PR rtl-optimization/79386
[official-gcc.git] / gcc / ada / a-numaux-x86.adb
blob6f1f4624b6067640ea5eea405f6b7bf83b4fcfb4
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- A D A . N U M E R I C S . A U X --
6 -- --
7 -- B o d y --
8 -- (Machine Version for x86) --
9 -- --
10 -- Copyright (C) 1998-2016, Free Software Foundation, Inc. --
11 -- --
12 -- GNAT is free software; you can redistribute it and/or modify it under --
13 -- terms of the GNU General Public License as published by the Free Soft- --
14 -- ware Foundation; either version 3, or (at your option) any later ver- --
15 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
16 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
17 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- --
19 -- As a special exception under Section 7 of GPL version 3, you are granted --
20 -- additional permissions described in the GCC Runtime Library Exception, --
21 -- version 3.1, as published by the Free Software Foundation. --
22 -- --
23 -- You should have received a copy of the GNU General Public License and --
24 -- a copy of the GCC Runtime Library Exception along with this program; --
25 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
26 -- <http://www.gnu.org/licenses/>. --
27 -- --
28 -- GNAT was originally developed by the GNAT team at New York University. --
29 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 -- --
31 ------------------------------------------------------------------------------
33 with System.Machine_Code; use System.Machine_Code;
35 package body Ada.Numerics.Aux is
37 NL : constant String := ASCII.LF & ASCII.HT;
39 -----------------------
40 -- Local subprograms --
41 -----------------------
43 function Is_Nan (X : Double) return Boolean;
44 -- Return True iff X is a IEEE NaN value
46 function Logarithmic_Pow (X, Y : Double) return Double;
47 -- Implementation of X**Y using Exp and Log functions (binary base)
48 -- to calculate the exponentiation. This is used by Pow for values
49 -- for values of Y in the open interval (-0.25, 0.25)
51 procedure Reduce (X : in out Double; Q : out Natural);
52 -- Implements reduction of X by Pi/2. Q is the quadrant of the final
53 -- result in the range 0 .. 3. The absolute value of X is at most Pi.
55 pragma Inline (Is_Nan);
56 pragma Inline (Reduce);
58 --------------------------------
59 -- Basic Elementary Functions --
60 --------------------------------
62 -- This section implements a few elementary functions that are used to
63 -- build the more complex ones. This ordering enables better inlining.
65 ----------
66 -- Atan --
67 ----------
69 function Atan (X : Double) return Double is
70 Result : Double;
72 begin
73 Asm (Template =>
74 "fld1" & NL
75 & "fpatan",
76 Outputs => Double'Asm_Output ("=t", Result),
77 Inputs => Double'Asm_Input ("0", X));
79 -- The result value is NaN iff input was invalid
81 if not (Result = Result) then
82 raise Argument_Error;
83 end if;
85 return Result;
86 end Atan;
88 ---------
89 -- Exp --
90 ---------
92 function Exp (X : Double) return Double is
93 Result : Double;
94 begin
95 Asm (Template =>
96 "fldl2e " & NL
97 & "fmulp %%st, %%st(1)" & NL -- X * log2 (E)
98 & "fld %%st(0) " & NL
99 & "frndint " & NL -- Integer (X * Log2 (E))
100 & "fsubr %%st, %%st(1)" & NL -- Fraction (X * Log2 (E))
101 & "fxch " & NL
102 & "f2xm1 " & NL -- 2**(...) - 1
103 & "fld1 " & NL
104 & "faddp %%st, %%st(1)" & NL -- 2**(Fraction (X * Log2 (E)))
105 & "fscale " & NL -- E ** X
106 & "fstp %%st(1) ",
107 Outputs => Double'Asm_Output ("=t", Result),
108 Inputs => Double'Asm_Input ("0", X));
109 return Result;
110 end Exp;
112 ------------
113 -- Is_Nan --
114 ------------
116 function Is_Nan (X : Double) return Boolean is
117 begin
118 -- The IEEE NaN values are the only ones that do not equal themselves
120 return not (X = X);
121 end Is_Nan;
123 ---------
124 -- Log --
125 ---------
127 function Log (X : Double) return Double is
128 Result : Double;
130 begin
131 Asm (Template =>
132 "fldln2 " & NL
133 & "fxch " & NL
134 & "fyl2x " & NL,
135 Outputs => Double'Asm_Output ("=t", Result),
136 Inputs => Double'Asm_Input ("0", X));
137 return Result;
138 end Log;
140 ------------
141 -- Reduce --
142 ------------
144 procedure Reduce (X : in out Double; Q : out Natural) is
145 Half_Pi : constant := Pi / 2.0;
146 Two_Over_Pi : constant := 2.0 / Pi;
148 HM : constant := Integer'Min (Double'Machine_Mantissa / 2, Natural'Size);
149 M : constant Double := 0.5 + 2.0**(1 - HM); -- Splitting constant
150 P1 : constant Double := Double'Leading_Part (Half_Pi, HM);
151 P2 : constant Double := Double'Leading_Part (Half_Pi - P1, HM);
152 P3 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2, HM);
153 P4 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3, HM);
154 P5 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3
155 - P4, HM);
156 P6 : constant Double := Double'Model (Half_Pi - P1 - P2 - P3 - P4 - P5);
157 K : Double := X * Two_Over_Pi;
158 begin
159 -- For X < 2.0**32, all products below are computed exactly.
