1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Exp_Aggr
; use Exp_Aggr
;
32 with Exp_Atag
; use Exp_Atag
;
33 with Exp_Ch4
; use Exp_Ch4
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Ch9
; use Exp_Ch9
;
37 with Exp_Dbug
; use Exp_Dbug
;
38 with Exp_Disp
; use Exp_Disp
;
39 with Exp_Dist
; use Exp_Dist
;
40 with Exp_Smem
; use Exp_Smem
;
41 with Exp_Strm
; use Exp_Strm
;
42 with Exp_Tss
; use Exp_Tss
;
43 with Exp_Util
; use Exp_Util
;
44 with Freeze
; use Freeze
;
45 with Ghost
; use Ghost
;
46 with Namet
; use Namet
;
47 with Nlists
; use Nlists
;
48 with Nmake
; use Nmake
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Attr
; use Sem_Attr
;
56 with Sem_Cat
; use Sem_Cat
;
57 with Sem_Ch3
; use Sem_Ch3
;
58 with Sem_Ch6
; use Sem_Ch6
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Disp
; use Sem_Disp
;
61 with Sem_Eval
; use Sem_Eval
;
62 with Sem_Mech
; use Sem_Mech
;
63 with Sem_Res
; use Sem_Res
;
64 with Sem_SCIL
; use Sem_SCIL
;
65 with Sem_Type
; use Sem_Type
;
66 with Sem_Util
; use Sem_Util
;
67 with Sinfo
; use Sinfo
;
68 with Stand
; use Stand
;
69 with Snames
; use Snames
;
70 with Targparm
; use Targparm
;
71 with Tbuild
; use Tbuild
;
72 with Ttypes
; use Ttypes
;
73 with Validsw
; use Validsw
;
75 package body Exp_Ch3
is
77 -----------------------
78 -- Local Subprograms --
79 -----------------------
81 procedure Adjust_Discriminants
(Rtype
: Entity_Id
);
82 -- This is used when freezing a record type. It attempts to construct
83 -- more restrictive subtypes for discriminants so that the max size of
84 -- the record can be calculated more accurately. See the body of this
85 -- procedure for details.
87 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
);
88 -- Build initialization procedure for given array type. Nod is a node
89 -- used for attachment of any actions required in its construction.
90 -- It also supplies the source location used for the procedure.
92 function Build_Discriminant_Formals
94 Use_Dl
: Boolean) return List_Id
;
95 -- This function uses the discriminants of a type to build a list of
96 -- formal parameters, used in Build_Init_Procedure among other places.
97 -- If the flag Use_Dl is set, the list is built using the already
98 -- defined discriminals of the type, as is the case for concurrent
99 -- types with discriminants. Otherwise new identifiers are created,
100 -- with the source names of the discriminants.
102 function Build_Equivalent_Array_Aggregate
(T
: Entity_Id
) return Node_Id
;
103 -- This function builds a static aggregate that can serve as the initial
104 -- value for an array type whose bounds are static, and whose component
105 -- type is a composite type that has a static equivalent aggregate.
106 -- The equivalent array aggregate is used both for object initialization
107 -- and for component initialization, when used in the following function.
109 function Build_Equivalent_Record_Aggregate
(T
: Entity_Id
) return Node_Id
;
110 -- This function builds a static aggregate that can serve as the initial
111 -- value for a record type whose components are scalar and initialized
112 -- with compile-time values, or arrays with similar initialization or
113 -- defaults. When possible, initialization of an object of the type can
114 -- be achieved by using a copy of the aggregate as an initial value, thus
115 -- removing the implicit call that would otherwise constitute elaboration
118 procedure Build_Record_Init_Proc
(N
: Node_Id
; Rec_Ent
: Entity_Id
);
119 -- Build record initialization procedure. N is the type declaration
120 -- node, and Rec_Ent is the corresponding entity for the record type.
122 procedure Build_Slice_Assignment
(Typ
: Entity_Id
);
123 -- Build assignment procedure for one-dimensional arrays of controlled
124 -- types. Other array and slice assignments are expanded in-line, but
125 -- the code expansion for controlled components (when control actions
126 -- are active) can lead to very large blocks that GCC3 handles poorly.
128 procedure Build_Untagged_Equality
(Typ
: Entity_Id
);
129 -- AI05-0123: Equality on untagged records composes. This procedure
130 -- builds the equality routine for an untagged record that has components
131 -- of a record type that has user-defined primitive equality operations.
132 -- The resulting operation is a TSS subprogram.
134 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
);
135 -- Create An Equality function for the untagged variant record Typ and
136 -- attach it to the TSS list
138 procedure Check_Stream_Attributes
(Typ
: Entity_Id
);
139 -- Check that if a limited extension has a parent with user-defined stream
140 -- attributes, and does not itself have user-defined stream-attributes,
141 -- then any limited component of the extension also has the corresponding
142 -- user-defined stream attributes.
144 procedure Clean_Task_Names
146 Proc_Id
: Entity_Id
);
147 -- If an initialization procedure includes calls to generate names
148 -- for task subcomponents, indicate that secondary stack cleanup is
149 -- needed after an initialization. Typ is the component type, and Proc_Id
150 -- the initialization procedure for the enclosing composite type.
152 procedure Expand_Freeze_Array_Type
(N
: Node_Id
);
153 -- Freeze an array type. Deals with building the initialization procedure,
154 -- creating the packed array type for a packed array and also with the
155 -- creation of the controlling procedures for the controlled case. The
156 -- argument N is the N_Freeze_Entity node for the type.
158 procedure Expand_Freeze_Class_Wide_Type
(N
: Node_Id
);
159 -- Freeze a class-wide type. Build routine Finalize_Address for the purpose
160 -- of finalizing controlled derivations from the class-wide's root type.
162 procedure Expand_Freeze_Enumeration_Type
(N
: Node_Id
);
163 -- Freeze enumeration type with non-standard representation. Builds the
164 -- array and function needed to convert between enumeration pos and
165 -- enumeration representation values. N is the N_Freeze_Entity node
168 procedure Expand_Freeze_Record_Type
(N
: Node_Id
);
169 -- Freeze record type. Builds all necessary discriminant checking
170 -- and other ancillary functions, and builds dispatch tables where
171 -- needed. The argument N is the N_Freeze_Entity node. This processing
172 -- applies only to E_Record_Type entities, not to class wide types,
173 -- record subtypes, or private types.
175 procedure Expand_Tagged_Root
(T
: Entity_Id
);
176 -- Add a field _Tag at the beginning of the record. This field carries
177 -- the value of the access to the Dispatch table. This procedure is only
178 -- called on root type, the _Tag field being inherited by the descendants.
180 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
);
181 -- Treat user-defined stream operations as renaming_as_body if the
182 -- subprogram they rename is not frozen when the type is frozen.
184 procedure Initialization_Warning
(E
: Entity_Id
);
185 -- If static elaboration of the package is requested, indicate
186 -- when a type does meet the conditions for static initialization. If
187 -- E is a type, it has components that have no static initialization.
188 -- if E is an entity, its initial expression is not compile-time known.
190 function Init_Formals
(Typ
: Entity_Id
) return List_Id
;
191 -- This function builds the list of formals for an initialization routine.
192 -- The first formal is always _Init with the given type. For task value
193 -- record types and types containing tasks, three additional formals are
196 -- _Master : Master_Id
197 -- _Chain : in out Activation_Chain
198 -- _Task_Name : String
200 -- The caller must append additional entries for discriminants if required.
202 function Inline_Init_Proc
(Typ
: Entity_Id
) return Boolean;
203 -- Returns true if the initialization procedure of Typ should be inlined
205 function In_Runtime
(E
: Entity_Id
) return Boolean;
206 -- Check if E is defined in the RTL (in a child of Ada or System). Used
207 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
209 function Is_User_Defined_Equality
(Prim
: Node_Id
) return Boolean;
210 -- Returns true if Prim is a user defined equality function
212 function Make_Eq_Body
214 Eq_Name
: Name_Id
) return Node_Id
;
215 -- Build the body of a primitive equality operation for a tagged record
216 -- type, or in Ada 2012 for any record type that has components with a
217 -- user-defined equality. Factored out of Predefined_Primitive_Bodies.
219 function Make_Eq_Case
222 Discrs
: Elist_Id
:= New_Elmt_List
) return List_Id
;
223 -- Building block for variant record equality. Defined to share the code
224 -- between the tagged and untagged case. Given a Component_List node CL,
225 -- it generates an 'if' followed by a 'case' statement that compares all
226 -- components of local temporaries named X and Y (that are declared as
227 -- formals at some upper level). E provides the Sloc to be used for the
230 -- IF E is an unchecked_union, Discrs is the list of formals created for
231 -- the inferred discriminants of one operand. These formals are used in
232 -- the generated case statements for each variant of the unchecked union.
236 L
: List_Id
) return Node_Id
;
237 -- Building block for variant record equality. Defined to share the code
238 -- between the tagged and untagged case. Given the list of components
239 -- (or discriminants) L, it generates a return statement that compares all
240 -- components of local temporaries named X and Y (that are declared as
241 -- formals at some upper level). E provides the Sloc to be used for the
244 function Make_Neq_Body
(Tag_Typ
: Entity_Id
) return Node_Id
;
245 -- Search for a renaming of the inequality dispatching primitive of
246 -- this tagged type. If found then build and return the corresponding
247 -- rename-as-body inequality subprogram; otherwise return Empty.
249 procedure Make_Predefined_Primitive_Specs
250 (Tag_Typ
: Entity_Id
;
251 Predef_List
: out List_Id
;
252 Renamed_Eq
: out Entity_Id
);
253 -- Create a list with the specs of the predefined primitive operations.
254 -- For tagged types that are interfaces all these primitives are defined
257 -- The following entries are present for all tagged types, and provide
258 -- the results of the corresponding attribute applied to the object.
259 -- Dispatching is required in general, since the result of the attribute
260 -- will vary with the actual object subtype.
262 -- _size provides result of 'Size attribute
263 -- typSR provides result of 'Read attribute
264 -- typSW provides result of 'Write attribute
265 -- typSI provides result of 'Input attribute
266 -- typSO provides result of 'Output attribute
268 -- The following entries are additionally present for non-limited tagged
269 -- types, and implement additional dispatching operations for predefined
272 -- _equality implements "=" operator
273 -- _assign implements assignment operation
274 -- typDF implements deep finalization
275 -- typDA implements deep adjust
277 -- The latter two are empty procedures unless the type contains some
278 -- controlled components that require finalization actions (the deep
279 -- in the name refers to the fact that the action applies to components).
281 -- The list is returned in Predef_List. The Parameter Renamed_Eq either
282 -- returns the value Empty, or else the defining unit name for the
283 -- predefined equality function in the case where the type has a primitive
284 -- operation that is a renaming of predefined equality (but only if there
285 -- is also an overriding user-defined equality function). The returned
286 -- Renamed_Eq will be passed to the corresponding parameter of
287 -- Predefined_Primitive_Bodies.
289 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean;
290 -- Returns True if there are representation clauses for type T that are not
291 -- inherited. If the result is false, the init_proc and the discriminant
292 -- checking functions of the parent can be reused by a derived type.
294 procedure Make_Controlling_Function_Wrappers
295 (Tag_Typ
: Entity_Id
;
296 Decl_List
: out List_Id
;
297 Body_List
: out List_Id
);
298 -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
299 -- associated with inherited functions with controlling results which
300 -- are not overridden. The body of each wrapper function consists solely
301 -- of a return statement whose expression is an extension aggregate
302 -- invoking the inherited subprogram's parent subprogram and extended
303 -- with a null association list.
305 function Make_Null_Procedure_Specs
(Tag_Typ
: Entity_Id
) return List_Id
;
306 -- Ada 2005 (AI-251): Makes specs for null procedures associated with any
307 -- null procedures inherited from an interface type that have not been
308 -- overridden. Only one null procedure will be created for a given set of
309 -- inherited null procedures with homographic profiles.
311 function Predef_Spec_Or_Body
316 Ret_Type
: Entity_Id
:= Empty
;
317 For_Body
: Boolean := False) return Node_Id
;
318 -- This function generates the appropriate expansion for a predefined
319 -- primitive operation specified by its name, parameter profile and
320 -- return type (Empty means this is a procedure). If For_Body is false,
321 -- then the returned node is a subprogram declaration. If For_Body is
322 -- true, then the returned node is a empty subprogram body containing
323 -- no declarations and no statements.
325 function Predef_Stream_Attr_Spec
328 Name
: TSS_Name_Type
;
329 For_Body
: Boolean := False) return Node_Id
;
330 -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
331 -- input and output attribute whose specs are constructed in Exp_Strm.
333 function Predef_Deep_Spec
336 Name
: TSS_Name_Type
;
337 For_Body
: Boolean := False) return Node_Id
;
338 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
339 -- and _deep_finalize
341 function Predefined_Primitive_Bodies
342 (Tag_Typ
: Entity_Id
;
343 Renamed_Eq
: Entity_Id
) return List_Id
;
344 -- Create the bodies of the predefined primitives that are described in
345 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
346 -- the defining unit name of the type's predefined equality as returned
347 -- by Make_Predefined_Primitive_Specs.
349 function Predefined_Primitive_Freeze
(Tag_Typ
: Entity_Id
) return List_Id
;
350 -- Freeze entities of all predefined primitive operations. This is needed
351 -- because the bodies of these operations do not normally do any freezing.
353 function Stream_Operation_OK
355 Operation
: TSS_Name_Type
) return Boolean;
356 -- Check whether the named stream operation must be emitted for a given
357 -- type. The rules for inheritance of stream attributes by type extensions
358 -- are enforced by this function. Furthermore, various restrictions prevent
359 -- the generation of these operations, as a useful optimization or for
360 -- certification purposes and to save unnecessary generated code.
362 --------------------------
363 -- Adjust_Discriminants --
364 --------------------------
366 -- This procedure attempts to define subtypes for discriminants that are
367 -- more restrictive than those declared. Such a replacement is possible if
368 -- we can demonstrate that values outside the restricted range would cause
369 -- constraint errors in any case. The advantage of restricting the
370 -- discriminant types in this way is that the maximum size of the variant
371 -- record can be calculated more conservatively.
373 -- An example of a situation in which we can perform this type of
374 -- restriction is the following:
376 -- subtype B is range 1 .. 10;
377 -- type Q is array (B range <>) of Integer;
379 -- type V (N : Natural) is record
383 -- In this situation, we can restrict the upper bound of N to 10, since
384 -- any larger value would cause a constraint error in any case.
386 -- There are many situations in which such restriction is possible, but
387 -- for now, we just look for cases like the above, where the component
388 -- in question is a one dimensional array whose upper bound is one of
389 -- the record discriminants. Also the component must not be part of
390 -- any variant part, since then the component does not always exist.
392 procedure Adjust_Discriminants
(Rtype
: Entity_Id
) is
393 Loc
: constant Source_Ptr
:= Sloc
(Rtype
);
410 Comp
:= First_Component
(Rtype
);
411 while Present
(Comp
) loop
413 -- If our parent is a variant, quit, we do not look at components
414 -- that are in variant parts, because they may not always exist.
416 P
:= Parent
(Comp
); -- component declaration
417 P
:= Parent
(P
); -- component list
419 exit when Nkind
(Parent
(P
)) = N_Variant
;
421 -- We are looking for a one dimensional array type
423 Ctyp
:= Etype
(Comp
);
425 if not Is_Array_Type
(Ctyp
) or else Number_Dimensions
(Ctyp
) > 1 then
429 -- The lower bound must be constant, and the upper bound is a
430 -- discriminant (which is a discriminant of the current record).
432 Ityp
:= Etype
(First_Index
(Ctyp
));
433 Lo
:= Type_Low_Bound
(Ityp
);
434 Hi
:= Type_High_Bound
(Ityp
);
436 if not Compile_Time_Known_Value
(Lo
)
437 or else Nkind
(Hi
) /= N_Identifier
438 or else No
(Entity
(Hi
))
439 or else Ekind
(Entity
(Hi
)) /= E_Discriminant
444 -- We have an array with appropriate bounds
446 Loval
:= Expr_Value
(Lo
);
447 Discr
:= Entity
(Hi
);
448 Dtyp
:= Etype
(Discr
);
450 -- See if the discriminant has a known upper bound
452 Dhi
:= Type_High_Bound
(Dtyp
);
454 if not Compile_Time_Known_Value
(Dhi
) then
458 Dhiv
:= Expr_Value
(Dhi
);
460 -- See if base type of component array has known upper bound
462 Ahi
:= Type_High_Bound
(Etype
(First_Index
(Base_Type
(Ctyp
))));
464 if not Compile_Time_Known_Value
(Ahi
) then
468 Ahiv
:= Expr_Value
(Ahi
);
470 -- The condition for doing the restriction is that the high bound
471 -- of the discriminant is greater than the low bound of the array,
472 -- and is also greater than the high bound of the base type index.
474 if Dhiv
> Loval
and then Dhiv
> Ahiv
then
476 -- We can reset the upper bound of the discriminant type to
477 -- whichever is larger, the low bound of the component, or
478 -- the high bound of the base type array index.
480 -- We build a subtype that is declared as
482 -- subtype Tnn is discr_type range discr_type'First .. max;
484 -- And insert this declaration into the tree. The type of the
485 -- discriminant is then reset to this more restricted subtype.
487 Tnn
:= Make_Temporary
(Loc
, 'T');
489 Insert_Action
(Declaration_Node
(Rtype
),
490 Make_Subtype_Declaration
(Loc
,
491 Defining_Identifier
=> Tnn
,
492 Subtype_Indication
=>
493 Make_Subtype_Indication
(Loc
,
494 Subtype_Mark
=> New_Occurrence_Of
(Dtyp
, Loc
),
496 Make_Range_Constraint
(Loc
,
500 Make_Attribute_Reference
(Loc
,
501 Attribute_Name
=> Name_First
,
502 Prefix
=> New_Occurrence_Of
(Dtyp
, Loc
)),
504 Make_Integer_Literal
(Loc
,
505 Intval
=> UI_Max
(Loval
, Ahiv
)))))));
507 Set_Etype
(Discr
, Tnn
);
511 Next_Component
(Comp
);
513 end Adjust_Discriminants
;
515 ---------------------------
516 -- Build_Array_Init_Proc --
517 ---------------------------
519 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
) is
520 Comp_Type
: constant Entity_Id
:= Component_Type
(A_Type
);
521 Body_Stmts
: List_Id
;
522 Has_Default_Init
: Boolean;
523 Index_List
: List_Id
;
527 function Init_Component
return List_Id
;
528 -- Create one statement to initialize one array component, designated
529 -- by a full set of indexes.
531 function Init_One_Dimension
(N
: Int
) return List_Id
;
532 -- Create loop to initialize one dimension of the array. The single
533 -- statement in the loop body initializes the inner dimensions if any,
534 -- or else the single component. Note that this procedure is called
535 -- recursively, with N being the dimension to be initialized. A call
536 -- with N greater than the number of dimensions simply generates the
537 -- component initialization, terminating the recursion.
543 function Init_Component
return List_Id
is
548 Make_Indexed_Component
(Loc
,
549 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
550 Expressions
=> Index_List
);
552 if Has_Default_Aspect
(A_Type
) then
553 Set_Assignment_OK
(Comp
);
555 Make_Assignment_Statement
(Loc
,
558 Convert_To
(Comp_Type
,
559 Default_Aspect_Component_Value
(First_Subtype
(A_Type
)))));
561 elsif Needs_Simple_Initialization
(Comp_Type
) then
562 Set_Assignment_OK
(Comp
);
564 Make_Assignment_Statement
(Loc
,
568 (Comp_Type
, Nod
, Component_Size
(A_Type
))));
571 Clean_Task_Names
(Comp_Type
, Proc_Id
);
573 Build_Initialization_Call
574 (Loc
, Comp
, Comp_Type
,
575 In_Init_Proc
=> True,
576 Enclos_Type
=> A_Type
);
580 ------------------------
581 -- Init_One_Dimension --
582 ------------------------
584 function Init_One_Dimension
(N
: Int
) return List_Id
is
588 -- If the component does not need initializing, then there is nothing
589 -- to do here, so we return a null body. This occurs when generating
590 -- the dummy Init_Proc needed for Initialize_Scalars processing.
592 if not Has_Non_Null_Base_Init_Proc
(Comp_Type
)
593 and then not Needs_Simple_Initialization
(Comp_Type
)
594 and then not Has_Task
(Comp_Type
)
595 and then not Has_Default_Aspect
(A_Type
)
597 return New_List
(Make_Null_Statement
(Loc
));
599 -- If all dimensions dealt with, we simply initialize the component
601 elsif N
> Number_Dimensions
(A_Type
) then
602 return Init_Component
;
604 -- Here we generate the required loop
608 Make_Defining_Identifier
(Loc
, New_External_Name
('J', N
));
610 Append
(New_Occurrence_Of
(Index
, Loc
), Index_List
);
613 Make_Implicit_Loop_Statement
(Nod
,
616 Make_Iteration_Scheme
(Loc
,
617 Loop_Parameter_Specification
=>
618 Make_Loop_Parameter_Specification
(Loc
,
619 Defining_Identifier
=> Index
,
620 Discrete_Subtype_Definition
=>
621 Make_Attribute_Reference
(Loc
,
623 Make_Identifier
(Loc
, Name_uInit
),
624 Attribute_Name
=> Name_Range
,
625 Expressions
=> New_List
(
626 Make_Integer_Literal
(Loc
, N
))))),
627 Statements
=> Init_One_Dimension
(N
+ 1)));
629 end Init_One_Dimension
;
631 -- Start of processing for Build_Array_Init_Proc
634 -- The init proc is created when analyzing the freeze node for the type,
635 -- but it properly belongs with the array type declaration. However, if
636 -- the freeze node is for a subtype of a type declared in another unit
637 -- it seems preferable to use the freeze node as the source location of
638 -- the init proc. In any case this is preferable for gcov usage, and
639 -- the Sloc is not otherwise used by the compiler.
641 if In_Open_Scopes
(Scope
(A_Type
)) then
642 Loc
:= Sloc
(A_Type
);
647 -- Nothing to generate in the following cases:
649 -- 1. Initialization is suppressed for the type
650 -- 2. An initialization already exists for the base type
652 if Initialization_Suppressed
(A_Type
)
653 or else Present
(Base_Init_Proc
(A_Type
))
658 Index_List
:= New_List
;
660 -- We need an initialization procedure if any of the following is true:
662 -- 1. The component type has an initialization procedure
663 -- 2. The component type needs simple initialization
664 -- 3. Tasks are present
665 -- 4. The type is marked as a public entity
666 -- 5. The array type has a Default_Component_Value aspect
668 -- The reason for the public entity test is to deal properly with the
669 -- Initialize_Scalars pragma. This pragma can be set in the client and
670 -- not in the declaring package, this means the client will make a call
671 -- to the initialization procedure (because one of conditions 1-3 must
672 -- apply in this case), and we must generate a procedure (even if it is
673 -- null) to satisfy the call in this case.
675 -- Exception: do not build an array init_proc for a type whose root
676 -- type is Standard.String or Standard.Wide_[Wide_]String, since there
677 -- is no place to put the code, and in any case we handle initialization
678 -- of such types (in the Initialize_Scalars case, that's the only time
679 -- the issue arises) in a special manner anyway which does not need an
682 Has_Default_Init
:= Has_Non_Null_Base_Init_Proc
(Comp_Type
)
683 or else Needs_Simple_Initialization
(Comp_Type
)
684 or else Has_Task
(Comp_Type
)
685 or else Has_Default_Aspect
(A_Type
);
688 or else (not Restriction_Active
(No_Initialize_Scalars
)
689 and then Is_Public
(A_Type
)
690 and then not Is_Standard_String_Type
(A_Type
))
693 Make_Defining_Identifier
(Loc
,
694 Chars
=> Make_Init_Proc_Name
(A_Type
));
696 -- If No_Default_Initialization restriction is active, then we don't
697 -- want to build an init_proc, but we need to mark that an init_proc
698 -- would be needed if this restriction was not active (so that we can
699 -- detect attempts to call it), so set a dummy init_proc in place.
700 -- This is only done though when actual default initialization is
701 -- needed (and not done when only Is_Public is True), since otherwise
702 -- objects such as arrays of scalars could be wrongly flagged as
703 -- violating the restriction.
705 if Restriction_Active
(No_Default_Initialization
) then
706 if Has_Default_Init
then
707 Set_Init_Proc
(A_Type
, Proc_Id
);
713 Body_Stmts
:= Init_One_Dimension
(1);
716 Make_Subprogram_Body
(Loc
,
718 Make_Procedure_Specification
(Loc
,
719 Defining_Unit_Name
=> Proc_Id
,
720 Parameter_Specifications
=> Init_Formals
(A_Type
)),
721 Declarations
=> New_List
,
722 Handled_Statement_Sequence
=>
723 Make_Handled_Sequence_Of_Statements
(Loc
,
724 Statements
=> Body_Stmts
)));
726 Set_Ekind
(Proc_Id
, E_Procedure
);
727 Set_Is_Public
(Proc_Id
, Is_Public
(A_Type
));
728 Set_Is_Internal
(Proc_Id
);
729 Set_Has_Completion
(Proc_Id
);
731 if not Debug_Generated_Code
then
732 Set_Debug_Info_Off
(Proc_Id
);
735 -- Set Inlined on Init_Proc if it is set on the Init_Proc of the
736 -- component type itself (see also Build_Record_Init_Proc).
738 Set_Is_Inlined
(Proc_Id
, Inline_Init_Proc
(Comp_Type
));
740 -- Associate Init_Proc with type, and determine if the procedure
741 -- is null (happens because of the Initialize_Scalars pragma case,
742 -- where we have to generate a null procedure in case it is called
743 -- by a client with Initialize_Scalars set). Such procedures have
744 -- to be generated, but do not have to be called, so we mark them
745 -- as null to suppress the call.
747 Set_Init_Proc
(A_Type
, Proc_Id
);
749 if List_Length
(Body_Stmts
) = 1
751 -- We must skip SCIL nodes because they may have been added to this
752 -- list by Insert_Actions.
754 and then Nkind
(First_Non_SCIL_Node
(Body_Stmts
)) = N_Null_Statement
756 Set_Is_Null_Init_Proc
(Proc_Id
);
759 -- Try to build a static aggregate to statically initialize
760 -- objects of the type. This can only be done for constrained
761 -- one-dimensional arrays with static bounds.
763 Set_Static_Initialization
765 Build_Equivalent_Array_Aggregate
(First_Subtype
(A_Type
)));
768 end Build_Array_Init_Proc
;
770 --------------------------------
771 -- Build_Discr_Checking_Funcs --
772 --------------------------------
774 procedure Build_Discr_Checking_Funcs
(N
: Node_Id
) is
777 Enclosing_Func_Id
: Entity_Id
;
782 function Build_Case_Statement
783 (Case_Id
: Entity_Id
;
784 Variant
: Node_Id
) return Node_Id
;
785 -- Build a case statement containing only two alternatives. The first
786 -- alternative corresponds exactly to the discrete choices given on the
787 -- variant with contains the components that we are generating the
788 -- checks for. If the discriminant is one of these return False. The
789 -- second alternative is an OTHERS choice that will return True
790 -- indicating the discriminant did not match.
792 function Build_Dcheck_Function
793 (Case_Id
: Entity_Id
;
794 Variant
: Node_Id
) return Entity_Id
;
795 -- Build the discriminant checking function for a given variant
797 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
);
798 -- Builds the discriminant checking function for each variant of the
799 -- given variant part of the record type.
801 --------------------------
802 -- Build_Case_Statement --
803 --------------------------
805 function Build_Case_Statement
806 (Case_Id
: Entity_Id
;
807 Variant
: Node_Id
) return Node_Id
809 Alt_List
: constant List_Id
:= New_List
;
810 Actuals_List
: List_Id
;
812 Case_Alt_Node
: Node_Id
;
814 Choice_List
: List_Id
;
816 Return_Node
: Node_Id
;
819 Case_Node
:= New_Node
(N_Case_Statement
, Loc
);
821 -- Replace the discriminant which controls the variant with the name
822 -- of the formal of the checking function.
824 Set_Expression
(Case_Node
, Make_Identifier
(Loc
, Chars
(Case_Id
)));
826 Choice
:= First
(Discrete_Choices
(Variant
));
828 if Nkind
(Choice
) = N_Others_Choice
then
829 Choice_List
:= New_Copy_List
(Others_Discrete_Choices
(Choice
));
831 Choice_List
:= New_Copy_List
(Discrete_Choices
(Variant
));
834 if not Is_Empty_List
(Choice_List
) then
835 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
836 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
838 -- In case this is a nested variant, we need to return the result
839 -- of the discriminant checking function for the immediately
840 -- enclosing variant.
842 if Present
(Enclosing_Func_Id
) then
843 Actuals_List
:= New_List
;
845 D
:= First_Discriminant
(Rec_Id
);
846 while Present
(D
) loop
847 Append
(Make_Identifier
(Loc
, Chars
(D
)), Actuals_List
);
848 Next_Discriminant
(D
);
852 Make_Simple_Return_Statement
(Loc
,
854 Make_Function_Call
(Loc
,
856 New_Occurrence_Of
(Enclosing_Func_Id
, Loc
),
857 Parameter_Associations
=>
862 Make_Simple_Return_Statement
(Loc
,
864 New_Occurrence_Of
(Standard_False
, Loc
));
867 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
868 Append
(Case_Alt_Node
, Alt_List
);
871 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
872 Choice_List
:= New_List
(New_Node
(N_Others_Choice
, Loc
));
873 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
876 Make_Simple_Return_Statement
(Loc
,
878 New_Occurrence_Of
(Standard_True
, Loc
));
880 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
881 Append
(Case_Alt_Node
, Alt_List
);
883 Set_Alternatives
(Case_Node
, Alt_List
);
885 end Build_Case_Statement
;
887 ---------------------------
888 -- Build_Dcheck_Function --
889 ---------------------------
891 function Build_Dcheck_Function
892 (Case_Id
: Entity_Id
;
893 Variant
: Node_Id
) return Entity_Id
897 Parameter_List
: List_Id
;
901 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
902 Sequence
:= Sequence
+ 1;
905 Make_Defining_Identifier
(Loc
,
906 Chars
=> New_External_Name
(Chars
(Rec_Id
), 'D', Sequence
));
907 Set_Is_Discriminant_Check_Function
(Func_Id
);
909 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
910 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
912 Parameter_List
:= Build_Discriminant_Formals
(Rec_Id
, False);
914 Set_Parameter_Specifications
(Spec_Node
, Parameter_List
);
915 Set_Result_Definition
(Spec_Node
,
916 New_Occurrence_Of
(Standard_Boolean
, Loc
));
917 Set_Specification
(Body_Node
, Spec_Node
);
918 Set_Declarations
(Body_Node
, New_List
);
920 Set_Handled_Statement_Sequence
(Body_Node
,
921 Make_Handled_Sequence_Of_Statements
(Loc
,
922 Statements
=> New_List
(
923 Build_Case_Statement
(Case_Id
, Variant
))));
925 Set_Ekind
(Func_Id
, E_Function
);
926 Set_Mechanism
(Func_Id
, Default_Mechanism
);
927 Set_Is_Inlined
(Func_Id
, True);
928 Set_Is_Pure
(Func_Id
, True);
929 Set_Is_Public
(Func_Id
, Is_Public
(Rec_Id
));
930 Set_Is_Internal
(Func_Id
, True);
932 if not Debug_Generated_Code
then
933 Set_Debug_Info_Off
(Func_Id
);
938 Append_Freeze_Action
(Rec_Id
, Body_Node
);
939 Set_Dcheck_Function
(Variant
, Func_Id
);
941 end Build_Dcheck_Function
;
943 ----------------------------
944 -- Build_Dcheck_Functions --
945 ----------------------------
947 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
) is
948 Component_List_Node
: Node_Id
;
950 Discr_Name
: Entity_Id
;
953 Saved_Enclosing_Func_Id
: Entity_Id
;
956 -- Build the discriminant-checking function for each variant, and
957 -- label all components of that variant with the function's name.
958 -- We only Generate a discriminant-checking function when the
959 -- variant is not empty, to prevent the creation of dead code.
960 -- The exception to that is when Frontend_Layout_On_Target is set,
961 -- because the variant record size function generated in package
962 -- Layout needs to generate calls to all discriminant-checking
963 -- functions, including those for empty variants.
965 Discr_Name
:= Entity
(Name
(Variant_Part_Node
));
966 Variant
:= First_Non_Pragma
(Variants
(Variant_Part_Node
));
968 while Present
(Variant
) loop
969 Component_List_Node
:= Component_List
(Variant
);
971 if not Null_Present
(Component_List_Node
)
972 or else Frontend_Layout_On_Target
974 Func_Id
:= Build_Dcheck_Function
(Discr_Name
, Variant
);
977 First_Non_Pragma
(Component_Items
(Component_List_Node
));
978 while Present
(Decl
) loop
979 Set_Discriminant_Checking_Func
980 (Defining_Identifier
(Decl
), Func_Id
);
981 Next_Non_Pragma
(Decl
);
984 if Present
(Variant_Part
(Component_List_Node
)) then
985 Saved_Enclosing_Func_Id
:= Enclosing_Func_Id
;
986 Enclosing_Func_Id
:= Func_Id
;
987 Build_Dcheck_Functions
(Variant_Part
(Component_List_Node
));
988 Enclosing_Func_Id
:= Saved_Enclosing_Func_Id
;
992 Next_Non_Pragma
(Variant
);
994 end Build_Dcheck_Functions
;
996 -- Start of processing for Build_Discr_Checking_Funcs
999 -- Only build if not done already
1001 if not Discr_Check_Funcs_Built
(N
) then
1002 Type_Def
:= Type_Definition
(N
);
1004 if Nkind
(Type_Def
) = N_Record_Definition
then
1005 if No
(Component_List
(Type_Def
)) then -- null record.
1008 V
:= Variant_Part
(Component_List
(Type_Def
));
1011 else pragma Assert
(Nkind
(Type_Def
) = N_Derived_Type_Definition
);
1012 if No
(Component_List
(Record_Extension_Part
(Type_Def
))) then
1016 (Component_List
(Record_Extension_Part
(Type_Def
)));
1020 Rec_Id
:= Defining_Identifier
(N
);
1022 if Present
(V
) and then not Is_Unchecked_Union
(Rec_Id
) then
1024 Enclosing_Func_Id
:= Empty
;
1025 Build_Dcheck_Functions
(V
);
1028 Set_Discr_Check_Funcs_Built
(N
);
1030 end Build_Discr_Checking_Funcs
;
1032 --------------------------------
1033 -- Build_Discriminant_Formals --
1034 --------------------------------
1036 function Build_Discriminant_Formals
1037 (Rec_Id
: Entity_Id
;
1038 Use_Dl
: Boolean) return List_Id
1040 Loc
: Source_Ptr
:= Sloc
(Rec_Id
);
1041 Parameter_List
: constant List_Id
:= New_List
;
1044 Formal_Type
: Entity_Id
;
1045 Param_Spec_Node
: Node_Id
;
1048 if Has_Discriminants
(Rec_Id
) then
1049 D
:= First_Discriminant
(Rec_Id
);
1050 while Present
(D
) loop
1054 Formal
:= Discriminal
(D
);
1055 Formal_Type
:= Etype
(Formal
);
1057 Formal
:= Make_Defining_Identifier
(Loc
, Chars
(D
));
1058 Formal_Type
:= Etype
(D
);
1062 Make_Parameter_Specification
(Loc
,
1063 Defining_Identifier
=> Formal
,
1065 New_Occurrence_Of
(Formal_Type
, Loc
));
1066 Append
(Param_Spec_Node
, Parameter_List
);
1067 Next_Discriminant
(D
);
1071 return Parameter_List
;
1072 end Build_Discriminant_Formals
;
1074 --------------------------------------
1075 -- Build_Equivalent_Array_Aggregate --
1076 --------------------------------------
1078 function Build_Equivalent_Array_Aggregate
(T
: Entity_Id
) return Node_Id
is
1079 Loc
: constant Source_Ptr
:= Sloc
(T
);
1080 Comp_Type
: constant Entity_Id
:= Component_Type
(T
);
1081 Index_Type
: constant Entity_Id
:= Etype
(First_Index
(T
));
1082 Proc
: constant Entity_Id
:= Base_Init_Proc
(T
);
1088 if not Is_Constrained
(T
)
1089 or else Number_Dimensions
(T
) > 1
1092 Initialization_Warning
(T
);
1096 Lo
:= Type_Low_Bound
(Index_Type
);
1097 Hi
:= Type_High_Bound
(Index_Type
);
1099 if not Compile_Time_Known_Value
(Lo
)
1100 or else not Compile_Time_Known_Value
(Hi
)
1102 Initialization_Warning
(T
);
1106 if Is_Record_Type
(Comp_Type
)
1107 and then Present
(Base_Init_Proc
(Comp_Type
))
1109 Expr
:= Static_Initialization
(Base_Init_Proc
(Comp_Type
));
1112 Initialization_Warning
(T
);
1117 Initialization_Warning
(T
);
1121 Aggr
:= Make_Aggregate
(Loc
, No_List
, New_List
);
1122 Set_Etype
(Aggr
, T
);
1123 Set_Aggregate_Bounds
(Aggr
,
1125 Low_Bound
=> New_Copy
(Lo
),
1126 High_Bound
=> New_Copy
(Hi
)));
1127 Set_Parent
(Aggr
, Parent
(Proc
));
1129 Append_To
(Component_Associations
(Aggr
),
1130 Make_Component_Association
(Loc
,
1134 Low_Bound
=> New_Copy
(Lo
),
1135 High_Bound
=> New_Copy
(Hi
))),
1136 Expression
=> Expr
));
1138 if Static_Array_Aggregate
(Aggr
) then
1141 Initialization_Warning
(T
);
1144 end Build_Equivalent_Array_Aggregate
;
1146 ---------------------------------------
1147 -- Build_Equivalent_Record_Aggregate --
1148 ---------------------------------------
1150 function Build_Equivalent_Record_Aggregate
(T
: Entity_Id
) return Node_Id
is
1153 Comp_Type
: Entity_Id
;
1155 -- Start of processing for Build_Equivalent_Record_Aggregate
1158 if not Is_Record_Type
(T
)
1159 or else Has_Discriminants
(T
)
1160 or else Is_Limited_Type
(T
)
1161 or else Has_Non_Standard_Rep
(T
)
1163 Initialization_Warning
(T
);
1167 Comp
:= First_Component
(T
);
1169 -- A null record needs no warning
1175 while Present
(Comp
) loop
1177 -- Array components are acceptable if initialized by a positional
1178 -- aggregate with static components.
1180 if Is_Array_Type
(Etype
(Comp
)) then
1181 Comp_Type
:= Component_Type
(Etype
(Comp
));
1183 if Nkind
(Parent
(Comp
)) /= N_Component_Declaration
1184 or else No
(Expression
(Parent
(Comp
)))
1185 or else Nkind
(Expression
(Parent
(Comp
))) /= N_Aggregate
1187 Initialization_Warning
(T
);
1190 elsif Is_Scalar_Type
(Component_Type
(Etype
(Comp
)))
1192 (not Compile_Time_Known_Value
(Type_Low_Bound
(Comp_Type
))
1194 not Compile_Time_Known_Value
(Type_High_Bound
(Comp_Type
)))
1196 Initialization_Warning
(T
);
1200 not Static_Array_Aggregate
(Expression
(Parent
(Comp
)))
1202 Initialization_Warning
(T
);
1206 elsif Is_Scalar_Type
(Etype
(Comp
)) then
1207 Comp_Type
:= Etype
(Comp
);
1209 if Nkind
(Parent
(Comp
)) /= N_Component_Declaration
1210 or else No
(Expression
(Parent
(Comp
)))
1211 or else not Compile_Time_Known_Value
(Expression
(Parent
(Comp
)))
1212 or else not Compile_Time_Known_Value
(Type_Low_Bound
(Comp_Type
))
1214 Compile_Time_Known_Value
(Type_High_Bound
(Comp_Type
))
1216 Initialization_Warning
(T
);
1220 -- For now, other types are excluded
1223 Initialization_Warning
(T
);
1227 Next_Component
(Comp
);
1230 -- All components have static initialization. Build positional aggregate
1231 -- from the given expressions or defaults.
