PR rtl-optimization/79386
[official-gcc.git] / gcc / ada / exp_pakd.ads
blob80b63247e3cbbe965a11fc1bafd1543fccf45bd1
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ P A K D --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 -- Expand routines for manipulation of packed arrays
28 with Rtsfind; use Rtsfind;
29 with Types; use Types;
31 package Exp_Pakd is
33 -------------------------------------
34 -- Implementation of Packed Arrays --
35 -------------------------------------
37 -- When a packed array (sub)type is frozen, we create a corresponding
38 -- type that will be used to hold the bits of the packed value, and store
39 -- the entity for this type in the Packed_Array_Impl_Type field of the
40 -- E_Array_Type or E_Array_Subtype entity for the packed array.
42 -- This packed array type has the name xxxPn, where xxx is the name
43 -- of the packed type, and n is the component size. The expanded
44 -- declaration declares a type that is one of the following:
46 -- For an unconstrained array with component size 1,2,4 or any other
47 -- odd component size. These are the cases in which we do not need
48 -- to align the underlying array.
50 -- type xxxPn is new Packed_Bytes1;
52 -- For an unconstrained array with component size that is divisible
53 -- by 2, but not divisible by 4 (other than 2 itself). These are the
54 -- cases in which we can generate better code if the underlying array
55 -- is 2-byte aligned (see System.Pack_14 in file s-pack14 for example).
57 -- type xxxPn is new Packed_Bytes2;
59 -- For an unconstrained array with component size that is divisible
60 -- by 4, other than powers of 2 (which either come under the 1,2,4
61 -- exception above, or are not packed at all). These are cases where
62 -- we can generate better code if the underlying array is 4-byte
63 -- aligned (see System.Pack_20 in file s-pack20 for example).
65 -- type xxxPn is new Packed_Bytes4;
67 -- For a constrained array with a static index type where the number
68 -- of bits does not exceed the size of Unsigned:
70 -- type xxxPn is new Unsigned range 0 .. 2 ** nbits - 1;
72 -- For a constrained array with a static index type where the number
73 -- of bits is greater than the size of Unsigned, but does not exceed
74 -- the size of Long_Long_Unsigned:
76 -- type xxxPn is new Long_Long_Unsigned range 0 .. 2 ** nbits - 1;
78 -- For all other constrained arrays, we use one of
80 -- type xxxPn is new Packed_Bytes1 (0 .. m);
81 -- type xxxPn is new Packed_Bytes2 (0 .. m);
82 -- type xxxPn is new Packed_Bytes4 (0 .. m);
84 -- where m is calculated (from the length of the original packed array)
85 -- to hold the required number of bits, and the choice of the particular
86 -- Packed_Bytes{1,2,4} type is made on the basis of alignment needs as
87 -- described above for the unconstrained case.
89 -- When a variable of packed array type is allocated, gigi will allocate
90 -- the amount of space indicated by the corresponding packed array type.
91 -- However, we do NOT attempt to rewrite the types of any references or
92 -- to retype the variable itself, since this would cause all kinds of
93 -- semantic problems in the front end (remember that expansion proceeds
94 -- at the same time as analysis).
96 -- For an indexed reference to a packed array, we simply convert the
97 -- reference to the appropriate equivalent reference to the object
98 -- of the packed array type (using unchecked conversion).
100 -- In some cases (for internally generated types, and for the subtypes
101 -- for record fields that depend on a discriminant), the corresponding
102 -- packed type cannot be easily generated in advance. In these cases,
103 -- we generate the required subtype on the fly at the reference point.
105 -- For the modular case, any unused bits are initialized to zero, and
106 -- all operations maintain these bits as zero (where necessary all
107 -- unchecked conversions from corresponding array values require
108 -- these bits to be clear, which is done automatically by gigi).
110 -- For the array cases, there can be unused bits in the last byte, and
111 -- these are neither initialized, nor treated specially in operations
112 -- (i.e. it is allowable for these bits to be clobbered, e.g. by not).
