poly_int: loop versioning threshold
[official-gcc.git] / gcc / final.c
blob1969ccbed0057fdc1149677ab33d4b51e9a63e74
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "params.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "asan.h"
82 #include "rtl-iter.h"
83 #include "print-rtl.h"
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data declarations. */
87 #endif
89 #include "dwarf2out.h"
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
96 So define a null default for it to save conditionalization later. */
97 #ifndef CC_STATUS_INIT
98 #define CC_STATUS_INIT
99 #endif
101 /* Is the given character a logical line separator for the assembler? */
102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
104 #endif
106 #ifndef JUMP_TABLES_IN_TEXT_SECTION
107 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #endif
110 /* Bitflags used by final_scan_insn. */
111 #define SEEN_NOTE 1
112 #define SEEN_EMITTED 2
114 /* Last insn processed by final_scan_insn. */
115 static rtx_insn *debug_insn;
116 rtx_insn *current_output_insn;
118 /* Line number of last NOTE. */
119 static int last_linenum;
121 /* Column number of last NOTE. */
122 static int last_columnnum;
124 /* Last discriminator written to assembly. */
125 static int last_discriminator;
127 /* Discriminator of current block. */
128 static int discriminator;
130 /* Highest line number in current block. */
131 static int high_block_linenum;
133 /* Likewise for function. */
134 static int high_function_linenum;
136 /* Filename of last NOTE. */
137 static const char *last_filename;
139 /* Override filename, line and column number. */
140 static const char *override_filename;
141 static int override_linenum;
142 static int override_columnnum;
144 /* Whether to force emission of a line note before the next insn. */
145 static bool force_source_line = false;
147 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
149 /* Nonzero while outputting an `asm' with operands.
150 This means that inconsistencies are the user's fault, so don't die.
151 The precise value is the insn being output, to pass to error_for_asm. */
152 const rtx_insn *this_is_asm_operands;
154 /* Number of operands of this insn, for an `asm' with operands. */
155 static unsigned int insn_noperands;
157 /* Compare optimization flag. */
159 static rtx last_ignored_compare = 0;
161 /* Assign a unique number to each insn that is output.
162 This can be used to generate unique local labels. */
164 static int insn_counter = 0;
166 /* This variable contains machine-dependent flags (defined in tm.h)
167 set and examined by output routines
168 that describe how to interpret the condition codes properly. */
170 CC_STATUS cc_status;
172 /* During output of an insn, this contains a copy of cc_status
173 from before the insn. */
175 CC_STATUS cc_prev_status;
177 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
179 static int block_depth;
181 /* Nonzero if have enabled APP processing of our assembler output. */
183 static int app_on;
185 /* If we are outputting an insn sequence, this contains the sequence rtx.
186 Zero otherwise. */
188 rtx_sequence *final_sequence;
190 #ifdef ASSEMBLER_DIALECT
192 /* Number of the assembler dialect to use, starting at 0. */
193 static int dialect_number;
194 #endif
196 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
197 rtx current_insn_predicate;
199 /* True if printing into -fdump-final-insns= dump. */
200 bool final_insns_dump_p;
202 /* True if profile_function should be called, but hasn't been called yet. */
203 static bool need_profile_function;
205 static int asm_insn_count (rtx);
206 static void profile_function (FILE *);
207 static void profile_after_prologue (FILE *);
208 static bool notice_source_line (rtx_insn *, bool *);
209 static rtx walk_alter_subreg (rtx *, bool *);
210 static void output_asm_name (void);
211 static void output_alternate_entry_point (FILE *, rtx_insn *);
212 static tree get_mem_expr_from_op (rtx, int *);
213 static void output_asm_operand_names (rtx *, int *, int);
214 #ifdef LEAF_REGISTERS
215 static void leaf_renumber_regs (rtx_insn *);
216 #endif
217 #if HAVE_cc0
218 static int alter_cond (rtx);
219 #endif
220 static int align_fuzz (rtx, rtx, int, unsigned);
221 static void collect_fn_hard_reg_usage (void);
222 static tree get_call_fndecl (rtx_insn *);
224 /* Initialize data in final at the beginning of a compilation. */
226 void
227 init_final (const char *filename ATTRIBUTE_UNUSED)
229 app_on = 0;
230 final_sequence = 0;
232 #ifdef ASSEMBLER_DIALECT
233 dialect_number = ASSEMBLER_DIALECT;
234 #endif
237 /* Default target function prologue and epilogue assembler output.
239 If not overridden for epilogue code, then the function body itself
240 contains return instructions wherever needed. */
241 void
242 default_function_pro_epilogue (FILE *)
246 void
247 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
248 tree decl ATTRIBUTE_UNUSED,
249 bool new_is_cold ATTRIBUTE_UNUSED)
253 /* Default target hook that outputs nothing to a stream. */
254 void
255 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
259 /* Enable APP processing of subsequent output.
260 Used before the output from an `asm' statement. */
262 void
263 app_enable (void)
265 if (! app_on)
267 fputs (ASM_APP_ON, asm_out_file);
268 app_on = 1;
272 /* Disable APP processing of subsequent output.
273 Called from varasm.c before most kinds of output. */
275 void
276 app_disable (void)
278 if (app_on)
280 fputs (ASM_APP_OFF, asm_out_file);
281 app_on = 0;
285 /* Return the number of slots filled in the current
286 delayed branch sequence (we don't count the insn needing the
287 delay slot). Zero if not in a delayed branch sequence. */
290 dbr_sequence_length (void)
292 if (final_sequence != 0)
293 return XVECLEN (final_sequence, 0) - 1;
294 else
295 return 0;
298 /* The next two pages contain routines used to compute the length of an insn
299 and to shorten branches. */
301 /* Arrays for insn lengths, and addresses. The latter is referenced by
302 `insn_current_length'. */
304 static int *insn_lengths;
306 vec<int> insn_addresses_;
308 /* Max uid for which the above arrays are valid. */
309 static int insn_lengths_max_uid;
311 /* Address of insn being processed. Used by `insn_current_length'. */
312 int insn_current_address;
314 /* Address of insn being processed in previous iteration. */
315 int insn_last_address;
317 /* known invariant alignment of insn being processed. */
318 int insn_current_align;
320 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
321 gives the next following alignment insn that increases the known
322 alignment, or NULL_RTX if there is no such insn.
323 For any alignment obtained this way, we can again index uid_align with
324 its uid to obtain the next following align that in turn increases the
325 alignment, till we reach NULL_RTX; the sequence obtained this way
326 for each insn we'll call the alignment chain of this insn in the following
327 comments. */
329 struct label_alignment
331 short alignment;
332 short max_skip;
335 static rtx *uid_align;
336 static int *uid_shuid;
337 static struct label_alignment *label_align;
339 /* Indicate that branch shortening hasn't yet been done. */
341 void
342 init_insn_lengths (void)
344 if (uid_shuid)
346 free (uid_shuid);
347 uid_shuid = 0;
349 if (insn_lengths)
351 free (insn_lengths);
352 insn_lengths = 0;
353 insn_lengths_max_uid = 0;
355 if (HAVE_ATTR_length)
356 INSN_ADDRESSES_FREE ();
357 if (uid_align)
359 free (uid_align);
360 uid_align = 0;
364 /* Obtain the current length of an insn. If branch shortening has been done,
365 get its actual length. Otherwise, use FALLBACK_FN to calculate the
366 length. */
367 static int
368 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
370 rtx body;
371 int i;
372 int length = 0;
374 if (!HAVE_ATTR_length)
375 return 0;
377 if (insn_lengths_max_uid > INSN_UID (insn))
378 return insn_lengths[INSN_UID (insn)];
379 else
380 switch (GET_CODE (insn))
382 case NOTE:
383 case BARRIER:
384 case CODE_LABEL:
385 case DEBUG_INSN:
386 return 0;
388 case CALL_INSN:
389 case JUMP_INSN:
390 length = fallback_fn (insn);
391 break;
393 case INSN:
394 body = PATTERN (insn);
395 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
396 return 0;
398 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
399 length = asm_insn_count (body) * fallback_fn (insn);
400 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
401 for (i = 0; i < seq->len (); i++)
402 length += get_attr_length_1 (seq->insn (i), fallback_fn);
403 else
404 length = fallback_fn (insn);
405 break;
407 default:
408 break;
411 #ifdef ADJUST_INSN_LENGTH
412 ADJUST_INSN_LENGTH (insn, length);
413 #endif
414 return length;
417 /* Obtain the current length of an insn. If branch shortening has been done,
418 get its actual length. Otherwise, get its maximum length. */
420 get_attr_length (rtx_insn *insn)
422 return get_attr_length_1 (insn, insn_default_length);
425 /* Obtain the current length of an insn. If branch shortening has been done,
426 get its actual length. Otherwise, get its minimum length. */
428 get_attr_min_length (rtx_insn *insn)
430 return get_attr_length_1 (insn, insn_min_length);
433 /* Code to handle alignment inside shorten_branches. */
435 /* Here is an explanation how the algorithm in align_fuzz can give
436 proper results:
438 Call a sequence of instructions beginning with alignment point X
439 and continuing until the next alignment point `block X'. When `X'
440 is used in an expression, it means the alignment value of the
441 alignment point.
443 Call the distance between the start of the first insn of block X, and
444 the end of the last insn of block X `IX', for the `inner size of X'.
445 This is clearly the sum of the instruction lengths.
447 Likewise with the next alignment-delimited block following X, which we
448 shall call block Y.
450 Call the distance between the start of the first insn of block X, and
451 the start of the first insn of block Y `OX', for the `outer size of X'.
453 The estimated padding is then OX - IX.
455 OX can be safely estimated as
457 if (X >= Y)
458 OX = round_up(IX, Y)
459 else
460 OX = round_up(IX, X) + Y - X
462 Clearly est(IX) >= real(IX), because that only depends on the
463 instruction lengths, and those being overestimated is a given.
465 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
466 we needn't worry about that when thinking about OX.
468 When X >= Y, the alignment provided by Y adds no uncertainty factor
469 for branch ranges starting before X, so we can just round what we have.
470 But when X < Y, we don't know anything about the, so to speak,
471 `middle bits', so we have to assume the worst when aligning up from an
472 address mod X to one mod Y, which is Y - X. */
474 #ifndef LABEL_ALIGN
475 #define LABEL_ALIGN(LABEL) align_labels_log
476 #endif
478 #ifndef LOOP_ALIGN
479 #define LOOP_ALIGN(LABEL) align_loops_log
480 #endif
482 #ifndef LABEL_ALIGN_AFTER_BARRIER
483 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
484 #endif
486 #ifndef JUMP_ALIGN
487 #define JUMP_ALIGN(LABEL) align_jumps_log
488 #endif
491 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
493 return 0;
497 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
499 return align_loops_max_skip;
503 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
505 return align_labels_max_skip;
509 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
511 return align_jumps_max_skip;
514 #ifndef ADDR_VEC_ALIGN
515 static int
516 final_addr_vec_align (rtx_jump_table_data *addr_vec)
518 int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
520 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
521 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
522 return exact_log2 (align);
526 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
527 #endif
529 #ifndef INSN_LENGTH_ALIGNMENT
530 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
531 #endif
533 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
535 static int min_labelno, max_labelno;
537 #define LABEL_TO_ALIGNMENT(LABEL) \
538 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
540 #define LABEL_TO_MAX_SKIP(LABEL) \
541 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
543 /* For the benefit of port specific code do this also as a function. */
546 label_to_alignment (rtx label)
548 if (CODE_LABEL_NUMBER (label) <= max_labelno)
549 return LABEL_TO_ALIGNMENT (label);
550 return 0;
554 label_to_max_skip (rtx label)
556 if (CODE_LABEL_NUMBER (label) <= max_labelno)
557 return LABEL_TO_MAX_SKIP (label);
558 return 0;
561 /* The differences in addresses
562 between a branch and its target might grow or shrink depending on
563 the alignment the start insn of the range (the branch for a forward
564 branch or the label for a backward branch) starts out on; if these
565 differences are used naively, they can even oscillate infinitely.
566 We therefore want to compute a 'worst case' address difference that
567 is independent of the alignment the start insn of the range end
568 up on, and that is at least as large as the actual difference.
569 The function align_fuzz calculates the amount we have to add to the
570 naively computed difference, by traversing the part of the alignment
571 chain of the start insn of the range that is in front of the end insn
572 of the range, and considering for each alignment the maximum amount
573 that it might contribute to a size increase.
575 For casesi tables, we also want to know worst case minimum amounts of
576 address difference, in case a machine description wants to introduce
577 some common offset that is added to all offsets in a table.
578 For this purpose, align_fuzz with a growth argument of 0 computes the
579 appropriate adjustment. */
581 /* Compute the maximum delta by which the difference of the addresses of
582 START and END might grow / shrink due to a different address for start
583 which changes the size of alignment insns between START and END.
584 KNOWN_ALIGN_LOG is the alignment known for START.
585 GROWTH should be ~0 if the objective is to compute potential code size
586 increase, and 0 if the objective is to compute potential shrink.
