1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Exp_Aggr
; use Exp_Aggr
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Ch11
; use Exp_Ch11
;
37 with Exp_Dbug
; use Exp_Dbug
;
38 with Exp_Pakd
; use Exp_Pakd
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Exp_Util
; use Exp_Util
;
41 with Inline
; use Inline
;
42 with Namet
; use Namet
;
43 with Nlists
; use Nlists
;
44 with Nmake
; use Nmake
;
46 with Restrict
; use Restrict
;
47 with Rident
; use Rident
;
48 with Rtsfind
; use Rtsfind
;
49 with Sinfo
; use Sinfo
;
51 with Sem_Aux
; use Sem_Aux
;
52 with Sem_Ch3
; use Sem_Ch3
;
53 with Sem_Ch8
; use Sem_Ch8
;
54 with Sem_Ch13
; use Sem_Ch13
;
55 with Sem_Eval
; use Sem_Eval
;
56 with Sem_Res
; use Sem_Res
;
57 with Sem_Util
; use Sem_Util
;
58 with Snames
; use Snames
;
59 with Stand
; use Stand
;
60 with Stringt
; use Stringt
;
61 with Tbuild
; use Tbuild
;
62 with Uintp
; use Uintp
;
63 with Validsw
; use Validsw
;
65 package body Exp_Ch5
is
67 procedure Build_Formal_Container_Iteration
69 Container
: Entity_Id
;
72 Advance
: out Node_Id
;
73 New_Loop
: out Node_Id
);
74 -- Utility to create declarations and loop statement for both forms
75 -- of formal container iterators.
77 function Change_Of_Representation
(N
: Node_Id
) return Boolean;
78 -- Determine if the right-hand side of assignment N is a type conversion
79 -- which requires a change of representation. Called only for the array
82 procedure Expand_Assign_Array
(N
: Node_Id
; Rhs
: Node_Id
);
83 -- N is an assignment which assigns an array value. This routine process
84 -- the various special cases and checks required for such assignments,
85 -- including change of representation. Rhs is normally simply the right-
86 -- hand side of the assignment, except that if the right-hand side is a
87 -- type conversion or a qualified expression, then the RHS is the actual
88 -- expression inside any such type conversions or qualifications.
90 function Expand_Assign_Array_Loop
97 Rev
: Boolean) return Node_Id
;
98 -- N is an assignment statement which assigns an array value. This routine
99 -- expands the assignment into a loop (or nested loops for the case of a
100 -- multi-dimensional array) to do the assignment component by component.
101 -- Larray and Rarray are the entities of the actual arrays on the left-hand
102 -- and right-hand sides. L_Type and R_Type are the types of these arrays
103 -- (which may not be the same, due to either sliding, or to a change of
104 -- representation case). Ndim is the number of dimensions and the parameter
105 -- Rev indicates if the loops run normally (Rev = False), or reversed
106 -- (Rev = True). The value returned is the constructed loop statement.
107 -- Auxiliary declarations are inserted before node N using the standard
108 -- Insert_Actions mechanism.
110 procedure Expand_Assign_Record
(N
: Node_Id
);
111 -- N is an assignment of an untagged record value. This routine handles
112 -- the case where the assignment must be made component by component,
113 -- either because the target is not byte aligned, or there is a change
114 -- of representation, or when we have a tagged type with a representation
115 -- clause (this last case is required because holes in the tagged type
116 -- might be filled with components from child types).
118 procedure Expand_Assign_With_Target_Names
(N
: Node_Id
);
119 -- (AI12-0125): N is an assignment statement whose RHS contains occurrences
120 -- of @ that designate the value of the LHS of the assignment. If the LHS
121 -- is side-effect free the target names can be replaced with a copy of the
122 -- LHS; otherwise the semantics of the assignment is described in terms of
123 -- a procedure with an in-out parameter, and expanded as such.
125 procedure Expand_Formal_Container_Loop
(N
: Node_Id
);
126 -- Use the primitives specified in an Iterable aspect to expand a loop
127 -- over a so-called formal container, primarily for SPARK usage.
129 procedure Expand_Formal_Container_Element_Loop
(N
: Node_Id
);
130 -- Same, for an iterator of the form " For E of C". In this case the
131 -- iterator provides the name of the element, and the cursor is generated
134 procedure Expand_Iterator_Loop
(N
: Node_Id
);
135 -- Expand loop over arrays and containers that uses the form "for X of C"
136 -- with an optional subtype mark, or "for Y in C".
138 procedure Expand_Iterator_Loop_Over_Container
143 Container_Typ
: Entity_Id
);
144 -- Expand loop over containers that uses the form "for X of C" with an
145 -- optional subtype mark, or "for Y in C". Isc is the iteration scheme.
146 -- I_Spec is the iterator specification and Container is either the
147 -- Container (for OF) or the iterator (for IN).
149 procedure Expand_Predicated_Loop
(N
: Node_Id
);
150 -- Expand for loop over predicated subtype
152 function Make_Tag_Ctrl_Assignment
(N
: Node_Id
) return List_Id
;
153 -- Generate the necessary code for controlled and tagged assignment, that
154 -- is to say, finalization of the target before, adjustment of the target
155 -- after and save and restore of the tag and finalization pointers which
156 -- are not 'part of the value' and must not be changed upon assignment. N
157 -- is the original Assignment node.
159 --------------------------------------
160 -- Build_Formal_Container_iteration --
161 --------------------------------------
163 procedure Build_Formal_Container_Iteration
165 Container
: Entity_Id
;
168 Advance
: out Node_Id
;
169 New_Loop
: out Node_Id
)
171 Loc
: constant Source_Ptr
:= Sloc
(N
);
172 Stats
: constant List_Id
:= Statements
(N
);
173 Typ
: constant Entity_Id
:= Base_Type
(Etype
(Container
));
174 First_Op
: constant Entity_Id
:=
175 Get_Iterable_Type_Primitive
(Typ
, Name_First
);
176 Next_Op
: constant Entity_Id
:=
177 Get_Iterable_Type_Primitive
(Typ
, Name_Next
);
179 Has_Element_Op
: constant Entity_Id
:=
180 Get_Iterable_Type_Primitive
(Typ
, Name_Has_Element
);
182 -- Declaration for Cursor
185 Make_Object_Declaration
(Loc
,
186 Defining_Identifier
=> Cursor
,
187 Object_Definition
=> New_Occurrence_Of
(Etype
(First_Op
), Loc
),
189 Make_Function_Call
(Loc
,
190 Name
=> New_Occurrence_Of
(First_Op
, Loc
),
191 Parameter_Associations
=> New_List
(
192 New_Occurrence_Of
(Container
, Loc
))));
194 -- Statement that advances cursor in loop
197 Make_Assignment_Statement
(Loc
,
198 Name
=> New_Occurrence_Of
(Cursor
, Loc
),
200 Make_Function_Call
(Loc
,
201 Name
=> New_Occurrence_Of
(Next_Op
, Loc
),
202 Parameter_Associations
=> New_List
(
203 New_Occurrence_Of
(Container
, Loc
),
204 New_Occurrence_Of
(Cursor
, Loc
))));
206 -- Iterator is rewritten as a while_loop
209 Make_Loop_Statement
(Loc
,
211 Make_Iteration_Scheme
(Loc
,
213 Make_Function_Call
(Loc
,
214 Name
=> New_Occurrence_Of
(Has_Element_Op
, Loc
),
215 Parameter_Associations
=> New_List
(
216 New_Occurrence_Of
(Container
, Loc
),
217 New_Occurrence_Of
(Cursor
, Loc
)))),
220 end Build_Formal_Container_Iteration
;
222 ------------------------------
223 -- Change_Of_Representation --
224 ------------------------------
226 function Change_Of_Representation
(N
: Node_Id
) return Boolean is
227 Rhs
: constant Node_Id
:= Expression
(N
);
230 Nkind
(Rhs
) = N_Type_Conversion
232 not Same_Representation
(Etype
(Rhs
), Etype
(Expression
(Rhs
)));
233 end Change_Of_Representation
;
235 -------------------------
236 -- Expand_Assign_Array --
237 -------------------------
239 -- There are two issues here. First, do we let Gigi do a block move, or
240 -- do we expand out into a loop? Second, we need to set the two flags
241 -- Forwards_OK and Backwards_OK which show whether the block move (or
242 -- corresponding loops) can be legitimately done in a forwards (low to
243 -- high) or backwards (high to low) manner.
245 procedure Expand_Assign_Array
(N
: Node_Id
; Rhs
: Node_Id
) is
246 Loc
: constant Source_Ptr
:= Sloc
(N
);
248 Lhs
: constant Node_Id
:= Name
(N
);
250 Act_Lhs
: constant Node_Id
:= Get_Referenced_Object
(Lhs
);
251 Act_Rhs
: Node_Id
:= Get_Referenced_Object
(Rhs
);
253 L_Type
: constant Entity_Id
:=
254 Underlying_Type
(Get_Actual_Subtype
(Act_Lhs
));
255 R_Type
: Entity_Id
:=
256 Underlying_Type
(Get_Actual_Subtype
(Act_Rhs
));
258 L_Slice
: constant Boolean := Nkind
(Act_Lhs
) = N_Slice
;
259 R_Slice
: constant Boolean := Nkind
(Act_Rhs
) = N_Slice
;
261 Crep
: constant Boolean := Change_Of_Representation
(N
);
266 Ndim
: constant Pos
:= Number_Dimensions
(L_Type
);
268 Loop_Required
: Boolean := False;
269 -- This switch is set to True if the array move must be done using
270 -- an explicit front end generated loop.
272 procedure Apply_Dereference
(Arg
: Node_Id
);
273 -- If the argument is an access to an array, and the assignment is
274 -- converted into a procedure call, apply explicit dereference.
276 function Has_Address_Clause
(Exp
: Node_Id
) return Boolean;
277 -- Test if Exp is a reference to an array whose declaration has
278 -- an address clause, or it is a slice of such an array.
280 function Is_Formal_Array
(Exp
: Node_Id
) return Boolean;
281 -- Test if Exp is a reference to an array which is either a formal
282 -- parameter or a slice of a formal parameter. These are the cases
283 -- where hidden aliasing can occur.
285 function Is_Non_Local_Array
(Exp
: Node_Id
) return Boolean;
286 -- Determine if Exp is a reference to an array variable which is other
287 -- than an object defined in the current scope, or a component or a
288 -- slice of such an object. Such objects can be aliased to parameters
289 -- (unlike local array references).
291 -----------------------
292 -- Apply_Dereference --
293 -----------------------
295 procedure Apply_Dereference
(Arg
: Node_Id
) is
296 Typ
: constant Entity_Id
:= Etype
(Arg
);
298 if Is_Access_Type
(Typ
) then
299 Rewrite
(Arg
, Make_Explicit_Dereference
(Loc
,
300 Prefix
=> Relocate_Node
(Arg
)));
301 Analyze_And_Resolve
(Arg
, Designated_Type
(Typ
));
303 end Apply_Dereference
;
305 ------------------------
306 -- Has_Address_Clause --
307 ------------------------
309 function Has_Address_Clause
(Exp
: Node_Id
) return Boolean is
312 (Is_Entity_Name
(Exp
) and then
313 Present
(Address_Clause
(Entity
(Exp
))))
315 (Nkind
(Exp
) = N_Slice
and then Has_Address_Clause
(Prefix
(Exp
)));
316 end Has_Address_Clause
;
318 ---------------------
319 -- Is_Formal_Array --
320 ---------------------
322 function Is_Formal_Array
(Exp
: Node_Id
) return Boolean is
325 (Is_Entity_Name
(Exp
) and then Is_Formal
(Entity
(Exp
)))
327 (Nkind
(Exp
) = N_Slice
and then Is_Formal_Array
(Prefix
(Exp
)));
330 ------------------------
331 -- Is_Non_Local_Array --
332 ------------------------
334 function Is_Non_Local_Array
(Exp
: Node_Id
) return Boolean is
337 when N_Indexed_Component
338 | N_Selected_Component
341 return Is_Non_Local_Array
(Prefix
(Exp
));
345 not (Is_Entity_Name
(Exp
)
346 and then Scope
(Entity
(Exp
)) = Current_Scope
);
348 end Is_Non_Local_Array
;
350 -- Determine if Lhs, Rhs are formal arrays or nonlocal arrays
352 Lhs_Formal
: constant Boolean := Is_Formal_Array
(Act_Lhs
);
353 Rhs_Formal
: constant Boolean := Is_Formal_Array
(Act_Rhs
);
355 Lhs_Non_Local_Var
: constant Boolean := Is_Non_Local_Array
(Act_Lhs
);
356 Rhs_Non_Local_Var
: constant Boolean := Is_Non_Local_Array
(Act_Rhs
);
358 -- Start of processing for Expand_Assign_Array
361 -- Deal with length check. Note that the length check is done with
362 -- respect to the right-hand side as given, not a possible underlying
363 -- renamed object, since this would generate incorrect extra checks.
365 Apply_Length_Check
(Rhs
, L_Type
);
367 -- We start by assuming that the move can be done in either direction,
368 -- i.e. that the two sides are completely disjoint.
370 Set_Forwards_OK
(N
, True);
371 Set_Backwards_OK
(N
, True);
373 -- Normally it is only the slice case that can lead to overlap, and
374 -- explicit checks for slices are made below. But there is one case
375 -- where the slice can be implicit and invisible to us: when we have a
376 -- one dimensional array, and either both operands are parameters, or
377 -- one is a parameter (which can be a slice passed by reference) and the
378 -- other is a non-local variable. In this case the parameter could be a
379 -- slice that overlaps with the other operand.
381 -- However, if the array subtype is a constrained first subtype in the
382 -- parameter case, then we don't have to worry about overlap, since
383 -- slice assignments aren't possible (other than for a slice denoting
386 -- Note: No overlap is possible if there is a change of representation,
387 -- so we can exclude this case.
392 ((Lhs_Formal
and Rhs_Formal
)
394 (Lhs_Formal
and Rhs_Non_Local_Var
)
396 (Rhs_Formal
and Lhs_Non_Local_Var
))
398 (not Is_Constrained
(Etype
(Lhs
))
399 or else not Is_First_Subtype
(Etype
(Lhs
)))
401 Set_Forwards_OK
(N
, False);
402 Set_Backwards_OK
(N
, False);
404 -- Note: the bit-packed case is not worrisome here, since if we have
405 -- a slice passed as a parameter, it is always aligned on a byte
406 -- boundary, and if there are no explicit slices, the assignment
407 -- can be performed directly.
410 -- If either operand has an address clause clear Backwards_OK and
411 -- Forwards_OK, since we cannot tell if the operands overlap. We
412 -- exclude this treatment when Rhs is an aggregate, since we know
413 -- that overlap can't occur.
415 if (Has_Address_Clause
(Lhs
) and then Nkind
(Rhs
) /= N_Aggregate
)
416 or else Has_Address_Clause
(Rhs
)
418 Set_Forwards_OK
(N
, False);
419 Set_Backwards_OK
(N
, False);
422 -- We certainly must use a loop for change of representation and also
423 -- we use the operand of the conversion on the right-hand side as the
424 -- effective right-hand side (the component types must match in this
428 Act_Rhs
:= Get_Referenced_Object
(Rhs
);
429 R_Type
:= Get_Actual_Subtype
(Act_Rhs
);
430 Loop_Required
:= True;
432 -- We require a loop if the left side is possibly bit unaligned
434 elsif Possible_Bit_Aligned_Component
(Lhs
)
436 Possible_Bit_Aligned_Component
(Rhs
)
438 Loop_Required
:= True;
440 -- Arrays with controlled components are expanded into a loop to force
441 -- calls to Adjust at the component level.
443 elsif Has_Controlled_Component
(L_Type
) then
444 Loop_Required
:= True;
446 -- If object is atomic/VFA, we cannot tolerate a loop
448 elsif Is_Atomic_Or_VFA_Object
(Act_Lhs
)
450 Is_Atomic_Or_VFA_Object
(Act_Rhs
)
454 -- Loop is required if we have atomic components since we have to
455 -- be sure to do any accesses on an element by element basis.
457 elsif Has_Atomic_Components
(L_Type
)
458 or else Has_Atomic_Components
(R_Type
)
459 or else Is_Atomic_Or_VFA
(Component_Type
(L_Type
))
460 or else Is_Atomic_Or_VFA
(Component_Type
(R_Type
))
462 Loop_Required
:= True;
464 -- Case where no slice is involved
466 elsif not L_Slice
and not R_Slice
then
468 -- The following code deals with the case of unconstrained bit packed
469 -- arrays. The problem is that the template for such arrays contains
470 -- the bounds of the actual source level array, but the copy of an
471 -- entire array requires the bounds of the underlying array. It would
472 -- be nice if the back end could take care of this, but right now it
473 -- does not know how, so if we have such a type, then we expand out
474 -- into a loop, which is inefficient but works correctly. If we don't
475 -- do this, we get the wrong length computed for the array to be
476 -- moved. The two cases we need to worry about are:
478 -- Explicit dereference of an unconstrained packed array type as in
479 -- the following example:
482 -- type BITS is array(INTEGER range <>) of BOOLEAN;
483 -- pragma PACK(BITS);
484 -- type A is access BITS;
487 -- P1 := new BITS (1 .. 65_535);
488 -- P2 := new BITS (1 .. 65_535);
492 -- A formal parameter reference with an unconstrained bit array type
493 -- is the other case we need to worry about (here we assume the same
494 -- BITS type declared above):
496 -- procedure Write_All (File : out BITS; Contents : BITS);
498 -- File.Storage := Contents;
501 -- We expand to a loop in either of these two cases
503 -- Question for future thought. Another potentially more efficient
504 -- approach would be to create the actual subtype, and then do an
505 -- unchecked conversion to this actual subtype ???
507 Check_Unconstrained_Bit_Packed_Array
: declare
509 function Is_UBPA_Reference
(Opnd
: Node_Id
) return Boolean;
510 -- Function to perform required test for the first case, above
511 -- (dereference of an unconstrained bit packed array).
513 -----------------------
514 -- Is_UBPA_Reference --
515 -----------------------
517 function Is_UBPA_Reference
(Opnd
: Node_Id
) return Boolean is
518 Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Opnd
));
520 Des_Type
: Entity_Id
;
523 if Present
(Packed_Array_Impl_Type
(Typ
))
524 and then Is_Array_Type
(Packed_Array_Impl_Type
(Typ
))
525 and then not Is_Constrained
(Packed_Array_Impl_Type
(Typ
))
529 elsif Nkind
(Opnd
) = N_Explicit_Dereference
then
530 P_Type
:= Underlying_Type
(Etype
(Prefix
(Opnd
)));
532 if not Is_Access_Type
(P_Type
) then
536 Des_Type
:= Designated_Type
(P_Type
);
538 Is_Bit_Packed_Array
(Des_Type
)
539 and then not Is_Constrained
(Des_Type
);
545 end Is_UBPA_Reference
;
547 -- Start of processing for Check_Unconstrained_Bit_Packed_Array
550 if Is_UBPA_Reference
(Lhs
)
552 Is_UBPA_Reference
(Rhs
)
554 Loop_Required
:= True;
556 -- Here if we do not have the case of a reference to a bit packed
557 -- unconstrained array case. In this case gigi can most certainly
558 -- handle the assignment if a forwards move is allowed.
560 -- (could it handle the backwards case also???)
