_Discrete_Predicate (E))
1806 and then not ASIS_Mode
1807 then
1808 Delete_Choice := True;
1810 New_Cs := New_List;
1811 P := First (Static_Discrete_Predicate (E));
1812 while Present (P) loop
1813 C := New_Copy (P);
1814 Set_Sloc (C, Sloc (Choice));
1815 Append_To (New_Cs, C);
1816 Next (P);
1817 end loop;
1819 Insert_List_After (Choice, New_Cs);
1820 end if;
1821 end if;
1822 end;
1823 end if;
1825 Nb_Choices := Nb_Choices + 1;
1827 declare
1828 C : constant Node_Id := Choice;
1830 begin
1831 Next (Choice);
1833 if Delete_Choice then
1834 Remove (C);
1835 Nb_Choices := Nb_Choices - 1;
1836 Delete_Choice := False;
1837 end if;
1838 end;
1839 end loop;
1841 Next (Assoc);
1842 end loop;
1843 end if;
1845 -- At this point we know that the others choice, if present, is by
1846 -- itself and appears last in the aggregate. Check if we have mixed
1847 -- positional and discrete associations (other than the others choice).
1849 if Present (Expressions (N))
1850 and then (Nb_Choices > 1
1851 or else (Nb_Choices = 1 and then not Others_Present))
1852 then
1853 Error_Msg_N
1854 ("named association cannot follow positional association",
1855 First (Choice_List (First (Component_Associations (N)))));
1856 return Failure;
1857 end if;
1859 -- Test for the validity of an others choice if present
1861 if Others_Present and then not Others_Allowed then
1862 Error_Msg_N
1863 ("OTHERS choice not allowed here",
1864 First (Choices (First (Component_Associations (N)))));
1865 return Failure;
1866 end if;
1868 -- Protect against cascaded errors
1870 if Etype (Index_Typ) = Any_Type then
1871 return Failure;
1872 end if;
1874 -- STEP 2: Process named components
1876 if No (Expressions (N)) then
1877 if Others_Present then
1878 Case_Table_Size := Nb_Choices - 1;
1879 else
1880 Case_Table_Size := Nb_Choices;
1881 end if;
1883 Step_2 : declare
1884 function Empty_Range (A : Node_Id) return Boolean;
1885 -- If an association covers an empty range, some warnings on the
1886 -- expression of the association can be disabled.
1888 -----------------
1889 -- Empty_Range --
1890 -----------------
1892 function Empty_Range (A : Node_Id) return Boolean is
1893 R : constant Node_Id := First (Choices (A));
1894 begin
1895 return No (Next (R))
1896 and then Nkind (R) = N_Range
1897 and then Compile_Time_Compare
1898 (Low_Bound (R), High_Bound (R), False) = GT;
1899 end Empty_Range;
1901 -- Local variables
1903 Low : Node_Id;
1904 High : Node_Id;
1905 -- Denote the lowest and highest values in an aggregate choice
1907 S_Low : Node_Id := Empty;
1908 S_High : Node_Id := Empty;
1909 -- if a choice in an aggregate is a subtype indication these
1910 -- denote the lowest and highest values of the subtype
1912 Table : Case_Table_Type (0 .. Case_Table_Size);
1913 -- Used to sort all the different choice values. Entry zero is
1914 -- reserved for sorting purposes.
1916 Single_Choice : Boolean;
1917 -- Set to true every time there is a single discrete choice in a
1918 -- discrete association
1920 Prev_Nb_Discrete_Choices : Nat;
1921 -- Used to keep track of the number of discrete choices in the
1922 -- current association.
1924 Errors_Posted_On_Choices : Boolean := False;
1925 -- Keeps track of whether any choices have semantic errors
1927 -- Start of processing for Step_2
1929 begin
1930 -- STEP 2 (A): Check discrete choices validity
1932 Assoc := First (Component_Associations (N));
1933 while Present (Assoc) loop
1934 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1935 Choice := First (Choice_List (Assoc));
1937 loop
1938 Analyze (Choice);
1940 if Nkind (Choice) = N_Others_Choice then
1941 Single_Choice := False;
1942 exit;
1944 -- Test for subtype mark without constraint
1946 elsif Is_Entity_Name (Choice) and then
1947 Is_Type (Entity (Choice))
1948 then
1949 if Base_Type (Entity (Choice)) /= Index_Base then
1950 Error_Msg_N
1951 ("invalid subtype mark in aggregate choice",
1952 Choice);
1953 return Failure;
1954 end if;
1956 -- Case of subtype indication
1958 elsif Nkind (Choice) = N_Subtype_Indication then
1959 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1961 if Has_Dynamic_Predicate_Aspect
1962 (Entity (Subtype_Mark (Choice)))
1963 then
1964 Error_Msg_NE
1965 ("subtype& has dynamic predicate, "
1966 & "not allowed in aggregate choice",
1967 Choice, Entity (Subtype_Mark (Choice)));
1968 end if;
1970 -- Does the subtype indication evaluation raise CE?
1972 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1973 Get_Index_Bounds (Choice, Low, High);
1974 Check_Bounds (S_Low, S_High, Low, High);
1976 -- Case of range or expression
1978 else
1979 Resolve (Choice, Index_Base);
1980 Check_Unset_Reference (Choice);
1981 Check_Non_Static_Context (Choice);
1983 -- If semantic errors were posted on the choice, then
1984 -- record that for possible early return from later
1985 -- processing (see handling of enumeration choices).
1987 if Error_Posted (Choice) then
1988 Errors_Posted_On_Choices := True;
1989 end if;
1991 -- Do not range check a choice. This check is redundant
1992 -- since this test is already done when we check that the
1993 -- bounds of the array aggregate are within range.
1995 Set_Do_Range_Check (Choice, False);
1997 -- In SPARK, the choice must be static
1999 if not (Is_OK_Static_Expression (Choice)
2000 or else (Nkind (Choice) = N_Range
2001 and then Is_OK_Static_Range (Choice)))
2002 then
2003 Check_SPARK_05_Restriction
2004 ("choice should be static", Choice);
2005 end if;
2006 end if;
2008 -- If we could not resolve the discrete choice stop here
2010 if Etype (Choice) = Any_Type then
2011 return Failure;
2013 -- If the discrete choice raises CE get its original bounds
2015 elsif Nkind (Choice) = N_Raise_Constraint_Error then
2016 Set_Raises_Constraint_Error (N);
2017 Get_Index_Bounds (Original_Node (Choice), Low, High);
2019 -- Otherwise get its bounds as usual
2021 else
2022 Get_Index_Bounds (Choice, Low, High);
2023 end if;
2025 if (Dynamic_Or_Null_Range (Low, High)
2026 or else (Nkind (Choice) = N_Subtype_Indication
2027 and then
2028 Dynamic_Or_Null_Range (S_Low, S_High)))
2029 and then Nb_Choices /= 1
2030 then
2031 Error_Msg_N
2032 ("dynamic or empty choice in aggregate "
2033 & "must be the only choice", Choice);
2034 return Failure;
2035 end if;
2037 if not (All_Composite_Constraints_Static (Low)
2038 and then All_Composite_Constraints_Static (High)
2039 and then All_Composite_Constraints_Static (S_Low)
2040 and then All_Composite_Constraints_Static (S_High))
2041 then
2042 Check_Restriction (No_Dynamic_Sized_Objects, Choice);
2043 end if;
2045 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
2046 Table (Nb_Discrete_Choices).Lo := Low;
2047 Table (Nb_Discrete_Choices).Hi := High;
2048 Table (Nb_Discrete_Choices).Choice := Choice;
2050 Next (Choice);
2052 if No (Choice) then
2054 -- Check if we have a single discrete choice and whether
2055 -- this discrete choice specifies a single value.
2057 Single_Choice :=
2058 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
2059 and then (Low = High);
2061 exit;
2062 end if;
2063 end loop;
2065 -- Ada 2005 (AI-231)
2067 if Ada_Version >= Ada_2005
2068 and then Known_Null (Expression (Assoc))
2069 and then not Empty_Range (Assoc)
2070 then
2071 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2072 end if;
2074 -- Ada 2005 (AI-287): In case of default initialized component
2075 -- we delay the resolution to the expansion phase.
2077 if Box_Present (Assoc) then
2079 -- Ada 2005 (AI-287): In case of default initialization of a
2080 -- component the expander will generate calls to the
2081 -- corresponding initialization subprogram. We need to call
2082 -- Resolve_Aggr_Expr to check the rules about
2083 -- dimensionality.
2085 if not Resolve_Aggr_Expr
2086 (Assoc, Single_Elmt => Single_Choice)
2087 then
2088 return Failure;
2089 end if;
2091 elsif Nkind (Assoc) = N_Iterated_Component_Association then
2092 null; -- handled above, in a loop context.
2094 elsif not Resolve_Aggr_Expr
2095 (Expression (Assoc), Single_Elmt => Single_Choice)
2096 then
2097 return Failure;
2099 -- Check incorrect use of dynamically tagged expression
2101 -- We differentiate here two cases because the expression may
2102 -- not be decorated. For example, the analysis and resolution
2103 -- of the expression associated with the others choice will be
2104 -- done later with the full aggregate. In such case we
2105 -- duplicate the expression tree to analyze the copy and
2106 -- perform the required check.
2108 elsif not Present (Etype (Expression (Assoc))) then
2109 declare
2110 Save_Analysis : constant Boolean := Full_Analysis;
2111 Expr : constant Node_Id :=
2112 New_Copy_Tree (Expression (Assoc));
2114 begin
2115 Expander_Mode_Save_And_Set (False);
2116 Full_Analysis := False;
2118 -- Analyze the expression, making sure it is properly
2119 -- attached to the tree before we do the analysis.
2121 Set_Parent (Expr, Parent (Expression (Assoc)));
2122 Analyze (Expr);
2124 -- Compute its dimensions now, rather than at the end of
2125 -- resolution, because in the case of multidimensional
2126 -- aggregates subsequent expansion may lead to spurious
2127 -- errors.
2129 Check_Expression_Dimensions (Expr, Component_Typ);
2131 -- If the expression is a literal, propagate this info
2132 -- to the expression in the association, to enable some
2133 -- optimizations downstream.
2135 if Is_Entity_Name (Expr)
2136 and then Present (Entity (Expr))
2137 and then Ekind (Entity (Expr)) = E_Enumeration_Literal
2138 then
2139 Analyze_And_Resolve
2140 (Expression (Assoc), Component_Typ);
2141 end if;
2143 Full_Analysis := Save_Analysis;
2144 Expander_Mode_Restore;
2146 if Is_Tagged_Type (Etype (Expr)) then
2147 Check_Dynamically_Tagged_Expression
2148 (Expr => Expr,
2149 Typ => Component_Type (Etype (N)),
2150 Related_Nod => N);
2151 end if;
2152 end;
2154 elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
2155 Check_Dynamically_Tagged_Expression
2156 (Expr => Expression (Assoc),
2157 Typ => Component_Type (Etype (N)),
2158 Related_Nod => N);
2159 end if;
2161 Next (Assoc);
2162 end loop;
2164 -- If aggregate contains more than one choice then these must be
2165 -- static. Check for duplicate and missing values.
2167 -- Note: there is duplicated code here wrt Check_Choice_Set in
2168 -- the body of Sem_Case, and it is possible we could just reuse
2169 -- that procedure. To be checked ???
2171 if Nb_Discrete_Choices > 1 then
2172 Check_Choices : declare
2173 Choice : Node_Id;
2174 -- Location of choice for messages
2176 Hi_Val : Uint;
2177 Lo_Val : Uint;
2178 -- High end of one range and Low end of the next. Should be
2179 -- contiguous if there is no hole in the list of values.
2181 Lo_Dup : Uint;
2182 Hi_Dup : Uint;
2183 -- End points of duplicated range
2185 Missing_Or_Duplicates : Boolean := False;
2186 -- Set True if missing or duplicate choices found
2188 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
2189 -- Output continuation message with a representation of the
2190 -- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
2191 -- choice node where the message is to be posted.
2193 ------------------------
2194 -- Output_Bad_Choices --
2195 ------------------------
2197 procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
2198 begin
2199 -- Enumeration type case
2201 if Is_Enumeration_Type (Index_Typ) then
2202 Error_Msg_Name_1 :=
2203 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
2204 Error_Msg_Name_2 :=
2205 Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
2207 if Lo = Hi then
2208 Error_Msg_N ("\\ %!", C);
2209 else
2210 Error_Msg_N ("\\ % .. %!", C);
2211 end if;
2213 -- Integer types case
2215 else
2216 Error_Msg_Uint_1 := Lo;
2217 Error_Msg_Uint_2 := Hi;
2219 if Lo = Hi then
2220 Error_Msg_N ("\\ ^!", C);
2221 else
2222 Error_Msg_N ("\\ ^ .. ^!", C);
2223 end if;
2224 end if;
2225 end Output_Bad_Choices;
2227 -- Start of processing for Check_Choices
2229 begin
2230 Sort_Case_Table (Table);
2232 -- First we do a quick linear loop to find out if we have
2233 -- any duplicates or missing entries (usually we have a
2234 -- legal aggregate, so this will get us out quickly).