587 The return value is undefined for any other value of GROWTH. */
589 static int
590 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
592 int uid = INSN_UID (start);
593 rtx align_label;
594 int known_align = 1 << known_align_log;
595 int end_shuid = INSN_SHUID (end);
596 int fuzz = 0;
598 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
600 int align_addr, new_align;
602 uid = INSN_UID (align_label);
603 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
604 if (uid_shuid[uid] > end_shuid)
605 break;
606 known_align_log = LABEL_TO_ALIGNMENT (align_label);
607 new_align = 1 << known_align_log;
608 if (new_align < known_align)
609 continue;
610 fuzz += (-align_addr ^ growth) & (new_align - known_align);
611 known_align = new_align;
613 return fuzz;
616 /* Compute a worst-case reference address of a branch so that it
617 can be safely used in the presence of aligned labels. Since the
618 size of the branch itself is unknown, the size of the branch is
619 not included in the range. I.e. for a forward branch, the reference
620 address is the end address of the branch as known from the previous
621 branch shortening pass, minus a value to account for possible size
622 increase due to alignment. For a backward branch, it is the start
623 address of the branch as known from the current pass, plus a value
624 to account for possible size increase due to alignment.
625 NB.: Therefore, the maximum offset allowed for backward branches needs
626 to exclude the branch size. */
629 insn_current_reference_address (rtx_insn *branch)
631 rtx dest;
632 int seq_uid;
634 if (! INSN_ADDRESSES_SET_P ())
635 return 0;
637 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
638 seq_uid = INSN_UID (seq);
639 if (!JUMP_P (branch))
640 /* This can happen for example on the PA; the objective is to know the
641 offset to address something in front of the start of the function.
642 Thus, we can treat it like a backward branch.
643 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
644 any alignment we'd encounter, so we skip the call to align_fuzz. */
645 return insn_current_address;
646 dest = JUMP_LABEL (branch);
648 /* BRANCH has no proper alignment chain set, so use SEQ.
649 BRANCH also has no INSN_SHUID. */
650 if (INSN_SHUID (seq) < INSN_SHUID (dest))
652 /* Forward branch. */
653 return (insn_last_address + insn_lengths[seq_uid]
654 - align_fuzz (seq, dest, length_unit_log, ~0));
656 else
658 /* Backward branch. */
659 return (insn_current_address
660 + align_fuzz (dest, seq, length_unit_log, ~0));
664 /* Compute branch alignments based on CFG profile. */
666 unsigned int
667 compute_alignments (void)
669 int log, max_skip, max_log;
670 basic_block bb;
672 if (label_align)
674 free (label_align);
675 label_align = 0;
678 max_labelno = max_label_num ();
679 min_labelno = get_first_label_num ();
680 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
682 /* If not optimizing or optimizing for size, don't assign any alignments. */
683 if (! optimize || optimize_function_for_size_p (cfun))
684 return 0;
686 if (dump_file)
688 dump_reg_info (dump_file);
689 dump_flow_info (dump_file, TDF_DETAILS);
690 flow_loops_dump (dump_file, NULL, 1);
692 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
693 profile_count count_threshold = cfun->cfg->count_max.apply_scale
694 (1, PARAM_VALUE (PARAM_ALIGN_THRESHOLD));
696 if (dump_file)
698 fprintf (dump_file, "count_max: ");
699 cfun->cfg->count_max.dump (dump_file);
700 fprintf (dump_file, "\n");
702 FOR_EACH_BB_FN (bb, cfun)
704 rtx_insn *label = BB_HEAD (bb);
705 bool has_fallthru = 0;
706 edge e;
707 edge_iterator ei;
709 if (!LABEL_P (label)
710 || optimize_bb_for_size_p (bb))
712 if (dump_file)
713 fprintf (dump_file,
714 "BB %4i loop %2i loop_depth %2i skipped.\n",
715 bb->index,
716 bb->loop_father->num,
717 bb_loop_depth (bb));
718 continue;
720 max_log = LABEL_ALIGN (label);
721 max_skip = targetm.asm_out.label_align_max_skip (label);
722 profile_count fallthru_count = profile_count::zero ();
723 profile_count branch_count = profile_count::zero ();
725 FOR_EACH_EDGE (e, ei, bb->preds)
727 if (e->flags & EDGE_FALLTHRU)
728 has_fallthru = 1, fallthru_count += e->count ();
729 else
730 branch_count += e->count ();
732 if (dump_file)
734 fprintf (dump_file, "BB %4i loop %2i loop_depth"
735 " %2i fall ",
736 bb->index, bb->loop_father->num,
737 bb_loop_depth (bb));
738 fallthru_count.dump (dump_file);
739 fprintf (dump_file, " branch ");
740 branch_count.dump (dump_file);
741 if (!bb->loop_father->inner && bb->loop_father->num)
742 fprintf (dump_file, " inner_loop");
743 if (bb->loop_father->header == bb)
744 fprintf (dump_file, " loop_header");
745 fprintf (dump_file, "\n");
747 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
748 continue;
750 /* There are two purposes to align block with no fallthru incoming edge:
751 1) to avoid fetch stalls when branch destination is near cache boundary
752 2) to improve cache efficiency in case the previous block is not executed
753 (so it does not need to be in the cache).
755 We to catch first case, we align frequently executed blocks.
756 To catch the second, we align blocks that are executed more frequently
757 than the predecessor and the predecessor is likely to not be executed
758 when function is called. */
760 if (!has_fallthru
761 && (branch_count > count_threshold
762 || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
763 && (bb->prev_bb->count
764 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
765 ->count.apply_scale (1, 2)))))
767 log = JUMP_ALIGN (label);
768 if (dump_file)
769 fprintf (dump_file, " jump alignment added.\n");
770 if (max_log < log)
772 max_log = log;
773 max_skip = targetm.asm_out.jump_align_max_skip (label);
776 /* In case block is frequent and reached mostly by non-fallthru edge,
777 align it. It is most likely a first block of loop. */
778 if (has_fallthru
779 && !(single_succ_p (bb)
780 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
781 && optimize_bb_for_speed_p (bb)
782 && branch_count + fallthru_count > count_threshold
783 && (branch_count
784 > fallthru_count.apply_scale
785 (PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS), 1)))
787 log = LOOP_ALIGN (label);
788 if (dump_file)
789 fprintf (dump_file, " internal loop alignment added.\n");
790 if (max_log < log)
792 max_log = log;
793 max_skip = targetm.asm_out.loop_align_max_skip (label);
796 LABEL_TO_ALIGNMENT (label) = max_log;
797 LABEL_TO_MAX_SKIP (label) = max_skip;
800 loop_optimizer_finalize ();
801 free_dominance_info (CDI_DOMINATORS);
802 return 0;
805 /* Grow the LABEL_ALIGN array after new labels are created. */
807 static void
808 grow_label_align (void)
810 int old = max_labelno;
811 int n_labels;
812 int n_old_labels;
814 max_labelno = max_label_num ();
816 n_labels = max_labelno - min_labelno + 1;
817 n_old_labels = old - min_labelno + 1;
819 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
821 /* Range of labels grows monotonically in the function. Failing here
822 means that the initialization of array got lost. */
823 gcc_assert (n_old_labels <= n_labels);
825 memset (label_align + n_old_labels, 0,
826 (n_labels - n_old_labels) * sizeof (struct label_alignment));
829 /* Update the already computed alignment information. LABEL_PAIRS is a vector
830 made up of pairs of labels for which the alignment information of the first
831 element will be copied from that of the second element. */
833 void
834 update_alignments (vec<rtx> &label_pairs)
836 unsigned int i = 0;
837 rtx iter, label = NULL_RTX;
839 if (max_labelno != max_label_num ())
840 grow_label_align ();
842 FOR_EACH_VEC_ELT (label_pairs, i, iter)
843 if (i & 1)
845 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
846 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
848 else
849 label = iter;
852 namespace {
854 const pass_data pass_data_compute_alignments =
856 RTL_PASS, /* type */
857 "alignments", /* name */
858 OPTGROUP_NONE, /* optinfo_flags */
859 TV_NONE, /* tv_id */
860 0, /* properties_required */
861 0, /* properties_provided */
862 0, /* properties_destroyed */
863 0, /* todo_flags_start */
864 0, /* todo_flags_finish */
867 class pass_compute_alignments : public rtl_opt_pass
869 public:
870 pass_compute_alignments (gcc::context *ctxt)
871 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
874 /* opt_pass methods: */
875 virtual unsigned int execute (function *) { return compute_alignments (); }
877 }; // class pass_compute_alignments
879 } // anon namespace
881 rtl_opt_pass *
882 make_pass_compute_alignments (gcc::context *ctxt)
884 return new pass_compute_alignments (ctxt);
888 /* Make a pass over all insns and compute their actual lengths by shortening
889 any branches of variable length if possible. */
891 /* shorten_branches might be called multiple times: for example, the SH
892 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
893 In order to do this, it needs proper length information, which it obtains
894 by calling shorten_branches. This cannot be collapsed with
895 shorten_branches itself into a single pass unless we also want to integrate
896 reorg.c, since the branch splitting exposes new instructions with delay
897 slots. */
899 void
900 shorten_branches (rtx_insn *first)
902 rtx_insn *insn;
903 int max_uid;
904 int i;
905 int max_log;
906 int max_skip;
907 #define MAX_CODE_ALIGN 16
908 rtx_insn *seq;
909 int something_changed = 1;
910 char *varying_length;
911 rtx body;
912 int uid;
913 rtx align_tab[MAX_CODE_ALIGN];
915 /* Compute maximum UID and allocate label_align / uid_shuid. */
916 max_uid = get_max_uid ();
918 /* Free uid_shuid before reallocating it. */
919 free (uid_shuid);
921 uid_shuid = XNEWVEC (int, max_uid);
923 if (max_labelno != max_label_num ())
924 grow_label_align ();
926 /* Initialize label_align and set up uid_shuid to be strictly
927 monotonically rising with insn order. */
928 /* We use max_log here to keep track of the maximum alignment we want to
929 impose on the next CODE_LABEL (or the current one if we are processing
930 the CODE_LABEL itself). */
932 max_log = 0;
933 max_skip = 0;
935 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
937 int log;
939 INSN_SHUID (insn) = i++;
940 if (INSN_P (insn))
941 continue;
943 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
945 /* Merge in alignments computed by compute_alignments. */
946 log = LABEL_TO_ALIGNMENT (label);
947 if (max_log < log)
949 max_log = log;
950 max_skip = LABEL_TO_MAX_SKIP (label);
953 rtx_jump_table_data *table = jump_table_for_label (label);
954 if (!table)
956 log = LABEL_ALIGN (label);
957 if (max_log < log)
959 max_log = log;
960 max_skip = targetm.asm_out.label_align_max_skip (label);
963 /* ADDR_VECs only take room if read-only data goes into the text
964 section. */
965 if ((JUMP_TABLES_IN_TEXT_SECTION
966 || readonly_data_section == text_section)
967 && table)
969 log = ADDR_VEC_ALIGN (table);
970 if (max_log < log)
972 max_log = log;
973 max_skip = targetm.asm_out.label_align_max_skip (label);
976 LABEL_TO_ALIGNMENT (label) = max_log;
977 LABEL_TO_MAX_SKIP (label) = max_skip;
978 max_log = 0;
979 max_skip = 0;
981 else if (BARRIER_P (insn))
983 rtx_insn *label;
985 for (label = insn; label && ! INSN_P (label);
986 label = NEXT_INSN (label))
987 if (LABEL_P (label))
989 log = LABEL_ALIGN_AFTER_BARRIER (insn);
990 if (max_log < log)
992 max_log = log;
993 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
995 break;
999 if (!HAVE_ATTR_length)
1000 return;
1002 /* Allocate the rest of the arrays. */
1003 insn_lengths = XNEWVEC (int, max_uid);
1004 insn_lengths_max_uid = max_uid;
1005 /* Syntax errors can lead to labels being outside of the main insn stream.
1006 Initialize insn_addresses, so that we get reproducible results. */
1007 INSN_ADDRESSES_ALLOC (max_uid);
1009 varying_length = XCNEWVEC (char, max_uid);
1011 /* Initialize uid_align. We scan instructions
1012 from end to start, and keep in align_tab[n] the last seen insn
1013 that does an alignment of at least n+1, i.e. the successor
1014 in the alignment chain for an insn that does / has a known
1015 alignment of n. */
1016 uid_align = XCNEWVEC (rtx, max_uid);
1018 for (i = MAX_CODE_ALIGN; --i >= 0;)
1019 align_tab[i] = NULL_RTX;
1020 seq = get_last_insn ();
1021 for (; seq; seq = PREV_INSN (seq))
1023 int uid = INSN_UID (seq);
1024 int log;
1025 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1026 uid_align[uid] = align_tab[0];
1027 if (log)
1029 /* Found an alignment label. */
1030 uid_align[uid] = align_tab[log];
1031 for (i = log - 1; i >= 0; i--)
1032 align_tab[i] = seq;
1036 /* When optimizing, we start assuming minimum length, and keep increasing
1037 lengths as we find the need for this, till nothing changes.