562 elsif Forwards_OK
(N
) then
565 end Check_Unconstrained_Bit_Packed_Array
;
567 -- The back end can always handle the assignment if the right side is a
568 -- string literal (note that overlap is definitely impossible in this
569 -- case). If the type is packed, a string literal is always converted
570 -- into an aggregate, except in the case of a null slice, for which no
571 -- aggregate can be written. In that case, rewrite the assignment as a
572 -- null statement, a length check has already been emitted to verify
573 -- that the range of the left-hand side is empty.
575 -- Note that this code is not executed if we have an assignment of a
576 -- string literal to a non-bit aligned component of a record, a case
577 -- which cannot be handled by the backend.
579 elsif Nkind
(Rhs
) = N_String_Literal
then
580 if String_Length
(Strval
(Rhs
)) = 0
581 and then Is_Bit_Packed_Array
(L_Type
)
583 Rewrite
(N
, Make_Null_Statement
(Loc
));
589 -- If either operand is bit packed, then we need a loop, since we can't
590 -- be sure that the slice is byte aligned. Similarly, if either operand
591 -- is a possibly unaligned slice, then we need a loop (since the back
592 -- end cannot handle unaligned slices).
594 elsif Is_Bit_Packed_Array
(L_Type
)
595 or else Is_Bit_Packed_Array
(R_Type
)
596 or else Is_Possibly_Unaligned_Slice
(Lhs
)
597 or else Is_Possibly_Unaligned_Slice
(Rhs
)
599 Loop_Required
:= True;
601 -- If we are not bit-packed, and we have only one slice, then no overlap
602 -- is possible except in the parameter case, so we can let the back end
605 elsif not (L_Slice
and R_Slice
) then
606 if Forwards_OK
(N
) then
611 -- If the right-hand side is a string literal, introduce a temporary for
612 -- it, for use in the generated loop that will follow.
614 if Nkind
(Rhs
) = N_String_Literal
then
616 Temp
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', Rhs
);
621 Make_Object_Declaration
(Loc
,
622 Defining_Identifier
=> Temp
,
623 Object_Definition
=> New_Occurrence_Of
(L_Type
, Loc
),
624 Expression
=> Relocate_Node
(Rhs
));
626 Insert_Action
(N
, Decl
);
627 Rewrite
(Rhs
, New_Occurrence_Of
(Temp
, Loc
));
628 R_Type
:= Etype
(Temp
);
632 -- Come here to complete the analysis
634 -- Loop_Required: Set to True if we know that a loop is required
635 -- regardless of overlap considerations.
637 -- Forwards_OK: Set to False if we already know that a forwards
638 -- move is not safe, else set to True.
640 -- Backwards_OK: Set to False if we already know that a backwards
641 -- move is not safe, else set to True
643 -- Our task at this stage is to complete the overlap analysis, which can
644 -- result in possibly setting Forwards_OK or Backwards_OK to False, and
645 -- then generating the final code, either by deciding that it is OK
646 -- after all to let Gigi handle it, or by generating appropriate code
650 L_Index_Typ
: constant Node_Id
:= Etype
(First_Index
(L_Type
));
651 R_Index_Typ
: constant Node_Id
:= Etype
(First_Index
(R_Type
));
653 Left_Lo
: constant Node_Id
:= Type_Low_Bound
(L_Index_Typ
);
654 Left_Hi
: constant Node_Id
:= Type_High_Bound
(L_Index_Typ
);
655 Right_Lo
: constant Node_Id
:= Type_Low_Bound
(R_Index_Typ
);
656 Right_Hi
: constant Node_Id
:= Type_High_Bound
(R_Index_Typ
);
658 Act_L_Array
: Node_Id
;
659 Act_R_Array
: Node_Id
;
665 Cresult
: Compare_Result
;
668 -- Get the expressions for the arrays. If we are dealing with a
669 -- private type, then convert to the underlying type. We can do
670 -- direct assignments to an array that is a private type, but we
671 -- cannot assign to elements of the array without this extra
672 -- unchecked conversion.
674 -- Note: We propagate Parent to the conversion nodes to generate
675 -- a well-formed subtree.
677 if Nkind
(Act_Lhs
) = N_Slice
then
678 Larray
:= Prefix
(Act_Lhs
);
682 if Is_Private_Type
(Etype
(Larray
)) then
684 Par
: constant Node_Id
:= Parent
(Larray
);
688 (Underlying_Type
(Etype
(Larray
)), Larray
);
689 Set_Parent
(Larray
, Par
);
694 if Nkind
(Act_Rhs
) = N_Slice
then
695 Rarray
:= Prefix
(Act_Rhs
);
699 if Is_Private_Type
(Etype
(Rarray
)) then
701 Par
: constant Node_Id
:= Parent
(Rarray
);
705 (Underlying_Type
(Etype
(Rarray
)), Rarray
);
706 Set_Parent
(Rarray
, Par
);
711 -- If both sides are slices, we must figure out whether it is safe
712 -- to do the move in one direction or the other. It is always safe
713 -- if there is a change of representation since obviously two arrays
714 -- with different representations cannot possibly overlap.
716 if (not Crep
) and L_Slice
and R_Slice
then
717 Act_L_Array
:= Get_Referenced_Object
(Prefix
(Act_Lhs
));
718 Act_R_Array
:= Get_Referenced_Object
(Prefix
(Act_Rhs
));
720 -- If both left- and right-hand arrays are entity names, and refer
721 -- to different entities, then we know that the move is safe (the
722 -- two storage areas are completely disjoint).
724 if Is_Entity_Name
(Act_L_Array
)
725 and then Is_Entity_Name
(Act_R_Array
)
726 and then Entity
(Act_L_Array
) /= Entity
(Act_R_Array
)
730 -- Otherwise, we assume the worst, which is that the two arrays
731 -- are the same array. There is no need to check if we know that
732 -- is the case, because if we don't know it, we still have to
735 -- Generally if the same array is involved, then we have an
736 -- overlapping case. We will have to really assume the worst (i.e.
737 -- set neither of the OK flags) unless we can determine the lower
738 -- or upper bounds at compile time and compare them.
743 (Left_Lo
, Right_Lo
, Assume_Valid
=> True);
745 if Cresult
= Unknown
then
748 (Left_Hi
, Right_Hi
, Assume_Valid
=> True);
753 Set_Backwards_OK
(N
, False);
756 Set_Forwards_OK
(N
, False);
759 Set_Backwards_OK
(N
, False);
760 Set_Forwards_OK
(N
, False);
765 -- If after that analysis Loop_Required is False, meaning that we
766 -- have not discovered some non-overlap reason for requiring a loop,
767 -- then the outcome depends on the capabilities of the back end.
769 if not Loop_Required
then
770 -- Assume the back end can deal with all cases of overlap by
771 -- falling back to memmove if it cannot use a more efficient
777 -- At this stage we have to generate an explicit loop, and we have
778 -- the following cases:
780 -- Forwards_OK = True
782 -- Rnn : right_index := right_index'First;
783 -- for Lnn in left-index loop
784 -- left (Lnn) := right (Rnn);
785 -- Rnn := right_index'Succ (Rnn);
788 -- Note: the above code MUST be analyzed with checks off, because
789 -- otherwise the Succ could overflow. But in any case this is more
792 -- Forwards_OK = False, Backwards_OK = True
794 -- Rnn : right_index := right_index'Last;
795 -- for Lnn in reverse left-index loop
796 -- left (Lnn) := right (Rnn);
797 -- Rnn := right_index'Pred (Rnn);
800 -- Note: the above code MUST be analyzed with checks off, because
801 -- otherwise the Pred could overflow. But in any case this is more
804 -- Forwards_OK = Backwards_OK = False
806 -- This only happens if we have the same array on each side. It is
807 -- possible to create situations using overlays that violate this,
808 -- but we simply do not promise to get this "right" in this case.
810 -- There are two possible subcases. If the No_Implicit_Conditionals
811 -- restriction is set, then we generate the following code:
814 -- T : constant <operand-type> := rhs;
819 -- If implicit conditionals are permitted, then we generate:
821 -- if Left_Lo <= Right_Lo then
822 -- <code for Forwards_OK = True above>
824 -- <code for Backwards_OK = True above>
827 -- In order to detect possible aliasing, we examine the renamed
828 -- expression when the source or target is a renaming. However,
829 -- the renaming may be intended to capture an address that may be
830 -- affected by subsequent code, and therefore we must recover
831 -- the actual entity for the expansion that follows, not the
832 -- object it renames. In particular, if source or target designate
833 -- a portion of a dynamically allocated object, the pointer to it
834 -- may be reassigned but the renaming preserves the proper location.
836 if Is_Entity_Name
(Rhs
)
838 Nkind
(Parent
(Entity
(Rhs
))) = N_Object_Renaming_Declaration
839 and then Nkind
(Act_Rhs
) = N_Slice
844 if Is_Entity_Name
(Lhs
)
846 Nkind
(Parent
(Entity
(Lhs
))) = N_Object_Renaming_Declaration
847 and then Nkind
(Act_Lhs
) = N_Slice
852 -- Cases where either Forwards_OK or Backwards_OK is true
854 if Forwards_OK
(N
) or else Backwards_OK
(N
) then
855 if Needs_Finalization
(Component_Type
(L_Type
))
856 and then Base_Type
(L_Type
) = Base_Type
(R_Type
)
858 and then not No_Ctrl_Actions
(N
)
861 Proc
: constant Entity_Id
:=
862 TSS
(Base_Type
(L_Type
), TSS_Slice_Assign
);
866 Apply_Dereference
(Larray
);
867 Apply_Dereference
(Rarray
);
868 Actuals
:= New_List
(
869 Duplicate_Subexpr
(Larray
, Name_Req
=> True),
870 Duplicate_Subexpr
(Rarray
, Name_Req
=> True),
871 Duplicate_Subexpr
(Left_Lo
, Name_Req
=> True),
872 Duplicate_Subexpr
(Left_Hi
, Name_Req
=> True),
873 Duplicate_Subexpr
(Right_Lo
, Name_Req
=> True),
874 Duplicate_Subexpr
(Right_Hi
, Name_Req
=> True));
878 Boolean_Literals
(not Forwards_OK
(N
)), Loc
));
881 Make_Procedure_Call_Statement
(Loc
,
882 Name
=> New_Occurrence_Of
(Proc
, Loc
),
883 Parameter_Associations
=> Actuals
));
888 Expand_Assign_Array_Loop
889 (N
, Larray
, Rarray
, L_Type
, R_Type
, Ndim
,
890 Rev
=> not Forwards_OK
(N
)));
893 -- Case of both are false with No_Implicit_Conditionals
895 elsif Restriction_Active
(No_Implicit_Conditionals
) then
897 T
: constant Entity_Id
:=
898 Make_Defining_Identifier
(Loc
, Chars
=> Name_T
);
902 Make_Block_Statement
(Loc
,
903 Declarations
=> New_List
(
904 Make_Object_Declaration
(Loc
,
905 Defining_Identifier
=> T
,
906 Constant_Present
=> True,
908 New_Occurrence_Of
(Etype
(Rhs
), Loc
),
909 Expression
=> Relocate_Node
(Rhs
))),
911 Handled_Statement_Sequence
=>
912 Make_Handled_Sequence_Of_Statements
(Loc
,
913 Statements
=> New_List
(
914 Make_Assignment_Statement
(Loc
,
915 Name
=> Relocate_Node
(Lhs
),
916 Expression
=> New_Occurrence_Of
(T
, Loc
))))));
919 -- Case of both are false with implicit conditionals allowed
922 -- Before we generate this code, we must ensure that the left and
923 -- right side array types are defined. They may be itypes, and we
924 -- cannot let them be defined inside the if, since the first use
925 -- in the then may not be executed.
927 Ensure_Defined
(L_Type
, N
);
928 Ensure_Defined
(R_Type
, N
);
930 -- We normally compare addresses to find out which way round to
931 -- do the loop, since this is reliable, and handles the cases of
932 -- parameters, conversions etc. But we can't do that in the bit
933 -- packed case, because addresses don't work there.
935 if not Is_Bit_Packed_Array
(L_Type
) then
939 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
940 Make_Attribute_Reference
(Loc
,
942 Make_Indexed_Component
(Loc
,
944 Duplicate_Subexpr_Move_Checks
(Larray
, True),
945 Expressions
=> New_List
(
946 Make_Attribute_Reference
(Loc
,
950 Attribute_Name
=> Name_First
))),
951 Attribute_Name
=> Name_Address
)),
954 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
955 Make_Attribute_Reference
(Loc
,
957 Make_Indexed_Component
(Loc
,
959 Duplicate_Subexpr_Move_Checks
(Rarray
, True),
960 Expressions
=> New_List
(
961 Make_Attribute_Reference
(Loc
,
965 Attribute_Name
=> Name_First
))),
966 Attribute_Name
=> Name_Address
)));
968 -- For the bit packed and VM cases we use the bounds. That's OK,
969 -- because we don't have to worry about parameters, since they
970 -- cannot cause overlap. Perhaps we should worry about weird slice
976 Cleft_Lo
:= New_Copy_Tree
(Left_Lo
);
977 Cright_Lo
:= New_Copy_Tree
(Right_Lo
);
979 -- If the types do not match we add an implicit conversion
980 -- here to ensure proper match
982 if Etype
(Left_Lo
) /= Etype
(Right_Lo
) then
984 Unchecked_Convert_To
(Etype
(Left_Lo
), Cright_Lo
);
987 -- Reset the Analyzed flag, because the bounds of the index
988 -- type itself may be universal, and must must be reanalyzed
989 -- to acquire the proper type for the back end.
991 Set_Analyzed
(Cleft_Lo
, False);
992 Set_Analyzed
(Cright_Lo
, False);
996 Left_Opnd
=> Cleft_Lo
,
997 Right_Opnd
=> Cright_Lo
);
1000 if Needs_Finalization
(Component_Type
(L_Type
))
1001 and then Base_Type
(L_Type
) = Base_Type
(R_Type
)
1003 and then not No_Ctrl_Actions
(N
)
1006 -- Call TSS procedure for array assignment, passing the
1007 -- explicit bounds of right- and left-hand sides.
1010 Proc
: constant Entity_Id
:=
1011 TSS
(Base_Type
(L_Type
), TSS_Slice_Assign
);
1015 Apply_Dereference
(Larray
);
1016 Apply_Dereference
(Rarray
);
1017 Actuals
:= New_List
(
1018 Duplicate_Subexpr
(Larray
, Name_Req
=> True),
1019 Duplicate_Subexpr
(Rarray
, Name_Req
=> True),
1020 Duplicate_Subexpr
(Left_Lo
, Name_Req
=> True),
1021 Duplicate_Subexpr
(Left_Hi
, Name_Req
=> True),
1022 Duplicate_Subexpr
(Right_Lo
, Name_Req
=> True),
1023 Duplicate_Subexpr
(Right_Hi
, Name_Req
=> True));
1027 Right_Opnd
=> Condition
));
1030 Make_Procedure_Call_Statement
(Loc
,
1031 Name
=> New_Occurrence_Of
(Proc
, Loc
),
1032 Parameter_Associations
=> Actuals
));
1037 Make_Implicit_If_Statement
(N
,
1038 Condition
=> Condition
,
1040 Then_Statements
=> New_List
(
1041 Expand_Assign_Array_Loop
1042 (N
, Larray
, Rarray
, L_Type
, R_Type
, Ndim
,
1045 Else_Statements
=> New_List
(
1046 Expand_Assign_Array_Loop
1047 (N
, Larray
, Rarray
, L_Type
, R_Type
, Ndim
,
1052 Analyze
(N
, Suppress
=> All_Checks
);
1056 when RE_Not_Available
=>
1058 end Expand_Assign_Array
;
1060 ------------------------------
1061 -- Expand_Assign_Array_Loop --
1062 ------------------------------
1064 -- The following is an example of the loop generated for the case of a
1065 -- two-dimensional array:
1068 -- R2b : Tm1X1 := 1;
1070 -- for L1b in 1 .. 100 loop
1072 -- R4b : Tm1X2 := 1;
1074 -- for L3b in 1 .. 100 loop
1075 -- vm1 (L1b, L3b) := vm2 (R2b, R4b);
1076 -- R4b := Tm1X2'succ(R4b);
1079 -- R2b := Tm1X1'succ(R2b);
1083 -- Here Rev is False, and Tm1Xn are the subscript types for the right-hand
1084 -- side. The declarations of R2b and R4b are inserted before the original
1085 -- assignment statement.
1087 function Expand_Assign_Array_Loop
1094 Rev
: Boolean) return Node_Id
1096 Loc
: constant Source_Ptr
:= Sloc
(N
);
1098 Lnn
: array (1 .. Ndim
) of Entity_Id
;
1099 Rnn
: array (1 .. Ndim
) of Entity_Id
;
1100 -- Entities used as subscripts on left and right sides
1102 L_Index_Type
: array (1 .. Ndim
) of Entity_Id
;
1103 R_Index_Type
: array (1 .. Ndim
) of Entity_Id
;
1104 -- Left and right index types
1111 function Build_Step
(J
: Nat
) return Node_Id
;
1112 -- The increment step for the index of the right-hand side is written
1113 -- as an attribute reference (Succ or Pred). This function returns
1114 -- the corresponding node, which is placed at the end of the loop body.
1120 function Build_Step
(J
: Nat
) return Node_Id
is
1132 Make_Assignment_Statement
(Loc
,
1133 Name
=> New_Occurrence_Of
(Rnn
(J
), Loc
),
1135 Make_Attribute_Reference
(Loc
,
1137 New_Occurrence_Of
(R_Index_Type
(J
), Loc
),
1138 Attribute_Name
=> S_Or_P
,
1139 Expressions
=> New_List
(
1140 New_Occurrence_Of
(Rnn
(J
), Loc
))));
1142 -- Note that on the last iteration of the loop, the index is increased
1143 -- (or decreased) past the corresponding bound. This is consistent with
1144 -- the C semantics of the back-end, where such an off-by-one value on a
1145 -- dead index variable is OK. However, in CodePeer mode this leads to
1146 -- spurious warnings, and thus we place a guard around the attribute
1147 -- reference. For obvious reasons we only do this for CodePeer.
1149 if CodePeer_Mode
then
1151 Make_If_Statement
(Loc
,
1154 Left_Opnd
=> New_Occurrence_Of
(Lnn
(J
), Loc
),
1156 Make_Attribute_Reference
(Loc
,
1157 Prefix
=> New_Occurrence_Of
(L_Index_Type
(J
), Loc
),
1158 Attribute_Name
=> Lim
)),
1159 Then_Statements
=> New_List
(Step
));
1165 -- Start of processing for Expand_Assign_Array_Loop
1169 F_Or_L
:= Name_Last
;
1170 S_Or_P
:= Name_Pred
;
1172 F_Or_L
:= Name_First
;
1173 S_Or_P
:= Name_Succ
;
1176 -- Setup index types and subscript entities
1183 L_Index
:= First_Index
(L_Type
);
1184 R_Index
:= First_Index
(R_Type
);
1186 for J
in 1 .. Ndim
loop
1187 Lnn
(J
) := Make_Temporary
(Loc
, 'L');
1188 Rnn
(J
) := Make_Temporary
(Loc
, 'R');
1190 L_Index_Type
(J
) := Etype
(L_Index
);
1191 R_Index_Type
(J
) := Etype
(R_Index
);
1193 Next_Index
(L_Index
);
1194 Next_Index
(R_Index
);
1198 -- Now construct the assignment statement
1201 ExprL
: constant List_Id
:= New_List
;
1202 ExprR
: constant List_Id
:= New_List
;
1205 for J
in 1 .. Ndim
loop
1206 Append_To
(ExprL
, New_Occurrence_Of
(Lnn
(J
), Loc
));
1207 Append_To
(ExprR
, New_Occurrence_Of
(Rnn
(J
), Loc
));
1211 Make_Assignment_Statement
(Loc
,
1213 Make_Indexed_Component
(Loc
,
1214 Prefix
=> Duplicate_Subexpr
(Larray
, Name_Req
=> True),
1215 Expressions
=> ExprL
),
1217 Make_Indexed_Component
(Loc
,
1218 Prefix
=> Duplicate_Subexpr
(Rarray
, Name_Req
=> True),
1219 Expressions
=> ExprR
));
1221 -- We set assignment OK, since there are some cases, e.g. in object
1222 -- declarations, where we are actually assigning into a constant.