114 ---------------------------
115 -- Endian Considerations --
116 ---------------------------
118 -- The standard does not specify the way in which bits are numbered in
119 -- a packed array. There are two reasonable rules for deciding this:
121 -- Store the first bit at right end (low order) word. This means
122 -- that the scaled subscript can be used directly as a left shift
123 -- count (if we put bit 0 at the left end, then we need an extra
124 -- subtract to compute the shift count).
126 -- Layout the bits so that if the packed boolean array is overlaid on
127 -- a record, using unchecked conversion, then bit 0 of the array is
128 -- the same as the bit numbered bit 0 in a record representation
129 -- clause applying to the record. For example:
131 -- type Rec is record
132 -- C : Bits4;
133 -- D : Bits7;
134 -- E : Bits5;
135 -- end record;
137 -- for Rec use record
138 -- C at 0 range 0 .. 3;
139 -- D at 0 range 4 .. 10;
140 -- E at 0 range 11 .. 15;
141 -- end record;
143 -- type P16 is array (0 .. 15) of Boolean;
144 -- pragma Pack (P16);
146 -- Now if we use unchecked conversion to convert a value of the record
147 -- type to the packed array type, according to this second criterion,
148 -- we would expect field D to occupy bits 4..10 of the Boolean array.
150 -- Although not required, this correspondence seems a highly desirable
151 -- property, and is one that GNAT decides to guarantee. For a little
152 -- endian machine, we can also meet the first requirement, but for a
153 -- big endian machine, it will be necessary to store the first bit of
154 -- a Boolean array in the left end (most significant) bit of the word.
155 -- This may cost an extra instruction on some machines, but we consider
156 -- that a worthwhile price to pay for the consistency.
158 -- One more important point arises in the case where we have a constrained
159 -- subtype of an unconstrained array. Take the case of 20 bits. For the
160 -- unconstrained representation, we would use an array of bytes:
162 -- Little-endian case
163 -- 8-7-6-5-4-3-2-1 16-15-14-13-12-11-10-9 x-x-x-x-20-19-18-17
165 -- Big-endian case
166 -- 1-2-3-4-5-6-7-8 9-10-11-12-13-14-15-16 17-18-19-20-x-x-x-x
168 -- For the constrained case, we use a 20-bit modular value, but in
169 -- general this value may well be stored in 32 bits. Let's look at
170 -- what it looks like:
172 -- Little-endian case
174 -- x-x-x-x-x-x-x-x-x-x-x-x-20-19-18-17-...-10-9-8-7-6-5-4-3-2-1
176 -- which stored in memory looks like
178 -- 8-7-...-2-1 16-15-...-10-9 x-x-x-x-20-19-18-17 x-x-x-x-x-x-x
180 -- An important rule is that the constrained and unconstrained cases
181 -- must have the same bit representation in memory, since we will often
182 -- convert from one to the other (e.g. when calling a procedure whose
183 -- formal is unconstrained). As we see, that criterion is met for the
184 -- little-endian case above. Now let's look at the big-endian case:
186 -- Big-endian case
188 -- x-x-x-x-x-x-x-x-x-x-x-x-1-2-3-4-5-6-7-8-9-10-...-17-18-19-20
190 -- which stored in memory looks like
192 -- x-x-x-x-x-x-x-x x-x-x-x-1-2-3-4 5-6-...11-12 13-14-...-19-20
194 -- That won't do, the representation value in memory is NOT the same in
195 -- the constrained and unconstrained case. The solution is to store the
196 -- modular value left-justified:
198 -- 1-2-3-4-5-6-7-8-9-10-...-17-18-19-20-x-x-x-x-x-x-x-x-x-x-x
200 -- which stored in memory looks like
202 -- 1-2-...-7-8 9-10-...15-16 17-18-19-20-x-x-x-x x-x-x-x-x-x-x-x
204 -- and now, we do indeed have the same representation for the memory
205 -- version in the constrained and unconstrained cases.
207 ----------------------------------------------
208 -- Entity Tables for Packed Access Routines --
209 ----------------------------------------------
211 -- For the cases of component size = 3,5-7,9-15,17-31,33-63 we call library
212 -- routines. These tables provide the entity for the proper routine. They
213 -- are exposed in the spec to allow checking for the presence of the needed
214 -- routine when an array is subject to pragma Pack.