1038 When not optimizing, we start assuming maximum lengths, and
1039 do a single pass to update the lengths. */
1040 bool increasing = optimize != 0;
1042 #ifdef CASE_VECTOR_SHORTEN_MODE
1043 if (optimize)
1045 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1046 label fields. */
1048 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1049 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1050 int rel;
1052 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1054 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1055 int len, i, min, max, insn_shuid;
1056 int min_align;
1057 addr_diff_vec_flags flags;
1059 if (! JUMP_TABLE_DATA_P (insn)
1060 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1061 continue;
1062 pat = PATTERN (insn);
1063 len = XVECLEN (pat, 1);
1064 gcc_assert (len > 0);
1065 min_align = MAX_CODE_ALIGN;
1066 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1068 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1069 int shuid = INSN_SHUID (lab);
1070 if (shuid < min)
1072 min = shuid;
1073 min_lab = lab;
1075 if (shuid > max)
1077 max = shuid;
1078 max_lab = lab;
1080 if (min_align > LABEL_TO_ALIGNMENT (lab))
1081 min_align = LABEL_TO_ALIGNMENT (lab);
1083 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1084 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1085 insn_shuid = INSN_SHUID (insn);
1086 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1087 memset (&flags, 0, sizeof (flags));
1088 flags.min_align = min_align;
1089 flags.base_after_vec = rel > insn_shuid;
1090 flags.min_after_vec = min > insn_shuid;
1091 flags.max_after_vec = max > insn_shuid;
1092 flags.min_after_base = min > rel;
1093 flags.max_after_base = max > rel;
1094 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1096 if (increasing)
1097 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1100 #endif /* CASE_VECTOR_SHORTEN_MODE */
1102 /* Compute initial lengths, addresses, and varying flags for each insn. */
1103 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1105 for (insn_current_address = 0, insn = first;
1106 insn != 0;
1107 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1109 uid = INSN_UID (insn);
1111 insn_lengths[uid] = 0;
1113 if (LABEL_P (insn))
1115 int log = LABEL_TO_ALIGNMENT (insn);
1116 if (log)
1118 int align = 1 << log;
1119 int new_address = (insn_current_address + align - 1) & -align;
1120 insn_lengths[uid] = new_address - insn_current_address;
1124 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1126 if (NOTE_P (insn) || BARRIER_P (insn)
1127 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1128 continue;
1129 if (insn->deleted ())
1130 continue;
1132 body = PATTERN (insn);
1133 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1135 /* This only takes room if read-only data goes into the text
1136 section. */
1137 if (JUMP_TABLES_IN_TEXT_SECTION
1138 || readonly_data_section == text_section)
1139 insn_lengths[uid] = (XVECLEN (body,
1140 GET_CODE (body) == ADDR_DIFF_VEC)
1141 * GET_MODE_SIZE (table->get_data_mode ()));
1142 /* Alignment is handled by ADDR_VEC_ALIGN. */
1144 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1145 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1146 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1148 int i;
1149 int const_delay_slots;
1150 if (DELAY_SLOTS)
1151 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1152 else
1153 const_delay_slots = 0;
1155 int (*inner_length_fun) (rtx_insn *)
1156 = const_delay_slots ? length_fun : insn_default_length;
1157 /* Inside a delay slot sequence, we do not do any branch shortening
1158 if the shortening could change the number of delay slots
1159 of the branch. */
1160 for (i = 0; i < body_seq->len (); i++)
1162 rtx_insn *inner_insn = body_seq->insn (i);
1163 int inner_uid = INSN_UID (inner_insn);
1164 int inner_length;
1166 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1167 || asm_noperands (PATTERN (inner_insn)) >= 0)
1168 inner_length = (asm_insn_count (PATTERN (inner_insn))
1169 * insn_default_length (inner_insn));
1170 else
1171 inner_length = inner_length_fun (inner_insn);
1173 insn_lengths[inner_uid] = inner_length;
1174 if (const_delay_slots)
1176 if ((varying_length[inner_uid]
1177 = insn_variable_length_p (inner_insn)) != 0)
1178 varying_length[uid] = 1;
1179 INSN_ADDRESSES (inner_uid) = (insn_current_address
1180 + insn_lengths[uid]);
1182 else
1183 varying_length[inner_uid] = 0;
1184 insn_lengths[uid] += inner_length;
1187 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1189 insn_lengths[uid] = length_fun (insn);
1190 varying_length[uid] = insn_variable_length_p (insn);
1193 /* If needed, do any adjustment. */
1194 #ifdef ADJUST_INSN_LENGTH
1195 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1196 if (insn_lengths[uid] < 0)
1197 fatal_insn ("negative insn length", insn);
1198 #endif
1201 /* Now loop over all the insns finding varying length insns. For each,
1202 get the current insn length. If it has changed, reflect the change.
1203 When nothing changes for a full pass, we are done. */
1205 while (something_changed)
1207 something_changed = 0;
1208 insn_current_align = MAX_CODE_ALIGN - 1;
1209 for (insn_current_address = 0, insn = first;
1210 insn != 0;
1211 insn = NEXT_INSN (insn))
1213 int new_length;
1214 #ifdef ADJUST_INSN_LENGTH
1215 int tmp_length;
1216 #endif
1217 int length_align;
1219 uid = INSN_UID (insn);
1221 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1223 int log = LABEL_TO_ALIGNMENT (label);
1225 #ifdef CASE_VECTOR_SHORTEN_MODE
1226 /* If the mode of a following jump table was changed, we
1227 may need to update the alignment of this label. */
1229 if (JUMP_TABLES_IN_TEXT_SECTION
1230 || readonly_data_section == text_section)
1232 rtx_jump_table_data *table = jump_table_for_label (label);
1233 if (table)
1235 int newlog = ADDR_VEC_ALIGN (table);
1236 if (newlog != log)
1238 log = newlog;
1239 LABEL_TO_ALIGNMENT (insn) = log;
1240 something_changed = 1;
1244 #endif
1246 if (log > insn_current_align)
1248 int align = 1 << log;
1249 int new_address= (insn_current_address + align - 1) & -align;
1250 insn_lengths[uid] = new_address - insn_current_address;
1251 insn_current_align = log;
1252 insn_current_address = new_address;
1254 else
1255 insn_lengths[uid] = 0;
1256 INSN_ADDRESSES (uid) = insn_current_address;
1257 continue;
1260 length_align = INSN_LENGTH_ALIGNMENT (insn);
1261 if (length_align < insn_current_align)
1262 insn_current_align = length_align;
1264 insn_last_address = INSN_ADDRESSES (uid);
1265 INSN_ADDRESSES (uid) = insn_current_address;
1267 #ifdef CASE_VECTOR_SHORTEN_MODE
1268 if (optimize
1269 && JUMP_TABLE_DATA_P (insn)
1270 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1272 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1273 rtx body = PATTERN (insn);
1274 int old_length = insn_lengths[uid];
1275 rtx_insn *rel_lab =
1276 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1277 rtx min_lab = XEXP (XEXP (body, 2), 0);
1278 rtx max_lab = XEXP (XEXP (body, 3), 0);
1279 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1280 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1281 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1282 rtx_insn *prev;
1283 int rel_align = 0;
1284 addr_diff_vec_flags flags;
1285 scalar_int_mode vec_mode;
1287 /* Avoid automatic aggregate initialization. */
1288 flags = ADDR_DIFF_VEC_FLAGS (body);
1290 /* Try to find a known alignment for rel_lab. */
1291 for (prev = rel_lab;
1292 prev
1293 && ! insn_lengths[INSN_UID (prev)]
1294 && ! (varying_length[INSN_UID (prev)] & 1);
1295 prev = PREV_INSN (prev))
1296 if (varying_length[INSN_UID (prev)] & 2)
1298 rel_align = LABEL_TO_ALIGNMENT (prev);
1299 break;
1302 /* See the comment on addr_diff_vec_flags in rtl.h for the
1303 meaning of the flags values. base: REL_LAB vec: INSN */
1304 /* Anything after INSN has still addresses from the last
1305 pass; adjust these so that they reflect our current
1306 estimate for this pass. */
1307 if (flags.base_after_vec)
1308 rel_addr += insn_current_address - insn_last_address;
1309 if (flags.min_after_vec)
1310 min_addr += insn_current_address - insn_last_address;
1311 if (flags.max_after_vec)
1312 max_addr += insn_current_address - insn_last_address;
1313 /* We want to know the worst case, i.e. lowest possible value
1314 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1315 its offset is positive, and we have to be wary of code shrink;
1316 otherwise, it is negative, and we have to be vary of code
1317 size increase. */
1318 if (flags.min_after_base)
1320 /* If INSN is between REL_LAB and MIN_LAB, the size
1321 changes we are about to make can change the alignment
1322 within the observed offset, therefore we have to break
1323 it up into two parts that are independent. */
1324 if (! flags.base_after_vec && flags.min_after_vec)
1326 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1327 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1329 else
1330 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1332 else
1334 if (flags.base_after_vec && ! flags.min_after_vec)
1336 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1337 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1339 else
1340 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1342 /* Likewise, determine the highest lowest possible value
1343 for the offset of MAX_LAB. */
1344 if (flags.max_after_base)
1346 if (! flags.base_after_vec && flags.max_after_vec)
1348 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1349 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1351 else
1352 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1354 else
1356 if (flags.base_after_vec && ! flags.max_after_vec)
1358 max_addr += align_fuzz (max_lab, insn, 0, 0);
1359 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1361 else
1362 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1364 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1365 max_addr - rel_addr, body);
1366 if (!increasing
1367 || (GET_MODE_SIZE (vec_mode)
1368 >= GET_MODE_SIZE (table->get_data_mode ())))
1369 PUT_MODE (body, vec_mode);
1370 if (JUMP_TABLES_IN_TEXT_SECTION
1371 || readonly_data_section == text_section)
1373 insn_lengths[uid]
1374 = (XVECLEN (body, 1)
1375 * GET_MODE_SIZE (table->get_data_mode ()));
1376 insn_current_address += insn_lengths[uid];
1377 if (insn_lengths[uid] != old_length)
1378 something_changed = 1;
1381 continue;
1383 #endif /* CASE_VECTOR_SHORTEN_MODE */
1385 if (! (varying_length[uid]))
1387 if (NONJUMP_INSN_P (insn)
1388 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1390 int i;
1392 body = PATTERN (insn);
1393 for (i = 0; i < XVECLEN (body, 0); i++)
1395 rtx inner_insn = XVECEXP (body, 0, i);
1396 int inner_uid = INSN_UID (inner_insn);
1398 INSN_ADDRESSES (inner_uid) = insn_current_address;
1400 insn_current_address += insn_lengths[inner_uid];
1403 else
1404 insn_current_address += insn_lengths[uid];
1406 continue;
1409 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1411 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1412 int i;
1414 body = PATTERN (insn);
1415 new_length = 0;
1416 for (i = 0; i < seqn->len (); i++)
1418 rtx_insn *inner_insn = seqn->insn (i);
1419 int inner_uid = INSN_UID (inner_insn);
1420 int inner_length;
1422 INSN_ADDRESSES (inner_uid) = insn_current_address;
1424 /* insn_current_length returns 0 for insns with a
1425 non-varying length. */
1426 if (! varying_length[inner_uid])
1427 inner_length = insn_lengths[inner_uid];
1428 else
1429 inner_length = insn_current_length (inner_insn);
1431 if (inner_length != insn_lengths[inner_uid])
1433 if (!increasing || inner_length > insn_lengths[inner_uid])
1435 insn_lengths[inner_uid] = inner_length;
1436 something_changed = 1;
1438 else
1439 inner_length = insn_lengths[inner_uid];
1441 insn_current_address += inner_length;
1442 new_length += inner_length;
1445 else
1447 new_length = insn_current_length (insn);
1448 insn_current_address += new_length;
1451 #ifdef ADJUST_INSN_LENGTH
1452 /* If needed, do any adjustment. */
1453 tmp_length = new_length;
1454 ADJUST_INSN_LENGTH (insn, new_length);
1455 insn_current_address += (new_length - tmp_length);
1456 #endif
1458 if (new_length != insn_lengths[uid]
1459 && (!increasing || new_length > insn_lengths[uid]))
1461 insn_lengths[uid] = new_length;
1462 something_changed = 1;
1464 else
1465 insn_current_address += insn_lengths[uid] - new_length;
1467 /* For a non-optimizing compile, do only a single pass. */
1468 if (!increasing)
1469 break;
1471 crtl->max_insn_address = insn_current_address;
1472 free (varying_length);
1475 /* Given the body of an INSN known to be generated by an ASM statement, return
1476 the number of machine instructions likely to be generated for this insn.