1223 -- If there really is an illegality, it was caught long before now,
1224 -- and was flagged when the original assignment was analyzed.
1226 Set_Assignment_OK
(Name
(Assign
));
1228 -- Propagate the No_Ctrl_Actions flag to individual assignments
1230 Set_No_Ctrl_Actions
(Assign
, No_Ctrl_Actions
(N
));
1233 -- Now construct the loop from the inside out, with the last subscript
1234 -- varying most rapidly. Note that Assign is first the raw assignment
1235 -- statement, and then subsequently the loop that wraps it up.
1237 for J
in reverse 1 .. Ndim
loop
1239 Make_Block_Statement
(Loc
,
1240 Declarations
=> New_List
(
1241 Make_Object_Declaration
(Loc
,
1242 Defining_Identifier
=> Rnn
(J
),
1243 Object_Definition
=>
1244 New_Occurrence_Of
(R_Index_Type
(J
), Loc
),
1246 Make_Attribute_Reference
(Loc
,
1247 Prefix
=> New_Occurrence_Of
(R_Index_Type
(J
), Loc
),
1248 Attribute_Name
=> F_Or_L
))),
1250 Handled_Statement_Sequence
=>
1251 Make_Handled_Sequence_Of_Statements
(Loc
,
1252 Statements
=> New_List
(
1253 Make_Implicit_Loop_Statement
(N
,
1255 Make_Iteration_Scheme
(Loc
,
1256 Loop_Parameter_Specification
=>
1257 Make_Loop_Parameter_Specification
(Loc
,
1258 Defining_Identifier
=> Lnn
(J
),
1259 Reverse_Present
=> Rev
,
1260 Discrete_Subtype_Definition
=>
1261 New_Occurrence_Of
(L_Index_Type
(J
), Loc
))),
1263 Statements
=> New_List
(Assign
, Build_Step
(J
))))));
1267 end Expand_Assign_Array_Loop
;
1269 --------------------------
1270 -- Expand_Assign_Record --
1271 --------------------------
1273 procedure Expand_Assign_Record
(N
: Node_Id
) is
1274 Lhs
: constant Node_Id
:= Name
(N
);
1275 Rhs
: Node_Id
:= Expression
(N
);
1276 L_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Lhs
));
1279 -- If change of representation, then extract the real right-hand side
1280 -- from the type conversion, and proceed with component-wise assignment,
1281 -- since the two types are not the same as far as the back end is
1284 if Change_Of_Representation
(N
) then
1285 Rhs
:= Expression
(Rhs
);
1287 -- If this may be a case of a large bit aligned component, then proceed
1288 -- with component-wise assignment, to avoid possible clobbering of other
1289 -- components sharing bits in the first or last byte of the component to
1292 elsif Possible_Bit_Aligned_Component
(Lhs
)
1294 Possible_Bit_Aligned_Component
(Rhs
)
1298 -- If we have a tagged type that has a complete record representation
1299 -- clause, we must do we must do component-wise assignments, since child
1300 -- types may have used gaps for their components, and we might be
1301 -- dealing with a view conversion.
1303 elsif Is_Fully_Repped_Tagged_Type
(L_Typ
) then
1306 -- If neither condition met, then nothing special to do, the back end
1307 -- can handle assignment of the entire component as a single entity.
1313 -- At this stage we know that we must do a component wise assignment
1316 Loc
: constant Source_Ptr
:= Sloc
(N
);
1317 R_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Rhs
));
1318 Decl
: constant Node_Id
:= Declaration_Node
(R_Typ
);
1322 function Find_Component
1324 Comp
: Entity_Id
) return Entity_Id
;
1325 -- Find the component with the given name in the underlying record
1326 -- declaration for Typ. We need to use the actual entity because the
1327 -- type may be private and resolution by identifier alone would fail.
1329 function Make_Component_List_Assign
1331 U_U
: Boolean := False) return List_Id
;
1332 -- Returns a sequence of statements to assign the components that
1333 -- are referenced in the given component list. The flag U_U is
1334 -- used to force the usage of the inferred value of the variant
1335 -- part expression as the switch for the generated case statement.
1337 function Make_Field_Assign
1339 U_U
: Boolean := False) return Node_Id
;
1340 -- Given C, the entity for a discriminant or component, build an
1341 -- assignment for the corresponding field values. The flag U_U
1342 -- signals the presence of an Unchecked_Union and forces the usage
1343 -- of the inferred discriminant value of C as the right-hand side
1344 -- of the assignment.
1346 function Make_Field_Assigns
(CI
: List_Id
) return List_Id
;
1347 -- Given CI, a component items list, construct series of statements
1348 -- for fieldwise assignment of the corresponding components.
1350 --------------------
1351 -- Find_Component --
1352 --------------------
1354 function Find_Component
1356 Comp
: Entity_Id
) return Entity_Id
1358 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
1362 C
:= First_Entity
(Utyp
);
1363 while Present
(C
) loop
1364 if Chars
(C
) = Chars
(Comp
) then
1371 raise Program_Error
;
1374 --------------------------------
1375 -- Make_Component_List_Assign --
1376 --------------------------------
1378 function Make_Component_List_Assign
1380 U_U
: Boolean := False) return List_Id
1382 CI
: constant List_Id
:= Component_Items
(CL
);
1383 VP
: constant Node_Id
:= Variant_Part
(CL
);
1393 Result
:= Make_Field_Assigns
(CI
);
1395 if Present
(VP
) then
1396 V
:= First_Non_Pragma
(Variants
(VP
));
1398 while Present
(V
) loop
1400 DC
:= First
(Discrete_Choices
(V
));
1401 while Present
(DC
) loop
1402 Append_To
(DCH
, New_Copy_Tree
(DC
));
1407 Make_Case_Statement_Alternative
(Loc
,
1408 Discrete_Choices
=> DCH
,
1410 Make_Component_List_Assign
(Component_List
(V
))));
1411 Next_Non_Pragma
(V
);
1414 -- If we have an Unchecked_Union, use the value of the inferred
1415 -- discriminant of the variant part expression as the switch
1416 -- for the case statement. The case statement may later be
1421 New_Copy
(Get_Discriminant_Value
(
1424 Discriminant_Constraint
(Etype
(Rhs
))));
1427 Make_Selected_Component
(Loc
,
1428 Prefix
=> Duplicate_Subexpr
(Rhs
),
1430 Make_Identifier
(Loc
, Chars
(Name
(VP
))));
1434 Make_Case_Statement
(Loc
,
1436 Alternatives
=> Alts
));
1440 end Make_Component_List_Assign
;
1442 -----------------------
1443 -- Make_Field_Assign --
1444 -----------------------
1446 function Make_Field_Assign
1448 U_U
: Boolean := False) return Node_Id
1454 -- In the case of an Unchecked_Union, use the discriminant
1455 -- constraint value as on the right-hand side of the assignment.
1459 New_Copy
(Get_Discriminant_Value
(C
,
1461 Discriminant_Constraint
(Etype
(Rhs
))));
1464 Make_Selected_Component
(Loc
,
1465 Prefix
=> Duplicate_Subexpr
(Rhs
),
1466 Selector_Name
=> New_Occurrence_Of
(C
, Loc
));
1470 Make_Assignment_Statement
(Loc
,
1472 Make_Selected_Component
(Loc
,
1473 Prefix
=> Duplicate_Subexpr
(Lhs
),
1475 New_Occurrence_Of
(Find_Component
(L_Typ
, C
), Loc
)),
1476 Expression
=> Expr
);
1478 -- Set Assignment_OK, so discriminants can be assigned
1480 Set_Assignment_OK
(Name
(A
), True);
1482 if Componentwise_Assignment
(N
)
1483 and then Nkind
(Name
(A
)) = N_Selected_Component
1484 and then Chars
(Selector_Name
(Name
(A
))) = Name_uParent
1486 Set_Componentwise_Assignment
(A
);
1490 end Make_Field_Assign
;
1492 ------------------------
1493 -- Make_Field_Assigns --
1494 ------------------------
1496 function Make_Field_Assigns
(CI
: List_Id
) return List_Id
is
1504 while Present
(Item
) loop
1506 -- Look for components, but exclude _tag field assignment if
1507 -- the special Componentwise_Assignment flag is set.
1509 if Nkind
(Item
) = N_Component_Declaration
1510 and then not (Is_Tag
(Defining_Identifier
(Item
))
1511 and then Componentwise_Assignment
(N
))
1514 (Result
, Make_Field_Assign
(Defining_Identifier
(Item
)));
1521 end Make_Field_Assigns
;
1523 -- Start of processing for Expand_Assign_Record
1526 -- Note that we use the base types for this processing. This results
1527 -- in some extra work in the constrained case, but the change of
1528 -- representation case is so unusual that it is not worth the effort.
1530 -- First copy the discriminants. This is done unconditionally. It
1531 -- is required in the unconstrained left side case, and also in the
1532 -- case where this assignment was constructed during the expansion
1533 -- of a type conversion (since initialization of discriminants is
1534 -- suppressed in this case). It is unnecessary but harmless in
1537 if Has_Discriminants
(L_Typ
) then
1538 F
:= First_Discriminant
(R_Typ
);
1539 while Present
(F
) loop
1541 -- If we are expanding the initialization of a derived record
1542 -- that constrains or renames discriminants of the parent, we
1543 -- must use the corresponding discriminant in the parent.
1550 and then Present
(Corresponding_Discriminant
(F
))
1552 CF
:= Corresponding_Discriminant
(F
);
1557 if Is_Unchecked_Union
(Base_Type
(R_Typ
)) then
1559 -- Within an initialization procedure this is the
1560 -- assignment to an unchecked union component, in which
1561 -- case there is no discriminant to initialize.
1563 if Inside_Init_Proc
then
1567 -- The assignment is part of a conversion from a
1568 -- derived unchecked union type with an inferable
1569 -- discriminant, to a parent type.
1571 Insert_Action
(N
, Make_Field_Assign
(CF
, True));
1575 Insert_Action
(N
, Make_Field_Assign
(CF
));
1578 Next_Discriminant
(F
);
1583 -- We know the underlying type is a record, but its current view
1584 -- may be private. We must retrieve the usable record declaration.
1586 if Nkind_In
(Decl
, N_Private_Type_Declaration
,
1587 N_Private_Extension_Declaration
)
1588 and then Present
(Full_View
(R_Typ
))
1590 RDef
:= Type_Definition
(Declaration_Node
(Full_View
(R_Typ
)));
1592 RDef
:= Type_Definition
(Decl
);
1595 if Nkind
(RDef
) = N_Derived_Type_Definition
then
1596 RDef
:= Record_Extension_Part
(RDef
);
1599 if Nkind
(RDef
) = N_Record_Definition
1600 and then Present
(Component_List
(RDef
))
1602 if Is_Unchecked_Union
(R_Typ
) then
1604 Make_Component_List_Assign
(Component_List
(RDef
), True));
1607 (N
, Make_Component_List_Assign
(Component_List
(RDef
)));
1610 Rewrite
(N
, Make_Null_Statement
(Loc
));
1613 end Expand_Assign_Record
;
1615 -------------------------------------
1616 -- Expand_Assign_With_Target_Names --
1617 -------------------------------------
1619 procedure Expand_Assign_With_Target_Names
(N
: Node_Id
) is
1620 LHS
: constant Node_Id
:= Name
(N
);
1621 LHS_Typ
: constant Entity_Id
:= Etype
(LHS
);
1622 Loc
: constant Source_Ptr
:= Sloc
(N
);
1623 RHS
: constant Node_Id
:= Expression
(N
);
1626 -- The entity of the left-hand side
1628 function Replace_Target
(N
: Node_Id
) return Traverse_Result
;
1629 -- Replace occurrences of the target name by the proper entity: either
1630 -- the entity of the LHS in simple cases, or the formal of the
1631 -- constructed procedure otherwise.
1633 --------------------
1634 -- Replace_Target --
1635 --------------------
1637 function Replace_Target
(N
: Node_Id
) return Traverse_Result
is
1639 if Nkind
(N
) = N_Target_Name
then
1640 Rewrite
(N
, New_Occurrence_Of
(Ent
, Sloc
(N
)));
1643 Set_Analyzed
(N
, False);
1647 procedure Replace_Target_Name
is new Traverse_Proc
(Replace_Target
);
1652 Proc_Id
: Entity_Id
;
1654 -- Start of processing for Expand_Assign_With_Target_Names
1657 New_RHS
:= New_Copy_Tree
(RHS
);
1659 -- The left-hand side is a direct name
1661 if Is_Entity_Name
(LHS
)
1662 and then not Is_Renaming_Of_Object
(Entity
(LHS
))
1664 Ent
:= Entity
(LHS
);
1665 Replace_Target_Name
(New_RHS
);
1668 -- LHS := ... LHS ...;
1671 Make_Assignment_Statement
(Loc
,
1672 Name
=> Relocate_Node
(LHS
),
1673 Expression
=> New_RHS
));
1675 -- The left-hand side is not a direct name, but is side-effect free.
1676 -- Capture its value in a temporary to avoid multiple evaluations.
1678 elsif Side_Effect_Free
(LHS
) then
1679 Ent
:= Make_Temporary
(Loc
, 'T');
1680 Replace_Target_Name
(New_RHS
);
1683 -- T : LHS_Typ := LHS;
1685 Insert_Before_And_Analyze
(N
,
1686 Make_Object_Declaration
(Loc
,
1687 Defining_Identifier
=> Ent
,
1688 Object_Definition
=> New_Occurrence_Of
(LHS_Typ
, Loc
),
1689 Expression
=> New_Copy_Tree
(LHS
)));
1692 -- LHS := ... T ...;
1695 Make_Assignment_Statement
(Loc
,
1696 Name
=> Relocate_Node
(LHS
),
1697 Expression
=> New_RHS
));
1699 -- Otherwise wrap the whole assignment statement in a procedure with an
1700 -- IN OUT parameter. The original assignment then becomes a call to the
1701 -- procedure with the left-hand side as an actual.
1704 Ent
:= Make_Temporary
(Loc
, 'T');
1705 Replace_Target_Name
(New_RHS
);
1708 -- procedure P (T : in out LHS_Typ) is
1713 Proc_Id
:= Make_Temporary
(Loc
, 'P');
1715 Insert_Before_And_Analyze
(N
,
1716 Make_Subprogram_Body
(Loc
,
1718 Make_Procedure_Specification
(Loc
,
1719 Defining_Unit_Name
=> Proc_Id
,
1720 Parameter_Specifications
=> New_List
(
1721 Make_Parameter_Specification
(Loc
,
1722 Defining_Identifier
=> Ent
,
1724 Out_Present
=> True,
1726 New_Occurrence_Of
(LHS_Typ
, Loc
)))),
1728 Declarations
=> Empty_List
,
1730 Handled_Statement_Sequence
=>
1731 Make_Handled_Sequence_Of_Statements
(Loc
,
1732 Statements
=> New_List
(
1733 Make_Assignment_Statement
(Loc
,
1734 Name
=> New_Occurrence_Of
(Ent
, Loc
),
1735 Expression
=> New_RHS
)))));
1741 Make_Procedure_Call_Statement
(Loc
,
1742 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
1743 Parameter_Associations
=> New_List
(Relocate_Node
(LHS
))));
1746 -- Analyze rewritten node, either as assignment or procedure call
1749 end Expand_Assign_With_Target_Names
;
1751 -----------------------------------
1752 -- Expand_N_Assignment_Statement --
1753 -----------------------------------
1755 -- This procedure implements various cases where an assignment statement
1756 -- cannot just be passed on to the back end in untransformed state.
1758 procedure Expand_N_Assignment_Statement
(N
: Node_Id
) is
1759 Crep
: constant Boolean := Change_Of_Representation
(N
);
1760 Lhs
: constant Node_Id
:= Name
(N
);
1761 Loc
: constant Source_Ptr
:= Sloc
(N
);
1762 Rhs
: constant Node_Id
:= Expression
(N
);
1763 Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Lhs
));
1767 -- Special case to check right away, if the Componentwise_Assignment
1768 -- flag is set, this is a reanalysis from the expansion of the primitive
1769 -- assignment procedure for a tagged type, and all we need to do is to
1770 -- expand to assignment of components, because otherwise, we would get
1771 -- infinite recursion (since this looks like a tagged assignment which
1772 -- would normally try to *call* the primitive assignment procedure).
1774 if Componentwise_Assignment
(N
) then
1775 Expand_Assign_Record
(N
);
1779 -- Defend against invalid subscripts on left side if we are in standard
1780 -- validity checking mode. No need to do this if we are checking all
1783 -- Note that we do this right away, because there are some early return
1784 -- paths in this procedure, and this is required on all paths.
1786 if Validity_Checks_On
1787 and then Validity_Check_Default
1788 and then not Validity_Check_Subscripts
1790 Check_Valid_Lvalue_Subscripts
(Lhs
);
1793 -- Separate expansion if RHS contain target names. Note that assignment
1794 -- may already have been expanded if RHS is aggregate.
1796 if Nkind
(N
) = N_Assignment_Statement
and then Has_Target_Names
(N
) then
1797 Expand_Assign_With_Target_Names
(N
);
1801 -- Ada 2005 (AI-327): Handle assignment to priority of protected object
1803 -- Rewrite an assignment to X'Priority into a run-time call
1805 -- For example: X'Priority := New_Prio_Expr;
1806 -- ...is expanded into Set_Ceiling (X._Object, New_Prio_Expr);
1808 -- Note that although X'Priority is notionally an object, it is quite
1809 -- deliberately not defined as an aliased object in the RM. This means
1810 -- that it works fine to rewrite it as a call, without having to worry
1811 -- about complications that would other arise from X'Priority'Access,
1812 -- which is illegal, because of the lack of aliasing.
1814 if Ada_Version
>= Ada_2005
then
1817 Conctyp
: Entity_Id
;
1820 RT_Subprg_Name
: Node_Id
;
1823 -- Handle chains of renamings
1826 while Nkind
(Ent
) in N_Has_Entity
1827 and then Present
(Entity
(Ent
))
1828 and then Present
(Renamed_Object
(Entity
(Ent
)))
1830 Ent
:= Renamed_Object
(Entity
(Ent
));
1833 -- The attribute Priority applied to protected objects has been
1834 -- previously expanded into a call to the Get_Ceiling run-time
1835 -- subprogram. In restricted profiles this is not available.
