PR rtl-optimization/79386
[official-gcc.git] / gcc / ada / g-dynhta.adb
blob10931cc7d25c78dc95a3a0ed6b1ccc856aea3f27
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- G N A T . D Y N A M I C _ H T A B L E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2002-2016, AdaCore --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 with Ada.Unchecked_Deallocation;
34 package body GNAT.Dynamic_HTables is
36 -------------------
37 -- Static_HTable --
38 -------------------
40 package body Static_HTable is
42 type Table_Type is array (Header_Num) of Elmt_Ptr;
44 type Instance_Data is record
45 Table : Table_Type;
46 Iterator_Index : Header_Num;
47 Iterator_Ptr : Elmt_Ptr;
48 Iterator_Started : Boolean := False;
49 end record;
51 function Get_Non_Null (T : Instance) return Elmt_Ptr;
52 -- Returns Null_Ptr if Iterator_Started is False or if the Table is
53 -- empty. Returns Iterator_Ptr if non null, or the next non null
54 -- element in table if any.
56 ---------
57 -- Get --
58 ---------
60 function Get (T : Instance; K : Key) return Elmt_Ptr is
61 Elmt : Elmt_Ptr;
63 begin
64 if T = null then
65 return Null_Ptr;
66 end if;
68 Elmt := T.Table (Hash (K));
70 loop
71 if Elmt = Null_Ptr then
72 return Null_Ptr;
74 elsif Equal (Get_Key (Elmt), K) then
75 return Elmt;
77 else
78 Elmt := Next (Elmt);
79 end if;
80 end loop;
81 end Get;
83 ---------------
84 -- Get_First --
85 ---------------
87 function Get_First (T : Instance) return Elmt_Ptr is
88 begin
89 if T = null then
90 return Null_Ptr;
91 end if;
93 T.Iterator_Started := True;
94 T.Iterator_Index := T.Table'First;
95 T.Iterator_Ptr := T.Table (T.Iterator_Index);
96 return Get_Non_Null (T);
97 end Get_First;
99 --------------
100 -- Get_Next --
101 --------------
103 function Get_Next (T : Instance) return Elmt_Ptr is
104 begin
105 if T = null or else not T.Iterator_Started then
106 return Null_Ptr;
107 end if;
109 T.Iterator_Ptr := Next (T.Iterator_Ptr);
110 return Get_Non_Null (T);
111 end Get_Next;
113 ------------------
114 -- Get_Non_Null --
115 ------------------
117 function Get_Non_Null (T : Instance) return Elmt_Ptr is
118 begin
119 if T = null then
120 return Null_Ptr;
121 end if;
123 while T.Iterator_Ptr = Null_Ptr loop
124 if T.Iterator_Index = T.Table'Last then
125 T.Iterator_Started := False;
126 return Null_Ptr;
127 end if;
129 T.Iterator_Index := T.Iterator_Index + 1;
130 T.Iterator_Ptr := T.Table (T.Iterator_Index);
131 end loop;
133 return T.Iterator_Ptr;
134 end Get_Non_Null;
136 ------------
137 -- Remove --
138 ------------
140 procedure Remove (T : Instance; K : Key) is
141 Index : constant Header_Num := Hash (K);
142 Elmt : Elmt_Ptr;
143 Next_Elmt : Elmt_Ptr;
145 begin
146 if T = null then
147 return;
148 end if;
150 Elmt := T.Table (Index);
152 if Elmt = Null_Ptr then
153 return;
155 elsif Equal (Get_Key (Elmt), K) then
156 T.Table (Index) := Next (Elmt);
158 else
159 loop
160 Next_Elmt := Next (Elmt);
162 if Next_Elmt = Null_Ptr then
163 return;
165 elsif Equal (Get_Key (Next_Elmt), K) then
166 Set_Next (Elmt, Next (Next_Elmt));
167 return;
169 else
170 Elmt := Next_Elmt;
171 end if;
172 end loop;
173 end if;
174 end Remove;
176 -----------
177 -- Reset --
178 -----------
180 procedure Reset (T : in out Instance) is
181 procedure Free is
182 new Ada.Unchecked_Deallocation (Instance_Data, Instance);
184 begin
185 if T = null then
186 return;
187 end if;
189 for J in T.Table'Range loop
190 T.Table (J) := Null_Ptr;
191 end loop;
193 Free (T);
194 end Reset;
196 ---------
197 -- Set --
198 ---------
200 procedure Set (T : in out Instance; E : Elmt_Ptr) is
201 Index : Header_Num;
203 begin
204 if T = null then
205 T := new Instance_Data;
206 end if;