2236 for J in 1 .. Nb_Discrete_Choices - 1 loop
2237 Hi_Val := Expr_Value (Table (J).Hi);
2238 Lo_Val := Expr_Value (Table (J + 1).Lo);
2240 if Lo_Val <= Hi_Val
2241 or else (Lo_Val > Hi_Val + 1
2242 and then not Others_Present)
2243 then
2244 Missing_Or_Duplicates := True;
2245 exit;
2246 end if;
2247 end loop;
2249 -- If we have missing or duplicate entries, first fill in
2250 -- the Highest entries to make life easier in the following
2251 -- loops to detect bad entries.
2253 if Missing_Or_Duplicates then
2254 Table (1).Highest := Expr_Value (Table (1).Hi);
2256 for J in 2 .. Nb_Discrete_Choices loop
2257 Table (J).Highest :=
2258 UI_Max
2259 (Table (J - 1).Highest, Expr_Value (Table (J).Hi));
2260 end loop;
2262 -- Loop through table entries to find duplicate indexes
2264 for J in 2 .. Nb_Discrete_Choices loop
2265 Lo_Val := Expr_Value (Table (J).Lo);
2266 Hi_Val := Expr_Value (Table (J).Hi);
2268 -- Case where we have duplicates (the lower bound of
2269 -- this choice is less than or equal to the highest
2270 -- high bound found so far).
2272 if Lo_Val <= Table (J - 1).Highest then
2274 -- We move backwards looking for duplicates. We can
2275 -- abandon this loop as soon as we reach a choice
2276 -- highest value that is less than Lo_Val.
2278 for K in reverse 1 .. J - 1 loop
2279 exit when Table (K).Highest < Lo_Val;
2281 -- Here we may have duplicates between entries
2282 -- for K and J. Get range of duplicates.
2284 Lo_Dup :=
2285 UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
2286 Hi_Dup :=
2287 UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
2289 -- Nothing to do if duplicate range is null
2291 if Lo_Dup > Hi_Dup then
2292 null;
2294 -- Otherwise place proper message. Because
2295 -- of the missing expansion of subtypes with
2296 -- predicates in ASIS mode, do not report
2297 -- spurious overlap errors.
2299 elsif ASIS_Mode
2300 and then
2301 ((Is_Type (Entity (Table (J).Choice))
2302 and then Has_Predicates
2303 (Entity (Table (J).Choice)))
2304 or else
2305 (Is_Type (Entity (Table (K).Choice))
2306 and then Has_Predicates
2307 (Entity (Table (K).Choice))))
2308 then
2309 null;
2311 else
2312 -- We place message on later choice, with a
2313 -- line reference to the earlier choice.
2315 if Sloc (Table (J).Choice) <
2316 Sloc (Table (K).Choice)
2317 then
2318 Choice := Table (K).Choice;
2319 Error_Msg_Sloc := Sloc (Table (J).Choice);
2320 else
2321 Choice := Table (J).Choice;
2322 Error_Msg_Sloc := Sloc (Table (K).Choice);
2323 end if;
2325 if Lo_Dup = Hi_Dup then
2326 Error_Msg_N
2327 ("index value in array aggregate "
2328 & "duplicates the one given#!", Choice);
2329 else
2330 Error_Msg_N
2331 ("index values in array aggregate "
2332 & "duplicate those given#!", Choice);
2333 end if;
2335 Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
2336 end if;
2337 end loop;
2338 end if;
2339 end loop;
2341 -- Loop through entries in table to find missing indexes.
2342 -- Not needed if others, since missing impossible.
2344 if not Others_Present then
2345 for J in 2 .. Nb_Discrete_Choices loop
2346 Lo_Val := Expr_Value (Table (J).Lo);
2347 Hi_Val := Table (J - 1).Highest;
2349 if Lo_Val > Hi_Val + 1 then
2351 declare
2352 Error_Node : Node_Id;
2354 begin
2355 -- If the choice is the bound of a range in
2356 -- a subtype indication, it is not in the
2357 -- source lists for the aggregate itself, so
2358 -- post the error on the aggregate. Otherwise
2359 -- post it on choice itself.
2361 Choice := Table (J).Choice;
2363 if Is_List_Member (Choice) then
2364 Error_Node := Choice;
2365 else
2366 Error_Node := N;
2367 end if;
2369 if Hi_Val + 1 = Lo_Val - 1 then
2370 Error_Msg_N
2371 ("missing index value "
2372 & "in array aggregate!", Error_Node);
2373 else
2374 Error_Msg_N
2375 ("missing index values "
2376 & "in array aggregate!", Error_Node);
2377 end if;
2379 Output_Bad_Choices
2380 (Hi_Val + 1, Lo_Val - 1, Error_Node);
2381 end;
2382 end if;
2383 end loop;
2384 end if;
2386 -- If either missing or duplicate values, return failure
2388 Set_Etype (N, Any_Composite);
2389 return Failure;
2390 end if;
2391 end Check_Choices;
2392 end if;
2394 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
2396 if Nb_Discrete_Choices > 0 then
2397 Choices_Low := Table (1).Lo;
2398 Choices_High := Table (Nb_Discrete_Choices).Hi;
2399 end if;
2401 -- If Others is present, then bounds of aggregate come from the
2402 -- index constraint (not the choices in the aggregate itself).
2404 if Others_Present then
2405 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2407 -- Abandon processing if either bound is already signalled as
2408 -- an error (prevents junk cascaded messages and blow ups).
2410 if Nkind (Aggr_Low) = N_Error
2411 or else
2412 Nkind (Aggr_High) = N_Error
2413 then
2414 return False;
2415 end if;
2417 -- No others clause present
2419 else
2420 -- Special processing if others allowed and not present. This
2421 -- means that the bounds of the aggregate come from the index
2422 -- constraint (and the length must match).
2424 if Others_Allowed then
2425 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2427 -- Abandon processing if either bound is already signalled
2428 -- as an error (stop junk cascaded messages and blow ups).
2430 if Nkind (Aggr_Low) = N_Error
2431 or else
2432 Nkind (Aggr_High) = N_Error
2433 then
2434 return False;
2435 end if;
2437 -- If others allowed, and no others present, then the array
2438 -- should cover all index values. If it does not, we will
2439 -- get a length check warning, but there is two cases where
2440 -- an additional warning is useful:
2442 -- If we have no positional components, and the length is
2443 -- wrong (which we can tell by others being allowed with
2444 -- missing components), and the index type is an enumeration
2445 -- type, then issue appropriate warnings about these missing
2446 -- components. They are only warnings, since the aggregate
2447 -- is fine, it's just the wrong length. We skip this check
2448 -- for standard character types (since there are no literals
2449 -- and it is too much trouble to concoct them), and also if
2450 -- any of the bounds have values that are not known at
2451 -- compile time.
2453 -- Another case warranting a warning is when the length
2454 -- is right, but as above we have an index type that is
2455 -- an enumeration, and the bounds do not match. This is a
2456 -- case where dubious sliding is allowed and we generate a
2457 -- warning that the bounds do not match.
2459 if No (Expressions (N))
2460 and then Nkind (Index) = N_Range
2461 and then Is_Enumeration_Type (Etype (Index))
2462 and then not Is_Standard_Character_Type (Etype (Index))
2463 and then Compile_Time_Known_Value (Aggr_Low)
2464 and then Compile_Time_Known_Value (Aggr_High)
2465 and then Compile_Time_Known_Value (Choices_Low)
2466 and then Compile_Time_Known_Value (Choices_High)
2467 then
2468 -- If any of the expressions or range bounds in choices
2469 -- have semantic errors, then do not attempt further
2470 -- resolution, to prevent cascaded errors.
2472 if Errors_Posted_On_Choices then
2473 return Failure;
2474 end if;
2476 declare
2477 ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
2478 AHi : constant Node_Id := Expr_Value_E (Aggr_High);
2479 CLo : constant Node_Id := Expr_Value_E (Choices_Low);
2480 CHi : constant Node_Id := Expr_Value_E (Choices_High);
2482 Ent : Entity_Id;
2484 begin
2485 -- Warning case 1, missing values at start/end. Only
2486 -- do the check if the number of entries is too small.
2488 if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2490 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2491 then
2492 Error_Msg_N
2493 ("missing index value(s) in array aggregate??",
2496 -- Output missing value(s) at start
2498 if Chars (ALo) /= Chars (CLo) then
2499 Ent := Prev (CLo);
2501 if Chars (ALo) = Chars (Ent) then
2502 Error_Msg_Name_1 := Chars (ALo);
2503 Error_Msg_N ("\ %??", N);
2504 else
2505 Error_Msg_Name_1 := Chars (ALo);
2506 Error_Msg_Name_2 := Chars (Ent);
2507 Error_Msg_N ("\ % .. %??", N);
2508 end if;
2509 end if;
2511 -- Output missing value(s) at end
2513 if Chars (AHi) /= Chars (CHi) then
2514 Ent := Next (CHi);
2516 if Chars (AHi) = Chars (Ent) then
2517 Error_Msg_Name_1 := Chars (Ent);
2518 Error_Msg_N ("\ %??", N);
2519 else
2520 Error_Msg_Name_1 := Chars (Ent);
2521 Error_Msg_Name_2 := Chars (AHi);
2522 Error_Msg_N ("\ % .. %??", N);
2523 end if;
2524 end if;
2526 -- Warning case 2, dubious sliding. The First_Subtype
2527 -- test distinguishes between a constrained type where
2528 -- sliding is not allowed (so we will get a warning
2529 -- later that Constraint_Error will be raised), and
2530 -- the unconstrained case where sliding is permitted.
2532 elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
2534 (Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
2535 and then Chars (ALo) /= Chars (CLo)
2536 and then
2537 not Is_Constrained (First_Subtype (Etype (N)))
2538 then
2539 Error_Msg_N
2540 ("bounds of aggregate do not match target??", N);
2541 end if;
2542 end;
2543 end if;
2544 end if;
2546 -- If no others, aggregate bounds come from aggregate
2548 Aggr_Low := Choices_Low;
2549 Aggr_High := Choices_High;
2550 end if;
2551 end Step_2;
2553 -- STEP 3: Process positional components
2555 else
2556 -- STEP 3 (A): Process positional elements
2558 Expr := First (Expressions (N));
2559 Nb_Elements := Uint_0;
2560 while Present (Expr) loop
2561 Nb_Elements := Nb_Elements + 1;
2563 -- Ada 2005 (AI-231)
2565 if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
2566 Check_Can_Never_Be_Null (Etype (N), Expr);
2567 end if;
2569 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
2570 return Failure;
2571 end if;
2573 -- Check incorrect use of dynamically tagged expression
2575 if Is_Tagged_Type (Etype (Expr)) then
2576 Check_Dynamically_Tagged_Expression
2577 (Expr => Expr,
2578 Typ => Component_Type (Etype (N)),
2579 Related_Nod => N);
2580 end if;
2582 Next (Expr);
2583 end loop;
2585 if Others_Present then
2586 Assoc := Last (Component_Associations (N));
2588 -- Ada 2005 (AI-231)
2590 if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
2591 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
2592 end if;
2594 -- Ada 2005 (AI-287): In case of default initialized component,
2595 -- we delay the resolution to the expansion phase.
2597 if Box_Present (Assoc) then
2599 -- Ada 2005 (AI-287): In case of default initialization of a
2600 -- component the expander will generate calls to the
2601 -- corresponding initialization subprogram. We need to call
2602 -- Resolve_Aggr_Expr to check the rules about
2603 -- dimensionality.
2605 if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
2606 return Failure;
2607 end if;
2609 elsif not Resolve_Aggr_Expr (Expression (Assoc),
2610 Single_Elmt => False)
2611 then
2612 return Failure;
2614 -- Check incorrect use of dynamically tagged expression. The
2615 -- expression of the others choice has not been resolved yet.
2616 -- In order to diagnose the semantic error we create a duplicate
2617 -- tree to analyze it and perform the check.