216 type E_Array is array (Int range 01 .. 63) of RE_Id;
218 -- Array of Bits_nn entities. Note that we do not use library routines
219 -- for the 8-bit and 16-bit cases, but we still fill in the table, using
220 -- entries from System.Unsigned, because we also use this table for
221 -- certain special unchecked conversions in the big-endian case.
223 Bits_Id : constant E_Array :=
224 (01 => RE_Bits_1,
225 02 => RE_Bits_2,
226 03 => RE_Bits_03,
227 04 => RE_Bits_4,
228 05 => RE_Bits_05,
229 06 => RE_Bits_06,
230 07 => RE_Bits_07,
231 08 => RE_Unsigned_8,
232 09 => RE_Bits_09,
233 10 => RE_Bits_10,
234 11 => RE_Bits_11,
235 12 => RE_Bits_12,
236 13 => RE_Bits_13,
237 14 => RE_Bits_14,
238 15 => RE_Bits_15,
239 16 => RE_Unsigned_16,
240 17 => RE_Bits_17,
241 18 => RE_Bits_18,
242 19 => RE_Bits_19,
243 20 => RE_Bits_20,
244 21 => RE_Bits_21,
245 22 => RE_Bits_22,
246 23 => RE_Bits_23,
247 24 => RE_Bits_24,
248 25 => RE_Bits_25,
249 26 => RE_Bits_26,
250 27 => RE_Bits_27,
251 28 => RE_Bits_28,
252 29 => RE_Bits_29,
253 30 => RE_Bits_30,
254 31 => RE_Bits_31,
255 32 => RE_Unsigned_32,
256 33 => RE_Bits_33,
257 34 => RE_Bits_34,
258 35 => RE_Bits_35,
259 36 => RE_Bits_36,
260 37 => RE_Bits_37,
261 38 => RE_Bits_38,
262 39 => RE_Bits_39,
263 40 => RE_Bits_40,
264 41 => RE_Bits_41,
265 42 => RE_Bits_42,
266 43 => RE_Bits_43,
267 44 => RE_Bits_44,
268 45 => RE_Bits_45,
269 46 => RE_Bits_46,
270 47 => RE_Bits_47,
271 48 => RE_Bits_48,
272 49 => RE_Bits_49,
273 50 => RE_Bits_50,
274 51 => RE_Bits_51,
275 52 => RE_Bits_52,
276 53 => RE_Bits_53,
277 54 => RE_Bits_54,
278 55 => RE_Bits_55,
279 56 => RE_Bits_56,
280 57 => RE_Bits_57,
281 58 => RE_Bits_58,
282 59 => RE_Bits_59,
283 60 => RE_Bits_60,
284 61 => RE_Bits_61,
285 62 => RE_Bits_62,
286 63 => RE_Bits_63);
288 -- Array of Get routine entities. These are used to obtain an element from
289 -- a packed array. The N'th entry is used to obtain elements from a packed
290 -- array whose component size is N. RE_Null is used as a null entry, for
291 -- the cases where a library routine is not used.