1477 This is used to compute its length. */
1479 static int
1480 asm_insn_count (rtx body)
1482 const char *templ;
1484 if (GET_CODE (body) == ASM_INPUT)
1485 templ = XSTR (body, 0);
1486 else
1487 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1489 return asm_str_count (templ);
1492 /* Return the number of machine instructions likely to be generated for the
1493 inline-asm template. */
1495 asm_str_count (const char *templ)
1497 int count = 1;
1499 if (!*templ)
1500 return 0;
1502 for (; *templ; templ++)
1503 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1504 || *templ == '\n')
1505 count++;
1507 return count;
1510 /* ??? This is probably the wrong place for these. */
1511 /* Structure recording the mapping from source file and directory
1512 names at compile time to those to be embedded in debug
1513 information. */
1514 struct debug_prefix_map
1516 const char *old_prefix;
1517 const char *new_prefix;
1518 size_t old_len;
1519 size_t new_len;
1520 struct debug_prefix_map *next;
1523 /* Linked list of such structures. */
1524 static debug_prefix_map *debug_prefix_maps;
1527 /* Record a debug file prefix mapping. ARG is the argument to
1528 -fdebug-prefix-map and must be of the form OLD=NEW. */
1530 void
1531 add_debug_prefix_map (const char *arg)
1533 debug_prefix_map *map;
1534 const char *p;
1536 p = strchr (arg, '=');
1537 if (!p)
1539 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1540 return;
1542 map = XNEW (debug_prefix_map);
1543 map->old_prefix = xstrndup (arg, p - arg);
1544 map->old_len = p - arg;
1545 p++;
1546 map->new_prefix = xstrdup (p);
1547 map->new_len = strlen (p);
1548 map->next = debug_prefix_maps;
1549 debug_prefix_maps = map;
1552 /* Perform user-specified mapping of debug filename prefixes. Return
1553 the new name corresponding to FILENAME. */
1555 const char *
1556 remap_debug_filename (const char *filename)
1558 debug_prefix_map *map;
1559 char *s;
1560 const char *name;
1561 size_t name_len;
1563 for (map = debug_prefix_maps; map; map = map->next)
1564 if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1565 break;
1566 if (!map)
1567 return filename;
1568 name = filename + map->old_len;
1569 name_len = strlen (name) + 1;
1570 s = (char *) alloca (name_len + map->new_len);
1571 memcpy (s, map->new_prefix, map->new_len);
1572 memcpy (s + map->new_len, name, name_len);
1573 return ggc_strdup (s);
1576 /* Return true if DWARF2 debug info can be emitted for DECL. */
1578 static bool
1579 dwarf2_debug_info_emitted_p (tree decl)
1581 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1582 return false;
1584 if (DECL_IGNORED_P (decl))
1585 return false;
1587 return true;
1590 /* Return scope resulting from combination of S1 and S2. */
1591 static tree
1592 choose_inner_scope (tree s1, tree s2)
1594 if (!s1)
1595 return s2;
1596 if (!s2)
1597 return s1;
1598 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1599 return s1;
1600 return s2;
1603 /* Emit lexical block notes needed to change scope from S1 to S2. */
1605 static void
1606 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1608 rtx_insn *insn = orig_insn;
1609 tree com = NULL_TREE;
1610 tree ts1 = s1, ts2 = s2;
1611 tree s;
1613 while (ts1 != ts2)
1615 gcc_assert (ts1 && ts2);
1616 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1617 ts1 = BLOCK_SUPERCONTEXT (ts1);
1618 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1619 ts2 = BLOCK_SUPERCONTEXT (ts2);
1620 else
1622 ts1 = BLOCK_SUPERCONTEXT (ts1);
1623 ts2 = BLOCK_SUPERCONTEXT (ts2);
1626 com = ts1;
1628 /* Close scopes. */
1629 s = s1;
1630 while (s != com)
1632 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1633 NOTE_BLOCK (note) = s;
1634 s = BLOCK_SUPERCONTEXT (s);
1637 /* Open scopes. */
1638 s = s2;
1639 while (s != com)
1641 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1642 NOTE_BLOCK (insn) = s;
1643 s = BLOCK_SUPERCONTEXT (s);
1647 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1648 on the scope tree and the newly reordered instructions. */
1650 static void
1651 reemit_insn_block_notes (void)
1653 tree cur_block = DECL_INITIAL (cfun->decl);
1654 rtx_insn *insn;
1656 insn = get_insns ();
1657 for (; insn; insn = NEXT_INSN (insn))
1659 tree this_block;
1661 /* Prevent lexical blocks from straddling section boundaries. */
1662 if (NOTE_P (insn))
1663 switch (NOTE_KIND (insn))
1665 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1667 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1668 s = BLOCK_SUPERCONTEXT (s))
1670 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1671 NOTE_BLOCK (note) = s;
1672 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1673 NOTE_BLOCK (note) = s;
1676 break;
1678 case NOTE_INSN_BEGIN_STMT:
1679 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1680 goto set_cur_block_to_this_block;
1682 default:
1683 continue;
1686 if (!active_insn_p (insn))
1687 continue;
1689 /* Avoid putting scope notes between jump table and its label. */
1690 if (JUMP_TABLE_DATA_P (insn))
1691 continue;
1693 this_block = insn_scope (insn);
1694 /* For sequences compute scope resulting from merging all scopes
1695 of instructions nested inside. */
1696 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1698 int i;
1700 this_block = NULL;
1701 for (i = 0; i < body->len (); i++)
1702 this_block = choose_inner_scope (this_block,
1703 insn_scope (body->insn (i)));
1705 set_cur_block_to_this_block:
1706 if (! this_block)
1708 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1709 continue;
1710 else
1711 this_block = DECL_INITIAL (cfun->decl);
1714 if (this_block != cur_block)
1716 change_scope (insn, cur_block, this_block);
1717 cur_block = this_block;
1721 /* change_scope emits before the insn, not after. */
1722 rtx_note *note = emit_note (NOTE_INSN_DELETED);
1723 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1724 delete_insn (note);
1726 reorder_blocks ();
1729 static const char *some_local_dynamic_name;
1731 /* Locate some local-dynamic symbol still in use by this function
1732 so that we can print its name in local-dynamic base patterns.
1733 Return null if there are no local-dynamic references. */
1735 const char *
1736 get_some_local_dynamic_name ()
1738 subrtx_iterator::array_type array;
1739 rtx_insn *insn;
1741 if (some_local_dynamic_name)
1742 return some_local_dynamic_name;
1744 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1745 if (NONDEBUG_INSN_P (insn))
1746 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1748 const_rtx x = *iter;
1749 if (GET_CODE (x) == SYMBOL_REF)
1751 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1752 return some_local_dynamic_name = XSTR (x, 0);
1753 if (CONSTANT_POOL_ADDRESS_P (x))
1754 iter.substitute (get_pool_constant (x));
1758 return 0;
1761 /* Output assembler code for the start of a function,
1762 and initialize some of the variables in this file
1763 for the new function. The label for the function and associated
1764 assembler pseudo-ops have already been output in `assemble_start_function'.
1766 FIRST is the first insn of the rtl for the function being compiled.
1767 FILE is the file to write assembler code to.
1768 OPTIMIZE_P is nonzero if we should eliminate redundant
1769 test and compare insns. */
1771 void
1772 final_start_function (rtx_insn *first, FILE *file,
1773 int optimize_p ATTRIBUTE_UNUSED)
1775 block_depth = 0;
1777 this_is_asm_operands = 0;
1779 need_profile_function = false;
1781 last_filename = LOCATION_FILE (prologue_location);
1782 last_linenum = LOCATION_LINE (prologue_location);
1783 last_columnnum = LOCATION_COLUMN (prologue_location);
1784 last_discriminator = discriminator = 0;
1786 high_block_linenum = high_function_linenum = last_linenum;
1788 if (flag_sanitize & SANITIZE_ADDRESS)
1789 asan_function_start ();
1791 if (!DECL_IGNORED_P (current_function_decl))
1792 debug_hooks->begin_prologue (last_linenum, last_columnnum, last_filename);
1794 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1795 dwarf2out_begin_prologue (0, 0, NULL);
1797 #ifdef LEAF_REG_REMAP
1798 if (crtl->uses_only_leaf_regs)
1799 leaf_renumber_regs (first);
1800 #endif
1802 /* The Sun386i and perhaps other machines don't work right
1803 if the profiling code comes after the prologue. */
1804 if (targetm.profile_before_prologue () && crtl->profile)
1806 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1807 && targetm.have_prologue ())
1809 rtx_insn *insn;
1810 for (insn = first; insn; insn = NEXT_INSN (insn))
1811 if (!NOTE_P (insn))
1813 insn = NULL;
1814 break;
1816 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1817 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1818 break;
1819 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1820 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1821 continue;
1822 else
1824 insn = NULL;
1825 break;
1828 if (insn)
1829 need_profile_function = true;
1830 else
1831 profile_function (file);
1833 else
1834 profile_function (file);
1837 /* If debugging, assign block numbers to all of the blocks in this
1838 function. */
1839 if (write_symbols)
1841 reemit_insn_block_notes ();
1842 number_blocks (current_function_decl);
1843 /* We never actually put out begin/end notes for the top-level
1844 block in the function. But, conceptually, that block is
1845 always needed. */
1846 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1849 HOST_WIDE_INT min_frame_size = constant_lower_bound (get_frame_size ());
1850 if (warn_frame_larger_than
1851 && min_frame_size > frame_larger_than_size)
1853 /* Issue a warning */
1854 warning (OPT_Wframe_larger_than_,
1855 "the frame size of %wd bytes is larger than %wd bytes",
1856 min_frame_size, frame_larger_than_size);
1859 /* First output the function prologue: code to set up the stack frame. */
1860 targetm.asm_out.function_prologue (file);
1862 /* If the machine represents the prologue as RTL, the profiling code must
1863 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1864 if (! targetm.have_prologue ())
1865 profile_after_prologue (file);
1868 static void
1869 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1871 if (!targetm.profile_before_prologue () && crtl->profile)
1872 profile_function (file);
1875 static void
1876 profile_function (FILE *file ATTRIBUTE_UNUSED)
1878 #ifndef NO_PROFILE_COUNTERS
1879 # define NO_PROFILE_COUNTERS 0
1880 #endif
1881 #ifdef ASM_OUTPUT_REG_PUSH
1882 rtx sval = NULL, chain = NULL;
1884 if (cfun->returns_struct)
1885 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1886 true);
1887 if (cfun->static_chain_decl)
1888 chain = targetm.calls.static_chain (current_function_decl, true);
1889 #endif /* ASM_OUTPUT_REG_PUSH */
1891 if (! NO_PROFILE_COUNTERS)
1893 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1894 switch_to_section (data_section);
1895 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1896 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1897 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1900 switch_to_section (current_function_section ());
1902 #ifdef ASM_OUTPUT_REG_PUSH
1903 if (sval && REG_P (sval))
1904 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1905 if (chain && REG_P (chain))
1906 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1907 #endif
1909 FUNCTION_PROFILER (file, current_function_funcdef_no);
1911 #ifdef ASM_OUTPUT_REG_PUSH
1912 if (chain && REG_P (chain))
1913 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1914 if (sval && REG_P (sval))
1915 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1916 #endif
1919 /* Output assembler code for the end of a function.
1920 For clarity, args are same as those of `final_start_function'
1921 even though not all of them are needed. */
1923 void
1924 final_end_function (void)
1926 app_disable ();
1928 if (!DECL_IGNORED_P (current_function_decl))
1929 debug_hooks->end_function (high_function_linenum);
1931 /* Finally, output the function epilogue:
1932 code to restore the stack frame and return to the caller. */
1933 targetm.asm_out.function_epilogue (asm_out_file);
1935 /* And debug output. */
1936 if (!DECL_IGNORED_P (current_function_decl))
1937 debug_hooks->end_epilogue (last_linenum, last_filename);
1939 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1940 && dwarf2out_do_frame ())
1941 dwarf2out_end_epilogue (last_linenum, last_filename);
1943 some_local_dynamic_name = 0;
1947 /* Dumper helper for basic block information. FILE is the assembly
1948 output file, and INSN is the instruction being emitted. */
1950 static void
1951 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1952 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1954 basic_block bb;
1956 if (!flag_debug_asm)
1957 return;
1959 if (INSN_UID (insn) < bb_map_size
1960 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1962 edge e;
1963 edge_iterator ei;
1965 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1966 if (bb->count.initialized_p ())
1968 fprintf (file, ", count:");
1969 bb->count.dump (file);
1971 fprintf (file, " seq:%d", (*bb_seqn)++);
1972 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1973 FOR_EACH_EDGE (e, ei, bb->preds)
1975 dump_edge_info (file, e, TDF_DETAILS, 0);
1977 fprintf (file, "\n");
1979 if (INSN_UID (insn) < bb_map_size
1980 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1982 edge e;
1983 edge_iterator ei;
1985 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1986 FOR_EACH_EDGE (e, ei, bb->succs)
1988 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1990 fprintf (file, "\n");
1994 /* Output assembler code for some insns: all or part of a function.