1837 if Is_Expanded_Priority_Attribute
(Ent
) then
1839 -- Look for the enclosing concurrent type
1841 Conctyp
:= Current_Scope
;
1842 while not Is_Concurrent_Type
(Conctyp
) loop
1843 Conctyp
:= Scope
(Conctyp
);
1846 pragma Assert
(Is_Protected_Type
(Conctyp
));
1848 -- Generate the first actual of the call
1850 Subprg
:= Current_Scope
;
1851 while not Present
(Protected_Body_Subprogram
(Subprg
)) loop
1852 Subprg
:= Scope
(Subprg
);
1855 -- Select the appropriate run-time call
1857 if Number_Entries
(Conctyp
) = 0 then
1859 New_Occurrence_Of
(RTE
(RE_Set_Ceiling
), Loc
);
1862 New_Occurrence_Of
(RTE
(RO_PE_Set_Ceiling
), Loc
);
1866 Make_Procedure_Call_Statement
(Loc
,
1867 Name
=> RT_Subprg_Name
,
1868 Parameter_Associations
=> New_List
(
1869 New_Copy_Tree
(First
(Parameter_Associations
(Ent
))),
1870 Relocate_Node
(Expression
(N
))));
1880 -- Deal with assignment checks unless suppressed
1882 if not Suppress_Assignment_Checks
(N
) then
1884 -- First deal with generation of range check if required
1886 if Do_Range_Check
(Rhs
) then
1887 Generate_Range_Check
(Rhs
, Typ
, CE_Range_Check_Failed
);
1890 -- Then generate predicate check if required
1892 Apply_Predicate_Check
(Rhs
, Typ
);
1895 -- Check for a special case where a high level transformation is
1896 -- required. If we have either of:
1901 -- where P is a reference to a bit packed array, then we have to unwind
1902 -- the assignment. The exact meaning of being a reference to a bit
1903 -- packed array is as follows:
1905 -- An indexed component whose prefix is a bit packed array is a
1906 -- reference to a bit packed array.
1908 -- An indexed component or selected component whose prefix is a
1909 -- reference to a bit packed array is itself a reference ot a
1910 -- bit packed array.
1912 -- The required transformation is
1914 -- Tnn : prefix_type := P;
1915 -- Tnn.field := rhs;
1920 -- Tnn : prefix_type := P;
1921 -- Tnn (subscr) := rhs;
1924 -- Since P is going to be evaluated more than once, any subscripts
1925 -- in P must have their evaluation forced.
1927 if Nkind_In
(Lhs
, N_Indexed_Component
, N_Selected_Component
)
1928 and then Is_Ref_To_Bit_Packed_Array
(Prefix
(Lhs
))
1931 BPAR_Expr
: constant Node_Id
:= Relocate_Node
(Prefix
(Lhs
));
1932 BPAR_Typ
: constant Entity_Id
:= Etype
(BPAR_Expr
);
1933 Tnn
: constant Entity_Id
:=
1934 Make_Temporary
(Loc
, 'T', BPAR_Expr
);
1937 -- Insert the post assignment first, because we want to copy the
1938 -- BPAR_Expr tree before it gets analyzed in the context of the
1939 -- pre assignment. Note that we do not analyze the post assignment
1940 -- yet (we cannot till we have completed the analysis of the pre
1941 -- assignment). As usual, the analysis of this post assignment
1942 -- will happen on its own when we "run into" it after finishing
1943 -- the current assignment.
1946 Make_Assignment_Statement
(Loc
,
1947 Name
=> New_Copy_Tree
(BPAR_Expr
),
1948 Expression
=> New_Occurrence_Of
(Tnn
, Loc
)));
1950 -- At this stage BPAR_Expr is a reference to a bit packed array
1951 -- where the reference was not expanded in the original tree,
1952 -- since it was on the left side of an assignment. But in the
1953 -- pre-assignment statement (the object definition), BPAR_Expr
1954 -- will end up on the right-hand side, and must be reexpanded. To
1955 -- achieve this, we reset the analyzed flag of all selected and
1956 -- indexed components down to the actual indexed component for
1957 -- the packed array.
1961 Set_Analyzed
(Exp
, False);
1963 if Nkind_In
(Exp
, N_Indexed_Component
,
1964 N_Selected_Component
)
1966 Exp
:= Prefix
(Exp
);
1972 -- Now we can insert and analyze the pre-assignment
1974 -- If the right-hand side requires a transient scope, it has
1975 -- already been placed on the stack. However, the declaration is
1976 -- inserted in the tree outside of this scope, and must reflect
1977 -- the proper scope for its variable. This awkward bit is forced
1978 -- by the stricter scope discipline imposed by GCC 2.97.
1981 Uses_Transient_Scope
: constant Boolean :=
1983 and then N
= Node_To_Be_Wrapped
;
1986 if Uses_Transient_Scope
then
1987 Push_Scope
(Scope
(Current_Scope
));
1990 Insert_Before_And_Analyze
(N
,
1991 Make_Object_Declaration
(Loc
,
1992 Defining_Identifier
=> Tnn
,
1993 Object_Definition
=> New_Occurrence_Of
(BPAR_Typ
, Loc
),
1994 Expression
=> BPAR_Expr
));
1996 if Uses_Transient_Scope
then
2001 -- Now fix up the original assignment and continue processing
2003 Rewrite
(Prefix
(Lhs
),
2004 New_Occurrence_Of
(Tnn
, Loc
));
2006 -- We do not need to reanalyze that assignment, and we do not need
2007 -- to worry about references to the temporary, but we do need to
2008 -- make sure that the temporary is not marked as a true constant
2009 -- since we now have a generated assignment to it.
2011 Set_Is_True_Constant
(Tnn
, False);
2015 -- When we have the appropriate type of aggregate in the expression (it
2016 -- has been determined during analysis of the aggregate by setting the
2017 -- delay flag), let's perform in place assignment and thus avoid
2018 -- creating a temporary.
2020 if Is_Delayed_Aggregate
(Rhs
) then
2021 Convert_Aggr_In_Assignment
(N
);
2022 Rewrite
(N
, Make_Null_Statement
(Loc
));
2028 -- Apply discriminant check if required. If Lhs is an access type to a
2029 -- designated type with discriminants, we must always check. If the
2030 -- type has unknown discriminants, more elaborate processing below.
2032 if Has_Discriminants
(Etype
(Lhs
))
2033 and then not Has_Unknown_Discriminants
(Etype
(Lhs
))
2035 -- Skip discriminant check if change of representation. Will be
2036 -- done when the change of representation is expanded out.
2039 Apply_Discriminant_Check
(Rhs
, Etype
(Lhs
), Lhs
);
2042 -- If the type is private without discriminants, and the full type
2043 -- has discriminants (necessarily with defaults) a check may still be
2044 -- necessary if the Lhs is aliased. The private discriminants must be
2045 -- visible to build the discriminant constraints.
2047 -- Only an explicit dereference that comes from source indicates
2048 -- aliasing. Access to formals of protected operations and entries
2049 -- create dereferences but are not semantic aliasings.
2051 elsif Is_Private_Type
(Etype
(Lhs
))
2052 and then Has_Discriminants
(Typ
)
2053 and then Nkind
(Lhs
) = N_Explicit_Dereference
2054 and then Comes_From_Source
(Lhs
)
2057 Lt
: constant Entity_Id
:= Etype
(Lhs
);
2058 Ubt
: Entity_Id
:= Base_Type
(Typ
);
2061 -- In the case of an expander-generated record subtype whose base
2062 -- type still appears private, Typ will have been set to that
2063 -- private type rather than the underlying record type (because
2064 -- Underlying type will have returned the record subtype), so it's
2065 -- necessary to apply Underlying_Type again to the base type to
2066 -- get the record type we need for the discriminant check. Such
2067 -- subtypes can be created for assignments in certain cases, such
2068 -- as within an instantiation passed this kind of private type.
2069 -- It would be good to avoid this special test, but making changes
2070 -- to prevent this odd form of record subtype seems difficult. ???
2072 if Is_Private_Type
(Ubt
) then
2073 Ubt
:= Underlying_Type
(Ubt
);
2076 Set_Etype
(Lhs
, Ubt
);
2077 Rewrite
(Rhs
, OK_Convert_To
(Base_Type
(Ubt
), Rhs
));
2078 Apply_Discriminant_Check
(Rhs
, Ubt
, Lhs
);
2079 Set_Etype
(Lhs
, Lt
);
2082 -- If the Lhs has a private type with unknown discriminants, it may
2083 -- have a full view with discriminants, but those are nameable only
2084 -- in the underlying type, so convert the Rhs to it before potential
2085 -- checking. Convert Lhs as well, otherwise the actual subtype might
2086 -- not be constructible. If the discriminants have defaults the type
2087 -- is unconstrained and there is nothing to check.
2089 elsif Has_Unknown_Discriminants
(Base_Type
(Etype
(Lhs
)))
2090 and then Has_Discriminants
(Typ
)
2091 and then not Has_Defaulted_Discriminants
(Typ
)
2093 Rewrite
(Rhs
, OK_Convert_To
(Base_Type
(Typ
), Rhs
));
2094 Rewrite
(Lhs
, OK_Convert_To
(Base_Type
(Typ
), Lhs
));
2095 Apply_Discriminant_Check
(Rhs
, Typ
, Lhs
);
2097 -- In the access type case, we need the same discriminant check, and
2098 -- also range checks if we have an access to constrained array.
2100 elsif Is_Access_Type
(Etype
(Lhs
))
2101 and then Is_Constrained
(Designated_Type
(Etype
(Lhs
)))
2103 if Has_Discriminants
(Designated_Type
(Etype
(Lhs
))) then
2105 -- Skip discriminant check if change of representation. Will be
2106 -- done when the change of representation is expanded out.
2109 Apply_Discriminant_Check
(Rhs
, Etype
(Lhs
));
2112 elsif Is_Array_Type
(Designated_Type
(Etype
(Lhs
))) then
2113 Apply_Range_Check
(Rhs
, Etype
(Lhs
));
2115 if Is_Constrained
(Etype
(Lhs
)) then
2116 Apply_Length_Check
(Rhs
, Etype
(Lhs
));
2119 if Nkind
(Rhs
) = N_Allocator
then
2121 Target_Typ
: constant Entity_Id
:= Etype
(Expression
(Rhs
));
2122 C_Es
: Check_Result
;
2129 Etype
(Designated_Type
(Etype
(Lhs
))));
2141 -- Apply range check for access type case
2143 elsif Is_Access_Type
(Etype
(Lhs
))
2144 and then Nkind
(Rhs
) = N_Allocator
2145 and then Nkind
(Expression
(Rhs
)) = N_Qualified_Expression
2147 Analyze_And_Resolve
(Expression
(Rhs
));
2149 (Expression
(Rhs
), Designated_Type
(Etype
(Lhs
)));
2152 -- Ada 2005 (AI-231): Generate the run-time check
2154 if Is_Access_Type
(Typ
)
2155 and then Can_Never_Be_Null
(Etype
(Lhs
))
2156 and then not Can_Never_Be_Null
(Etype
(Rhs
))
2158 -- If an actual is an out parameter of a null-excluding access
2159 -- type, there is access check on entry, so we set the flag
2160 -- Suppress_Assignment_Checks on the generated statement to
2161 -- assign the actual to the parameter block, and we do not want
2162 -- to generate an additional check at this point.
2164 and then not Suppress_Assignment_Checks
(N
)
2166 Apply_Constraint_Check
(Rhs
, Etype
(Lhs
));
2169 -- Ada 2012 (AI05-148): Update current accessibility level if Rhs is a
2170 -- stand-alone obj of an anonymous access type. Do not install the check
2171 -- when the Lhs denotes a container cursor and the Next function employs
2172 -- an access type, because this can never result in a dangling pointer.
2174 if Is_Access_Type
(Typ
)
2175 and then Is_Entity_Name
(Lhs
)
2176 and then Ekind
(Entity
(Lhs
)) /= E_Loop_Parameter
2177 and then Present
(Effective_Extra_Accessibility
(Entity
(Lhs
)))
2180 function Lhs_Entity
return Entity_Id
;
2181 -- Look through renames to find the underlying entity.
2182 -- For assignment to a rename, we don't care about the
2183 -- Enclosing_Dynamic_Scope of the rename declaration.
2189 function Lhs_Entity
return Entity_Id
is
2190 Result
: Entity_Id
:= Entity
(Lhs
);
2193 while Present
(Renamed_Object
(Result
)) loop
2195 -- Renamed_Object must return an Entity_Name here
2196 -- because of preceding "Present (E_E_A (...))" test.
2198 Result
:= Entity
(Renamed_Object
(Result
));
2204 -- Local Declarations
2206 Access_Check
: constant Node_Id
:=
2207 Make_Raise_Program_Error
(Loc
,
2211 Dynamic_Accessibility_Level
(Rhs
),
2213 Make_Integer_Literal
(Loc
,
2216 (Enclosing_Dynamic_Scope
2218 Reason
=> PE_Accessibility_Check_Failed
);
2220 Access_Level_Update
: constant Node_Id
:=
2221 Make_Assignment_Statement
(Loc
,
2224 (Effective_Extra_Accessibility
2225 (Entity
(Lhs
)), Loc
),
2227 Dynamic_Accessibility_Level
(Rhs
));
2230 if not Accessibility_Checks_Suppressed
(Entity
(Lhs
)) then
2231 Insert_Action
(N
, Access_Check
);
2234 Insert_Action
(N
, Access_Level_Update
);
2238 -- Case of assignment to a bit packed array element. If there is a
2239 -- change of representation this must be expanded into components,
2240 -- otherwise this is a bit-field assignment.
2242 if Nkind
(Lhs
) = N_Indexed_Component
2243 and then Is_Bit_Packed_Array
(Etype
(Prefix
(Lhs
)))
2245 -- Normal case, no change of representation
2248 Expand_Bit_Packed_Element_Set
(N
);
2251 -- Change of representation case
2254 -- Generate the following, to force component-by-component
2255 -- assignments in an efficient way. Otherwise each component
2256 -- will require a temporary and two bit-field manipulations.
2263 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
2269 Make_Object_Declaration
(Loc
,
2270 Defining_Identifier
=> Tnn
,
2271 Object_Definition
=>
2272 New_Occurrence_Of
(Etype
(Lhs
), Loc
)),
2273 Make_Assignment_Statement
(Loc
,
2274 Name
=> New_Occurrence_Of
(Tnn
, Loc
),
2275 Expression
=> Relocate_Node
(Rhs
)),
2276 Make_Assignment_Statement
(Loc
,
2277 Name
=> Relocate_Node
(Lhs
),
2278 Expression
=> New_Occurrence_Of
(Tnn
, Loc
)));
2280 Insert_Actions
(N
, Stats
);
2281 Rewrite
(N
, Make_Null_Statement
(Loc
));
2286 -- Build-in-place function call case. Note that we're not yet doing
2287 -- build-in-place for user-written assignment statements (the assignment
2288 -- here came from an aggregate.)
2290 elsif Ada_Version
>= Ada_2005
2291 and then Is_Build_In_Place_Function_Call
(Rhs
)
2293 Make_Build_In_Place_Call_In_Assignment
(N
, Rhs
);
2295 elsif Is_Tagged_Type
(Typ
)
2296 or else (Needs_Finalization
(Typ
) and then not Is_Array_Type
(Typ
))
2298 Tagged_Case
: declare
2299 L
: List_Id
:= No_List
;
2300 Expand_Ctrl_Actions
: constant Boolean := not No_Ctrl_Actions
(N
);
2303 -- In the controlled case, we ensure that function calls are
2304 -- evaluated before finalizing the target. In all cases, it makes
2305 -- the expansion easier if the side effects are removed first.
2307 Remove_Side_Effects
(Lhs
);
2308 Remove_Side_Effects
(Rhs
);
2310 -- Avoid recursion in the mechanism
2314 -- If dispatching assignment, we need to dispatch to _assign
2316 if Is_Class_Wide_Type
(Typ
)
2318 -- If the type is tagged, we may as well use the predefined
2319 -- primitive assignment. This avoids inlining a lot of code
2320 -- and in the class-wide case, the assignment is replaced
2321 -- by a dispatching call to _assign. It is suppressed in the
2322 -- case of assignments created by the expander that correspond
2323 -- to initializations, where we do want to copy the tag
2324 -- (Expand_Ctrl_Actions flag is set False in this case). It is
2325 -- also suppressed if restriction No_Dispatching_Calls is in
2326 -- force because in that case predefined primitives are not
2329 or else (Is_Tagged_Type
(Typ
)
2330 and then Chars
(Current_Scope
) /= Name_uAssign
2331 and then Expand_Ctrl_Actions
2333 not Restriction_Active
(No_Dispatching_Calls
))
2335 if Is_Limited_Type
(Typ
) then
2337 -- This can happen in an instance when the formal is an
2338 -- extension of a limited interface, and the actual is
2339 -- limited. This is an error according to AI05-0087, but
2340 -- is not caught at the point of instantiation in earlier
2343 -- This is wrong, error messages cannot be issued during
2344 -- expansion, since they would be missed in -gnatc mode ???
2346 Error_Msg_N
("assignment not available on limited type", N
);
2350 -- Fetch the primitive op _assign and proper type to call it.
2351 -- Because of possible conflicts between private and full view,
2352 -- fetch the proper type directly from the operation profile.
2355 Op
: constant Entity_Id
:=
2356 Find_Prim_Op
(Typ
, Name_uAssign
);
2357 F_Typ
: Entity_Id
:= Etype
(First_Formal
(Op
));
2360 -- If the assignment is dispatching, make sure to use the
2363 if Is_Class_Wide_Type
(Typ
) then
2364 F_Typ
:= Class_Wide_Type
(F_Typ
);
2369 -- In case of assignment to a class-wide tagged type, before
2370 -- the assignment we generate run-time check to ensure that
2371 -- the tags of source and target match.
2373 if not Tag_Checks_Suppressed
(Typ
)
2374 and then Is_Class_Wide_Type
(Typ
)
2375 and then Is_Tagged_Type
(Typ
)
2376 and then Is_Tagged_Type
(Underlying_Type
(Etype
(Rhs
)))
2383 if not Is_Interface
(Typ
) then
2385 Make_Selected_Component
(Loc
,
2386 Prefix
=> Duplicate_Subexpr
(Lhs
),
2388 Make_Identifier
(Loc
, Name_uTag
));
2390 Make_Selected_Component
(Loc
,
2391 Prefix
=> Duplicate_Subexpr
(Rhs
),
2393 Make_Identifier
(Loc
, Name_uTag
));
2395 -- Displace the pointer to the base of the objects
2396 -- applying 'Address, which is later expanded into
2397 -- a call to RE_Base_Address.
2400 Make_Explicit_Dereference
(Loc
,
2402 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
2403 Make_Attribute_Reference
(Loc
,
2404 Prefix
=> Duplicate_Subexpr
(Lhs
),
2405 Attribute_Name
=> Name_Address
)));
2407 Make_Explicit_Dereference
(Loc
,
2409 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
2410 Make_Attribute_Reference
(Loc
,
2411 Prefix
=> Duplicate_Subexpr
(Rhs
),
2412 Attribute_Name
=> Name_Address
)));
2416 Make_Raise_Constraint_Error
(Loc
,
2419 Left_Opnd
=> Lhs_Tag
,
2420 Right_Opnd
=> Rhs_Tag
),
2421 Reason
=> CE_Tag_Check_Failed
));
2426 Left_N
: Node_Id
:= Duplicate_Subexpr
(Lhs
);
2427 Right_N
: Node_Id
:= Duplicate_Subexpr
(Rhs
);
2430 -- In order to dispatch the call to _assign the type of
2431 -- the actuals must match. Add conversion (if required).