160 -- Due to cancellation effects all subtractions are exact as well.
161 -- As no double extended floating-point number has more than 75
162 -- zeros after the binary point, the result will be the correctly
163 -- rounded result of X - K * (Pi / 2.0).
165 while abs K >= 2.0**HM loop
166 K := K * M - (K * M - K);
167 X := (((((X - K * P1) - K * P2) - K * P3)
168 - K * P4) - K * P5) - K * P6;
169 K := X * Two_Over_Pi;
170 end loop;
172 if K /= K then
174 -- K is not a number, because X was not finite
176 raise Constraint_Error;
177 end if;
179 K := Double'Rounding (K);
180 Q := Integer (K) mod 4;
181 X := (((((X - K * P1) - K * P2) - K * P3)
182 - K * P4) - K * P5) - K * P6;
183 end Reduce;
185 ----------
186 -- Sqrt --
187 ----------
189 function Sqrt (X : Double) return Double is
190 Result : Double;
192 begin
193 if X < 0.0 then
194 raise Argument_Error;
195 end if;
197 Asm (Template => "fsqrt",
198 Outputs => Double'Asm_Output ("=t", Result),
199 Inputs => Double'Asm_Input ("0", X));
201 return Result;
202 end Sqrt;
204 --------------------------------
205 -- Other Elementary Functions --
206 --------------------------------
208 -- These are built using the previously implemented basic functions
210 ----------
211 -- Acos --
212 ----------
214 function Acos (X : Double) return Double is
215 Result : Double;
217 begin
218 Result := 2.0 * Atan (Sqrt ((1.0 - X) / (1.0 + X)));
220 -- The result value is NaN iff input was invalid
222 if Is_Nan (Result) then
223 raise Argument_Error;
224 end if;
226 return Result;
227 end Acos;
229 ----------
230 -- Asin --
231 ----------
233 function Asin (X : Double) return Double is
234 Result : Double;
236 begin
237 Result := Atan (X / Sqrt ((1.0 - X) * (1.0 + X)));
239 -- The result value is NaN iff input was invalid
241 if Is_Nan (Result) then
242 raise Argument_Error;
243 end if;
245 return Result;
246 end Asin;
248 ---------
249 -- Cos --
250 ---------
252 function Cos (X : Double) return Double is
253 Reduced_X : Double := abs X;
254 Result : Double;
255 Quadrant : Natural range 0 .. 3;
257 begin
258 if Reduced_X > Pi / 4.0 then
259 Reduce (Reduced_X, Quadrant);
261 case Quadrant is
262 when 0 =>
263 Asm (Template => "fcos",
264 Outputs => Double'Asm_Output ("=t", Result),
265 Inputs => Double'Asm_Input ("0", Reduced_X));
267 when 1 =>
268 Asm (Template => "fsin",
269 Outputs => Double'Asm_Output ("=t", Result),
270 Inputs => Double'Asm_Input ("0", -Reduced_X));
272 when 2 =>
273 Asm (Template => "fcos ; fchs",
274 Outputs => Double'Asm_Output ("=t", Result),
275 Inputs => Double'Asm_Input ("0", Reduced_X));
277 when 3 =>
278 Asm (Template => "fsin",
279 Outputs => Double'Asm_Output ("=t", Result),
280 Inputs => Double'Asm_Input ("0", Reduced_X));
281 end case;
283 else
284 Asm (Template => "fcos",
285 Outputs => Double'Asm_Output ("=t", Result),
286 Inputs => Double'Asm_Input ("0", Reduced_X));
287 end if;
289 return Result;
290 end Cos;
292 ---------------------
293 -- Logarithmic_Pow --
294 ---------------------
296 function Logarithmic_Pow (X, Y : Double) return Double is
297 Result : Double;
298 begin
299 Asm (Template => "" -- X : Y
300 & "fyl2x " & NL -- Y * Log2 (X)
301 & "fld %%st(0) " & NL -- Y * Log2 (X) : Y * Log2 (X)
302 & "frndint " & NL -- Int (...) : Y * Log2 (X)
303 & "fsubr %%st, %%st(1)" & NL -- Int (...) : Fract (...)