1995 For description of args, see `final_start_function', above. */
1997 void
1998 final (rtx_insn *first, FILE *file, int optimize_p)
2000 rtx_insn *insn, *next;
2001 int seen = 0;
2003 /* Used for -dA dump. */
2004 basic_block *start_to_bb = NULL;
2005 basic_block *end_to_bb = NULL;
2006 int bb_map_size = 0;
2007 int bb_seqn = 0;
2009 last_ignored_compare = 0;
2011 if (HAVE_cc0)
2012 for (insn = first; insn; insn = NEXT_INSN (insn))
2014 /* If CC tracking across branches is enabled, record the insn which
2015 jumps to each branch only reached from one place. */
2016 if (optimize_p && JUMP_P (insn))
2018 rtx lab = JUMP_LABEL (insn);
2019 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2021 LABEL_REFS (lab) = insn;
2026 init_recog ();
2028 CC_STATUS_INIT;
2030 if (flag_debug_asm)
2032 basic_block bb;
2034 bb_map_size = get_max_uid () + 1;
2035 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2036 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2038 /* There is no cfg for a thunk. */
2039 if (!cfun->is_thunk)
2040 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2042 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2043 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2047 /* Output the insns. */
2048 for (insn = first; insn;)
2050 if (HAVE_ATTR_length)
2052 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2054 /* This can be triggered by bugs elsewhere in the compiler if
2055 new insns are created after init_insn_lengths is called. */
2056 gcc_assert (NOTE_P (insn));
2057 insn_current_address = -1;
2059 else
2060 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2063 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2064 bb_map_size, &bb_seqn);
2065 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2068 if (flag_debug_asm)
2070 free (start_to_bb);
2071 free (end_to_bb);
2074 /* Remove CFI notes, to avoid compare-debug failures. */
2075 for (insn = first; insn; insn = next)
2077 next = NEXT_INSN (insn);
2078 if (NOTE_P (insn)
2079 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2080 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2081 delete_insn (insn);
2085 const char *
2086 get_insn_template (int code, rtx insn)
2088 switch (insn_data[code].output_format)
2090 case INSN_OUTPUT_FORMAT_SINGLE:
2091 return insn_data[code].output.single;
2092 case INSN_OUTPUT_FORMAT_MULTI:
2093 return insn_data[code].output.multi[which_alternative];
2094 case INSN_OUTPUT_FORMAT_FUNCTION:
2095 gcc_assert (insn);
2096 return (*insn_data[code].output.function) (recog_data.operand,
2097 as_a <rtx_insn *> (insn));
2099 default:
2100 gcc_unreachable ();
2104 /* Emit the appropriate declaration for an alternate-entry-point
2105 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2106 LABEL_KIND != LABEL_NORMAL.
2108 The case fall-through in this function is intentional. */
2109 static void
2110 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2112 const char *name = LABEL_NAME (insn);
2114 switch (LABEL_KIND (insn))
2116 case LABEL_WEAK_ENTRY:
2117 #ifdef ASM_WEAKEN_LABEL
2118 ASM_WEAKEN_LABEL (file, name);
2119 gcc_fallthrough ();
2120 #endif
2121 case LABEL_GLOBAL_ENTRY:
2122 targetm.asm_out.globalize_label (file, name);
2123 gcc_fallthrough ();
2124 case LABEL_STATIC_ENTRY:
2125 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2126 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2127 #endif
2128 ASM_OUTPUT_LABEL (file, name);
2129 break;
2131 case LABEL_NORMAL:
2132 default:
2133 gcc_unreachable ();
2137 /* Given a CALL_INSN, find and return the nested CALL. */
2138 static rtx
2139 call_from_call_insn (rtx_call_insn *insn)
2141 rtx x;
2142 gcc_assert (CALL_P (insn));
2143 x = PATTERN (insn);
2145 while (GET_CODE (x) != CALL)
2147 switch (GET_CODE (x))
2149 default:
2150 gcc_unreachable ();
2151 case COND_EXEC:
2152 x = COND_EXEC_CODE (x);
2153 break;
2154 case PARALLEL:
2155 x = XVECEXP (x, 0, 0);
2156 break;
2157 case SET:
2158 x = XEXP (x, 1);
2159 break;
2162 return x;
2165 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2166 corresponding source line, if available. */
2168 static void
2169 asm_show_source (const char *filename, int linenum)
2171 if (!filename)
2172 return;
2174 int line_size;
2175 const char *line = location_get_source_line (filename, linenum, &line_size);
2176 if (!line)
2177 return;
2179 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2180 /* "line" is not 0-terminated, so we must use line_size. */
2181 fwrite (line, 1, line_size, asm_out_file);
2182 fputc ('\n', asm_out_file);
2185 /* The final scan for one insn, INSN.
2186 Args are same as in `final', except that INSN
2187 is the insn being scanned.
2188 Value returned is the next insn to be scanned.
2190 NOPEEPHOLES is the flag to disallow peephole processing (currently
2191 used for within delayed branch sequence output).
2193 SEEN is used to track the end of the prologue, for emitting
2194 debug information. We force the emission of a line note after
2195 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2197 rtx_insn *
2198 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2199 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2201 #if HAVE_cc0
2202 rtx set;
2203 #endif
2204 rtx_insn *next;
2205 rtx_jump_table_data *table;
2207 insn_counter++;
2209 /* Ignore deleted insns. These can occur when we split insns (due to a
2210 template of "#") while not optimizing. */
2211 if (insn->deleted ())
2212 return NEXT_INSN (insn);
2214 switch (GET_CODE (insn))
2216 case NOTE:
2217 switch (NOTE_KIND (insn))
2219 case NOTE_INSN_DELETED:
2220 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2221 break;
2223 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2224 in_cold_section_p = !in_cold_section_p;
2226 if (in_cold_section_p)
2227 cold_function_name
2228 = clone_function_name (current_function_decl, "cold");
2230 if (dwarf2out_do_frame ())
2232 dwarf2out_switch_text_section ();
2233 if (!dwarf2_debug_info_emitted_p (current_function_decl)
2234 && !DECL_IGNORED_P (current_function_decl))
2235 debug_hooks->switch_text_section ();
2237 else if (!DECL_IGNORED_P (current_function_decl))
2238 debug_hooks->switch_text_section ();
2240 switch_to_section (current_function_section ());
2241 targetm.asm_out.function_switched_text_sections (asm_out_file,
2242 current_function_decl,
2243 in_cold_section_p);
2244 /* Emit a label for the split cold section. Form label name by
2245 suffixing "cold" to the original function's name. */
2246 if (in_cold_section_p)
2248 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2249 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2250 IDENTIFIER_POINTER
2251 (cold_function_name),
2252 current_function_decl);
2253 #else
2254 ASM_OUTPUT_LABEL (asm_out_file,
2255 IDENTIFIER_POINTER (cold_function_name));
2256 #endif
2258 break;
2260 case NOTE_INSN_BASIC_BLOCK:
2261 if (need_profile_function)
2263 profile_function (asm_out_file);
2264 need_profile_function = false;
2267 if (targetm.asm_out.unwind_emit)
2268 targetm.asm_out.unwind_emit (asm_out_file, insn);
2270 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2272 break;
2274 case NOTE_INSN_EH_REGION_BEG:
2275 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2276 NOTE_EH_HANDLER (insn));
2277 break;
2279 case NOTE_INSN_EH_REGION_END:
2280 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2281 NOTE_EH_HANDLER (insn));
2282 break;
2284 case NOTE_INSN_PROLOGUE_END:
2285 targetm.asm_out.function_end_prologue (file);
2286 profile_after_prologue (file);
2288 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2290 *seen |= SEEN_EMITTED;
2291 force_source_line = true;
2293 else
2294 *seen |= SEEN_NOTE;
2296 break;
2298 case NOTE_INSN_EPILOGUE_BEG:
2299 if (!DECL_IGNORED_P (current_function_decl))
2300 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2301 targetm.asm_out.function_begin_epilogue (file);
2302 break;
2304 case NOTE_INSN_CFI:
2305 dwarf2out_emit_cfi (NOTE_CFI (insn));
2306 break;
2308 case NOTE_INSN_CFI_LABEL:
2309 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2310 NOTE_LABEL_NUMBER (insn));
2311 break;
2313 case NOTE_INSN_FUNCTION_BEG:
2314 if (need_profile_function)
2316 profile_function (asm_out_file);
2317 need_profile_function = false;
2320 app_disable ();
2321 if (!DECL_IGNORED_P (current_function_decl))
2322 debug_hooks->end_prologue (last_linenum, last_filename);
2324 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2326 *seen |= SEEN_EMITTED;
2327 force_source_line = true;
2329 else
2330 *seen |= SEEN_NOTE;
2332 break;
2334 case NOTE_INSN_BLOCK_BEG:
2335 if (debug_info_level == DINFO_LEVEL_NORMAL
2336 || debug_info_level == DINFO_LEVEL_VERBOSE
2337 || write_symbols == DWARF2_DEBUG
2338 || write_symbols == VMS_AND_DWARF2_DEBUG
2339 || write_symbols == VMS_DEBUG)
2341 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2343 app_disable ();
2344 ++block_depth;
2345 high_block_linenum = last_linenum;
2347 /* Output debugging info about the symbol-block beginning. */
2348 if (!DECL_IGNORED_P (current_function_decl))
2349 debug_hooks->begin_block (last_linenum, n);
2351 /* Mark this block as output. */
2352 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2353 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2355 if (write_symbols == DBX_DEBUG)
2357 location_t *locus_ptr
2358 = block_nonartificial_location (NOTE_BLOCK (insn));
2360 if (locus_ptr != NULL)
2362 override_filename = LOCATION_FILE (*locus_ptr);
2363 override_linenum = LOCATION_LINE (*locus_ptr);
2364 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2367 break;
2369 case NOTE_INSN_BLOCK_END:
2370 if (debug_info_level == DINFO_LEVEL_NORMAL
2371 || debug_info_level == DINFO_LEVEL_VERBOSE
2372 || write_symbols == DWARF2_DEBUG
2373 || write_symbols == VMS_AND_DWARF2_DEBUG
2374 || write_symbols == VMS_DEBUG)
2376 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2378 app_disable ();
2380 /* End of a symbol-block. */
2381 --block_depth;
2382 gcc_assert (block_depth >= 0);
2384 if (!DECL_IGNORED_P (current_function_decl))
2385 debug_hooks->end_block (high_block_linenum, n);
2386 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2387 == in_cold_section_p);
2389 if (write_symbols == DBX_DEBUG)
2391 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2392 location_t *locus_ptr
2393 = block_nonartificial_location (outer_block);
2395 if (locus_ptr != NULL)
2397 override_filename = LOCATION_FILE (*locus_ptr);
2398 override_linenum = LOCATION_LINE (*locus_ptr);
2399 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2401 else
2403 override_filename = NULL;
2404 override_linenum = 0;
2405 override_columnnum = 0;
2408 break;
2410 case NOTE_INSN_DELETED_LABEL:
2411 /* Emit the label. We may have deleted the CODE_LABEL because
2412 the label could be proved to be unreachable, though still
2413 referenced (in the form of having its address taken. */
2414 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2415 break;
2417 case NOTE_INSN_DELETED_DEBUG_LABEL:
2418 /* Similarly, but need to use different namespace for it. */
2419 if (CODE_LABEL_NUMBER (insn) != -1)
2420 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2421 break;
2423 case NOTE_INSN_VAR_LOCATION:
2424 case NOTE_INSN_CALL_ARG_LOCATION:
2425 if (!DECL_IGNORED_P (current_function_decl))
2426 debug_hooks->var_location (insn);
2427 break;
2429 case NOTE_INSN_BEGIN_STMT:
2430 gcc_checking_assert (cfun->debug_nonbind_markers);
2431 if (!DECL_IGNORED_P (current_function_decl)
2432 && notice_source_line (insn, NULL))
2434 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2435 last_filename, last_discriminator,
2436 true);
2438 break;
2440 default:
2441 gcc_unreachable ();
2442 break;
2444 break;
2446 case BARRIER:
2447 break;
2449 case CODE_LABEL:
2450 /* The target port might emit labels in the output function for
2451 some insn, e.g. sh.c output_branchy_insn. */
2452 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2454 int align = LABEL_TO_ALIGNMENT (insn);
2455 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2456 int max_skip = LABEL_TO_MAX_SKIP (insn);
2457 #endif
2459 if (align && NEXT_INSN (insn))
2461 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2462 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2463 #else
2464 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2465 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2466 #else
2467 ASM_OUTPUT_ALIGN (file, align);
2468 #endif
2469 #endif
2472 CC_STATUS_INIT;
2474 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2475 debug_hooks->label (as_a <rtx_code_label *> (insn));
2477 app_disable ();
2479 /* If this label is followed by a jump-table, make sure we put
2480 the label in the read-only section. Also possibly write the
2481 label and jump table together. */
2482 table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2483 if (table)
2485 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2486 /* In this case, the case vector is being moved by the
2487 target, so don't output the label at all. Leave that
2488 to the back end macros. */
2489 #else
2490 if (! JUMP_TABLES_IN_TEXT_SECTION)
2492 int log_align;
2494 switch_to_section (targetm.asm_out.function_rodata_section
2495 (current_function_decl));
2497 #ifdef ADDR_VEC_ALIGN
2498 log_align = ADDR_VEC_ALIGN (table);
2499 #else
2500 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2501 #endif
2502 ASM_OUTPUT_ALIGN (file, log_align);
2504 else
2505 switch_to_section (current_function_section ());
2507 #ifdef ASM_OUTPUT_CASE_LABEL
2508 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2509 #else
2510 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2511 #endif
2512 #endif
2513 break;
2515 if (LABEL_ALT_ENTRY_P (insn))
2516 output_alternate_entry_point (file, insn);
2517 else
2518 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2519 break;
2521 default:
2523 rtx body = PATTERN (insn);
2524 int insn_code_number;
2525 const char *templ;
2526 bool is_stmt, *is_stmt_p;
2528 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2530 is_stmt = false;
2531 is_stmt_p = NULL;
2533 else
2534 is_stmt_p = &is_stmt;
2536 /* Reset this early so it is correct for ASM statements. */
2537 current_insn_predicate = NULL_RTX;
2539 /* An INSN, JUMP_INSN or CALL_INSN.