2433 if Etype
(Lhs
) /= F_Typ
then
2434 Left_N
:= Unchecked_Convert_To
(F_Typ
, Left_N
);
2437 if Etype
(Rhs
) /= F_Typ
then
2438 Right_N
:= Unchecked_Convert_To
(F_Typ
, Right_N
);
2442 Make_Procedure_Call_Statement
(Loc
,
2443 Name
=> New_Occurrence_Of
(Op
, Loc
),
2444 Parameter_Associations
=> New_List
(
2446 Node2
=> Right_N
)));
2451 L
:= Make_Tag_Ctrl_Assignment
(N
);
2453 -- We can't afford to have destructive Finalization Actions in
2454 -- the Self assignment case, so if the target and the source
2455 -- are not obviously different, code is generated to avoid the
2456 -- self assignment case:
2458 -- if lhs'address /= rhs'address then
2459 -- <code for controlled and/or tagged assignment>
2462 -- Skip this if Restriction (No_Finalization) is active
2464 if not Statically_Different
(Lhs
, Rhs
)
2465 and then Expand_Ctrl_Actions
2466 and then not Restriction_Active
(No_Finalization
)
2469 Make_Implicit_If_Statement
(N
,
2473 Make_Attribute_Reference
(Loc
,
2474 Prefix
=> Duplicate_Subexpr
(Lhs
),
2475 Attribute_Name
=> Name_Address
),
2478 Make_Attribute_Reference
(Loc
,
2479 Prefix
=> Duplicate_Subexpr
(Rhs
),
2480 Attribute_Name
=> Name_Address
)),
2482 Then_Statements
=> L
));
2485 -- We need to set up an exception handler for implementing
2486 -- 7.6.1(18). The remaining adjustments are tackled by the
2487 -- implementation of adjust for record_controllers (see
2490 -- This is skipped if we have no finalization
2492 if Expand_Ctrl_Actions
2493 and then not Restriction_Active
(No_Finalization
)
2496 Make_Block_Statement
(Loc
,
2497 Handled_Statement_Sequence
=>
2498 Make_Handled_Sequence_Of_Statements
(Loc
,
2500 Exception_Handlers
=> New_List
(
2501 Make_Handler_For_Ctrl_Operation
(Loc
)))));
2506 Make_Block_Statement
(Loc
,
2507 Handled_Statement_Sequence
=>
2508 Make_Handled_Sequence_Of_Statements
(Loc
, Statements
=> L
)));
2510 -- If no restrictions on aborts, protect the whole assignment
2511 -- for controlled objects as per 9.8(11).
2513 if Needs_Finalization
(Typ
)
2514 and then Expand_Ctrl_Actions
2515 and then Abort_Allowed
2518 Blk
: constant Entity_Id
:=
2520 (E_Block
, Current_Scope
, Sloc
(N
), 'B');
2521 AUD
: constant Entity_Id
:= RTE
(RE_Abort_Undefer_Direct
);
2524 Set_Is_Abort_Block
(N
);
2526 Set_Scope
(Blk
, Current_Scope
);
2527 Set_Etype
(Blk
, Standard_Void_Type
);
2528 Set_Identifier
(N
, New_Occurrence_Of
(Blk
, Sloc
(N
)));
2530 Prepend_To
(L
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
2531 Set_At_End_Proc
(Handled_Statement_Sequence
(N
),
2532 New_Occurrence_Of
(AUD
, Loc
));
2534 -- Present the Abort_Undefer_Direct function to the backend
2535 -- so that it can inline the call to the function.
2537 Add_Inlined_Body
(AUD
, N
);
2539 Expand_At_End_Handler
2540 (Handled_Statement_Sequence
(N
), Blk
);
2544 -- N has been rewritten to a block statement for which it is
2545 -- known by construction that no checks are necessary: analyze
2546 -- it with all checks suppressed.
2548 Analyze
(N
, Suppress
=> All_Checks
);
2554 elsif Is_Array_Type
(Typ
) then
2556 Actual_Rhs
: Node_Id
:= Rhs
;
2559 while Nkind_In
(Actual_Rhs
, N_Type_Conversion
,
2560 N_Qualified_Expression
)
2562 Actual_Rhs
:= Expression
(Actual_Rhs
);
2565 Expand_Assign_Array
(N
, Actual_Rhs
);
2571 elsif Is_Record_Type
(Typ
) then
2572 Expand_Assign_Record
(N
);
2575 -- Scalar types. This is where we perform the processing related to the
2576 -- requirements of (RM 13.9.1(9-11)) concerning the handling of invalid
2579 elsif Is_Scalar_Type
(Typ
) then
2581 -- Case where right side is known valid
2583 if Expr_Known_Valid
(Rhs
) then
2585 -- Here the right side is valid, so it is fine. The case to deal
2586 -- with is when the left side is a local variable reference whose
2587 -- value is not currently known to be valid. If this is the case,
2588 -- and the assignment appears in an unconditional context, then
2589 -- we can mark the left side as now being valid if one of these
2590 -- conditions holds:
2592 -- The expression of the right side has Do_Range_Check set so
2593 -- that we know a range check will be performed. Note that it
2594 -- can be the case that a range check is omitted because we
2595 -- make the assumption that we can assume validity for operands
2596 -- appearing in the right side in determining whether a range
2597 -- check is required
2599 -- The subtype of the right side matches the subtype of the
2600 -- left side. In this case, even though we have not checked
2601 -- the range of the right side, we know it is in range of its
2602 -- subtype if the expression is valid.
2604 if Is_Local_Variable_Reference
(Lhs
)
2605 and then not Is_Known_Valid
(Entity
(Lhs
))
2606 and then In_Unconditional_Context
(N
)
2608 if Do_Range_Check
(Rhs
)
2609 or else Etype
(Lhs
) = Etype
(Rhs
)
2611 Set_Is_Known_Valid
(Entity
(Lhs
), True);
2615 -- Case where right side may be invalid in the sense of the RM
2616 -- reference above. The RM does not require that we check for the
2617 -- validity on an assignment, but it does require that the assignment
2618 -- of an invalid value not cause erroneous behavior.
2620 -- The general approach in GNAT is to use the Is_Known_Valid flag
2621 -- to avoid the need for validity checking on assignments. However
2622 -- in some cases, we have to do validity checking in order to make
2623 -- sure that the setting of this flag is correct.
2626 -- Validate right side if we are validating copies
2628 if Validity_Checks_On
2629 and then Validity_Check_Copies
2631 -- Skip this if left-hand side is an array or record component
2632 -- and elementary component validity checks are suppressed.
2634 if Nkind_In
(Lhs
, N_Selected_Component
, N_Indexed_Component
)
2635 and then not Validity_Check_Components
2642 -- We can propagate this to the left side where appropriate
2644 if Is_Local_Variable_Reference
(Lhs
)
2645 and then not Is_Known_Valid
(Entity
(Lhs
))
2646 and then In_Unconditional_Context
(N
)
2648 Set_Is_Known_Valid
(Entity
(Lhs
), True);
2651 -- Otherwise check to see what should be done
2653 -- If left side is a local variable, then we just set its flag to
2654 -- indicate that its value may no longer be valid, since we are
2655 -- copying a potentially invalid value.
2657 elsif Is_Local_Variable_Reference
(Lhs
) then
2658 Set_Is_Known_Valid
(Entity
(Lhs
), False);
2660 -- Check for case of a nonlocal variable on the left side which
2661 -- is currently known to be valid. In this case, we simply ensure
2662 -- that the right side is valid. We only play the game of copying
2663 -- validity status for local variables, since we are doing this
2664 -- statically, not by tracing the full flow graph.
2666 elsif Is_Entity_Name
(Lhs
)
2667 and then Is_Known_Valid
(Entity
(Lhs
))
2669 -- Note: If Validity_Checking mode is set to none, we ignore
2670 -- the Ensure_Valid call so don't worry about that case here.
2674 -- In all other cases, we can safely copy an invalid value without
2675 -- worrying about the status of the left side. Since it is not a
2676 -- variable reference it will not be considered
2677 -- as being known to be valid in any case.
2686 when RE_Not_Available
=>
2688 end Expand_N_Assignment_Statement
;
2690 ------------------------------
2691 -- Expand_N_Block_Statement --
2692 ------------------------------
2694 -- Encode entity names defined in block statement
2696 procedure Expand_N_Block_Statement
(N
: Node_Id
) is
2698 Qualify_Entity_Names
(N
);
2699 end Expand_N_Block_Statement
;
2701 -----------------------------
2702 -- Expand_N_Case_Statement --
2703 -----------------------------
2705 procedure Expand_N_Case_Statement
(N
: Node_Id
) is
2706 Loc
: constant Source_Ptr
:= Sloc
(N
);
2707 Expr
: constant Node_Id
:= Expression
(N
);
2715 -- Check for the situation where we know at compile time which branch
2718 -- If the value is static but its subtype is predicated and the value
2719 -- does not obey the predicate, the value is marked non-static, and
2720 -- there can be no corresponding static alternative. In that case we
2721 -- replace the case statement with an exception, regardless of whether
2722 -- assertions are enabled or not, unless predicates are ignored.
2724 if Compile_Time_Known_Value
(Expr
)
2725 and then Has_Predicates
(Etype
(Expr
))
2726 and then not Predicates_Ignored
(Etype
(Expr
))
2727 and then not Is_OK_Static_Expression
(Expr
)
2730 Make_Raise_Constraint_Error
(Loc
, Reason
=> CE_Invalid_Data
));
2734 elsif Compile_Time_Known_Value
(Expr
)
2735 and then (not Has_Predicates
(Etype
(Expr
))
2736 or else Is_Static_Expression
(Expr
))
2738 Alt
:= Find_Static_Alternative
(N
);
2740 -- Do not consider controlled objects found in a case statement which
2741 -- actually models a case expression because their early finalization
2742 -- will affect the result of the expression.
2744 if not From_Conditional_Expression
(N
) then
2745 Process_Statements_For_Controlled_Objects
(Alt
);
2748 -- Move statements from this alternative after the case statement.
2749 -- They are already analyzed, so will be skipped by the analyzer.
2751 Insert_List_After
(N
, Statements
(Alt
));
2753 -- That leaves the case statement as a shell. So now we can kill all
2754 -- other alternatives in the case statement.
2756 Kill_Dead_Code
(Expression
(N
));
2762 -- Loop through case alternatives, skipping pragmas, and skipping
2763 -- the one alternative that we select (and therefore retain).
2765 Dead_Alt
:= First
(Alternatives
(N
));
2766 while Present
(Dead_Alt
) loop
2768 and then Nkind
(Dead_Alt
) = N_Case_Statement_Alternative
2770 Kill_Dead_Code
(Statements
(Dead_Alt
), Warn_On_Deleted_Code
);
2777 Rewrite
(N
, Make_Null_Statement
(Loc
));
2781 -- Here if the choice is not determined at compile time
2784 Last_Alt
: constant Node_Id
:= Last
(Alternatives
(N
));
2786 Others_Present
: Boolean;
2787 Others_Node
: Node_Id
;
2789 Then_Stms
: List_Id
;
2790 Else_Stms
: List_Id
;
2793 if Nkind
(First
(Discrete_Choices
(Last_Alt
))) = N_Others_Choice
then
2794 Others_Present
:= True;
2795 Others_Node
:= Last_Alt
;
2797 Others_Present
:= False;
2800 -- First step is to worry about possible invalid argument. The RM
2801 -- requires (RM 5.4(13)) that if the result is invalid (e.g. it is
2802 -- outside the base range), then Constraint_Error must be raised.
2804 -- Case of validity check required (validity checks are on, the
2805 -- expression is not known to be valid, and the case statement
2806 -- comes from source -- no need to validity check internally
2807 -- generated case statements).
2809 if Validity_Check_Default
2810 and then not Predicates_Ignored
(Etype
(Expr
))
2812 Ensure_Valid
(Expr
);
2815 -- If there is only a single alternative, just replace it with the
2816 -- sequence of statements since obviously that is what is going to
2817 -- be executed in all cases.
2819 Len
:= List_Length
(Alternatives
(N
));
2823 -- We still need to evaluate the expression if it has any side
2826 Remove_Side_Effects
(Expression
(N
));
2827 Alt
:= First
(Alternatives
(N
));
2829 -- Do not consider controlled objects found in a case statement
2830 -- which actually models a case expression because their early
2831 -- finalization will affect the result of the expression.
2833 if not From_Conditional_Expression
(N
) then
2834 Process_Statements_For_Controlled_Objects
(Alt
);
2837 Insert_List_After
(N
, Statements
(Alt
));
2839 -- That leaves the case statement as a shell. The alternative that
2840 -- will be executed is reset to a null list. So now we can kill
2841 -- the entire case statement.
2843 Kill_Dead_Code
(Expression
(N
));
2844 Rewrite
(N
, Make_Null_Statement
(Loc
));
2847 -- An optimization. If there are only two alternatives, and only
2848 -- a single choice, then rewrite the whole case statement as an
2849 -- if statement, since this can result in subsequent optimizations.
2850 -- This helps not only with case statements in the source of a
2851 -- simple form, but also with generated code (discriminant check
2852 -- functions in particular).
2854 -- Note: it is OK to do this before expanding out choices for any
2855 -- static predicates, since the if statement processing will handle
2856 -- the static predicate case fine.
2859 Chlist
:= Discrete_Choices
(First
(Alternatives
(N
)));
2861 if List_Length
(Chlist
) = 1 then
2862 Choice
:= First
(Chlist
);
2864 Then_Stms
:= Statements
(First
(Alternatives
(N
)));
2865 Else_Stms
:= Statements
(Last
(Alternatives
(N
)));
2867 -- For TRUE, generate "expression", not expression = true
2869 if Nkind
(Choice
) = N_Identifier
2870 and then Entity
(Choice
) = Standard_True
2872 Cond
:= Expression
(N
);
2874 -- For FALSE, generate "expression" and switch then/else
2876 elsif Nkind
(Choice
) = N_Identifier
2877 and then Entity
(Choice
) = Standard_False
2879 Cond
:= Expression
(N
);
2880 Else_Stms
:= Statements
(First
(Alternatives
(N
)));
2881 Then_Stms
:= Statements
(Last
(Alternatives
(N
)));
2883 -- For a range, generate "expression in range"
2885 elsif Nkind
(Choice
) = N_Range
2886 or else (Nkind
(Choice
) = N_Attribute_Reference
2887 and then Attribute_Name
(Choice
) = Name_Range
)
2888 or else (Is_Entity_Name
(Choice
)
2889 and then Is_Type
(Entity
(Choice
)))
2893 Left_Opnd
=> Expression
(N
),
2894 Right_Opnd
=> Relocate_Node
(Choice
));
2896 -- A subtype indication is not a legal operator in a membership
2897 -- test, so retrieve its range.
2899 elsif Nkind
(Choice
) = N_Subtype_Indication
then
2902 Left_Opnd
=> Expression
(N
),
2905 (Range_Expression
(Constraint
(Choice
))));
2907 -- For any other subexpression "expression = value"
2912 Left_Opnd
=> Expression
(N
),
2913 Right_Opnd
=> Relocate_Node
(Choice
));
2916 -- Now rewrite the case as an IF
2919 Make_If_Statement
(Loc
,
2921 Then_Statements
=> Then_Stms
,
2922 Else_Statements
=> Else_Stms
));
2928 -- If the last alternative is not an Others choice, replace it with
2929 -- an N_Others_Choice. Note that we do not bother to call Analyze on
2930 -- the modified case statement, since it's only effect would be to
2931 -- compute the contents of the Others_Discrete_Choices which is not
2932 -- needed by the back end anyway.
2934 -- The reason for this is that the back end always needs some default
2935 -- for a switch, so if we have not supplied one in the processing
2936 -- above for validity checking, then we need to supply one here.
2938 if not Others_Present
then
2939 Others_Node
:= Make_Others_Choice
(Sloc
(Last_Alt
));
2941 -- If Predicates_Ignored is true the value does not satisfy the
2942 -- predicate, and there is no Others choice, Constraint_Error
2943 -- must be raised (4.5.7 (21/3)).
2945 if Predicates_Ignored
(Etype
(Expr
)) then
2947 Except
: constant Node_Id
:=
2948 Make_Raise_Constraint_Error
(Loc
,
2949 Reason
=> CE_Invalid_Data
);
2950 New_Alt
: constant Node_Id
:=
2951 Make_Case_Statement_Alternative
(Loc
,
2952 Discrete_Choices
=> New_List
(
2953 Make_Others_Choice
(Loc
)),
2954 Statements
=> New_List
(Except
));
2957 Append
(New_Alt
, Alternatives
(N
));
2958 Analyze_And_Resolve
(Except
);
2962 Set_Others_Discrete_Choices
2963 (Others_Node
, Discrete_Choices
(Last_Alt
));
2964 Set_Discrete_Choices
(Last_Alt
, New_List
(Others_Node
));
2969 -- Deal with possible declarations of controlled objects, and also
2970 -- with rewriting choice sequences for static predicate references.
2972 Alt
:= First_Non_Pragma
(Alternatives
(N
));
2973 while Present
(Alt
) loop
2975 -- Do not consider controlled objects found in a case statement
2976 -- which actually models a case expression because their early
2977 -- finalization will affect the result of the expression.
2979 if not From_Conditional_Expression
(N
) then
2980 Process_Statements_For_Controlled_Objects
(Alt
);
2983 if Has_SP_Choice
(Alt
) then
2984 Expand_Static_Predicates_In_Choices
(Alt
);
2987 Next_Non_Pragma
(Alt
);
2990 end Expand_N_Case_Statement
;
2992 -----------------------------
2993 -- Expand_N_Exit_Statement --
2994 -----------------------------
2996 -- The only processing required is to deal with a possible C/Fortran
2997 -- boolean value used as the condition for the exit statement.
2999 procedure Expand_N_Exit_Statement
(N
: Node_Id
) is
3001 Adjust_Condition
(Condition
(N
));
3002 end Expand_N_Exit_Statement
;
3004 ----------------------------------
3005 -- Expand_Formal_Container_Loop --
3006 ----------------------------------
3008 procedure Expand_Formal_Container_Loop
(N
: Node_Id
) is
3009 Loc
: constant Source_Ptr
:= Sloc
(N
);
3010 Isc
: constant Node_Id
:= Iteration_Scheme
(N
);
3011 I_Spec
: constant Node_Id
:= Iterator_Specification
(Isc
);
3012 Cursor
: constant Entity_Id
:= Defining_Identifier
(I_Spec
);
3013 Container
: constant Node_Id
:= Entity
(Name
(I_Spec
));
3014 Stats
: constant List_Id
:= Statements
(N
);
3022 -- The expansion resembles the one for Ada containers, but the
3023 -- primitives mention the domain of iteration explicitly, and
3024 -- function First applied to the container yields a cursor directly.
3026 -- Cursor : Cursor_type := First (Container);
3027 -- while Has_Element (Cursor, Container) loop
3028 -- <original loop statements>
3029 -- Cursor := Next (Container, Cursor);
3032 Build_Formal_Container_Iteration
3033 (N
, Container
, Cursor
, Init
, Advance
, New_Loop
);
3035 Set_Ekind
(Cursor
, E_Variable
);
3036 Append_To
(Stats
, Advance
);
3038 -- Build block to capture declaration of cursor entity.