2619 else
2620 declare
2621 Save_Analysis : constant Boolean := Full_Analysis;
2622 Expr : constant Node_Id :=
2623 New_Copy_Tree (Expression (Assoc));
2625 begin
2626 Expander_Mode_Save_And_Set (False);
2627 Full_Analysis := False;
2628 Analyze (Expr);
2629 Full_Analysis := Save_Analysis;
2630 Expander_Mode_Restore;
2632 if Is_Tagged_Type (Etype (Expr)) then
2633 Check_Dynamically_Tagged_Expression
2634 (Expr => Expr,
2635 Typ => Component_Type (Etype (N)),
2636 Related_Nod => N);
2637 end if;
2638 end;
2639 end if;
2640 end if;
2642 -- STEP 3 (B): Compute the aggregate bounds
2644 if Others_Present then
2645 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
2647 else
2648 if Others_Allowed then
2649 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
2650 else
2651 Aggr_Low := Index_Typ_Low;
2652 end if;
2654 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
2655 Check_Bound (Index_Base_High, Aggr_High);
2656 end if;
2657 end if;
2659 -- STEP 4: Perform static aggregate checks and save the bounds
2661 -- Check (A)
2663 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
2664 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
2666 -- Check (B)
2668 if Others_Present and then Nb_Discrete_Choices > 0 then
2669 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
2670 Check_Bounds (Index_Typ_Low, Index_Typ_High,
2671 Choices_Low, Choices_High);
2672 Check_Bounds (Index_Base_Low, Index_Base_High,
2673 Choices_Low, Choices_High);
2675 -- Check (C)
2677 elsif Others_Present and then Nb_Elements > 0 then
2678 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
2679 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
2680 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
2681 end if;
2683 if Raises_Constraint_Error (Aggr_Low)
2684 or else Raises_Constraint_Error (Aggr_High)
2685 then
2686 Set_Raises_Constraint_Error (N);
2687 end if;
2689 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
2691 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
2692 -- since the addition node returned by Add is not yet analyzed. Attach
2693 -- to tree and analyze first. Reset analyzed flag to ensure it will get
2694 -- analyzed when it is a literal bound whose type must be properly set.
2696 if Others_Present or else Nb_Discrete_Choices > 0 then
2697 Aggr_High := Duplicate_Subexpr (Aggr_High);
2699 if Etype (Aggr_High) = Universal_Integer then
2700 Set_Analyzed (Aggr_High, False);
2701 end if;
2702 end if;
2704 -- If the aggregate already has bounds attached to it, it means this is
2705 -- a positional aggregate created as an optimization by
2706 -- Exp_Aggr.Convert_To_Positional, so we don't want to change those
2707 -- bounds.
2709 if Present (Aggregate_Bounds (N)) and then not Others_Allowed then
2710 Aggr_Low := Low_Bound (Aggregate_Bounds (N));
2711 Aggr_High := High_Bound (Aggregate_Bounds (N));
2712 end if;
2714 Set_Aggregate_Bounds
2715 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
2717 -- The bounds may contain expressions that must be inserted upwards.
2718 -- Attach them fully to the tree. After analysis, remove side effects
2719 -- from upper bound, if still needed.
2721 Set_Parent (Aggregate_Bounds (N), N);
2722 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
2723 Check_Unset_Reference (Aggregate_Bounds (N));
2725 if not Others_Present and then Nb_Discrete_Choices = 0 then
2726 Set_High_Bound
2727 (Aggregate_Bounds (N),
2728 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
2729 end if;
2731 -- Check the dimensions of each component in the array aggregate
2733 Analyze_Dimension_Array_Aggregate (N, Component_Typ);
2735 return Success;
2736 end Resolve_Array_Aggregate;
2738 -----------------------------
2739 -- Resolve_Delta_Aggregate --
2740 -----------------------------
2742 procedure Resolve_Delta_Aggregate (N : Node_Id; Typ : Entity_Id) is
2743 Base : constant Node_Id := Expression (N);
2744 Deltas : constant List_Id := Component_Associations (N);
2746 function Get_Component_Type (Nam : Node_Id) return Entity_Id;
2748 ------------------------
2749 -- Get_Component_Type --
2750 ------------------------
2752 function Get_Component_Type (Nam : Node_Id) return Entity_Id is
2753 Comp : Entity_Id;
2755 begin
2756 Comp := First_Entity (Typ);
2758 while Present (Comp) loop
2759 if Chars (Comp) = Chars (Nam) then
2760 if Ekind (Comp) = E_Discriminant then
2761 Error_Msg_N ("delta cannot apply to discriminant", Nam);
2762 end if;
2764 return Etype (Comp);
2765 end if;
2767 Comp := Next_Entity (Comp);
2768 end loop;
2770 Error_Msg_NE ("type& has no component with this name", Nam, Typ);
2771 return Any_Type;
2772 end Get_Component_Type;
2774 -- Local variables
2776 Assoc : Node_Id;
2777 Choice : Node_Id;
2778 Comp_Type : Entity_Id;
2779 Index_Type : Entity_Id;
2781 -- Start of processing for Resolve_Delta_Aggregate
2783 begin
2784 if not Is_Composite_Type (Typ) then
2785 Error_Msg_N ("not a composite type", N);
2786 end if;
2788 Analyze_And_Resolve (Base, Typ);
2790 if Is_Array_Type (Typ) then
2791 Index_Type := Etype (First_Index (Typ));
2792 Assoc := First (Deltas);
2793 while Present (Assoc) loop
2794 if Nkind (Assoc) = N_Iterated_Component_Association then
2795 Choice := First (Choice_List (Assoc));
2796 while Present (Choice) loop
2797 if Nkind (Choice) = N_Others_Choice then
2798 Error_Msg_N
2799 ("others not allowed in delta aggregate", Choice);
2801 else
2802 Analyze_And_Resolve (Choice, Index_Type);
2803 end if;
2805 Next (Choice);
2806 end loop;
2808 declare
2809 Id : constant Entity_Id := Defining_Identifier (Assoc);
2810 Ent : constant Entity_Id :=
2811 New_Internal_Entity
2812 (E_Loop, Current_Scope, Sloc (Assoc), 'L');
2814 begin
2815 Set_Etype (Ent, Standard_Void_Type);
2816 Set_Parent (Ent, Assoc);
2818 if No (Scope (Id)) then
2819 Enter_Name (Id);
2820 Set_Etype (Id, Index_Type);
2821 Set_Ekind (Id, E_Variable);
2822 Set_Scope (Id, Ent);
2823 end if;
2825 Push_Scope (Ent);
2826 Analyze_And_Resolve
2827 (New_Copy_Tree (Expression (Assoc)), Component_Type (Typ));
2828 End_Scope;
2829 end;
2831 else
2832 Choice := First (Choice_List (Assoc));
2833 while Present (Choice) loop
2834 if Nkind (Choice) = N_Others_Choice then
2835 Error_Msg_N
2836 ("others not allowed in delta aggregate", Choice);
2838 else
2839 Analyze (Choice);
2840 if Is_Entity_Name (Choice)
2841 and then Is_Type (Entity (Choice))
2842 then
2843 -- Choice covers a range of values.
2844 if Base_Type (Entity (Choice)) /=
2845 Base_Type (Index_Type)
2846 then
2847 Error_Msg_NE
2848 ("choice does mat match index type of",
2849 Choice, Typ);
2850 end if;
2851 else
2852 Resolve (Choice, Index_Type);
2853 end if;
2854 end if;
2856 Next (Choice);
2857 end loop;
2859 Analyze_And_Resolve (Expression (Assoc), Component_Type (Typ));
2860 end if;
2862 Next (Assoc);
2863 end loop;
2865 else
2866 Assoc := First (Deltas);
2867 while Present (Assoc) loop
2868 Choice := First (Choice_List (Assoc));
2869 while Present (Choice) loop
2870 Comp_Type := Get_Component_Type (Choice);
2871 Next (Choice);
2872 end loop;
2874 Analyze_And_Resolve (Expression (Assoc), Comp_Type);
2875 Next (Assoc);
2876 end loop;
2877 end if;
2879 Set_Etype (N, Typ);
2880 end Resolve_Delta_Aggregate;
2882 ---------------------------------
2883 -- Resolve_Extension_Aggregate --
2884 ---------------------------------
2886 -- There are two cases to consider:
2888 -- a) If the ancestor part is a type mark, the components needed are the
2889 -- difference between the components of the expected type and the
2890 -- components of the given type mark.
2892 -- b) If the ancestor part is an expression, it must be unambiguous, and
2893 -- once we have its type we can also compute the needed components as in
2894 -- the previous case. In both cases, if the ancestor type is not the
2895 -- immediate ancestor, we have to build this ancestor recursively.
2897 -- In both cases, discriminants of the ancestor type do not play a role in
2898 -- the resolution of the needed components, because inherited discriminants
2899 -- cannot be used in a type extension. As a result we can compute
2900 -- independently the list of components of the ancestor type and of the
2901 -- expected type.
2903 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
2904 A : constant Node_Id := Ancestor_Part (N);
2905 A_Type : Entity_Id;
2906 I : Interp_Index;
2907 It : Interp;
2909 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
2910 -- If the type is limited, verify that the ancestor part is a legal
2911 -- expression (aggregate or function call, including 'Input)) that does
2912 -- not require a copy, as specified in 7.5(2).
2914 function Valid_Ancestor_Type return Boolean;
2915 -- Verify that the type of the ancestor part is a non-private ancestor
2916 -- of the expected type, which must be a type extension.
2918 ----------------------------
2919 -- Valid_Limited_Ancestor --
2920 ----------------------------
2922 function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
2923 begin
2924 if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
2925 return True;
2927 -- The ancestor must be a call or an aggregate, but a call may
2928 -- have been expanded into a temporary, so check original node.
2930 elsif Nkind_In (Anc, N_Aggregate,
2931 N_Extension_Aggregate,
2932 N_Function_Call)
2933 then
2934 return True;
2936 elsif Nkind (Original_Node (Anc)) = N_Function_Call then
2937 return True;
2939 elsif Nkind (Anc) = N_Attribute_Reference
2940 and then Attribute_Name (Anc) = Name_Input
2941 then
2942 return True;
2944 elsif Nkind (Anc) = N_Qualified_Expression then
2945 return Valid_Limited_Ancestor (Expression (Anc));
2947 else
2948 return False;
2949 end if;
2950 end Valid_Limited_Ancestor;
2952 -------------------------
2953 -- Valid_Ancestor_Type --
2954 -------------------------
2956 function Valid_Ancestor_Type return Boolean is
2957 Imm_Type : Entity_Id;
2959 begin
2960 Imm_Type := Base_Type (Typ);
2961 while Is_Derived_Type (Imm_Type) loop
2962 if Etype (Imm_Type) = Base_Type (A_Type) then
2963 return True;
2965 -- The base type of the parent type may appear as a private
2966 -- extension if it is declared as such in a parent unit of the
2967 -- current one. For consistency of the subsequent analysis use
2968 -- the partial view for the ancestor part.
2970 elsif Is_Private_Type (Etype (Imm_Type))
2971 and then Present (Full_View (Etype (Imm_Type)))
2972 and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
2973 then
2974 A_Type := Etype (Imm_Type);
2975 return True;
2977 -- The parent type may be a private extension. The aggregate is
2978 -- legal if the type of the aggregate is an extension of it that
2979 -- is not a private extension.
2981 elsif Is_Private_Type (A_Type)
2982 and then not Is_Private_Type (Imm_Type)
2983 and then Present (Full_View (A_Type))
2984 and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
2985 then
2986 return True;
2988 else
2989 Imm_Type := Etype (Base_Type (Imm_Type));
2990 end if;
2991 end loop;
2993 -- If previous loop did not find a proper ancestor, report error
2995 Error_Msg_NE ("expect ancestor type of &", A, Typ);
2996 return False;
2997 end Valid_Ancestor_Type;
2999 -- Start of processing for Resolve_Extension_Aggregate
3001 begin
3002 -- Analyze the ancestor part and account for the case where it is a
3003 -- parameterless function call.
3005 Analyze (A);
3006 Check_Parameterless_Call (A);
3008 -- In SPARK, the ancestor part cannot be a type mark
3010 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3011 Check_SPARK_05_Restriction ("ancestor part cannot be a type mark", A);
3013 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
3014 -- must not have unknown discriminants.