1233 Agg
:= Make_Aggregate
(Sloc
(T
), New_List
, New_List
);
1234 Set_Parent
(Agg
, Parent
(T
));
1236 Comp
:= First_Component
(T
);
1237 while Present
(Comp
) loop
1239 (New_Copy_Tree
(Expression
(Parent
(Comp
))), Expressions
(Agg
));
1240 Next_Component
(Comp
);
1243 Analyze_And_Resolve
(Agg
, T
);
1245 end Build_Equivalent_Record_Aggregate
;
1247 -------------------------------
1248 -- Build_Initialization_Call --
1249 -------------------------------
1251 -- References to a discriminant inside the record type declaration can
1252 -- appear either in the subtype_indication to constrain a record or an
1253 -- array, or as part of a larger expression given for the initial value
1254 -- of a component. In both of these cases N appears in the record
1255 -- initialization procedure and needs to be replaced by the formal
1256 -- parameter of the initialization procedure which corresponds to that
1259 -- In the example below, references to discriminants D1 and D2 in proc_1
1260 -- are replaced by references to formals with the same name
1263 -- A similar replacement is done for calls to any record initialization
1264 -- procedure for any components that are themselves of a record type.
1266 -- type R (D1, D2 : Integer) is record
1267 -- X : Integer := F * D1;
1268 -- Y : Integer := F * D2;
1271 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1275 -- Out_2.X := F * D1;
1276 -- Out_2.Y := F * D2;
1279 function Build_Initialization_Call
1283 In_Init_Proc
: Boolean := False;
1284 Enclos_Type
: Entity_Id
:= Empty
;
1285 Discr_Map
: Elist_Id
:= New_Elmt_List
;
1286 With_Default_Init
: Boolean := False;
1287 Constructor_Ref
: Node_Id
:= Empty
) return List_Id
1289 Res
: constant List_Id
:= New_List
;
1291 Full_Type
: Entity_Id
;
1293 procedure Check_Predicated_Discriminant
1296 -- Discriminants whose subtypes have predicates are checked in two
1298 -- a) When an object is default-initialized and assertions are enabled
1299 -- we check that the value of the discriminant obeys the predicate.
1301 -- b) In all cases, if the discriminant controls a variant and the
1302 -- variant has no others_choice, Constraint_Error must be raised if
1303 -- the predicate is violated, because there is no variant covered
1304 -- by the illegal discriminant value.
1306 -----------------------------------
1307 -- Check_Predicated_Discriminant --
1308 -----------------------------------
1310 procedure Check_Predicated_Discriminant
1314 Typ
: constant Entity_Id
:= Etype
(Discr
);
1316 procedure Check_Missing_Others
(V
: Node_Id
);
1319 --------------------------
1320 -- Check_Missing_Others --
1321 --------------------------
1323 procedure Check_Missing_Others
(V
: Node_Id
) is
1329 Last_Var
:= Last_Non_Pragma
(Variants
(V
));
1330 Choice
:= First
(Discrete_Choices
(Last_Var
));
1332 -- An others_choice is added during expansion for gcc use, but
1333 -- does not cover the illegality.
1335 if Entity
(Name
(V
)) = Discr
then
1337 and then (Nkind
(Choice
) /= N_Others_Choice
1338 or else not Comes_From_Source
(Choice
))
1340 Check_Expression_Against_Static_Predicate
(Val
, Typ
);
1342 if not Is_Static_Expression
(Val
) then
1344 Make_Raise_Constraint_Error
(Loc
,
1347 Right_Opnd
=> Make_Predicate_Call
(Typ
, Val
)),
1348 Reason
=> CE_Invalid_Data
));
1353 -- Check whether some nested variant is ruled by the predicated
1356 Alt
:= First
(Variants
(V
));
1357 while Present
(Alt
) loop
1358 if Nkind
(Alt
) = N_Variant
1359 and then Present
(Variant_Part
(Component_List
(Alt
)))
1361 Check_Missing_Others
1362 (Variant_Part
(Component_List
(Alt
)));
1367 end Check_Missing_Others
;
1373 -- Start of processing for Check_Predicated_Discriminant
1376 if Ekind
(Base_Type
(Full_Type
)) = E_Record_Type
then
1377 Def
:= Type_Definition
(Parent
(Base_Type
(Full_Type
)));
1382 if Policy_In_Effect
(Name_Assert
) = Name_Check
1383 and then not Predicates_Ignored
(Etype
(Discr
))
1385 Prepend_To
(Res
, Make_Predicate_Check
(Typ
, Val
));
1388 -- If discriminant controls a variant, verify that predicate is
1389 -- obeyed or else an Others_Choice is present.
1391 if Nkind
(Def
) = N_Record_Definition
1392 and then Present
(Variant_Part
(Component_List
(Def
)))
1393 and then Policy_In_Effect
(Name_Assert
) = Name_Ignore
1395 Check_Missing_Others
(Variant_Part
(Component_List
(Def
)));
1397 end Check_Predicated_Discriminant
;
1406 First_Arg
: Node_Id
;
1407 Full_Init_Type
: Entity_Id
;
1408 Init_Call
: Node_Id
;
1409 Init_Type
: Entity_Id
;
1412 -- Start of processing for Build_Initialization_Call
1415 pragma Assert
(Constructor_Ref
= Empty
1416 or else Is_CPP_Constructor_Call
(Constructor_Ref
));
1418 if No
(Constructor_Ref
) then
1419 Proc
:= Base_Init_Proc
(Typ
);
1421 Proc
:= Base_Init_Proc
(Typ
, Entity
(Name
(Constructor_Ref
)));
1424 pragma Assert
(Present
(Proc
));
1425 Init_Type
:= Etype
(First_Formal
(Proc
));
1426 Full_Init_Type
:= Underlying_Type
(Init_Type
);
1428 -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
1429 -- is active (in which case we make the call anyway, since in the
1430 -- actual compiled client it may be non null).
1432 if Is_Null_Init_Proc
(Proc
) and then not Init_Or_Norm_Scalars
then
1436 -- Use the [underlying] full view when dealing with a private type. This
1437 -- may require several steps depending on derivations.
1441 if Is_Private_Type
(Full_Type
) then
1442 if Present
(Full_View
(Full_Type
)) then
1443 Full_Type
:= Full_View
(Full_Type
);
1445 elsif Present
(Underlying_Full_View
(Full_Type
)) then
1446 Full_Type
:= Underlying_Full_View
(Full_Type
);
1448 -- When a private type acts as a generic actual and lacks a full
1449 -- view, use the base type.
1451 elsif Is_Generic_Actual_Type
(Full_Type
) then
1452 Full_Type
:= Base_Type
(Full_Type
);
1454 -- The loop has recovered the [underlying] full view, stop the
1461 -- The type is not private, nothing to do
1468 -- If Typ is derived, the procedure is the initialization procedure for
1469 -- the root type. Wrap the argument in an conversion to make it type
1470 -- honest. Actually it isn't quite type honest, because there can be
1471 -- conflicts of views in the private type case. That is why we set
1472 -- Conversion_OK in the conversion node.
1474 if (Is_Record_Type
(Typ
)
1475 or else Is_Array_Type
(Typ
)
1476 or else Is_Private_Type
(Typ
))
1477 and then Init_Type
/= Base_Type
(Typ
)
1479 First_Arg
:= OK_Convert_To
(Etype
(Init_Type
), Id_Ref
);
1480 Set_Etype
(First_Arg
, Init_Type
);
1483 First_Arg
:= Id_Ref
;
1486 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Typ
));
1488 -- In the tasks case, add _Master as the value of the _Master parameter
1489 -- and _Chain as the value of the _Chain parameter. At the outer level,
1490 -- these will be variables holding the corresponding values obtained
1491 -- from GNARL. At inner levels, they will be the parameters passed down
1492 -- through the outer routines.
1494 if Has_Task
(Full_Type
) then
1495 if Restriction_Active
(No_Task_Hierarchy
) then
1497 New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
));
1499 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
1502 -- Add _Chain (not done for sequential elaboration policy, see
1503 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
1505 if Partition_Elaboration_Policy
/= 'S' then
1506 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
1509 -- Ada 2005 (AI-287): In case of default initialized components
1510 -- with tasks, we generate a null string actual parameter.
1511 -- This is just a workaround that must be improved later???
1513 if With_Default_Init
then
1515 Make_String_Literal
(Loc
,
1520 Build_Task_Image_Decls
(Loc
, Id_Ref
, Enclos_Type
, In_Init_Proc
);
1521 Decl
:= Last
(Decls
);
1524 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
));
1525 Append_List
(Decls
, Res
);
1533 -- Add discriminant values if discriminants are present
1535 if Has_Discriminants
(Full_Init_Type
) then
1536 Discr
:= First_Discriminant
(Full_Init_Type
);
1537 while Present
(Discr
) loop
1539 -- If this is a discriminated concurrent type, the init_proc
1540 -- for the corresponding record is being called. Use that type
1541 -- directly to find the discriminant value, to handle properly
1542 -- intervening renamed discriminants.
1545 T
: Entity_Id
:= Full_Type
;
1548 if Is_Protected_Type
(T
) then
1549 T
:= Corresponding_Record_Type
(T
);
1553 Get_Discriminant_Value
(
1556 Discriminant_Constraint
(Full_Type
));
1559 -- If the target has access discriminants, and is constrained by
1560 -- an access to the enclosing construct, i.e. a current instance,
1561 -- replace the reference to the type by a reference to the object.
1563 if Nkind
(Arg
) = N_Attribute_Reference
1564 and then Is_Access_Type
(Etype
(Arg
))
1565 and then Is_Entity_Name
(Prefix
(Arg
))
1566 and then Is_Type
(Entity
(Prefix
(Arg
)))
1569 Make_Attribute_Reference
(Loc
,
1570 Prefix
=> New_Copy
(Prefix
(Id_Ref
)),
1571 Attribute_Name
=> Name_Unrestricted_Access
);
1573 elsif In_Init_Proc
then
1575 -- Replace any possible references to the discriminant in the
1576 -- call to the record initialization procedure with references
1577 -- to the appropriate formal parameter.
1579 if Nkind
(Arg
) = N_Identifier
1580 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1582 Arg
:= New_Occurrence_Of
(Discriminal
(Entity
(Arg
)), Loc
);
1584 -- Otherwise make a copy of the default expression. Note that
1585 -- we use the current Sloc for this, because we do not want the
1586 -- call to appear to be at the declaration point. Within the
1587 -- expression, replace discriminants with their discriminals.
1591 New_Copy_Tree
(Arg
, Map
=> Discr_Map
, New_Sloc
=> Loc
);
1595 if Is_Constrained
(Full_Type
) then
1596 Arg
:= Duplicate_Subexpr_No_Checks
(Arg
);
1598 -- The constraints come from the discriminant default exps,
1599 -- they must be reevaluated, so we use New_Copy_Tree but we
1600 -- ensure the proper Sloc (for any embedded calls).
1601 -- In addition, if a predicate check is needed on the value
1602 -- of the discriminant, insert it ahead of the call.
1604 Arg
:= New_Copy_Tree
(Arg
, New_Sloc
=> Loc
);
1607 if Has_Predicates
(Etype
(Discr
)) then
1608 Check_Predicated_Discriminant
(Arg
, Discr
);
1612 -- Ada 2005 (AI-287): In case of default initialized components,
1613 -- if the component is constrained with a discriminant of the
1614 -- enclosing type, we need to generate the corresponding selected
1615 -- component node to access the discriminant value. In other cases
1616 -- this is not required, either because we are inside the init
1617 -- proc and we use the corresponding formal, or else because the
1618 -- component is constrained by an expression.
1620 if With_Default_Init
1621 and then Nkind
(Id_Ref
) = N_Selected_Component
1622 and then Nkind
(Arg
) = N_Identifier
1623 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1626 Make_Selected_Component
(Loc
,
1627 Prefix
=> New_Copy_Tree
(Prefix
(Id_Ref
)),
1628 Selector_Name
=> Arg
));
1630 Append_To
(Args
, Arg
);
1633 Next_Discriminant
(Discr
);
1637 -- If this is a call to initialize the parent component of a derived
1638 -- tagged type, indicate that the tag should not be set in the parent.
1640 if Is_Tagged_Type
(Full_Init_Type
)
1641 and then not Is_CPP_Class
(Full_Init_Type
)
1642 and then Nkind
(Id_Ref
) = N_Selected_Component
1643 and then Chars
(Selector_Name
(Id_Ref
)) = Name_uParent
1645 Append_To
(Args
, New_Occurrence_Of
(Standard_False
, Loc
));
1647 elsif Present
(Constructor_Ref
) then
1648 Append_List_To
(Args
,
1649 New_Copy_List
(Parameter_Associations
(Constructor_Ref
)));
1653 Make_Procedure_Call_Statement
(Loc
,
1654 Name
=> New_Occurrence_Of
(Proc
, Loc
),
1655 Parameter_Associations
=> Args
));
1657 if Needs_Finalization
(Typ
)
1658 and then Nkind
(Id_Ref
) = N_Selected_Component
1660 if Chars
(Selector_Name
(Id_Ref
)) /= Name_uParent
then
1663 (Obj_Ref
=> New_Copy_Tree
(First_Arg
),
1666 -- Guard against a missing [Deep_]Initialize when the type was not
1669 if Present
(Init_Call
) then
1670 Append_To
(Res
, Init_Call
);
1678 when RE_Not_Available
=>
1680 end Build_Initialization_Call
;
1682 ----------------------------
1683 -- Build_Record_Init_Proc --
1684 ----------------------------
1686 procedure Build_Record_Init_Proc
(N
: Node_Id
; Rec_Ent
: Entity_Id
) is
1687 Decls
: constant List_Id
:= New_List
;
1688 Discr_Map
: constant Elist_Id
:= New_Elmt_List
;
1689 Loc
: constant Source_Ptr
:= Sloc
(Rec_Ent
);
1691 Proc_Id
: Entity_Id
;
1692 Rec_Type
: Entity_Id
;
1693 Set_Tag
: Entity_Id
:= Empty
;
1695 function Build_Assignment
(Id
: Entity_Id
; N
: Node_Id
) return List_Id
;
1696 -- Build an assignment statement which assigns the default expression
1697 -- to its corresponding record component if defined. The left hand side
1698 -- of the assignment is marked Assignment_OK so that initialization of
1699 -- limited private records works correctly. This routine may also build
1700 -- an adjustment call if the component is controlled.
1702 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
);
1703 -- If the record has discriminants, add assignment statements to
1704 -- Statement_List to initialize the discriminant values from the
1705 -- arguments of the initialization procedure.
1707 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
;
1708 -- Build a list representing a sequence of statements which initialize
1709 -- components of the given component list. This may involve building
1710 -- case statements for the variant parts. Append any locally declared
1711 -- objects on list Decls.
1713 function Build_Init_Call_Thru
(Parameters
: List_Id
) return List_Id
;
1714 -- Given an untagged type-derivation that declares discriminants, e.g.
1716 -- type R (R1, R2 : Integer) is record ... end record;
1717 -- type D (D1 : Integer) is new R (1, D1);
1719 -- we make the _init_proc of D be
1721 -- procedure _init_proc (X : D; D1 : Integer) is
1723 -- _init_proc (R (X), 1, D1);
1726 -- This function builds the call statement in this _init_proc.
1728 procedure Build_CPP_Init_Procedure
;
1729 -- Build the tree corresponding to the procedure specification and body
1730 -- of the IC procedure that initializes the C++ part of the dispatch
1731 -- table of an Ada tagged type that is a derivation of a CPP type.
1732 -- Install it as the CPP_Init TSS.
1734 procedure Build_Init_Procedure
;
1735 -- Build the tree corresponding to the procedure specification and body
1736 -- of the initialization procedure and install it as the _init TSS.
1738 procedure Build_Offset_To_Top_Functions
;
1739 -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
1740 -- and body of Offset_To_Top, a function used in conjuction with types
1741 -- having secondary dispatch tables.
1743 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
);
1744 -- Add range checks to components of discriminated records. S is a
1745 -- subtype indication of a record component. Check_List is a list
1746 -- to which the check actions are appended.
1748 function Component_Needs_Simple_Initialization
1749 (T
: Entity_Id
) return Boolean;
1750 -- Determine if a component needs simple initialization, given its type
1751 -- T. This routine is the same as Needs_Simple_Initialization except for
1752 -- components of type Tag and Interface_Tag. These two access types do
1753 -- not require initialization since they are explicitly initialized by
1756 function Parent_Subtype_Renaming_Discrims
return Boolean;
1757 -- Returns True for base types N that rename discriminants, else False
1759 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean;
1760 -- Determine whether a record initialization procedure needs to be
1761 -- generated for the given record type.
1763 ----------------------
1764 -- Build_Assignment --
1765 ----------------------
1767 function Build_Assignment
(Id
: Entity_Id
; N
: Node_Id
) return List_Id
is
1768 N_Loc
: constant Source_Ptr
:= Sloc
(N
);
1769 Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Id
));
1773 Kind
: Node_Kind
:= Nkind
(N
);
1779 Make_Selected_Component
(N_Loc
,
1780 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1781 Selector_Name
=> New_Occurrence_Of
(Id
, N_Loc
));
1782 Set_Assignment_OK
(Lhs
);
1784 -- Case of an access attribute applied to the current instance.
1785 -- Replace the reference to the type by a reference to the actual
1786 -- object. (Note that this handles the case of the top level of
1787 -- the expression being given by such an attribute, but does not
1788 -- cover uses nested within an initial value expression. Nested
1789 -- uses are unlikely to occur in practice, but are theoretically
1790 -- possible.) It is not clear how to handle them without fully
1791 -- traversing the expression. ???
1793 if Kind
= N_Attribute_Reference
1794 and then Nam_In
(Attribute_Name
(N
), Name_Unchecked_Access
,
1795 Name_Unrestricted_Access
)
1796 and then Is_Entity_Name
(Prefix
(N
))
1797 and then Is_Type
(Entity
(Prefix
(N
)))
1798 and then Entity
(Prefix
(N
)) = Rec_Type
1801 Make_Attribute_Reference
(N_Loc
,
1803 Make_Identifier
(N_Loc
, Name_uInit
),
1804 Attribute_Name
=> Name_Unrestricted_Access
);
1807 -- Take a copy of Exp to ensure that later copies of this component
1808 -- declaration in derived types see the original tree, not a node
1809 -- rewritten during expansion of the init_proc. If the copy contains
1810 -- itypes, the scope of the new itypes is the init_proc being built.
1812 Exp
:= New_Copy_Tree
(Exp
, New_Scope
=> Proc_Id
);
1815 Make_Assignment_Statement
(Loc
,
1817 Expression
=> Exp
));
1819 Set_No_Ctrl_Actions
(First
(Res
));
1821 -- Adjust the tag if tagged (because of possible view conversions).
1822 -- Suppress the tag adjustment when not Tagged_Type_Expansion because
1823 -- tags are represented implicitly in objects.
1825 if Is_Tagged_Type
(Typ
) and then Tagged_Type_Expansion
then
1827 Make_Assignment_Statement
(N_Loc
,
1829 Make_Selected_Component
(N_Loc
,
1831 New_Copy_Tree
(Lhs
, New_Scope
=> Proc_Id
),
1833 New_Occurrence_Of
(First_Tag_Component
(Typ
), N_Loc
)),
1836 Unchecked_Convert_To
(RTE
(RE_Tag
),
1840 (Access_Disp_Table
(Underlying_Type
(Typ
)))),
1844 -- Adjust the component if controlled except if it is an aggregate
1845 -- that will be expanded inline.
1847 if Kind
= N_Qualified_Expression
then
1848 Kind
:= Nkind
(Expression
(N
));
1851 if Needs_Finalization
(Typ
)
1852 and then not (Nkind_In
(Kind
, N_Aggregate
, N_Extension_Aggregate
))
1853 and then not Is_Limited_View
(Typ
)
1857 (Obj_Ref
=> New_Copy_Tree
(Lhs
),
1860 -- Guard against a missing [Deep_]Adjust when the component type
1861 -- was not properly frozen.
1863 if Present
(Adj_Call
) then
1864 Append_To
(Res
, Adj_Call
);
1868 -- If a component type has a predicate, add check to the component
1869 -- assignment. Discriminants are handled at the point of the call,
1870 -- which provides for a better error message.
1872 if Comes_From_Source
(Exp
)
1873 and then Has_Predicates
(Typ
)
1874 and then not Predicate_Checks_Suppressed
(Empty
)
1875 and then not Predicates_Ignored
(Typ
)
1877 Append
(Make_Predicate_Check
(Typ
, Exp
), Res
);
1883 when RE_Not_Available
=>
1885 end Build_Assignment
;
1887 ------------------------------------
1888 -- Build_Discriminant_Assignments --
1889 ------------------------------------
1891 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
) is
1892 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Rec_Type
);
1897 if Has_Discriminants
(Rec_Type
)
1898 and then not Is_Unchecked_Union
(Rec_Type
)
1900 D
:= First_Discriminant
(Rec_Type
);
1901 while Present
(D
) loop
1903 -- Don't generate the assignment for discriminants in derived
1904 -- tagged types if the discriminant is a renaming of some
1905 -- ancestor discriminant. This initialization will be done
1906 -- when initializing the _parent field of the derived record.
1909 and then Present
(Corresponding_Discriminant
(D
))
1915 Append_List_To
(Statement_List
,
1916 Build_Assignment
(D
,
1917 New_Occurrence_Of
(Discriminal
(D
), D_Loc
)));
1920 Next_Discriminant
(D
);
1923 end Build_Discriminant_Assignments
;
1925 --------------------------
1926 -- Build_Init_Call_Thru --
1927 --------------------------
1929 function Build_Init_Call_Thru
(Parameters
: List_Id
) return List_Id
is
1930 Parent_Proc
: constant Entity_Id
:=
1931 Base_Init_Proc
(Etype
(Rec_Type
));
1933 Parent_Type
: constant Entity_Id
:=
1934 Etype
(First_Formal
(Parent_Proc
));
1936 Uparent_Type
: constant Entity_Id
:=
1937 Underlying_Type
(Parent_Type
);
1939 First_Discr_Param
: Node_Id
;
1943 First_Arg
: Node_Id
;
1944 Parent_Discr
: Entity_Id
;
1948 -- First argument (_Init) is the object to be initialized.
1949 -- ??? not sure where to get a reasonable Loc for First_Arg
1952 OK_Convert_To
(Parent_Type
,
1954 (Defining_Identifier
(First
(Parameters
)), Loc
));
1956 Set_Etype
(First_Arg
, Parent_Type
);
1958 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Rec_Type
));
1960 -- In the tasks case,
1961 -- add _Master as the value of the _Master parameter
1962 -- add _Chain as the value of the _Chain parameter.
1963 -- add _Task_Name as the value of the _Task_Name parameter.
1964 -- At the outer level, these will be variables holding the
1965 -- corresponding values obtained from GNARL or the expander.
1967 -- At inner levels, they will be the parameters passed down through
1968 -- the outer routines.
1970 First_Discr_Param
:= Next
(First
(Parameters
));
1972 if Has_Task
(Rec_Type
) then
1973 if Restriction_Active
(No_Task_Hierarchy
) then
1975 New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
));
1977 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
1980 -- Add _Chain (not done for sequential elaboration policy, see
1981 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
1983 if Partition_Elaboration_Policy
/= 'S' then
1984 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
1987 Append_To
(Args
, Make_Identifier
(Loc
, Name_uTask_Name
));
1988 First_Discr_Param
:= Next
(Next
(Next
(First_Discr_Param
)));
1991 -- Append discriminant values
1993 if Has_Discriminants
(Uparent_Type
) then
1994 pragma Assert
(not Is_Tagged_Type
(Uparent_Type
));
1996 Parent_Discr
:= First_Discriminant
(Uparent_Type
);
1997 while Present
(Parent_Discr
) loop
1999 -- Get the initial value for this discriminant
2000 -- ??? needs to be cleaned up to use parent_Discr_Constr
2004 Discr
: Entity_Id
:=
2005 First_Stored_Discriminant
(Uparent_Type
);
2007 Discr_Value
: Elmt_Id
:=
2008 First_Elmt
(Stored_Constraint
(Rec_Type
));
2011 while Original_Record_Component
(Parent_Discr
) /= Discr
loop
2012 Next_Stored_Discriminant
(Discr
);
2013 Next_Elmt
(Discr_Value
);
2016 Arg
:= Node
(Discr_Value
);
2019 -- Append it to the list
2021 if Nkind
(Arg
) = N_Identifier
2022 and then Ekind
(Entity
(Arg
)) = E_Discriminant
2025 New_Occurrence_Of
(Discriminal
(Entity
(Arg
)), Loc
));
2027 -- Case of access discriminants. We replace the reference
2028 -- to the type by a reference to the actual object.
2030 -- Is above comment right??? Use of New_Copy below seems mighty
2034 Append_To
(Args
, New_Copy
(Arg
));
2037 Next_Discriminant
(Parent_Discr
);
2043 Make_Procedure_Call_Statement
(Loc
,
2045 New_Occurrence_Of
(Parent_Proc
, Loc
),
2046 Parameter_Associations
=> Args
));
2049 end Build_Init_Call_Thru
;
2051 -----------------------------------
2052 -- Build_Offset_To_Top_Functions --
2053 -----------------------------------
2055 procedure Build_Offset_To_Top_Functions
is
2057 procedure Build_Offset_To_Top_Function
(Iface_Comp
: Entity_Id
);
2059 -- function Fxx (O : Address) return Storage_Offset is
2060 -- type Acc is access all <Typ>;
2062 -- return Acc!(O).Iface_Comp'Position;
2065 ----------------------------------
2066 -- Build_Offset_To_Top_Function --
2067 ----------------------------------
2069 procedure Build_Offset_To_Top_Function
(Iface_Comp
: Entity_Id
) is
2070 Body_Node
: Node_Id
;
2071 Func_Id
: Entity_Id
;
2072 Spec_Node
: Node_Id
;
2073 Acc_Type
: Entity_Id
;
2076 Func_Id
:= Make_Temporary
(Loc
, 'F');
2077 Set_DT_Offset_To_Top_Func
(Iface_Comp
, Func_Id
);
2080 -- function Fxx (O : in Rec_Typ) return Storage_Offset;
2082 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
2083 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
2084 Set_Parameter_Specifications
(Spec_Node
, New_List
(
2085 Make_Parameter_Specification
(Loc
,
2086 Defining_Identifier
=>
2087 Make_Defining_Identifier
(Loc
, Name_uO
),
2090 New_Occurrence_Of
(RTE
(RE_Address
), Loc
))));
2091 Set_Result_Definition
(Spec_Node
,
2092 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
2095 -- function Fxx (O : in Rec_Typ) return Storage_Offset is
2097 -- return O.Iface_Comp'Position;
2100 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2101 Set_Specification
(Body_Node
, Spec_Node
);
2103 Acc_Type
:= Make_Temporary
(Loc
, 'T');
2104 Set_Declarations
(Body_Node
, New_List
(
2105 Make_Full_Type_Declaration
(Loc
,
2106 Defining_Identifier
=> Acc_Type
,
2108 Make_Access_To_Object_Definition
(Loc
,
2109 All_Present
=> True,
2110 Null_Exclusion_Present
=> False,
2111 Constant_Present
=> False,
2112 Subtype_Indication
=>
2113 New_Occurrence_Of
(Rec_Type
, Loc
)))));
2115 Set_Handled_Statement_Sequence
(Body_Node
,
2116 Make_Handled_Sequence_Of_Statements
(Loc
,
2117 Statements
=> New_List
(
2118 Make_Simple_Return_Statement
(Loc
,
2120 Make_Attribute_Reference
(Loc
,
2122 Make_Selected_Component
(Loc
,
2124 Unchecked_Convert_To
(Acc_Type
,
2125 Make_Identifier
(Loc
, Name_uO
)),
2127 New_Occurrence_Of
(Iface_Comp
, Loc
)),
2128 Attribute_Name
=> Name_Position
)))));
2130 Set_Ekind
(Func_Id
, E_Function
);
2131 Set_Mechanism
(Func_Id
, Default_Mechanism
);
2132 Set_Is_Internal
(Func_Id
, True);
2134 if not Debug_Generated_Code
then
2135 Set_Debug_Info_Off
(Func_Id
);
2138 Analyze
(Body_Node
);
2140 Append_Freeze_Action
(Rec_Type
, Body_Node
);
2141 end Build_Offset_To_Top_Function
;
2145 Iface_Comp
: Node_Id
;
2146 Iface_Comp_Elmt
: Elmt_Id
;
2147 Ifaces_Comp_List
: Elist_Id
;
2149 -- Start of processing for Build_Offset_To_Top_Functions
2152 -- Offset_To_Top_Functions are built only for derivations of types
2153 -- with discriminants that cover interface types.
2154 -- Nothing is needed either in case of virtual targets, since
2155 -- interfaces are handled directly by the target.
2157 if not Is_Tagged_Type
(Rec_Type
)
2158 or else Etype
(Rec_Type
) = Rec_Type
2159 or else not Has_Discriminants
(Etype
(Rec_Type
))
2160 or else not Tagged_Type_Expansion
2165 Collect_Interface_Components
(Rec_Type
, Ifaces_Comp_List
);
2167 -- For each interface type with secondary dispatch table we generate
2168 -- the Offset_To_Top_Functions (required to displace the pointer in
2169 -- interface conversions)
2171 Iface_Comp_Elmt
:= First_Elmt
(Ifaces_Comp_List
);
2172 while Present
(Iface_Comp_Elmt
) loop
2173 Iface_Comp
:= Node
(Iface_Comp_Elmt
);
2174 pragma Assert
(Is_Interface
(Related_Type
(Iface_Comp
)));
2176 -- If the interface is a parent of Rec_Type it shares the primary
2177 -- dispatch table and hence there is no need to build the function
2179 if not Is_Ancestor
(Related_Type
(Iface_Comp
), Rec_Type
,
2180 Use_Full_View
=> True)
2182 Build_Offset_To_Top_Function
(Iface_Comp
);
2185 Next_Elmt
(Iface_Comp_Elmt
);
2187 end Build_Offset_To_Top_Functions
;
2189 ------------------------------
2190 -- Build_CPP_Init_Procedure --
2191 ------------------------------
2193 procedure Build_CPP_Init_Procedure
is
2194 Body_Node
: Node_Id
;
2195 Body_Stmts
: List_Id
;
2196 Flag_Id
: Entity_Id
;
2197 Handled_Stmt_Node
: Node_Id
;
2198 Init_Tags_List
: List_Id
;
2199 Proc_Id
: Entity_Id
;
2200 Proc_Spec_Node
: Node_Id
;
2203 -- Check cases requiring no IC routine
2205 if not Is_CPP_Class
(Root_Type
(Rec_Type
))
2206 or else Is_CPP_Class
(Rec_Type
)
2207 or else CPP_Num_Prims
(Rec_Type
) = 0
2208 or else not Tagged_Type_Expansion
2209 or else No_Run_Time_Mode
2216 -- Flag : Boolean := False;
2218 -- procedure Typ_IC is
2221 -- Copy C++ dispatch table slots from parent
2222 -- Update C++ slots of overridden primitives
2226 Flag_Id
:= Make_Temporary
(Loc
, 'F');
2228 Append_Freeze_Action
(Rec_Type
,
2229 Make_Object_Declaration
(Loc
,
2230 Defining_Identifier
=> Flag_Id
,
2231 Object_Definition
=>
2232 New_Occurrence_Of
(Standard_Boolean
, Loc
),
2234 New_Occurrence_Of
(Standard_True
, Loc
)));
2236 Body_Stmts
:= New_List
;
2237 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2239 Proc_Spec_Node
:= New_Node
(N_Procedure_Specification
, Loc
);
2242 Make_Defining_Identifier
(Loc
,
2243 Chars
=> Make_TSS_Name
(Rec_Type
, TSS_CPP_Init_Proc
));
2245 Set_Ekind
(Proc_Id
, E_Procedure
);
2246 Set_Is_Internal
(Proc_Id
);
2248 Set_Defining_Unit_Name
(Proc_Spec_Node
, Proc_Id
);
2250 Set_Parameter_Specifications
(Proc_Spec_Node
, New_List
);
2251 Set_Specification
(Body_Node
, Proc_Spec_Node
);
2252 Set_Declarations
(Body_Node
, New_List
);
2254 Init_Tags_List
:= Build_Inherit_CPP_Prims
(Rec_Type
);
2256 Append_To
(Init_Tags_List
,
2257 Make_Assignment_Statement
(Loc
,
2259 New_Occurrence_Of
(Flag_Id
, Loc
),
2261 New_Occurrence_Of
(Standard_False
, Loc
)));
2263 Append_To
(Body_Stmts
,
2264 Make_If_Statement
(Loc
,
2265 Condition
=> New_Occurrence_Of
(Flag_Id
, Loc
),
2266 Then_Statements
=> Init_Tags_List
));
2268 Handled_Stmt_Node
:=
2269 New_Node
(N_Handled_Sequence_Of_Statements
, Loc
);
2270 Set_Statements
(Handled_Stmt_Node
, Body_Stmts
);
2271 Set_Exception_Handlers
(Handled_Stmt_Node
, No_List
);
2272 Set_Handled_Statement_Sequence
(Body_Node
, Handled_Stmt_Node
);
2274 if not Debug_Generated_Code
then
2275 Set_Debug_Info_Off
(Proc_Id
);
2278 -- Associate CPP_Init_Proc with type
2280 Set_Init_Proc
(Rec_Type
, Proc_Id
);
2281 end Build_CPP_Init_Procedure
;
2283 --------------------------
2284 -- Build_Init_Procedure --
2285 --------------------------
2287 procedure Build_Init_Procedure
is
2288 Body_Stmts
: List_Id
;
2289 Body_Node
: Node_Id
;
2290 Handled_Stmt_Node
: Node_Id
;
2291 Init_Tags_List
: List_Id
;
2292 Parameters
: List_Id
;
2293 Proc_Spec_Node
: Node_Id
;
2294 Record_Extension_Node
: Node_Id
;
2297 Body_Stmts
:= New_List
;
2298 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2299 Set_Ekind
(Proc_Id
, E_Procedure
);
2301 Proc_Spec_Node
:= New_Node
(N_Procedure_Specification
, Loc
);
2302 Set_Defining_Unit_Name
(Proc_Spec_Node
, Proc_Id
);
2304 Parameters
:= Init_Formals
(Rec_Type
);
2305 Append_List_To
(Parameters
,
2306 Build_Discriminant_Formals
(Rec_Type
, True));
2308 -- For tagged types, we add a flag to indicate whether the routine
2309 -- is called to initialize a parent component in the init_proc of
2310 -- a type extension. If the flag is false, we do not set the tag
2311 -- because it has been set already in the extension.
2313 if Is_Tagged_Type
(Rec_Type
) then
2314 Set_Tag
:= Make_Temporary
(Loc
, 'P');
2316 Append_To
(Parameters
,
2317 Make_Parameter_Specification
(Loc
,
2318 Defining_Identifier
=> Set_Tag
,
2320 New_Occurrence_Of
(Standard_Boolean
, Loc
),
2322 New_Occurrence_Of
(Standard_True
, Loc
)));
2325 Set_Parameter_Specifications
(Proc_Spec_Node
, Parameters
);
2326 Set_Specification
(Body_Node
, Proc_Spec_Node
);
2327 Set_Declarations
(Body_Node
, Decls
);
2329 -- N is a Derived_Type_Definition that renames the parameters of the
2330 -- ancestor type. We initialize it by expanding our discriminants and
2331 -- call the ancestor _init_proc with a type-converted object.
2333 if Parent_Subtype_Renaming_Discrims
then
2334 Append_List_To
(Body_Stmts
, Build_Init_Call_Thru
(Parameters
));
2336 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
2337 Build_Discriminant_Assignments
(Body_Stmts
);
2339 if not Null_Present
(Type_Definition
(N
)) then
2340 Append_List_To
(Body_Stmts
,
2341 Build_Init_Statements
(Component_List
(Type_Definition
(N
))));
2344 -- N is a Derived_Type_Definition with a possible non-empty
2345 -- extension. The initialization of a type extension consists in the
2346 -- initialization of the components in the extension.
2349 Build_Discriminant_Assignments
(Body_Stmts
);
2351 Record_Extension_Node
:=
2352 Record_Extension_Part
(Type_Definition
(N
));
2354 if not Null_Present
(Record_Extension_Node
) then
2356 Stmts
: constant List_Id
:=
2357 Build_Init_Statements
(
2358 Component_List
(Record_Extension_Node
));
2361 -- The parent field must be initialized first because the
2362 -- offset of the new discriminants may depend on it. This is
2363 -- not needed if the parent is an interface type because in
2364 -- such case the initialization of the _parent field was not
2367 if not Is_Interface
(Etype
(Rec_Ent
)) then
2369 Parent_IP
: constant Name_Id
:=
2370 Make_Init_Proc_Name
(Etype
(Rec_Ent
));
2376 -- Look for a call to the parent IP at the beginning
2377 -- of Stmts associated with the record extension
2379 Stmt
:= First
(Stmts
);
2381 while Present
(Stmt
) loop
2382 if Nkind
(Stmt
) = N_Procedure_Call_Statement
2383 and then Chars
(Name
(Stmt
)) = Parent_IP
2392 -- If found then move it to the beginning of the
2393 -- statements of this IP routine
2395 if Present
(IP_Call
) then
2396 IP_Stmts
:= New_List
;
2398 Stmt
:= Remove_Head
(Stmts
);
2399 Append_To
(IP_Stmts
, Stmt
);
2400 exit when Stmt
= IP_Call
;
2403 Prepend_List_To
(Body_Stmts
, IP_Stmts
);
2408 Append_List_To
(Body_Stmts
, Stmts
);
2413 -- Add here the assignment to instantiate the Tag
2415 -- The assignment corresponds to the code:
2417 -- _Init._Tag := Typ'Tag;
2419 -- Suppress the tag assignment when not Tagged_Type_Expansion because
2420 -- tags are represented implicitly in objects. It is also suppressed
2421 -- in case of CPP_Class types because in this case the tag is
2422 -- initialized in the C++ side.
2424 if Is_Tagged_Type
(Rec_Type
)
2425 and then Tagged_Type_Expansion
2426 and then not No_Run_Time_Mode
2428 -- Case 1: Ada tagged types with no CPP ancestor. Set the tags of
2429 -- the actual object and invoke the IP of the parent (in this
2430 -- order). The tag must be initialized before the call to the IP
2431 -- of the parent and the assignments to other components because
2432 -- the initial value of the components may depend on the tag (eg.
2433 -- through a dispatching operation on an access to the current
2434 -- type). The tag assignment is not done when initializing the
2435 -- parent component of a type extension, because in that case the
2436 -- tag is set in the extension.