3041 Make_Block_Statement
(Loc
,
3042 Declarations
=> New_List
(Init
),
3043 Handled_Statement_Sequence
=>
3044 Make_Handled_Sequence_Of_Statements
(Loc
,
3045 Statements
=> New_List
(New_Loop
)));
3047 Rewrite
(N
, Blk_Nod
);
3049 end Expand_Formal_Container_Loop
;
3051 ------------------------------------------
3052 -- Expand_Formal_Container_Element_Loop --
3053 ------------------------------------------
3055 procedure Expand_Formal_Container_Element_Loop
(N
: Node_Id
) is
3056 Loc
: constant Source_Ptr
:= Sloc
(N
);
3057 Isc
: constant Node_Id
:= Iteration_Scheme
(N
);
3058 I_Spec
: constant Node_Id
:= Iterator_Specification
(Isc
);
3059 Element
: constant Entity_Id
:= Defining_Identifier
(I_Spec
);
3060 Container
: constant Node_Id
:= Entity
(Name
(I_Spec
));
3061 Container_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Container
));
3062 Stats
: constant List_Id
:= Statements
(N
);
3064 Cursor
: constant Entity_Id
:=
3065 Make_Defining_Identifier
(Loc
,
3066 Chars
=> New_External_Name
(Chars
(Element
), 'C'));
3067 Elmt_Decl
: Node_Id
;
3070 Element_Op
: constant Entity_Id
:=
3071 Get_Iterable_Type_Primitive
(Container_Typ
, Name_Element
);
3078 -- For an element iterator, the Element aspect must be present,
3079 -- (this is checked during analysis) and the expansion takes the form:
3081 -- Cursor : Cursor_Type := First (Container);
3082 -- Elmt : Element_Type;
3083 -- while Has_Element (Cursor, Container) loop
3084 -- Elmt := Element (Container, Cursor);
3085 -- <original loop statements>
3086 -- Cursor := Next (Container, Cursor);
3089 -- However this expansion is not legal if the element is indefinite.
3090 -- In that case we create a block to hold a variable declaration
3091 -- initialized with a call to Element, and generate:
3093 -- Cursor : Cursor_Type := First (Container);
3094 -- while Has_Element (Cursor, Container) loop
3096 -- Elmt : Element_Type := Element (Container, Cursor);
3098 -- <original loop statements>
3099 -- Cursor := Next (Container, Cursor);
3103 Build_Formal_Container_Iteration
3104 (N
, Container
, Cursor
, Init
, Advance
, New_Loop
);
3105 Append_To
(Stats
, Advance
);
3107 Set_Ekind
(Cursor
, E_Variable
);
3108 Insert_Action
(N
, Init
);
3110 -- Declaration for Element
3113 Make_Object_Declaration
(Loc
,
3114 Defining_Identifier
=> Element
,
3115 Object_Definition
=> New_Occurrence_Of
(Etype
(Element_Op
), Loc
));
3117 if not Is_Constrained
(Etype
(Element_Op
)) then
3118 Set_Expression
(Elmt_Decl
,
3119 Make_Function_Call
(Loc
,
3120 Name
=> New_Occurrence_Of
(Element_Op
, Loc
),
3121 Parameter_Associations
=> New_List
(
3122 New_Occurrence_Of
(Container
, Loc
),
3123 New_Occurrence_Of
(Cursor
, Loc
))));
3125 Set_Statements
(New_Loop
,
3127 (Make_Block_Statement
(Loc
,
3128 Declarations
=> New_List
(Elmt_Decl
),
3129 Handled_Statement_Sequence
=>
3130 Make_Handled_Sequence_Of_Statements
(Loc
,
3131 Statements
=> Stats
))));
3135 Make_Assignment_Statement
(Loc
,
3136 Name
=> New_Occurrence_Of
(Element
, Loc
),
3138 Make_Function_Call
(Loc
,
3139 Name
=> New_Occurrence_Of
(Element_Op
, Loc
),
3140 Parameter_Associations
=> New_List
(
3141 New_Occurrence_Of
(Container
, Loc
),
3142 New_Occurrence_Of
(Cursor
, Loc
))));
3144 Prepend
(Elmt_Ref
, Stats
);
3146 -- The element is assignable in the expanded code
3148 Set_Assignment_OK
(Name
(Elmt_Ref
));
3150 -- The loop is rewritten as a block, to hold the element declaration
3153 Make_Block_Statement
(Loc
,
3154 Declarations
=> New_List
(Elmt_Decl
),
3155 Handled_Statement_Sequence
=>
3156 Make_Handled_Sequence_Of_Statements
(Loc
,
3157 Statements
=> New_List
(New_Loop
)));
3160 -- The element is only modified in expanded code, so it appears as
3161 -- unassigned to the warning machinery. We must suppress this spurious
3162 -- warning explicitly.
3164 Set_Warnings_Off
(Element
);
3166 Rewrite
(N
, New_Loop
);
3168 -- The loop parameter is declared by an object declaration, but within
3169 -- the loop we must prevent user assignments to it, so we analyze the
3170 -- declaration and reset the entity kind, before analyzing the rest of
3173 Analyze
(Elmt_Decl
);
3174 Set_Ekind
(Defining_Identifier
(Elmt_Decl
), E_Loop_Parameter
);
3177 end Expand_Formal_Container_Element_Loop
;
3179 -----------------------------
3180 -- Expand_N_Goto_Statement --
3181 -----------------------------
3183 -- Add poll before goto if polling active
3185 procedure Expand_N_Goto_Statement
(N
: Node_Id
) is
3187 Generate_Poll_Call
(N
);
3188 end Expand_N_Goto_Statement
;
3190 ---------------------------
3191 -- Expand_N_If_Statement --
3192 ---------------------------
3194 -- First we deal with the case of C and Fortran convention boolean values,
3195 -- with zero/non-zero semantics.
3197 -- Second, we deal with the obvious rewriting for the cases where the
3198 -- condition of the IF is known at compile time to be True or False.
3200 -- Third, we remove elsif parts which have non-empty Condition_Actions and
3201 -- rewrite as independent if statements. For example:
3212 -- <<condition actions of y>>
3218 -- This rewriting is needed if at least one elsif part has a non-empty
3219 -- Condition_Actions list. We also do the same processing if there is a
3220 -- constant condition in an elsif part (in conjunction with the first
3221 -- processing step mentioned above, for the recursive call made to deal
3222 -- with the created inner if, this deals with properly optimizing the
3223 -- cases of constant elsif conditions).
3225 procedure Expand_N_If_Statement
(N
: Node_Id
) is
3226 Loc
: constant Source_Ptr
:= Sloc
(N
);
3231 Warn_If_Deleted
: constant Boolean :=
3232 Warn_On_Deleted_Code
and then Comes_From_Source
(N
);
3233 -- Indicates whether we want warnings when we delete branches of the
3234 -- if statement based on constant condition analysis. We never want
3235 -- these warnings for expander generated code.
3238 -- Do not consider controlled objects found in an if statement which
3239 -- actually models an if expression because their early finalization
3240 -- will affect the result of the expression.
3242 if not From_Conditional_Expression
(N
) then
3243 Process_Statements_For_Controlled_Objects
(N
);
3246 Adjust_Condition
(Condition
(N
));
3248 -- The following loop deals with constant conditions for the IF. We
3249 -- need a loop because as we eliminate False conditions, we grab the
3250 -- first elsif condition and use it as the primary condition.
3252 while Compile_Time_Known_Value
(Condition
(N
)) loop
3254 -- If condition is True, we can simply rewrite the if statement now
3255 -- by replacing it by the series of then statements.
3257 if Is_True
(Expr_Value
(Condition
(N
))) then
3259 -- All the else parts can be killed
3261 Kill_Dead_Code
(Elsif_Parts
(N
), Warn_If_Deleted
);
3262 Kill_Dead_Code
(Else_Statements
(N
), Warn_If_Deleted
);
3264 Hed
:= Remove_Head
(Then_Statements
(N
));
3265 Insert_List_After
(N
, Then_Statements
(N
));
3269 -- If condition is False, then we can delete the condition and
3270 -- the Then statements
3273 -- We do not delete the condition if constant condition warnings
3274 -- are enabled, since otherwise we end up deleting the desired
3275 -- warning. Of course the backend will get rid of this True/False
3276 -- test anyway, so nothing is lost here.
3278 if not Constant_Condition_Warnings
then
3279 Kill_Dead_Code
(Condition
(N
));
3282 Kill_Dead_Code
(Then_Statements
(N
), Warn_If_Deleted
);
3284 -- If there are no elsif statements, then we simply replace the
3285 -- entire if statement by the sequence of else statements.
3287 if No
(Elsif_Parts
(N
)) then
3288 if No
(Else_Statements
(N
))
3289 or else Is_Empty_List
(Else_Statements
(N
))
3292 Make_Null_Statement
(Sloc
(N
)));
3294 Hed
:= Remove_Head
(Else_Statements
(N
));
3295 Insert_List_After
(N
, Else_Statements
(N
));
3301 -- If there are elsif statements, the first of them becomes the
3302 -- if/then section of the rebuilt if statement This is the case
3303 -- where we loop to reprocess this copied condition.
3306 Hed
:= Remove_Head
(Elsif_Parts
(N
));
3307 Insert_Actions
(N
, Condition_Actions
(Hed
));
3308 Set_Condition
(N
, Condition
(Hed
));
3309 Set_Then_Statements
(N
, Then_Statements
(Hed
));
3311 -- Hed might have been captured as the condition determining
3312 -- the current value for an entity. Now it is detached from
3313 -- the tree, so a Current_Value pointer in the condition might
3314 -- need to be updated.
3316 Set_Current_Value_Condition
(N
);
3318 if Is_Empty_List
(Elsif_Parts
(N
)) then
3319 Set_Elsif_Parts
(N
, No_List
);
3325 -- Loop through elsif parts, dealing with constant conditions and
3326 -- possible condition actions that are present.
3328 if Present
(Elsif_Parts
(N
)) then
3329 E
:= First
(Elsif_Parts
(N
));
3330 while Present
(E
) loop
3332 -- Do not consider controlled objects found in an if statement
3333 -- which actually models an if expression because their early
3334 -- finalization will affect the result of the expression.
3336 if not From_Conditional_Expression
(N
) then
3337 Process_Statements_For_Controlled_Objects
(E
);
3340 Adjust_Condition
(Condition
(E
));
3342 -- If there are condition actions, then rewrite the if statement
3343 -- as indicated above. We also do the same rewrite for a True or
3344 -- False condition. The further processing of this constant
3345 -- condition is then done by the recursive call to expand the
3346 -- newly created if statement
3348 if Present
(Condition_Actions
(E
))
3349 or else Compile_Time_Known_Value
(Condition
(E
))
3352 Make_If_Statement
(Sloc
(E
),
3353 Condition
=> Condition
(E
),
3354 Then_Statements
=> Then_Statements
(E
),
3355 Elsif_Parts
=> No_List
,
3356 Else_Statements
=> Else_Statements
(N
));
3358 -- Elsif parts for new if come from remaining elsif's of parent
3360 while Present
(Next
(E
)) loop
3361 if No
(Elsif_Parts
(New_If
)) then
3362 Set_Elsif_Parts
(New_If
, New_List
);
3365 Append
(Remove_Next
(E
), Elsif_Parts
(New_If
));
3368 Set_Else_Statements
(N
, New_List
(New_If
));
3370 if Present
(Condition_Actions
(E
)) then
3371 Insert_List_Before
(New_If
, Condition_Actions
(E
));
3376 if Is_Empty_List
(Elsif_Parts
(N
)) then
3377 Set_Elsif_Parts
(N
, No_List
);
3382 -- Note this is not an implicit if statement, since it is part
3383 -- of an explicit if statement in the source (or of an implicit
3384 -- if statement that has already been tested). We set the flag
3385 -- after calling Analyze to avoid generating extra warnings
3386 -- specific to pure if statements, however (see
3387 -- Sem_Ch5.Analyze_If_Statement).
3389 Set_Comes_From_Source
(New_If
, Comes_From_Source
(N
));
3392 -- No special processing for that elsif part, move to next
3400 -- Some more optimizations applicable if we still have an IF statement
3402 if Nkind
(N
) /= N_If_Statement
then
3406 -- Another optimization, special cases that can be simplified
3408 -- if expression then
3414 -- can be changed to:
3416 -- return expression;
3420 -- if expression then
3426 -- can be changed to:
3428 -- return not (expression);
3430 -- Only do these optimizations if we are at least at -O1 level and
3431 -- do not do them if control flow optimizations are suppressed.
3433 if Optimization_Level
> 0
3434 and then not Opt
.Suppress_Control_Flow_Optimizations
3436 if Nkind
(N
) = N_If_Statement
3437 and then No
(Elsif_Parts
(N
))
3438 and then Present
(Else_Statements
(N
))
3439 and then List_Length
(Then_Statements
(N
)) = 1
3440 and then List_Length
(Else_Statements
(N
)) = 1
3443 Then_Stm
: constant Node_Id
:= First
(Then_Statements
(N
));
3444 Else_Stm
: constant Node_Id
:= First
(Else_Statements
(N
));
3447 if Nkind
(Then_Stm
) = N_Simple_Return_Statement
3449 Nkind
(Else_Stm
) = N_Simple_Return_Statement
3452 Then_Expr
: constant Node_Id
:= Expression
(Then_Stm
);
3453 Else_Expr
: constant Node_Id
:= Expression
(Else_Stm
);
3456 if Nkind
(Then_Expr
) = N_Identifier
3458 Nkind
(Else_Expr
) = N_Identifier
3460 if Entity
(Then_Expr
) = Standard_True
3461 and then Entity
(Else_Expr
) = Standard_False
3464 Make_Simple_Return_Statement
(Loc
,
3465 Expression
=> Relocate_Node
(Condition
(N
))));
3469 elsif Entity
(Then_Expr
) = Standard_False
3470 and then Entity
(Else_Expr
) = Standard_True
3473 Make_Simple_Return_Statement
(Loc
,
3477 Relocate_Node
(Condition
(N
)))));
3487 end Expand_N_If_Statement
;
3489 --------------------------
3490 -- Expand_Iterator_Loop --
3491 --------------------------
3493 procedure Expand_Iterator_Loop
(N
: Node_Id
) is
3494 Isc
: constant Node_Id
:= Iteration_Scheme
(N
);
3495 I_Spec
: constant Node_Id
:= Iterator_Specification
(Isc
);
3497 Container
: constant Node_Id
:= Name
(I_Spec
);
3498 Container_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Container
));
3501 -- Processing for arrays
3503 if Is_Array_Type
(Container_Typ
) then
3504 pragma Assert
(Of_Present
(I_Spec
));
3505 Expand_Iterator_Loop_Over_Array
(N
);
3507 elsif Has_Aspect
(Container_Typ
, Aspect_Iterable
) then
3508 if Of_Present
(I_Spec
) then
3509 Expand_Formal_Container_Element_Loop
(N
);
3511 Expand_Formal_Container_Loop
(N
);
3514 -- Processing for containers
3517 Expand_Iterator_Loop_Over_Container
3518 (N
, Isc
, I_Spec
, Container
, Container_Typ
);
3520 end Expand_Iterator_Loop
;
3522 -------------------------------------
3523 -- Expand_Iterator_Loop_Over_Array --
3524 -------------------------------------
3526 procedure Expand_Iterator_Loop_Over_Array
(N
: Node_Id
) is
3527 Isc
: constant Node_Id
:= Iteration_Scheme
(N
);
3528 I_Spec
: constant Node_Id
:= Iterator_Specification
(Isc
);
3529 Array_Node
: constant Node_Id
:= Name
(I_Spec
);
3530 Array_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Array_Node
));
3531 Array_Dim
: constant Pos
:= Number_Dimensions
(Array_Typ
);
3532 Id
: constant Entity_Id
:= Defining_Identifier
(I_Spec
);
3533 Loc
: constant Source_Ptr
:= Sloc
(N
);
3534 Stats
: constant List_Id
:= Statements
(N
);
3535 Core_Loop
: Node_Id
;
3538 Iterator
: Entity_Id
;
3540 -- Start of processing for Expand_Iterator_Loop_Over_Array
3543 -- for Element of Array loop
3545 -- It requires an internally generated cursor to iterate over the array
3547 pragma Assert
(Of_Present
(I_Spec
));
3549 Iterator
:= Make_Temporary
(Loc
, 'C');
3552 -- Element : Component_Type renames Array (Iterator);
3553 -- Iterator is the index value, or a list of index values
3554 -- in the case of a multidimensional array.
3557 Make_Indexed_Component
(Loc
,
3558 Prefix
=> Relocate_Node
(Array_Node
),
3559 Expressions
=> New_List
(New_Occurrence_Of
(Iterator
, Loc
)));
3562 Make_Object_Renaming_Declaration
(Loc
,
3563 Defining_Identifier
=> Id
,
3565 New_Occurrence_Of
(Component_Type
(Array_Typ
), Loc
),
3568 -- Mark the loop variable as needing debug info, so that expansion
3569 -- of the renaming will result in Materialize_Entity getting set via
3570 -- Debug_Renaming_Declaration. (This setting is needed here because
3571 -- the setting in Freeze_Entity comes after the expansion, which is
3574 Set_Debug_Info_Needed
(Id
);
3578 -- for Iterator in [reverse] Array'Range (Array_Dim) loop
3579 -- Element : Component_Type renames Array (Iterator);
3580 -- <original loop statements>
3583 -- If this is an iteration over a multidimensional array, the
3584 -- innermost loop is over the last dimension in Ada, and over
3585 -- the first dimension in Fortran.
3587 if Convention
(Array_Typ
) = Convention_Fortran
then
3594 Make_Loop_Statement
(Loc
,
3596 Make_Iteration_Scheme
(Loc
,
3597 Loop_Parameter_Specification
=>
3598 Make_Loop_Parameter_Specification
(Loc
,
3599 Defining_Identifier
=> Iterator
,
3600 Discrete_Subtype_Definition
=>
3601 Make_Attribute_Reference
(Loc
,
3602 Prefix
=> Relocate_Node
(Array_Node
),
3603 Attribute_Name
=> Name_Range
,
3604 Expressions
=> New_List
(
3605 Make_Integer_Literal
(Loc
, Dim1
))),
3606 Reverse_Present
=> Reverse_Present
(I_Spec
))),
3607 Statements
=> Stats
,
3608 End_Label
=> Empty
);
3610 -- Processing for multidimensional array. The body of each loop is
3611 -- a loop over a previous dimension, going in decreasing order in Ada
3612 -- and in increasing order in Fortran.
3614 if Array_Dim
> 1 then
3615 for Dim
in 1 .. Array_Dim
- 1 loop
3616 if Convention
(Array_Typ
) = Convention_Fortran
then
3619 Dim1
:= Array_Dim
- Dim
;
3622 Iterator
:= Make_Temporary
(Loc
, 'C');
3624 -- Generate the dimension loops starting from the innermost one
3626 -- for Iterator in [reverse] Array'Range (Array_Dim - Dim) loop
3631 Make_Loop_Statement
(Loc
,
3633 Make_Iteration_Scheme
(Loc
,
3634 Loop_Parameter_Specification
=>
3635 Make_Loop_Parameter_Specification
(Loc
,
3636 Defining_Identifier
=> Iterator
,
3637 Discrete_Subtype_Definition
=>
3638 Make_Attribute_Reference
(Loc
,
3639 Prefix
=> Relocate_Node
(Array_Node
),
3640 Attribute_Name
=> Name_Range
,
3641 Expressions
=> New_List
(
3642 Make_Integer_Literal
(Loc
, Dim1
))),
3643 Reverse_Present
=> Reverse_Present
(I_Spec
))),
3644 Statements
=> New_List
(Core_Loop
),
3645 End_Label
=> Empty
);
3647 -- Update the previously created object renaming declaration with
3648 -- the new iterator, by adding the index of the next loop to the
3649 -- indexed component, in the order that corresponds to the
3652 if Convention
(Array_Typ
) = Convention_Fortran
then
3653 Append_To
(Expressions
(Ind_Comp
),
3654 New_Occurrence_Of
(Iterator
, Loc
));
3656 Prepend_To
(Expressions
(Ind_Comp
),
3657 New_Occurrence_Of
(Iterator
, Loc
));
3662 -- Inherit the loop identifier from the original loop. This ensures that
3663 -- the scope stack is consistent after the rewriting.