2540 First check for special kinds that recog doesn't recognize. */
2542 if (GET_CODE (body) == USE /* These are just declarations. */
2543 || GET_CODE (body) == CLOBBER)
2544 break;
2546 #if HAVE_cc0
2548 /* If there is a REG_CC_SETTER note on this insn, it means that
2549 the setting of the condition code was done in the delay slot
2550 of the insn that branched here. So recover the cc status
2551 from the insn that set it. */
2553 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2554 if (note)
2556 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2557 NOTICE_UPDATE_CC (PATTERN (other), other);
2558 cc_prev_status = cc_status;
2561 #endif
2563 /* Detect insns that are really jump-tables
2564 and output them as such. */
2566 if (JUMP_TABLE_DATA_P (insn))
2568 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2569 int vlen, idx;
2570 #endif
2572 if (! JUMP_TABLES_IN_TEXT_SECTION)
2573 switch_to_section (targetm.asm_out.function_rodata_section
2574 (current_function_decl));
2575 else
2576 switch_to_section (current_function_section ());
2578 app_disable ();
2580 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2581 if (GET_CODE (body) == ADDR_VEC)
2583 #ifdef ASM_OUTPUT_ADDR_VEC
2584 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2585 #else
2586 gcc_unreachable ();
2587 #endif
2589 else
2591 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2592 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2593 #else
2594 gcc_unreachable ();
2595 #endif
2597 #else
2598 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2599 for (idx = 0; idx < vlen; idx++)
2601 if (GET_CODE (body) == ADDR_VEC)
2603 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2604 ASM_OUTPUT_ADDR_VEC_ELT
2605 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2606 #else
2607 gcc_unreachable ();
2608 #endif
2610 else
2612 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2613 ASM_OUTPUT_ADDR_DIFF_ELT
2614 (file,
2615 body,
2616 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2617 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2618 #else
2619 gcc_unreachable ();
2620 #endif
2623 #ifdef ASM_OUTPUT_CASE_END
2624 ASM_OUTPUT_CASE_END (file,
2625 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2626 insn);
2627 #endif
2628 #endif
2630 switch_to_section (current_function_section ());
2632 break;
2634 /* Output this line note if it is the first or the last line
2635 note in a row. */
2636 if (!DECL_IGNORED_P (current_function_decl)
2637 && notice_source_line (insn, is_stmt_p))
2639 if (flag_verbose_asm)
2640 asm_show_source (last_filename, last_linenum);
2641 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2642 last_filename, last_discriminator,
2643 is_stmt);
2646 if (GET_CODE (body) == PARALLEL
2647 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2648 body = XVECEXP (body, 0, 0);
2650 if (GET_CODE (body) == ASM_INPUT)
2652 const char *string = XSTR (body, 0);
2654 /* There's no telling what that did to the condition codes. */
2655 CC_STATUS_INIT;
2657 if (string[0])
2659 expanded_location loc;
2661 app_enable ();
2662 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2663 if (*loc.file && loc.line)
2664 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2665 ASM_COMMENT_START, loc.line, loc.file);
2666 fprintf (asm_out_file, "\t%s\n", string);
2667 #if HAVE_AS_LINE_ZERO
2668 if (*loc.file && loc.line)
2669 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2670 #endif
2672 break;
2675 /* Detect `asm' construct with operands. */
2676 if (asm_noperands (body) >= 0)
2678 unsigned int noperands = asm_noperands (body);
2679 rtx *ops = XALLOCAVEC (rtx, noperands);
2680 const char *string;
2681 location_t loc;
2682 expanded_location expanded;
2684 /* There's no telling what that did to the condition codes. */
2685 CC_STATUS_INIT;
2687 /* Get out the operand values. */
2688 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2689 /* Inhibit dying on what would otherwise be compiler bugs. */
2690 insn_noperands = noperands;
2691 this_is_asm_operands = insn;
2692 expanded = expand_location (loc);
2694 #ifdef FINAL_PRESCAN_INSN
2695 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2696 #endif
2698 /* Output the insn using them. */
2699 if (string[0])
2701 app_enable ();
2702 if (expanded.file && expanded.line)
2703 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2704 ASM_COMMENT_START, expanded.line, expanded.file);
2705 output_asm_insn (string, ops);
2706 #if HAVE_AS_LINE_ZERO
2707 if (expanded.file && expanded.line)
2708 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2709 #endif
2712 if (targetm.asm_out.final_postscan_insn)
2713 targetm.asm_out.final_postscan_insn (file, insn, ops,
2714 insn_noperands);
2716 this_is_asm_operands = 0;
2717 break;
2720 app_disable ();
2722 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2724 /* A delayed-branch sequence */
2725 int i;
2727 final_sequence = seq;
2729 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2730 force the restoration of a comparison that was previously
2731 thought unnecessary. If that happens, cancel this sequence
2732 and cause that insn to be restored. */
2734 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2735 if (next != seq->insn (1))
2737 final_sequence = 0;
2738 return next;
2741 for (i = 1; i < seq->len (); i++)
2743 rtx_insn *insn = seq->insn (i);
2744 rtx_insn *next = NEXT_INSN (insn);
2745 /* We loop in case any instruction in a delay slot gets
2746 split. */
2748 insn = final_scan_insn (insn, file, 0, 1, seen);
2749 while (insn != next);
2751 #ifdef DBR_OUTPUT_SEQEND
2752 DBR_OUTPUT_SEQEND (file);
2753 #endif
2754 final_sequence = 0;
2756 /* If the insn requiring the delay slot was a CALL_INSN, the
2757 insns in the delay slot are actually executed before the
2758 called function. Hence we don't preserve any CC-setting
2759 actions in these insns and the CC must be marked as being
2760 clobbered by the function. */
2761 if (CALL_P (seq->insn (0)))
2763 CC_STATUS_INIT;
2765 break;
2768 /* We have a real machine instruction as rtl. */
2770 body = PATTERN (insn);
2772 #if HAVE_cc0
2773 set = single_set (insn);
2775 /* Check for redundant test and compare instructions
2776 (when the condition codes are already set up as desired).
2777 This is done only when optimizing; if not optimizing,
2778 it should be possible for the user to alter a variable
2779 with the debugger in between statements
2780 and the next statement should reexamine the variable
2781 to compute the condition codes. */
2783 if (optimize_p)
2785 if (set
2786 && GET_CODE (SET_DEST (set)) == CC0
2787 && insn != last_ignored_compare)
2789 rtx src1, src2;
2790 if (GET_CODE (SET_SRC (set)) == SUBREG)
2791 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2793 src1 = SET_SRC (set);
2794 src2 = NULL_RTX;
2795 if (GET_CODE (SET_SRC (set)) == COMPARE)
2797 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2798 XEXP (SET_SRC (set), 0)
2799 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2800 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2801 XEXP (SET_SRC (set), 1)
2802 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2803 if (XEXP (SET_SRC (set), 1)
2804 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2805 src2 = XEXP (SET_SRC (set), 0);
2807 if ((cc_status.value1 != 0
2808 && rtx_equal_p (src1, cc_status.value1))
2809 || (cc_status.value2 != 0
2810 && rtx_equal_p (src1, cc_status.value2))
2811 || (src2 != 0 && cc_status.value1 != 0
2812 && rtx_equal_p (src2, cc_status.value1))
2813 || (src2 != 0 && cc_status.value2 != 0
2814 && rtx_equal_p (src2, cc_status.value2)))
2816 /* Don't delete insn if it has an addressing side-effect. */
2817 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2818 /* or if anything in it is volatile. */
2819 && ! volatile_refs_p (PATTERN (insn)))
2821 /* We don't really delete the insn; just ignore it. */
2822 last_ignored_compare = insn;
2823 break;
2829 /* If this is a conditional branch, maybe modify it
2830 if the cc's are in a nonstandard state
2831 so that it accomplishes the same thing that it would
2832 do straightforwardly if the cc's were set up normally. */
2834 if (cc_status.flags != 0
2835 && JUMP_P (insn)
2836 && GET_CODE (body) == SET
2837 && SET_DEST (body) == pc_rtx
2838 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2839 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2840 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2842 /* This function may alter the contents of its argument
2843 and clear some of the cc_status.flags bits.
2844 It may also return 1 meaning condition now always true
2845 or -1 meaning condition now always false
2846 or 2 meaning condition nontrivial but altered. */
2847 int result = alter_cond (XEXP (SET_SRC (body), 0));
2848 /* If condition now has fixed value, replace the IF_THEN_ELSE
2849 with its then-operand or its else-operand. */
2850 if (result == 1)
2851 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2852 if (result == -1)
2853 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2855 /* The jump is now either unconditional or a no-op.
2856 If it has become a no-op, don't try to output it.
2857 (It would not be recognized.) */
2858 if (SET_SRC (body) == pc_rtx)
2860 delete_insn (insn);
2861 break;
2863 else if (ANY_RETURN_P (SET_SRC (body)))
2864 /* Replace (set (pc) (return)) with (return). */
2865 PATTERN (insn) = body = SET_SRC (body);
2867 /* Rerecognize the instruction if it has changed. */
2868 if (result != 0)
2869 INSN_CODE (insn) = -1;
2872 /* If this is a conditional trap, maybe modify it if the cc's
2873 are in a nonstandard state so that it accomplishes the same
2874 thing that it would do straightforwardly if the cc's were
2875 set up normally. */
2876 if (cc_status.flags != 0
2877 && NONJUMP_INSN_P (insn)
2878 && GET_CODE (body) == TRAP_IF
2879 && COMPARISON_P (TRAP_CONDITION (body))
2880 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2882 /* This function may alter the contents of its argument
2883 and clear some of the cc_status.flags bits.
2884 It may also return 1 meaning condition now always true
2885 or -1 meaning condition now always false
2886 or 2 meaning condition nontrivial but altered. */
2887 int result = alter_cond (TRAP_CONDITION (body));
2889 /* If TRAP_CONDITION has become always false, delete the
2890 instruction. */
2891 if (result == -1)
2893 delete_insn (insn);
2894 break;
2897 /* If TRAP_CONDITION has become always true, replace
2898 TRAP_CONDITION with const_true_rtx. */
2899 if (result == 1)
2900 TRAP_CONDITION (body) = const_true_rtx;
2902 /* Rerecognize the instruction if it has changed. */
2903 if (result != 0)
2904 INSN_CODE (insn) = -1;
2907 /* Make same adjustments to instructions that examine the
2908 condition codes without jumping and instructions that
2909 handle conditional moves (if this machine has either one). */
2911 if (cc_status.flags != 0
2912 && set != 0)
2914 rtx cond_rtx, then_rtx, else_rtx;
2916 if (!JUMP_P (insn)
2917 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2919 cond_rtx = XEXP (SET_SRC (set), 0);
2920 then_rtx = XEXP (SET_SRC (set), 1);
2921 else_rtx = XEXP (SET_SRC (set), 2);
2923 else
2925 cond_rtx = SET_SRC (set);
2926 then_rtx = const_true_rtx;
2927 else_rtx = const0_rtx;
2930 if (COMPARISON_P (cond_rtx)
2931 && XEXP (cond_rtx, 0) == cc0_rtx)
2933 int result;
2934 result = alter_cond (cond_rtx);
2935 if (result == 1)
2936 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2937 else if (result == -1)
2938 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2939 else if (result == 2)
2940 INSN_CODE (insn) = -1;
2941 if (SET_DEST (set) == SET_SRC (set))
2942 delete_insn (insn);
2946 #endif
2948 /* Do machine-specific peephole optimizations if desired. */
2950 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2952 rtx_insn *next = peephole (insn);
2953 /* When peepholing, if there were notes within the peephole,
2954 emit them before the peephole. */
2955 if (next != 0 && next != NEXT_INSN (insn))
2957 rtx_insn *note, *prev = PREV_INSN (insn);
2959 for (note = NEXT_INSN (insn); note != next;
2960 note = NEXT_INSN (note))
2961 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2963 /* Put the notes in the proper position for a later
2964 rescan. For example, the SH target can do this
2965 when generating a far jump in a delayed branch
2966 sequence. */
2967 note = NEXT_INSN (insn);
2968 SET_PREV_INSN (note) = prev;
2969 SET_NEXT_INSN (prev) = note;
2970 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2971 SET_PREV_INSN (insn) = PREV_INSN (next);
2972 SET_NEXT_INSN (insn) = next;
2973 SET_PREV_INSN (next) = insn;
2976 /* PEEPHOLE might have changed this. */
2977 body = PATTERN (insn);
2980 /* Try to recognize the instruction.
2981 If successful, verify that the operands satisfy the
2982 constraints for the instruction. Crash if they don't,
2983 since `reload' should have changed them so that they do. */
2985 insn_code_number = recog_memoized (insn);
2986 cleanup_subreg_operands (insn);
2988 /* Dump the insn in the assembly for debugging (-dAP).