304 & "fxch " & NL -- Fract (...) : Int (...)
305 & "f2xm1 " & NL -- 2**Fract (...) - 1 : Int (...)
306 & "fld1 " & NL -- 1 : 2**Fract (...) - 1 : Int (...)
307 & "faddp %%st, %%st(1)" & NL -- 2**Fract (...) : Int (...)
308 & "fscale ", -- 2**(Fract (...) + Int (...))
309 Outputs => Double'Asm_Output ("=t", Result),
310 Inputs =>
311 (Double'Asm_Input ("0", X),
312 Double'Asm_Input ("u", Y)));
313 return Result;
314 end Logarithmic_Pow;
316 ---------
317 -- Pow --
318 ---------
320 function Pow (X, Y : Double) return Double is
321 type Mantissa_Type is mod 2**Double'Machine_Mantissa;
322 -- Modular type that can hold all bits of the mantissa of Double
324 -- For negative exponents, do divide at the end of the processing
326 Negative_Y : constant Boolean := Y < 0.0;
327 Abs_Y : constant Double := abs Y;
329 -- During this function the following invariant is kept:
330 -- X ** (abs Y) = Base**(Exp_High + Exp_Mid + Exp_Low) * Factor
332 Base : Double := X;
334 Exp_High : Double := Double'Floor (Abs_Y);
335 Exp_Mid : Double;
336 Exp_Low : Double;
337 Exp_Int : Mantissa_Type;
339 Factor : Double := 1.0;
341 begin
342 -- Select algorithm for calculating Pow (integer cases fall through)
344 if Exp_High >= 2.0**Double'Machine_Mantissa then
346 -- In case of Y that is IEEE infinity, just raise constraint error
348 if Exp_High > Double'Safe_Last then
349 raise Constraint_Error;
350 end if;
352 -- Large values of Y are even integers and will stay integer
353 -- after division by two.
355 loop
356 -- Exp_Mid and Exp_Low are zero, so
357 -- X**(abs Y) = Base ** Exp_High = (Base**2) ** (Exp_High / 2)
359 Exp_High := Exp_High / 2.0;
360 Base := Base * Base;
361 exit when Exp_High < 2.0**Double'Machine_Mantissa;
362 end loop;
364 elsif Exp_High /= Abs_Y then
365 Exp_Low := Abs_Y - Exp_High;
366 Factor := 1.0;
368 if Exp_Low /= 0.0 then
370 -- Exp_Low now is in interval (0.0, 1.0)
371 -- Exp_Mid := Double'Floor (Exp_Low * 4.0) / 4.0;
373 Exp_Mid := 0.0;
374 Exp_Low := Exp_Low - Exp_Mid;
376 if Exp_Low >= 0.5 then
377 Factor := Sqrt (X);
378 Exp_Low := Exp_Low - 0.5; -- exact
380 if Exp_Low >= 0.25 then
381 Factor := Factor * Sqrt (Factor);
382 Exp_Low := Exp_Low - 0.25; -- exact
383 end if;
385 elsif Exp_Low >= 0.25 then
386 Factor := Sqrt (Sqrt (X));
387 Exp_Low := Exp_Low - 0.25; -- exact
388 end if;
390 -- Exp_Low now is in interval (0.0, 0.25)
392 -- This means it is safe to call Logarithmic_Pow
393 -- for the remaining part.