3665 if Present
(Identifier
(N
)) then
3666 Set_Identifier
(Core_Loop
, Relocate_Node
(Identifier
(N
)));
3669 Rewrite
(N
, Core_Loop
);
3671 end Expand_Iterator_Loop_Over_Array
;
3673 -----------------------------------------
3674 -- Expand_Iterator_Loop_Over_Container --
3675 -----------------------------------------
3677 -- For a 'for ... in' loop, such as:
3679 -- for Cursor in Iterator_Function (...) loop
3685 -- Iter : Iterator_Type := Iterator_Function (...);
3686 -- Cursor : Cursor_type := First (Iter); -- or Last for "reverse"
3687 -- while Has_Element (Cursor) loop
3690 -- Cursor := Iter.Next (Cursor); -- or Prev for "reverse"
3693 -- For a 'for ... of' loop, such as:
3695 -- for X of Container loop
3699 -- the RM implies the generation of:
3701 -- Iter : Iterator_Type := Container.Iterate; -- the Default_Iterator
3702 -- Cursor : Cursor_Type := First (Iter); -- or Last for "reverse"
3703 -- while Has_Element (Cursor) loop
3705 -- X : Element_Type renames Element (Cursor).Element.all;
3706 -- -- or Constant_Element
3710 -- Cursor := Iter.Next (Cursor); -- or Prev for "reverse"
3713 -- In the general case, we do what the RM says. However, the operations
3714 -- Element and Iter.Next are slow, which is bad inside a loop, because they
3715 -- involve dispatching via interfaces, secondary stack manipulation,
3716 -- Busy/Lock incr/decr, and adjust/finalization/at-end handling. So for the
3717 -- predefined containers, we use an equivalent but optimized expansion.
3719 -- In the optimized case, we make use of these:
3721 -- procedure Next (Position : in out Cursor); -- instead of Iter.Next
3723 -- function Pseudo_Reference
3724 -- (Container : aliased Vector'Class) return Reference_Control_Type;
3726 -- type Element_Access is access all Element_Type;
3728 -- function Get_Element_Access
3729 -- (Position : Cursor) return not null Element_Access;
3731 -- Next is declared in the visible part of the container packages.
3732 -- The other three are added in the private part. (We're not supposed to
3733 -- pollute the namespace for clients. The compiler has no trouble breaking
3734 -- privacy to call things in the private part of an instance.)
3738 -- for X of My_Vector loop
3739 -- X.Count := X.Count + 1;
3743 -- The compiler will generate:
3745 -- Iter : Reversible_Iterator'Class := Iterate (My_Vector);
3746 -- -- Reversible_Iterator is an interface. Iterate is the
3747 -- -- Default_Iterator aspect of Vector. This increments Lock,
3748 -- -- disallowing tampering with cursors. Unfortunately, it does not
3749 -- -- increment Busy. The result of Iterate is Limited_Controlled;
3750 -- -- finalization will decrement Lock. This is a build-in-place
3751 -- -- dispatching call to Iterate.
3753 -- Cur : Cursor := First (Iter); -- or Last
3754 -- -- Dispatching call via interface.
3756 -- Control : Reference_Control_Type := Pseudo_Reference (My_Vector);
3757 -- -- Pseudo_Reference increments Busy, to detect tampering with
3758 -- -- elements, as required by RM. Also redundantly increment
3759 -- -- Lock. Finalization of Control will decrement both Busy and
3760 -- -- Lock. Pseudo_Reference returns a record containing a pointer to
3761 -- -- My_Vector, used by Finalize.
3763 -- -- Control is not used below, except to finalize it -- it's purely
3764 -- -- an RAII thing. This is needed because we are eliminating the
3765 -- -- call to Reference within the loop.
3767 -- while Has_Element (Cur) loop
3769 -- X : My_Element renames Get_Element_Access (Cur).all;
3770 -- -- Get_Element_Access returns a pointer to the element
3771 -- -- designated by Cur. No dispatching here, and no horsing
3772 -- -- around with access discriminants. This is instead of the
3775 -- -- X : My_Element renames Reference (Cur).Element.all;
3777 -- -- which creates a controlled object.
3779 -- -- Any attempt to tamper with My_Vector here in the loop
3780 -- -- will correctly raise Program_Error, because of the
3783 -- X.Count := X.Count + 1;
3786 -- Next (Cur); -- or Prev
3787 -- -- This is instead of "Cur := Next (Iter, Cur);"
3789 -- -- No finalization here
3791 -- Finalize Iter and Control here, decrementing Lock twice and Busy
3794 -- This optimization makes "for ... of" loops over 30 times faster in cases
3797 procedure Expand_Iterator_Loop_Over_Container
3801 Container
: Node_Id
;
3802 Container_Typ
: Entity_Id
)
3804 Id
: constant Entity_Id
:= Defining_Identifier
(I_Spec
);
3805 Elem_Typ
: constant Entity_Id
:= Etype
(Id
);
3806 Id_Kind
: constant Entity_Kind
:= Ekind
(Id
);
3807 Loc
: constant Source_Ptr
:= Sloc
(N
);
3808 Stats
: constant List_Id
:= Statements
(N
);
3812 Iter_Type
: Entity_Id
;
3813 Iterator
: Entity_Id
;
3814 Name_Init
: Name_Id
;
3815 Name_Step
: Name_Id
;
3818 Fast_Element_Access_Op
: Entity_Id
:= Empty
;
3819 Fast_Step_Op
: Entity_Id
:= Empty
;
3820 -- Only for optimized version of "for ... of"
3822 Iter_Pack
: Entity_Id
;
3823 -- The package in which the iterator interface is instantiated. This is
3824 -- typically an instance within the container package.
3827 -- The package in which the container type is declared
3830 -- Determine the advancement and initialization steps for the cursor.
3831 -- Analysis of the expanded loop will verify that the container has a
3832 -- reverse iterator.
3834 if Reverse_Present
(I_Spec
) then
3835 Name_Init
:= Name_Last
;
3836 Name_Step
:= Name_Previous
;
3838 Name_Init
:= Name_First
;
3839 Name_Step
:= Name_Next
;
3842 -- The type of the iterator is the return type of the Iterate function
3843 -- used. For the "of" form this is the default iterator for the type,
3844 -- otherwise it is the type of the explicit function used in the
3845 -- iterator specification. The most common case will be an Iterate
3846 -- function in the container package.
3848 -- The Iterator type is declared in an instance within the container
3849 -- package itself, for example:
3851 -- package Vector_Iterator_Interfaces is new
3852 -- Ada.Iterator_Interfaces (Cursor, Has_Element);
3854 -- If the container type is a derived type, the cursor type is found in
3855 -- the package of the ultimate ancestor type.
3857 if Is_Derived_Type
(Container_Typ
) then
3858 Pack
:= Scope
(Root_Type
(Container_Typ
));
3860 Pack
:= Scope
(Container_Typ
);
3863 if Of_Present
(I_Spec
) then
3865 Container_Arg
: Node_Id
;
3867 function Get_Default_Iterator
3868 (T
: Entity_Id
) return Entity_Id
;
3869 -- If the container is a derived type, the aspect holds the parent
3870 -- operation. The required one is a primitive of the derived type
3871 -- and is either inherited or overridden. Also sets Container_Arg.
3873 --------------------------
3874 -- Get_Default_Iterator --
3875 --------------------------
3877 function Get_Default_Iterator
3878 (T
: Entity_Id
) return Entity_Id
3880 Iter
: constant Entity_Id
:=
3881 Entity
(Find_Value_Of_Aspect
(T
, Aspect_Default_Iterator
));
3886 Container_Arg
:= New_Copy_Tree
(Container
);
3888 -- A previous version of GNAT allowed indexing aspects to
3889 -- be redefined on derived container types, while the
3890 -- default iterator was inherited from the parent type.
3891 -- This non-standard extension is preserved temporarily for
3892 -- use by the modelling project under debug flag d.X.
3894 if Debug_Flag_Dot_XX
then
3895 if Base_Type
(Etype
(Container
)) /=
3896 Base_Type
(Etype
(First_Formal
(Iter
)))
3899 Make_Type_Conversion
(Loc
,
3902 (Etype
(First_Formal
(Iter
)), Loc
),
3903 Expression
=> Container_Arg
);
3908 elsif Is_Derived_Type
(T
) then
3910 -- The default iterator must be a primitive operation of the
3911 -- type, at the same dispatch slot position. The DT position
3912 -- may not be established if type is not frozen yet.
3914 Prim
:= First_Elmt
(Primitive_Operations
(T
));
3915 while Present
(Prim
) loop
3918 if Alias
(Op
) = Iter
3920 (Chars
(Op
) = Chars
(Iter
)
3921 and then Present
(DTC_Entity
(Op
))
3922 and then DT_Position
(Op
) = DT_Position
(Iter
))
3930 -- Default iterator must exist
3932 pragma Assert
(False);
3934 -- Otherwise not a derived type
3939 end Get_Default_Iterator
;
3943 Default_Iter
: Entity_Id
;
3946 Reference_Control_Type
: Entity_Id
:= Empty
;
3947 Pseudo_Reference
: Entity_Id
:= Empty
;
3949 -- Start of processing for Handle_Of
3952 if Is_Class_Wide_Type
(Container_Typ
) then
3954 Get_Default_Iterator
(Etype
(Base_Type
(Container_Typ
)));
3956 Default_Iter
:= Get_Default_Iterator
(Etype
(Container
));
3959 Cursor
:= Make_Temporary
(Loc
, 'C');
3961 -- For a container element iterator, the iterator type is obtained
3962 -- from the corresponding aspect, whose return type is descended
3963 -- from the corresponding interface type in some instance of
3964 -- Ada.Iterator_Interfaces. The actuals of that instantiation
3965 -- are Cursor and Has_Element.
3967 Iter_Type
:= Etype
(Default_Iter
);
3969 -- The iterator type, which is a class-wide type, may itself be
3970 -- derived locally, so the desired instantiation is the scope of
3971 -- the root type of the iterator type.
3973 Iter_Pack
:= Scope
(Root_Type
(Etype
(Iter_Type
)));
3975 -- Find declarations needed for "for ... of" optimization
3977 Ent
:= First_Entity
(Pack
);
3978 while Present
(Ent
) loop
3979 if Chars
(Ent
) = Name_Get_Element_Access
then
3980 Fast_Element_Access_Op
:= Ent
;
3982 elsif Chars
(Ent
) = Name_Step
3983 and then Ekind
(Ent
) = E_Procedure
3985 Fast_Step_Op
:= Ent
;
3987 elsif Chars
(Ent
) = Name_Reference_Control_Type
then
3988 Reference_Control_Type
:= Ent
;
3990 elsif Chars
(Ent
) = Name_Pseudo_Reference
then
3991 Pseudo_Reference
:= Ent
;
3997 if Present
(Reference_Control_Type
)
3998 and then Present
(Pseudo_Reference
)
4001 Make_Object_Declaration
(Loc
,
4002 Defining_Identifier
=> Make_Temporary
(Loc
, 'D'),
4003 Object_Definition
=>
4004 New_Occurrence_Of
(Reference_Control_Type
, Loc
),
4006 Make_Function_Call
(Loc
,
4008 New_Occurrence_Of
(Pseudo_Reference
, Loc
),
4009 Parameter_Associations
=>
4010 New_List
(New_Copy_Tree
(Container_Arg
)))));
4013 -- Rewrite domain of iteration as a call to the default iterator
4014 -- for the container type. The formal may be an access parameter
4015 -- in which case we must build a reference to the container.
4020 if Is_Access_Type
(Etype
(First_Entity
(Default_Iter
))) then
4022 Make_Attribute_Reference
(Loc
,
4023 Prefix
=> Container_Arg
,
4024 Attribute_Name
=> Name_Unrestricted_Access
);
4026 Arg
:= Container_Arg
;
4029 Rewrite
(Name
(I_Spec
),
4030 Make_Function_Call
(Loc
,
4032 New_Occurrence_Of
(Default_Iter
, Loc
),
4033 Parameter_Associations
=> New_List
(Arg
)));
4036 Analyze_And_Resolve
(Name
(I_Spec
));
4038 -- Find cursor type in proper iterator package, which is an
4039 -- instantiation of Iterator_Interfaces.
4041 Ent
:= First_Entity
(Iter_Pack
);
4042 while Present
(Ent
) loop
4043 if Chars
(Ent
) = Name_Cursor
then
4044 Set_Etype
(Cursor
, Etype
(Ent
));
4051 if Present
(Fast_Element_Access_Op
) then
4053 Make_Object_Renaming_Declaration
(Loc
,
4054 Defining_Identifier
=> Id
,
4056 New_Occurrence_Of
(Elem_Typ
, Loc
),
4058 Make_Explicit_Dereference
(Loc
,
4060 Make_Function_Call
(Loc
,
4062 New_Occurrence_Of
(Fast_Element_Access_Op
, Loc
),
4063 Parameter_Associations
=>
4064 New_List
(New_Occurrence_Of
(Cursor
, Loc
)))));
4068 Make_Object_Renaming_Declaration
(Loc
,
4069 Defining_Identifier
=> Id
,
4071 New_Occurrence_Of
(Elem_Typ
, Loc
),
4073 Make_Indexed_Component
(Loc
,
4074 Prefix
=> Relocate_Node
(Container_Arg
),
4076 New_List
(New_Occurrence_Of
(Cursor
, Loc
))));
4079 -- The defining identifier in the iterator is user-visible and
4080 -- must be visible in the debugger.
4082 Set_Debug_Info_Needed
(Id
);
4084 -- If the container does not have a variable indexing aspect,
4085 -- the element is a constant in the loop. The container itself
4086 -- may be constant, in which case the element is a constant as
4087 -- well. The container has been rewritten as a call to Iterate,
4088 -- so examine original node.
4090 if No
(Find_Value_Of_Aspect
4091 (Container_Typ
, Aspect_Variable_Indexing
))
4092 or else not Is_Variable
(Original_Node
(Container
))
4094 Set_Ekind
(Id
, E_Constant
);
4097 Prepend_To
(Stats
, Decl
);
4100 -- X in Iterate (S) : type of iterator is type of explicitly given
4101 -- Iterate function, and the loop variable is the cursor. It will be
4102 -- assigned in the loop and must be a variable.
4105 Iter_Type
:= Etype
(Name
(I_Spec
));
4107 -- The iterator type, which is a class-wide type, may itself be
4108 -- derived locally, so the desired instantiation is the scope of
4109 -- the root type of the iterator type, as in the "of" case.
4111 Iter_Pack
:= Scope
(Root_Type
(Etype
(Iter_Type
)));
4115 Iterator
:= Make_Temporary
(Loc
, 'I');
4117 -- For both iterator forms, add a call to the step operation to advance
4118 -- the cursor. Generate:
4120 -- Cursor := Iterator.Next (Cursor);
4124 -- Cursor := Next (Cursor);
4126 if Present
(Fast_Element_Access_Op
) and then Present
(Fast_Step_Op
) then
4128 Curs_Name
: constant Node_Id
:= New_Occurrence_Of
(Cursor
, Loc
);
4129 Step_Call
: Node_Id
;
4133 Make_Procedure_Call_Statement
(Loc
,
4135 New_Occurrence_Of
(Fast_Step_Op
, Loc
),
4136 Parameter_Associations
=> New_List
(Curs_Name
));
4138 Append_To
(Stats
, Step_Call
);
4139 Set_Assignment_OK
(Curs_Name
);
4148 Make_Function_Call
(Loc
,
4150 Make_Selected_Component
(Loc
,
4151 Prefix
=> New_Occurrence_Of
(Iterator
, Loc
),
4152 Selector_Name
=> Make_Identifier
(Loc
, Name_Step
)),
4153 Parameter_Associations
=> New_List
(
4154 New_Occurrence_Of
(Cursor
, Loc
)));
4157 Make_Assignment_Statement
(Loc
,
4158 Name
=> New_Occurrence_Of
(Cursor
, Loc
),
4159 Expression
=> Rhs
));
4160 Set_Assignment_OK
(Name
(Last
(Stats
)));
4165 -- while Has_Element (Cursor) loop
4169 -- Has_Element is the second actual in the iterator package
4172 Make_Loop_Statement
(Loc
,
4174 Make_Iteration_Scheme
(Loc
,
4176 Make_Function_Call
(Loc
,
4179 (Next_Entity
(First_Entity
(Iter_Pack
)), Loc
),
4180 Parameter_Associations
=> New_List
(
4181 New_Occurrence_Of
(Cursor
, Loc
)))),
4183 Statements
=> Stats
,
4184 End_Label
=> Empty
);
4186 -- If present, preserve identifier of loop, which can be used in an exit
4187 -- statement in the body.
4189 if Present
(Identifier
(N
)) then
4190 Set_Identifier
(New_Loop
, Relocate_Node
(Identifier
(N
)));
4193 -- Create the declarations for Iterator and cursor and insert them
4194 -- before the source loop. Given that the domain of iteration is already
4195 -- an entity, the iterator is just a renaming of that entity. Possible
4199 Make_Object_Renaming_Declaration
(Loc
,
4200 Defining_Identifier
=> Iterator
,
4201 Subtype_Mark
=> New_Occurrence_Of
(Iter_Type
, Loc
),
4202 Name
=> Relocate_Node
(Name
(I_Spec
))));
4204 -- Create declaration for cursor
4207 Cursor_Decl
: constant Node_Id
:=
4208 Make_Object_Declaration
(Loc
,
4209 Defining_Identifier
=> Cursor
,
4210 Object_Definition
=>
4211 New_Occurrence_Of
(Etype
(Cursor
), Loc
),
4213 Make_Selected_Component
(Loc
,
4215 New_Occurrence_Of
(Iterator
, Loc
),
4217 Make_Identifier
(Loc
, Name_Init
)));
4220 -- The cursor is only modified in expanded code, so it appears
4221 -- as unassigned to the warning machinery. We must suppress this
4222 -- spurious warning explicitly. The cursor's kind is that of the
4223 -- original loop parameter (it is a constant if the domain of
4224 -- iteration is constant).
4226 Set_Warnings_Off
(Cursor
);
4227 Set_Assignment_OK
(Cursor_Decl
);
4229 Insert_Action
(N
, Cursor_Decl
);
4230 Set_Ekind
(Cursor
, Id_Kind
);
4233 -- If the range of iteration is given by a function call that returns
4234 -- a container, the finalization actions have been saved in the
4235 -- Condition_Actions of the iterator. Insert them now at the head of
4238 if Present
(Condition_Actions
(Isc
)) then
4239 Insert_List_Before
(N
, Condition_Actions
(Isc
));
4242 Rewrite
(N
, New_Loop
);
4244 end Expand_Iterator_Loop_Over_Container
;
4246 -----------------------------
4247 -- Expand_N_Loop_Statement --
4248 -----------------------------
4250 -- 1. Remove null loop entirely
4251 -- 2. Deal with while condition for C/Fortran boolean
4252 -- 3. Deal with loops with a non-standard enumeration type range
4253 -- 4. Deal with while loops where Condition_Actions is set
4254 -- 5. Deal with loops over predicated subtypes
4255 -- 6. Deal with loops with iterators over arrays and containers
4256 -- 7. Insert polling call if required
4258 procedure Expand_N_Loop_Statement
(N
: Node_Id
) is
4259 Loc
: constant Source_Ptr
:= Sloc
(N
);
4260 Scheme
: constant Node_Id
:= Iteration_Scheme
(N
);
4266 if Is_Null_Loop
(N
) then
4267 Rewrite
(N
, Make_Null_Statement
(Loc
));
4271 -- Deal with condition for C/Fortran Boolean
4273 if Present
(Scheme
) then
4274 Adjust_Condition
(Condition
(Scheme
));
4277 -- Generate polling call
4279 if Is_Non_Empty_List
(Statements
(N
)) then
4280 Generate_Poll_Call
(First
(Statements
(N
)));
4283 -- Nothing more to do for plain loop with no iteration scheme
4288 -- Case of for loop (Loop_Parameter_Specification present)
4290 -- Note: we do not have to worry about validity checking of the for loop
4291 -- range bounds here, since they were frozen with constant declarations
4292 -- and it is during that process that the validity checking is done.