2438 if not Is_CPP_Class
(Root_Type
(Rec_Type
)) then
2440 -- Initialize the primary tag component
2442 Init_Tags_List
:= New_List
(
2443 Make_Assignment_Statement
(Loc
,
2445 Make_Selected_Component
(Loc
,
2446 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2449 (First_Tag_Component
(Rec_Type
), Loc
)),
2453 (First_Elmt
(Access_Disp_Table
(Rec_Type
))), Loc
)));
2455 -- Ada 2005 (AI-251): Initialize the secondary tags components
2456 -- located at fixed positions (tags whose position depends on
2457 -- variable size components are initialized later ---see below)
2459 if Ada_Version
>= Ada_2005
2460 and then not Is_Interface
(Rec_Type
)
2461 and then Has_Interfaces
(Rec_Type
)
2465 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2466 Stmts_List
=> Init_Tags_List
,
2467 Fixed_Comps
=> True,
2468 Variable_Comps
=> False);
2471 Prepend_To
(Body_Stmts
,
2472 Make_If_Statement
(Loc
,
2473 Condition
=> New_Occurrence_Of
(Set_Tag
, Loc
),
2474 Then_Statements
=> Init_Tags_List
));
2476 -- Case 2: CPP type. The imported C++ constructor takes care of
2477 -- tags initialization. No action needed here because the IP
2478 -- is built by Set_CPP_Constructors; in this case the IP is a
2479 -- wrapper that invokes the C++ constructor and copies the C++
2480 -- tags locally. Done to inherit the C++ slots in Ada derivations
2483 elsif Is_CPP_Class
(Rec_Type
) then
2484 pragma Assert
(False);
2487 -- Case 3: Combined hierarchy containing C++ types and Ada tagged
2488 -- type derivations. Derivations of imported C++ classes add a
2489 -- complication, because we cannot inhibit tag setting in the
2490 -- constructor for the parent. Hence we initialize the tag after
2491 -- the call to the parent IP (that is, in reverse order compared
2492 -- with pure Ada hierarchies ---see comment on case 1).
2495 -- Initialize the primary tag
2497 Init_Tags_List
:= New_List
(
2498 Make_Assignment_Statement
(Loc
,
2500 Make_Selected_Component
(Loc
,
2501 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2504 (First_Tag_Component
(Rec_Type
), Loc
)),
2508 (First_Elmt
(Access_Disp_Table
(Rec_Type
))), Loc
)));
2510 -- Ada 2005 (AI-251): Initialize the secondary tags components
2511 -- located at fixed positions (tags whose position depends on
2512 -- variable size components are initialized later ---see below)
2514 if Ada_Version
>= Ada_2005
2515 and then not Is_Interface
(Rec_Type
)
2516 and then Has_Interfaces
(Rec_Type
)
2520 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2521 Stmts_List
=> Init_Tags_List
,
2522 Fixed_Comps
=> True,
2523 Variable_Comps
=> False);
2526 -- Initialize the tag component after invocation of parent IP.
2529 -- parent_IP(_init.parent); // Invokes the C++ constructor
2530 -- [ typIC; ] // Inherit C++ slots from parent
2537 -- Search for the call to the IP of the parent. We assume
2538 -- that the first init_proc call is for the parent.
2540 Ins_Nod
:= First
(Body_Stmts
);
2541 while Present
(Next
(Ins_Nod
))
2542 and then (Nkind
(Ins_Nod
) /= N_Procedure_Call_Statement
2543 or else not Is_Init_Proc
(Name
(Ins_Nod
)))
2548 -- The IC routine copies the inherited slots of the C+ part
2549 -- of the dispatch table from the parent and updates the
2550 -- overridden C++ slots.
2552 if CPP_Num_Prims
(Rec_Type
) > 0 then
2554 Init_DT
: Entity_Id
;
2558 Init_DT
:= CPP_Init_Proc
(Rec_Type
);
2559 pragma Assert
(Present
(Init_DT
));
2562 Make_Procedure_Call_Statement
(Loc
,
2563 New_Occurrence_Of
(Init_DT
, Loc
));
2564 Insert_After
(Ins_Nod
, New_Nod
);
2566 -- Update location of init tag statements
2572 Insert_List_After
(Ins_Nod
, Init_Tags_List
);
2576 -- Ada 2005 (AI-251): Initialize the secondary tag components
2577 -- located at variable positions. We delay the generation of this
2578 -- code until here because the value of the attribute 'Position
2579 -- applied to variable size components of the parent type that
2580 -- depend on discriminants is only safely read at runtime after
2581 -- the parent components have been initialized.
2583 if Ada_Version
>= Ada_2005
2584 and then not Is_Interface
(Rec_Type
)
2585 and then Has_Interfaces
(Rec_Type
)
2586 and then Has_Discriminants
(Etype
(Rec_Type
))
2587 and then Is_Variable_Size_Record
(Etype
(Rec_Type
))
2589 Init_Tags_List
:= New_List
;
2593 Target
=> Make_Identifier
(Loc
, Name_uInit
),
2594 Stmts_List
=> Init_Tags_List
,
2595 Fixed_Comps
=> False,
2596 Variable_Comps
=> True);
2598 if Is_Non_Empty_List
(Init_Tags_List
) then
2599 Append_List_To
(Body_Stmts
, Init_Tags_List
);
2604 Handled_Stmt_Node
:= New_Node
(N_Handled_Sequence_Of_Statements
, Loc
);
2605 Set_Statements
(Handled_Stmt_Node
, Body_Stmts
);
2608 -- Deep_Finalize (_init, C1, ..., CN);
2612 and then Needs_Finalization
(Rec_Type
)
2613 and then not Is_Abstract_Type
(Rec_Type
)
2614 and then not Restriction_Active
(No_Exception_Propagation
)
2621 -- Create a local version of Deep_Finalize which has indication
2622 -- of partial initialization state.
2624 DF_Id
:= Make_Temporary
(Loc
, 'F');
2626 Append_To
(Decls
, Make_Local_Deep_Finalize
(Rec_Type
, DF_Id
));
2629 Make_Procedure_Call_Statement
(Loc
,
2630 Name
=> New_Occurrence_Of
(DF_Id
, Loc
),
2631 Parameter_Associations
=> New_List
(
2632 Make_Identifier
(Loc
, Name_uInit
),
2633 New_Occurrence_Of
(Standard_False
, Loc
)));
2635 -- Do not emit warnings related to the elaboration order when a
2636 -- controlled object is declared before the body of Finalize is
2639 Set_No_Elaboration_Check
(DF_Call
);
2641 Set_Exception_Handlers
(Handled_Stmt_Node
, New_List
(
2642 Make_Exception_Handler
(Loc
,
2643 Exception_Choices
=> New_List
(
2644 Make_Others_Choice
(Loc
)),
2645 Statements
=> New_List
(
2647 Make_Raise_Statement
(Loc
)))));
2650 Set_Exception_Handlers
(Handled_Stmt_Node
, No_List
);
2653 Set_Handled_Statement_Sequence
(Body_Node
, Handled_Stmt_Node
);
2655 if not Debug_Generated_Code
then
2656 Set_Debug_Info_Off
(Proc_Id
);
2659 -- Associate Init_Proc with type, and determine if the procedure
2660 -- is null (happens because of the Initialize_Scalars pragma case,
2661 -- where we have to generate a null procedure in case it is called
2662 -- by a client with Initialize_Scalars set). Such procedures have
2663 -- to be generated, but do not have to be called, so we mark them
2664 -- as null to suppress the call.
2666 Set_Init_Proc
(Rec_Type
, Proc_Id
);
2668 if List_Length
(Body_Stmts
) = 1
2670 -- We must skip SCIL nodes because they may have been added to this
2671 -- list by Insert_Actions.
2673 and then Nkind
(First_Non_SCIL_Node
(Body_Stmts
)) = N_Null_Statement
2675 Set_Is_Null_Init_Proc
(Proc_Id
);
2677 end Build_Init_Procedure
;
2679 ---------------------------
2680 -- Build_Init_Statements --
2681 ---------------------------
2683 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
is
2684 Checks
: constant List_Id
:= New_List
;
2685 Actions
: List_Id
:= No_List
;
2686 Counter_Id
: Entity_Id
:= Empty
;
2687 Comp_Loc
: Source_Ptr
;
2691 Parent_Stmts
: List_Id
;
2695 procedure Increment_Counter
(Loc
: Source_Ptr
);
2696 -- Generate an "increment by one" statement for the current counter
2697 -- and append it to the list Stmts.
2699 procedure Make_Counter
(Loc
: Source_Ptr
);
2700 -- Create a new counter for the current component list. The routine
2701 -- creates a new defining Id, adds an object declaration and sets
2702 -- the Id generator for the next variant.
2704 -----------------------
2705 -- Increment_Counter --
2706 -----------------------
2708 procedure Increment_Counter
(Loc
: Source_Ptr
) is
2711 -- Counter := Counter + 1;
2714 Make_Assignment_Statement
(Loc
,
2715 Name
=> New_Occurrence_Of
(Counter_Id
, Loc
),
2718 Left_Opnd
=> New_Occurrence_Of
(Counter_Id
, Loc
),
2719 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))));
2720 end Increment_Counter
;
2726 procedure Make_Counter
(Loc
: Source_Ptr
) is
2728 -- Increment the Id generator
2730 Counter
:= Counter
+ 1;
2732 -- Create the entity and declaration
2735 Make_Defining_Identifier
(Loc
,
2736 Chars
=> New_External_Name
('C', Counter
));
2739 -- Cnn : Integer := 0;
2742 Make_Object_Declaration
(Loc
,
2743 Defining_Identifier
=> Counter_Id
,
2744 Object_Definition
=>
2745 New_Occurrence_Of
(Standard_Integer
, Loc
),
2747 Make_Integer_Literal
(Loc
, 0)));
2750 -- Start of processing for Build_Init_Statements
2753 if Null_Present
(Comp_List
) then
2754 return New_List
(Make_Null_Statement
(Loc
));
2757 Parent_Stmts
:= New_List
;
2760 -- Loop through visible declarations of task types and protected
2761 -- types moving any expanded code from the spec to the body of the
2764 if Is_Task_Record_Type
(Rec_Type
)
2765 or else Is_Protected_Record_Type
(Rec_Type
)
2768 Decl
: constant Node_Id
:=
2769 Parent
(Corresponding_Concurrent_Type
(Rec_Type
));
2775 if Is_Task_Record_Type
(Rec_Type
) then
2776 Def
:= Task_Definition
(Decl
);
2778 Def
:= Protected_Definition
(Decl
);
2781 if Present
(Def
) then
2782 N1
:= First
(Visible_Declarations
(Def
));
2783 while Present
(N1
) loop
2787 if Nkind
(N2
) in N_Statement_Other_Than_Procedure_Call
2788 or else Nkind
(N2
) in N_Raise_xxx_Error
2789 or else Nkind
(N2
) = N_Procedure_Call_Statement
2792 New_Copy_Tree
(N2
, New_Scope
=> Proc_Id
));
2793 Rewrite
(N2
, Make_Null_Statement
(Sloc
(N2
)));
2801 -- Loop through components, skipping pragmas, in 2 steps. The first
2802 -- step deals with regular components. The second step deals with
2803 -- components that have per object constraints and no explicit
2808 -- First pass : regular components
2810 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
2811 while Present
(Decl
) loop
2812 Comp_Loc
:= Sloc
(Decl
);
2814 (Subtype_Indication
(Component_Definition
(Decl
)), Checks
);
2816 Id
:= Defining_Identifier
(Decl
);
2819 -- Leave any processing of per-object constrained component for
2822 if Has_Access_Constraint
(Id
) and then No
(Expression
(Decl
)) then
2825 -- Regular component cases
2828 -- In the context of the init proc, references to discriminants
2829 -- resolve to denote the discriminals: this is where we can
2830 -- freeze discriminant dependent component subtypes.
2832 if not Is_Frozen
(Typ
) then
2833 Append_List_To
(Stmts
, Freeze_Entity
(Typ
, N
));
2836 -- Explicit initialization
2838 if Present
(Expression
(Decl
)) then
2839 if Is_CPP_Constructor_Call
(Expression
(Decl
)) then
2841 Build_Initialization_Call
2844 Make_Selected_Component
(Comp_Loc
,
2846 Make_Identifier
(Comp_Loc
, Name_uInit
),
2848 New_Occurrence_Of
(Id
, Comp_Loc
)),
2850 In_Init_Proc
=> True,
2851 Enclos_Type
=> Rec_Type
,
2852 Discr_Map
=> Discr_Map
,
2853 Constructor_Ref
=> Expression
(Decl
));
2855 Actions
:= Build_Assignment
(Id
, Expression
(Decl
));
2858 -- CPU, Dispatching_Domain, Priority, and Secondary_Stack_Size
2859 -- components are filled in with the corresponding rep-item
2860 -- expression of the concurrent type (if any).
2862 elsif Ekind
(Scope
(Id
)) = E_Record_Type
2863 and then Present
(Corresponding_Concurrent_Type
(Scope
(Id
)))
2864 and then Nam_In
(Chars
(Id
), Name_uCPU
,
2865 Name_uDispatching_Domain
,
2867 Name_uSecondary_Stack_Size
)
2875 if Chars
(Id
) = Name_uCPU
then
2878 elsif Chars
(Id
) = Name_uDispatching_Domain
then
2879 Nam
:= Name_Dispatching_Domain
;
2881 elsif Chars
(Id
) = Name_uPriority
then
2882 Nam
:= Name_Priority
;
2884 elsif Chars
(Id
) = Name_uSecondary_Stack_Size
then
2885 Nam
:= Name_Secondary_Stack_Size
;
2888 -- Get the Rep Item (aspect specification, attribute
2889 -- definition clause or pragma) of the corresponding
2894 (Corresponding_Concurrent_Type
(Scope
(Id
)),
2896 Check_Parents
=> False);
2898 if Present
(Ritem
) then
2902 if Nkind
(Ritem
) = N_Pragma
then
2903 Exp
:= First
(Pragma_Argument_Associations
(Ritem
));
2905 if Nkind
(Exp
) = N_Pragma_Argument_Association
then
2906 Exp
:= Expression
(Exp
);
2909 -- Conversion for Priority expression
2911 if Nam
= Name_Priority
then
2912 if Pragma_Name
(Ritem
) = Name_Priority
2913 and then not GNAT_Mode
2915 Exp
:= Convert_To
(RTE
(RE_Priority
), Exp
);
2918 Convert_To
(RTE
(RE_Any_Priority
), Exp
);
2922 -- Aspect/Attribute definition clause case
2925 Exp
:= Expression
(Ritem
);
2927 -- Conversion for Priority expression
2929 if Nam
= Name_Priority
then
2930 if Chars
(Ritem
) = Name_Priority
2931 and then not GNAT_Mode
2933 Exp
:= Convert_To
(RTE
(RE_Priority
), Exp
);
2936 Convert_To
(RTE
(RE_Any_Priority
), Exp
);
2941 -- Conversion for Dispatching_Domain value
2943 if Nam
= Name_Dispatching_Domain
then
2945 Unchecked_Convert_To
2946 (RTE
(RE_Dispatching_Domain_Access
), Exp
);
2949 Actions
:= Build_Assignment
(Id
, Exp
);
2951 -- Nothing needed if no Rep Item
2958 -- Composite component with its own Init_Proc
2960 elsif not Is_Interface
(Typ
)
2961 and then Has_Non_Null_Base_Init_Proc
(Typ
)
2964 Build_Initialization_Call
2966 Make_Selected_Component
(Comp_Loc
,
2968 Make_Identifier
(Comp_Loc
, Name_uInit
),
2969 Selector_Name
=> New_Occurrence_Of
(Id
, Comp_Loc
)),
2971 In_Init_Proc
=> True,
2972 Enclos_Type
=> Rec_Type
,
2973 Discr_Map
=> Discr_Map
);
2975 Clean_Task_Names
(Typ
, Proc_Id
);
2977 -- Simple initialization
2979 elsif Component_Needs_Simple_Initialization
(Typ
) then
2982 (Id
, Get_Simple_Init_Val
(Typ
, N
, Esize
(Id
)));
2984 -- Nothing needed for this case
2990 if Present
(Checks
) then
2991 if Chars
(Id
) = Name_uParent
then
2992 Append_List_To
(Parent_Stmts
, Checks
);
2994 Append_List_To
(Stmts
, Checks
);
2998 if Present
(Actions
) then
2999 if Chars
(Id
) = Name_uParent
then
3000 Append_List_To
(Parent_Stmts
, Actions
);
3003 Append_List_To
(Stmts
, Actions
);
3005 -- Preserve initialization state in the current counter
3007 if Needs_Finalization
(Typ
) then
3008 if No
(Counter_Id
) then
3009 Make_Counter
(Comp_Loc
);
3012 Increment_Counter
(Comp_Loc
);
3018 Next_Non_Pragma
(Decl
);
3021 -- The parent field must be initialized first because variable
3022 -- size components of the parent affect the location of all the
3025 Prepend_List_To
(Stmts
, Parent_Stmts
);
3027 -- Set up tasks and protected object support. This needs to be done
3028 -- before any component with a per-object access discriminant
3029 -- constraint, or any variant part (which may contain such
3030 -- components) is initialized, because the initialization of these
3031 -- components may reference the enclosing concurrent object.
3033 -- For a task record type, add the task create call and calls to bind
3034 -- any interrupt (signal) entries.
3036 if Is_Task_Record_Type
(Rec_Type
) then
3038 -- In the case of the restricted run time the ATCB has already
3039 -- been preallocated.
3041 if Restricted_Profile
then
3043 Make_Assignment_Statement
(Loc
,
3045 Make_Selected_Component
(Loc
,
3046 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
3047 Selector_Name
=> Make_Identifier
(Loc
, Name_uTask_Id
)),
3049 Make_Attribute_Reference
(Loc
,
3051 Make_Selected_Component
(Loc
,
3052 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
3053 Selector_Name
=> Make_Identifier
(Loc
, Name_uATCB
)),
3054 Attribute_Name
=> Name_Unchecked_Access
)));
3057 Append_To
(Stmts
, Make_Task_Create_Call
(Rec_Type
));
3060 Task_Type
: constant Entity_Id
:=
3061 Corresponding_Concurrent_Type
(Rec_Type
);
3062 Task_Decl
: constant Node_Id
:= Parent
(Task_Type
);
3063 Task_Def
: constant Node_Id
:= Task_Definition
(Task_Decl
);
3064 Decl_Loc
: Source_Ptr
;
3069 if Present
(Task_Def
) then
3070 Vis_Decl
:= First
(Visible_Declarations
(Task_Def
));
3071 while Present
(Vis_Decl
) loop
3072 Decl_Loc
:= Sloc
(Vis_Decl
);
3074 if Nkind
(Vis_Decl
) = N_Attribute_Definition_Clause
then
3075 if Get_Attribute_Id
(Chars
(Vis_Decl
)) =
3078 Ent
:= Entity
(Name
(Vis_Decl
));
3080 if Ekind
(Ent
) = E_Entry
then
3082 Make_Procedure_Call_Statement
(Decl_Loc
,
3084 New_Occurrence_Of
(RTE
(
3085 RE_Bind_Interrupt_To_Entry
), Decl_Loc
),
3086 Parameter_Associations
=> New_List
(
3087 Make_Selected_Component
(Decl_Loc
,
3089 Make_Identifier
(Decl_Loc
, Name_uInit
),
3092 (Decl_Loc
, Name_uTask_Id
)),
3093 Entry_Index_Expression
3094 (Decl_Loc
, Ent
, Empty
, Task_Type
),
3095 Expression
(Vis_Decl
))));
3106 -- For a protected type, add statements generated by
3107 -- Make_Initialize_Protection.
3109 if Is_Protected_Record_Type
(Rec_Type
) then
3110 Append_List_To
(Stmts
,
3111 Make_Initialize_Protection
(Rec_Type
));
3114 -- Second pass: components with per-object constraints
3117 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
3118 while Present
(Decl
) loop
3119 Comp_Loc
:= Sloc
(Decl
);
3120 Id
:= Defining_Identifier
(Decl
);
3123 if Has_Access_Constraint
(Id
)
3124 and then No
(Expression
(Decl
))
3126 if Has_Non_Null_Base_Init_Proc
(Typ
) then
3127 Append_List_To
(Stmts
,
3128 Build_Initialization_Call
(Comp_Loc
,
3129 Make_Selected_Component
(Comp_Loc
,
3131 Make_Identifier
(Comp_Loc
, Name_uInit
),
3132 Selector_Name
=> New_Occurrence_Of
(Id
, Comp_Loc
)),
3134 In_Init_Proc
=> True,
3135 Enclos_Type
=> Rec_Type
,
3136 Discr_Map
=> Discr_Map
));
3138 Clean_Task_Names
(Typ
, Proc_Id
);
3140 -- Preserve initialization state in the current counter
3142 if Needs_Finalization
(Typ
) then
3143 if No
(Counter_Id
) then
3144 Make_Counter
(Comp_Loc
);
3147 Increment_Counter
(Comp_Loc
);
3150 elsif Component_Needs_Simple_Initialization
(Typ
) then
3151 Append_List_To
(Stmts
,
3153 (Id
, Get_Simple_Init_Val
(Typ
, N
, Esize
(Id
))));
3157 Next_Non_Pragma
(Decl
);
3161 -- Process the variant part
3163 if Present
(Variant_Part
(Comp_List
)) then
3165 Variant_Alts
: constant List_Id
:= New_List
;
3166 Var_Loc
: Source_Ptr
;
3171 First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
3172 while Present
(Variant
) loop
3173 Var_Loc
:= Sloc
(Variant
);
3174 Append_To
(Variant_Alts
,
3175 Make_Case_Statement_Alternative
(Var_Loc
,
3177 New_Copy_List
(Discrete_Choices
(Variant
)),
3179 Build_Init_Statements
(Component_List
(Variant
))));
3180 Next_Non_Pragma
(Variant
);
3183 -- The expression of the case statement which is a reference
3184 -- to one of the discriminants is replaced by the appropriate
3185 -- formal parameter of the initialization procedure.
3188 Make_Case_Statement
(Var_Loc
,
3190 New_Occurrence_Of
(Discriminal
(
3191 Entity
(Name
(Variant_Part
(Comp_List
)))), Var_Loc
),
3192 Alternatives
=> Variant_Alts
));
3196 -- If no initializations when generated for component declarations
3197 -- corresponding to this Stmts, append a null statement to Stmts to
3198 -- to make it a valid Ada tree.
3200 if Is_Empty_List
(Stmts
) then
3201 Append
(Make_Null_Statement
(Loc
), Stmts
);
3207 when RE_Not_Available
=>
3209 end Build_Init_Statements
;
3211 -------------------------
3212 -- Build_Record_Checks --
3213 -------------------------
3215 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
) is
3216 Subtype_Mark_Id
: Entity_Id
;
3218 procedure Constrain_Array
3220 Check_List
: List_Id
);
3221 -- Apply a list of index constraints to an unconstrained array type.
3222 -- The first parameter is the entity for the resulting subtype.
3223 -- Check_List is a list to which the check actions are appended.
3225 ---------------------
3226 -- Constrain_Array --
3227 ---------------------
3229 procedure Constrain_Array
3231 Check_List
: List_Id
)
3233 C
: constant Node_Id
:= Constraint
(SI
);
3234 Number_Of_Constraints
: Nat
:= 0;
3238 procedure Constrain_Index
3241 Check_List
: List_Id
);
3242 -- Process an index constraint in a constrained array declaration.
3243 -- The constraint can be either a subtype name or a range with or
3244 -- without an explicit subtype mark. Index is the corresponding
3245 -- index of the unconstrained array. S is the range expression.
3246 -- Check_List is a list to which the check actions are appended.
3248 ---------------------
3249 -- Constrain_Index --
3250 ---------------------
3252 procedure Constrain_Index
3255 Check_List
: List_Id
)
3257 T
: constant Entity_Id
:= Etype
(Index
);
3260 if Nkind
(S
) = N_Range
then
3261 Process_Range_Expr_In_Decl
(S
, T
, Check_List
=> Check_List
);
3263 end Constrain_Index
;
3265 -- Start of processing for Constrain_Array
3268 T
:= Entity
(Subtype_Mark
(SI
));
3270 if Is_Access_Type
(T
) then
3271 T
:= Designated_Type
(T
);
3274 S
:= First
(Constraints
(C
));
3275 while Present
(S
) loop
3276 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
3280 -- In either case, the index constraint must provide a discrete
3281 -- range for each index of the array type and the type of each
3282 -- discrete range must be the same as that of the corresponding
3283 -- index. (RM 3.6.1)
3285 S
:= First
(Constraints
(C
));
3286 Index
:= First_Index
(T
);
3289 -- Apply constraints to each index type
3291 for J
in 1 .. Number_Of_Constraints
loop
3292 Constrain_Index
(Index
, S
, Check_List
);
3296 end Constrain_Array
;
3298 -- Start of processing for Build_Record_Checks
3301 if Nkind
(S
) = N_Subtype_Indication
then
3302 Find_Type
(Subtype_Mark
(S
));
3303 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
3305 -- Remaining processing depends on type
3307 case Ekind
(Subtype_Mark_Id
) is
3309 Constrain_Array
(S
, Check_List
);
3315 end Build_Record_Checks
;
3317 -------------------------------------------
3318 -- Component_Needs_Simple_Initialization --
3319 -------------------------------------------
3321 function Component_Needs_Simple_Initialization
3322 (T
: Entity_Id
) return Boolean
3326 Needs_Simple_Initialization
(T
)
3327 and then not Is_RTE
(T
, RE_Tag
)
3329 -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
3331 and then not Is_RTE
(T
, RE_Interface_Tag
);
3332 end Component_Needs_Simple_Initialization
;
3334 --------------------------------------
3335 -- Parent_Subtype_Renaming_Discrims --
3336 --------------------------------------
3338 function Parent_Subtype_Renaming_Discrims
return Boolean is
3343 if Base_Type
(Rec_Ent
) /= Rec_Ent
then
3347 if Etype
(Rec_Ent
) = Rec_Ent
3348 or else not Has_Discriminants
(Rec_Ent
)
3349 or else Is_Constrained
(Rec_Ent
)
3350 or else Is_Tagged_Type
(Rec_Ent
)
3355 -- If there are no explicit stored discriminants we have inherited
3356 -- the root type discriminants so far, so no renamings occurred.
3358 if First_Discriminant
(Rec_Ent
) =
3359 First_Stored_Discriminant
(Rec_Ent
)
3364 -- Check if we have done some trivial renaming of the parent
3365 -- discriminants, i.e. something like
3367 -- type DT (X1, X2: int) is new PT (X1, X2);
3369 De
:= First_Discriminant
(Rec_Ent
);
3370 Dp
:= First_Discriminant
(Etype
(Rec_Ent
));
3371 while Present
(De
) loop
3372 pragma Assert
(Present
(Dp
));
3374 if Corresponding_Discriminant
(De
) /= Dp
then
3378 Next_Discriminant
(De
);
3379 Next_Discriminant
(Dp
);
3382 return Present
(Dp
);
3383 end Parent_Subtype_Renaming_Discrims
;
3385 ------------------------
3386 -- Requires_Init_Proc --
3387 ------------------------
3389 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean is
3390 Comp_Decl
: Node_Id
;
3395 -- Definitely do not need one if specifically suppressed
3397 if Initialization_Suppressed
(Rec_Id
) then
3401 -- If it is a type derived from a type with unknown discriminants,
3402 -- we cannot build an initialization procedure for it.
3404 if Has_Unknown_Discriminants
(Rec_Id
)
3405 or else Has_Unknown_Discriminants
(Etype
(Rec_Id
))
3410 -- Otherwise we need to generate an initialization procedure if
3411 -- Is_CPP_Class is False and at least one of the following applies:
3413 -- 1. Discriminants are present, since they need to be initialized
3414 -- with the appropriate discriminant constraint expressions.
3415 -- However, the discriminant of an unchecked union does not
3416 -- count, since the discriminant is not present.
3418 -- 2. The type is a tagged type, since the implicit Tag component
3419 -- needs to be initialized with a pointer to the dispatch table.
3421 -- 3. The type contains tasks
3423 -- 4. One or more components has an initial value
3425 -- 5. One or more components is for a type which itself requires
3426 -- an initialization procedure.
3428 -- 6. One or more components is a type that requires simple
3429 -- initialization (see Needs_Simple_Initialization), except
3430 -- that types Tag and Interface_Tag are excluded, since fields
3431 -- of these types are initialized by other means.
3433 -- 7. The type is the record type built for a task type (since at
3434 -- the very least, Create_Task must be called)
3436 -- 8. The type is the record type built for a protected type (since
3437 -- at least Initialize_Protection must be called)
3439 -- 9. The type is marked as a public entity. The reason we add this
3440 -- case (even if none of the above apply) is to properly handle
3441 -- Initialize_Scalars. If a package is compiled without an IS
3442 -- pragma, and the client is compiled with an IS pragma, then
3443 -- the client will think an initialization procedure is present
3444 -- and call it, when in fact no such procedure is required, but
3445 -- since the call is generated, there had better be a routine
3446 -- at the other end of the call, even if it does nothing).
3448 -- Note: the reason we exclude the CPP_Class case is because in this
3449 -- case the initialization is performed by the C++ constructors, and
3450 -- the IP is built by Set_CPP_Constructors.
3452 if Is_CPP_Class
(Rec_Id
) then
3455 elsif Is_Interface
(Rec_Id
) then
3458 elsif (Has_Discriminants
(Rec_Id
)
3459 and then not Is_Unchecked_Union
(Rec_Id
))
3460 or else Is_Tagged_Type
(Rec_Id
)
3461 or else Is_Concurrent_Record_Type
(Rec_Id
)
3462 or else Has_Task
(Rec_Id
)
3467 Id
:= First_Component
(Rec_Id
);
3468 while Present
(Id
) loop
3469 Comp_Decl
:= Parent
(Id
);
3472 if Present
(Expression
(Comp_Decl
))
3473 or else Has_Non_Null_Base_Init_Proc
(Typ
)
3474 or else Component_Needs_Simple_Initialization
(Typ
)
3479 Next_Component
(Id
);
3482 -- As explained above, a record initialization procedure is needed
3483 -- for public types in case Initialize_Scalars applies to a client.
3484 -- However, such a procedure is not needed in the case where either
3485 -- of restrictions No_Initialize_Scalars or No_Default_Initialization
3486 -- applies. No_Initialize_Scalars excludes the possibility of using
3487 -- Initialize_Scalars in any partition, and No_Default_Initialization
3488 -- implies that no initialization should ever be done for objects of
3489 -- the type, so is incompatible with Initialize_Scalars.
3491 if not Restriction_Active
(No_Initialize_Scalars
)
3492 and then not Restriction_Active
(No_Default_Initialization
)
3493 and then Is_Public
(Rec_Id
)
3499 end Requires_Init_Proc
;
3501 -- Start of processing for Build_Record_Init_Proc
3504 Rec_Type
:= Defining_Identifier
(N
);
3506 -- This may be full declaration of a private type, in which case
3507 -- the visible entity is a record, and the private entity has been
3508 -- exchanged with it in the private part of the current package.
3509 -- The initialization procedure is built for the record type, which
3510 -- is retrievable from the private entity.
3512 if Is_Incomplete_Or_Private_Type
(Rec_Type
) then
3513 Rec_Type
:= Underlying_Type
(Rec_Type
);
3516 -- If we have a variant record with restriction No_Implicit_Conditionals
3517 -- in effect, then we skip building the procedure. This is safe because
3518 -- if we can see the restriction, so can any caller, calls to initialize
3519 -- such records are not allowed for variant records if this restriction
3522 if Has_Variant_Part
(Rec_Type
)
3523 and then Restriction_Active
(No_Implicit_Conditionals
)
3528 -- If there are discriminants, build the discriminant map to replace
3529 -- discriminants by their discriminals in complex bound expressions.
3530 -- These only arise for the corresponding records of synchronized types.
3532 if Is_Concurrent_Record_Type
(Rec_Type
)
3533 and then Has_Discriminants
(Rec_Type
)
3538 Disc
:= First_Discriminant
(Rec_Type
);
3539 while Present
(Disc
) loop
3540 Append_Elmt
(Disc
, Discr_Map
);
3541 Append_Elmt
(Discriminal
(Disc
), Discr_Map
);
3542 Next_Discriminant
(Disc
);
3547 -- Derived types that have no type extension can use the initialization
3548 -- procedure of their parent and do not need a procedure of their own.
3549 -- This is only correct if there are no representation clauses for the
3550 -- type or its parent, and if the parent has in fact been frozen so
3551 -- that its initialization procedure exists.
3553 if Is_Derived_Type
(Rec_Type
)
3554 and then not Is_Tagged_Type
(Rec_Type
)
3555 and then not Is_Unchecked_Union
(Rec_Type
)
3556 and then not Has_New_Non_Standard_Rep
(Rec_Type
)
3557 and then not Parent_Subtype_Renaming_Discrims
3558 and then Has_Non_Null_Base_Init_Proc
(Etype
(Rec_Type
))
3560 Copy_TSS
(Base_Init_Proc
(Etype
(Rec_Type
)), Rec_Type
);
3562 -- Otherwise if we need an initialization procedure, then build one,
3563 -- mark it as public and inlinable and as having a completion.
3565 elsif Requires_Init_Proc
(Rec_Type
)
3566 or else Is_Unchecked_Union
(Rec_Type
)
3569 Make_Defining_Identifier
(Loc
,
3570 Chars
=> Make_Init_Proc_Name
(Rec_Type
));
3572 -- If No_Default_Initialization restriction is active, then we don't
3573 -- want to build an init_proc, but we need to mark that an init_proc
3574 -- would be needed if this restriction was not active (so that we can
3575 -- detect attempts to call it), so set a dummy init_proc in place.
3577 if Restriction_Active
(No_Default_Initialization
) then
3578 Set_Init_Proc
(Rec_Type
, Proc_Id
);
3582 Build_Offset_To_Top_Functions
;
3583 Build_CPP_Init_Procedure
;
3584 Build_Init_Procedure
;
3586 Set_Is_Public
(Proc_Id
, Is_Public
(Rec_Ent
));
3587 Set_Is_Internal
(Proc_Id
);
3588 Set_Has_Completion
(Proc_Id
);
3590 if not Debug_Generated_Code
then
3591 Set_Debug_Info_Off
(Proc_Id
);
3594 Set_Is_Inlined
(Proc_Id
, Inline_Init_Proc
(Rec_Type
));
3596 -- Do not build an aggregate if Modify_Tree_For_C, this isn't
3597 -- needed and may generate early references to non frozen types
3598 -- since we expand aggregate much more systematically.
3600 if Modify_Tree_For_C
then
3605 Agg
: constant Node_Id
:=
3606 Build_Equivalent_Record_Aggregate
(Rec_Type
);
3608 procedure Collect_Itypes
(Comp
: Node_Id
);
3609 -- Generate references to itypes in the aggregate, because
3610 -- the first use of the aggregate may be in a nested scope.
3612 --------------------
3613 -- Collect_Itypes --
3614 --------------------
3616 procedure Collect_Itypes
(Comp
: Node_Id
) is
3619 Typ
: constant Entity_Id
:= Etype
(Comp
);
3622 if Is_Array_Type
(Typ
) and then Is_Itype
(Typ
) then
3623 Ref
:= Make_Itype_Reference
(Loc
);
3624 Set_Itype
(Ref
, Typ
);
3625 Append_Freeze_Action
(Rec_Type
, Ref
);
3627 Ref
:= Make_Itype_Reference
(Loc
);
3628 Set_Itype
(Ref
, Etype
(First_Index
(Typ
)));
3629 Append_Freeze_Action
(Rec_Type
, Ref
);
3631 -- Recurse on nested arrays
3633 Sub_Aggr
:= First
(Expressions
(Comp
));
3634 while Present
(Sub_Aggr
) loop
3635 Collect_Itypes
(Sub_Aggr
);
3642 -- If there is a static initialization aggregate for the type,
3643 -- generate itype references for the types of its (sub)components,
3644 -- to prevent out-of-scope errors in the resulting tree.
3645 -- The aggregate may have been rewritten as a Raise node, in which
3646 -- case there are no relevant itypes.