2989 If the final dump is requested as slim RTL, dump slim
2990 RTL to the assembly file also. */
2991 if (flag_dump_rtl_in_asm)
2993 print_rtx_head = ASM_COMMENT_START;
2994 if (! (dump_flags & TDF_SLIM))
2995 print_rtl_single (asm_out_file, insn);
2996 else
2997 dump_insn_slim (asm_out_file, insn);
2998 print_rtx_head = "";
3001 if (! constrain_operands_cached (insn, 1))
3002 fatal_insn_not_found (insn);
3004 /* Some target machines need to prescan each insn before
3005 it is output. */
3007 #ifdef FINAL_PRESCAN_INSN
3008 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3009 #endif
3011 if (targetm.have_conditional_execution ()
3012 && GET_CODE (PATTERN (insn)) == COND_EXEC)
3013 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3015 #if HAVE_cc0
3016 cc_prev_status = cc_status;
3018 /* Update `cc_status' for this instruction.
3019 The instruction's output routine may change it further.
3020 If the output routine for a jump insn needs to depend
3021 on the cc status, it should look at cc_prev_status. */
3023 NOTICE_UPDATE_CC (body, insn);
3024 #endif
3026 current_output_insn = debug_insn = insn;
3028 /* Find the proper template for this insn. */
3029 templ = get_insn_template (insn_code_number, insn);
3031 /* If the C code returns 0, it means that it is a jump insn
3032 which follows a deleted test insn, and that test insn
3033 needs to be reinserted. */
3034 if (templ == 0)
3036 rtx_insn *prev;
3038 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3040 /* We have already processed the notes between the setter and
3041 the user. Make sure we don't process them again, this is
3042 particularly important if one of the notes is a block
3043 scope note or an EH note. */
3044 for (prev = insn;
3045 prev != last_ignored_compare;
3046 prev = PREV_INSN (prev))
3048 if (NOTE_P (prev))
3049 delete_insn (prev); /* Use delete_note. */
3052 return prev;
3055 /* If the template is the string "#", it means that this insn must
3056 be split. */
3057 if (templ[0] == '#' && templ[1] == '\0')
3059 rtx_insn *new_rtx = try_split (body, insn, 0);
3061 /* If we didn't split the insn, go away. */
3062 if (new_rtx == insn && PATTERN (new_rtx) == body)
3063 fatal_insn ("could not split insn", insn);
3065 /* If we have a length attribute, this instruction should have
3066 been split in shorten_branches, to ensure that we would have
3067 valid length info for the splitees. */
3068 gcc_assert (!HAVE_ATTR_length);
3070 return new_rtx;
3073 /* ??? This will put the directives in the wrong place if
3074 get_insn_template outputs assembly directly. However calling it
3075 before get_insn_template breaks if the insns is split. */
3076 if (targetm.asm_out.unwind_emit_before_insn
3077 && targetm.asm_out.unwind_emit)
3078 targetm.asm_out.unwind_emit (asm_out_file, insn);
3080 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3081 if (call_insn != NULL)
3083 rtx x = call_from_call_insn (call_insn);
3084 x = XEXP (x, 0);
3085 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3087 tree t;
3088 x = XEXP (x, 0);
3089 t = SYMBOL_REF_DECL (x);
3090 if (t)
3091 assemble_external (t);
3095 /* Output assembler code from the template. */
3096 output_asm_insn (templ, recog_data.operand);
3098 /* Some target machines need to postscan each insn after
3099 it is output. */
3100 if (targetm.asm_out.final_postscan_insn)
3101 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3102 recog_data.n_operands);
3104 if (!targetm.asm_out.unwind_emit_before_insn
3105 && targetm.asm_out.unwind_emit)
3106 targetm.asm_out.unwind_emit (asm_out_file, insn);
3108 /* Let the debug info back-end know about this call. We do this only
3109 after the instruction has been emitted because labels that may be
3110 created to reference the call instruction must appear after it. */
3111 if (call_insn != NULL && !DECL_IGNORED_P (current_function_decl))
3112 debug_hooks->var_location (insn);
3114 current_output_insn = debug_insn = 0;
3117 return NEXT_INSN (insn);
3120 /* Return whether a source line note needs to be emitted before INSN.
3121 Sets IS_STMT to TRUE if the line should be marked as a possible
3122 breakpoint location. */
3124 static bool
3125 notice_source_line (rtx_insn *insn, bool *is_stmt)
3127 const char *filename;
3128 int linenum, columnnum;
3130 if (NOTE_MARKER_P (insn))
3132 location_t loc = NOTE_MARKER_LOCATION (insn);
3133 expanded_location xloc = expand_location (loc);
3134 if (xloc.line == 0)
3136 gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3137 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION);
3138 return false;
3140 filename = xloc.file;
3141 linenum = xloc.line;
3142 columnnum = xloc.column;
3143 force_source_line = true;
3145 else if (override_filename)
3147 filename = override_filename;
3148 linenum = override_linenum;
3149 columnnum = override_columnnum;
3151 else if (INSN_HAS_LOCATION (insn))
3153 expanded_location xloc = insn_location (insn);
3154 filename = xloc.file;
3155 linenum = xloc.line;
3156 columnnum = xloc.column;
3158 else
3160 filename = NULL;
3161 linenum = 0;
3162 columnnum = 0;
3165 if (filename == NULL)
3166 return false;
3168 if (force_source_line
3169 || filename != last_filename
3170 || last_linenum != linenum
3171 || (debug_column_info && last_columnnum != columnnum))
3173 force_source_line = false;
3174 last_filename = filename;
3175 last_linenum = linenum;
3176 last_columnnum = columnnum;
3177 last_discriminator = discriminator;
3178 if (is_stmt)
3179 *is_stmt = true;
3180 high_block_linenum = MAX (last_linenum, high_block_linenum);
3181 high_function_linenum = MAX (last_linenum, high_function_linenum);
3182 return true;
3185 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3187 /* If the discriminator changed, but the line number did not,
3188 output the line table entry with is_stmt false so the
3189 debugger does not treat this as a breakpoint location. */
3190 last_discriminator = discriminator;
3191 if (is_stmt)
3192 *is_stmt = false;
3193 return true;
3196 return false;
3199 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3200 directly to the desired hard register. */
3202 void
3203 cleanup_subreg_operands (rtx_insn *insn)
3205 int i;
3206 bool changed = false;
3207 extract_insn_cached (insn);
3208 for (i = 0; i < recog_data.n_operands; i++)
3210 /* The following test cannot use recog_data.operand when testing
3211 for a SUBREG: the underlying object might have been changed
3212 already if we are inside a match_operator expression that
3213 matches the else clause. Instead we test the underlying
3214 expression directly. */
3215 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3217 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3218 changed = true;
3220 else if (GET_CODE (recog_data.operand[i]) == PLUS
3221 || GET_CODE (recog_data.operand[i]) == MULT
3222 || MEM_P (recog_data.operand[i]))
3223 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3226 for (i = 0; i < recog_data.n_dups; i++)
3228 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3230 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3231 changed = true;
3233 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3234 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3235 || MEM_P (*recog_data.dup_loc[i]))
3236 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3238 if (changed)
3239 df_insn_rescan (insn);
3242 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3243 the thing it is a subreg of. Do it anyway if FINAL_P. */
3246 alter_subreg (rtx *xp, bool final_p)
3248 rtx x = *xp;
3249 rtx y = SUBREG_REG (x);
3251 /* simplify_subreg does not remove subreg from volatile references.
3252 We are required to. */
3253 if (MEM_P (y))
3255 poly_int64 offset = SUBREG_BYTE (x);
3257 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3258 contains 0 instead of the proper offset. See simplify_subreg. */
3259 if (paradoxical_subreg_p (x))
3260 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3262 if (final_p)
3263 *xp = adjust_address (y, GET_MODE (x), offset);
3264 else
3265 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3267 else if (REG_P (y) && HARD_REGISTER_P (y))
3269 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3270 SUBREG_BYTE (x));
3272 if (new_rtx != 0)
3273 *xp = new_rtx;
3274 else if (final_p && REG_P (y))
3276 /* Simplify_subreg can't handle some REG cases, but we have to. */
3277 unsigned int regno;
3278 poly_int64 offset;
3280 regno = subreg_regno (x);
3281 if (subreg_lowpart_p (x))
3282 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3283 else
3284 offset = SUBREG_BYTE (x);
3285 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3289 return *xp;
3292 /* Do alter_subreg on all the SUBREGs contained in X. */
3294 static rtx
3295 walk_alter_subreg (rtx *xp, bool *changed)
3297 rtx x = *xp;
3298 switch (GET_CODE (x))
3300 case PLUS:
3301 case MULT:
3302 case AND:
3303 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3304 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3305 break;
3307 case MEM:
3308 case ZERO_EXTEND:
3309 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3310 break;
3312 case SUBREG:
3313 *changed = true;
3314 return alter_subreg (xp, true);
3316 default:
3317 break;
3320 return *xp;
3323 #if HAVE_cc0
3325 /* Given BODY, the body of a jump instruction, alter the jump condition
3326 as required by the bits that are set in cc_status.flags.
3327 Not all of the bits there can be handled at this level in all cases.
3329 The value is normally 0.
3330 1 means that the condition has become always true.
3331 -1 means that the condition has become always false.
3332 2 means that COND has been altered. */
3334 static int
3335 alter_cond (rtx cond)
3337 int value = 0;
3339 if (cc_status.flags & CC_REVERSED)
3341 value = 2;
3342 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3345 if (cc_status.flags & CC_INVERTED)
3347 value = 2;
3348 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3351 if (cc_status.flags & CC_NOT_POSITIVE)
3352 switch (GET_CODE (cond))
3354 case LE:
3355 case LEU:
3356 case GEU:
3357 /* Jump becomes unconditional. */
3358 return 1;
3360 case GT:
3361 case GTU:
3362 case LTU:
3363 /* Jump becomes no-op. */
3364 return -1;
3366 case GE:
3367 PUT_CODE (cond, EQ);
3368 value = 2;
3369 break;
3371 case LT:
3372 PUT_CODE (cond, NE);
3373 value = 2;
3374 break;
3376 default:
3377 break;
3380 if (cc_status.flags & CC_NOT_NEGATIVE)
3381 switch (GET_CODE (cond))
3383 case GE:
3384 case GEU:
3385 /* Jump becomes unconditional. */
3386 return 1;
3388 case LT:
3389 case LTU:
3390 /* Jump becomes no-op. */
3391 return -1;
3393 case LE:
3394 case LEU:
3395 PUT_CODE (cond, EQ);
3396 value = 2;
3397 break;
3399 case GT:
3400 case GTU:
3401 PUT_CODE (cond, NE);
3402 value = 2;
3403 break;
3405 default:
3406 break;
3409 if (cc_status.flags & CC_NO_OVERFLOW)
3410 switch (GET_CODE (cond))
3412 case GEU:
3413 /* Jump becomes unconditional. */
3414 return 1;
3416 case LEU:
3417 PUT_CODE (cond, EQ);
3418 value = 2;
3419 break;
3421 case GTU:
3422 PUT_CODE (cond, NE);
3423 value = 2;
3424 break;
3426 case LTU:
3427 /* Jump becomes no-op. */
3428 return -1;
3430 default:
3431 break;
3434 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3435 switch (GET_CODE (cond))
3437 default:
3438 gcc_unreachable ();
3440 case NE:
3441 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3442 value = 2;
3443 break;
3445 case EQ:
3446 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3447 value = 2;
3448 break;
3451 if (cc_status.flags & CC_NOT_SIGNED)
3452 /* The flags are valid if signed condition operators are converted
3453 to unsigned. */
3454 switch (GET_CODE (cond))
3456 case LE:
3457 PUT_CODE (cond, LEU);
3458 value = 2;
3459 break;
3461 case LT:
3462 PUT_CODE (cond, LTU);
3463 value = 2;
3464 break;
3466 case GT:
3467 PUT_CODE (cond, GTU);
3468 value = 2;
3469 break;
3471 case GE:
3472 PUT_CODE (cond, GEU);
3473 value = 2;
3474 break;
3476 default:
3477 break;
3480 return value;
3482 #endif
3484 /* Report inconsistency between the assembler template and the operands.
3485 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3487 void
3488 output_operand_lossage (const char *cmsgid, ...)