3016 if Has_Unknown_Discriminants (Root_Type (Typ)) then
3017 Error_Msg_NE
3018 ("aggregate not available for type& whose ancestor "
3019 & "has unknown discriminants", N, Typ);
3020 end if;
3021 end if;
3023 if not Is_Tagged_Type (Typ) then
3024 Error_Msg_N ("type of extension aggregate must be tagged", N);
3025 return;
3027 elsif Is_Limited_Type (Typ) then
3029 -- Ada 2005 (AI-287): Limited aggregates are allowed
3031 if Ada_Version < Ada_2005 then
3032 Error_Msg_N ("aggregate type cannot be limited", N);
3033 Explain_Limited_Type (Typ, N);
3034 return;
3036 elsif Valid_Limited_Ancestor (A) then
3037 null;
3039 else
3040 Error_Msg_N
3041 ("limited ancestor part must be aggregate or function call", A);
3042 end if;
3044 elsif Is_Class_Wide_Type (Typ) then
3045 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
3046 return;
3047 end if;
3049 if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
3050 A_Type := Get_Full_View (Entity (A));
3052 if Valid_Ancestor_Type then
3053 Set_Entity (A, A_Type);
3054 Set_Etype (A, A_Type);
3056 Validate_Ancestor_Part (N);
3057 Resolve_Record_Aggregate (N, Typ);
3058 end if;
3060 elsif Nkind (A) /= N_Aggregate then
3061 if Is_Overloaded (A) then
3062 A_Type := Any_Type;
3064 Get_First_Interp (A, I, It);
3065 while Present (It.Typ) loop
3067 -- Only consider limited interpretations in the Ada 2005 case
3069 if Is_Tagged_Type (It.Typ)
3070 and then (Ada_Version >= Ada_2005
3071 or else not Is_Limited_Type (It.Typ))
3072 then
3073 if A_Type /= Any_Type then
3074 Error_Msg_N ("cannot resolve expression", A);
3075 return;
3076 else
3077 A_Type := It.Typ;
3078 end if;
3079 end if;
3081 Get_Next_Interp (I, It);
3082 end loop;
3084 if A_Type = Any_Type then
3085 if Ada_Version >= Ada_2005 then
3086 Error_Msg_N
3087 ("ancestor part must be of a tagged type", A);
3088 else
3089 Error_Msg_N
3090 ("ancestor part must be of a nonlimited tagged type", A);
3091 end if;
3093 return;
3094 end if;
3096 else
3097 A_Type := Etype (A);
3098 end if;
3100 if Valid_Ancestor_Type then
3101 Resolve (A, A_Type);
3102 Check_Unset_Reference (A);
3103 Check_Non_Static_Context (A);
3105 -- The aggregate is illegal if the ancestor expression is a call
3106 -- to a function with a limited unconstrained result, unless the
3107 -- type of the aggregate is a null extension. This restriction
3108 -- was added in AI05-67 to simplify implementation.
3110 if Nkind (A) = N_Function_Call
3111 and then Is_Limited_Type (A_Type)
3112 and then not Is_Null_Extension (Typ)
3113 and then not Is_Constrained (A_Type)
3114 then
3115 Error_Msg_N
3116 ("type of limited ancestor part must be constrained", A);
3118 -- Reject the use of CPP constructors that leave objects partially
3119 -- initialized. For example:
3121 -- type CPP_Root is tagged limited record ...
3122 -- pragma Import (CPP, CPP_Root);
3124 -- type CPP_DT is new CPP_Root and Iface ...
3125 -- pragma Import (CPP, CPP_DT);
3127 -- type Ada_DT is new CPP_DT with ...
3129 -- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
3131 -- Using the constructor of CPP_Root the slots of the dispatch
3132 -- table of CPP_DT cannot be set, and the secondary tag of
3133 -- CPP_DT is unknown.
3135 elsif Nkind (A) = N_Function_Call
3136 and then Is_CPP_Constructor_Call (A)
3137 and then Enclosing_CPP_Parent (Typ) /= A_Type
3138 then
3139 Error_Msg_NE
3140 ("??must use 'C'P'P constructor for type &", A,
3141 Enclosing_CPP_Parent (Typ));
3143 -- The following call is not needed if the previous warning
3144 -- is promoted to an error.
3146 Resolve_Record_Aggregate (N, Typ);
3148 elsif Is_Class_Wide_Type (Etype (A))
3149 and then Nkind (Original_Node (A)) = N_Function_Call
3150 then
3151 -- If the ancestor part is a dispatching call, it appears
3152 -- statically to be a legal ancestor, but it yields any member
3153 -- of the class, and it is not possible to determine whether
3154 -- it is an ancestor of the extension aggregate (much less
3155 -- which ancestor). It is not possible to determine the
3156 -- components of the extension part.
3158 -- This check implements AI-306, which in fact was motivated by
3159 -- an AdaCore query to the ARG after this test was added.
3161 Error_Msg_N ("ancestor part must be statically tagged", A);
3162 else
3163 Resolve_Record_Aggregate (N, Typ);
3164 end if;
3165 end if;
3167 else
3168 Error_Msg_N ("no unique type for this aggregate", A);
3169 end if;
3171 Check_Function_Writable_Actuals (N);
3172 end Resolve_Extension_Aggregate;
3174 ------------------------------
3175 -- Resolve_Record_Aggregate --
3176 ------------------------------
3178 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
3179 New_Assoc_List : constant List_Id := New_List;
3180 -- New_Assoc_List is the newly built list of N_Component_Association
3181 -- nodes.
3183 Others_Etype : Entity_Id := Empty;
3184 -- This variable is used to save the Etype of the last record component
3185 -- that takes its value from the others choice. Its purpose is:
3187 -- (a) make sure the others choice is useful
3189 -- (b) make sure the type of all the components whose value is
3190 -- subsumed by the others choice are the same.
3192 -- This variable is updated as a side effect of function Get_Value.
3194 Box_Node : Node_Id;
3195 Is_Box_Present : Boolean := False;
3196 Others_Box : Integer := 0;
3197 -- Ada 2005 (AI-287): Variables used in case of default initialization
3198 -- to provide a functionality similar to Others_Etype. Box_Present
3199 -- indicates that the component takes its default initialization;
3200 -- Others_Box counts the number of components of the current aggregate
3201 -- (which may be a sub-aggregate of a larger one) that are default-
3202 -- initialized. A value of One indicates that an others_box is present.
3203 -- Any larger value indicates that the others_box is not redundant.
3204 -- These variables, similar to Others_Etype, are also updated as a side
3205 -- effect of function Get_Value. Box_Node is used to place a warning on
3206 -- a redundant others_box.
3208 procedure Add_Association
3209 (Component : Entity_Id;
3210 Expr : Node_Id;
3211 Assoc_List : List_Id;
3212 Is_Box_Present : Boolean := False);
3213 -- Builds a new N_Component_Association node which associates Component
3214 -- to expression Expr and adds it to the association list being built,
3215 -- either New_Assoc_List, or the association being built for an inner
3216 -- aggregate.
3218 procedure Add_Discriminant_Values
3219 (New_Aggr : Node_Id;
3220 Assoc_List : List_Id);
3221 -- The constraint to a component may be given by a discriminant of the
3222 -- enclosing type, in which case we have to retrieve its value, which is
3223 -- part of the enclosing aggregate. Assoc_List provides the discriminant
3224 -- associations of the current type or of some enclosing record.
3226 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
3227 -- If aggregate N is a regular aggregate this routine will return True.
3228 -- Otherwise, if N is an extension aggregate, then Input_Discr denotes
3229 -- a discriminant whose value may already have been specified by N's
3230 -- ancestor part. This routine checks whether this is indeed the case
3231 -- and if so returns False, signaling that no value for Input_Discr
3232 -- should appear in N's aggregate part. Also, in this case, the routine
3233 -- appends to New_Assoc_List the discriminant value specified in the
3234 -- ancestor part.
3236 -- If the aggregate is in a context with expansion delayed, it will be
3237 -- reanalyzed. The inherited discriminant values must not be reinserted
3238 -- in the component list to prevent spurious errors, but they must be
3239 -- present on first analysis to build the proper subtype indications.
3240 -- The flag Inherited_Discriminant is used to prevent the re-insertion.
3242 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
3243 -- AI05-0115: Find earlier ancestor in the derivation chain that is
3244 -- derived from private view Typ. Whether the aggregate is legal depends
3245 -- on the current visibility of the type as well as that of the parent
3246 -- of the ancestor.
3248 function Get_Value
3249 (Compon : Node_Id;
3250 From : List_Id;
3251 Consider_Others_Choice : Boolean := False) return Node_Id;
3252 -- Given a record component stored in parameter Compon, this function
3253 -- returns its value as it appears in the list From, which is a list
3254 -- of N_Component_Association nodes.
3256 -- If no component association has a choice for the searched component,
3257 -- the value provided by the others choice is returned, if there is one,
3258 -- and Consider_Others_Choice is set to true. Otherwise Empty is
3259 -- returned. If there is more than one component association giving a
3260 -- value for the searched record component, an error message is emitted
3261 -- and the first found value is returned.
3263 -- If Consider_Others_Choice is set and the returned expression comes
3264 -- from the others choice, then Others_Etype is set as a side effect.
3265 -- An error message is emitted if the components taking their value from
3266 -- the others choice do not have same type.
3268 function New_Copy_Tree_And_Copy_Dimensions
3269 (Source : Node_Id;
3270 Map : Elist_Id := No_Elist;
3271 New_Sloc : Source_Ptr := No_Location;
3272 New_Scope : Entity_Id := Empty) return Node_Id;
3273 -- Same as New_Copy_Tree (defined in Sem_Util), except that this routine
3274 -- also copies the dimensions of Source to the returned node.
3276 procedure Propagate_Discriminants
3277 (Aggr : Node_Id;
3278 Assoc_List : List_Id);
3279 -- Nested components may themselves be discriminated types constrained
3280 -- by outer discriminants, whose values must be captured before the
3281 -- aggregate is expanded into assignments.
3283 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
3284 -- Analyzes and resolves expression Expr against the Etype of the
3285 -- Component. This routine also applies all appropriate checks to Expr.
3286 -- It finally saves a Expr in the newly created association list that
3287 -- will be attached to the final record aggregate. Note that if the
3288 -- Parent pointer of Expr is not set then Expr was produced with a
3289 -- New_Copy_Tree or some such.
3291 ---------------------
3292 -- Add_Association --
3293 ---------------------
3295 procedure Add_Association
3296 (Component : Entity_Id;
3297 Expr : Node_Id;
3298 Assoc_List : List_Id;
3299 Is_Box_Present : Boolean := False)
3301 Choice_List : constant List_Id := New_List;
3302 Loc : Source_Ptr;
3304 begin
3305 -- If this is a box association the expression is missing, so use the
3306 -- Sloc of the aggregate itself for the new association.
3308 if Present (Expr) then
3309 Loc := Sloc (Expr);
3310 else
3311 Loc := Sloc (N);
3312 end if;
3314 Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
3316 Append_To (Assoc_List,
3317 Make_Component_Association (Loc,
3318 Choices => Choice_List,
3319 Expression => Expr,
3320 Box_Present => Is_Box_Present));
3321 end Add_Association;
3323 -----------------------------
3324 -- Add_Discriminant_Values --
3325 -----------------------------
3327 procedure Add_Discriminant_Values
3328 (New_Aggr : Node_Id;
3329 Assoc_List : List_Id)
3331 Assoc : Node_Id;
3332 Discr : Entity_Id;
3333 Discr_Elmt : Elmt_Id;
3334 Discr_Val : Node_Id;
3335 Val : Entity_Id;
3337 begin
3338 Discr := First_Discriminant (Etype (New_Aggr));
3339 Discr_Elmt := First_Elmt (Discriminant_Constraint (Etype (New_Aggr)));
3340 while Present (Discr_Elmt) loop
3341 Discr_Val := Node (Discr_Elmt);
3343 -- If the constraint is given by a discriminant then it is a
3344 -- discriminant of an enclosing record, and its value has already
3345 -- been placed in the association list.
3347 if Is_Entity_Name (Discr_Val)
3348 and then Ekind (Entity (Discr_Val)) = E_Discriminant
3349 then
3350 Val := Entity (Discr_Val);
3352 Assoc := First (Assoc_List);
3353 while Present (Assoc) loop
3354 if Present (Entity (First (Choices (Assoc))))
3355 and then Entity (First (Choices (Assoc))) = Val
3356 then
3357 Discr_Val := Expression (Assoc);
3358 exit;
3359 end if;
3361 Next (Assoc);
3362 end loop;
3363 end if;
3365 Add_Association
3366 (Discr, New_Copy_Tree (Discr_Val),
3367 Component_Associations (New_Aggr));
3369 -- If the discriminant constraint is a current instance, mark the
3370 -- current aggregate so that the self-reference can be expanded
3371 -- later. The constraint may refer to the subtype of aggregate, so
3372 -- use base type for comparison.
3374 if Nkind (Discr_Val) = N_Attribute_Reference
3375 and then Is_Entity_Name (Prefix (Discr_Val))
3376 and then Is_Type (Entity (Prefix (Discr_Val)))
3377 and then Base_Type (Etype (N)) = Entity (Prefix (Discr_Val))
3378 then
3379 Set_Has_Self_Reference (N);
3380 end if;
3382 Next_Elmt (Discr_Elmt);
3383 Next_Discriminant (Discr);
3384 end loop;
3385 end Add_Discriminant_Values;
3387 --------------------------
3388 -- Discriminant_Present --
3389 --------------------------
3391 function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
3392 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
3394 Ancestor_Is_Subtyp : Boolean;
3396 Loc : Source_Ptr;
3398 Ancestor : Node_Id;
3399 Ancestor_Typ : Entity_Id;
3400 Comp_Assoc : Node_Id;
3401 Discr : Entity_Id;
3402 Discr_Expr : Node_Id;
3403 Discr_Val : Elmt_Id := No_Elmt;
3404 Orig_Discr : Entity_Id;
3406 begin
3407 if Regular_Aggr then
3408 return True;
3409 end if;
3411 -- Check whether inherited discriminant values have already been
3412 -- inserted in the aggregate. This will be the case if we are
3413 -- re-analyzing an aggregate whose expansion was delayed.