3648 if Present
(Agg
) and then Nkind
(Agg
) = N_Aggregate
then
3649 Set_Static_Initialization
(Proc_Id
, Agg
);
3654 Comp
:= First
(Component_Associations
(Agg
));
3655 while Present
(Comp
) loop
3656 Collect_Itypes
(Expression
(Comp
));
3663 end Build_Record_Init_Proc
;
3665 ----------------------------
3666 -- Build_Slice_Assignment --
3667 ----------------------------
3669 -- Generates the following subprogram:
3672 -- (Source, Target : Array_Type,
3673 -- Left_Lo, Left_Hi : Index;
3674 -- Right_Lo, Right_Hi : Index;
3682 -- if Left_Hi < Left_Lo then
3695 -- Target (Li1) := Source (Ri1);
3698 -- exit when Li1 = Left_Lo;
3699 -- Li1 := Index'pred (Li1);
3700 -- Ri1 := Index'pred (Ri1);
3702 -- exit when Li1 = Left_Hi;
3703 -- Li1 := Index'succ (Li1);
3704 -- Ri1 := Index'succ (Ri1);
3709 procedure Build_Slice_Assignment
(Typ
: Entity_Id
) is
3710 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
3711 Index
: constant Entity_Id
:= Base_Type
(Etype
(First_Index
(Typ
)));
3713 Larray
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
3714 Rarray
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3715 Left_Lo
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
3716 Left_Hi
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
3717 Right_Lo
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3718 Right_Hi
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3719 Rev
: constant Entity_Id
:= Make_Temporary
(Loc
, 'D');
3720 -- Formal parameters of procedure
3722 Proc_Name
: constant Entity_Id
:=
3723 Make_Defining_Identifier
(Loc
,
3724 Chars
=> Make_TSS_Name
(Typ
, TSS_Slice_Assign
));
3726 Lnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
3727 Rnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R');
3728 -- Subscripts for left and right sides
3735 -- Build declarations for indexes
3740 Make_Object_Declaration
(Loc
,
3741 Defining_Identifier
=> Lnn
,
3742 Object_Definition
=>
3743 New_Occurrence_Of
(Index
, Loc
)));
3746 Make_Object_Declaration
(Loc
,
3747 Defining_Identifier
=> Rnn
,
3748 Object_Definition
=>
3749 New_Occurrence_Of
(Index
, Loc
)));
3753 -- Build test for empty slice case
3756 Make_If_Statement
(Loc
,
3759 Left_Opnd
=> New_Occurrence_Of
(Left_Hi
, Loc
),
3760 Right_Opnd
=> New_Occurrence_Of
(Left_Lo
, Loc
)),
3761 Then_Statements
=> New_List
(Make_Simple_Return_Statement
(Loc
))));
3763 -- Build initializations for indexes
3766 F_Init
: constant List_Id
:= New_List
;
3767 B_Init
: constant List_Id
:= New_List
;
3771 Make_Assignment_Statement
(Loc
,
3772 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3773 Expression
=> New_Occurrence_Of
(Left_Lo
, Loc
)));
3776 Make_Assignment_Statement
(Loc
,
3777 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3778 Expression
=> New_Occurrence_Of
(Right_Lo
, Loc
)));
3781 Make_Assignment_Statement
(Loc
,
3782 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3783 Expression
=> New_Occurrence_Of
(Left_Hi
, Loc
)));
3786 Make_Assignment_Statement
(Loc
,
3787 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3788 Expression
=> New_Occurrence_Of
(Right_Hi
, Loc
)));
3791 Make_If_Statement
(Loc
,
3792 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
3793 Then_Statements
=> B_Init
,
3794 Else_Statements
=> F_Init
));
3797 -- Now construct the assignment statement
3800 Make_Loop_Statement
(Loc
,
3801 Statements
=> New_List
(
3802 Make_Assignment_Statement
(Loc
,
3804 Make_Indexed_Component
(Loc
,
3805 Prefix
=> New_Occurrence_Of
(Larray
, Loc
),
3806 Expressions
=> New_List
(New_Occurrence_Of
(Lnn
, Loc
))),
3808 Make_Indexed_Component
(Loc
,
3809 Prefix
=> New_Occurrence_Of
(Rarray
, Loc
),
3810 Expressions
=> New_List
(New_Occurrence_Of
(Rnn
, Loc
))))),
3811 End_Label
=> Empty
);
3813 -- Build the exit condition and increment/decrement statements
3816 F_Ass
: constant List_Id
:= New_List
;
3817 B_Ass
: constant List_Id
:= New_List
;
3821 Make_Exit_Statement
(Loc
,
3824 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
3825 Right_Opnd
=> New_Occurrence_Of
(Left_Hi
, Loc
))));
3828 Make_Assignment_Statement
(Loc
,
3829 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3831 Make_Attribute_Reference
(Loc
,
3833 New_Occurrence_Of
(Index
, Loc
),
3834 Attribute_Name
=> Name_Succ
,
3835 Expressions
=> New_List
(
3836 New_Occurrence_Of
(Lnn
, Loc
)))));
3839 Make_Assignment_Statement
(Loc
,
3840 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3842 Make_Attribute_Reference
(Loc
,
3844 New_Occurrence_Of
(Index
, Loc
),
3845 Attribute_Name
=> Name_Succ
,
3846 Expressions
=> New_List
(
3847 New_Occurrence_Of
(Rnn
, Loc
)))));
3850 Make_Exit_Statement
(Loc
,
3853 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
3854 Right_Opnd
=> New_Occurrence_Of
(Left_Lo
, Loc
))));
3857 Make_Assignment_Statement
(Loc
,
3858 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3860 Make_Attribute_Reference
(Loc
,
3862 New_Occurrence_Of
(Index
, Loc
),
3863 Attribute_Name
=> Name_Pred
,
3864 Expressions
=> New_List
(
3865 New_Occurrence_Of
(Lnn
, Loc
)))));
3868 Make_Assignment_Statement
(Loc
,
3869 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3871 Make_Attribute_Reference
(Loc
,
3873 New_Occurrence_Of
(Index
, Loc
),
3874 Attribute_Name
=> Name_Pred
,
3875 Expressions
=> New_List
(
3876 New_Occurrence_Of
(Rnn
, Loc
)))));
3878 Append_To
(Statements
(Loops
),
3879 Make_If_Statement
(Loc
,
3880 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
3881 Then_Statements
=> B_Ass
,
3882 Else_Statements
=> F_Ass
));
3885 Append_To
(Stats
, Loops
);
3889 Formals
: List_Id
:= New_List
;
3892 Formals
:= New_List
(
3893 Make_Parameter_Specification
(Loc
,
3894 Defining_Identifier
=> Larray
,
3895 Out_Present
=> True,
3897 New_Occurrence_Of
(Base_Type
(Typ
), Loc
)),
3899 Make_Parameter_Specification
(Loc
,
3900 Defining_Identifier
=> Rarray
,
3902 New_Occurrence_Of
(Base_Type
(Typ
), Loc
)),
3904 Make_Parameter_Specification
(Loc
,
3905 Defining_Identifier
=> Left_Lo
,
3907 New_Occurrence_Of
(Index
, Loc
)),
3909 Make_Parameter_Specification
(Loc
,
3910 Defining_Identifier
=> Left_Hi
,
3912 New_Occurrence_Of
(Index
, Loc
)),
3914 Make_Parameter_Specification
(Loc
,
3915 Defining_Identifier
=> Right_Lo
,
3917 New_Occurrence_Of
(Index
, Loc
)),
3919 Make_Parameter_Specification
(Loc
,
3920 Defining_Identifier
=> Right_Hi
,
3922 New_Occurrence_Of
(Index
, Loc
)));
3925 Make_Parameter_Specification
(Loc
,
3926 Defining_Identifier
=> Rev
,
3928 New_Occurrence_Of
(Standard_Boolean
, Loc
)));
3931 Make_Procedure_Specification
(Loc
,
3932 Defining_Unit_Name
=> Proc_Name
,
3933 Parameter_Specifications
=> Formals
);
3936 Make_Subprogram_Body
(Loc
,
3937 Specification
=> Spec
,
3938 Declarations
=> Decls
,
3939 Handled_Statement_Sequence
=>
3940 Make_Handled_Sequence_Of_Statements
(Loc
,
3941 Statements
=> Stats
)));
3944 Set_TSS
(Typ
, Proc_Name
);
3945 Set_Is_Pure
(Proc_Name
);
3946 end Build_Slice_Assignment
;
3948 -----------------------------
3949 -- Build_Untagged_Equality --
3950 -----------------------------
3952 procedure Build_Untagged_Equality
(Typ
: Entity_Id
) is
3960 function User_Defined_Eq
(T
: Entity_Id
) return Entity_Id
;
3961 -- Check whether the type T has a user-defined primitive equality. If so
3962 -- return it, else return Empty. If true for a component of Typ, we have
3963 -- to build the primitive equality for it.
3965 ---------------------
3966 -- User_Defined_Eq --
3967 ---------------------
3969 function User_Defined_Eq
(T
: Entity_Id
) return Entity_Id
is
3974 Op
:= TSS
(T
, TSS_Composite_Equality
);
3976 if Present
(Op
) then
3980 Prim
:= First_Elmt
(Collect_Primitive_Operations
(T
));
3981 while Present
(Prim
) loop
3984 if Chars
(Op
) = Name_Op_Eq
3985 and then Etype
(Op
) = Standard_Boolean
3986 and then Etype
(First_Formal
(Op
)) = T
3987 and then Etype
(Next_Formal
(First_Formal
(Op
))) = T
3996 end User_Defined_Eq
;
3998 -- Start of processing for Build_Untagged_Equality
4001 -- If a record component has a primitive equality operation, we must
4002 -- build the corresponding one for the current type.
4005 Comp
:= First_Component
(Typ
);
4006 while Present
(Comp
) loop
4007 if Is_Record_Type
(Etype
(Comp
))
4008 and then Present
(User_Defined_Eq
(Etype
(Comp
)))
4013 Next_Component
(Comp
);
4016 -- If there is a user-defined equality for the type, we do not create
4017 -- the implicit one.
4019 Prim
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
4021 while Present
(Prim
) loop
4022 if Chars
(Node
(Prim
)) = Name_Op_Eq
4023 and then Comes_From_Source
(Node
(Prim
))
4025 -- Don't we also need to check formal types and return type as in
4026 -- User_Defined_Eq above???
4029 Eq_Op
:= Node
(Prim
);
4037 -- If the type is derived, inherit the operation, if present, from the
4038 -- parent type. It may have been declared after the type derivation. If
4039 -- the parent type itself is derived, it may have inherited an operation
4040 -- that has itself been overridden, so update its alias and related
4041 -- flags. Ditto for inequality.
4043 if No
(Eq_Op
) and then Is_Derived_Type
(Typ
) then
4044 Prim
:= First_Elmt
(Collect_Primitive_Operations
(Etype
(Typ
)));
4045 while Present
(Prim
) loop
4046 if Chars
(Node
(Prim
)) = Name_Op_Eq
then
4047 Copy_TSS
(Node
(Prim
), Typ
);
4051 Op
: constant Entity_Id
:= User_Defined_Eq
(Typ
);
4052 Eq_Op
: constant Entity_Id
:= Node
(Prim
);
4053 NE_Op
: constant Entity_Id
:= Next_Entity
(Eq_Op
);
4056 if Present
(Op
) then
4057 Set_Alias
(Op
, Eq_Op
);
4058 Set_Is_Abstract_Subprogram
4059 (Op
, Is_Abstract_Subprogram
(Eq_Op
));
4061 if Chars
(Next_Entity
(Op
)) = Name_Op_Ne
then
4062 Set_Is_Abstract_Subprogram
4063 (Next_Entity
(Op
), Is_Abstract_Subprogram
(NE_Op
));
4075 -- If not inherited and not user-defined, build body as for a type with
4076 -- tagged components.
4080 Make_Eq_Body
(Typ
, Make_TSS_Name
(Typ
, TSS_Composite_Equality
));
4081 Op
:= Defining_Entity
(Decl
);
4085 if Is_Library_Level_Entity
(Typ
) then
4089 end Build_Untagged_Equality
;
4091 -----------------------------------
4092 -- Build_Variant_Record_Equality --
4093 -----------------------------------
4097 -- function _Equality (X, Y : T) return Boolean is
4099 -- -- Compare discriminants
4101 -- if X.D1 /= Y.D1 or else X.D2 /= Y.D2 or else ... then
4105 -- -- Compare components
4107 -- if X.C1 /= Y.C1 or else X.C2 /= Y.C2 or else ... then
4111 -- -- Compare variant part
4115 -- if X.C2 /= Y.C2 or else X.C3 /= Y.C3 or else ... then
4120 -- if X.Cn /= Y.Cn or else ... then
4128 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
) is
4129 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
4131 F
: constant Entity_Id
:=
4132 Make_Defining_Identifier
(Loc
,
4133 Chars
=> Make_TSS_Name
(Typ
, TSS_Composite_Equality
));
4135 X
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_X
);
4136 Y
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_Y
);
4138 Def
: constant Node_Id
:= Parent
(Typ
);
4139 Comps
: constant Node_Id
:= Component_List
(Type_Definition
(Def
));
4140 Stmts
: constant List_Id
:= New_List
;
4141 Pspecs
: constant List_Id
:= New_List
;
4144 -- If we have a variant record with restriction No_Implicit_Conditionals
4145 -- in effect, then we skip building the procedure. This is safe because
4146 -- if we can see the restriction, so can any caller, calls to equality
4147 -- test routines are not allowed for variant records if this restriction
4150 if Restriction_Active
(No_Implicit_Conditionals
) then
4154 -- Derived Unchecked_Union types no longer inherit the equality function
4157 if Is_Derived_Type
(Typ
)
4158 and then not Is_Unchecked_Union
(Typ
)
4159 and then not Has_New_Non_Standard_Rep
(Typ
)
4162 Parent_Eq
: constant Entity_Id
:=
4163 TSS
(Root_Type
(Typ
), TSS_Composite_Equality
);
4165 if Present
(Parent_Eq
) then
4166 Copy_TSS
(Parent_Eq
, Typ
);
4173 Make_Subprogram_Body
(Loc
,
4175 Make_Function_Specification
(Loc
,
4176 Defining_Unit_Name
=> F
,
4177 Parameter_Specifications
=> Pspecs
,
4178 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
4179 Declarations
=> New_List
,
4180 Handled_Statement_Sequence
=>
4181 Make_Handled_Sequence_Of_Statements
(Loc
, Statements
=> Stmts
)));
4184 Make_Parameter_Specification
(Loc
,
4185 Defining_Identifier
=> X
,
4186 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
4189 Make_Parameter_Specification
(Loc
,
4190 Defining_Identifier
=> Y
,
4191 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
4193 -- Unchecked_Unions require additional machinery to support equality.
4194 -- Two extra parameters (A and B) are added to the equality function
4195 -- parameter list for each discriminant of the type, in order to
4196 -- capture the inferred values of the discriminants in equality calls.
4197 -- The names of the parameters match the names of the corresponding
4198 -- discriminant, with an added suffix.
4200 if Is_Unchecked_Union
(Typ
) then
4203 Discr_Type
: Entity_Id
;
4205 New_Discrs
: Elist_Id
;
4208 New_Discrs
:= New_Elmt_List
;
4210 Discr
:= First_Discriminant
(Typ
);
4211 while Present
(Discr
) loop
4212 Discr_Type
:= Etype
(Discr
);
4213 A
:= Make_Defining_Identifier
(Loc
,
4214 Chars
=> New_External_Name
(Chars
(Discr
), 'A'));
4216 B
:= Make_Defining_Identifier
(Loc
,
4217 Chars
=> New_External_Name
(Chars
(Discr
), 'B'));
4219 -- Add new parameters to the parameter list
4222 Make_Parameter_Specification
(Loc
,
4223 Defining_Identifier
=> A
,
4225 New_Occurrence_Of
(Discr_Type
, Loc
)));
4228 Make_Parameter_Specification
(Loc
,
4229 Defining_Identifier
=> B
,
4231 New_Occurrence_Of
(Discr_Type
, Loc
)));
4233 Append_Elmt
(A
, New_Discrs
);
4235 -- Generate the following code to compare each of the inferred
4243 Make_If_Statement
(Loc
,
4246 Left_Opnd
=> New_Occurrence_Of
(A
, Loc
),
4247 Right_Opnd
=> New_Occurrence_Of
(B
, Loc
)),
4248 Then_Statements
=> New_List
(
4249 Make_Simple_Return_Statement
(Loc
,
4251 New_Occurrence_Of
(Standard_False
, Loc
)))));
4252 Next_Discriminant
(Discr
);
4255 -- Generate component-by-component comparison. Note that we must
4256 -- propagate the inferred discriminants formals to act as
4257 -- the case statement switch. Their value is added when an
4258 -- equality call on unchecked unions is expanded.
4260 Append_List_To
(Stmts
, Make_Eq_Case
(Typ
, Comps
, New_Discrs
));
4263 -- Normal case (not unchecked union)
4267 Make_Eq_If
(Typ
, Discriminant_Specifications
(Def
)));
4268 Append_List_To
(Stmts
, Make_Eq_Case
(Typ
, Comps
));
4272 Make_Simple_Return_Statement
(Loc
,
4273 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
4278 if not Debug_Generated_Code
then
4279 Set_Debug_Info_Off
(F
);
4281 end Build_Variant_Record_Equality
;
4283 -----------------------------
4284 -- Check_Stream_Attributes --
4285 -----------------------------
4287 procedure Check_Stream_Attributes
(Typ
: Entity_Id
) is
4289 Par_Read
: constant Boolean :=
4290 Stream_Attribute_Available
(Typ
, TSS_Stream_Read
)
4291 and then not Has_Specified_Stream_Read
(Typ
);
4292 Par_Write
: constant Boolean :=
4293 Stream_Attribute_Available
(Typ
, TSS_Stream_Write
)
4294 and then not Has_Specified_Stream_Write
(Typ
);
4296 procedure Check_Attr
(Nam
: Name_Id
; TSS_Nam
: TSS_Name_Type
);
4297 -- Check that Comp has a user-specified Nam stream attribute
4303 procedure Check_Attr
(Nam
: Name_Id
; TSS_Nam
: TSS_Name_Type
) is
4305 if not Stream_Attribute_Available
(Etype
(Comp
), TSS_Nam
) then
4306 Error_Msg_Name_1
:= Nam
;
4308 ("|component& in limited extension must have% attribute", Comp
);
4312 -- Start of processing for Check_Stream_Attributes
4315 if Par_Read
or else Par_Write
then
4316 Comp
:= First_Component
(Typ
);
4317 while Present
(Comp
) loop
4318 if Comes_From_Source
(Comp
)
4319 and then Original_Record_Component
(Comp
) = Comp
4320 and then Is_Limited_Type
(Etype
(Comp
))
4323 Check_Attr
(Name_Read
, TSS_Stream_Read
);
4327 Check_Attr
(Name_Write
, TSS_Stream_Write
);
4331 Next_Component
(Comp
);
4334 end Check_Stream_Attributes
;
4336 ----------------------
4337 -- Clean_Task_Names --
4338 ----------------------
4340 procedure Clean_Task_Names
4342 Proc_Id
: Entity_Id
)
4346 and then not Restriction_Active
(No_Implicit_Heap_Allocations
)
4347 and then not Global_Discard_Names
4348 and then Tagged_Type_Expansion
4350 Set_Uses_Sec_Stack
(Proc_Id
);
4352 end Clean_Task_Names
;
4354 ------------------------------
4355 -- Expand_Freeze_Array_Type --
4356 ------------------------------
4358 procedure Expand_Freeze_Array_Type
(N
: Node_Id
) is
4359 Typ
: constant Entity_Id
:= Entity
(N
);
4360 Base
: constant Entity_Id
:= Base_Type
(Typ
);
4361 Comp_Typ
: constant Entity_Id
:= Component_Type
(Typ
);
4364 if not Is_Bit_Packed_Array
(Typ
) then
4366 -- If the component contains tasks, so does the array type. This may
4367 -- not be indicated in the array type because the component may have
4368 -- been a private type at the point of definition. Same if component
4369 -- type is controlled or contains protected objects.
4371 Propagate_Concurrent_Flags
(Base
, Comp_Typ
);
4372 Set_Has_Controlled_Component
4373 (Base
, Has_Controlled_Component
(Comp_Typ
)
4374 or else Is_Controlled
(Comp_Typ
));
4376 if No
(Init_Proc
(Base
)) then
4378 -- If this is an anonymous array created for a declaration with
4379 -- an initial value, its init_proc will never be called. The
4380 -- initial value itself may have been expanded into assignments,
4381 -- in which case the object declaration is carries the
4382 -- No_Initialization flag.
4385 and then Nkind
(Associated_Node_For_Itype
(Base
)) =
4386 N_Object_Declaration
4388 (Present
(Expression
(Associated_Node_For_Itype
(Base
)))
4389 or else No_Initialization
(Associated_Node_For_Itype
(Base
)))
4393 -- We do not need an init proc for string or wide [wide] string,
4394 -- since the only time these need initialization in normalize or
4395 -- initialize scalars mode, and these types are treated specially
4396 -- and do not need initialization procedures.
4398 elsif Is_Standard_String_Type
(Base
) then
4401 -- Otherwise we have to build an init proc for the subtype
4404 Build_Array_Init_Proc
(Base
, N
);
4408 if Typ
= Base
and then Has_Controlled_Component
(Base
) then
4409 Build_Controlling_Procs
(Base
);
4411 if not Is_Limited_Type
(Comp_Typ
)
4412 and then Number_Dimensions
(Typ
) = 1
4414 Build_Slice_Assignment
(Typ
);
4418 -- For packed case, default initialization, except if the component type
4419 -- is itself a packed structure with an initialization procedure, or
4420 -- initialize/normalize scalars active, and we have a base type, or the
4421 -- type is public, because in that case a client might specify
4422 -- Normalize_Scalars and there better be a public Init_Proc for it.
4424 elsif (Present
(Init_Proc
(Component_Type
(Base
)))
4425 and then No
(Base_Init_Proc
(Base
)))
4426 or else (Init_Or_Norm_Scalars
and then Base
= Typ
)
4427 or else Is_Public
(Typ
)
4429 Build_Array_Init_Proc
(Base
, N
);
4431 end Expand_Freeze_Array_Type
;
4433 -----------------------------------
4434 -- Expand_Freeze_Class_Wide_Type --
4435 -----------------------------------
4437 procedure Expand_Freeze_Class_Wide_Type
(N
: Node_Id
) is
4438 function Is_C_Derivation
(Typ
: Entity_Id
) return Boolean;
4439 -- Given a type, determine whether it is derived from a C or C++ root
4441 ---------------------
4442 -- Is_C_Derivation --
4443 ---------------------
4445 function Is_C_Derivation
(Typ
: Entity_Id
) return Boolean is
4452 or else Convention
(T
) = Convention_C
4453 or else Convention
(T
) = Convention_CPP
4458 exit when T
= Etype
(T
);
4464 end Is_C_Derivation
;
4468 Typ
: constant Entity_Id
:= Entity
(N
);
4469 Root
: constant Entity_Id
:= Root_Type
(Typ
);
4471 -- Start of processing for Expand_Freeze_Class_Wide_Type
4474 -- Certain run-time configurations and targets do not provide support
4475 -- for controlled types.
4477 if Restriction_Active
(No_Finalization
) then
4480 -- Do not create TSS routine Finalize_Address when dispatching calls are
4481 -- disabled since the core of the routine is a dispatching call.
4483 elsif Restriction_Active
(No_Dispatching_Calls
) then
4486 -- Do not create TSS routine Finalize_Address for concurrent class-wide
4487 -- types. Ignore C, C++, CIL and Java types since it is assumed that the
4488 -- non-Ada side will handle their destruction.
4490 elsif Is_Concurrent_Type
(Root
)
4491 or else Is_C_Derivation
(Root
)
4492 or else Convention
(Typ
) = Convention_CPP
4496 -- Do not create TSS routine Finalize_Address when compiling in CodePeer
4497 -- mode since the routine contains an Unchecked_Conversion.
4499 elsif CodePeer_Mode
then
4503 -- Create the body of TSS primitive Finalize_Address. This automatically
4504 -- sets the TSS entry for the class-wide type.
4506 Make_Finalize_Address_Body
(Typ
);
4507 end Expand_Freeze_Class_Wide_Type
;
4509 ------------------------------------
4510 -- Expand_Freeze_Enumeration_Type --
4511 ------------------------------------
4513 procedure Expand_Freeze_Enumeration_Type
(N
: Node_Id
) is
4514 Typ
: constant Entity_Id
:= Entity
(N
);
4515 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
4520 Is_Contiguous
: Boolean;
4528 pragma Warnings
(Off
, Func
);
4531 -- Various optimizations possible if given representation is contiguous
4533 Is_Contiguous
:= True;
4535 Ent
:= First_Literal
(Typ
);
4536 Last_Repval
:= Enumeration_Rep
(Ent
);
4539 while Present
(Ent
) loop
4540 if Enumeration_Rep
(Ent
) - Last_Repval
/= 1 then
4541 Is_Contiguous
:= False;
4544 Last_Repval
:= Enumeration_Rep
(Ent
);
4550 if Is_Contiguous
then
4551 Set_Has_Contiguous_Rep
(Typ
);
4552 Ent
:= First_Literal
(Typ
);
4554 Lst
:= New_List
(New_Occurrence_Of
(Ent
, Sloc
(Ent
)));
4557 -- Build list of literal references
4562 Ent
:= First_Literal
(Typ
);
4563 while Present
(Ent
) loop
4564 Append_To
(Lst
, New_Occurrence_Of
(Ent
, Sloc
(Ent
)));
4570 -- Now build an array declaration
4572 -- typA : array (Natural range 0 .. num - 1) of ctype :=
4573 -- (v, v, v, v, v, ....)
4575 -- where ctype is the corresponding integer type. If the representation
4576 -- is contiguous, we only keep the first literal, which provides the
4577 -- offset for Pos_To_Rep computations.
4580 Make_Defining_Identifier
(Loc
,
4581 Chars
=> New_External_Name
(Chars
(Typ
), 'A'));
4583 Append_Freeze_Action
(Typ
,
4584 Make_Object_Declaration
(Loc
,
4585 Defining_Identifier
=> Arr
,
4586 Constant_Present
=> True,
4588 Object_Definition
=>
4589 Make_Constrained_Array_Definition
(Loc
,
4590 Discrete_Subtype_Definitions
=> New_List
(
4591 Make_Subtype_Indication
(Loc
,
4592 Subtype_Mark
=> New_Occurrence_Of
(Standard_Natural
, Loc
),
4594 Make_Range_Constraint
(Loc
,
4598 Make_Integer_Literal
(Loc
, 0),
4600 Make_Integer_Literal
(Loc
, Num
- 1))))),
4602 Component_Definition
=>
4603 Make_Component_Definition
(Loc
,
4604 Aliased_Present
=> False,
4605 Subtype_Indication
=> New_Occurrence_Of
(Typ
, Loc
))),
4608 Make_Aggregate
(Loc
,
4609 Expressions
=> Lst
)));
4611 Set_Enum_Pos_To_Rep
(Typ
, Arr
);
4613 -- Now we build the function that converts representation values to
4614 -- position values. This function has the form:
4616 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
4619 -- when enum-lit'Enum_Rep => return posval;
4620 -- when enum-lit'Enum_Rep => return posval;
4623 -- [raise Constraint_Error when F "invalid data"]
4628 -- Note: the F parameter determines whether the others case (no valid
4629 -- representation) raises Constraint_Error or returns a unique value
4630 -- of minus one. The latter case is used, e.g. in 'Valid code.
4632 -- Note: the reason we use Enum_Rep values in the case here is to avoid
4633 -- the code generator making inappropriate assumptions about the range
4634 -- of the values in the case where the value is invalid. ityp is a
4635 -- signed or unsigned integer type of appropriate width.
4637 -- Note: if exceptions are not supported, then we suppress the raise
4638 -- and return -1 unconditionally (this is an erroneous program in any
4639 -- case and there is no obligation to raise Constraint_Error here). We
4640 -- also do this if pragma Restrictions (No_Exceptions) is active.
4642 -- Is this right??? What about No_Exception_Propagation???
4644 -- Representations are signed
4646 if Enumeration_Rep
(First_Literal
(Typ
)) < 0 then
4648 -- The underlying type is signed. Reset the Is_Unsigned_Type
4649 -- explicitly, because it might have been inherited from
4652 Set_Is_Unsigned_Type
(Typ
, False);
4654 if Esize
(Typ
) <= Standard_Integer_Size
then
4655 Ityp
:= Standard_Integer
;
4657 Ityp
:= Universal_Integer
;
4660 -- Representations are unsigned
4663 if Esize
(Typ
) <= Standard_Integer_Size
then
4664 Ityp
:= RTE
(RE_Unsigned
);
4666 Ityp
:= RTE
(RE_Long_Long_Unsigned
);
4670 -- The body of the function is a case statement. First collect case
4671 -- alternatives, or optimize the contiguous case.
4675 -- If representation is contiguous, Pos is computed by subtracting
4676 -- the representation of the first literal.
4678 if Is_Contiguous
then
4679 Ent
:= First_Literal
(Typ
);
4681 if Enumeration_Rep
(Ent
) = Last_Repval
then
4683 -- Another special case: for a single literal, Pos is zero
4685 Pos_Expr
:= Make_Integer_Literal
(Loc
, Uint_0
);
4689 Convert_To
(Standard_Integer
,
4690 Make_Op_Subtract
(Loc
,
4692 Unchecked_Convert_To
4693 (Ityp
, Make_Identifier
(Loc
, Name_uA
)),
4695 Make_Integer_Literal
(Loc
,
4696 Intval
=> Enumeration_Rep
(First_Literal
(Typ
)))));
4700 Make_Case_Statement_Alternative
(Loc
,
4701 Discrete_Choices
=> New_List
(
4702 Make_Range
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
4704 Make_Integer_Literal
(Loc
,
4705 Intval
=> Enumeration_Rep
(Ent
)),
4707 Make_Integer_Literal
(Loc
, Intval
=> Last_Repval
))),
4709 Statements
=> New_List
(
4710 Make_Simple_Return_Statement
(Loc
,
4711 Expression
=> Pos_Expr
))));
4714 Ent
:= First_Literal
(Typ
);
4715 while Present
(Ent
) loop
4717 Make_Case_Statement_Alternative
(Loc
,
4718 Discrete_Choices
=> New_List
(
4719 Make_Integer_Literal
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
4720 Intval
=> Enumeration_Rep
(Ent
))),
4722 Statements
=> New_List
(
4723 Make_Simple_Return_Statement
(Loc
,
4725 Make_Integer_Literal
(Loc
,
4726 Intval
=> Enumeration_Pos
(Ent
))))));
4732 -- In normal mode, add the others clause with the test.
4733 -- If Predicates_Ignored is True, validity checks do not apply to
4736 if not No_Exception_Handlers_Set
4737 and then not Predicates_Ignored
(Typ
)
4740 Make_Case_Statement_Alternative
(Loc
,
4741 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
4742 Statements
=> New_List
(
4743 Make_Raise_Constraint_Error
(Loc
,
4744 Condition
=> Make_Identifier
(Loc
, Name_uF
),
4745 Reason
=> CE_Invalid_Data
),
4746 Make_Simple_Return_Statement
(Loc
,
4747 Expression
=> Make_Integer_Literal
(Loc
, -1)))));
4749 -- If either of the restrictions No_Exceptions_Handlers/Propagation is
4750 -- active then return -1 (we cannot usefully raise Constraint_Error in
4751 -- this case). See description above for further details.
4755 Make_Case_Statement_Alternative
(Loc
,
4756 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
4757 Statements
=> New_List
(
4758 Make_Simple_Return_Statement
(Loc
,
4759 Expression
=> Make_Integer_Literal
(Loc
, -1)))));
4762 -- Now we can build the function body
4765 Make_Defining_Identifier
(Loc
, Make_TSS_Name
(Typ
, TSS_Rep_To_Pos
));
4768 Make_Subprogram_Body
(Loc
,
4770 Make_Function_Specification
(Loc
,
4771 Defining_Unit_Name
=> Fent
,
4772 Parameter_Specifications
=> New_List
(
4773 Make_Parameter_Specification
(Loc
,
4774 Defining_Identifier
=>
4775 Make_Defining_Identifier
(Loc
, Name_uA
),
4776 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
4777 Make_Parameter_Specification
(Loc
,
4778 Defining_Identifier
=>
4779 Make_Defining_Identifier
(Loc
, Name_uF
),
4781 New_Occurrence_Of
(Standard_Boolean
, Loc
))),
4783 Result_Definition
=> New_Occurrence_Of
(Standard_Integer
, Loc
)),
4785 Declarations
=> Empty_List
,
4787 Handled_Statement_Sequence
=>
4788 Make_Handled_Sequence_Of_Statements
(Loc
,
4789 Statements
=> New_List
(
4790 Make_Case_Statement
(Loc
,
4792 Unchecked_Convert_To
4793 (Ityp
, Make_Identifier
(Loc
, Name_uA
)),
4794 Alternatives
=> Lst
))));
4796 Set_TSS
(Typ
, Fent
);
4798 -- Set Pure flag (it will be reset if the current context is not Pure).
4799 -- We also pretend there was a pragma Pure_Function so that for purposes
4800 -- of optimization and constant-folding, we will consider the function
4801 -- Pure even if we are not in a Pure context).
4804 Set_Has_Pragma_Pure_Function
(Fent
);
4806 -- Unless we are in -gnatD mode, where we are debugging generated code,
4807 -- this is an internal entity for which we don't need debug info.
4809 if not Debug_Generated_Code
then
4810 Set_Debug_Info_Off
(Fent
);
4813 Set_Is_Inlined
(Fent
);
4816 when RE_Not_Available
=>
4818 end Expand_Freeze_Enumeration_Type
;
4820 -------------------------------
4821 -- Expand_Freeze_Record_Type --
4822 -------------------------------
4824 procedure Expand_Freeze_Record_Type
(N
: Node_Id
) is
4825 Typ
: constant Node_Id
:= Entity
(N
);
4826 Typ_Decl
: constant Node_Id
:= Parent
(Typ
);
4829 Comp_Typ
: Entity_Id
;
4830 Predef_List
: List_Id
;
4832 Wrapper_Decl_List
: List_Id
:= No_List
;
4833 Wrapper_Body_List
: List_Id
:= No_List
;
4835 Renamed_Eq
: Node_Id
:= Empty
;
4836 -- Defining unit name for the predefined equality function in the case
4837 -- where the type has a primitive operation that is a renaming of
4838 -- predefined equality (but only if there is also an overriding
4839 -- user-defined equality function). Used to pass this entity from
4840 -- Make_Predefined_Primitive_Specs to Predefined_Primitive_Bodies.
4842 -- Start of processing for Expand_Freeze_Record_Type
4845 -- Build discriminant checking functions if not a derived type (for
4846 -- derived types that are not tagged types, always use the discriminant
4847 -- checking functions of the parent type). However, for untagged types
4848 -- the derivation may have taken place before the parent was frozen, so
4849 -- we copy explicitly the discriminant checking functions from the
4850 -- parent into the components of the derived type.
4852 if not Is_Derived_Type
(Typ
)
4853 or else Has_New_Non_Standard_Rep
(Typ
)
4854 or else Is_Tagged_Type
(Typ
)
4856 Build_Discr_Checking_Funcs
(Typ_Decl
);
4858 elsif Is_Derived_Type
(Typ
)
4859 and then not Is_Tagged_Type
(Typ
)
4861 -- If we have a derived Unchecked_Union, we do not inherit the
4862 -- discriminant checking functions from the parent type since the
4863 -- discriminants are non existent.
4865 and then not Is_Unchecked_Union
(Typ
)
4866 and then Has_Discriminants
(Typ
)
4869 Old_Comp
: Entity_Id
;
4873 First_Component
(Base_Type
(Underlying_Type
(Etype
(Typ
))));
4874 Comp
:= First_Component
(Typ
);
4875 while Present
(Comp
) loop
4876 if Ekind
(Comp
) = E_Component
4877 and then Chars
(Comp
) = Chars
(Old_Comp
)
4879 Set_Discriminant_Checking_Func
4880 (Comp
, Discriminant_Checking_Func
(Old_Comp
));
4883 Next_Component
(Old_Comp
);
4884 Next_Component
(Comp
);
4889 if Is_Derived_Type
(Typ
)
4890 and then Is_Limited_Type
(Typ
)
4891 and then Is_Tagged_Type
(Typ
)
4893 Check_Stream_Attributes
(Typ
);
4896 -- Update task, protected, and controlled component flags, because some
4897 -- of the component types may have been private at the point of the
4898 -- record declaration. Detect anonymous access-to-controlled components.
4900 Comp
:= First_Component
(Typ
);
4901 while Present
(Comp
) loop
4902 Comp_Typ
:= Etype
(Comp
);
4904 Propagate_Concurrent_Flags
(Typ
, Comp_Typ
);
4906 -- Do not set Has_Controlled_Component on a class-wide equivalent
4907 -- type. See Make_CW_Equivalent_Type.
4909 if not Is_Class_Wide_Equivalent_Type
(Typ
)
4911 (Has_Controlled_Component
(Comp_Typ
)
4912 or else (Chars
(Comp
) /= Name_uParent
4913 and then (Is_Controlled_Active
(Comp_Typ
))))
4915 Set_Has_Controlled_Component
(Typ
);
4918 Next_Component
(Comp
);
4921 -- Handle constructors of untagged CPP_Class types
4923 if not Is_Tagged_Type
(Typ
) and then Is_CPP_Class
(Typ
) then
4924 Set_CPP_Constructors
(Typ
);
4927 -- Creation of the Dispatch Table. Note that a Dispatch Table is built
4928 -- for regular tagged types as well as for Ada types deriving from a C++
4929 -- Class, but not for tagged types directly corresponding to C++ classes
4930 -- In the later case we assume that it is created in the C++ side and we
4933 if Is_Tagged_Type
(Typ
) then
4935 -- Add the _Tag component
4937 if Underlying_Type
(Etype
(Typ
)) = Typ
then
4938 Expand_Tagged_Root
(Typ
);
4941 if Is_CPP_Class
(Typ
) then
4942 Set_All_DT_Position
(Typ
);
4944 -- Create the tag entities with a minimum decoration
4946 if Tagged_Type_Expansion
then
4947 Append_Freeze_Actions
(Typ
, Make_Tags
(Typ
));
4950 Set_CPP_Constructors
(Typ
);
4953 if not Building_Static_DT
(Typ
) then
4955 -- Usually inherited primitives are not delayed but the first
4956 -- Ada extension of a CPP_Class is an exception since the
4957 -- address of the inherited subprogram has to be inserted in
4958 -- the new Ada Dispatch Table and this is a freezing action.
4960 -- Similarly, if this is an inherited operation whose parent is
4961 -- not frozen yet, it is not in the DT of the parent, and we
4962 -- generate an explicit freeze node for the inherited operation
4963 -- so it is properly inserted in the DT of the current type.
4970 Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
4971 while Present
(Elmt
) loop
4972 Subp
:= Node
(Elmt
);
4974 if Present
(Alias
(Subp
)) then
4975 if Is_CPP_Class
(Etype
(Typ
)) then
4976 Set_Has_Delayed_Freeze
(Subp
);
4978 elsif Has_Delayed_Freeze
(Alias
(Subp
))
4979 and then not Is_Frozen
(Alias
(Subp
))
4981 Set_Is_Frozen
(Subp
, False);
4982 Set_Has_Delayed_Freeze
(Subp
);
4991 -- Unfreeze momentarily the type to add the predefined primitives
4992 -- operations. The reason we unfreeze is so that these predefined
4993 -- operations will indeed end up as primitive operations (which
4994 -- must be before the freeze point).
4996 Set_Is_Frozen
(Typ
, False);
4998 -- Do not add the spec of predefined primitives in case of
4999 -- CPP tagged type derivations that have convention CPP.
5001 if Is_CPP_Class
(Root_Type
(Typ
))
5002 and then Convention
(Typ
) = Convention_CPP
5006 -- Do not add the spec of the predefined primitives if we are
5007 -- compiling under restriction No_Dispatching_Calls.
5009 elsif not Restriction_Active
(No_Dispatching_Calls
) then
5010 Make_Predefined_Primitive_Specs
(Typ
, Predef_List
, Renamed_Eq
);
5011 Insert_List_Before_And_Analyze
(N
, Predef_List
);
5014 -- Ada 2005 (AI-391): For a nonabstract null extension, create
5015 -- wrapper functions for each nonoverridden inherited function
5016 -- with a controlling result of the type. The wrapper for such
5017 -- a function returns an extension aggregate that invokes the
5020 if Ada_Version
>= Ada_2005
5021 and then not Is_Abstract_Type
(Typ
)
5022 and then Is_Null_Extension
(Typ
)
5024 Make_Controlling_Function_Wrappers
5025 (Typ
, Wrapper_Decl_List
, Wrapper_Body_List
);
5026 Insert_List_Before_And_Analyze
(N
, Wrapper_Decl_List
);
5029 -- Ada 2005 (AI-251): For a nonabstract type extension, build
5030 -- null procedure declarations for each set of homographic null
5031 -- procedures that are inherited from interface types but not
5032 -- overridden. This is done to ensure that the dispatch table
5033 -- entry associated with such null primitives are properly filled.
5035 if Ada_Version
>= Ada_2005
5036 and then Etype
(Typ
) /= Typ
5037 and then not Is_Abstract_Type
(Typ
)
5038 and then Has_Interfaces
(Typ
)
5040 Insert_Actions
(N
, Make_Null_Procedure_Specs
(Typ
));
5043 Set_Is_Frozen
(Typ
);
5045 if not Is_Derived_Type
(Typ
)
5046 or else Is_Tagged_Type
(Etype
(Typ
))
5048 Set_All_DT_Position
(Typ
);
5050 -- If this is a type derived from an untagged private type whose
5051 -- full view is tagged, the type is marked tagged for layout
5052 -- reasons, but it has no dispatch table.
5054 elsif Is_Derived_Type
(Typ
)
5055 and then Is_Private_Type
(Etype
(Typ
))
5056 and then not Is_Tagged_Type
(Etype
(Typ
))
5061 -- Create and decorate the tags. Suppress their creation when
5062 -- not Tagged_Type_Expansion because the dispatching mechanism is
5063 -- handled internally by the virtual target.
5065 if Tagged_Type_Expansion
then
5066 Append_Freeze_Actions
(Typ
, Make_Tags
(Typ
));
5068 -- Generate dispatch table of locally defined tagged type.
5069 -- Dispatch tables of library level tagged types are built
5070 -- later (see Analyze_Declarations).
5072 if not Building_Static_DT
(Typ
) then
5073 Append_Freeze_Actions
(Typ
, Make_DT
(Typ
));
5077 -- If the type has unknown discriminants, propagate dispatching
5078 -- information to its underlying record view, which does not get
5079 -- its own dispatch table.