208 Index := Hash (Get_Key (E));
209 Set_Next (E, T.Table (Index));
210 T.Table (Index) := E;
211 end Set;
213 end Static_HTable;
215 -------------------
216 -- Simple_HTable --
217 -------------------
219 package body Simple_HTable is
220 procedure Free is new
221 Ada.Unchecked_Deallocation (Element_Wrapper, Elmt_Ptr);
223 ---------
224 -- Get --
225 ---------
227 function Get (T : Instance; K : Key) return Element is
228 Tmp : Elmt_Ptr;
230 begin
231 if T = Nil then
232 return No_Element;
233 end if;
235 Tmp := Tab.Get (Tab.Instance (T), K);
237 if Tmp = null then
238 return No_Element;
239 else
240 return Tmp.E;
241 end if;
242 end Get;
244 ---------------
245 -- Get_First --
246 ---------------
248 function Get_First (T : Instance) return Element is
249 Tmp : constant Elmt_Ptr := Tab.Get_First (Tab.Instance (T));
251 begin
252 if Tmp = null then
253 return No_Element;
254 else
255 return Tmp.E;
256 end if;
257 end Get_First;
259 -------------
260 -- Get_Key --
261 -------------
263 function Get_Key (E : Elmt_Ptr) return Key is
264 begin
265 return E.K;
266 end Get_Key;
268 --------------
269 -- Get_Next --
270 --------------
272 function Get_Next (T : Instance) return Element is
273 Tmp : constant Elmt_Ptr := Tab.Get_Next (Tab.Instance (T));
274 begin
275 if Tmp = null then
276 return No_Element;
277 else
278 return Tmp.E;
279 end if;
280 end Get_Next;
282 ----------
283 -- Next --
284 ----------
286 function Next (E : Elmt_Ptr) return Elmt_Ptr is
287 begin
288 return E.Next;
289 end Next;
291 ------------
292 -- Remove --
293 ------------
295 procedure Remove (T : Instance; K : Key) is
296 Tmp : Elmt_Ptr;
298 begin
299 Tmp := Tab.Get (Tab.Instance (T), K);
301 if Tmp /= null then
302 Tab.Remove (Tab.Instance (T), K);
303 Free (Tmp);
304 end if;
305 end Remove;
307 -----------
308 -- Reset --
309 -----------
311 procedure Reset (T : in out Instance) is
312 E1, E2 : Elmt_Ptr;
314 begin
315 E1 := Tab.Get_First (Tab.Instance (T));
316 while E1 /= null loop
317 E2 := Tab.Get_Next (Tab.Instance (T));
318 Free (E1);
319 E1 := E2;
320 end loop;
322 Tab.Reset (Tab.Instance (T));
323 end Reset;
325 ---------
326 -- Set --
327 ---------
329 procedure Set (T : in out Instance; K : Key; E : Element) is
330 Tmp : constant Elmt_Ptr := Tab.Get (Tab.Instance (T), K);
331 begin
332 if Tmp = null then
333 Tab.Set (Tab.Instance (T), new Element_Wrapper'(K, E, null));
334 else
335 Tmp.E := E;
336 end if;
337 end Set;
339 --------------
340 -- Set_Next --
341 --------------
343 procedure Set_Next (E : Elmt_Ptr; Next : Elmt_Ptr) is
344 begin
345 E.Next := Next;
346 end Set_Next;
348 end Simple_HTable;
350 ------------------------
351 -- Load_Factor_HTable --
352 ------------------------
354 package body Load_Factor_HTable is
356 Min_Size_Increase : constant := 5;
357 -- The minimum increase expressed as number of buckets. This value is
358 -- used to determine the new size of small tables and/or small growth
359 -- percentages.
361 procedure Attach
362 (Elmt : not null Element_Ptr;
363 Chain : not null Element_Ptr);
364 -- Prepend an element to a bucket chain. Elmt is inserted after the
365 -- dummy head of Chain.
367 function Create_Buckets (Size : Positive) return Buckets_Array_Ptr;
368 -- Allocate and initialize a new set of buckets. The buckets are created
369 -- in the range Range_Type'First .. Range_Type'First + Size - 1.
371 procedure Detach (Elmt : not null Element_Ptr);
372 -- Remove an element from an arbitrary bucket chain
374 function Find
375 (Key : Key_Type;
376 Chain : not null Element_Ptr) return Element_Ptr;
377 -- Try to locate the element which contains a particular key within a
378 -- bucket chain. If no such element exists, return No_Element.