4294 elsif Present
(Loop_Parameter_Specification
(Scheme
)) then
4296 LPS
: constant Node_Id
:=
4297 Loop_Parameter_Specification
(Scheme
);
4298 Loop_Id
: constant Entity_Id
:= Defining_Identifier
(LPS
);
4299 Ltype
: constant Entity_Id
:= Etype
(Loop_Id
);
4300 Btype
: constant Entity_Id
:= Base_Type
(Ltype
);
4306 -- Deal with loop over predicates
4308 if Is_Discrete_Type
(Ltype
)
4309 and then Present
(Predicate_Function
(Ltype
))
4311 Expand_Predicated_Loop
(N
);
4313 -- Handle the case where we have a for loop with the range type
4314 -- being an enumeration type with non-standard representation.
4315 -- In this case we expand:
4317 -- for x in [reverse] a .. b loop
4323 -- for xP in [reverse] integer
4324 -- range etype'Pos (a) .. etype'Pos (b)
4327 -- x : constant etype := Pos_To_Rep (xP);
4333 elsif Is_Enumeration_Type
(Btype
)
4334 and then Present
(Enum_Pos_To_Rep
(Btype
))
4337 Make_Defining_Identifier
(Loc
,
4338 Chars
=> New_External_Name
(Chars
(Loop_Id
), 'P'));
4340 -- If the type has a contiguous representation, successive
4341 -- values can be generated as offsets from the first literal.
4343 if Has_Contiguous_Rep
(Btype
) then
4345 Unchecked_Convert_To
(Btype
,
4348 Make_Integer_Literal
(Loc
,
4349 Enumeration_Rep
(First_Literal
(Btype
))),
4350 Right_Opnd
=> New_Occurrence_Of
(New_Id
, Loc
)));
4352 -- Use the constructed array Enum_Pos_To_Rep
4355 Make_Indexed_Component
(Loc
,
4357 New_Occurrence_Of
(Enum_Pos_To_Rep
(Btype
), Loc
),
4359 New_List
(New_Occurrence_Of
(New_Id
, Loc
)));
4362 -- Build declaration for loop identifier
4366 Make_Object_Declaration
(Loc
,
4367 Defining_Identifier
=> Loop_Id
,
4368 Constant_Present
=> True,
4369 Object_Definition
=> New_Occurrence_Of
(Ltype
, Loc
),
4370 Expression
=> Expr
));
4373 Make_Loop_Statement
(Loc
,
4374 Identifier
=> Identifier
(N
),
4377 Make_Iteration_Scheme
(Loc
,
4378 Loop_Parameter_Specification
=>
4379 Make_Loop_Parameter_Specification
(Loc
,
4380 Defining_Identifier
=> New_Id
,
4381 Reverse_Present
=> Reverse_Present
(LPS
),
4383 Discrete_Subtype_Definition
=>
4384 Make_Subtype_Indication
(Loc
,
4387 New_Occurrence_Of
(Standard_Natural
, Loc
),
4390 Make_Range_Constraint
(Loc
,
4395 Make_Attribute_Reference
(Loc
,
4397 New_Occurrence_Of
(Btype
, Loc
),
4399 Attribute_Name
=> Name_Pos
,
4401 Expressions
=> New_List
(
4403 (Type_Low_Bound
(Ltype
)))),
4406 Make_Attribute_Reference
(Loc
,
4408 New_Occurrence_Of
(Btype
, Loc
),
4410 Attribute_Name
=> Name_Pos
,
4412 Expressions
=> New_List
(
4417 Statements
=> New_List
(
4418 Make_Block_Statement
(Loc
,
4419 Declarations
=> Decls
,
4420 Handled_Statement_Sequence
=>
4421 Make_Handled_Sequence_Of_Statements
(Loc
,
4422 Statements
=> Statements
(N
)))),
4424 End_Label
=> End_Label
(N
)));
4426 -- The loop parameter's entity must be removed from the loop
4427 -- scope's entity list and rendered invisible, since it will
4428 -- now be located in the new block scope. Any other entities
4429 -- already associated with the loop scope, such as the loop
4430 -- parameter's subtype, will remain there.
4432 -- In an element loop, the loop will contain a declaration for
4433 -- a cursor variable; otherwise the loop id is the first entity
4434 -- in the scope constructed for the loop.
4436 if Comes_From_Source
(Loop_Id
) then
4437 pragma Assert
(First_Entity
(Scope
(Loop_Id
)) = Loop_Id
);
4441 Set_First_Entity
(Scope
(Loop_Id
), Next_Entity
(Loop_Id
));
4442 Remove_Homonym
(Loop_Id
);
4444 if Last_Entity
(Scope
(Loop_Id
)) = Loop_Id
then
4445 Set_Last_Entity
(Scope
(Loop_Id
), Empty
);
4450 -- Nothing to do with other cases of for loops
4457 -- Second case, if we have a while loop with Condition_Actions set, then
4458 -- we change it into a plain loop:
4467 -- <<condition actions>>
4472 elsif Present
(Scheme
)
4473 and then Present
(Condition_Actions
(Scheme
))
4474 and then Present
(Condition
(Scheme
))
4481 Make_Exit_Statement
(Sloc
(Condition
(Scheme
)),
4483 Make_Op_Not
(Sloc
(Condition
(Scheme
)),
4484 Right_Opnd
=> Condition
(Scheme
)));
4486 Prepend
(ES
, Statements
(N
));
4487 Insert_List_Before
(ES
, Condition_Actions
(Scheme
));
4489 -- This is not an implicit loop, since it is generated in response
4490 -- to the loop statement being processed. If this is itself
4491 -- implicit, the restriction has already been checked. If not,
4492 -- it is an explicit loop.
4495 Make_Loop_Statement
(Sloc
(N
),
4496 Identifier
=> Identifier
(N
),
4497 Statements
=> Statements
(N
),
4498 End_Label
=> End_Label
(N
)));
4503 -- Here to deal with iterator case
4505 elsif Present
(Scheme
)
4506 and then Present
(Iterator_Specification
(Scheme
))
4508 Expand_Iterator_Loop
(N
);
4510 -- An iterator loop may generate renaming declarations for elements
4511 -- that require debug information. This is the case in particular
4512 -- with element iterators, where debug information must be generated
4513 -- for the temporary that holds the element value. These temporaries
4514 -- are created within a transient block whose local declarations are
4515 -- transferred to the loop, which now has nontrivial local objects.
4517 if Nkind
(N
) = N_Loop_Statement
4518 and then Present
(Identifier
(N
))
4520 Qualify_Entity_Names
(N
);
4524 -- When the iteration scheme mentiones attribute 'Loop_Entry, the loop
4525 -- is transformed into a conditional block where the original loop is
4526 -- the sole statement. Inspect the statements of the nested loop for
4527 -- controlled objects.
4531 if Subject_To_Loop_Entry_Attributes
(Stmt
) then
4532 Stmt
:= Find_Loop_In_Conditional_Block
(Stmt
);
4535 Process_Statements_For_Controlled_Objects
(Stmt
);
4536 end Expand_N_Loop_Statement
;
4538 ----------------------------
4539 -- Expand_Predicated_Loop --
4540 ----------------------------
4542 -- Note: the expander can handle generation of loops over predicated
4543 -- subtypes for both the dynamic and static cases. Depending on what
4544 -- we decide is allowed in Ada 2012 mode and/or extensions allowed
4545 -- mode, the semantic analyzer may disallow one or both forms.
4547 procedure Expand_Predicated_Loop
(N
: Node_Id
) is
4548 Loc
: constant Source_Ptr
:= Sloc
(N
);
4549 Isc
: constant Node_Id
:= Iteration_Scheme
(N
);
4550 LPS
: constant Node_Id
:= Loop_Parameter_Specification
(Isc
);
4551 Loop_Id
: constant Entity_Id
:= Defining_Identifier
(LPS
);
4552 Ltype
: constant Entity_Id
:= Etype
(Loop_Id
);
4553 Stat
: constant List_Id
:= Static_Discrete_Predicate
(Ltype
);
4554 Stmts
: constant List_Id
:= Statements
(N
);
4557 -- Case of iteration over non-static predicate, should not be possible
4558 -- since this is not allowed by the semantics and should have been
4559 -- caught during analysis of the loop statement.
4562 raise Program_Error
;
4564 -- If the predicate list is empty, that corresponds to a predicate of
4565 -- False, in which case the loop won't run at all, and we rewrite the
4566 -- entire loop as a null statement.
4568 elsif Is_Empty_List
(Stat
) then
4569 Rewrite
(N
, Make_Null_Statement
(Loc
));
4572 -- For expansion over a static predicate we generate the following
4575 -- J : Ltype := min-val;
4580 -- when endpoint => J := startpoint;
4581 -- when endpoint => J := startpoint;
4583 -- when max-val => exit;
4584 -- when others => J := Lval'Succ (J);
4589 -- with min-val replaced by max-val and Succ replaced by Pred if the
4590 -- loop parameter specification carries a Reverse indicator.
4592 -- To make this a little clearer, let's take a specific example:
4594 -- type Int is range 1 .. 10;
4595 -- subtype StaticP is Int with
4596 -- predicate => StaticP in 3 | 10 | 5 .. 7;
4598 -- for L in StaticP loop
4599 -- Put_Line ("static:" & J'Img);
4602 -- In this case, the loop is transformed into
4609 -- when 3 => J := 5;
4610 -- when 7 => J := 10;
4612 -- when others => J := L'Succ (J);
4618 Static_Predicate
: declare
4625 function Lo_Val
(N
: Node_Id
) return Node_Id
;
4626 -- Given static expression or static range, returns an identifier
4627 -- whose value is the low bound of the expression value or range.
4629 function Hi_Val
(N
: Node_Id
) return Node_Id
;
4630 -- Given static expression or static range, returns an identifier
4631 -- whose value is the high bound of the expression value or range.
4637 function Hi_Val
(N
: Node_Id
) return Node_Id
is
4639 if Is_OK_Static_Expression
(N
) then
4640 return New_Copy
(N
);
4642 pragma Assert
(Nkind
(N
) = N_Range
);
4643 return New_Copy
(High_Bound
(N
));
4651 function Lo_Val
(N
: Node_Id
) return Node_Id
is
4653 if Is_OK_Static_Expression
(N
) then
4654 return New_Copy
(N
);
4656 pragma Assert
(Nkind
(N
) = N_Range
);
4657 return New_Copy
(Low_Bound
(N
));
4661 -- Start of processing for Static_Predicate
4664 -- Convert loop identifier to normal variable and reanalyze it so
4665 -- that this conversion works. We have to use the same defining
4666 -- identifier, since there may be references in the loop body.
4668 Set_Analyzed
(Loop_Id
, False);
4669 Set_Ekind
(Loop_Id
, E_Variable
);
4671 -- In most loops the loop variable is assigned in various
4672 -- alternatives in the body. However, in the rare case when
4673 -- the range specifies a single element, the loop variable
4674 -- may trigger a spurious warning that is could be constant.
4675 -- This warning might as well be suppressed.
4677 Set_Warnings_Off
(Loop_Id
);
4679 -- Loop to create branches of case statement
4683 if Reverse_Present
(LPS
) then
4685 -- Initial value is largest value in predicate.
4688 Make_Object_Declaration
(Loc
,
4689 Defining_Identifier
=> Loop_Id
,
4690 Object_Definition
=> New_Occurrence_Of
(Ltype
, Loc
),
4691 Expression
=> Hi_Val
(Last
(Stat
)));
4694 while Present
(P
) loop
4695 if No
(Prev
(P
)) then
4696 S
:= Make_Exit_Statement
(Loc
);
4699 Make_Assignment_Statement
(Loc
,
4700 Name
=> New_Occurrence_Of
(Loop_Id
, Loc
),
4701 Expression
=> Hi_Val
(Prev
(P
)));
4702 Set_Suppress_Assignment_Checks
(S
);
4706 Make_Case_Statement_Alternative
(Loc
,
4707 Statements
=> New_List
(S
),
4708 Discrete_Choices
=> New_List
(Lo_Val
(P
))));
4715 -- Initial value is smallest value in predicate.
4718 Make_Object_Declaration
(Loc
,
4719 Defining_Identifier
=> Loop_Id
,
4720 Object_Definition
=> New_Occurrence_Of
(Ltype
, Loc
),
4721 Expression
=> Lo_Val
(First
(Stat
)));
4724 while Present
(P
) loop
4725 if No
(Next
(P
)) then
4726 S
:= Make_Exit_Statement
(Loc
);
4729 Make_Assignment_Statement
(Loc
,
4730 Name
=> New_Occurrence_Of
(Loop_Id
, Loc
),
4731 Expression
=> Lo_Val
(Next
(P
)));
4732 Set_Suppress_Assignment_Checks
(S
);
4736 Make_Case_Statement_Alternative
(Loc
,
4737 Statements
=> New_List
(S
),
4738 Discrete_Choices
=> New_List
(Hi_Val
(P
))));
4744 -- Add others choice
4747 Name_Next
: Name_Id
;
4750 if Reverse_Present
(LPS
) then
4751 Name_Next
:= Name_Pred
;
4753 Name_Next
:= Name_Succ
;
4757 Make_Assignment_Statement
(Loc
,
4758 Name
=> New_Occurrence_Of
(Loop_Id
, Loc
),
4760 Make_Attribute_Reference
(Loc
,
4761 Prefix
=> New_Occurrence_Of
(Ltype
, Loc
),
4762 Attribute_Name
=> Name_Next
,
4763 Expressions
=> New_List
(
4764 New_Occurrence_Of
(Loop_Id
, Loc
))));
4765 Set_Suppress_Assignment_Checks
(S
);
4769 Make_Case_Statement_Alternative
(Loc
,
4770 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
4771 Statements
=> New_List
(S
)));
4773 -- Construct case statement and append to body statements
4776 Make_Case_Statement
(Loc
,
4777 Expression
=> New_Occurrence_Of
(Loop_Id
, Loc
),
4778 Alternatives
=> Alts
);
4779 Append_To
(Stmts
, Cstm
);
4783 Set_Suppress_Assignment_Checks
(D
);
4786 Make_Block_Statement
(Loc
,
4787 Declarations
=> New_List
(D
),
4788 Handled_Statement_Sequence
=>
4789 Make_Handled_Sequence_Of_Statements
(Loc
,
4790 Statements
=> New_List
(
4791 Make_Loop_Statement
(Loc
,
4792 Statements
=> Stmts
,
4793 End_Label
=> Empty
)))));
4796 end Static_Predicate
;
4798 end Expand_Predicated_Loop
;
4800 ------------------------------
4801 -- Make_Tag_Ctrl_Assignment --
4802 ------------------------------
4804 function Make_Tag_Ctrl_Assignment
(N
: Node_Id
) return List_Id
is
4805 Asn
: constant Node_Id
:= Relocate_Node
(N
);
4806 L
: constant Node_Id
:= Name
(N
);
4807 Loc
: constant Source_Ptr
:= Sloc
(N
);
4808 Res
: constant List_Id
:= New_List
;
4809 T
: constant Entity_Id
:= Underlying_Type
(Etype
(L
));
4811 Comp_Asn
: constant Boolean := Is_Fully_Repped_Tagged_Type
(T
);
4812 Ctrl_Act
: constant Boolean := Needs_Finalization
(T
)
4813 and then not No_Ctrl_Actions
(N
);
4814 Save_Tag
: constant Boolean := Is_Tagged_Type
(T
)
4815 and then not Comp_Asn
4816 and then not No_Ctrl_Actions
(N
)
4817 and then Tagged_Type_Expansion
;
4823 -- Finalize the target of the assignment when controlled
4825 -- We have two exceptions here:
4827 -- 1. If we are in an init proc since it is an initialization more
4828 -- than an assignment.
4830 -- 2. If the left-hand side is a temporary that was not initialized
4831 -- (or the parent part of a temporary since it is the case in
4832 -- extension aggregates). Such a temporary does not come from
4833 -- source. We must examine the original node for the prefix, because
4834 -- it may be a component of an entry formal, in which case it has
4835 -- been rewritten and does not appear to come from source either.
4837 -- Case of init proc
4839 if not Ctrl_Act
then
4842 -- The left-hand side is an uninitialized temporary object
4844 elsif Nkind
(L
) = N_Type_Conversion
4845 and then Is_Entity_Name
(Expression
(L
))
4846 and then Nkind
(Parent
(Entity
(Expression
(L
)))) =
4847 N_Object_Declaration
4848 and then No_Initialization
(Parent
(Entity
(Expression
(L
))))
4855 (Obj_Ref
=> Duplicate_Subexpr_No_Checks
(L
),
4858 if Present
(Fin_Call
) then
4859 Append_To
(Res
, Fin_Call
);
4863 -- Save the Tag in a local variable Tag_Id
4866 Tag_Id
:= Make_Temporary
(Loc
, 'A');
4869 Make_Object_Declaration
(Loc
,
4870 Defining_Identifier
=> Tag_Id
,
4871 Object_Definition
=> New_Occurrence_Of
(RTE
(RE_Tag
), Loc
),
4873 Make_Selected_Component
(Loc
,
4874 Prefix
=> Duplicate_Subexpr_No_Checks
(L
),
4876 New_Occurrence_Of
(First_Tag_Component
(T
), Loc
))));
4878 -- Otherwise Tag_Id is not used
4884 -- If the tagged type has a full rep clause, expand the assignment into
4885 -- component-wise assignments. Mark the node as unanalyzed in order to
4886 -- generate the proper code and propagate this scenario by setting a
4887 -- flag to avoid infinite recursion.
4890 Set_Analyzed
(Asn
, False);
4891 Set_Componentwise_Assignment
(Asn
, True);
4894 Append_To
(Res
, Asn
);
4900 Make_Assignment_Statement
(Loc
,
4902 Make_Selected_Component
(Loc
,
4903 Prefix
=> Duplicate_Subexpr_No_Checks
(L
),
4905 New_Occurrence_Of
(First_Tag_Component
(T
), Loc
)),
4906 Expression
=> New_Occurrence_Of
(Tag_Id
, Loc
)));
4909 -- Adjust the target after the assignment when controlled (not in the
4910 -- init proc since it is an initialization more than an assignment).
4915 (Obj_Ref
=> Duplicate_Subexpr_Move_Checks
(L
),
4918 if Present
(Adj_Call
) then
4919 Append_To
(Res
, Adj_Call
);
4927 -- Could use comment here ???
4929 when RE_Not_Available
=>
4931 end Make_Tag_Ctrl_Assignment
;