5081 if Is_Derived_Type
(Typ
)
5082 and then Has_Unknown_Discriminants
(Typ
)
5083 and then Present
(Underlying_Record_View
(Typ
))
5086 Rep
: constant Entity_Id
:= Underlying_Record_View
(Typ
);
5088 Set_Access_Disp_Table
5089 (Rep
, Access_Disp_Table
(Typ
));
5090 Set_Dispatch_Table_Wrappers
5091 (Rep
, Dispatch_Table_Wrappers
(Typ
));
5092 Set_Direct_Primitive_Operations
5093 (Rep
, Direct_Primitive_Operations
(Typ
));
5097 -- Make sure that the primitives Initialize, Adjust and Finalize
5098 -- are Frozen before other TSS subprograms. We don't want them
5101 if Is_Controlled
(Typ
) then
5102 if not Is_Limited_Type
(Typ
) then
5103 Append_Freeze_Actions
(Typ
,
5104 Freeze_Entity
(Find_Prim_Op
(Typ
, Name_Adjust
), Typ
));
5107 Append_Freeze_Actions
(Typ
,
5108 Freeze_Entity
(Find_Prim_Op
(Typ
, Name_Initialize
), Typ
));
5110 Append_Freeze_Actions
(Typ
,
5111 Freeze_Entity
(Find_Prim_Op
(Typ
, Name_Finalize
), Typ
));
5114 -- Freeze rest of primitive operations. There is no need to handle
5115 -- the predefined primitives if we are compiling under restriction
5116 -- No_Dispatching_Calls.
5118 if not Restriction_Active
(No_Dispatching_Calls
) then
5119 Append_Freeze_Actions
(Typ
, Predefined_Primitive_Freeze
(Typ
));
5123 -- In the untagged case, ever since Ada 83 an equality function must
5124 -- be provided for variant records that are not unchecked unions.
5125 -- In Ada 2012 the equality function composes, and thus must be built
5126 -- explicitly just as for tagged records.
5128 elsif Has_Discriminants
(Typ
)
5129 and then not Is_Limited_Type
(Typ
)
5132 Comps
: constant Node_Id
:=
5133 Component_List
(Type_Definition
(Typ_Decl
));
5136 and then Present
(Variant_Part
(Comps
))
5138 Build_Variant_Record_Equality
(Typ
);
5142 -- Otherwise create primitive equality operation (AI05-0123)
5144 -- This is done unconditionally to ensure that tools can be linked
5145 -- properly with user programs compiled with older language versions.
5146 -- In addition, this is needed because "=" composes for bounded strings
5147 -- in all language versions (see Exp_Ch4.Expand_Composite_Equality).
5149 elsif Comes_From_Source
(Typ
)
5150 and then Convention
(Typ
) = Convention_Ada
5151 and then not Is_Limited_Type
(Typ
)
5153 Build_Untagged_Equality
(Typ
);
5156 -- Before building the record initialization procedure, if we are
5157 -- dealing with a concurrent record value type, then we must go through
5158 -- the discriminants, exchanging discriminals between the concurrent
5159 -- type and the concurrent record value type. See the section "Handling
5160 -- of Discriminants" in the Einfo spec for details.
5162 if Is_Concurrent_Record_Type
(Typ
)
5163 and then Has_Discriminants
(Typ
)
5166 Ctyp
: constant Entity_Id
:=
5167 Corresponding_Concurrent_Type
(Typ
);
5168 Conc_Discr
: Entity_Id
;
5169 Rec_Discr
: Entity_Id
;
5173 Conc_Discr
:= First_Discriminant
(Ctyp
);
5174 Rec_Discr
:= First_Discriminant
(Typ
);
5175 while Present
(Conc_Discr
) loop
5176 Temp
:= Discriminal
(Conc_Discr
);
5177 Set_Discriminal
(Conc_Discr
, Discriminal
(Rec_Discr
));
5178 Set_Discriminal
(Rec_Discr
, Temp
);
5180 Set_Discriminal_Link
(Discriminal
(Conc_Discr
), Conc_Discr
);
5181 Set_Discriminal_Link
(Discriminal
(Rec_Discr
), Rec_Discr
);
5183 Next_Discriminant
(Conc_Discr
);
5184 Next_Discriminant
(Rec_Discr
);
5189 if Has_Controlled_Component
(Typ
) then
5190 Build_Controlling_Procs
(Typ
);
5193 Adjust_Discriminants
(Typ
);
5195 -- Do not need init for interfaces on virtual targets since they're
5198 if Tagged_Type_Expansion
or else not Is_Interface
(Typ
) then
5199 Build_Record_Init_Proc
(Typ_Decl
, Typ
);
5202 -- For tagged type that are not interfaces, build bodies of primitive
5203 -- operations. Note: do this after building the record initialization
5204 -- procedure, since the primitive operations may need the initialization
5205 -- routine. There is no need to add predefined primitives of interfaces
5206 -- because all their predefined primitives are abstract.
5208 if Is_Tagged_Type
(Typ
) and then not Is_Interface
(Typ
) then
5210 -- Do not add the body of predefined primitives in case of CPP tagged
5211 -- type derivations that have convention CPP.
5213 if Is_CPP_Class
(Root_Type
(Typ
))
5214 and then Convention
(Typ
) = Convention_CPP
5218 -- Do not add the body of the predefined primitives if we are
5219 -- compiling under restriction No_Dispatching_Calls or if we are
5220 -- compiling a CPP tagged type.
5222 elsif not Restriction_Active
(No_Dispatching_Calls
) then
5224 -- Create the body of TSS primitive Finalize_Address. This must
5225 -- be done before the bodies of all predefined primitives are
5226 -- created. If Typ is limited, Stream_Input and Stream_Read may
5227 -- produce build-in-place allocations and for those the expander
5228 -- needs Finalize_Address.
5230 Make_Finalize_Address_Body
(Typ
);
5231 Predef_List
:= Predefined_Primitive_Bodies
(Typ
, Renamed_Eq
);
5232 Append_Freeze_Actions
(Typ
, Predef_List
);
5235 -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
5236 -- inherited functions, then add their bodies to the freeze actions.
5238 if Present
(Wrapper_Body_List
) then
5239 Append_Freeze_Actions
(Typ
, Wrapper_Body_List
);
5242 -- Create extra formals for the primitive operations of the type.
5243 -- This must be done before analyzing the body of the initialization
5244 -- procedure, because a self-referential type might call one of these
5245 -- primitives in the body of the init_proc itself.
5252 Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
5253 while Present
(Elmt
) loop
5254 Subp
:= Node
(Elmt
);
5255 if not Has_Foreign_Convention
(Subp
)
5256 and then not Is_Predefined_Dispatching_Operation
(Subp
)
5258 Create_Extra_Formals
(Subp
);
5265 end Expand_Freeze_Record_Type
;
5267 ------------------------------------
5268 -- Expand_N_Full_Type_Declaration --
5269 ------------------------------------
5271 procedure Expand_N_Full_Type_Declaration
(N
: Node_Id
) is
5272 procedure Build_Master
(Ptr_Typ
: Entity_Id
);
5273 -- Create the master associated with Ptr_Typ
5279 procedure Build_Master
(Ptr_Typ
: Entity_Id
) is
5280 Desig_Typ
: Entity_Id
:= Designated_Type
(Ptr_Typ
);
5283 -- If the designated type is an incomplete view coming from a
5284 -- limited-with'ed package, we need to use the nonlimited view in
5285 -- case it has tasks.
5287 if Ekind
(Desig_Typ
) in Incomplete_Kind
5288 and then Present
(Non_Limited_View
(Desig_Typ
))
5290 Desig_Typ
:= Non_Limited_View
(Desig_Typ
);
5293 -- Anonymous access types are created for the components of the
5294 -- record parameter for an entry declaration. No master is created
5297 if Comes_From_Source
(N
) and then Has_Task
(Desig_Typ
) then
5298 Build_Master_Entity
(Ptr_Typ
);
5299 Build_Master_Renaming
(Ptr_Typ
);
5301 -- Create a class-wide master because a Master_Id must be generated
5302 -- for access-to-limited-class-wide types whose root may be extended
5303 -- with task components.
5305 -- Note: This code covers access-to-limited-interfaces because they
5306 -- can be used to reference tasks implementing them.
5308 elsif Is_Limited_Class_Wide_Type
(Desig_Typ
)
5309 and then Tasking_Allowed
5311 Build_Class_Wide_Master
(Ptr_Typ
);
5315 -- Local declarations
5317 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
5318 B_Id
: constant Entity_Id
:= Base_Type
(Def_Id
);
5322 -- Start of processing for Expand_N_Full_Type_Declaration
5325 if Is_Access_Type
(Def_Id
) then
5326 Build_Master
(Def_Id
);
5328 if Ekind
(Def_Id
) = E_Access_Protected_Subprogram_Type
then
5329 Expand_Access_Protected_Subprogram_Type
(N
);
5332 -- Array of anonymous access-to-task pointers
5334 elsif Ada_Version
>= Ada_2005
5335 and then Is_Array_Type
(Def_Id
)
5336 and then Is_Access_Type
(Component_Type
(Def_Id
))
5337 and then Ekind
(Component_Type
(Def_Id
)) = E_Anonymous_Access_Type
5339 Build_Master
(Component_Type
(Def_Id
));
5341 elsif Has_Task
(Def_Id
) then
5342 Expand_Previous_Access_Type
(Def_Id
);
5344 -- Check the components of a record type or array of records for
5345 -- anonymous access-to-task pointers.
5347 elsif Ada_Version
>= Ada_2005
5348 and then (Is_Record_Type
(Def_Id
)
5350 (Is_Array_Type
(Def_Id
)
5351 and then Is_Record_Type
(Component_Type
(Def_Id
))))
5360 if Is_Array_Type
(Def_Id
) then
5361 Comp
:= First_Entity
(Component_Type
(Def_Id
));
5363 Comp
:= First_Entity
(Def_Id
);
5366 -- Examine all components looking for anonymous access-to-task
5370 while Present
(Comp
) loop
5371 Typ
:= Etype
(Comp
);
5373 if Ekind
(Typ
) = E_Anonymous_Access_Type
5374 and then Has_Task
(Available_View
(Designated_Type
(Typ
)))
5375 and then No
(Master_Id
(Typ
))
5377 -- Ensure that the record or array type have a _master
5380 Build_Master_Entity
(Def_Id
);
5381 Build_Master_Renaming
(Typ
);
5382 M_Id
:= Master_Id
(Typ
);
5386 -- Reuse the same master to service any additional types
5389 Set_Master_Id
(Typ
, M_Id
);
5398 Par_Id
:= Etype
(B_Id
);
5400 -- The parent type is private then we need to inherit any TSS operations
5401 -- from the full view.
5403 if Ekind
(Par_Id
) in Private_Kind
5404 and then Present
(Full_View
(Par_Id
))
5406 Par_Id
:= Base_Type
(Full_View
(Par_Id
));
5409 if Nkind
(Type_Definition
(Original_Node
(N
))) =
5410 N_Derived_Type_Definition
5411 and then not Is_Tagged_Type
(Def_Id
)
5412 and then Present
(Freeze_Node
(Par_Id
))
5413 and then Present
(TSS_Elist
(Freeze_Node
(Par_Id
)))
5415 Ensure_Freeze_Node
(B_Id
);
5416 FN
:= Freeze_Node
(B_Id
);
5418 if No
(TSS_Elist
(FN
)) then
5419 Set_TSS_Elist
(FN
, New_Elmt_List
);
5423 T_E
: constant Elist_Id
:= TSS_Elist
(FN
);
5427 Elmt
:= First_Elmt
(TSS_Elist
(Freeze_Node
(Par_Id
)));
5428 while Present
(Elmt
) loop
5429 if Chars
(Node
(Elmt
)) /= Name_uInit
then
5430 Append_Elmt
(Node
(Elmt
), T_E
);
5436 -- If the derived type itself is private with a full view, then
5437 -- associate the full view with the inherited TSS_Elist as well.
5439 if Ekind
(B_Id
) in Private_Kind
5440 and then Present
(Full_View
(B_Id
))
5442 Ensure_Freeze_Node
(Base_Type
(Full_View
(B_Id
)));
5444 (Freeze_Node
(Base_Type
(Full_View
(B_Id
))), TSS_Elist
(FN
));
5448 end Expand_N_Full_Type_Declaration
;
5450 ---------------------------------
5451 -- Expand_N_Object_Declaration --
5452 ---------------------------------
5454 procedure Expand_N_Object_Declaration
(N
: Node_Id
) is
5455 Loc
: constant Source_Ptr
:= Sloc
(N
);
5456 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
5457 Expr
: constant Node_Id
:= Expression
(N
);
5458 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
5459 Typ
: constant Entity_Id
:= Etype
(Def_Id
);
5460 Base_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
5463 function Build_Equivalent_Aggregate
return Boolean;
5464 -- If the object has a constrained discriminated type and no initial
5465 -- value, it may be possible to build an equivalent aggregate instead,
5466 -- and prevent an actual call to the initialization procedure.
5468 procedure Check_Large_Modular_Array
;
5469 -- Check that the size of the array can be computed without overflow,
5470 -- and generate a Storage_Error otherwise. This is only relevant for
5471 -- array types whose index in a (mod 2**64) type, where wrap-around
5472 -- arithmetic might yield a meaningless value for the length of the
5473 -- array, or its corresponding attribute.
5475 procedure Default_Initialize_Object
(After
: Node_Id
);
5476 -- Generate all default initialization actions for object Def_Id. Any
5477 -- new code is inserted after node After.
5479 function Rewrite_As_Renaming
return Boolean;
5480 -- Indicate whether to rewrite a declaration with initialization into an
5481 -- object renaming declaration (see below).
5483 --------------------------------
5484 -- Build_Equivalent_Aggregate --
5485 --------------------------------
5487 function Build_Equivalent_Aggregate
return Boolean is
5491 Full_Type
: Entity_Id
;
5496 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
5497 Full_Type
:= Full_View
(Typ
);
5500 -- Only perform this transformation if Elaboration_Code is forbidden
5501 -- or undesirable, and if this is a global entity of a constrained
5504 -- If Initialize_Scalars might be active this transformation cannot
5505 -- be performed either, because it will lead to different semantics
5506 -- or because elaboration code will in fact be created.
5508 if Ekind
(Full_Type
) /= E_Record_Subtype
5509 or else not Has_Discriminants
(Full_Type
)
5510 or else not Is_Constrained
(Full_Type
)
5511 or else Is_Controlled
(Full_Type
)
5512 or else Is_Limited_Type
(Full_Type
)
5513 or else not Restriction_Active
(No_Initialize_Scalars
)
5518 if Ekind
(Current_Scope
) = E_Package
5520 (Restriction_Active
(No_Elaboration_Code
)
5521 or else Is_Preelaborated
(Current_Scope
))
5523 -- Building a static aggregate is possible if the discriminants
5524 -- have static values and the other components have static
5525 -- defaults or none.
5527 Discr
:= First_Elmt
(Discriminant_Constraint
(Full_Type
));
5528 while Present
(Discr
) loop
5529 if not Is_OK_Static_Expression
(Node
(Discr
)) then
5536 -- Check that initialized components are OK, and that non-
5537 -- initialized components do not require a call to their own
5538 -- initialization procedure.
5540 Comp
:= First_Component
(Full_Type
);
5541 while Present
(Comp
) loop
5542 if Ekind
(Comp
) = E_Component
5543 and then Present
(Expression
(Parent
(Comp
)))
5545 not Is_OK_Static_Expression
(Expression
(Parent
(Comp
)))
5549 elsif Has_Non_Null_Base_Init_Proc
(Etype
(Comp
)) then
5554 Next_Component
(Comp
);
5557 -- Everything is static, assemble the aggregate, discriminant
5561 Make_Aggregate
(Loc
,
5562 Expressions
=> New_List
,
5563 Component_Associations
=> New_List
);
5565 Discr
:= First_Elmt
(Discriminant_Constraint
(Full_Type
));
5566 while Present
(Discr
) loop
5567 Append_To
(Expressions
(Aggr
), New_Copy
(Node
(Discr
)));
5571 -- Now collect values of initialized components
5573 Comp
:= First_Component
(Full_Type
);
5574 while Present
(Comp
) loop
5575 if Ekind
(Comp
) = E_Component
5576 and then Present
(Expression
(Parent
(Comp
)))
5578 Append_To
(Component_Associations
(Aggr
),
5579 Make_Component_Association
(Loc
,
5580 Choices
=> New_List
(New_Occurrence_Of
(Comp
, Loc
)),
5581 Expression
=> New_Copy_Tree
5582 (Expression
(Parent
(Comp
)))));
5585 Next_Component
(Comp
);
5588 -- Finally, box-initialize remaining components
5590 Append_To
(Component_Associations
(Aggr
),
5591 Make_Component_Association
(Loc
,
5592 Choices
=> New_List
(Make_Others_Choice
(Loc
)),
5593 Expression
=> Empty
));
5594 Set_Box_Present
(Last
(Component_Associations
(Aggr
)));
5595 Set_Expression
(N
, Aggr
);
5597 if Typ
/= Full_Type
then
5598 Analyze_And_Resolve
(Aggr
, Full_View
(Base_Type
(Full_Type
)));
5599 Rewrite
(Aggr
, Unchecked_Convert_To
(Typ
, Aggr
));
5600 Analyze_And_Resolve
(Aggr
, Typ
);
5602 Analyze_And_Resolve
(Aggr
, Full_Type
);
5610 end Build_Equivalent_Aggregate
;
5612 -------------------------------
5613 -- Check_Large_Modular_Array --
5614 -------------------------------
5616 procedure Check_Large_Modular_Array
is
5617 Index_Typ
: Entity_Id
;
5620 if Is_Array_Type
(Typ
)
5621 and then Is_Modular_Integer_Type
(Etype
(First_Index
(Typ
)))
5623 -- To prevent arithmetic overflow with large values, we raise
5624 -- Storage_Error under the following guard:
5626 -- (Arr'Last / 2 - Arr'First / 2) > (2 ** 30)
5628 -- This takes care of the boundary case, but it is preferable to
5629 -- use a smaller limit, because even on 64-bit architectures an
5630 -- array of more than 2 ** 30 bytes is likely to raise
5633 Index_Typ
:= Etype
(First_Index
(Typ
));
5635 if RM_Size
(Index_Typ
) = RM_Size
(Standard_Long_Long_Integer
) then
5637 Make_Raise_Storage_Error
(Loc
,
5641 Make_Op_Subtract
(Loc
,
5643 Make_Op_Divide
(Loc
,
5645 Make_Attribute_Reference
(Loc
,
5647 New_Occurrence_Of
(Typ
, Loc
),
5648 Attribute_Name
=> Name_Last
),
5650 Make_Integer_Literal
(Loc
, Uint_2
)),
5652 Make_Op_Divide
(Loc
,
5654 Make_Attribute_Reference
(Loc
,
5656 New_Occurrence_Of
(Typ
, Loc
),
5657 Attribute_Name
=> Name_First
),
5659 Make_Integer_Literal
(Loc
, Uint_2
))),
5661 Make_Integer_Literal
(Loc
, (Uint_2
** 30))),
5662 Reason
=> SE_Object_Too_Large
));
5665 end Check_Large_Modular_Array
;
5667 -------------------------------
5668 -- Default_Initialize_Object --
5669 -------------------------------
5671 procedure Default_Initialize_Object
(After
: Node_Id
) is
5672 function New_Object_Reference
return Node_Id
;
5673 -- Return a new reference to Def_Id with attributes Assignment_OK and
5674 -- Must_Not_Freeze already set.
5676 --------------------------
5677 -- New_Object_Reference --
5678 --------------------------
5680 function New_Object_Reference
return Node_Id
is
5681 Obj_Ref
: constant Node_Id
:= New_Occurrence_Of
(Def_Id
, Loc
);
5684 -- The call to the type init proc or [Deep_]Finalize must not
5685 -- freeze the related object as the call is internally generated.
5686 -- This way legal rep clauses that apply to the object will not be
5687 -- flagged. Note that the initialization call may be removed if
5688 -- pragma Import is encountered or moved to the freeze actions of
5689 -- the object because of an address clause.
5691 Set_Assignment_OK
(Obj_Ref
);
5692 Set_Must_Not_Freeze
(Obj_Ref
);
5695 end New_Object_Reference
;
5699 Exceptions_OK
: constant Boolean :=
5700 not Restriction_Active
(No_Exception_Propagation
);
5702 Aggr_Init
: Node_Id
;
5703 Comp_Init
: List_Id
:= No_List
;
5705 Init_Stmts
: List_Id
:= No_List
;
5706 Obj_Init
: Node_Id
:= Empty
;
5709 -- Start of processing for Default_Initialize_Object
5712 -- Default initialization is suppressed for objects that are already
5713 -- known to be imported (i.e. whose declaration specifies the Import
5714 -- aspect). Note that for objects with a pragma Import, we generate
5715 -- initialization here, and then remove it downstream when processing
5716 -- the pragma. It is also suppressed for variables for which a pragma
5717 -- Suppress_Initialization has been explicitly given
5719 if Is_Imported
(Def_Id
) or else Suppress_Initialization
(Def_Id
) then
5722 -- Nothing to do if the object being initialized is of a task type
5723 -- and restriction No_Tasking is in effect, because this is a direct
5724 -- violation of the restriction.
5726 elsif Is_Task_Type
(Base_Typ
)
5727 and then Restriction_Active
(No_Tasking
)
5732 -- The expansion performed by this routine is as follows:
5736 -- Type_Init_Proc (Obj);
5739 -- [Deep_]Initialize (Obj);
5743 -- [Deep_]Finalize (Obj, Self => False);
5747 -- Abort_Undefer_Direct;
5750 -- Initialize the components of the object
5752 if Has_Non_Null_Base_Init_Proc
(Typ
)
5753 and then not No_Initialization
(N
)
5754 and then not Initialization_Suppressed
(Typ
)
5756 -- Do not initialize the components if No_Default_Initialization
5757 -- applies as the actual restriction check will occur later
5758 -- when the object is frozen as it is not known yet whether the
5759 -- object is imported or not.
5761 if not Restriction_Active
(No_Default_Initialization
) then
5763 -- If the values of the components are compile-time known, use
5764 -- their prebuilt aggregate form directly.
5766 Aggr_Init
:= Static_Initialization
(Base_Init_Proc
(Typ
));
5768 if Present
(Aggr_Init
) then
5770 (N
, New_Copy_Tree
(Aggr_Init
, New_Scope
=> Current_Scope
));
5772 -- If type has discriminants, try to build an equivalent
5773 -- aggregate using discriminant values from the declaration.
5774 -- This is a useful optimization, in particular if restriction
5775 -- No_Elaboration_Code is active.
5777 elsif Build_Equivalent_Aggregate
then
5780 -- Otherwise invoke the type init proc, generate:
5781 -- Type_Init_Proc (Obj);
5784 Obj_Ref
:= New_Object_Reference
;
5786 if Comes_From_Source
(Def_Id
) then
5787 Initialization_Warning
(Obj_Ref
);
5790 Comp_Init
:= Build_Initialization_Call
(Loc
, Obj_Ref
, Typ
);
5794 -- Provide a default value if the object needs simple initialization
5795 -- and does not already have an initial value. A generated temporary
5796 -- does not require initialization because it will be assigned later.
5798 elsif Needs_Simple_Initialization
5799 (Typ
, Initialize_Scalars
5800 and then No
(Following_Address_Clause
(N
)))
5801 and then not Is_Internal
(Def_Id
)
5802 and then not Has_Init_Expression
(N
)
5804 Set_No_Initialization
(N
, False);
5805 Set_Expression
(N
, Get_Simple_Init_Val
(Typ
, N
, Esize
(Def_Id
)));
5806 Analyze_And_Resolve
(Expression
(N
), Typ
);
5809 -- Initialize the object, generate:
5810 -- [Deep_]Initialize (Obj);
5812 if Needs_Finalization
(Typ
) and then not No_Initialization
(N
) then
5815 (Obj_Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
5819 -- Build a special finalization block when both the object and its
5820 -- controlled components are to be initialized. The block finalizes
5821 -- the components if the object initialization fails. Generate:
5832 if Has_Controlled_Component
(Typ
)
5833 and then Present
(Comp_Init
)
5834 and then Present
(Obj_Init
)
5835 and then Exceptions_OK
5837 Init_Stmts
:= Comp_Init
;
5841 (Obj_Ref
=> New_Object_Reference
,
5845 if Present
(Fin_Call
) then
5847 -- Do not emit warnings related to the elaboration order when a
5848 -- controlled object is declared before the body of Finalize is
5851 Set_No_Elaboration_Check
(Fin_Call
);
5853 Append_To
(Init_Stmts
,
5854 Make_Block_Statement
(Loc
,
5855 Declarations
=> No_List
,
5857 Handled_Statement_Sequence
=>
5858 Make_Handled_Sequence_Of_Statements
(Loc
,
5859 Statements
=> New_List
(Obj_Init
),
5861 Exception_Handlers
=> New_List
(
5862 Make_Exception_Handler
(Loc
,
5863 Exception_Choices
=> New_List
(
5864 Make_Others_Choice
(Loc
)),
5866 Statements
=> New_List
(
5868 Make_Raise_Statement
(Loc
)))))));
5871 -- Otherwise finalization is not required, the initialization calls
5872 -- are passed to the abort block building circuitry, generate:
5874 -- Type_Init_Proc (Obj);
5875 -- [Deep_]Initialize (Obj);
5878 if Present
(Comp_Init
) then
5879 Init_Stmts
:= Comp_Init
;
5882 if Present
(Obj_Init
) then
5883 if No
(Init_Stmts
) then
5884 Init_Stmts
:= New_List
;
5887 Append_To
(Init_Stmts
, Obj_Init
);
5891 -- Build an abort block to protect the initialization calls
5894 and then Present
(Comp_Init
)
5895 and then Present
(Obj_Init
)
5900 Prepend_To
(Init_Stmts
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
5902 -- When exceptions are propagated, abort deferral must take place
5903 -- in the presence of initialization or finalization exceptions.
5910 -- Abort_Undefer_Direct;
5913 if Exceptions_OK
then
5914 Init_Stmts
:= New_List
(
5915 Build_Abort_Undefer_Block
(Loc
,
5916 Stmts
=> Init_Stmts
,
5919 -- Otherwise exceptions are not propagated. Generate:
5926 Append_To
(Init_Stmts
,
5927 Build_Runtime_Call
(Loc
, RE_Abort_Undefer
));
5931 -- Insert the whole initialization sequence into the tree. If the
5932 -- object has a delayed freeze, as will be the case when it has
5933 -- aspect specifications, the initialization sequence is part of
5934 -- the freeze actions.
5936 if Present
(Init_Stmts
) then
5937 if Has_Delayed_Freeze
(Def_Id
) then
5938 Append_Freeze_Actions
(Def_Id
, Init_Stmts
);
5940 Insert_Actions_After
(After
, Init_Stmts
);
5943 end Default_Initialize_Object
;
5945 -------------------------
5946 -- Rewrite_As_Renaming --
5947 -------------------------
5949 function Rewrite_As_Renaming
return Boolean is
5951 -- If the object declaration appears in the form
5953 -- Obj : Ctrl_Typ := Func (...);
5955 -- where Ctrl_Typ is controlled but not immutably limited type, then
5956 -- the expansion of the function call should use a dereference of the
5957 -- result to reference the value on the secondary stack.
5959 -- Obj : Ctrl_Typ renames Func (...).all;
5961 -- As a result, the call avoids an extra copy. This an optimization,
5962 -- but it is required for passing ACATS tests in some cases where it
5963 -- would otherwise make two copies. The RM allows removing redunant
5964 -- Adjust/Finalize calls, but does not allow insertion of extra ones.
5966 -- This part is disabled for now, because it breaks GPS builds
5968 return (False -- ???
5969 and then Nkind
(Expr_Q
) = N_Explicit_Dereference
5970 and then not Comes_From_Source
(Expr_Q
)
5971 and then Nkind
(Original_Node
(Expr_Q
)) = N_Function_Call
5972 and then Nkind
(Object_Definition
(N
)) in N_Has_Entity
5973 and then (Needs_Finalization
(Entity
(Object_Definition
(N
)))))
5975 -- If the initializing expression is for a variable with attribute
5976 -- OK_To_Rename set, then transform:
5978 -- Obj : Typ := Expr;
5982 -- Obj : Typ renames Expr;
5984 -- provided that Obj is not aliased. The aliased case has to be
5985 -- excluded in general because Expr will not be aliased in
5989 (not Aliased_Present
(N
)
5990 and then Is_Entity_Name
(Expr_Q
)
5991 and then Ekind
(Entity
(Expr_Q
)) = E_Variable
5992 and then OK_To_Rename
(Entity
(Expr_Q
))
5993 and then Is_Entity_Name
(Obj_Def
));
5994 end Rewrite_As_Renaming
;
5998 Next_N
: constant Node_Id
:= Next
(N
);
6002 Tag_Assign
: Node_Id
;
6004 Init_After
: Node_Id
:= N
;
6005 -- Node after which the initialization actions are to be inserted. This
6006 -- is normally N, except for the case of a shared passive variable, in
6007 -- which case the init proc call must be inserted only after the bodies
6008 -- of the shared variable procedures have been seen.
6010 -- Start of processing for Expand_N_Object_Declaration
6013 -- Don't do anything for deferred constants. All proper actions will be
6014 -- expanded during the full declaration.
6016 if No
(Expr
) and Constant_Present
(N
) then
6020 -- The type of the object cannot be abstract. This is diagnosed at the
6021 -- point the object is frozen, which happens after the declaration is
6022 -- fully expanded, so simply return now.
6024 if Is_Abstract_Type
(Typ
) then
6028 -- First we do special processing for objects of a tagged type where
6029 -- this is the point at which the type is frozen. The creation of the
6030 -- dispatch table and the initialization procedure have to be deferred
6031 -- to this point, since we reference previously declared primitive
6034 -- Force construction of dispatch tables of library level tagged types
6036 if Tagged_Type_Expansion
6037 and then Static_Dispatch_Tables
6038 and then Is_Library_Level_Entity
(Def_Id
)
6039 and then Is_Library_Level_Tagged_Type
(Base_Typ
)
6040 and then Ekind_In
(Base_Typ
, E_Record_Type
,
6043 and then not Has_Dispatch_Table
(Base_Typ
)
6046 New_Nodes
: List_Id
:= No_List
;
6049 if Is_Concurrent_Type
(Base_Typ
) then
6050 New_Nodes
:= Make_DT
(Corresponding_Record_Type
(Base_Typ
), N
);
6052 New_Nodes
:= Make_DT
(Base_Typ
, N
);
6055 if not Is_Empty_List
(New_Nodes
) then
6056 Insert_List_Before
(N
, New_Nodes
);
6061 -- Make shared memory routines for shared passive variable
6063 if Is_Shared_Passive
(Def_Id
) then
6064 Init_After
:= Make_Shared_Var_Procs
(N
);
6067 -- If tasks being declared, make sure we have an activation chain
6068 -- defined for the tasks (has no effect if we already have one), and
6069 -- also that a Master variable is established and that the appropriate
6070 -- enclosing construct is established as a task master.
6072 if Has_Task
(Typ
) then
6073 Build_Activation_Chain_Entity
(N
);
6074 Build_Master_Entity
(Def_Id
);
6077 Check_Large_Modular_Array
;
6079 -- Default initialization required, and no expression present
6083 -- If we have a type with a variant part, the initialization proc
6084 -- will contain implicit tests of the discriminant values, which
6085 -- counts as a violation of the restriction No_Implicit_Conditionals.
6087 if Has_Variant_Part
(Typ
) then
6092 Check_Restriction
(Msg
, No_Implicit_Conditionals
, Obj_Def
);
6096 ("\initialization of variant record tests discriminants",
6103 -- For the default initialization case, if we have a private type
6104 -- with invariants, and invariant checks are enabled, then insert an
6105 -- invariant check after the object declaration. Note that it is OK
6106 -- to clobber the object with an invalid value since if the exception
6107 -- is raised, then the object will go out of scope. In the case where
6108 -- an array object is initialized with an aggregate, the expression
6109 -- is removed. Check flag Has_Init_Expression to avoid generating a
6110 -- junk invariant check and flag No_Initialization to avoid checking
6111 -- an uninitialized object such as a compiler temporary used for an
6114 if Has_Invariants
(Base_Typ
)
6115 and then Present
(Invariant_Procedure
(Base_Typ
))
6116 and then not Has_Init_Expression
(N
)
6117 and then not No_Initialization
(N
)
6119 -- If entity has an address clause or aspect, make invariant
6120 -- call into a freeze action for the explicit freeze node for
6121 -- object. Otherwise insert invariant check after declaration.
6123 if Present
(Following_Address_Clause
(N
))
6124 or else Has_Aspect
(Def_Id
, Aspect_Address
)
6126 Ensure_Freeze_Node
(Def_Id
);
6127 Set_Has_Delayed_Freeze
(Def_Id
);
6128 Set_Is_Frozen
(Def_Id
, False);
6130 if not Partial_View_Has_Unknown_Discr
(Typ
) then
6131 Append_Freeze_Action
(Def_Id
,
6132 Make_Invariant_Call
(New_Occurrence_Of
(Def_Id
, Loc
)));
6135 elsif not Partial_View_Has_Unknown_Discr
(Typ
) then
6137 Make_Invariant_Call
(New_Occurrence_Of
(Def_Id
, Loc
)));
6141 Default_Initialize_Object
(Init_After
);
6143 -- Generate attribute for Persistent_BSS if needed
6145 if Persistent_BSS_Mode
6146 and then Comes_From_Source
(N
)
6147 and then Is_Potentially_Persistent_Type
(Typ
)
6148 and then not Has_Init_Expression
(N
)
6149 and then Is_Library_Level_Entity
(Def_Id
)
6155 Make_Linker_Section_Pragma
6156 (Def_Id
, Sloc
(N
), ".persistent.bss");
6157 Insert_After
(N
, Prag
);
6162 -- If access type, then we know it is null if not initialized
6164 if Is_Access_Type
(Typ
) then
6165 Set_Is_Known_Null
(Def_Id
);
6168 -- Explicit initialization present
6171 -- Obtain actual expression from qualified expression
6173 if Nkind
(Expr
) = N_Qualified_Expression
then
6174 Expr_Q
:= Expression
(Expr
);
6179 -- When we have the appropriate type of aggregate in the expression
6180 -- (it has been determined during analysis of the aggregate by
6181 -- setting the delay flag), let's perform in place assignment and
6182 -- thus avoid creating a temporary.
6184 if Is_Delayed_Aggregate
(Expr_Q
) then
6185 Convert_Aggr_In_Object_Decl
(N
);
6187 -- Ada 2005 (AI-318-02): If the initialization expression is a call
6188 -- to a build-in-place function, then access to the declared object
6189 -- must be passed to the function. Currently we limit such functions
6190 -- to those with constrained limited result subtypes, but eventually
6191 -- plan to expand the allowed forms of functions that are treated as
6194 elsif Ada_Version
>= Ada_2005
6195 and then Is_Build_In_Place_Function_Call
(Expr_Q
)
6197 Make_Build_In_Place_Call_In_Object_Declaration
(N
, Expr_Q
);
6199 -- The previous call expands the expression initializing the
6200 -- built-in-place object into further code that will be analyzed
6201 -- later. No further expansion needed here.
6205 -- Ada 2005 (AI-251): Rewrite the expression that initializes a
6206 -- class-wide interface object to ensure that we copy the full
6207 -- object, unless we are targetting a VM where interfaces are handled
6208 -- by VM itself. Note that if the root type of Typ is an ancestor of
6209 -- Expr's type, both types share the same dispatch table and there is
6210 -- no need to displace the pointer.
6212 elsif Is_Interface
(Typ
)
6214 -- Avoid never-ending recursion because if Equivalent_Type is set
6215 -- then we've done it already and must not do it again.
6218 (Nkind
(Obj_Def
) = N_Identifier
6219 and then Present
(Equivalent_Type
(Entity
(Obj_Def
))))
6221 pragma Assert
(Is_Class_Wide_Type
(Typ
));
6223 -- If the object is a return object of an inherently limited type,
6224 -- which implies build-in-place treatment, bypass the special
6225 -- treatment of class-wide interface initialization below. In this
6226 -- case, the expansion of the return statement will take care of
6227 -- creating the object (via allocator) and initializing it.
6229 if Is_Return_Object
(Def_Id
) and then Is_Limited_View
(Typ
) then
6232 elsif Tagged_Type_Expansion
then
6234 Iface
: constant Entity_Id
:= Root_Type
(Typ
);
6235 Expr_N
: Node_Id
:= Expr
;
6236 Expr_Typ
: Entity_Id
;
6242 -- If the original node of the expression was a conversion
6243 -- to this specific class-wide interface type then restore
6244 -- the original node because we must copy the object before
6245 -- displacing the pointer to reference the secondary tag
6246 -- component. This code must be kept synchronized with the
6247 -- expansion done by routine Expand_Interface_Conversion
6249 if not Comes_From_Source
(Expr_N
)
6250 and then Nkind
(Expr_N
) = N_Explicit_Dereference
6251 and then Nkind
(Original_Node
(Expr_N
)) = N_Type_Conversion
6252 and then Etype
(Original_Node
(Expr_N
)) = Typ
6254 Rewrite
(Expr_N
, Original_Node
(Expression
(N
)));
6257 -- Avoid expansion of redundant interface conversion
6259 if Is_Interface
(Etype
(Expr_N
))
6260 and then Nkind
(Expr_N
) = N_Type_Conversion
6261 and then Etype
(Expr_N
) = Typ
6263 Expr_N
:= Expression
(Expr_N
);
6264 Set_Expression
(N
, Expr_N
);
6267 Obj_Id
:= Make_Temporary
(Loc
, 'D', Expr_N
);
6268 Expr_Typ
:= Base_Type
(Etype
(Expr_N
));
6270 if Is_Class_Wide_Type
(Expr_Typ
) then
6271 Expr_Typ
:= Root_Type
(Expr_Typ
);
6275 -- CW : I'Class := Obj;
6278 -- type Ityp is not null access I'Class;
6279 -- CW : I'Class renames Ityp (Tmp.I_Tag'Address).all;
6281 if Comes_From_Source
(Expr_N
)
6282 and then Nkind
(Expr_N
) = N_Identifier
6283 and then not Is_Interface
(Expr_Typ
)
6284 and then Interface_Present_In_Ancestor
(Expr_Typ
, Typ
)
6285 and then (Expr_Typ
= Etype
(Expr_Typ
)
6287 Is_Variable_Size_Record
(Etype
(Expr_Typ
)))
6292 Make_Object_Declaration
(Loc
,
6293 Defining_Identifier
=> Obj_Id
,
6294 Object_Definition
=>
6295 New_Occurrence_Of
(Expr_Typ
, Loc
),
6296 Expression
=> Relocate_Node
(Expr_N
)));
6298 -- Statically reference the tag associated with the
6302 Make_Selected_Component
(Loc
,
6303 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
6306 (Find_Interface_Tag
(Expr_Typ
, Iface
), Loc
));
6309 -- IW : I'Class := Obj;
6311 -- type Equiv_Record is record ... end record;
6312 -- implicit subtype CW is <Class_Wide_Subtype>;
6313 -- Tmp : CW := CW!(Obj);
6314 -- type Ityp is not null access I'Class;
6315 -- IW : I'Class renames
6316 -- Ityp!(Displace (Temp'Address, I'Tag)).all;
6319 -- Generate the equivalent record type and update the
6320 -- subtype indication to reference it.
6322 Expand_Subtype_From_Expr
6325 Subtype_Indic
=> Obj_Def
,
6328 if not Is_Interface
(Etype
(Expr_N
)) then
6329 New_Expr
:= Relocate_Node
(Expr_N
);
6331 -- For interface types we use 'Address which displaces
6332 -- the pointer to the base of the object (if required)
6336 Unchecked_Convert_To
(Etype
(Obj_Def
),
6337 Make_Explicit_Dereference
(Loc
,
6338 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6339 Make_Attribute_Reference
(Loc
,
6340 Prefix
=> Relocate_Node
(Expr_N
),
6341 Attribute_Name
=> Name_Address
))));
6346 if not Is_Limited_Record
(Expr_Typ
) then
6348 Make_Object_Declaration
(Loc
,
6349 Defining_Identifier
=> Obj_Id
,
6350 Object_Definition
=>
6351 New_Occurrence_Of
(Etype
(Obj_Def
), Loc
),
6352 Expression
=> New_Expr
));
6354 -- Rename limited type object since they cannot be copied
6355 -- This case occurs when the initialization expression
6356 -- has been previously expanded into a temporary object.