380 procedure Free is
381 new Ada.Unchecked_Deallocation (Buckets_Array, Buckets_Array_Ptr);
383 procedure Free is
384 new Ada.Unchecked_Deallocation (Element, Element_Ptr);
386 function Is_Empty_Chain (Chain : not null Element_Ptr) return Boolean;
387 -- Determine whether a bucket chain contains only one element, namely
388 -- the dummy head.
390 ------------
391 -- Attach --
392 ------------
394 procedure Attach
395 (Elmt : not null Element_Ptr;
396 Chain : not null Element_Ptr)
398 begin
399 Chain.Next.Prev := Elmt;
400 Elmt.Next := Chain.Next;
401 Chain.Next := Elmt;
402 Elmt.Prev := Chain;
403 end Attach;
405 --------------------
406 -- Create_Buckets --
407 --------------------
409 function Create_Buckets (Size : Positive) return Buckets_Array_Ptr is
410 Low_Bound : constant Range_Type := Range_Type'First;
411 Buckets : Buckets_Array_Ptr;
413 begin
414 Buckets :=
415 new Buckets_Array (Low_Bound .. Low_Bound + Range_Type (Size) - 1);
417 -- Ensure that the dummy head of each bucket chain points to itself
418 -- in both directions.
420 for Index in Buckets'Range loop
421 declare
422 Bucket : Element renames Buckets (Index);
424 begin
425 Bucket.Prev := Bucket'Unchecked_Access;
426 Bucket.Next := Bucket'Unchecked_Access;
427 end;
428 end loop;
430 return Buckets;
431 end Create_Buckets;
433 ------------------
434 -- Current_Size --
435 ------------------
437 function Current_Size (T : Table) return Positive is
438 begin
439 -- The table should have been properly initialized during object
440 -- elaboration.
442 if T.Buckets = null then
443 raise Program_Error;
445 -- The size of the table is determined by the number of buckets
447 else
448 return T.Buckets'Length;
449 end if;
450 end Current_Size;
452 ------------
453 -- Detach --
454 ------------
456 procedure Detach (Elmt : not null Element_Ptr) is
457 begin
458 if Elmt.Prev /= null and Elmt.Next /= null then
459 Elmt.Prev.Next := Elmt.Next;
460 Elmt.Next.Prev := Elmt.Prev;
461 Elmt.Prev := null;
462 Elmt.Next := null;
463 end if;
464 end Detach;
466 --------------
467 -- Finalize --
468 --------------
470 procedure Finalize (T : in out Table) is
471 Bucket : Element_Ptr;
472 Elmt : Element_Ptr;
474 begin
475 -- Inspect the buckets and deallocate bucket chains
477 for Index in T.Buckets'Range loop
478 Bucket := T.Buckets (Index)'Unchecked_Access;
480 -- The current bucket chain contains an element other than the
481 -- dummy head.
483 while not Is_Empty_Chain (Bucket) loop
485 -- Skip the dummy head, remove and deallocate the element
487 Elmt := Bucket.Next;
488 Detach (Elmt);
489 Free (Elmt);
490 end loop;
491 end loop;
493 -- Deallocate the buckets
495 Free (T.Buckets);
496 end Finalize;
498 ----------
499 -- Find --
500 ----------
502 function Find
503 (Key : Key_Type;
504 Chain : not null Element_Ptr) return Element_Ptr
506 Elmt : Element_Ptr;
508 begin
509 -- Skip the dummy head, inspect the bucket chain for an element whose
510 -- key matches the requested key. Since each bucket chain is circular
511 -- the search must stop once the dummy head is encountered.
513 Elmt := Chain.Next;
514 while Elmt /= Chain loop
515 if Equal (Elmt.Key, Key) then
516 return Elmt;
517 end if;
519 Elmt := Elmt.Next;
520 end loop;
522 return No_Element;
523 end Find;
525 ---------
526 -- Get --
527 ---------
529 function Get (T : Table; Key : Key_Type) return Value_Type is
530 Bucket : Element_Ptr;
531 Elmt : Element_Ptr;
533 begin
534 -- Obtain the bucket chain where the (key, value) pair should reside
535 -- by calculating the proper hash location.