293 Get_Id : constant E_Array :=
294 (01 => RE_Null,
295 02 => RE_Null,
296 03 => RE_Get_03,
297 04 => RE_Null,
298 05 => RE_Get_05,
299 06 => RE_Get_06,
300 07 => RE_Get_07,
301 08 => RE_Null,
302 09 => RE_Get_09,
303 10 => RE_Get_10,
304 11 => RE_Get_11,
305 12 => RE_Get_12,
306 13 => RE_Get_13,
307 14 => RE_Get_14,
308 15 => RE_Get_15,
309 16 => RE_Null,
310 17 => RE_Get_17,
311 18 => RE_Get_18,
312 19 => RE_Get_19,
313 20 => RE_Get_20,
314 21 => RE_Get_21,
315 22 => RE_Get_22,
316 23 => RE_Get_23,
317 24 => RE_Get_24,
318 25 => RE_Get_25,
319 26 => RE_Get_26,
320 27 => RE_Get_27,
321 28 => RE_Get_28,
322 29 => RE_Get_29,
323 30 => RE_Get_30,
324 31 => RE_Get_31,
325 32 => RE_Null,
326 33 => RE_Get_33,
327 34 => RE_Get_34,
328 35 => RE_Get_35,
329 36 => RE_Get_36,
330 37 => RE_Get_37,
331 38 => RE_Get_38,
332 39 => RE_Get_39,
333 40 => RE_Get_40,
334 41 => RE_Get_41,
335 42 => RE_Get_42,
336 43 => RE_Get_43,
337 44 => RE_Get_44,
338 45 => RE_Get_45,
339 46 => RE_Get_46,
340 47 => RE_Get_47,
341 48 => RE_Get_48,
342 49 => RE_Get_49,
343 50 => RE_Get_50,
344 51 => RE_Get_51,
345 52 => RE_Get_52,
346 53 => RE_Get_53,
347 54 => RE_Get_54,
348 55 => RE_Get_55,
349 56 => RE_Get_56,
350 57 => RE_Get_57,
351 58 => RE_Get_58,
352 59 => RE_Get_59,
353 60 => RE_Get_60,
354 61 => RE_Get_61,
355 62 => RE_Get_62,
356 63 => RE_Get_63);
358 -- Array of Get routine entities to be used in the case where the packed
359 -- array is itself a component of a packed structure, and therefore may not
360 -- be fully aligned. This only affects the even sizes, since for the odd
361 -- sizes, we do not get any fixed alignment in any case.
363 GetU_Id : constant E_Array :=
364 (01 => RE_Null,
365 02 => RE_Null,
366 03 => RE_Get_03,
367 04 => RE_Null,
368 05 => RE_Get_05,
369 06 => RE_GetU_06,
370 07 => RE_Get_07,
371 08 => RE_Null,
372 09 => RE_Get_09,
373 10 => RE_GetU_10,
374 11 => RE_Get_11,
375 12 => RE_GetU_12,
376 13 => RE_Get_13,
377 14 => RE_GetU_14,
378 15 => RE_Get_15,
379 16 => RE_Null,
380 17 => RE_Get_17,
381 18 => RE_GetU_18,
382 19 => RE_Get_19,
383 20 => RE_GetU_20,
384 21 => RE_Get_21,
385 22 => RE_GetU_22,
386 23 => RE_Get_23,
387 24 => RE_GetU_24,
388 25 => RE_Get_25,
389 26 => RE_GetU_26,
390 27 => RE_Get_27,
391 28 => RE_GetU_28,
392 29 => RE_Get_29,
393 30 => RE_GetU_30,
394 31 => RE_Get_31,
395 32 => RE_Null,
396 33 => RE_Get_33,
397 34 => RE_GetU_34,
398 35 => RE_Get_35,
399 36 => RE_GetU_36,
400 37 => RE_Get_37,
401 38 => RE_GetU_38,
402 39 => RE_Get_39,
403 40 => RE_GetU_40,
404 41 => RE_Get_41,
405 42 => RE_GetU_42,
406 43 => RE_Get_43,
407 44 => RE_GetU_44,
408 45 => RE_Get_45,
409 46 => RE_GetU_46,
410 47 => RE_Get_47,
411 48 => RE_GetU_48,
412 49 => RE_Get_49,
413 50 => RE_GetU_50,
414 51 => RE_Get_51,
415 52 => RE_GetU_52,
416 53 => RE_Get_53,
417 54 => RE_GetU_54,
418 55 => RE_Get_55,
419 56 => RE_GetU_56,
420 57 => RE_Get_57,
421 58 => RE_GetU_58,
422 59 => RE_Get_59,
423 60 => RE_GetU_60,
424 61 => RE_Get_61,
425 62 => RE_GetU_62,
426 63 => RE_Get_63);
428 -- Array of Set routine entities. These are used to assign an element of a
429 -- packed array. The N'th entry is used to assign elements for a packed
430 -- array whose component size is N. RE_Null is used as a null entry, for
431 -- the cases where a library routine is not used.