6358 else pragma Assert
(not Comes_From_Source
(Expr_Q
));
6360 Make_Object_Renaming_Declaration
(Loc
,
6361 Defining_Identifier
=> Obj_Id
,
6363 New_Occurrence_Of
(Etype
(Obj_Def
), Loc
),
6365 Unchecked_Convert_To
6366 (Etype
(Obj_Def
), New_Expr
)));
6369 -- Dynamically reference the tag associated with the
6373 Make_Function_Call
(Loc
,
6374 Name
=> New_Occurrence_Of
(RTE
(RE_Displace
), Loc
),
6375 Parameter_Associations
=> New_List
(
6376 Make_Attribute_Reference
(Loc
,
6377 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
6378 Attribute_Name
=> Name_Address
),
6380 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))),
6385 Make_Object_Renaming_Declaration
(Loc
,
6386 Defining_Identifier
=> Make_Temporary
(Loc
, 'D'),
6387 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
6389 Convert_Tag_To_Interface
(Typ
, Tag_Comp
)));
6391 -- If the original entity comes from source, then mark the
6392 -- new entity as needing debug information, even though it's
6393 -- defined by a generated renaming that does not come from
6394 -- source, so that Materialize_Entity will be set on the
6395 -- entity when Debug_Renaming_Declaration is called during
6398 if Comes_From_Source
(Def_Id
) then
6399 Set_Debug_Info_Needed
(Defining_Identifier
(N
));
6402 Analyze
(N
, Suppress
=> All_Checks
);
6404 -- Replace internal identifier of rewritten node by the
6405 -- identifier found in the sources. We also have to exchange
6406 -- entities containing their defining identifiers to ensure
6407 -- the correct replacement of the object declaration by this
6408 -- object renaming declaration because these identifiers
6409 -- were previously added by Enter_Name to the current scope.
6410 -- We must preserve the homonym chain of the source entity
6411 -- as well. We must also preserve the kind of the entity,
6412 -- which may be a constant. Preserve entity chain because
6413 -- itypes may have been generated already, and the full
6414 -- chain must be preserved for final freezing. Finally,
6415 -- preserve Comes_From_Source setting, so that debugging
6416 -- and cross-referencing information is properly kept, and
6417 -- preserve source location, to prevent spurious errors when
6418 -- entities are declared (they must have their own Sloc).
6421 New_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
6422 Next_Temp
: constant Entity_Id
:= Next_Entity
(New_Id
);
6423 S_Flag
: constant Boolean :=
6424 Comes_From_Source
(Def_Id
);
6427 Set_Next_Entity
(New_Id
, Next_Entity
(Def_Id
));
6428 Set_Next_Entity
(Def_Id
, Next_Temp
);
6430 Set_Chars
(Defining_Identifier
(N
), Chars
(Def_Id
));
6431 Set_Homonym
(Defining_Identifier
(N
), Homonym
(Def_Id
));
6432 Set_Ekind
(Defining_Identifier
(N
), Ekind
(Def_Id
));
6433 Set_Sloc
(Defining_Identifier
(N
), Sloc
(Def_Id
));
6435 Set_Comes_From_Source
(Def_Id
, False);
6436 Exchange_Entities
(Defining_Identifier
(N
), Def_Id
);
6437 Set_Comes_From_Source
(Def_Id
, S_Flag
);
6444 -- Common case of explicit object initialization
6447 -- In most cases, we must check that the initial value meets any
6448 -- constraint imposed by the declared type. However, there is one
6449 -- very important exception to this rule. If the entity has an
6450 -- unconstrained nominal subtype, then it acquired its constraints
6451 -- from the expression in the first place, and not only does this
6452 -- mean that the constraint check is not needed, but an attempt to
6453 -- perform the constraint check can cause order of elaboration
6456 if not Is_Constr_Subt_For_U_Nominal
(Typ
) then
6458 -- If this is an allocator for an aggregate that has been
6459 -- allocated in place, delay checks until assignments are
6460 -- made, because the discriminants are not initialized.
6462 if Nkind
(Expr
) = N_Allocator
and then No_Initialization
(Expr
)
6466 -- Otherwise apply a constraint check now if no prev error
6468 elsif Nkind
(Expr
) /= N_Error
then
6469 Apply_Constraint_Check
(Expr
, Typ
);
6471 -- Deal with possible range check
6473 if Do_Range_Check
(Expr
) then
6475 -- If assignment checks are suppressed, turn off flag
6477 if Suppress_Assignment_Checks
(N
) then
6478 Set_Do_Range_Check
(Expr
, False);
6480 -- Otherwise generate the range check
6483 Generate_Range_Check
6484 (Expr
, Typ
, CE_Range_Check_Failed
);
6490 -- If the type is controlled and not inherently limited, then
6491 -- the target is adjusted after the copy and attached to the
6492 -- finalization list. However, no adjustment is done in the case
6493 -- where the object was initialized by a call to a function whose
6494 -- result is built in place, since no copy occurred. (Eventually
6495 -- we plan to support in-place function results for some cases
6496 -- of nonlimited types. ???) Similarly, no adjustment is required
6497 -- if we are going to rewrite the object declaration into a
6498 -- renaming declaration.
6500 if Needs_Finalization
(Typ
)
6501 and then not Is_Limited_View
(Typ
)
6502 and then not Rewrite_As_Renaming
6506 Obj_Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
6509 -- Guard against a missing [Deep_]Adjust when the base type
6510 -- was not properly frozen.
6512 if Present
(Adj_Call
) then
6513 Insert_Action_After
(Init_After
, Adj_Call
);
6517 -- For tagged types, when an init value is given, the tag has to
6518 -- be re-initialized separately in order to avoid the propagation
6519 -- of a wrong tag coming from a view conversion unless the type
6520 -- is class wide (in this case the tag comes from the init value).
6521 -- Suppress the tag assignment when not Tagged_Type_Expansion
6522 -- because tags are represented implicitly in objects. Ditto for
6523 -- types that are CPP_CLASS, and for initializations that are
6524 -- aggregates, because they have to have the right tag.
6526 -- The re-assignment of the tag has to be done even if the object
6527 -- is a constant. The assignment must be analyzed after the
6528 -- declaration. If an address clause follows, this is handled as
6529 -- part of the freeze actions for the object, otherwise insert
6530 -- tag assignment here.
6532 Tag_Assign
:= Make_Tag_Assignment
(N
);
6534 if Present
(Tag_Assign
) then
6535 if Present
(Following_Address_Clause
(N
)) then
6536 Ensure_Freeze_Node
(Def_Id
);
6539 Insert_Action_After
(Init_After
, Tag_Assign
);
6542 -- Handle C++ constructor calls. Note that we do not check that
6543 -- Typ is a tagged type since the equivalent Ada type of a C++
6544 -- class that has no virtual methods is an untagged limited
6547 elsif Is_CPP_Constructor_Call
(Expr
) then
6549 -- The call to the initialization procedure does NOT freeze the
6550 -- object being initialized.
6552 Id_Ref
:= New_Occurrence_Of
(Def_Id
, Loc
);
6553 Set_Must_Not_Freeze
(Id_Ref
);
6554 Set_Assignment_OK
(Id_Ref
);
6556 Insert_Actions_After
(Init_After
,
6557 Build_Initialization_Call
(Loc
, Id_Ref
, Typ
,
6558 Constructor_Ref
=> Expr
));
6560 -- We remove here the original call to the constructor
6561 -- to avoid its management in the backend
6563 Set_Expression
(N
, Empty
);
6566 -- Handle initialization of limited tagged types
6568 elsif Is_Tagged_Type
(Typ
)
6569 and then Is_Class_Wide_Type
(Typ
)
6570 and then Is_Limited_Record
(Typ
)
6571 and then not Is_Limited_Interface
(Typ
)
6573 -- Given that the type is limited we cannot perform a copy. If
6574 -- Expr_Q is the reference to a variable we mark the variable
6575 -- as OK_To_Rename to expand this declaration into a renaming
6576 -- declaration (see bellow).
6578 if Is_Entity_Name
(Expr_Q
) then
6579 Set_OK_To_Rename
(Entity
(Expr_Q
));
6581 -- If we cannot convert the expression into a renaming we must
6582 -- consider it an internal error because the backend does not
6583 -- have support to handle it.
6586 pragma Assert
(False);
6587 raise Program_Error
;
6590 -- For discrete types, set the Is_Known_Valid flag if the
6591 -- initializing value is known to be valid. Only do this for
6592 -- source assignments, since otherwise we can end up turning
6593 -- on the known valid flag prematurely from inserted code.
6595 elsif Comes_From_Source
(N
)
6596 and then Is_Discrete_Type
(Typ
)
6597 and then Expr_Known_Valid
(Expr
)
6599 Set_Is_Known_Valid
(Def_Id
);
6601 elsif Is_Access_Type
(Typ
) then
6603 -- For access types set the Is_Known_Non_Null flag if the
6604 -- initializing value is known to be non-null. We can also set
6605 -- Can_Never_Be_Null if this is a constant.
6607 if Known_Non_Null
(Expr
) then
6608 Set_Is_Known_Non_Null
(Def_Id
, True);
6610 if Constant_Present
(N
) then
6611 Set_Can_Never_Be_Null
(Def_Id
);
6616 -- If validity checking on copies, validate initial expression.
6617 -- But skip this if declaration is for a generic type, since it
6618 -- makes no sense to validate generic types. Not clear if this
6619 -- can happen for legal programs, but it definitely can arise
6620 -- from previous instantiation errors.
6622 if Validity_Checks_On
6623 and then Comes_From_Source
(N
)
6624 and then Validity_Check_Copies
6625 and then not Is_Generic_Type
(Etype
(Def_Id
))
6627 Ensure_Valid
(Expr
);
6628 Set_Is_Known_Valid
(Def_Id
);
6632 -- Cases where the back end cannot handle the initialization directly
6633 -- In such cases, we expand an assignment that will be appropriately
6634 -- handled by Expand_N_Assignment_Statement.
6636 -- The exclusion of the unconstrained case is wrong, but for now it
6637 -- is too much trouble ???
6639 if (Is_Possibly_Unaligned_Slice
(Expr
)
6640 or else (Is_Possibly_Unaligned_Object
(Expr
)
6641 and then not Represented_As_Scalar
(Etype
(Expr
))))
6642 and then not (Is_Array_Type
(Etype
(Expr
))
6643 and then not Is_Constrained
(Etype
(Expr
)))
6646 Stat
: constant Node_Id
:=
6647 Make_Assignment_Statement
(Loc
,
6648 Name
=> New_Occurrence_Of
(Def_Id
, Loc
),
6649 Expression
=> Relocate_Node
(Expr
));
6651 Set_Expression
(N
, Empty
);
6652 Set_No_Initialization
(N
);
6653 Set_Assignment_OK
(Name
(Stat
));
6654 Set_No_Ctrl_Actions
(Stat
);
6655 Insert_After_And_Analyze
(Init_After
, Stat
);
6660 if Nkind
(Obj_Def
) = N_Access_Definition
6661 and then not Is_Local_Anonymous_Access
(Etype
(Def_Id
))
6663 -- An Ada 2012 stand-alone object of an anonymous access type
6666 Loc
: constant Source_Ptr
:= Sloc
(N
);
6668 Level
: constant Entity_Id
:=
6669 Make_Defining_Identifier
(Sloc
(N
),
6671 New_External_Name
(Chars
(Def_Id
), Suffix
=> "L"));
6673 Level_Expr
: Node_Id
;
6674 Level_Decl
: Node_Id
;
6677 Set_Ekind
(Level
, Ekind
(Def_Id
));
6678 Set_Etype
(Level
, Standard_Natural
);
6679 Set_Scope
(Level
, Scope
(Def_Id
));
6683 -- Set accessibility level of null
6686 Make_Integer_Literal
(Loc
, Scope_Depth
(Standard_Standard
));
6689 Level_Expr
:= Dynamic_Accessibility_Level
(Expr
);
6693 Make_Object_Declaration
(Loc
,
6694 Defining_Identifier
=> Level
,
6695 Object_Definition
=>
6696 New_Occurrence_Of
(Standard_Natural
, Loc
),
6697 Expression
=> Level_Expr
,
6698 Constant_Present
=> Constant_Present
(N
),
6699 Has_Init_Expression
=> True);
6701 Insert_Action_After
(Init_After
, Level_Decl
);
6703 Set_Extra_Accessibility
(Def_Id
, Level
);
6707 -- If the object is default initialized and its type is subject to
6708 -- pragma Default_Initial_Condition, add a runtime check to verify
6709 -- the assumption of the pragma (SPARK RM 7.3.3). Generate:
6711 -- <Base_Typ>DIC (<Base_Typ> (Def_Id));
6713 -- Note that the check is generated for source objects only
6715 if Comes_From_Source
(Def_Id
)
6716 and then Has_DIC
(Typ
)
6717 and then Present
(DIC_Procedure
(Typ
))
6718 and then not Has_Init_Expression
(N
)
6721 DIC_Call
: constant Node_Id
:= Build_DIC_Call
(Loc
, Def_Id
, Typ
);
6724 if Present
(Next_N
) then
6725 Insert_Before_And_Analyze
(Next_N
, DIC_Call
);
6727 -- The object declaration is the last node in a declarative or a
6731 Append_To
(List_Containing
(N
), DIC_Call
);
6737 -- Final transformation - turn the object declaration into a renaming
6738 -- if appropriate. If this is the completion of a deferred constant
6739 -- declaration, then this transformation generates what would be
6740 -- illegal code if written by hand, but that's OK.
6742 if Present
(Expr
) then
6743 if Rewrite_As_Renaming
then
6745 Make_Object_Renaming_Declaration
(Loc
,
6746 Defining_Identifier
=> Defining_Identifier
(N
),
6747 Subtype_Mark
=> Obj_Def
,
6750 -- We do not analyze this renaming declaration, because all its
6751 -- components have already been analyzed, and if we were to go
6752 -- ahead and analyze it, we would in effect be trying to generate
6753 -- another declaration of X, which won't do.
6755 Set_Renamed_Object
(Defining_Identifier
(N
), Expr_Q
);
6758 -- We do need to deal with debug issues for this renaming
6760 -- First, if entity comes from source, then mark it as needing
6761 -- debug information, even though it is defined by a generated
6762 -- renaming that does not come from source.
6764 if Comes_From_Source
(Defining_Identifier
(N
)) then
6765 Set_Debug_Info_Needed
(Defining_Identifier
(N
));
6768 -- Now call the routine to generate debug info for the renaming
6771 Decl
: constant Node_Id
:= Debug_Renaming_Declaration
(N
);
6773 if Present
(Decl
) then
6774 Insert_Action
(N
, Decl
);
6780 -- Exception on library entity not available
6783 when RE_Not_Available
=>
6785 end Expand_N_Object_Declaration
;
6787 ---------------------------------
6788 -- Expand_N_Subtype_Indication --
6789 ---------------------------------
6791 -- Add a check on the range of the subtype. The static case is partially
6792 -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
6793 -- to check here for the static case in order to avoid generating
6794 -- extraneous expanded code. Also deal with validity checking.
6796 procedure Expand_N_Subtype_Indication
(N
: Node_Id
) is
6797 Ran
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
6798 Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
6801 if Nkind
(Constraint
(N
)) = N_Range_Constraint
then
6802 Validity_Check_Range
(Range_Expression
(Constraint
(N
)));
6805 if Nkind_In
(Parent
(N
), N_Constrained_Array_Definition
, N_Slice
) then
6806 Apply_Range_Check
(Ran
, Typ
);
6808 end Expand_N_Subtype_Indication
;
6810 ---------------------------
6811 -- Expand_N_Variant_Part --
6812 ---------------------------
6814 -- Note: this procedure no longer has any effect. It used to be that we
6815 -- would replace the choices in the last variant by a when others, and
6816 -- also expanded static predicates in variant choices here, but both of
6817 -- those activities were being done too early, since we can't check the
6818 -- choices until the statically predicated subtypes are frozen, which can
6819 -- happen as late as the free point of the record, and we can't change the
6820 -- last choice to an others before checking the choices, which is now done
6821 -- at the freeze point of the record.
6823 procedure Expand_N_Variant_Part
(N
: Node_Id
) is
6826 end Expand_N_Variant_Part
;
6828 ---------------------------------
6829 -- Expand_Previous_Access_Type --
6830 ---------------------------------
6832 procedure Expand_Previous_Access_Type
(Def_Id
: Entity_Id
) is
6833 Ptr_Typ
: Entity_Id
;
6836 -- Find all access types in the current scope whose designated type is
6837 -- Def_Id and build master renamings for them.
6839 Ptr_Typ
:= First_Entity
(Current_Scope
);
6840 while Present
(Ptr_Typ
) loop
6841 if Is_Access_Type
(Ptr_Typ
)
6842 and then Designated_Type
(Ptr_Typ
) = Def_Id
6843 and then No
(Master_Id
(Ptr_Typ
))
6845 -- Ensure that the designated type has a master
6847 Build_Master_Entity
(Def_Id
);
6849 -- Private and incomplete types complicate the insertion of master
6850 -- renamings because the access type may precede the full view of
6851 -- the designated type. For this reason, the master renamings are
6852 -- inserted relative to the designated type.
6854 Build_Master_Renaming
(Ptr_Typ
, Ins_Nod
=> Parent
(Def_Id
));
6857 Next_Entity
(Ptr_Typ
);
6859 end Expand_Previous_Access_Type
;
6861 -----------------------------
6862 -- Expand_Record_Extension --
6863 -----------------------------
6865 -- Add a field _parent at the beginning of the record extension. This is
6866 -- used to implement inheritance. Here are some examples of expansion:
6868 -- 1. no discriminants
6869 -- type T2 is new T1 with null record;
6871 -- type T2 is new T1 with record
6875 -- 2. renamed discriminants
6876 -- type T2 (B, C : Int) is new T1 (A => B) with record
6877 -- _Parent : T1 (A => B);
6881 -- 3. inherited discriminants
6882 -- type T2 is new T1 with record -- discriminant A inherited
6883 -- _Parent : T1 (A);
6887 procedure Expand_Record_Extension
(T
: Entity_Id
; Def
: Node_Id
) is
6888 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
6889 Loc
: constant Source_Ptr
:= Sloc
(Def
);
6890 Rec_Ext_Part
: Node_Id
:= Record_Extension_Part
(Def
);
6891 Par_Subtype
: Entity_Id
;
6892 Comp_List
: Node_Id
;
6893 Comp_Decl
: Node_Id
;
6896 List_Constr
: constant List_Id
:= New_List
;
6899 -- Expand_Record_Extension is called directly from the semantics, so
6900 -- we must check to see whether expansion is active before proceeding,
6901 -- because this affects the visibility of selected components in bodies
6904 if not Expander_Active
then
6908 -- This may be a derivation of an untagged private type whose full
6909 -- view is tagged, in which case the Derived_Type_Definition has no
6910 -- extension part. Build an empty one now.
6912 if No
(Rec_Ext_Part
) then
6914 Make_Record_Definition
(Loc
,
6916 Component_List
=> Empty
,
6917 Null_Present
=> True);
6919 Set_Record_Extension_Part
(Def
, Rec_Ext_Part
);
6920 Mark_Rewrite_Insertion
(Rec_Ext_Part
);
6923 Comp_List
:= Component_List
(Rec_Ext_Part
);
6925 Parent_N
:= Make_Defining_Identifier
(Loc
, Name_uParent
);
6927 -- If the derived type inherits its discriminants the type of the
6928 -- _parent field must be constrained by the inherited discriminants
6930 if Has_Discriminants
(T
)
6931 and then Nkind
(Indic
) /= N_Subtype_Indication
6932 and then not Is_Constrained
(Entity
(Indic
))
6934 D
:= First_Discriminant
(T
);
6935 while Present
(D
) loop
6936 Append_To
(List_Constr
, New_Occurrence_Of
(D
, Loc
));
6937 Next_Discriminant
(D
);
6942 Make_Subtype_Indication
(Loc
,
6943 Subtype_Mark
=> New_Occurrence_Of
(Entity
(Indic
), Loc
),
6945 Make_Index_Or_Discriminant_Constraint
(Loc
,
6946 Constraints
=> List_Constr
)),
6949 -- Otherwise the original subtype_indication is just what is needed
6952 Par_Subtype
:= Process_Subtype
(New_Copy_Tree
(Indic
), Def
);
6955 Set_Parent_Subtype
(T
, Par_Subtype
);
6958 Make_Component_Declaration
(Loc
,
6959 Defining_Identifier
=> Parent_N
,
6960 Component_Definition
=>
6961 Make_Component_Definition
(Loc
,
6962 Aliased_Present
=> False,
6963 Subtype_Indication
=> New_Occurrence_Of
(Par_Subtype
, Loc
)));
6965 if Null_Present
(Rec_Ext_Part
) then
6966 Set_Component_List
(Rec_Ext_Part
,
6967 Make_Component_List
(Loc
,
6968 Component_Items
=> New_List
(Comp_Decl
),
6969 Variant_Part
=> Empty
,
6970 Null_Present
=> False));
6971 Set_Null_Present
(Rec_Ext_Part
, False);
6973 elsif Null_Present
(Comp_List
)
6974 or else Is_Empty_List
(Component_Items
(Comp_List
))
6976 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
6977 Set_Null_Present
(Comp_List
, False);
6980 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
6983 Analyze
(Comp_Decl
);
6984 end Expand_Record_Extension
;
6986 ------------------------
6987 -- Expand_Tagged_Root --
6988 ------------------------
6990 procedure Expand_Tagged_Root
(T
: Entity_Id
) is
6991 Def
: constant Node_Id
:= Type_Definition
(Parent
(T
));
6992 Comp_List
: Node_Id
;
6993 Comp_Decl
: Node_Id
;
6994 Sloc_N
: Source_Ptr
;
6997 if Null_Present
(Def
) then
6998 Set_Component_List
(Def
,
6999 Make_Component_List
(Sloc
(Def
),
7000 Component_Items
=> Empty_List
,
7001 Variant_Part
=> Empty
,
7002 Null_Present
=> True));
7005 Comp_List
:= Component_List
(Def
);
7007 if Null_Present
(Comp_List
)
7008 or else Is_Empty_List
(Component_Items
(Comp_List
))
7010 Sloc_N
:= Sloc
(Comp_List
);
7012 Sloc_N
:= Sloc
(First
(Component_Items
(Comp_List
)));
7016 Make_Component_Declaration
(Sloc_N
,
7017 Defining_Identifier
=> First_Tag_Component
(T
),
7018 Component_Definition
=>
7019 Make_Component_Definition
(Sloc_N
,
7020 Aliased_Present
=> False,
7021 Subtype_Indication
=> New_Occurrence_Of
(RTE
(RE_Tag
), Sloc_N
)));
7023 if Null_Present
(Comp_List
)
7024 or else Is_Empty_List
(Component_Items
(Comp_List
))
7026 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
7027 Set_Null_Present
(Comp_List
, False);
7030 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
7033 -- We don't Analyze the whole expansion because the tag component has
7034 -- already been analyzed previously. Here we just insure that the tree
7035 -- is coherent with the semantic decoration
7037 Find_Type
(Subtype_Indication
(Component_Definition
(Comp_Decl
)));
7040 when RE_Not_Available
=>
7042 end Expand_Tagged_Root
;
7044 ------------------------------
7045 -- Freeze_Stream_Operations --
7046 ------------------------------
7048 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
) is
7049 Names
: constant array (1 .. 4) of TSS_Name_Type
:=
7054 Stream_Op
: Entity_Id
;
7057 -- Primitive operations of tagged types are frozen when the dispatch
7058 -- table is constructed.
7060 if not Comes_From_Source
(Typ
) or else Is_Tagged_Type
(Typ
) then
7064 for J
in Names
'Range loop
7065 Stream_Op
:= TSS
(Typ
, Names
(J
));
7067 if Present
(Stream_Op
)
7068 and then Is_Subprogram
(Stream_Op
)
7069 and then Nkind
(Unit_Declaration_Node
(Stream_Op
)) =
7070 N_Subprogram_Declaration
7071 and then not Is_Frozen
(Stream_Op
)
7073 Append_Freeze_Actions
(Typ
, Freeze_Entity
(Stream_Op
, N
));
7076 end Freeze_Stream_Operations
;
7082 -- Full type declarations are expanded at the point at which the type is
7083 -- frozen. The formal N is the Freeze_Node for the type. Any statements or
7084 -- declarations generated by the freezing (e.g. the procedure generated
7085 -- for initialization) are chained in the Actions field list of the freeze
7086 -- node using Append_Freeze_Actions.
7088 -- WARNING: This routine manages Ghost regions. Return statements must be
7089 -- replaced by gotos which jump to the end of the routine and restore the
7092 function Freeze_Type
(N
: Node_Id
) return Boolean is
7093 procedure Process_RACW_Types
(Typ
: Entity_Id
);
7094 -- Validate and generate stubs for all RACW types associated with type
7097 procedure Process_Pending_Access_Types
(Typ
: Entity_Id
);
7098 -- Associate type Typ's Finalize_Address primitive with the finalization
7099 -- masters of pending access-to-Typ types.
7101 ------------------------
7102 -- Process_RACW_Types --
7103 ------------------------
7105 procedure Process_RACW_Types
(Typ
: Entity_Id
) is
7106 List
: constant Elist_Id
:= Access_Types_To_Process
(N
);
7108 Seen
: Boolean := False;
7111 if Present
(List
) then
7112 E
:= First_Elmt
(List
);
7113 while Present
(E
) loop
7114 if Is_Remote_Access_To_Class_Wide_Type
(Node
(E
)) then
7115 Validate_RACW_Primitives
(Node
(E
));
7123 -- If there are RACWs designating this type, make stubs now
7126 Remote_Types_Tagged_Full_View_Encountered
(Typ
);
7128 end Process_RACW_Types
;
7130 ----------------------------------
7131 -- Process_Pending_Access_Types --
7132 ----------------------------------
7134 procedure Process_Pending_Access_Types
(Typ
: Entity_Id
) is
7138 -- Finalize_Address is not generated in CodePeer mode because the
7139 -- body contains address arithmetic. This processing is disabled.
7141 if CodePeer_Mode
then
7144 -- Certain itypes are generated for contexts that cannot allocate
7145 -- objects and should not set primitive Finalize_Address.
7147 elsif Is_Itype
(Typ
)
7148 and then Nkind
(Associated_Node_For_Itype
(Typ
)) =
7149 N_Explicit_Dereference
7153 -- When an access type is declared after the incomplete view of a
7154 -- Taft-amendment type, the access type is considered pending in
7155 -- case the full view of the Taft-amendment type is controlled. If
7156 -- this is indeed the case, associate the Finalize_Address routine
7157 -- of the full view with the finalization masters of all pending
7158 -- access types. This scenario applies to anonymous access types as
7161 elsif Needs_Finalization
(Typ
)
7162 and then Present
(Pending_Access_Types
(Typ
))
7164 E
:= First_Elmt
(Pending_Access_Types
(Typ
));
7165 while Present
(E
) loop
7168 -- Set_Finalize_Address
7169 -- (Ptr_Typ, <Typ>FD'Unrestricted_Access);
7171 Append_Freeze_Action
(Typ
,
7172 Make_Set_Finalize_Address_Call
7174 Ptr_Typ
=> Node
(E
)));
7179 end Process_Pending_Access_Types
;
7183 Def_Id
: constant Entity_Id
:= Entity
(N
);
7185 Mode
: Ghost_Mode_Type
;
7186 Mode_Set
: Boolean := False;
7187 Result
: Boolean := False;
7189 -- Start of processing for Freeze_Type
7192 -- The type being frozen may be subject to pragma Ghost. Set the mode
7193 -- now to ensure that any nodes generated during freezing are properly
7196 Set_Ghost_Mode
(Def_Id
, Mode
);
7199 -- Process any remote access-to-class-wide types designating the type
7202 Process_RACW_Types
(Def_Id
);
7204 -- Freeze processing for record types
7206 if Is_Record_Type
(Def_Id
) then
7207 if Ekind
(Def_Id
) = E_Record_Type
then
7208 Expand_Freeze_Record_Type
(N
);
7209 elsif Is_Class_Wide_Type
(Def_Id
) then
7210 Expand_Freeze_Class_Wide_Type
(N
);
7213 -- Freeze processing for array types
7215 elsif Is_Array_Type
(Def_Id
) then
7216 Expand_Freeze_Array_Type
(N
);
7218 -- Freeze processing for access types
7220 -- For pool-specific access types, find out the pool object used for
7221 -- this type, needs actual expansion of it in some cases. Here are the
7222 -- different cases :
7224 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
7225 -- ---> don't use any storage pool
7227 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
7229 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
7231 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
7232 -- ---> Storage Pool is the specified one
7234 -- See GNAT Pool packages in the Run-Time for more details
7236 elsif Ekind_In
(Def_Id
, E_Access_Type
, E_General_Access_Type
) then
7238 Loc
: constant Source_Ptr
:= Sloc
(N
);
7239 Desig_Type
: constant Entity_Id
:= Designated_Type
(Def_Id
);
7241 Freeze_Action_Typ
: Entity_Id
;
7242 Pool_Object
: Entity_Id
;
7247 -- Rep Clause "for Def_Id'Storage_Size use 0;"
7248 -- ---> don't use any storage pool
7250 if No_Pool_Assigned
(Def_Id
) then
7255 -- Rep Clause : for Def_Id'Storage_Size use Expr.
7257 -- Def_Id__Pool : Stack_Bounded_Pool
7258 -- (Expr, DT'Size, DT'Alignment);
7260 elsif Has_Storage_Size_Clause
(Def_Id
) then
7266 -- For unconstrained composite types we give a size of zero
7267 -- so that the pool knows that it needs a special algorithm
7268 -- for variable size object allocation.
7270 if Is_Composite_Type
(Desig_Type
)
7271 and then not Is_Constrained
(Desig_Type
)
7273 DT_Size
:= Make_Integer_Literal
(Loc
, 0);
7274 DT_Align
:= Make_Integer_Literal
(Loc
, Maximum_Alignment
);
7278 Make_Attribute_Reference
(Loc
,
7279 Prefix
=> New_Occurrence_Of
(Desig_Type
, Loc
),
7280 Attribute_Name
=> Name_Max_Size_In_Storage_Elements
);
7283 Make_Attribute_Reference
(Loc
,
7284 Prefix
=> New_Occurrence_Of
(Desig_Type
, Loc
),
7285 Attribute_Name
=> Name_Alignment
);
7289 Make_Defining_Identifier
(Loc
,
7290 Chars
=> New_External_Name
(Chars
(Def_Id
), 'P'));
7292 -- We put the code associated with the pools in the entity
7293 -- that has the later freeze node, usually the access type
7294 -- but it can also be the designated_type; because the pool
7295 -- code requires both those types to be frozen
7297 if Is_Frozen
(Desig_Type
)
7298 and then (No
(Freeze_Node
(Desig_Type
))
7299 or else Analyzed
(Freeze_Node
(Desig_Type
)))
7301 Freeze_Action_Typ
:= Def_Id
;
7303 -- A Taft amendment type cannot get the freeze actions
7304 -- since the full view is not there.
7306 elsif Is_Incomplete_Or_Private_Type
(Desig_Type
)
7307 and then No
(Full_View
(Desig_Type
))
7309 Freeze_Action_Typ
:= Def_Id
;
7312 Freeze_Action_Typ
:= Desig_Type
;
7315 Append_Freeze_Action
(Freeze_Action_Typ
,
7316 Make_Object_Declaration
(Loc
,
7317 Defining_Identifier
=> Pool_Object
,
7318 Object_Definition
=>
7319 Make_Subtype_Indication
(Loc
,
7322 (RTE
(RE_Stack_Bounded_Pool
), Loc
),
7325 Make_Index_Or_Discriminant_Constraint
(Loc
,
7326 Constraints
=> New_List
(
7328 -- First discriminant is the Pool Size
7331 Storage_Size_Variable
(Def_Id
), Loc
),
7333 -- Second discriminant is the element size
7337 -- Third discriminant is the alignment
7342 Set_Associated_Storage_Pool
(Def_Id
, Pool_Object
);
7346 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
7347 -- ---> Storage Pool is the specified one
7349 -- When compiling in Ada 2012 mode, ensure that the accessibility
7350 -- level of the subpool access type is not deeper than that of the
7351 -- pool_with_subpools.
7353 elsif Ada_Version
>= Ada_2012
7354 and then Present
(Associated_Storage_Pool
(Def_Id
))
7356 -- Omit this check for the case of a configurable run-time that
7357 -- does not provide package System.Storage_Pools.Subpools.
7359 and then RTE_Available
(RE_Root_Storage_Pool_With_Subpools
)
7362 Loc
: constant Source_Ptr
:= Sloc
(Def_Id
);
7363 Pool
: constant Entity_Id
:=
7364 Associated_Storage_Pool
(Def_Id
);
7365 RSPWS
: constant Entity_Id
:=
7366 RTE
(RE_Root_Storage_Pool_With_Subpools
);
7369 -- It is known that the accessibility level of the access
7370 -- type is deeper than that of the pool.
7372 if Type_Access_Level
(Def_Id
) > Object_Access_Level
(Pool
)
7373 and then not Accessibility_Checks_Suppressed
(Def_Id
)
7374 and then not Accessibility_Checks_Suppressed
(Pool
)
7376 -- Static case: the pool is known to be a descendant of
7377 -- Root_Storage_Pool_With_Subpools.
7379 if Is_Ancestor
(RSPWS
, Etype
(Pool
)) then
7381 ("??subpool access type has deeper accessibility "
7382 & "level than pool", Def_Id
);
7384 Append_Freeze_Action
(Def_Id
,
7385 Make_Raise_Program_Error
(Loc
,
7386 Reason
=> PE_Accessibility_Check_Failed
));
7388 -- Dynamic case: when the pool is of a class-wide type,
7389 -- it may or may not support subpools depending on the
7390 -- path of derivation. Generate:
7392 -- if Def_Id in RSPWS'Class then
7393 -- raise Program_Error;
7396 elsif Is_Class_Wide_Type
(Etype
(Pool
)) then
7397 Append_Freeze_Action
(Def_Id
,
7398 Make_If_Statement
(Loc
,
7401 Left_Opnd
=> New_Occurrence_Of
(Pool
, Loc
),
7404 (Class_Wide_Type
(RSPWS
), Loc
)),
7406 Then_Statements
=> New_List
(
7407 Make_Raise_Program_Error
(Loc
,
7408 Reason
=> PE_Accessibility_Check_Failed
))));
7414 -- For access-to-controlled types (including class-wide types and
7415 -- Taft-amendment types, which potentially have controlled
7416 -- components), expand the list controller object that will store
7417 -- the dynamically allocated objects. Don't do this transformation
7418 -- for expander-generated access types, but do it for types that
7419 -- are the full view of types derived from other private types.
7420 -- Also suppress the list controller in the case of a designated
7421 -- type with convention Java, since this is used when binding to
7422 -- Java API specs, where there's no equivalent of a finalization
7423 -- list and we don't want to pull in the finalization support if
7426 if not Comes_From_Source
(Def_Id
)
7427 and then not Has_Private_Declaration
(Def_Id
)
7431 -- An exception is made for types defined in the run-time because
7432 -- Ada.Tags.Tag itself is such a type and cannot afford this
7433 -- unnecessary overhead that would generates a loop in the
7434 -- expansion scheme. Another exception is if Restrictions
7435 -- (No_Finalization) is active, since then we know nothing is
7438 elsif Restriction_Active
(No_Finalization
)
7439 or else In_Runtime
(Def_Id
)
7443 -- Create a finalization master for an access-to-controlled type
7444 -- or an access-to-incomplete type. It is assumed that the full
7445 -- view will be controlled.
7447 elsif Needs_Finalization
(Desig_Type
)
7448 or else (Is_Incomplete_Type
(Desig_Type
)
7449 and then No
(Full_View
(Desig_Type
)))
7451 Build_Finalization_Master
(Def_Id
);
7453 -- Create a finalization master when the designated type contains
7454 -- a private component. It is assumed that the full view will be
7457 elsif Has_Private_Component
(Desig_Type
) then
7458 Build_Finalization_Master
7460 For_Private
=> True,
7461 Context_Scope
=> Scope
(Def_Id
),
7462 Insertion_Node
=> Declaration_Node
(Desig_Type
));
7466 -- Freeze processing for enumeration types
7468 elsif Ekind
(Def_Id
) = E_Enumeration_Type
then
7470 -- We only have something to do if we have a non-standard
7471 -- representation (i.e. at least one literal whose pos value
7472 -- is not the same as its representation)
7474 if Has_Non_Standard_Rep
(Def_Id
) then
7475 Expand_Freeze_Enumeration_Type
(N
);
7478 -- Private types that are completed by a derivation from a private
7479 -- type have an internally generated full view, that needs to be
7480 -- frozen. This must be done explicitly because the two views share
7481 -- the freeze node, and the underlying full view is not visible when
7482 -- the freeze node is analyzed.
7484 elsif Is_Private_Type
(Def_Id
)
7485 and then Is_Derived_Type
(Def_Id
)
7486 and then Present
(Full_View
(Def_Id
))
7487 and then Is_Itype
(Full_View
(Def_Id
))
7488 and then Has_Private_Declaration
(Full_View
(Def_Id
))
7489 and then Freeze_Node
(Full_View
(Def_Id
)) = N
7491 Set_Entity
(N
, Full_View
(Def_Id
));
7492 Result
:= Freeze_Type
(N
);
7493 Set_Entity
(N
, Def_Id
);
7495 -- All other types require no expander action. There are such cases
7496 -- (e.g. task types and protected types). In such cases, the freeze
7497 -- nodes are there for use by Gigi.
7501 -- Complete the initialization of all pending access types' finalization
7502 -- masters now that the designated type has been is frozen and primitive
7503 -- Finalize_Address generated.
7505 Process_Pending_Access_Types
(Def_Id
);
7506 Freeze_Stream_Operations
(N
, Def_Id
);
7508 -- Generate the [spec and] body of the procedure tasked with the runtime
7509 -- verification of pragma Default_Initial_Condition's expression.
7511 if Has_DIC
(Def_Id
) then
7512 Build_DIC_Procedure_Body
(Def_Id
);
7515 -- Generate the [spec and] body of the invariant procedure tasked with
7516 -- the runtime verification of all invariants that pertain to the type.
7517 -- This includes invariants on the partial and full view, inherited
7518 -- class-wide invariants from parent types or interfaces, and invariants
7519 -- on array elements or record components.
7521 if Has_Invariants
(Def_Id
) then
7522 Build_Invariant_Procedure_Body
(Def_Id
);
7526 Restore_Ghost_Mode
(Mode
);
7532 when RE_Not_Available
=>
7534 Restore_Ghost_Mode
(Mode
);
7540 -------------------------
7541 -- Get_Simple_Init_Val --
7542 -------------------------
7544 function Get_Simple_Init_Val
7547 Size
: Uint
:= No_Uint
) return Node_Id
7549 Loc
: constant Source_Ptr
:= Sloc
(N
);
7555 -- This is the size to be used for computation of the appropriate
7556 -- initial value for the Normalize_Scalars and Initialize_Scalars case.