3415 if Present (Component_Associations (N)) then
3416 Comp_Assoc := First (Component_Associations (N));
3417 while Present (Comp_Assoc) loop
3418 if Inherited_Discriminant (Comp_Assoc) then
3419 return True;
3420 end if;
3422 Next (Comp_Assoc);
3423 end loop;
3424 end if;
3426 Ancestor := Ancestor_Part (N);
3427 Ancestor_Typ := Etype (Ancestor);
3428 Loc := Sloc (Ancestor);
3430 -- For a private type with unknown discriminants, use the underlying
3431 -- record view if it is available.
3433 if Has_Unknown_Discriminants (Ancestor_Typ)
3434 and then Present (Full_View (Ancestor_Typ))
3435 and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
3436 then
3437 Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
3438 end if;
3440 Ancestor_Is_Subtyp :=
3441 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
3443 -- If the ancestor part has no discriminants clearly N's aggregate
3444 -- part must provide a value for Discr.
3446 if not Has_Discriminants (Ancestor_Typ) then
3447 return True;
3449 -- If the ancestor part is an unconstrained subtype mark then the
3450 -- Discr must be present in N's aggregate part.
3452 elsif Ancestor_Is_Subtyp
3453 and then not Is_Constrained (Entity (Ancestor))
3454 then
3455 return True;
3456 end if;
3458 -- Now look to see if Discr was specified in the ancestor part
3460 if Ancestor_Is_Subtyp then
3461 Discr_Val :=
3462 First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
3463 end if;
3465 Orig_Discr := Original_Record_Component (Input_Discr);
3467 Discr := First_Discriminant (Ancestor_Typ);
3468 while Present (Discr) loop
3470 -- If Ancestor has already specified Disc value then insert its
3471 -- value in the final aggregate.
3473 if Original_Record_Component (Discr) = Orig_Discr then
3474 if Ancestor_Is_Subtyp then
3475 Discr_Expr := New_Copy_Tree (Node (Discr_Val));
3476 else
3477 Discr_Expr :=
3478 Make_Selected_Component (Loc,
3479 Prefix => Duplicate_Subexpr (Ancestor),
3480 Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
3481 end if;
3483 Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
3484 Set_Inherited_Discriminant (Last (New_Assoc_List));
3485 return False;
3486 end if;
3488 Next_Discriminant (Discr);
3490 if Ancestor_Is_Subtyp then
3491 Next_Elmt (Discr_Val);
3492 end if;
3493 end loop;
3495 return True;
3496 end Discriminant_Present;
3498 ---------------------------
3499 -- Find_Private_Ancestor --
3500 ---------------------------
3502 function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
3503 Par : Entity_Id;
3505 begin
3506 Par := Typ;
3507 loop
3508 if Has_Private_Ancestor (Par)
3509 and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
3510 then
3511 return Par;
3513 elsif not Is_Derived_Type (Par) then
3514 return Empty;
3516 else
3517 Par := Etype (Base_Type (Par));
3518 end if;
3519 end loop;
3520 end Find_Private_Ancestor;
3522 ---------------
3523 -- Get_Value --
3524 ---------------
3526 function Get_Value
3527 (Compon : Node_Id;
3528 From : List_Id;
3529 Consider_Others_Choice : Boolean := False) return Node_Id
3531 Typ : constant Entity_Id := Etype (Compon);
3532 Assoc : Node_Id;
3533 Expr : Node_Id := Empty;
3534 Selector_Name : Node_Id;
3536 begin
3537 Is_Box_Present := False;
3539 if No (From) then
3540 return Empty;
3541 end if;
3543 Assoc := First (From);
3544 while Present (Assoc) loop
3545 Selector_Name := First (Choices (Assoc));
3546 while Present (Selector_Name) loop
3547 if Nkind (Selector_Name) = N_Others_Choice then
3548 if Consider_Others_Choice and then No (Expr) then
3550 -- We need to duplicate the expression for each
3551 -- successive component covered by the others choice.
3552 -- This is redundant if the others_choice covers only
3553 -- one component (small optimization possible???), but
3554 -- indispensable otherwise, because each one must be
3555 -- expanded individually to preserve side-effects.
3557 -- Ada 2005 (AI-287): In case of default initialization
3558 -- of components, we duplicate the corresponding default
3559 -- expression (from the record type declaration). The
3560 -- copy must carry the sloc of the association (not the
3561 -- original expression) to prevent spurious elaboration
3562 -- checks when the default includes function calls.
3564 if Box_Present (Assoc) then
3565 Others_Box := Others_Box + 1;
3566 Is_Box_Present := True;
3568 if Expander_Active then
3569 return
3570 New_Copy_Tree_And_Copy_Dimensions
3571 (Expression (Parent (Compon)),
3572 New_Sloc => Sloc (Assoc));
3573 else
3574 return Expression (Parent (Compon));
3575 end if;
3577 else
3578 if Present (Others_Etype)
3579 and then Base_Type (Others_Etype) /= Base_Type (Typ)
3580 then
3581 -- If the components are of an anonymous access
3582 -- type they are distinct, but this is legal in
3583 -- Ada 2012 as long as designated types match.
3585 if (Ekind (Typ) = E_Anonymous_Access_Type
3586 or else Ekind (Typ) =
3587 E_Anonymous_Access_Subprogram_Type)
3588 and then Designated_Type (Typ) =
3589 Designated_Type (Others_Etype)
3590 then
3591 null;
3592 else
3593 Error_Msg_N
3594 ("components in OTHERS choice must have same "
3595 & "type", Selector_Name);
3596 end if;
3597 end if;
3599 Others_Etype := Typ;
3601 -- Copy the expression so that it is resolved
3602 -- independently for each component, This is needed
3603 -- for accessibility checks on compoents of anonymous
3604 -- access types, even in compile_only mode.
3606 if not Inside_A_Generic then
3608 -- In ASIS mode, preanalyze the expression in an
3609 -- others association before making copies for
3610 -- separate resolution and accessibility checks.
3611 -- This ensures that the type of the expression is
3612 -- available to ASIS in all cases, in particular if
3613 -- the expression is itself an aggregate.
3615 if ASIS_Mode then
3616 Preanalyze_And_Resolve (Expression (Assoc), Typ);
3617 end if;
3619 return
3620 New_Copy_Tree_And_Copy_Dimensions
3621 (Expression (Assoc));
3623 else
3624 return Expression (Assoc);
3625 end if;
3626 end if;
3627 end if;
3629 elsif Chars (Compon) = Chars (Selector_Name) then
3630 if No (Expr) then
3632 -- Ada 2005 (AI-231)
3634 if Ada_Version >= Ada_2005
3635 and then Known_Null (Expression (Assoc))
3636 then
3637 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
3638 end if;
3640 -- We need to duplicate the expression when several
3641 -- components are grouped together with a "|" choice.
3642 -- For instance "filed1 | filed2 => Expr"
3644 -- Ada 2005 (AI-287)
3646 if Box_Present (Assoc) then
3647 Is_Box_Present := True;
3649 -- Duplicate the default expression of the component
3650 -- from the record type declaration, so a new copy
3651 -- can be attached to the association.
3653 -- Note that we always copy the default expression,
3654 -- even when the association has a single choice, in
3655 -- order to create a proper association for the
3656 -- expanded aggregate.
3658 -- Component may have no default, in which case the
3659 -- expression is empty and the component is default-
3660 -- initialized, but an association for the component
3661 -- exists, and it is not covered by an others clause.
3663 -- Scalar and private types have no initialization
3664 -- procedure, so they remain uninitialized. If the
3665 -- target of the aggregate is a constant this
3666 -- deserves a warning.
3668 if No (Expression (Parent (Compon)))
3669 and then not Has_Non_Null_Base_Init_Proc (Typ)
3670 and then not Has_Aspect (Typ, Aspect_Default_Value)
3671 and then not Is_Concurrent_Type (Typ)
3672 and then Nkind (Parent (N)) = N_Object_Declaration
3673 and then Constant_Present (Parent (N))
3674 then
3675 Error_Msg_Node_2 := Typ;
3676 Error_Msg_NE
3677 ("component&? of type& is uninitialized",
3678 Assoc, Selector_Name);
3680 -- An additional reminder if the component type
3681 -- is a generic formal.
3683 if Is_Generic_Type (Base_Type (Typ)) then
3684 Error_Msg_NE
3685 ("\instance should provide actual type with "
3686 & "initialization for&", Assoc, Typ);
3687 end if;
3688 end if;
3690 return
3691 New_Copy_Tree_And_Copy_Dimensions
3692 (Expression (Parent (Compon)));
3694 else
3695 if Present (Next (Selector_Name)) then
3696 Expr := New_Copy_Tree_And_Copy_Dimensions
3697 (Expression (Assoc));
3698 else
3699 Expr := Expression (Assoc);
3700 end if;
3701 end if;
3703 Generate_Reference (Compon, Selector_Name, 'm');
3705 else
3706 Error_Msg_NE
3707 ("more than one value supplied for &",
3708 Selector_Name, Compon);
3710 end if;
3711 end if;
3713 Next (Selector_Name);
3714 end loop;
3716 Next (Assoc);
3717 end loop;
3719 return Expr;
3720 end Get_Value;
3722 ---------------------------------------
3723 -- New_Copy_Tree_And_Copy_Dimensions --
3724 ---------------------------------------
3726 function New_Copy_Tree_And_Copy_Dimensions
3727 (Source : Node_Id;
3728 Map : Elist_Id := No_Elist;
3729 New_Sloc : Source_Ptr := No_Location;
3730 New_Scope : Entity_Id := Empty) return Node_Id
3732 New_Copy : constant Node_Id :=
3733 New_Copy_Tree (Source, Map, New_Sloc, New_Scope);
3735 begin
3736 -- Move the dimensions of Source to New_Copy
3738 Copy_Dimensions (Source, New_Copy);
3739 return New_Copy;
3740 end New_Copy_Tree_And_Copy_Dimensions;
3742 -----------------------------
3743 -- Propagate_Discriminants --
3744 -----------------------------
3746 procedure Propagate_Discriminants
3747 (Aggr : Node_Id;
3748 Assoc_List : List_Id)
3750 Loc : constant Source_Ptr := Sloc (N);
3752 Needs_Box : Boolean := False;
3754 procedure Process_Component (Comp : Entity_Id);
3755 -- Add one component with a box association to the inner aggregate,
3756 -- and recurse if component is itself composite.
3758 -----------------------
3759 -- Process_Component --
3760 -----------------------
3762 procedure Process_Component (Comp : Entity_Id) is
3763 T : constant Entity_Id := Etype (Comp);
3764 New_Aggr : Node_Id;
3766 begin
3767 if Is_Record_Type (T) and then Has_Discriminants (T) then
3768 New_Aggr := Make_Aggregate (Loc, New_List, New_List);
3769 Set_Etype (New_Aggr, T);
3771 Add_Association
3772 (Comp, New_Aggr, Component_Associations (Aggr));
3774 -- Collect discriminant values and recurse
3776 Add_Discriminant_Values (New_Aggr, Assoc_List);
3777 Propagate_Discriminants (New_Aggr, Assoc_List);
3779 else
3780 Needs_Box := True;
3781 end if;
3782 end Process_Component;
3784 -- Local variables
3786 Aggr_Type : constant Entity_Id := Base_Type (Etype (Aggr));
3787 Components : constant Elist_Id := New_Elmt_List;
3788 Def_Node : constant Node_Id :=
3789 Type_Definition (Declaration_Node (Aggr_Type));
3791 Comp : Node_Id;
3792 Comp_Elmt : Elmt_Id;
3793 Errors : Boolean;
3795 -- Start of processing for Propagate_Discriminants
3797 begin
3798 -- The component type may be a variant type. Collect the components
3799 -- that are ruled by the known values of the discriminants. Their
3800 -- values have already been inserted into the component list of the
3801 -- current aggregate.
3803 if Nkind (Def_Node) = N_Record_Definition
3804 and then Present (Component_List (Def_Node))
3805 and then Present (Variant_Part (Component_List (Def_Node)))
3806 then
3807 Gather_Components (Aggr_Type,
3808 Component_List (Def_Node),
3809 Governed_By => Component_Associations (Aggr),
3810 Into => Components,
3811 Report_Errors => Errors);
3813 Comp_Elmt := First_Elmt (Components);
3814 while Present (Comp_Elmt) loop
3815 if Ekind (Node (Comp_Elmt)) /= E_Discriminant then
3816 Process_Component (Node (Comp_Elmt));
3817 end if;
3819 Next_Elmt (Comp_Elmt);
3820 end loop;
3822 -- No variant part, iterate over all components
3824 else
3825 Comp := First_Component (Etype (Aggr));
3826 while Present (Comp) loop
3827 Process_Component (Comp);
3828 Next_Component (Comp);
3829 end loop;
3830 end if;
3832 if Needs_Box then
3833 Append_To (Component_Associations (Aggr),
3834 Make_Component_Association (Loc,
3835 Choices => New_List (Make_Others_Choice (Loc)),
3836 Expression => Empty,
3837 Box_Present => True));
3838 end if;
3839 end Propagate_Discriminants;
3841 -----------------------
3842 -- Resolve_Aggr_Expr --
3843 -----------------------
3845 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
3846 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
3847 -- If the expression is an aggregate (possibly qualified) then its
3848 -- expansion is delayed until the enclosing aggregate is expanded
3849 -- into assignments. In that case, do not generate checks on the
3850 -- expression, because they will be generated later, and will other-
3851 -- wise force a copy (to remove side-effects) that would leave a
3852 -- dynamic-sized aggregate in the code, something that gigi cannot
3853 -- handle.