433 Set_Id : constant E_Array :=
434 (01 => RE_Null,
435 02 => RE_Null,
436 03 => RE_Set_03,
437 04 => RE_Null,
438 05 => RE_Set_05,
439 06 => RE_Set_06,
440 07 => RE_Set_07,
441 08 => RE_Null,
442 09 => RE_Set_09,
443 10 => RE_Set_10,
444 11 => RE_Set_11,
445 12 => RE_Set_12,
446 13 => RE_Set_13,
447 14 => RE_Set_14,
448 15 => RE_Set_15,
449 16 => RE_Null,
450 17 => RE_Set_17,
451 18 => RE_Set_18,
452 19 => RE_Set_19,
453 20 => RE_Set_20,
454 21 => RE_Set_21,
455 22 => RE_Set_22,
456 23 => RE_Set_23,
457 24 => RE_Set_24,
458 25 => RE_Set_25,
459 26 => RE_Set_26,
460 27 => RE_Set_27,
461 28 => RE_Set_28,
462 29 => RE_Set_29,
463 30 => RE_Set_30,
464 31 => RE_Set_31,
465 32 => RE_Null,
466 33 => RE_Set_33,
467 34 => RE_Set_34,
468 35 => RE_Set_35,
469 36 => RE_Set_36,
470 37 => RE_Set_37,
471 38 => RE_Set_38,
472 39 => RE_Set_39,
473 40 => RE_Set_40,
474 41 => RE_Set_41,
475 42 => RE_Set_42,
476 43 => RE_Set_43,
477 44 => RE_Set_44,
478 45 => RE_Set_45,
479 46 => RE_Set_46,
480 47 => RE_Set_47,
481 48 => RE_Set_48,
482 49 => RE_Set_49,
483 50 => RE_Set_50,
484 51 => RE_Set_51,
485 52 => RE_Set_52,
486 53 => RE_Set_53,
487 54 => RE_Set_54,
488 55 => RE_Set_55,
489 56 => RE_Set_56,
490 57 => RE_Set_57,
491 58 => RE_Set_58,
492 59 => RE_Set_59,
493 60 => RE_Set_60,
494 61 => RE_Set_61,
495 62 => RE_Set_62,
496 63 => RE_Set_63);
498 -- Array of Set routine entities to be used in the case where the packed
499 -- array is itself a component of a packed structure, and therefore may not
500 -- be fully aligned. This only affects the even sizes, since for the odd
501 -- sizes, we do not get any fixed alignment in any case.
503 SetU_Id : constant E_Array :=
504 (01 => RE_Null,
505 02 => RE_Null,
506 03 => RE_Set_03,
507 04 => RE_Null,
508 05 => RE_Set_05,
509 06 => RE_SetU_06,
510 07 => RE_Set_07,
511 08 => RE_Null,
512 09 => RE_Set_09,
513 10 => RE_SetU_10,
514 11 => RE_Set_11,
515 12 => RE_SetU_12,
516 13 => RE_Set_13,
517 14 => RE_SetU_14,
518 15 => RE_Set_15,
519 16 => RE_Null,
520 17 => RE_Set_17,
521 18 => RE_SetU_18,
522 19 => RE_Set_19,
523 20 => RE_SetU_20,
524 21 => RE_Set_21,
525 22 => RE_SetU_22,
526 23 => RE_Set_23,
527 24 => RE_SetU_24,
528 25 => RE_Set_25,
529 26 => RE_SetU_26,
530 27 => RE_Set_27,
531 28 => RE_SetU_28,
532 29 => RE_Set_29,
533 30 => RE_SetU_30,
534 31 => RE_Set_31,
535 32 => RE_Null,
536 33 => RE_Set_33,
537 34 => RE_SetU_34,
538 35 => RE_Set_35,
539 36 => RE_SetU_36,
540 37 => RE_Set_37,
541 38 => RE_SetU_38,
542 39 => RE_Set_39,
543 40 => RE_SetU_40,
544 41 => RE_Set_41,
545 42 => RE_SetU_42,
546 43 => RE_Set_43,
547 44 => RE_SetU_44,
548 45 => RE_Set_45,
549 46 => RE_SetU_46,
550 47 => RE_Set_47,
551 48 => RE_SetU_48,
552 49 => RE_Set_49,
553 50 => RE_SetU_50,
554 51 => RE_Set_51,
555 52 => RE_SetU_52,
556 53 => RE_Set_53,
557 54 => RE_SetU_54,
558 55 => RE_Set_55,
559 56 => RE_SetU_56,
560 57 => RE_Set_57,
561 58 => RE_SetU_58,
562 59 => RE_Set_59,
563 60 => RE_SetU_60,
564 61 => RE_Set_61,
565 62 => RE_SetU_62,
566 63 => RE_Set_63);
568 -----------------
569 -- Subprograms --
570 -----------------
572 procedure Create_Packed_Array_Impl_Type (Typ : Entity_Id);
573 -- Typ is a array type or subtype to which pragma Pack applies. If the
574 -- Packed_Array_Impl_Type field of Typ is already set, then the call has
575 -- no effect, otherwise a suitable type or subtype is created and stored in
576 -- the Packed_Array_Impl_Type field of Typ. This created type is an Itype
577 -- so that Gigi will simply elaborate and freeze the type on first use
578 -- (which is typically the definition of the corresponding array type).