7558 IV_Attribute
: constant Boolean :=
7559 Nkind
(N
) = N_Attribute_Reference
7560 and then Attribute_Name
(N
) = Name_Invalid_Value
;
7564 -- These are the values computed by the procedure Check_Subtype_Bounds
7566 procedure Check_Subtype_Bounds
;
7567 -- This procedure examines the subtype T, and its ancestor subtypes and
7568 -- derived types to determine the best known information about the
7569 -- bounds of the subtype. After the call Lo_Bound is set either to
7570 -- No_Uint if no information can be determined, or to a value which
7571 -- represents a known low bound, i.e. a valid value of the subtype can
7572 -- not be less than this value. Hi_Bound is similarly set to a known
7573 -- high bound (valid value cannot be greater than this).
7575 --------------------------
7576 -- Check_Subtype_Bounds --
7577 --------------------------
7579 procedure Check_Subtype_Bounds
is
7588 Lo_Bound
:= No_Uint
;
7589 Hi_Bound
:= No_Uint
;
7591 -- Loop to climb ancestor subtypes and derived types
7595 if not Is_Discrete_Type
(ST1
) then
7599 Lo
:= Type_Low_Bound
(ST1
);
7600 Hi
:= Type_High_Bound
(ST1
);
7602 if Compile_Time_Known_Value
(Lo
) then
7603 Loval
:= Expr_Value
(Lo
);
7605 if Lo_Bound
= No_Uint
or else Lo_Bound
< Loval
then
7610 if Compile_Time_Known_Value
(Hi
) then
7611 Hival
:= Expr_Value
(Hi
);
7613 if Hi_Bound
= No_Uint
or else Hi_Bound
> Hival
then
7618 ST2
:= Ancestor_Subtype
(ST1
);
7624 exit when ST1
= ST2
;
7627 end Check_Subtype_Bounds
;
7629 -- Start of processing for Get_Simple_Init_Val
7632 -- For a private type, we should always have an underlying type (because
7633 -- this was already checked in Needs_Simple_Initialization). What we do
7634 -- is to get the value for the underlying type and then do an unchecked
7635 -- conversion to the private type.
7637 if Is_Private_Type
(T
) then
7638 Val
:= Get_Simple_Init_Val
(Underlying_Type
(T
), N
, Size
);
7640 -- A special case, if the underlying value is null, then qualify it
7641 -- with the underlying type, so that the null is properly typed.
7642 -- Similarly, if it is an aggregate it must be qualified, because an
7643 -- unchecked conversion does not provide a context for it.
7645 if Nkind_In
(Val
, N_Null
, N_Aggregate
) then
7647 Make_Qualified_Expression
(Loc
,
7649 New_Occurrence_Of
(Underlying_Type
(T
), Loc
),
7653 Result
:= Unchecked_Convert_To
(T
, Val
);
7655 -- Don't truncate result (important for Initialize/Normalize_Scalars)
7657 if Nkind
(Result
) = N_Unchecked_Type_Conversion
7658 and then Is_Scalar_Type
(Underlying_Type
(T
))
7660 Set_No_Truncation
(Result
);
7665 -- Scalars with Default_Value aspect. The first subtype may now be
7666 -- private, so retrieve value from underlying type.
7668 elsif Is_Scalar_Type
(T
) and then Has_Default_Aspect
(T
) then
7669 if Is_Private_Type
(First_Subtype
(T
)) then
7670 return Unchecked_Convert_To
(T
,
7671 Default_Aspect_Value
(Full_View
(First_Subtype
(T
))));
7674 Convert_To
(T
, Default_Aspect_Value
(First_Subtype
(T
)));
7677 -- Otherwise, for scalars, we must have normalize/initialize scalars
7678 -- case, or if the node N is an 'Invalid_Value attribute node.
7680 elsif Is_Scalar_Type
(T
) then
7681 pragma Assert
(Init_Or_Norm_Scalars
or IV_Attribute
);
7683 -- Compute size of object. If it is given by the caller, we can use
7684 -- it directly, otherwise we use Esize (T) as an estimate. As far as
7685 -- we know this covers all cases correctly.
7687 if Size
= No_Uint
or else Size
<= Uint_0
then
7688 Size_To_Use
:= UI_Max
(Uint_1
, Esize
(T
));
7690 Size_To_Use
:= Size
;
7693 -- Maximum size to use is 64 bits, since we will create values of
7694 -- type Unsigned_64 and the range must fit this type.
7696 if Size_To_Use
/= No_Uint
and then Size_To_Use
> Uint_64
then
7697 Size_To_Use
:= Uint_64
;
7700 -- Check known bounds of subtype
7702 Check_Subtype_Bounds
;
7704 -- Processing for Normalize_Scalars case
7706 if Normalize_Scalars
and then not IV_Attribute
then
7708 -- If zero is invalid, it is a convenient value to use that is
7709 -- for sure an appropriate invalid value in all situations.
7711 if Lo_Bound
/= No_Uint
and then Lo_Bound
> Uint_0
then
7712 Val
:= Make_Integer_Literal
(Loc
, 0);
7714 -- Cases where all one bits is the appropriate invalid value
7716 -- For modular types, all 1 bits is either invalid or valid. If
7717 -- it is valid, then there is nothing that can be done since there
7718 -- are no invalid values (we ruled out zero already).
7720 -- For signed integer types that have no negative values, either
7721 -- there is room for negative values, or there is not. If there
7722 -- is, then all 1-bits may be interpreted as minus one, which is
7723 -- certainly invalid. Alternatively it is treated as the largest
7724 -- positive value, in which case the observation for modular types
7727 -- For float types, all 1-bits is a NaN (not a number), which is
7728 -- certainly an appropriately invalid value.
7730 elsif Is_Unsigned_Type
(T
)
7731 or else Is_Floating_Point_Type
(T
)
7732 or else Is_Enumeration_Type
(T
)
7734 Val
:= Make_Integer_Literal
(Loc
, 2 ** Size_To_Use
- 1);
7736 -- Resolve as Unsigned_64, because the largest number we can
7737 -- generate is out of range of universal integer.
7739 Analyze_And_Resolve
(Val
, RTE
(RE_Unsigned_64
));
7741 -- Case of signed types
7745 Signed_Size
: constant Uint
:=
7746 UI_Min
(Uint_63
, Size_To_Use
- 1);
7749 -- Normally we like to use the most negative number. The one
7750 -- exception is when this number is in the known subtype
7751 -- range and the largest positive number is not in the known
7754 -- For this exceptional case, use largest positive value
7756 if Lo_Bound
/= No_Uint
and then Hi_Bound
/= No_Uint
7757 and then Lo_Bound
<= (-(2 ** Signed_Size
))
7758 and then Hi_Bound
< 2 ** Signed_Size
7760 Val
:= Make_Integer_Literal
(Loc
, 2 ** Signed_Size
- 1);
7762 -- Normal case of largest negative value
7765 Val
:= Make_Integer_Literal
(Loc
, -(2 ** Signed_Size
));
7770 -- Here for Initialize_Scalars case (or Invalid_Value attribute used)
7773 -- For float types, use float values from System.Scalar_Values
7775 if Is_Floating_Point_Type
(T
) then
7776 if Root_Type
(T
) = Standard_Short_Float
then
7777 Val_RE
:= RE_IS_Isf
;
7778 elsif Root_Type
(T
) = Standard_Float
then
7779 Val_RE
:= RE_IS_Ifl
;
7780 elsif Root_Type
(T
) = Standard_Long_Float
then
7781 Val_RE
:= RE_IS_Ilf
;
7782 else pragma Assert
(Root_Type
(T
) = Standard_Long_Long_Float
);
7783 Val_RE
:= RE_IS_Ill
;
7786 -- If zero is invalid, use zero values from System.Scalar_Values
7788 elsif Lo_Bound
/= No_Uint
and then Lo_Bound
> Uint_0
then
7789 if Size_To_Use
<= 8 then
7790 Val_RE
:= RE_IS_Iz1
;
7791 elsif Size_To_Use
<= 16 then
7792 Val_RE
:= RE_IS_Iz2
;
7793 elsif Size_To_Use
<= 32 then
7794 Val_RE
:= RE_IS_Iz4
;
7796 Val_RE
:= RE_IS_Iz8
;
7799 -- For unsigned, use unsigned values from System.Scalar_Values
7801 elsif Is_Unsigned_Type
(T
) then
7802 if Size_To_Use
<= 8 then
7803 Val_RE
:= RE_IS_Iu1
;
7804 elsif Size_To_Use
<= 16 then
7805 Val_RE
:= RE_IS_Iu2
;
7806 elsif Size_To_Use
<= 32 then
7807 Val_RE
:= RE_IS_Iu4
;
7809 Val_RE
:= RE_IS_Iu8
;
7812 -- For signed, use signed values from System.Scalar_Values
7815 if Size_To_Use
<= 8 then
7816 Val_RE
:= RE_IS_Is1
;
7817 elsif Size_To_Use
<= 16 then
7818 Val_RE
:= RE_IS_Is2
;
7819 elsif Size_To_Use
<= 32 then
7820 Val_RE
:= RE_IS_Is4
;
7822 Val_RE
:= RE_IS_Is8
;
7826 Val
:= New_Occurrence_Of
(RTE
(Val_RE
), Loc
);
7829 -- The final expression is obtained by doing an unchecked conversion
7830 -- of this result to the base type of the required subtype. Use the
7831 -- base type to prevent the unchecked conversion from chopping bits,
7832 -- and then we set Kill_Range_Check to preserve the "bad" value.
7834 Result
:= Unchecked_Convert_To
(Base_Type
(T
), Val
);
7836 -- Ensure result is not truncated, since we want the "bad" bits, and
7837 -- also kill range check on result.
7839 if Nkind
(Result
) = N_Unchecked_Type_Conversion
then
7840 Set_No_Truncation
(Result
);
7841 Set_Kill_Range_Check
(Result
, True);
7846 -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
7848 elsif Is_Standard_String_Type
(T
) then
7849 pragma Assert
(Init_Or_Norm_Scalars
);
7852 Make_Aggregate
(Loc
,
7853 Component_Associations
=> New_List
(
7854 Make_Component_Association
(Loc
,
7855 Choices
=> New_List
(
7856 Make_Others_Choice
(Loc
)),
7859 (Component_Type
(T
), N
, Esize
(Root_Type
(T
))))));
7861 -- Access type is initialized to null
7863 elsif Is_Access_Type
(T
) then
7864 return Make_Null
(Loc
);
7866 -- No other possibilities should arise, since we should only be calling
7867 -- Get_Simple_Init_Val if Needs_Simple_Initialization returned True,
7868 -- indicating one of the above cases held.
7871 raise Program_Error
;
7875 when RE_Not_Available
=>
7877 end Get_Simple_Init_Val
;
7879 ------------------------------
7880 -- Has_New_Non_Standard_Rep --
7881 ------------------------------
7883 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean is
7885 if not Is_Derived_Type
(T
) then
7886 return Has_Non_Standard_Rep
(T
)
7887 or else Has_Non_Standard_Rep
(Root_Type
(T
));
7889 -- If Has_Non_Standard_Rep is not set on the derived type, the
7890 -- representation is fully inherited.
7892 elsif not Has_Non_Standard_Rep
(T
) then
7896 return First_Rep_Item
(T
) /= First_Rep_Item
(Root_Type
(T
));
7898 -- May need a more precise check here: the First_Rep_Item may be a
7899 -- stream attribute, which does not affect the representation of the
7903 end Has_New_Non_Standard_Rep
;
7905 ----------------------
7906 -- Inline_Init_Proc --
7907 ----------------------
7909 function Inline_Init_Proc
(Typ
: Entity_Id
) return Boolean is
7911 -- The initialization proc of protected records is not worth inlining.
7912 -- In addition, when compiled for another unit for inlining purposes,
7913 -- it may make reference to entities that have not been elaborated yet.
7914 -- The initialization proc of records that need finalization contains
7915 -- a nested clean-up procedure that makes it impractical to inline as
7916 -- well, except for simple controlled types themselves. And similar
7917 -- considerations apply to task types.
7919 if Is_Concurrent_Type
(Typ
) then
7922 elsif Needs_Finalization
(Typ
) and then not Is_Controlled
(Typ
) then
7925 elsif Has_Task
(Typ
) then
7931 end Inline_Init_Proc
;
7937 function In_Runtime
(E
: Entity_Id
) return Boolean is
7942 while Scope
(S1
) /= Standard_Standard
loop
7946 return Is_RTU
(S1
, System
) or else Is_RTU
(S1
, Ada
);
7949 ----------------------------
7950 -- Initialization_Warning --
7951 ----------------------------
7953 procedure Initialization_Warning
(E
: Entity_Id
) is
7954 Warning_Needed
: Boolean;
7957 Warning_Needed
:= False;
7959 if Ekind
(Current_Scope
) = E_Package
7960 and then Static_Elaboration_Desired
(Current_Scope
)
7963 if Is_Record_Type
(E
) then
7964 if Has_Discriminants
(E
)
7965 or else Is_Limited_Type
(E
)
7966 or else Has_Non_Standard_Rep
(E
)
7968 Warning_Needed
:= True;
7971 -- Verify that at least one component has an initialization
7972 -- expression. No need for a warning on a type if all its
7973 -- components have no initialization.
7979 Comp
:= First_Component
(E
);
7980 while Present
(Comp
) loop
7981 if Ekind
(Comp
) = E_Discriminant
7983 (Nkind
(Parent
(Comp
)) = N_Component_Declaration
7984 and then Present
(Expression
(Parent
(Comp
))))
7986 Warning_Needed
:= True;
7990 Next_Component
(Comp
);
7995 if Warning_Needed
then
7997 ("Objects of the type cannot be initialized statically "
7998 & "by default??", Parent
(E
));
8003 Error_Msg_N
("Object cannot be initialized statically??", E
);
8006 end Initialization_Warning
;
8012 function Init_Formals
(Typ
: Entity_Id
) return List_Id
is
8013 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
8017 -- First parameter is always _Init : in out typ. Note that we need this
8018 -- to be in/out because in the case of the task record value, there
8019 -- are default record fields (_Priority, _Size, -Task_Info) that may
8020 -- be referenced in the generated initialization routine.
8022 Formals
:= New_List
(
8023 Make_Parameter_Specification
(Loc
,
8024 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_uInit
),
8026 Out_Present
=> True,
8027 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
8029 -- For task record value, or type that contains tasks, add two more
8030 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
8031 -- We also add these parameters for the task record type case.
8034 or else (Is_Record_Type
(Typ
) and then Is_Task_Record_Type
(Typ
))
8037 Make_Parameter_Specification
(Loc
,
8038 Defining_Identifier
=>
8039 Make_Defining_Identifier
(Loc
, Name_uMaster
),
8041 New_Occurrence_Of
(RTE
(RE_Master_Id
), Loc
)));
8043 -- Add _Chain (not done for sequential elaboration policy, see
8044 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
8046 if Partition_Elaboration_Policy
/= 'S' then
8048 Make_Parameter_Specification
(Loc
,
8049 Defining_Identifier
=>
8050 Make_Defining_Identifier
(Loc
, Name_uChain
),
8052 Out_Present
=> True,
8054 New_Occurrence_Of
(RTE
(RE_Activation_Chain
), Loc
)));
8058 Make_Parameter_Specification
(Loc
,
8059 Defining_Identifier
=>
8060 Make_Defining_Identifier
(Loc
, Name_uTask_Name
),
8062 Parameter_Type
=> New_Occurrence_Of
(Standard_String
, Loc
)));
8068 when RE_Not_Available
=>
8072 -------------------------
8073 -- Init_Secondary_Tags --
8074 -------------------------
8076 procedure Init_Secondary_Tags
8079 Stmts_List
: List_Id
;
8080 Fixed_Comps
: Boolean := True;
8081 Variable_Comps
: Boolean := True)
8083 Loc
: constant Source_Ptr
:= Sloc
(Target
);
8085 -- Inherit the C++ tag of the secondary dispatch table of Typ associated
8086 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
8088 procedure Initialize_Tag
8091 Tag_Comp
: Entity_Id
;
8092 Iface_Tag
: Node_Id
);
8093 -- Initialize the tag of the secondary dispatch table of Typ associated
8094 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
8095 -- Compiling under the CPP full ABI compatibility mode, if the ancestor
8096 -- of Typ CPP tagged type we generate code to inherit the contents of
8097 -- the dispatch table directly from the ancestor.
8099 --------------------
8100 -- Initialize_Tag --
8101 --------------------
8103 procedure Initialize_Tag
8106 Tag_Comp
: Entity_Id
;
8107 Iface_Tag
: Node_Id
)
8109 Comp_Typ
: Entity_Id
;
8110 Offset_To_Top_Comp
: Entity_Id
:= Empty
;
8113 -- Initialize pointer to secondary DT associated with the interface
8115 if not Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True) then
8116 Append_To
(Stmts_List
,
8117 Make_Assignment_Statement
(Loc
,
8119 Make_Selected_Component
(Loc
,
8120 Prefix
=> New_Copy_Tree
(Target
),
8121 Selector_Name
=> New_Occurrence_Of
(Tag_Comp
, Loc
)),
8123 New_Occurrence_Of
(Iface_Tag
, Loc
)));
8126 Comp_Typ
:= Scope
(Tag_Comp
);
8128 -- Initialize the entries of the table of interfaces. We generate a
8129 -- different call when the parent of the type has variable size
8132 if Comp_Typ
/= Etype
(Comp_Typ
)
8133 and then Is_Variable_Size_Record
(Etype
(Comp_Typ
))
8134 and then Chars
(Tag_Comp
) /= Name_uTag
8136 pragma Assert
(Present
(DT_Offset_To_Top_Func
(Tag_Comp
)));
8138 -- Issue error if Set_Dynamic_Offset_To_Top is not available in a
8139 -- configurable run-time environment.
8141 if not RTE_Available
(RE_Set_Dynamic_Offset_To_Top
) then
8143 ("variable size record with interface types", Typ
);
8148 -- Set_Dynamic_Offset_To_Top
8150 -- Interface_T => Iface'Tag,
8151 -- Offset_Value => n,
8152 -- Offset_Func => Fn'Address)
8154 Append_To
(Stmts_List
,
8155 Make_Procedure_Call_Statement
(Loc
,
8157 New_Occurrence_Of
(RTE
(RE_Set_Dynamic_Offset_To_Top
), Loc
),
8158 Parameter_Associations
=> New_List
(
8159 Make_Attribute_Reference
(Loc
,
8160 Prefix
=> New_Copy_Tree
(Target
),
8161 Attribute_Name
=> Name_Address
),
8163 Unchecked_Convert_To
(RTE
(RE_Tag
),
8165 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))),
8168 Unchecked_Convert_To
8169 (RTE
(RE_Storage_Offset
),
8170 Make_Attribute_Reference
(Loc
,
8172 Make_Selected_Component
(Loc
,
8173 Prefix
=> New_Copy_Tree
(Target
),
8175 New_Occurrence_Of
(Tag_Comp
, Loc
)),
8176 Attribute_Name
=> Name_Position
)),
8178 Unchecked_Convert_To
(RTE
(RE_Offset_To_Top_Function_Ptr
),
8179 Make_Attribute_Reference
(Loc
,
8180 Prefix
=> New_Occurrence_Of
8181 (DT_Offset_To_Top_Func
(Tag_Comp
), Loc
),
8182 Attribute_Name
=> Name_Address
)))));
8184 -- In this case the next component stores the value of the offset
8187 Offset_To_Top_Comp
:= Next_Entity
(Tag_Comp
);
8188 pragma Assert
(Present
(Offset_To_Top_Comp
));
8190 Append_To
(Stmts_List
,
8191 Make_Assignment_Statement
(Loc
,
8193 Make_Selected_Component
(Loc
,
8194 Prefix
=> New_Copy_Tree
(Target
),
8196 New_Occurrence_Of
(Offset_To_Top_Comp
, Loc
)),
8199 Make_Attribute_Reference
(Loc
,
8201 Make_Selected_Component
(Loc
,
8202 Prefix
=> New_Copy_Tree
(Target
),
8203 Selector_Name
=> New_Occurrence_Of
(Tag_Comp
, Loc
)),
8204 Attribute_Name
=> Name_Position
)));
8206 -- Normal case: No discriminants in the parent type
8209 -- Don't need to set any value if this interface shares the
8210 -- primary dispatch table.
8212 if not Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True) then
8213 Append_To
(Stmts_List
,
8214 Build_Set_Static_Offset_To_Top
(Loc
,
8215 Iface_Tag
=> New_Occurrence_Of
(Iface_Tag
, Loc
),
8217 Unchecked_Convert_To
(RTE
(RE_Storage_Offset
),
8218 Make_Attribute_Reference
(Loc
,
8220 Make_Selected_Component
(Loc
,
8221 Prefix
=> New_Copy_Tree
(Target
),
8223 New_Occurrence_Of
(Tag_Comp
, Loc
)),
8224 Attribute_Name
=> Name_Position
))));
8228 -- Register_Interface_Offset
8230 -- Interface_T => Iface'Tag,
8231 -- Is_Constant => True,
8232 -- Offset_Value => n,
8233 -- Offset_Func => null);
8235 if RTE_Available
(RE_Register_Interface_Offset
) then
8236 Append_To
(Stmts_List
,
8237 Make_Procedure_Call_Statement
(Loc
,
8240 (RTE
(RE_Register_Interface_Offset
), Loc
),
8241 Parameter_Associations
=> New_List
(
8242 Make_Attribute_Reference
(Loc
,
8243 Prefix
=> New_Copy_Tree
(Target
),
8244 Attribute_Name
=> Name_Address
),
8246 Unchecked_Convert_To
(RTE
(RE_Tag
),
8248 (Node
(First_Elmt
(Access_Disp_Table
(Iface
))), Loc
)),
8250 New_Occurrence_Of
(Standard_True
, Loc
),
8252 Unchecked_Convert_To
(RTE
(RE_Storage_Offset
),
8253 Make_Attribute_Reference
(Loc
,
8255 Make_Selected_Component
(Loc
,
8256 Prefix
=> New_Copy_Tree
(Target
),
8258 New_Occurrence_Of
(Tag_Comp
, Loc
)),
8259 Attribute_Name
=> Name_Position
)),
8268 Full_Typ
: Entity_Id
;
8269 Ifaces_List
: Elist_Id
;
8270 Ifaces_Comp_List
: Elist_Id
;
8271 Ifaces_Tag_List
: Elist_Id
;
8272 Iface_Elmt
: Elmt_Id
;
8273 Iface_Comp_Elmt
: Elmt_Id
;
8274 Iface_Tag_Elmt
: Elmt_Id
;
8276 In_Variable_Pos
: Boolean;
8278 -- Start of processing for Init_Secondary_Tags
8281 -- Handle private types
8283 if Present
(Full_View
(Typ
)) then
8284 Full_Typ
:= Full_View
(Typ
);
8289 Collect_Interfaces_Info
8290 (Full_Typ
, Ifaces_List
, Ifaces_Comp_List
, Ifaces_Tag_List
);
8292 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
8293 Iface_Comp_Elmt
:= First_Elmt
(Ifaces_Comp_List
);
8294 Iface_Tag_Elmt
:= First_Elmt
(Ifaces_Tag_List
);
8295 while Present
(Iface_Elmt
) loop
8296 Tag_Comp
:= Node
(Iface_Comp_Elmt
);
8298 -- Check if parent of record type has variable size components
8300 In_Variable_Pos
:= Scope
(Tag_Comp
) /= Etype
(Scope
(Tag_Comp
))
8301 and then Is_Variable_Size_Record
(Etype
(Scope
(Tag_Comp
)));
8303 -- If we are compiling under the CPP full ABI compatibility mode and
8304 -- the ancestor is a CPP_Pragma tagged type then we generate code to
8305 -- initialize the secondary tag components from tags that reference
8306 -- secondary tables filled with copy of parent slots.
8308 if Is_CPP_Class
(Root_Type
(Full_Typ
)) then
8310 -- Reject interface components located at variable offset in
8311 -- C++ derivations. This is currently unsupported.
8313 if not Fixed_Comps
and then In_Variable_Pos
then
8315 -- Locate the first dynamic component of the record. Done to
8316 -- improve the text of the warning.
8320 Comp_Typ
: Entity_Id
;
8323 Comp
:= First_Entity
(Typ
);
8324 while Present
(Comp
) loop
8325 Comp_Typ
:= Etype
(Comp
);
8327 if Ekind
(Comp
) /= E_Discriminant
8328 and then not Is_Tag
(Comp
)
8331 (Is_Record_Type
(Comp_Typ
)
8333 Is_Variable_Size_Record
(Base_Type
(Comp_Typ
)))
8335 (Is_Array_Type
(Comp_Typ
)
8336 and then Is_Variable_Size_Array
(Comp_Typ
));
8342 pragma Assert
(Present
(Comp
));
8343 Error_Msg_Node_2
:= Comp
;
8345 ("parent type & with dynamic component & cannot be parent"
8346 & " of 'C'P'P derivation if new interfaces are present",
8347 Typ
, Scope
(Original_Record_Component
(Comp
)));
8350 Sloc
(Scope
(Original_Record_Component
(Comp
)));
8352 ("type derived from 'C'P'P type & defined #",
8353 Typ
, Scope
(Original_Record_Component
(Comp
)));
8355 -- Avoid duplicated warnings
8360 -- Initialize secondary tags
8363 Append_To
(Stmts_List
,
8364 Make_Assignment_Statement
(Loc
,
8366 Make_Selected_Component
(Loc
,
8367 Prefix
=> New_Copy_Tree
(Target
),
8369 New_Occurrence_Of
(Node
(Iface_Comp_Elmt
), Loc
)),
8371 New_Occurrence_Of
(Node
(Iface_Tag_Elmt
), Loc
)));
8374 -- Otherwise generate code to initialize the tag
8377 if (In_Variable_Pos
and then Variable_Comps
)
8378 or else (not In_Variable_Pos
and then Fixed_Comps
)
8380 Initialize_Tag
(Full_Typ
,
8381 Iface
=> Node
(Iface_Elmt
),
8382 Tag_Comp
=> Tag_Comp
,
8383 Iface_Tag
=> Node
(Iface_Tag_Elmt
));
8387 Next_Elmt
(Iface_Elmt
);
8388 Next_Elmt
(Iface_Comp_Elmt
);
8389 Next_Elmt
(Iface_Tag_Elmt
);
8391 end Init_Secondary_Tags
;
8393 ------------------------
8394 -- Is_User_Defined_Eq --
8395 ------------------------
8397 function Is_User_Defined_Equality
(Prim
: Node_Id
) return Boolean is
8399 return Chars
(Prim
) = Name_Op_Eq
8400 and then Etype
(First_Formal
(Prim
)) =
8401 Etype
(Next_Formal
(First_Formal
(Prim
)))
8402 and then Base_Type
(Etype
(Prim
)) = Standard_Boolean
;
8403 end Is_User_Defined_Equality
;
8405 ----------------------------------------
8406 -- Make_Controlling_Function_Wrappers --
8407 ----------------------------------------
8409 procedure Make_Controlling_Function_Wrappers
8410 (Tag_Typ
: Entity_Id
;
8411 Decl_List
: out List_Id
;
8412 Body_List
: out List_Id
)
8414 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
8415 Prim_Elmt
: Elmt_Id
;
8417 Actual_List
: List_Id
;
8418 Formal_List
: List_Id
;
8420 Par_Formal
: Entity_Id
;
8421 Formal_Node
: Node_Id
;
8422 Func_Body
: Node_Id
;
8423 Func_Decl
: Node_Id
;
8424 Func_Spec
: Node_Id
;
8425 Return_Stmt
: Node_Id
;
8428 Decl_List
:= New_List
;
8429 Body_List
:= New_List
;
8431 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
8432 while Present
(Prim_Elmt
) loop
8433 Subp
:= Node
(Prim_Elmt
);
8435 -- If a primitive function with a controlling result of the type has
8436 -- not been overridden by the user, then we must create a wrapper
8437 -- function here that effectively overrides it and invokes the
8438 -- (non-abstract) parent function. This can only occur for a null
8439 -- extension. Note that functions with anonymous controlling access
8440 -- results don't qualify and must be overridden. We also exclude
8441 -- Input attributes, since each type will have its own version of
8442 -- Input constructed by the expander. The test for Comes_From_Source
8443 -- is needed to distinguish inherited operations from renamings
8444 -- (which also have Alias set). We exclude internal entities with
8445 -- Interface_Alias to avoid generating duplicated wrappers since
8446 -- the primitive which covers the interface is also available in
8447 -- the list of primitive operations.
8449 -- The function may be abstract, or require_Overriding may be set
8450 -- for it, because tests for null extensions may already have reset
8451 -- the Is_Abstract_Subprogram_Flag. If Requires_Overriding is not
8452 -- set, functions that need wrappers are recognized by having an
8453 -- alias that returns the parent type.
8455 if Comes_From_Source
(Subp
)
8456 or else No
(Alias
(Subp
))
8457 or else Present
(Interface_Alias
(Subp
))
8458 or else Ekind
(Subp
) /= E_Function
8459 or else not Has_Controlling_Result
(Subp
)
8460 or else Is_Access_Type
(Etype
(Subp
))
8461 or else Is_Abstract_Subprogram
(Alias
(Subp
))
8462 or else Is_TSS
(Subp
, TSS_Stream_Input
)
8466 elsif Is_Abstract_Subprogram
(Subp
)
8467 or else Requires_Overriding
(Subp
)
8469 (Is_Null_Extension
(Etype
(Subp
))
8470 and then Etype
(Alias
(Subp
)) /= Etype
(Subp
))
8472 Formal_List
:= No_List
;
8473 Formal
:= First_Formal
(Subp
);
8475 if Present
(Formal
) then
8476 Formal_List
:= New_List
;
8478 while Present
(Formal
) loop
8480 (Make_Parameter_Specification
8482 Defining_Identifier
=>
8483 Make_Defining_Identifier
(Sloc
(Formal
),
8484 Chars
=> Chars
(Formal
)),
8485 In_Present
=> In_Present
(Parent
(Formal
)),
8486 Out_Present
=> Out_Present
(Parent
(Formal
)),
8487 Null_Exclusion_Present
=>
8488 Null_Exclusion_Present
(Parent
(Formal
)),
8490 New_Occurrence_Of
(Etype
(Formal
), Loc
),
8492 New_Copy_Tree
(Expression
(Parent
(Formal
)))),
8495 Next_Formal
(Formal
);
8500 Make_Function_Specification
(Loc
,
8501 Defining_Unit_Name
=>
8502 Make_Defining_Identifier
(Loc
,
8503 Chars
=> Chars
(Subp
)),
8504 Parameter_Specifications
=> Formal_List
,
8505 Result_Definition
=>
8506 New_Occurrence_Of
(Etype
(Subp
), Loc
));
8508 Func_Decl
:= Make_Subprogram_Declaration
(Loc
, Func_Spec
);
8509 Append_To
(Decl_List
, Func_Decl
);
8511 -- Build a wrapper body that calls the parent function. The body
8512 -- contains a single return statement that returns an extension
8513 -- aggregate whose ancestor part is a call to the parent function,
8514 -- passing the formals as actuals (with any controlling arguments
8515 -- converted to the types of the corresponding formals of the
8516 -- parent function, which might be anonymous access types), and
8517 -- having a null extension.
8519 Formal
:= First_Formal
(Subp
);
8520 Par_Formal
:= First_Formal
(Alias
(Subp
));
8521 Formal_Node
:= First
(Formal_List
);
8523 if Present
(Formal
) then
8524 Actual_List
:= New_List
;
8526 Actual_List
:= No_List
;
8529 while Present
(Formal
) loop
8530 if Is_Controlling_Formal
(Formal
) then
8531 Append_To
(Actual_List
,
8532 Make_Type_Conversion
(Loc
,
8534 New_Occurrence_Of
(Etype
(Par_Formal
), Loc
),
8537 (Defining_Identifier
(Formal_Node
), Loc
)));
8542 (Defining_Identifier
(Formal_Node
), Loc
));
8545 Next_Formal
(Formal
);
8546 Next_Formal
(Par_Formal
);
8551 Make_Simple_Return_Statement
(Loc
,
8553 Make_Extension_Aggregate
(Loc
,
8555 Make_Function_Call
(Loc
,
8557 New_Occurrence_Of
(Alias
(Subp
), Loc
),
8558 Parameter_Associations
=> Actual_List
),
8559 Null_Record_Present
=> True));
8562 Make_Subprogram_Body
(Loc
,
8563 Specification
=> New_Copy_Tree
(Func_Spec
),
8564 Declarations
=> Empty_List
,
8565 Handled_Statement_Sequence
=>
8566 Make_Handled_Sequence_Of_Statements
(Loc
,
8567 Statements
=> New_List
(Return_Stmt
)));
8569 Set_Defining_Unit_Name
8570 (Specification
(Func_Body
),
8571 Make_Defining_Identifier
(Loc
, Chars
(Subp
)));
8573 Append_To
(Body_List
, Func_Body
);
8575 -- Replace the inherited function with the wrapper function in the
8576 -- primitive operations list. We add the minimum decoration needed
8577 -- to override interface primitives.
8579 Set_Ekind
(Defining_Unit_Name
(Func_Spec
), E_Function
);
8581 Override_Dispatching_Operation
8582 (Tag_Typ
, Subp
, New_Op
=> Defining_Unit_Name
(Func_Spec
),
8583 Is_Wrapper
=> True);
8587 Next_Elmt
(Prim_Elmt
);
8589 end Make_Controlling_Function_Wrappers
;
8595 function Make_Eq_Body
8597 Eq_Name
: Name_Id
) return Node_Id
8599 Loc
: constant Source_Ptr
:= Sloc
(Parent
(Typ
));
8601 Def
: constant Node_Id
:= Parent
(Typ
);
8602 Stmts
: constant List_Id
:= New_List
;
8603 Variant_Case
: Boolean := Has_Discriminants
(Typ
);
8604 Comps
: Node_Id
:= Empty
;
8605 Typ_Def
: Node_Id
:= Type_Definition
(Def
);
8609 Predef_Spec_Or_Body
(Loc
,
8612 Profile
=> New_List
(
8613 Make_Parameter_Specification
(Loc
,
8614 Defining_Identifier
=>
8615 Make_Defining_Identifier
(Loc
, Name_X
),
8616 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
8618 Make_Parameter_Specification
(Loc
,
8619 Defining_Identifier
=>
8620 Make_Defining_Identifier
(Loc
, Name_Y
),
8621 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8623 Ret_Type
=> Standard_Boolean
,
8626 if Variant_Case
then
8627 if Nkind
(Typ_Def
) = N_Derived_Type_Definition
then
8628 Typ_Def
:= Record_Extension_Part
(Typ_Def
);
8631 if Present
(Typ_Def
) then
8632 Comps
:= Component_List
(Typ_Def
);
8636 Present
(Comps
) and then Present
(Variant_Part
(Comps
));
8639 if Variant_Case
then
8641 Make_Eq_If
(Typ
, Discriminant_Specifications
(Def
)));
8642 Append_List_To
(Stmts
, Make_Eq_Case
(Typ
, Comps
));
8644 Make_Simple_Return_Statement
(Loc
,
8645 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
8649 Make_Simple_Return_Statement
(Loc
,
8651 Expand_Record_Equality
8654 Lhs
=> Make_Identifier
(Loc
, Name_X
),
8655 Rhs
=> Make_Identifier
(Loc
, Name_Y
),
8656 Bodies
=> Declarations
(Decl
))));
8659 Set_Handled_Statement_Sequence
8660 (Decl
, Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
));
8668 -- <Make_Eq_If shared components>
8671 -- when V1 => <Make_Eq_Case> on subcomponents
8673 -- when Vn => <Make_Eq_Case> on subcomponents
8676 function Make_Eq_Case
8679 Discrs
: Elist_Id
:= New_Elmt_List
) return List_Id
8681 Loc
: constant Source_Ptr
:= Sloc
(E
);
8682 Result
: constant List_Id
:= New_List
;
8686 function Corresponding_Formal
(C
: Node_Id
) return Entity_Id
;
8687 -- Given the discriminant that controls a given variant of an unchecked
8688 -- union, find the formal of the equality function that carries the
8689 -- inferred value of the discriminant.
8691 function External_Name
(E
: Entity_Id
) return Name_Id
;
8692 -- The value of a given discriminant is conveyed in the corresponding
8693 -- formal parameter of the equality routine. The name of this formal
8694 -- parameter carries a one-character suffix which is removed here.
8696 --------------------------
8697 -- Corresponding_Formal --
8698 --------------------------
8700 function Corresponding_Formal
(C
: Node_Id
) return Entity_Id
is
8701 Discr
: constant Entity_Id
:= Entity
(Name
(Variant_Part
(C
)));
8705 Elm
:= First_Elmt
(Discrs
);
8706 while Present
(Elm
) loop
8707 if Chars
(Discr
) = External_Name
(Node
(Elm
)) then
8714 -- A formal of the proper name must be found
8716 raise Program_Error
;
8717 end Corresponding_Formal
;
8723 function External_Name
(E
: Entity_Id
) return Name_Id
is
8725 Get_Name_String
(Chars
(E
));
8726 Name_Len
:= Name_Len
- 1;
8730 -- Start of processing for Make_Eq_Case
8733 Append_To
(Result
, Make_Eq_If
(E
, Component_Items
(CL
)));
8735 if No
(Variant_Part
(CL
)) then
8739 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(CL
)));
8741 if No
(Variant
) then
8745 Alt_List
:= New_List
;
8746 while Present
(Variant
) loop
8747 Append_To
(Alt_List
,
8748 Make_Case_Statement_Alternative
(Loc
,
8749 Discrete_Choices
=> New_Copy_List
(Discrete_Choices
(Variant
)),
8751 Make_Eq_Case
(E
, Component_List
(Variant
), Discrs
)));
8752 Next_Non_Pragma
(Variant
);
8755 -- If we have an Unchecked_Union, use one of the parameters of the
8756 -- enclosing equality routine that captures the discriminant, to use
8757 -- as the expression in the generated case statement.
8759 if Is_Unchecked_Union
(E
) then
8761 Make_Case_Statement
(Loc
,
8763 New_Occurrence_Of
(Corresponding_Formal
(CL
), Loc
),
8764 Alternatives
=> Alt_List
));
8768 Make_Case_Statement
(Loc
,
8770 Make_Selected_Component
(Loc
,
8771 Prefix
=> Make_Identifier
(Loc
, Name_X
),
8772 Selector_Name
=> New_Copy
(Name
(Variant_Part
(CL
)))),
8773 Alternatives
=> Alt_List
));
8794 -- or a null statement if the list L is empty
8798 L
: List_Id
) return Node_Id
8800 Loc
: constant Source_Ptr
:= Sloc
(E
);
8802 Field_Name
: Name_Id
;
8807 return Make_Null_Statement
(Loc
);
8812 C
:= First_Non_Pragma
(L
);
8813 while Present
(C
) loop
8814 Field_Name
:= Chars
(Defining_Identifier
(C
));
8816 -- The tags must not be compared: they are not part of the value.
8817 -- Ditto for parent interfaces because their equality operator is
8820 -- Note also that in the following, we use Make_Identifier for
8821 -- the component names. Use of New_Occurrence_Of to identify the
8822 -- components would be incorrect because the wrong entities for
8823 -- discriminants could be picked up in the private type case.
8825 if Field_Name
= Name_uParent
8826 and then Is_Interface
(Etype
(Defining_Identifier
(C
)))
8830 elsif Field_Name
/= Name_uTag
then
8831 Evolve_Or_Else
(Cond
,
8834 Make_Selected_Component
(Loc
,
8835 Prefix
=> Make_Identifier
(Loc
, Name_X
),
8836 Selector_Name
=> Make_Identifier
(Loc
, Field_Name
)),
8839 Make_Selected_Component
(Loc
,
8840 Prefix
=> Make_Identifier
(Loc
, Name_Y
),
8841 Selector_Name
=> Make_Identifier
(Loc
, Field_Name
))));
8844 Next_Non_Pragma
(C
);
8848 return Make_Null_Statement
(Loc
);
8852 Make_Implicit_If_Statement
(E
,
8854 Then_Statements
=> New_List
(
8855 Make_Simple_Return_Statement
(Loc
,
8856 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))));
8865 function Make_Neq_Body
(Tag_Typ
: Entity_Id
) return Node_Id
is
8867 function Is_Predefined_Neq_Renaming
(Prim
: Node_Id
) return Boolean;
8868 -- Returns true if Prim is a renaming of an unresolved predefined
8869 -- inequality operation.