395 Factor := Factor * Logarithmic_Pow (X, Exp_Low);
396 end if;
398 elsif X = 0.0 then
399 return 0.0;
400 end if;
402 -- Exp_High is non-zero integer smaller than 2**Double'Machine_Mantissa
404 Exp_Int := Mantissa_Type (Exp_High);
406 -- Standard way for processing integer powers > 0
408 while Exp_Int > 1 loop
409 if (Exp_Int and 1) = 1 then
411 -- Base**Y = Base**(Exp_Int - 1) * Exp_Int for Exp_Int > 0
413 Factor := Factor * Base;
414 end if;
416 -- Exp_Int is even and Exp_Int > 0, so
417 -- Base**Y = (Base**2)**(Exp_Int / 2)
419 Base := Base * Base;
420 Exp_Int := Exp_Int / 2;
421 end loop;
423 -- Exp_Int = 1 or Exp_Int = 0
425 if Exp_Int = 1 then
426 Factor := Base * Factor;
427 end if;
429 if Negative_Y then
430 Factor := 1.0 / Factor;
431 end if;
433 return Factor;
434 end Pow;
436 ---------
437 -- Sin --
438 ---------
440 function Sin (X : Double) return Double is
441 Reduced_X : Double := X;
442 Result : Double;
443 Quadrant : Natural range 0 .. 3;
445 begin
446 if abs X > Pi / 4.0 then
447 Reduce (Reduced_X, Quadrant);
449 case Quadrant is
450 when 0 =>
451 Asm (Template => "fsin",
452 Outputs => Double'Asm_Output ("=t", Result),
453 Inputs => Double'Asm_Input ("0", Reduced_X));
455 when 1 =>
456 Asm (Template => "fcos",
457 Outputs => Double'Asm_Output ("=t", Result),
458 Inputs => Double'Asm_Input ("0", Reduced_X));
460 when 2 =>
461 Asm (Template => "fsin",
462 Outputs => Double'Asm_Output ("=t", Result),
463 Inputs => Double'Asm_Input ("0", -Reduced_X));
465 when 3 =>
466 Asm (Template => "fcos ; fchs",
467 Outputs => Double'Asm_Output ("=t", Result),
468 Inputs => Double'Asm_Input ("0", Reduced_X));
469 end case;
471 else
472 Asm (Template => "fsin",
473 Outputs => Double'Asm_Output ("=t", Result),
474 Inputs => Double'Asm_Input ("0", Reduced_X));
475 end if;
477 return Result;
478 end Sin;
480 ---------
481 -- Tan --
482 ---------
484 function Tan (X : Double) return Double is
485 Reduced_X : Double := X;
486 Result : Double;
487 Quadrant : Natural range 0 .. 3;
489 begin
490 if abs X > Pi / 4.0 then
491 Reduce (Reduced_X, Quadrant);
493 if Quadrant mod 2 = 0 then
494 Asm (Template => "fptan" & NL
495 & "ffree %%st(0)" & NL
496 & "fincstp",
497 Outputs => Double'Asm_Output ("=t", Result),
498 Inputs => Double'Asm_Input ("0", Reduced_X));
499 else
500 Asm (Template => "fsincos" & NL
501 & "fdivp %%st, %%st(1)" & NL
502 & "fchs",
503 Outputs => Double'Asm_Output ("=t", Result),
504 Inputs => Double'Asm_Input ("0", Reduced_X));
505 end if;
507 else
508 Asm (Template =>
509 "fptan " & NL
510 & "ffree %%st(0) " & NL
511 & "fincstp ",
512 Outputs => Double'Asm_Output ("=t", Result),
513 Inputs => Double'Asm_Input ("0", Reduced_X));
514 end if;
516 return Result;
517 end Tan;
519 ----------
520 -- Sinh --
521 ----------
523 function Sinh (X : Double) return Double is
524 begin
525 -- Mathematically Sinh (x) is defined to be (Exp (X) - Exp (-X)) / 2.0
527 if abs X < 25.0 then
528 return (Exp (X) - Exp (-X)) / 2.0;
529 else
530 return Exp (X) / 2.0;
531 end if;
532 end Sinh;
534 ----------
535 -- Cosh --
536 ----------
538 function Cosh (X : Double) return Double is
539 begin
540 -- Mathematically Cosh (X) is defined to be (Exp (X) + Exp (-X)) / 2.0
542 if abs X < 22.0 then
543 return (Exp (X) + Exp (-X)) / 2.0;
544 else
545 return Exp (X) / 2.0;
546 end if;
547 end Cosh;
549 ----------
550 -- Tanh --
551 ----------
553 function Tanh (X : Double) return Double is
554 begin
555 -- Return the Hyperbolic Tangent of x
557 -- x -x
558 -- e - e Sinh (X)
559 -- Tanh (X) is defined to be ----------- = --------
560 -- x -x Cosh (X)
561 -- e + e
563 if abs X > 23.0 then
564 return Double'Copy_Sign (1.0, X);
565 end if;
567 return 1.0 / (1.0 + Exp (-(2.0 * X))) - 1.0 / (1.0 + Exp (2.0 * X));
568 end Tanh;
570 end Ada.Numerics.Aux;