3855 ---------------------------
3856 -- Has_Expansion_Delayed --
3857 ---------------------------
3859 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
3860 begin
3861 return
3862 (Nkind_In (Expr, N_Aggregate, N_Extension_Aggregate)
3863 and then Present (Etype (Expr))
3864 and then Is_Record_Type (Etype (Expr))
3865 and then Expansion_Delayed (Expr))
3866 or else
3867 (Nkind (Expr) = N_Qualified_Expression
3868 and then Has_Expansion_Delayed (Expression (Expr)));
3869 end Has_Expansion_Delayed;
3871 -- Local variables
3873 Expr_Type : Entity_Id := Empty;
3874 New_C : Entity_Id := Component;
3875 New_Expr : Node_Id;
3877 Relocate : Boolean;
3878 -- Set to True if the resolved Expr node needs to be relocated when
3879 -- attached to the newly created association list. This node need not
3880 -- be relocated if its parent pointer is not set. In fact in this
3881 -- case Expr is the output of a New_Copy_Tree call. If Relocate is
3882 -- True then we have analyzed the expression node in the original
3883 -- aggregate and hence it needs to be relocated when moved over to
3884 -- the new association list.
3886 -- Start of processing for Resolve_Aggr_Expr
3888 begin
3889 -- If the type of the component is elementary or the type of the
3890 -- aggregate does not contain discriminants, use the type of the
3891 -- component to resolve Expr.
3893 if Is_Elementary_Type (Etype (Component))
3894 or else not Has_Discriminants (Etype (N))
3895 then
3896 Expr_Type := Etype (Component);
3898 -- Otherwise we have to pick up the new type of the component from
3899 -- the new constrained subtype of the aggregate. In fact components
3900 -- which are of a composite type might be constrained by a
3901 -- discriminant, and we want to resolve Expr against the subtype were
3902 -- all discriminant occurrences are replaced with their actual value.
3904 else
3905 New_C := First_Component (Etype (N));
3906 while Present (New_C) loop
3907 if Chars (New_C) = Chars (Component) then
3908 Expr_Type := Etype (New_C);
3909 exit;
3910 end if;
3912 Next_Component (New_C);
3913 end loop;
3915 pragma Assert (Present (Expr_Type));
3917 -- For each range in an array type where a discriminant has been
3918 -- replaced with the constraint, check that this range is within
3919 -- the range of the base type. This checks is done in the init
3920 -- proc for regular objects, but has to be done here for
3921 -- aggregates since no init proc is called for them.
3923 if Is_Array_Type (Expr_Type) then
3924 declare
3925 Index : Node_Id;
3926 -- Range of the current constrained index in the array
3928 Orig_Index : Node_Id := First_Index (Etype (Component));
3929 -- Range corresponding to the range Index above in the
3930 -- original unconstrained record type. The bounds of this
3931 -- range may be governed by discriminants.
3933 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
3934 -- Range corresponding to the range Index above for the
3935 -- unconstrained array type. This range is needed to apply
3936 -- range checks.
3938 begin
3939 Index := First_Index (Expr_Type);
3940 while Present (Index) loop
3941 if Depends_On_Discriminant (Orig_Index) then
3942 Apply_Range_Check (Index, Etype (Unconstr_Index));
3943 end if;
3945 Next_Index (Index);
3946 Next_Index (Orig_Index);
3947 Next_Index (Unconstr_Index);
3948 end loop;
3949 end;
3950 end if;
3951 end if;
3953 -- If the Parent pointer of Expr is not set, Expr is an expression
3954 -- duplicated by New_Tree_Copy (this happens for record aggregates
3955 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
3956 -- Such a duplicated expression must be attached to the tree
3957 -- before analysis and resolution to enforce the rule that a tree
3958 -- fragment should never be analyzed or resolved unless it is
3959 -- attached to the current compilation unit.
3961 if No (Parent (Expr)) then
3962 Set_Parent (Expr, N);
3963 Relocate := False;
3964 else
3965 Relocate := True;
3966 end if;
3968 Analyze_And_Resolve (Expr, Expr_Type);
3969 Check_Expr_OK_In_Limited_Aggregate (Expr);
3970 Check_Non_Static_Context (Expr);
3971 Check_Unset_Reference (Expr);
3973 -- Check wrong use of class-wide types
3975 if Is_Class_Wide_Type (Etype (Expr)) then
3976 Error_Msg_N ("dynamically tagged expression not allowed", Expr);
3977 end if;
3979 if not Has_Expansion_Delayed (Expr) then
3980 Aggregate_Constraint_Checks (Expr, Expr_Type);
3981 end if;
3983 -- If an aggregate component has a type with predicates, an explicit
3984 -- predicate check must be applied, as for an assignment statement,
3985 -- because the aggegate might not be expanded into individual
3986 -- component assignments.
3988 if Present (Predicate_Function (Expr_Type))
3989 and then Analyzed (Expr)
3990 then
3991 Apply_Predicate_Check (Expr, Expr_Type);
3992 end if;
3994 if Raises_Constraint_Error (Expr) then
3995 Set_Raises_Constraint_Error (N);
3996 end if;
3998 -- If the expression has been marked as requiring a range check, then
3999 -- generate it here. It's a bit odd to be generating such checks in
4000 -- the analyzer, but harmless since Generate_Range_Check does nothing
4001 -- (other than making sure Do_Range_Check is set) if the expander is
4002 -- not active.
4004 if Do_Range_Check (Expr) then
4005 Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
4006 end if;
4008 -- Add association Component => Expr if the caller requests it
4010 if Relocate then
4011 New_Expr := Relocate_Node (Expr);
4013 -- Since New_Expr is not gonna be analyzed later on, we need to
4014 -- propagate here the dimensions form Expr to New_Expr.
4016 Copy_Dimensions (Expr, New_Expr);
4018 else
4019 New_Expr := Expr;
4020 end if;
4022 Add_Association (New_C, New_Expr, New_Assoc_List);
4023 end Resolve_Aggr_Expr;
4025 -- Local variables
4027 Components : constant Elist_Id := New_Elmt_List;
4028 -- Components is the list of the record components whose value must be
4029 -- provided in the aggregate. This list does include discriminants.
4031 Expr : Node_Id;
4032 Component : Entity_Id;
4033 Component_Elmt : Elmt_Id;
4034 Positional_Expr : Node_Id;
4036 -- Start of processing for Resolve_Record_Aggregate
4038 begin
4039 -- A record aggregate is restricted in SPARK:
4041 -- Each named association can have only a single choice.
4042 -- OTHERS cannot be used.
4043 -- Positional and named associations cannot be mixed.
4045 if Present (Component_Associations (N))
4046 and then Present (First (Component_Associations (N)))
4047 then
4048 if Present (Expressions (N)) then
4049 Check_SPARK_05_Restriction
4050 ("named association cannot follow positional one",
4051 First (Choices (First (Component_Associations (N)))));
4052 end if;
4054 declare
4055 Assoc : Node_Id;
4057 begin
4058 Assoc := First (Component_Associations (N));
4059 while Present (Assoc) loop
4060 if List_Length (Choices (Assoc)) > 1 then
4061 Check_SPARK_05_Restriction
4062 ("component association in record aggregate must "
4063 & "contain a single choice", Assoc);
4064 end if;
4066 if Nkind (First (Choices (Assoc))) = N_Others_Choice then
4067 Check_SPARK_05_Restriction
4068 ("record aggregate cannot contain OTHERS", Assoc);
4069 end if;
4071 Assoc := Next (Assoc);
4072 end loop;
4073 end;
4074 end if;
4076 -- We may end up calling Duplicate_Subexpr on expressions that are
4077 -- attached to New_Assoc_List. For this reason we need to attach it
4078 -- to the tree by setting its parent pointer to N. This parent point
4079 -- will change in STEP 8 below.
4081 Set_Parent (New_Assoc_List, N);
4083 -- STEP 1: abstract type and null record verification
4085 if Is_Abstract_Type (Typ) then
4086 Error_Msg_N ("type of aggregate cannot be abstract", N);
4087 end if;
4089 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
4090 Set_Etype (N, Typ);
4091 return;
4093 elsif Present (First_Entity (Typ))
4094 and then Null_Record_Present (N)
4095 and then not Is_Tagged_Type (Typ)
4096 then
4097 Error_Msg_N ("record aggregate cannot be null", N);
4098 return;
4100 -- If the type has no components, then the aggregate should either
4101 -- have "null record", or in Ada 2005 it could instead have a single
4102 -- component association given by "others => <>". For Ada 95 we flag an
4103 -- error at this point, but for Ada 2005 we proceed with checking the
4104 -- associations below, which will catch the case where it's not an
4105 -- aggregate with "others => <>". Note that the legality of a <>
4106 -- aggregate for a null record type was established by AI05-016.
4108 elsif No (First_Entity (Typ))
4109 and then Ada_Version < Ada_2005
4110 then
4111 Error_Msg_N ("record aggregate must be null", N);
4112 return;
4113 end if;
4115 -- STEP 2: Verify aggregate structure
4117 Step_2 : declare
4118 Assoc : Node_Id;
4119 Bad_Aggregate : Boolean := False;
4120 Selector_Name : Node_Id;
4122 begin
4123 if Present (Component_Associations (N)) then
4124 Assoc := First (Component_Associations (N));
4125 else
4126 Assoc := Empty;
4127 end if;
4129 while Present (Assoc) loop
4130 Selector_Name := First (Choices (Assoc));
4131 while Present (Selector_Name) loop
4132 if Nkind (Selector_Name) = N_Identifier then
4133 null;
4135 elsif Nkind (Selector_Name) = N_Others_Choice then
4136 if Selector_Name /= First (Choices (Assoc))
4137 or else Present (Next (Selector_Name))
4138 then
4139 Error_Msg_N
4140 ("OTHERS must appear alone in a choice list",
4141 Selector_Name);
4142 return;
4144 elsif Present (Next (Assoc)) then
4145 Error_Msg_N
4146 ("OTHERS must appear last in an aggregate",
4147 Selector_Name);
4148 return;
4150 -- (Ada 2005): If this is an association with a box,
4151 -- indicate that the association need not represent
4152 -- any component.
4154 elsif Box_Present (Assoc) then
4155 Others_Box := 1;
4156 Box_Node := Assoc;
4157 end if;
4159 else
4160 Error_Msg_N
4161 ("selector name should be identifier or OTHERS",
4162 Selector_Name);
4163 Bad_Aggregate := True;
4164 end if;
4166 Next (Selector_Name);
4167 end loop;
4169 Next (Assoc);
4170 end loop;
4172 if Bad_Aggregate then
4173 return;
4174 end if;
4175 end Step_2;
4177 -- STEP 3: Find discriminant Values
4179 Step_3 : declare
4180 Discrim : Entity_Id;
4181 Missing_Discriminants : Boolean := False;
4183 begin
4184 if Present (Expressions (N)) then
4185 Positional_Expr := First (Expressions (N));
4186 else
4187 Positional_Expr := Empty;
4188 end if;
4190 -- AI05-0115: if the ancestor part is a subtype mark, the ancestor
4191 -- must not have unknown discriminants.
4193 if Is_Derived_Type (Typ)
4194 and then Has_Unknown_Discriminants (Root_Type (Typ))
4195 and then Nkind (N) /= N_Extension_Aggregate
4196 then
4197 Error_Msg_NE
4198 ("aggregate not available for type& whose ancestor "
4199 & "has unknown discriminants ", N, Typ);
4200 end if;
4202 if Has_Unknown_Discriminants (Typ)
4203 and then Present (Underlying_Record_View (Typ))
4204 then
4205 Discrim := First_Discriminant (Underlying_Record_View (Typ));
4206 elsif Has_Discriminants (Typ) then
4207 Discrim := First_Discriminant (Typ);
4208 else
4209 Discrim := Empty;
4210 end if;
4212 -- First find the discriminant values in the positional components
4214 while Present (Discrim) and then Present (Positional_Expr) loop
4215 if Discriminant_Present (Discrim) then
4216 Resolve_Aggr_Expr (Positional_Expr, Discrim);
4218 -- Ada 2005 (AI-231)
4220 if Ada_Version >= Ada_2005
4221 and then Known_Null (Positional_Expr)
4222 then
4223 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
4224 end if;
4226 Next (Positional_Expr);
4227 end if;
4229 if Present (Get_Value (Discrim, Component_Associations (N))) then
4230 Error_Msg_NE
4231 ("more than one value supplied for discriminant&",
4232 N, Discrim);
4233 end if;
4235 Next_Discriminant (Discrim);
4236 end loop;
4238 -- Find remaining discriminant values if any among named components
4240 while Present (Discrim) loop
4241 Expr := Get_Value (Discrim, Component_Associations (N), True);
4243 if not Discriminant_Present (Discrim) then
4244 if Present (Expr) then
4245 Error_Msg_NE
4246 ("more than one value supplied for discriminant &",
4247 N, Discrim);
4248 end if;
4250 elsif No (Expr) then
4251 Error_Msg_NE
4252 ("no value supplied for discriminant &", N, Discrim);
4253 Missing_Discriminants := True;
4255 else
4256 Resolve_Aggr_Expr (Expr, Discrim);
4257 end if;
4259 Next_Discriminant (Discrim);
4260 end loop;
4262 if Missing_Discriminants then
4263 return;
4264 end if;
4266 -- At this point and until the beginning of STEP 6, New_Assoc_List
4267 -- contains only the discriminants and their values.