8871 --------------------------------
8872 -- Is_Predefined_Neq_Renaming --
8873 --------------------------------
8875 function Is_Predefined_Neq_Renaming
(Prim
: Node_Id
) return Boolean is
8877 return Chars
(Prim
) /= Name_Op_Ne
8878 and then Present
(Alias
(Prim
))
8879 and then Comes_From_Source
(Prim
)
8880 and then Is_Intrinsic_Subprogram
(Alias
(Prim
))
8881 and then Chars
(Alias
(Prim
)) = Name_Op_Ne
;
8882 end Is_Predefined_Neq_Renaming
;
8886 Loc
: constant Source_Ptr
:= Sloc
(Parent
(Tag_Typ
));
8887 Stmts
: constant List_Id
:= New_List
;
8889 Eq_Prim
: Entity_Id
;
8890 Left_Op
: Entity_Id
;
8891 Renaming_Prim
: Entity_Id
;
8892 Right_Op
: Entity_Id
;
8895 -- Start of processing for Make_Neq_Body
8898 -- For a call on a renaming of a dispatching subprogram that is
8899 -- overridden, if the overriding occurred before the renaming, then
8900 -- the body executed is that of the overriding declaration, even if the
8901 -- overriding declaration is not visible at the place of the renaming;
8902 -- otherwise, the inherited or predefined subprogram is called, see
8905 -- Stage 1: Search for a renaming of the inequality primitive and also
8906 -- search for an overriding of the equality primitive located before the
8907 -- renaming declaration.
8915 Renaming_Prim
:= Empty
;
8917 Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
8918 while Present
(Elmt
) loop
8919 Prim
:= Node
(Elmt
);
8921 if Is_User_Defined_Equality
(Prim
) and then No
(Alias
(Prim
)) then
8922 if No
(Renaming_Prim
) then
8923 pragma Assert
(No
(Eq_Prim
));
8927 elsif Is_Predefined_Neq_Renaming
(Prim
) then
8928 Renaming_Prim
:= Prim
;
8935 -- No further action needed if no renaming was found
8937 if No
(Renaming_Prim
) then
8941 -- Stage 2: Replace the renaming declaration by a subprogram declaration
8942 -- (required to add its body)
8944 Decl
:= Parent
(Parent
(Renaming_Prim
));
8946 Make_Subprogram_Declaration
(Loc
,
8947 Specification
=> Specification
(Decl
)));
8948 Set_Analyzed
(Decl
);
8950 -- Remove the decoration of intrinsic renaming subprogram
8952 Set_Is_Intrinsic_Subprogram
(Renaming_Prim
, False);
8953 Set_Convention
(Renaming_Prim
, Convention_Ada
);
8954 Set_Alias
(Renaming_Prim
, Empty
);
8955 Set_Has_Completion
(Renaming_Prim
, False);
8957 -- Stage 3: Build the corresponding body
8959 Left_Op
:= First_Formal
(Renaming_Prim
);
8960 Right_Op
:= Next_Formal
(Left_Op
);
8963 Predef_Spec_Or_Body
(Loc
,
8965 Name
=> Chars
(Renaming_Prim
),
8966 Profile
=> New_List
(
8967 Make_Parameter_Specification
(Loc
,
8968 Defining_Identifier
=>
8969 Make_Defining_Identifier
(Loc
, Chars
(Left_Op
)),
8970 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
8972 Make_Parameter_Specification
(Loc
,
8973 Defining_Identifier
=>
8974 Make_Defining_Identifier
(Loc
, Chars
(Right_Op
)),
8975 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
8977 Ret_Type
=> Standard_Boolean
,
8980 -- If the overriding of the equality primitive occurred before the
8981 -- renaming, then generate:
8983 -- function <Neq_Name> (X : Y : Typ) return Boolean is
8985 -- return not Oeq (X, Y);
8988 if Present
(Eq_Prim
) then
8991 -- Otherwise build a nested subprogram which performs the predefined
8992 -- evaluation of the equality operator. That is, generate:
8994 -- function <Neq_Name> (X : Y : Typ) return Boolean is
8995 -- function Oeq (X : Y) return Boolean is
8997 -- <<body of default implementation>>
9000 -- return not Oeq (X, Y);
9005 Local_Subp
: Node_Id
;
9007 Local_Subp
:= Make_Eq_Body
(Tag_Typ
, Name_Op_Eq
);
9008 Set_Declarations
(Decl
, New_List
(Local_Subp
));
9009 Target
:= Defining_Entity
(Local_Subp
);
9014 Make_Simple_Return_Statement
(Loc
,
9017 Make_Function_Call
(Loc
,
9018 Name
=> New_Occurrence_Of
(Target
, Loc
),
9019 Parameter_Associations
=> New_List
(
9020 Make_Identifier
(Loc
, Chars
(Left_Op
)),
9021 Make_Identifier
(Loc
, Chars
(Right_Op
)))))));
9023 Set_Handled_Statement_Sequence
9024 (Decl
, Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
));
9028 -------------------------------
9029 -- Make_Null_Procedure_Specs --
9030 -------------------------------
9032 function Make_Null_Procedure_Specs
(Tag_Typ
: Entity_Id
) return List_Id
is
9033 Decl_List
: constant List_Id
:= New_List
;
9034 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
9036 Formal_List
: List_Id
;
9037 New_Param_Spec
: Node_Id
;
9038 Parent_Subp
: Entity_Id
;
9039 Prim_Elmt
: Elmt_Id
;
9043 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9044 while Present
(Prim_Elmt
) loop
9045 Subp
:= Node
(Prim_Elmt
);
9047 -- If a null procedure inherited from an interface has not been
9048 -- overridden, then we build a null procedure declaration to
9049 -- override the inherited procedure.
9051 Parent_Subp
:= Alias
(Subp
);
9053 if Present
(Parent_Subp
)
9054 and then Is_Null_Interface_Primitive
(Parent_Subp
)
9056 Formal_List
:= No_List
;
9057 Formal
:= First_Formal
(Subp
);
9059 if Present
(Formal
) then
9060 Formal_List
:= New_List
;
9062 while Present
(Formal
) loop
9064 -- Copy the parameter spec including default expressions
9067 New_Copy_Tree
(Parent
(Formal
), New_Sloc
=> Loc
);
9069 -- Generate a new defining identifier for the new formal.
9070 -- required because New_Copy_Tree does not duplicate
9071 -- semantic fields (except itypes).
9073 Set_Defining_Identifier
(New_Param_Spec
,
9074 Make_Defining_Identifier
(Sloc
(Formal
),
9075 Chars
=> Chars
(Formal
)));
9077 -- For controlling arguments we must change their
9078 -- parameter type to reference the tagged type (instead
9079 -- of the interface type)
9081 if Is_Controlling_Formal
(Formal
) then
9082 if Nkind
(Parameter_Type
(Parent
(Formal
))) = N_Identifier
9084 Set_Parameter_Type
(New_Param_Spec
,
9085 New_Occurrence_Of
(Tag_Typ
, Loc
));
9088 (Nkind
(Parameter_Type
(Parent
(Formal
))) =
9089 N_Access_Definition
);
9090 Set_Subtype_Mark
(Parameter_Type
(New_Param_Spec
),
9091 New_Occurrence_Of
(Tag_Typ
, Loc
));
9095 Append
(New_Param_Spec
, Formal_List
);
9097 Next_Formal
(Formal
);
9101 Append_To
(Decl_List
,
9102 Make_Subprogram_Declaration
(Loc
,
9103 Make_Procedure_Specification
(Loc
,
9104 Defining_Unit_Name
=>
9105 Make_Defining_Identifier
(Loc
, Chars
(Subp
)),
9106 Parameter_Specifications
=> Formal_List
,
9107 Null_Present
=> True)));
9110 Next_Elmt
(Prim_Elmt
);
9114 end Make_Null_Procedure_Specs
;
9116 -------------------------------------
9117 -- Make_Predefined_Primitive_Specs --
9118 -------------------------------------
9120 procedure Make_Predefined_Primitive_Specs
9121 (Tag_Typ
: Entity_Id
;
9122 Predef_List
: out List_Id
;
9123 Renamed_Eq
: out Entity_Id
)
9125 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean;
9126 -- Returns true if Prim is a renaming of an unresolved predefined
9127 -- equality operation.
9129 -------------------------------
9130 -- Is_Predefined_Eq_Renaming --
9131 -------------------------------
9133 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean is
9135 return Chars
(Prim
) /= Name_Op_Eq
9136 and then Present
(Alias
(Prim
))
9137 and then Comes_From_Source
(Prim
)
9138 and then Is_Intrinsic_Subprogram
(Alias
(Prim
))
9139 and then Chars
(Alias
(Prim
)) = Name_Op_Eq
;
9140 end Is_Predefined_Eq_Renaming
;
9144 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
9145 Res
: constant List_Id
:= New_List
;
9146 Eq_Name
: Name_Id
:= Name_Op_Eq
;
9147 Eq_Needed
: Boolean;
9151 Has_Predef_Eq_Renaming
: Boolean := False;
9152 -- Set to True if Tag_Typ has a primitive that renames the predefined
9153 -- equality operator. Used to implement (RM 8-5-4(8)).
9155 -- Start of processing for Make_Predefined_Primitive_Specs
9158 Renamed_Eq
:= Empty
;
9162 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
9165 Profile
=> New_List
(
9166 Make_Parameter_Specification
(Loc
,
9167 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
9168 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
9170 Ret_Type
=> Standard_Long_Long_Integer
));
9172 -- Specs for dispatching stream attributes
9175 Stream_Op_TSS_Names
:
9176 constant array (Integer range <>) of TSS_Name_Type
:=
9183 for Op
in Stream_Op_TSS_Names
'Range loop
9184 if Stream_Operation_OK
(Tag_Typ
, Stream_Op_TSS_Names
(Op
)) then
9186 Predef_Stream_Attr_Spec
(Loc
, Tag_Typ
,
9187 Stream_Op_TSS_Names
(Op
)));
9192 -- Spec of "=" is expanded if the type is not limited and if a user
9193 -- defined "=" was not already declared for the non-full view of a
9194 -- private extension
9196 if not Is_Limited_Type
(Tag_Typ
) then
9198 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9199 while Present
(Prim
) loop
9201 -- If a primitive is encountered that renames the predefined
9202 -- equality operator before reaching any explicit equality
9203 -- primitive, then we still need to create a predefined equality
9204 -- function, because calls to it can occur via the renaming. A
9205 -- new name is created for the equality to avoid conflicting with
9206 -- any user-defined equality. (Note that this doesn't account for
9207 -- renamings of equality nested within subpackages???)
9209 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
9210 Has_Predef_Eq_Renaming
:= True;
9211 Eq_Name
:= New_External_Name
(Chars
(Node
(Prim
)), 'E');
9213 -- User-defined equality
9215 elsif Is_User_Defined_Equality
(Node
(Prim
)) then
9216 if No
(Alias
(Node
(Prim
)))
9217 or else Nkind
(Unit_Declaration_Node
(Node
(Prim
))) =
9218 N_Subprogram_Renaming_Declaration
9223 -- If the parent is not an interface type and has an abstract
9224 -- equality function explicitly defined in the sources, then
9225 -- the inherited equality is abstract as well, and no body can
9226 -- be created for it.
9228 elsif not Is_Interface
(Etype
(Tag_Typ
))
9229 and then Present
(Alias
(Node
(Prim
)))
9230 and then Comes_From_Source
(Alias
(Node
(Prim
)))
9231 and then Is_Abstract_Subprogram
(Alias
(Node
(Prim
)))
9236 -- If the type has an equality function corresponding with
9237 -- a primitive defined in an interface type, the inherited
9238 -- equality is abstract as well, and no body can be created
9241 elsif Present
(Alias
(Node
(Prim
)))
9242 and then Comes_From_Source
(Ultimate_Alias
(Node
(Prim
)))
9245 (Find_Dispatching_Type
(Ultimate_Alias
(Node
(Prim
))))
9255 -- If a renaming of predefined equality was found but there was no
9256 -- user-defined equality (so Eq_Needed is still true), then set the
9257 -- name back to Name_Op_Eq. But in the case where a user-defined
9258 -- equality was located after such a renaming, then the predefined
9259 -- equality function is still needed, so Eq_Needed must be set back
9262 if Eq_Name
/= Name_Op_Eq
then
9264 Eq_Name
:= Name_Op_Eq
;
9271 Eq_Spec
:= Predef_Spec_Or_Body
(Loc
,
9274 Profile
=> New_List
(
9275 Make_Parameter_Specification
(Loc
,
9276 Defining_Identifier
=>
9277 Make_Defining_Identifier
(Loc
, Name_X
),
9278 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
9280 Make_Parameter_Specification
(Loc
,
9281 Defining_Identifier
=>
9282 Make_Defining_Identifier
(Loc
, Name_Y
),
9283 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
9284 Ret_Type
=> Standard_Boolean
);
9285 Append_To
(Res
, Eq_Spec
);
9287 if Has_Predef_Eq_Renaming
then
9288 Renamed_Eq
:= Defining_Unit_Name
(Specification
(Eq_Spec
));
9290 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9291 while Present
(Prim
) loop
9293 -- Any renamings of equality that appeared before an
9294 -- overriding equality must be updated to refer to the
9295 -- entity for the predefined equality, otherwise calls via
9296 -- the renaming would get incorrectly resolved to call the
9297 -- user-defined equality function.
9299 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
9300 Set_Alias
(Node
(Prim
), Renamed_Eq
);
9302 -- Exit upon encountering a user-defined equality
9304 elsif Chars
(Node
(Prim
)) = Name_Op_Eq
9305 and then No
(Alias
(Node
(Prim
)))
9315 -- Spec for dispatching assignment
9317 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
9319 Name
=> Name_uAssign
,
9320 Profile
=> New_List
(
9321 Make_Parameter_Specification
(Loc
,
9322 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
9323 Out_Present
=> True,
9324 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
9326 Make_Parameter_Specification
(Loc
,
9327 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
9328 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)))));
9331 -- Ada 2005: Generate declarations for the following primitive
9332 -- operations for limited interfaces and synchronized types that
9333 -- implement a limited interface.
9335 -- Disp_Asynchronous_Select
9336 -- Disp_Conditional_Select
9337 -- Disp_Get_Prim_Op_Kind
9340 -- Disp_Timed_Select
9342 -- Disable the generation of these bodies if No_Dispatching_Calls,
9343 -- Ravenscar or ZFP is active.
9345 if Ada_Version
>= Ada_2005
9346 and then not Restriction_Active
(No_Dispatching_Calls
)
9347 and then not Restriction_Active
(No_Select_Statements
)
9348 and then RTE_Available
(RE_Select_Specific_Data
)
9350 -- These primitives are defined abstract in interface types
9352 if Is_Interface
(Tag_Typ
)
9353 and then Is_Limited_Record
(Tag_Typ
)
9356 Make_Abstract_Subprogram_Declaration
(Loc
,
9358 Make_Disp_Asynchronous_Select_Spec
(Tag_Typ
)));
9361 Make_Abstract_Subprogram_Declaration
(Loc
,
9363 Make_Disp_Conditional_Select_Spec
(Tag_Typ
)));
9366 Make_Abstract_Subprogram_Declaration
(Loc
,
9368 Make_Disp_Get_Prim_Op_Kind_Spec
(Tag_Typ
)));
9371 Make_Abstract_Subprogram_Declaration
(Loc
,
9373 Make_Disp_Get_Task_Id_Spec
(Tag_Typ
)));
9376 Make_Abstract_Subprogram_Declaration
(Loc
,
9378 Make_Disp_Requeue_Spec
(Tag_Typ
)));
9381 Make_Abstract_Subprogram_Declaration
(Loc
,
9383 Make_Disp_Timed_Select_Spec
(Tag_Typ
)));
9385 -- If ancestor is an interface type, declare non-abstract primitives
9386 -- to override the abstract primitives of the interface type.
9388 -- In VM targets we define these primitives in all root tagged types
9389 -- that are not interface types. Done because in VM targets we don't
9390 -- have secondary dispatch tables and any derivation of Tag_Typ may
9391 -- cover limited interfaces (which always have these primitives since
9392 -- they may be ancestors of synchronized interface types).
9394 elsif (not Is_Interface
(Tag_Typ
)
9395 and then Is_Interface
(Etype
(Tag_Typ
))
9396 and then Is_Limited_Record
(Etype
(Tag_Typ
)))
9398 (Is_Concurrent_Record_Type
(Tag_Typ
)
9399 and then Has_Interfaces
(Tag_Typ
))
9401 (not Tagged_Type_Expansion
9402 and then not Is_Interface
(Tag_Typ
)
9403 and then Tag_Typ
= Root_Type
(Tag_Typ
))
9406 Make_Subprogram_Declaration
(Loc
,
9408 Make_Disp_Asynchronous_Select_Spec
(Tag_Typ
)));
9411 Make_Subprogram_Declaration
(Loc
,
9413 Make_Disp_Conditional_Select_Spec
(Tag_Typ
)));
9416 Make_Subprogram_Declaration
(Loc
,
9418 Make_Disp_Get_Prim_Op_Kind_Spec
(Tag_Typ
)));
9421 Make_Subprogram_Declaration
(Loc
,
9423 Make_Disp_Get_Task_Id_Spec
(Tag_Typ
)));
9426 Make_Subprogram_Declaration
(Loc
,
9428 Make_Disp_Requeue_Spec
(Tag_Typ
)));
9431 Make_Subprogram_Declaration
(Loc
,
9433 Make_Disp_Timed_Select_Spec
(Tag_Typ
)));
9437 -- All tagged types receive their own Deep_Adjust and Deep_Finalize
9438 -- regardless of whether they are controlled or may contain controlled
9441 -- Do not generate the routines if finalization is disabled
9443 if Restriction_Active
(No_Finalization
) then
9447 if not Is_Limited_Type
(Tag_Typ
) then
9448 Append_To
(Res
, Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Adjust
));
9451 Append_To
(Res
, Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Finalize
));
9455 end Make_Predefined_Primitive_Specs
;
9457 -------------------------
9458 -- Make_Tag_Assignment --
9459 -------------------------
9461 function Make_Tag_Assignment
(N
: Node_Id
) return Node_Id
is
9462 Loc
: constant Source_Ptr
:= Sloc
(N
);
9463 Def_If
: constant Entity_Id
:= Defining_Identifier
(N
);
9464 Expr
: constant Node_Id
:= Expression
(N
);
9465 Typ
: constant Entity_Id
:= Etype
(Def_If
);
9466 Full_Typ
: constant Entity_Id
:= Underlying_Type
(Typ
);
9470 -- This expansion activity is called during analysis, but cannot
9471 -- be applied in ASIS mode when other expansion is disabled.
9473 if Is_Tagged_Type
(Typ
)
9474 and then not Is_Class_Wide_Type
(Typ
)
9475 and then not Is_CPP_Class
(Typ
)
9476 and then Tagged_Type_Expansion
9477 and then Nkind
(Expr
) /= N_Aggregate
9478 and then not ASIS_Mode
9479 and then (Nkind
(Expr
) /= N_Qualified_Expression
9480 or else Nkind
(Expression
(Expr
)) /= N_Aggregate
)
9483 Make_Selected_Component
(Loc
,
9484 Prefix
=> New_Occurrence_Of
(Def_If
, Loc
),
9486 New_Occurrence_Of
(First_Tag_Component
(Full_Typ
), Loc
));
9487 Set_Assignment_OK
(New_Ref
);
9490 Make_Assignment_Statement
(Loc
,
9493 Unchecked_Convert_To
(RTE
(RE_Tag
),
9494 New_Occurrence_Of
(Node
9495 (First_Elmt
(Access_Disp_Table
(Full_Typ
))), Loc
)));
9499 end Make_Tag_Assignment
;
9501 ---------------------------------
9502 -- Needs_Simple_Initialization --
9503 ---------------------------------
9505 function Needs_Simple_Initialization
9507 Consider_IS
: Boolean := True) return Boolean
9509 Consider_IS_NS
: constant Boolean :=
9510 Normalize_Scalars
or (Initialize_Scalars
and Consider_IS
);
9513 -- Never need initialization if it is suppressed
9515 if Initialization_Suppressed
(T
) then
9519 -- Check for private type, in which case test applies to the underlying
9520 -- type of the private type.
9522 if Is_Private_Type
(T
) then
9524 RT
: constant Entity_Id
:= Underlying_Type
(T
);
9526 if Present
(RT
) then
9527 return Needs_Simple_Initialization
(RT
);
9533 -- Scalar type with Default_Value aspect requires initialization
9535 elsif Is_Scalar_Type
(T
) and then Has_Default_Aspect
(T
) then
9538 -- Cases needing simple initialization are access types, and, if pragma
9539 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
9542 elsif Is_Access_Type
(T
)
9543 or else (Consider_IS_NS
and then (Is_Scalar_Type
(T
)))
9547 -- If Initialize/Normalize_Scalars is in effect, string objects also
9548 -- need initialization, unless they are created in the course of
9549 -- expanding an aggregate (since in the latter case they will be
9550 -- filled with appropriate initializing values before they are used).
9552 elsif Consider_IS_NS
9553 and then Is_Standard_String_Type
(T
)
9556 or else Nkind
(Associated_Node_For_Itype
(T
)) /= N_Aggregate
)
9563 end Needs_Simple_Initialization
;
9565 ----------------------
9566 -- Predef_Deep_Spec --
9567 ----------------------
9569 function Predef_Deep_Spec
9571 Tag_Typ
: Entity_Id
;
9572 Name
: TSS_Name_Type
;
9573 For_Body
: Boolean := False) return Node_Id
9578 -- V : in out Tag_Typ
9580 Formals
:= New_List
(
9581 Make_Parameter_Specification
(Loc
,
9582 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
9584 Out_Present
=> True,
9585 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)));
9587 -- F : Boolean := True
9589 if Name
= TSS_Deep_Adjust
9590 or else Name
= TSS_Deep_Finalize
9593 Make_Parameter_Specification
(Loc
,
9594 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_F
),
9595 Parameter_Type
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
9596 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
9600 Predef_Spec_Or_Body
(Loc
,
9601 Name
=> Make_TSS_Name
(Tag_Typ
, Name
),
9604 For_Body
=> For_Body
);
9607 when RE_Not_Available
=>
9609 end Predef_Deep_Spec
;
9611 -------------------------
9612 -- Predef_Spec_Or_Body --
9613 -------------------------
9615 function Predef_Spec_Or_Body
9617 Tag_Typ
: Entity_Id
;
9620 Ret_Type
: Entity_Id
:= Empty
;
9621 For_Body
: Boolean := False) return Node_Id
9623 Id
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name
);
9627 Set_Is_Public
(Id
, Is_Public
(Tag_Typ
));
9629 -- The internal flag is set to mark these declarations because they have
9630 -- specific properties. First, they are primitives even if they are not
9631 -- defined in the type scope (the freezing point is not necessarily in
9632 -- the same scope). Second, the predefined equality can be overridden by
9633 -- a user-defined equality, no body will be generated in this case.
9635 Set_Is_Internal
(Id
);
9637 if not Debug_Generated_Code
then
9638 Set_Debug_Info_Off
(Id
);
9641 if No
(Ret_Type
) then
9643 Make_Procedure_Specification
(Loc
,
9644 Defining_Unit_Name
=> Id
,
9645 Parameter_Specifications
=> Profile
);
9648 Make_Function_Specification
(Loc
,
9649 Defining_Unit_Name
=> Id
,
9650 Parameter_Specifications
=> Profile
,
9651 Result_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
9654 if Is_Interface
(Tag_Typ
) then
9655 return Make_Abstract_Subprogram_Declaration
(Loc
, Spec
);
9657 -- If body case, return empty subprogram body. Note that this is ill-
9658 -- formed, because there is not even a null statement, and certainly not
9659 -- a return in the function case. The caller is expected to do surgery
9660 -- on the body to add the appropriate stuff.
9663 return Make_Subprogram_Body
(Loc
, Spec
, Empty_List
, Empty
);
9665 -- For the case of an Input attribute predefined for an abstract type,
9666 -- generate an abstract specification. This will never be called, but we
9667 -- need the slot allocated in the dispatching table so that attributes
9668 -- typ'Class'Input and typ'Class'Output will work properly.
9670 elsif Is_TSS
(Name
, TSS_Stream_Input
)
9671 and then Is_Abstract_Type
(Tag_Typ
)
9673 return Make_Abstract_Subprogram_Declaration
(Loc
, Spec
);
9675 -- Normal spec case, where we return a subprogram declaration
9678 return Make_Subprogram_Declaration
(Loc
, Spec
);
9680 end Predef_Spec_Or_Body
;
9682 -----------------------------
9683 -- Predef_Stream_Attr_Spec --
9684 -----------------------------
9686 function Predef_Stream_Attr_Spec
9688 Tag_Typ
: Entity_Id
;
9689 Name
: TSS_Name_Type
;
9690 For_Body
: Boolean := False) return Node_Id
9692 Ret_Type
: Entity_Id
;
9695 if Name
= TSS_Stream_Input
then
9696 Ret_Type
:= Tag_Typ
;
9704 Name
=> Make_TSS_Name
(Tag_Typ
, Name
),
9706 Profile
=> Build_Stream_Attr_Profile
(Loc
, Tag_Typ
, Name
),
9707 Ret_Type
=> Ret_Type
,
9708 For_Body
=> For_Body
);
9709 end Predef_Stream_Attr_Spec
;
9711 ---------------------------------
9712 -- Predefined_Primitive_Bodies --
9713 ---------------------------------
9715 function Predefined_Primitive_Bodies
9716 (Tag_Typ
: Entity_Id
;
9717 Renamed_Eq
: Entity_Id
) return List_Id
9719 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
9720 Res
: constant List_Id
:= New_List
;
9725 Eq_Needed
: Boolean;
9729 pragma Warnings
(Off
, Ent
);
9732 pragma Assert
(not Is_Interface
(Tag_Typ
));
9734 -- See if we have a predefined "=" operator
9736 if Present
(Renamed_Eq
) then
9738 Eq_Name
:= Chars
(Renamed_Eq
);
9740 -- If the parent is an interface type then it has defined all the
9741 -- predefined primitives abstract and we need to check if the type
9742 -- has some user defined "=" function which matches the profile of
9743 -- the Ada predefined equality operator to avoid generating it.
9745 elsif Is_Interface
(Etype
(Tag_Typ
)) then
9747 Eq_Name
:= Name_Op_Eq
;
9749 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9750 while Present
(Prim
) loop
9751 if Chars
(Node
(Prim
)) = Name_Op_Eq
9752 and then not Is_Internal
(Node
(Prim
))
9753 and then Present
(First_Entity
(Node
(Prim
)))
9755 -- The predefined equality primitive must have exactly two
9756 -- formals whose type is this tagged type
9758 and then Present
(Last_Entity
(Node
(Prim
)))
9759 and then Next_Entity
(First_Entity
(Node
(Prim
)))
9760 = Last_Entity
(Node
(Prim
))
9761 and then Etype
(First_Entity
(Node
(Prim
))) = Tag_Typ
9762 and then Etype
(Last_Entity
(Node
(Prim
))) = Tag_Typ
9776 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
9777 while Present
(Prim
) loop
9778 if Chars
(Node
(Prim
)) = Name_Op_Eq
9779 and then Is_Internal
(Node
(Prim
))
9782 Eq_Name
:= Name_Op_Eq
;
9792 Decl
:= Predef_Spec_Or_Body
(Loc
,
9795 Profile
=> New_List
(
9796 Make_Parameter_Specification
(Loc
,
9797 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
9798 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
9800 Ret_Type
=> Standard_Long_Long_Integer
,
9803 Set_Handled_Statement_Sequence
(Decl
,
9804 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
9805 Make_Simple_Return_Statement
(Loc
,
9807 Make_Attribute_Reference
(Loc
,
9808 Prefix
=> Make_Identifier
(Loc
, Name_X
),
9809 Attribute_Name
=> Name_Size
)))));
9811 Append_To
(Res
, Decl
);
9813 -- Bodies for Dispatching stream IO routines. We need these only for
9814 -- non-limited types (in the limited case there is no dispatching).
9815 -- We also skip them if dispatching or finalization are not available
9816 -- or if stream operations are prohibited by restriction No_Streams or
9817 -- from use of pragma/aspect No_Tagged_Streams.
9819 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Read
)
9820 and then No
(TSS
(Tag_Typ
, TSS_Stream_Read
))
9822 Build_Record_Read_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
9823 Append_To
(Res
, Decl
);
9826 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Write
)
9827 and then No
(TSS
(Tag_Typ
, TSS_Stream_Write
))
9829 Build_Record_Write_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
9830 Append_To
(Res
, Decl
);
9833 -- Skip body of _Input for the abstract case, since the corresponding
9834 -- spec is abstract (see Predef_Spec_Or_Body).
9836 if not Is_Abstract_Type
(Tag_Typ
)
9837 and then Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Input
)
9838 and then No
(TSS
(Tag_Typ
, TSS_Stream_Input
))
9840 Build_Record_Or_Elementary_Input_Function
9841 (Loc
, Tag_Typ
, Decl
, Ent
);
9842 Append_To
(Res
, Decl
);
9845 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Output
)
9846 and then No
(TSS
(Tag_Typ
, TSS_Stream_Output
))
9848 Build_Record_Or_Elementary_Output_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
9849 Append_To
(Res
, Decl
);
9852 -- Ada 2005: Generate bodies for the following primitive operations for
9853 -- limited interfaces and synchronized types that implement a limited
9856 -- disp_asynchronous_select
9857 -- disp_conditional_select
9858 -- disp_get_prim_op_kind
9860 -- disp_timed_select
9862 -- The interface versions will have null bodies
9864 -- Disable the generation of these bodies if No_Dispatching_Calls,
9865 -- Ravenscar or ZFP is active.
9867 -- In VM targets we define these primitives in all root tagged types
9868 -- that are not interface types. Done because in VM targets we don't
9869 -- have secondary dispatch tables and any derivation of Tag_Typ may
9870 -- cover limited interfaces (which always have these primitives since
9871 -- they may be ancestors of synchronized interface types).
9873 if Ada_Version
>= Ada_2005
9874 and then not Is_Interface
(Tag_Typ
)
9876 ((Is_Interface
(Etype
(Tag_Typ
))
9877 and then Is_Limited_Record
(Etype
(Tag_Typ
)))
9879 (Is_Concurrent_Record_Type
(Tag_Typ
)
9880 and then Has_Interfaces
(Tag_Typ
))
9882 (not Tagged_Type_Expansion
9883 and then Tag_Typ
= Root_Type
(Tag_Typ
)))
9884 and then not Restriction_Active
(No_Dispatching_Calls
)
9885 and then not Restriction_Active
(No_Select_Statements
)
9886 and then RTE_Available
(RE_Select_Specific_Data
)
9888 Append_To
(Res
, Make_Disp_Asynchronous_Select_Body
(Tag_Typ
));
9889 Append_To
(Res
, Make_Disp_Conditional_Select_Body
(Tag_Typ
));
9890 Append_To
(Res
, Make_Disp_Get_Prim_Op_Kind_Body
(Tag_Typ
));
9891 Append_To
(Res
, Make_Disp_Get_Task_Id_Body
(Tag_Typ
));
9892 Append_To
(Res
, Make_Disp_Requeue_Body
(Tag_Typ
));
9893 Append_To
(Res
, Make_Disp_Timed_Select_Body
(Tag_Typ
));
9896 if not Is_Limited_Type
(Tag_Typ
) and then not Is_Interface
(Tag_Typ
) then
9898 -- Body for equality
9901 Decl
:= Make_Eq_Body
(Tag_Typ
, Eq_Name
);
9902 Append_To
(Res
, Decl
);
9905 -- Body for inequality (if required)
9907 Decl
:= Make_Neq_Body
(Tag_Typ
);
9909 if Present
(Decl
) then
9910 Append_To
(Res
, Decl
);
9913 -- Body for dispatching assignment
9916 Predef_Spec_Or_Body
(Loc
,
9918 Name
=> Name_uAssign
,
9919 Profile
=> New_List
(
9920 Make_Parameter_Specification
(Loc
,
9921 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
9922 Out_Present
=> True,
9923 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
)),
9925 Make_Parameter_Specification
(Loc
,
9926 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
9927 Parameter_Type
=> New_Occurrence_Of
(Tag_Typ
, Loc
))),
9930 Set_Handled_Statement_Sequence
(Decl
,
9931 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
9932 Make_Assignment_Statement
(Loc
,
9933 Name
=> Make_Identifier
(Loc
, Name_X
),
9934 Expression
=> Make_Identifier
(Loc
, Name_Y
)))));
9936 Append_To
(Res
, Decl
);
9939 -- Generate empty bodies of routines Deep_Adjust and Deep_Finalize for
9940 -- tagged types which do not contain controlled components.
9942 -- Do not generate the routines if finalization is disabled
9944 if Restriction_Active
(No_Finalization
) then
9947 elsif not Has_Controlled_Component
(Tag_Typ
) then
9948 if not Is_Limited_Type
(Tag_Typ
) then
9950 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Adjust
, True);
9952 if Is_Controlled
(Tag_Typ
) then
9955 Obj_Ref
=> Make_Identifier
(Loc
, Name_V
),
9959 if No
(Adj_Call
) then
9960 Adj_Call
:= Make_Null_Statement
(Loc
);
9963 Set_Handled_Statement_Sequence
(Decl
,
9964 Make_Handled_Sequence_Of_Statements
(Loc
,
9965 Statements
=> New_List
(Adj_Call
)));
9967 Append_To
(Res
, Decl
);
9971 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Finalize
, True);
9973 if Is_Controlled
(Tag_Typ
) then
9976 (Obj_Ref
=> Make_Identifier
(Loc
, Name_V
),
9980 if No
(Fin_Call
) then
9981 Fin_Call
:= Make_Null_Statement
(Loc
);
9984 Set_Handled_Statement_Sequence
(Decl
,
9985 Make_Handled_Sequence_Of_Statements
(Loc
,
9986 Statements
=> New_List
(Fin_Call
)));
9988 Append_To
(Res
, Decl
);
9992 end Predefined_Primitive_Bodies
;
9994 ---------------------------------
9995 -- Predefined_Primitive_Freeze --
9996 ---------------------------------
9998 function Predefined_Primitive_Freeze
9999 (Tag_Typ
: Entity_Id
) return List_Id
10001 Res
: constant List_Id
:= New_List
;
10006 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
10007 while Present
(Prim
) loop
10008 if Is_Predefined_Dispatching_Operation
(Node
(Prim
)) then
10009 Frnodes
:= Freeze_Entity
(Node
(Prim
), Tag_Typ
);
10011 if Present
(Frnodes
) then
10012 Append_List_To
(Res
, Frnodes
);
10020 end Predefined_Primitive_Freeze
;
10022 -------------------------
10023 -- Stream_Operation_OK --
10024 -------------------------
10026 function Stream_Operation_OK
10028 Operation
: TSS_Name_Type
) return Boolean
10030 Has_Predefined_Or_Specified_Stream_Attribute
: Boolean := False;
10033 -- Special case of a limited type extension: a default implementation
10034 -- of the stream attributes Read or Write exists if that attribute
10035 -- has been specified or is available for an ancestor type; a default
10036 -- implementation of the attribute Output (resp. Input) exists if the
10037 -- attribute has been specified or Write (resp. Read) is available for
10038 -- an ancestor type. The last condition only applies under Ada 2005.
10040 if Is_Limited_Type
(Typ
) and then Is_Tagged_Type
(Typ
) then
10041 if Operation
= TSS_Stream_Read
then
10042 Has_Predefined_Or_Specified_Stream_Attribute
:=
10043 Has_Specified_Stream_Read
(Typ
);
10045 elsif Operation
= TSS_Stream_Write
then
10046 Has_Predefined_Or_Specified_Stream_Attribute
:=
10047 Has_Specified_Stream_Write
(Typ
);
10049 elsif Operation
= TSS_Stream_Input
then
10050 Has_Predefined_Or_Specified_Stream_Attribute
:=
10051 Has_Specified_Stream_Input
(Typ
)
10053 (Ada_Version
>= Ada_2005
10054 and then Stream_Operation_OK
(Typ
, TSS_Stream_Read
));
10056 elsif Operation
= TSS_Stream_Output
then
10057 Has_Predefined_Or_Specified_Stream_Attribute
:=
10058 Has_Specified_Stream_Output
(Typ
)
10060 (Ada_Version
>= Ada_2005
10061 and then Stream_Operation_OK
(Typ
, TSS_Stream_Write
));
10064 -- Case of inherited TSS_Stream_Read or TSS_Stream_Write
10066 if not Has_Predefined_Or_Specified_Stream_Attribute
10067 and then Is_Derived_Type
(Typ
)
10068 and then (Operation
= TSS_Stream_Read
10069 or else Operation
= TSS_Stream_Write
)
10071 Has_Predefined_Or_Specified_Stream_Attribute
:=
10073 (Find_Inherited_TSS
(Base_Type
(Etype
(Typ
)), Operation
));
10077 -- If the type is not limited, or else is limited but the attribute is
10078 -- explicitly specified or is predefined for the type, then return True,
10079 -- unless other conditions prevail, such as restrictions prohibiting
10080 -- streams or dispatching operations. We also return True for limited
10081 -- interfaces, because they may be extended by nonlimited types and
10082 -- permit inheritance in this case (addresses cases where an abstract
10083 -- extension doesn't get 'Input declared, as per comments below, but
10084 -- 'Class'Input must still be allowed). Note that attempts to apply
10085 -- stream attributes to a limited interface or its class-wide type
10086 -- (or limited extensions thereof) will still get properly rejected
10087 -- by Check_Stream_Attribute.
10089 -- We exclude the Input operation from being a predefined subprogram in
10090 -- the case where the associated type is an abstract extension, because
10091 -- the attribute is not callable in that case, per 13.13.2(49/2). Also,
10092 -- we don't want an abstract version created because types derived from
10093 -- the abstract type may not even have Input available (for example if
10094 -- derived from a private view of the abstract type that doesn't have
10095 -- a visible Input).
10097 -- Do not generate stream routines for type Finalization_Master because
10098 -- a master may never appear in types and therefore cannot be read or
10102 (not Is_Limited_Type
(Typ
)
10103 or else Is_Interface
(Typ
)
10104 or else Has_Predefined_Or_Specified_Stream_Attribute
)
10106 (Operation
/= TSS_Stream_Input
10107 or else not Is_Abstract_Type
(Typ
)
10108 or else not Is_Derived_Type
(Typ
))
10109 and then not Has_Unknown_Discriminants
(Typ
)
10111 (Is_Interface
(Typ
)
10113 (Is_Task_Interface
(Typ
)
10114 or else Is_Protected_Interface
(Typ
)
10115 or else Is_Synchronized_Interface
(Typ
)))
10116 and then not Restriction_Active
(No_Streams
)
10117 and then not Restriction_Active
(No_Dispatch
)
10118 and then No
(No_Tagged_Streams_Pragma
(Typ
))
10119 and then not No_Run_Time_Mode
10120 and then RTE_Available
(RE_Tag
)
10121 and then No
(Type_Without_Stream_Operation
(Typ
))
10122 and then RTE_Available
(RE_Root_Stream_Type
)
10123 and then not Is_RTE
(Typ
, RE_Finalization_Master
);
10124 end Stream_Operation_OK
;