580 -- Note: although this routine is included in the expander package for
581 -- packed types, it is actually called unconditionally from Freeze,
582 -- whether or not expansion (and code generation) is enabled. We do this
583 -- since we want gigi to be able to properly compute type characteristics
584 -- (for the Data Decomposition Annex of ASIS, and possible other future
585 -- uses) even if code generation is not active. Strictly this means that
586 -- this procedure is not part of the expander, but it seems appropriate
587 -- to keep it together with the other expansion routines that have to do
588 -- with packed array types.
590 procedure Expand_Packed_Boolean_Operator (N : Node_Id);
591 -- N is an N_Op_And, N_Op_Or or N_Op_Xor node whose operand type is a
592 -- packed boolean array. This routine expands the appropriate operations
593 -- to carry out the logical operation on the packed arrays. It handles
594 -- both the modular and array representation cases.
596 procedure Expand_Packed_Element_Reference (N : Node_Id);
597 -- N is an N_Indexed_Component node whose prefix is a packed array. In
598 -- the bit packed case, this routine can only be used for the expression
599 -- evaluation case, not the assignment case, since the result is not a
600 -- variable. See Expand_Bit_Packed_Element_Set for how the assignment case
601 -- is handled in the bit packed case. For the enumeration case, the result
602 -- of this call is always a variable, so the call can be used for both the
603 -- expression evaluation and assignment cases.
605 procedure Expand_Bit_Packed_Element_Set (N : Node_Id);
606 -- N is an N_Assignment_Statement node whose name is an indexed
607 -- component of a bit-packed array. This procedure rewrites the entire
608 -- assignment statement with appropriate code to set the referenced
609 -- bits of the packed array type object. Note that this procedure is
610 -- used only for the bit-packed case, not for the enumeration case.
612 procedure Expand_Packed_Eq (N : Node_Id);
613 -- N is an N_Op_Eq node where the operands are packed arrays whose
614 -- representation is an array-of-bytes type (the case where a modular
615 -- type is used for the representation does not require any special
616 -- handling, because in the modular case, unused bits are zeroes.
618 procedure Expand_Packed_Not (N : Node_Id);
619 -- N is an N_Op_Not node where the operand is packed array of Boolean
620 -- in standard representation (i.e. component size is one bit). This
621 -- procedure expands the corresponding not operation. Note that the
622 -- non-standard representation case is handled by using a loop through
623 -- elements generated by the normal non-packed circuitry.
625 function Involves_Packed_Array_Reference (N : Node_Id) return Boolean;
626 -- N is the node for a name. This function returns true if the name
627 -- involves a packed array reference. A node involves a packed array
628 -- reference if it is itself an indexed component referring to a bit-
629 -- packed array, or it is a selected component whose prefix involves
630 -- a packed array reference.
632 procedure Expand_Packed_Address_Reference (N : Node_Id);
633 -- The node N is an attribute reference for the 'Address reference, where
634 -- the prefix involves a packed array reference. This routine expands the
635 -- necessary code for performing the address reference in this case.
637 procedure Expand_Packed_Bit_Reference (N : Node_Id);
638 -- The node N is an attribute reference for the 'Bit reference, where the
639 -- prefix involves a packed array reference. This routine expands the
640 -- necessary code for performing the bit reference in this case.
642 end Exp_Pakd;