4269 end Step_3;
4271 -- STEP 4: Set the Etype of the record aggregate
4273 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
4274 -- routine should really be exported in sem_util or some such and used
4275 -- in sem_ch3 and here rather than have a copy of the code which is a
4276 -- maintenance nightmare.
4278 -- ??? Performance WARNING. The current implementation creates a new
4279 -- itype for all aggregates whose base type is discriminated. This means
4280 -- that for record aggregates nested inside an array aggregate we will
4281 -- create a new itype for each record aggregate if the array component
4282 -- type has discriminants. For large aggregates this may be a problem.
4283 -- What should be done in this case is to reuse itypes as much as
4284 -- possible.
4286 if Has_Discriminants (Typ)
4287 or else (Has_Unknown_Discriminants (Typ)
4288 and then Present (Underlying_Record_View (Typ)))
4289 then
4290 Build_Constrained_Itype : declare
4291 Constrs : constant List_Id := New_List;
4292 Loc : constant Source_Ptr := Sloc (N);
4293 Def_Id : Entity_Id;
4294 Indic : Node_Id;
4295 New_Assoc : Node_Id;
4296 Subtyp_Decl : Node_Id;
4298 begin
4299 New_Assoc := First (New_Assoc_List);
4300 while Present (New_Assoc) loop
4301 Append_To (Constrs, Duplicate_Subexpr (Expression (New_Assoc)));
4302 Next (New_Assoc);
4303 end loop;
4305 if Has_Unknown_Discriminants (Typ)
4306 and then Present (Underlying_Record_View (Typ))
4307 then
4308 Indic :=
4309 Make_Subtype_Indication (Loc,
4310 Subtype_Mark =>
4311 New_Occurrence_Of (Underlying_Record_View (Typ), Loc),
4312 Constraint =>
4313 Make_Index_Or_Discriminant_Constraint (Loc,
4314 Constraints => Constrs));
4315 else
4316 Indic :=
4317 Make_Subtype_Indication (Loc,
4318 Subtype_Mark =>
4319 New_Occurrence_Of (Base_Type (Typ), Loc),
4320 Constraint =>
4321 Make_Index_Or_Discriminant_Constraint (Loc,
4322 Constraints => Constrs));
4323 end if;
4325 Def_Id := Create_Itype (Ekind (Typ), N);
4327 Subtyp_Decl :=
4328 Make_Subtype_Declaration (Loc,
4329 Defining_Identifier => Def_Id,
4330 Subtype_Indication => Indic);
4331 Set_Parent (Subtyp_Decl, Parent (N));
4333 -- Itypes must be analyzed with checks off (see itypes.ads)
4335 Analyze (Subtyp_Decl, Suppress => All_Checks);
4337 Set_Etype (N, Def_Id);
4338 Check_Static_Discriminated_Subtype
4339 (Def_Id, Expression (First (New_Assoc_List)));
4340 end Build_Constrained_Itype;
4342 else
4343 Set_Etype (N, Typ);
4344 end if;
4346 -- STEP 5: Get remaining components according to discriminant values
4348 Step_5 : declare
4349 Dnode : Node_Id;
4350 Errors_Found : Boolean := False;
4351 Record_Def : Node_Id;
4352 Parent_Typ : Entity_Id;
4353 Parent_Typ_List : Elist_Id;
4354 Parent_Elmt : Elmt_Id;
4355 Root_Typ : Entity_Id;
4357 begin
4358 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
4359 Parent_Typ_List := New_Elmt_List;
4361 -- If this is an extension aggregate, the component list must
4362 -- include all components that are not in the given ancestor type.
4363 -- Otherwise, the component list must include components of all
4364 -- ancestors, starting with the root.
4366 if Nkind (N) = N_Extension_Aggregate then
4367 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
4369 else
4370 -- AI05-0115: check legality of aggregate for type with a
4371 -- private ancestor.
4373 Root_Typ := Root_Type (Typ);
4374 if Has_Private_Ancestor (Typ) then
4375 declare
4376 Ancestor : constant Entity_Id :=
4377 Find_Private_Ancestor (Typ);
4378 Ancestor_Unit : constant Entity_Id :=
4379 Cunit_Entity
4380 (Get_Source_Unit (Ancestor));
4381 Parent_Unit : constant Entity_Id :=
4382 Cunit_Entity (Get_Source_Unit
4383 (Base_Type (Etype (Ancestor))));
4384 begin
4385 -- Check whether we are in a scope that has full view
4386 -- over the private ancestor and its parent. This can
4387 -- only happen if the derivation takes place in a child
4388 -- unit of the unit that declares the parent, and we are
4389 -- in the private part or body of that child unit, else
4390 -- the aggregate is illegal.
4392 if Is_Child_Unit (Ancestor_Unit)
4393 and then Scope (Ancestor_Unit) = Parent_Unit
4394 and then In_Open_Scopes (Scope (Ancestor))
4395 and then
4396 (In_Private_Part (Scope (Ancestor))
4397 or else In_Package_Body (Scope (Ancestor)))
4398 then
4399 null;
4401 else
4402 Error_Msg_NE
4403 ("type of aggregate has private ancestor&!",
4404 N, Root_Typ);
4405 Error_Msg_N ("must use extension aggregate!", N);
4406 return;
4407 end if;
4408 end;
4409 end if;
4411 Dnode := Declaration_Node (Base_Type (Root_Typ));
4413 -- If we don't get a full declaration, then we have some error
4414 -- which will get signalled later so skip this part. Otherwise
4415 -- gather components of root that apply to the aggregate type.
4416 -- We use the base type in case there is an applicable stored
4417 -- constraint that renames the discriminants of the root.
4419 if Nkind (Dnode) = N_Full_Type_Declaration then
4420 Record_Def := Type_Definition (Dnode);
4421 Gather_Components
4422 (Base_Type (Typ),
4423 Component_List (Record_Def),
4424 Governed_By => New_Assoc_List,
4425 Into => Components,
4426 Report_Errors => Errors_Found);
4428 if Errors_Found then
4429 Error_Msg_N
4430 ("discriminant controlling variant part is not static",
4432 return;
4433 end if;
4434 end if;
4435 end if;
4437 Parent_Typ := Base_Type (Typ);
4438 while Parent_Typ /= Root_Typ loop
4439 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
4440 Parent_Typ := Etype (Parent_Typ);
4442 if Nkind (Parent (Base_Type (Parent_Typ))) =
4443 N_Private_Type_Declaration
4444 or else Nkind (Parent (Base_Type (Parent_Typ))) =
4445 N_Private_Extension_Declaration
4446 then
4447 if Nkind (N) /= N_Extension_Aggregate then
4448 Error_Msg_NE
4449 ("type of aggregate has private ancestor&!",
4450 N, Parent_Typ);
4451 Error_Msg_N ("must use extension aggregate!", N);
4452 return;
4454 elsif Parent_Typ /= Root_Typ then
4455 Error_Msg_NE
4456 ("ancestor part of aggregate must be private type&",
4457 Ancestor_Part (N), Parent_Typ);
4458 return;
4459 end if;
4461 -- The current view of ancestor part may be a private type,
4462 -- while the context type is always non-private.
4464 elsif Is_Private_Type (Root_Typ)
4465 and then Present (Full_View (Root_Typ))
4466 and then Nkind (N) = N_Extension_Aggregate
4467 then
4468 exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
4469 end if;
4470 end loop;
4472 -- Now collect components from all other ancestors, beginning
4473 -- with the current type. If the type has unknown discriminants
4474 -- use the component list of the Underlying_Record_View, which
4475 -- needs to be used for the subsequent expansion of the aggregate
4476 -- into assignments.
4478 Parent_Elmt := First_Elmt (Parent_Typ_List);
4479 while Present (Parent_Elmt) loop
4480 Parent_Typ := Node (Parent_Elmt);
4482 if Has_Unknown_Discriminants (Parent_Typ)
4483 and then Present (Underlying_Record_View (Typ))
4484 then
4485 Parent_Typ := Underlying_Record_View (Parent_Typ);
4486 end if;
4488 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
4489 Gather_Components (Empty,
4490 Component_List (Record_Extension_Part (Record_Def)),
4491 Governed_By => New_Assoc_List,
4492 Into => Components,
4493 Report_Errors => Errors_Found);
4495 Next_Elmt (Parent_Elmt);
4496 end loop;
4498 -- Typ is not a derived tagged type
4500 else
4501 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
4503 if Null_Present (Record_Def) then
4504 null;
4506 elsif not Has_Unknown_Discriminants (Typ) then
4507 Gather_Components
4508 (Base_Type (Typ),
4509 Component_List (Record_Def),
4510 Governed_By => New_Assoc_List,
4511 Into => Components,
4512 Report_Errors => Errors_Found);
4514 else
4515 Gather_Components
4516 (Base_Type (Underlying_Record_View (Typ)),
4517 Component_List (Record_Def),
4518 Governed_By => New_Assoc_List,
4519 Into => Components,
4520 Report_Errors => Errors_Found);
4521 end if;
4522 end if;
4524 if Errors_Found then
4525 return;
4526 end if;
4527 end Step_5;
4529 -- STEP 6: Find component Values
4531 Component := Empty;
4532 Component_Elmt := First_Elmt (Components);
4534 -- First scan the remaining positional associations in the aggregate.
4535 -- Remember that at this point Positional_Expr contains the current
4536 -- positional association if any is left after looking for discriminant
4537 -- values in step 3.
4539 while Present (Positional_Expr) and then Present (Component_Elmt) loop
4540 Component := Node (Component_Elmt);
4541 Resolve_Aggr_Expr (Positional_Expr, Component);
4543 -- Ada 2005 (AI-231)
4545 if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
4546 Check_Can_Never_Be_Null (Component, Positional_Expr);
4547 end if;
4549 if Present (Get_Value (Component, Component_Associations (N))) then
4550 Error_Msg_NE
4551 ("more than one value supplied for Component &", N, Component);
4552 end if;
4554 Next (Positional_Expr);
4555 Next_Elmt (Component_Elmt);
4556 end loop;
4558 if Present (Positional_Expr) then
4559 Error_Msg_N
4560 ("too many components for record aggregate", Positional_Expr);
4561 end if;
4563 -- Now scan for the named arguments of the aggregate
4565 while Present (Component_Elmt) loop
4566 Component := Node (Component_Elmt);
4567 Expr := Get_Value (Component, Component_Associations (N), True);
4569 -- Note: The previous call to Get_Value sets the value of the
4570 -- variable Is_Box_Present.
4572 -- Ada 2005 (AI-287): Handle components with default initialization.
4573 -- Note: This feature was originally added to Ada 2005 for limited
4574 -- but it was finally allowed with any type.
4576 if Is_Box_Present then
4577 Check_Box_Component : declare
4578 Ctyp : constant Entity_Id := Etype (Component);
4580 begin
4581 -- If there is a default expression for the aggregate, copy
4582 -- it into a new association. This copy must modify the scopes
4583 -- of internal types that may be attached to the expression
4584 -- (e.g. index subtypes of arrays) because in general the type
4585 -- declaration and the aggregate appear in different scopes,
4586 -- and the backend requires the scope of the type to match the
4587 -- point at which it is elaborated.
4589 -- If the component has an initialization procedure (IP) we
4590 -- pass the component to the expander, which will generate
4591 -- the call to such IP.
4593 -- If the component has discriminants, their values must
4594 -- be taken from their subtype. This is indispensable for
4595 -- constraints that are given by the current instance of an
4596 -- enclosing type, to allow the expansion of the aggregate to
4597 -- replace the reference to the current instance by the target
4598 -- object of the aggregate.