537 Bucket := T.Buckets (Hash (Key, Current_Size (T)))'Unchecked_Access;
539 -- Try to find an element whose key matches the requested key
541 Elmt := Find (Key, Bucket);
543 -- The hash table does not contain a matching (key, value) pair
545 if Elmt = No_Element then
546 return No_Value;
547 else
548 return Elmt.Val;
549 end if;
550 end Get;
552 ----------------
553 -- Initialize --
554 ----------------
556 procedure Initialize (T : in out Table) is
557 begin
558 pragma Assert (T.Buckets = null);
560 T.Buckets := Create_Buckets (Initial_Size);
561 T.Element_Count := 0;
562 end Initialize;
564 --------------------
565 -- Is_Empty_Chain --
566 --------------------
568 function Is_Empty_Chain (Chain : not null Element_Ptr) return Boolean is
569 begin
570 return Chain.Next = Chain and Chain.Prev = Chain;
571 end Is_Empty_Chain;
573 ------------
574 -- Remove --
575 ------------
577 procedure Remove (T : in out Table; Key : Key_Type) is
578 Bucket : Element_Ptr;
579 Elmt : Element_Ptr;
581 begin
582 -- Obtain the bucket chain where the (key, value) pair should reside
583 -- by calculating the proper hash location.
585 Bucket := T.Buckets (Hash (Key, Current_Size (T)))'Unchecked_Access;
587 -- Try to find an element whose key matches the requested key
589 Elmt := Find (Key, Bucket);
591 -- Remove and deallocate the (key, value) pair
593 if Elmt /= No_Element then
594 Detach (Elmt);
595 Free (Elmt);
596 end if;
597 end Remove;
599 ---------
600 -- Set --
601 ---------
603 procedure Set
604 (T : in out Table;
605 Key : Key_Type;
606 Val : Value_Type)
608 Curr_Size : constant Positive := Current_Size (T);
610 procedure Grow;
611 -- Grow the table to a new size according to the desired percentage
612 -- and relocate all existing elements to the new buckets.
614 ----------
615 -- Grow --
616 ----------
618 procedure Grow is
619 Buckets : Buckets_Array_Ptr;
620 Elmt : Element_Ptr;
621 Hash_Loc : Range_Type;
622 Old_Bucket : Element_Ptr;
623 Old_Buckets : Buckets_Array_Ptr := T.Buckets;
624 Size : Positive;
626 begin
627 -- Calculate the new size and allocate a new set of buckets. Note
628 -- that a table with a small size or a small growth percentage may
629 -- not always grow (for example, 10 buckets and 3% increase). In
630 -- that case, enforce a minimum increase.
632 Size :=
633 Positive'Max (Curr_Size * ((100 + Growth_Percentage) / 100),
634 Min_Size_Increase);
635 Buckets := Create_Buckets (Size);
637 -- Inspect the old buckets and transfer all elements by rehashing
638 -- all (key, value) pairs in the new buckets.
640 for Index in Old_Buckets'Range loop
641 Old_Bucket := Old_Buckets (Index)'Unchecked_Access;
643 -- The current bucket chain contains an element other than the
644 -- dummy head.
646 while not Is_Empty_Chain (Old_Bucket) loop
648 -- Skip the dummy head and find the new hash location
650 Elmt := Old_Bucket.Next;
651 Hash_Loc := Hash (Elmt.Key, Size);
653 -- Remove the element from the old buckets and insert it
654 -- into the new buckets. Note that there is no need to check
655 -- for duplicates because the hash table did not have any to
656 -- begin with.
658 Detach (Elmt);
659 Attach
660 (Elmt => Elmt,
661 Chain => Buckets (Hash_Loc)'Unchecked_Access);
662 end loop;
663 end loop;
665 -- Associate the new buckets with the table and reclaim the
666 -- storage occupied by the old buckets.
668 T.Buckets := Buckets;
670 Free (Old_Buckets);
671 end Grow;
673 -- Local variables
675 subtype LLF is Long_Long_Float;
677 Count : Natural renames T.Element_Count;
678 Bucket : Element_Ptr;
679 Hash_Loc : Range_Type;
681 -- Start of processing for Set
683 begin
684 -- Find the bucket where the (key, value) pair should be inserted by
685 -- computing the proper hash location.
687 Hash_Loc := Hash (Key, Curr_Size);
688 Bucket := T.Buckets (Hash_Loc)'Unchecked_Access;
690 -- Ensure that the key is not already present in the bucket in order
691 -- to avoid duplicates.
693 if Find (Key, Bucket) = No_Element then
694 Attach
695 (Elmt => new Element'(Key, Val, null, null),
696 Chain => Bucket);
697 Count := Count + 1;
699 -- Multiple insertions may cause long bucket chains and decrease
700 -- the performance of basic operations. If this is the case, grow
701 -- the table and rehash all existing elements.
703 if (LLF (Count) / LLF (Curr_Size)) > LLF (Load_Factor) then
704 Grow;
705 end if;
706 end if;
707 end Set;
708 end Load_Factor_HTable;
710 end GNAT.Dynamic_HTables;