4600 if Present (Parent (Component))
4601 and then Nkind (Parent (Component)) = N_Component_Declaration
4602 and then Present (Expression (Parent (Component)))
4603 then
4604 Expr :=
4605 New_Copy_Tree_And_Copy_Dimensions
4606 (Expression (Parent (Component)),
4607 New_Scope => Current_Scope,
4608 New_Sloc => Sloc (N));
4610 Add_Association
4611 (Component => Component,
4612 Expr => Expr,
4613 Assoc_List => New_Assoc_List);
4614 Set_Has_Self_Reference (N);
4616 -- A box-defaulted access component gets the value null. Also
4617 -- included are components of private types whose underlying
4618 -- type is an access type. In either case set the type of the
4619 -- literal, for subsequent use in semantic checks.
4621 elsif Present (Underlying_Type (Ctyp))
4622 and then Is_Access_Type (Underlying_Type (Ctyp))
4623 then
4624 -- If the component's type is private with an access type as
4625 -- its underlying type then we have to create an unchecked
4626 -- conversion to satisfy type checking.
4628 if Is_Private_Type (Ctyp) then
4629 declare
4630 Qual_Null : constant Node_Id :=
4631 Make_Qualified_Expression (Sloc (N),
4632 Subtype_Mark =>
4633 New_Occurrence_Of
4634 (Underlying_Type (Ctyp), Sloc (N)),
4635 Expression => Make_Null (Sloc (N)));
4637 Convert_Null : constant Node_Id :=
4638 Unchecked_Convert_To
4639 (Ctyp, Qual_Null);
4641 begin
4642 Analyze_And_Resolve (Convert_Null, Ctyp);
4643 Add_Association
4644 (Component => Component,
4645 Expr => Convert_Null,
4646 Assoc_List => New_Assoc_List);
4647 end;
4649 -- Otherwise the component type is non-private
4651 else
4652 Expr := Make_Null (Sloc (N));
4653 Set_Etype (Expr, Ctyp);
4655 Add_Association
4656 (Component => Component,
4657 Expr => Expr,
4658 Assoc_List => New_Assoc_List);
4659 end if;
4661 -- Ada 2012: If component is scalar with default value, use it
4663 elsif Is_Scalar_Type (Ctyp)
4664 and then Has_Default_Aspect (Ctyp)
4665 then
4666 Add_Association
4667 (Component => Component,
4668 Expr =>
4669 Default_Aspect_Value
4670 (First_Subtype (Underlying_Type (Ctyp))),
4671 Assoc_List => New_Assoc_List);
4673 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
4674 or else not Expander_Active
4675 then
4676 if Is_Record_Type (Ctyp)
4677 and then Has_Discriminants (Ctyp)
4678 and then not Is_Private_Type (Ctyp)
4679 then
4680 -- We build a partially initialized aggregate with the
4681 -- values of the discriminants and box initialization
4682 -- for the rest, if other components are present.
4684 -- The type of the aggregate is the known subtype of
4685 -- the component. The capture of discriminants must be
4686 -- recursive because subcomponents may be constrained
4687 -- (transitively) by discriminants of enclosing types.
4688 -- For a private type with discriminants, a call to the
4689 -- initialization procedure will be generated, and no
4690 -- subaggregate is needed.
4692 Capture_Discriminants : declare
4693 Loc : constant Source_Ptr := Sloc (N);
4694 Expr : Node_Id;
4696 begin
4697 Expr := Make_Aggregate (Loc, New_List, New_List);
4698 Set_Etype (Expr, Ctyp);
4700 -- If the enclosing type has discriminants, they have
4701 -- been collected in the aggregate earlier, and they
4702 -- may appear as constraints of subcomponents.
4704 -- Similarly if this component has discriminants, they
4705 -- might in turn be propagated to their components.
4707 if Has_Discriminants (Typ) then
4708 Add_Discriminant_Values (Expr, New_Assoc_List);
4709 Propagate_Discriminants (Expr, New_Assoc_List);
4711 elsif Has_Discriminants (Ctyp) then
4712 Add_Discriminant_Values
4713 (Expr, Component_Associations (Expr));
4714 Propagate_Discriminants
4715 (Expr, Component_Associations (Expr));
4717 else
4718 declare
4719 Comp : Entity_Id;
4721 begin
4722 -- If the type has additional components, create
4723 -- an OTHERS box association for them.
4725 Comp := First_Component (Ctyp);
4726 while Present (Comp) loop
4727 if Ekind (Comp) = E_Component then
4728 if not Is_Record_Type (Etype (Comp)) then
4729 Append_To
4730 (Component_Associations (Expr),
4731 Make_Component_Association (Loc,
4732 Choices =>
4733 New_List (
4734 Make_Others_Choice (Loc)),
4735 Expression => Empty,
4736 Box_Present => True));
4737 end if;
4739 exit;
4740 end if;
4742 Next_Component (Comp);
4743 end loop;
4744 end;
4745 end if;
4747 Add_Association
4748 (Component => Component,
4749 Expr => Expr,
4750 Assoc_List => New_Assoc_List);
4751 end Capture_Discriminants;
4753 -- Otherwise the component type is not a record, or it has
4754 -- not discriminants, or it is private.
4756 else
4757 Add_Association
4758 (Component => Component,
4759 Expr => Empty,
4760 Assoc_List => New_Assoc_List,
4761 Is_Box_Present => True);
4762 end if;
4764 -- Otherwise we only need to resolve the expression if the
4765 -- component has partially initialized values (required to
4766 -- expand the corresponding assignments and run-time checks).
4768 elsif Present (Expr)
4769 and then Is_Partially_Initialized_Type (Ctyp)
4770 then
4771 Resolve_Aggr_Expr (Expr, Component);
4772 end if;
4773 end Check_Box_Component;
4775 elsif No (Expr) then
4777 -- Ignore hidden components associated with the position of the
4778 -- interface tags: these are initialized dynamically.
4780 if not Present (Related_Type (Component)) then
4781 Error_Msg_NE
4782 ("no value supplied for component &!", N, Component);
4783 end if;
4785 else
4786 Resolve_Aggr_Expr (Expr, Component);
4787 end if;
4789 Next_Elmt (Component_Elmt);
4790 end loop;
4792 -- STEP 7: check for invalid components + check type in choice list
4794 Step_7 : declare
4795 Assoc : Node_Id;
4796 New_Assoc : Node_Id;
4798 Selectr : Node_Id;
4799 -- Selector name
4801 Typech : Entity_Id;
4802 -- Type of first component in choice list
4804 begin
4805 if Present (Component_Associations (N)) then
4806 Assoc := First (Component_Associations (N));
4807 else
4808 Assoc := Empty;
4809 end if;
4811 Verification : while Present (Assoc) loop
4812 Selectr := First (Choices (Assoc));
4813 Typech := Empty;
4815 if Nkind (Selectr) = N_Others_Choice then
4817 -- Ada 2005 (AI-287): others choice may have expression or box
4819 if No (Others_Etype) and then Others_Box = 0 then
4820 Error_Msg_N
4821 ("OTHERS must represent at least one component", Selectr);
4823 elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
4824 Error_Msg_N ("others choice is redundant?", Box_Node);
4825 Error_Msg_N
4826 ("\previous choices cover all components?", Box_Node);
4827 end if;
4829 exit Verification;
4830 end if;
4832 while Present (Selectr) loop
4833 New_Assoc := First (New_Assoc_List);
4834 while Present (New_Assoc) loop
4835 Component := First (Choices (New_Assoc));
4837 if Chars (Selectr) = Chars (Component) then
4838 if Style_Check then
4839 Check_Identifier (Selectr, Entity (Component));
4840 end if;
4842 exit;
4843 end if;
4845 Next (New_Assoc);
4846 end loop;
4848 -- If no association, this is not a legal component of the type
4849 -- in question, unless its association is provided with a box.
4851 if No (New_Assoc) then
4852 if Box_Present (Parent (Selectr)) then
4854 -- This may still be a bogus component with a box. Scan
4855 -- list of components to verify that a component with
4856 -- that name exists.
4858 declare
4859 C : Entity_Id;
4861 begin
4862 C := First_Component (Typ);
4863 while Present (C) loop
4864 if Chars (C) = Chars (Selectr) then
4866 -- If the context is an extension aggregate,
4867 -- the component must not be inherited from
4868 -- the ancestor part of the aggregate.
4870 if Nkind (N) /= N_Extension_Aggregate
4871 or else
4872 Scope (Original_Record_Component (C)) /=
4873 Etype (Ancestor_Part (N))
4874 then
4875 exit;
4876 end if;
4877 end if;
4879 Next_Component (C);
4880 end loop;
4882 if No (C) then
4883 Error_Msg_Node_2 := Typ;
4884 Error_Msg_N ("& is not a component of}", Selectr);
4885 end if;
4886 end;
4888 elsif Chars (Selectr) /= Name_uTag
4889 and then Chars (Selectr) /= Name_uParent
4890 then
4891 if not Has_Discriminants (Typ) then
4892 Error_Msg_Node_2 := Typ;
4893 Error_Msg_N ("& is not a component of}", Selectr);
4894 else
4895 Error_Msg_N
4896 ("& is not a component of the aggregate subtype",
4897 Selectr);
4898 end if;
4900 Check_Misspelled_Component (Components, Selectr);
4901 end if;
4903 elsif No (Typech) then
4904 Typech := Base_Type (Etype (Component));
4906 -- AI05-0199: In Ada 2012, several components of anonymous
4907 -- access types can appear in a choice list, as long as the
4908 -- designated types match.
4910 elsif Typech /= Base_Type (Etype (Component)) then
4911 if Ada_Version >= Ada_2012
4912 and then Ekind (Typech) = E_Anonymous_Access_Type
4913 and then
4914 Ekind (Etype (Component)) = E_Anonymous_Access_Type
4915 and then Base_Type (Designated_Type (Typech)) =
4916 Base_Type (Designated_Type (Etype (Component)))
4917 and then
4918 Subtypes_Statically_Match (Typech, (Etype (Component)))
4919 then
4920 null;
4922 elsif not Box_Present (Parent (Selectr)) then
4923 Error_Msg_N
4924 ("components in choice list must have same type",
4925 Selectr);
4926 end if;
4927 end if;
4929 Next (Selectr);
4930 end loop;
4932 Next (Assoc);
4933 end loop Verification;
4934 end Step_7;
4936 -- STEP 8: replace the original aggregate
4938 Step_8 : declare
4939 New_Aggregate : constant Node_Id := New_Copy (N);
4941 begin
4942 Set_Expressions (New_Aggregate, No_List);
4943 Set_Etype (New_Aggregate, Etype (N));
4944 Set_Component_Associations (New_Aggregate, New_Assoc_List);
4945 Set_Check_Actuals (New_Aggregate, Check_Actuals (N));
4947 Rewrite (N, New_Aggregate);
4948 end Step_8;
4950 -- Check the dimensions of the components in the record aggregate
4952 Analyze_Dimension_Extension_Or_Record_Aggregate (N);
4953 end Resolve_Record_Aggregate;
4955 -----------------------------
4956 -- Check_Can_Never_Be_Null --
4957 -----------------------------
4959 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
4960 Comp_Typ : Entity_Id;
4962 begin
4963 pragma Assert
4964 (Ada_Version >= Ada_2005
4965 and then Present (Expr)
4966 and then Known_Null (Expr));
4968 case Ekind (Typ) is
4969 when E_Array_Type =>
4970 Comp_Typ := Component_Type (Typ);
4972 when E_Component
4973 | E_Discriminant
4975 Comp_Typ := Etype (Typ);
4977 when others =>
4978 return;
4979 end case;
4981 if Can_Never_Be_Null (Comp_Typ) then
4983 -- Here we know we have a constraint error. Note that we do not use
4984 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
4985 -- seem the more natural approach. That's because in some cases the
4986 -- components are rewritten, and the replacement would be missed.
4987 -- We do not mark the whole aggregate as raising a constraint error,
4988 -- because the association may be a null array range.
4990 Error_Msg_N
4991 ("(Ada 2005) null not allowed in null-excluding component??", Expr);
4992 Error_Msg_N
4993 ("\Constraint_Error will be raised at run time??", Expr);
4995 Rewrite (Expr,
4996 Make_Raise_Constraint_Error
4997 (Sloc (Expr), Reason => CE_Access_Check_Failed));
4998 Set_Etype (Expr, Comp_Typ);
4999 Set_Analyzed (Expr);
5000 end if;
5001 end Check_Can_Never_Be_Null;
5003 ---------------------
5004 -- Sort_Case_Table --
5005 ---------------------
5007 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
5008 U : constant Int := Case_Table'Last;
5009 K : Int;
5010 J : Int;
5011 T : Case_Bounds;
5013 begin
5014 K := 1;
5015 while K < U loop
5016 T := Case_Table (K + 1);
5018 J := K + 1;
5019 while J > 1
5020 and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
5021 loop
5022 Case_Table (J) := Case_Table (J - 1);
5023 J := J - 1;
5024 end loop;
5026 Case_Table (J) := T;
5027 K := K + 1;
5028 end loop;
5029 end Sort_Case_Table;
5031 end Sem_Aggr;