3490 char *fmt_string;
3491 char *new_message;
3492 const char *pfx_str;
3493 va_list ap;
3495 va_start (ap, cmsgid);
3497 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3498 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3499 new_message = xvasprintf (fmt_string, ap);
3501 if (this_is_asm_operands)
3502 error_for_asm (this_is_asm_operands, "%s", new_message);
3503 else
3504 internal_error ("%s", new_message);
3506 free (fmt_string);
3507 free (new_message);
3508 va_end (ap);
3511 /* Output of assembler code from a template, and its subroutines. */
3513 /* Annotate the assembly with a comment describing the pattern and
3514 alternative used. */
3516 static void
3517 output_asm_name (void)
3519 if (debug_insn)
3521 fprintf (asm_out_file, "\t%s %d\t",
3522 ASM_COMMENT_START, INSN_UID (debug_insn));
3524 fprintf (asm_out_file, "[c=%d",
3525 insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3526 if (HAVE_ATTR_length)
3527 fprintf (asm_out_file, " l=%d",
3528 get_attr_length (debug_insn));
3529 fprintf (asm_out_file, "] ");
3531 int num = INSN_CODE (debug_insn);
3532 fprintf (asm_out_file, "%s", insn_data[num].name);
3533 if (insn_data[num].n_alternatives > 1)
3534 fprintf (asm_out_file, "/%d", which_alternative);
3536 /* Clear this so only the first assembler insn
3537 of any rtl insn will get the special comment for -dp. */
3538 debug_insn = 0;
3542 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3543 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3544 corresponds to the address of the object and 0 if to the object. */
3546 static tree
3547 get_mem_expr_from_op (rtx op, int *paddressp)
3549 tree expr;
3550 int inner_addressp;
3552 *paddressp = 0;
3554 if (REG_P (op))
3555 return REG_EXPR (op);
3556 else if (!MEM_P (op))
3557 return 0;
3559 if (MEM_EXPR (op) != 0)
3560 return MEM_EXPR (op);
3562 /* Otherwise we have an address, so indicate it and look at the address. */
3563 *paddressp = 1;
3564 op = XEXP (op, 0);
3566 /* First check if we have a decl for the address, then look at the right side
3567 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3568 But don't allow the address to itself be indirect. */
3569 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3570 return expr;
3571 else if (GET_CODE (op) == PLUS
3572 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3573 return expr;
3575 while (UNARY_P (op)
3576 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3577 op = XEXP (op, 0);
3579 expr = get_mem_expr_from_op (op, &inner_addressp);
3580 return inner_addressp ? 0 : expr;
3583 /* Output operand names for assembler instructions. OPERANDS is the
3584 operand vector, OPORDER is the order to write the operands, and NOPS
3585 is the number of operands to write. */
3587 static void
3588 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3590 int wrote = 0;
3591 int i;
3593 for (i = 0; i < nops; i++)
3595 int addressp;
3596 rtx op = operands[oporder[i]];
3597 tree expr = get_mem_expr_from_op (op, &addressp);
3599 fprintf (asm_out_file, "%c%s",
3600 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3601 wrote = 1;
3602 if (expr)
3604 fprintf (asm_out_file, "%s",
3605 addressp ? "*" : "");
3606 print_mem_expr (asm_out_file, expr);
3607 wrote = 1;
3609 else if (REG_P (op) && ORIGINAL_REGNO (op)
3610 && ORIGINAL_REGNO (op) != REGNO (op))
3611 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3615 #ifdef ASSEMBLER_DIALECT
3616 /* Helper function to parse assembler dialects in the asm string.
3617 This is called from output_asm_insn and asm_fprintf. */
3618 static const char *
3619 do_assembler_dialects (const char *p, int *dialect)
3621 char c = *(p - 1);
3623 switch (c)
3625 case '{':
3627 int i;
3629 if (*dialect)
3630 output_operand_lossage ("nested assembly dialect alternatives");
3631 else
3632 *dialect = 1;
3634 /* If we want the first dialect, do nothing. Otherwise, skip
3635 DIALECT_NUMBER of strings ending with '|'. */
3636 for (i = 0; i < dialect_number; i++)
3638 while (*p && *p != '}')
3640 if (*p == '|')
3642 p++;
3643 break;
3646 /* Skip over any character after a percent sign. */
3647 if (*p == '%')
3648 p++;
3649 if (*p)
3650 p++;
3653 if (*p == '}')
3654 break;
3657 if (*p == '\0')
3658 output_operand_lossage ("unterminated assembly dialect alternative");
3660 break;
3662 case '|':
3663 if (*dialect)
3665 /* Skip to close brace. */
3668 if (*p == '\0')
3670 output_operand_lossage ("unterminated assembly dialect alternative");
3671 break;
3674 /* Skip over any character after a percent sign. */
3675 if (*p == '%' && p[1])
3677 p += 2;
3678 continue;
3681 if (*p++ == '}')
3682 break;
3684 while (1);
3686 *dialect = 0;
3688 else
3689 putc (c, asm_out_file);
3690 break;
3692 case '}':
3693 if (! *dialect)
3694 putc (c, asm_out_file);
3695 *dialect = 0;
3696 break;
3697 default:
3698 gcc_unreachable ();
3701 return p;
3703 #endif
3705 /* Output text from TEMPLATE to the assembler output file,
3706 obeying %-directions to substitute operands taken from
3707 the vector OPERANDS.
3709 %N (for N a digit) means print operand N in usual manner.
3710 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3711 and print the label name with no punctuation.
3712 %cN means require operand N to be a constant
3713 and print the constant expression with no punctuation.
3714 %aN means expect operand N to be a memory address
3715 (not a memory reference!) and print a reference
3716 to that address.
3717 %nN means expect operand N to be a constant
3718 and print a constant expression for minus the value
3719 of the operand, with no other punctuation. */
3721 void
3722 output_asm_insn (const char *templ, rtx *operands)
3724 const char *p;
3725 int c;
3726 #ifdef ASSEMBLER_DIALECT
3727 int dialect = 0;
3728 #endif
3729 int oporder[MAX_RECOG_OPERANDS];
3730 char opoutput[MAX_RECOG_OPERANDS];
3731 int ops = 0;
3733 /* An insn may return a null string template
3734 in a case where no assembler code is needed. */
3735 if (*templ == 0)
3736 return;
3738 memset (opoutput, 0, sizeof opoutput);
3739 p = templ;
3740 putc ('\t', asm_out_file);
3742 #ifdef ASM_OUTPUT_OPCODE
3743 ASM_OUTPUT_OPCODE (asm_out_file, p);
3744 #endif
3746 while ((c = *p++))
3747 switch (c)
3749 case '\n':
3750 if (flag_verbose_asm)
3751 output_asm_operand_names (operands, oporder, ops);
3752 if (flag_print_asm_name)
3753 output_asm_name ();
3755 ops = 0;
3756 memset (opoutput, 0, sizeof opoutput);
3758 putc (c, asm_out_file);
3759 #ifdef ASM_OUTPUT_OPCODE
3760 while ((c = *p) == '\t')
3762 putc (c, asm_out_file);
3763 p++;
3765 ASM_OUTPUT_OPCODE (asm_out_file, p);
3766 #endif
3767 break;
3769 #ifdef ASSEMBLER_DIALECT
3770 case '{':
3771 case '}':
3772 case '|':
3773 p = do_assembler_dialects (p, &dialect);
3774 break;
3775 #endif
3777 case '%':
3778 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3779 if ASSEMBLER_DIALECT defined and these characters have a special
3780 meaning as dialect delimiters.*/
3781 if (*p == '%'
3782 #ifdef ASSEMBLER_DIALECT
3783 || *p == '{' || *p == '}' || *p == '|'
3784 #endif
3787 putc (*p, asm_out_file);
3788 p++;
3790 /* %= outputs a number which is unique to each insn in the entire
3791 compilation. This is useful for making local labels that are
3792 referred to more than once in a given insn. */
3793 else if (*p == '=')
3795 p++;
3796 fprintf (asm_out_file, "%d", insn_counter);
3798 /* % followed by a letter and some digits
3799 outputs an operand in a special way depending on the letter.
3800 Letters `acln' are implemented directly.
3801 Other letters are passed to `output_operand' so that
3802 the TARGET_PRINT_OPERAND hook can define them. */
3803 else if (ISALPHA (*p))
3805 int letter = *p++;
3806 unsigned long opnum;
3807 char *endptr;
3809 opnum = strtoul (p, &endptr, 10);
3811 if (endptr == p)
3812 output_operand_lossage ("operand number missing "
3813 "after %%-letter");
3814 else if (this_is_asm_operands && opnum >= insn_noperands)
3815 output_operand_lossage ("operand number out of range");
3816 else if (letter == 'l')
3817 output_asm_label (operands[opnum]);
3818 else if (letter == 'a')
3819 output_address (VOIDmode, operands[opnum]);
3820 else if (letter == 'c')
3822 if (CONSTANT_ADDRESS_P (operands[opnum]))
3823 output_addr_const (asm_out_file, operands[opnum]);
3824 else
3825 output_operand (operands[opnum], 'c');
3827 else if (letter == 'n')
3829 if (CONST_INT_P (operands[opnum]))
3830 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3831 - INTVAL (operands[opnum]));
3832 else
3834 putc ('-', asm_out_file);
3835 output_addr_const (asm_out_file, operands[opnum]);
3838 else
3839 output_operand (operands[opnum], letter);
3841 if (!opoutput[opnum])
3842 oporder[ops++] = opnum;
3843 opoutput[opnum] = 1;
3845 p = endptr;
3846 c = *p;
3848 /* % followed by a digit outputs an operand the default way. */
3849 else if (ISDIGIT (*p))
3851 unsigned long opnum;
3852 char *endptr;
3854 opnum = strtoul (p, &endptr, 10);
3855 if (this_is_asm_operands && opnum >= insn_noperands)
3856 output_operand_lossage ("operand number out of range");
3857 else
3858 output_operand (operands[opnum], 0);
3860 if (!opoutput[opnum])
3861 oporder[ops++] = opnum;
3862 opoutput[opnum] = 1;
3864 p = endptr;
3865 c = *p;
3867 /* % followed by punctuation: output something for that
3868 punctuation character alone, with no operand. The
3869 TARGET_PRINT_OPERAND hook decides what is actually done. */
3870 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3871 output_operand (NULL_RTX, *p++);
3872 else
3873 output_operand_lossage ("invalid %%-code");
3874 break;
3876 default:
3877 putc (c, asm_out_file);
3880 /* Try to keep the asm a bit more readable. */
3881 if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
3882 putc ('\t', asm_out_file);
3884 /* Write out the variable names for operands, if we know them. */
3885 if (flag_verbose_asm)
3886 output_asm_operand_names (operands, oporder, ops);
3887 if (flag_print_asm_name)
3888 output_asm_name ();
3890 putc ('\n', asm_out_file);
3893 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3895 void
3896 output_asm_label (rtx x)
3898 char buf[256];
3900 if (GET_CODE (x) == LABEL_REF)
3901 x = label_ref_label (x);
3902 if (LABEL_P (x)
3903 || (NOTE_P (x)
3904 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3905 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3906 else
3907 output_operand_lossage ("'%%l' operand isn't a label");
3909 assemble_name (asm_out_file, buf);
3912 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3914 void
3915 mark_symbol_refs_as_used (rtx x)
3917 subrtx_iterator::array_type array;
3918 FOR_EACH_SUBRTX (iter, array, x, ALL)
3920 const_rtx x = *iter;
3921 if (GET_CODE (x) == SYMBOL_REF)
3922 if (tree t = SYMBOL_REF_DECL (x))
3923 assemble_external (t);
3927 /* Print operand X using machine-dependent assembler syntax.
3928 CODE is a non-digit that preceded the operand-number in the % spec,
3929 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3930 between the % and the digits.
3931 When CODE is a non-letter, X is 0.
3933 The meanings of the letters are machine-dependent and controlled
3934 by TARGET_PRINT_OPERAND. */
3936 void
3937 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3939 if (x && GET_CODE (x) == SUBREG)
3940 x = alter_subreg (&x, true);
3942 /* X must not be a pseudo reg. */
3943 if (!targetm.no_register_allocation)
3944 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3946 targetm.asm_out.print_operand (asm_out_file, x, code);
3948 if (x == NULL_RTX)
3949 return;
3951 mark_symbol_refs_as_used (x);
3954 /* Print a memory reference operand for address X using
3955 machine-dependent assembler syntax. */
3957 void
3958 output_address (machine_mode mode, rtx x)
3960 bool changed = false;
3961 walk_alter_subreg (&x, &changed);
3962 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
3965 /* Print an integer constant expression in assembler syntax.
3966 Addition and subtraction are the only arithmetic
3967 that may appear in these expressions. */
3969 void
3970 output_addr_const (FILE *file, rtx x)
3972 char buf[256];
3974 restart:
3975 switch (GET_CODE (x))
3977 case PC:
3978 putc ('.', file);
3979 break;
3981 case SYMBOL_REF:
3982 if (SYMBOL_REF_DECL (x))
3983 assemble_external (SYMBOL_REF_DECL (x));
3984 #ifdef ASM_OUTPUT_SYMBOL_REF
3985 ASM_OUTPUT_SYMBOL_REF (file, x);
3986 #else
3987 assemble_name (file, XSTR (x, 0));
3988 #endif
3989 break;
3991 case LABEL_REF:
3992 x = label_ref_label (x);
3993 /* Fall through. */
3994 case CODE_LABEL:
3995 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3996 #ifdef ASM_OUTPUT_LABEL_REF
3997 ASM_OUTPUT_LABEL_REF (file, buf);
3998 #else
3999 assemble_name (file, buf);
4000 #endif
4001 break;
4003 case CONST_INT:
4004 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4005 break;
4007 case CONST:
4008 /* This used to output parentheses around the expression,
4009 but that does not work on the 386 (either ATT or BSD assembler). */
4010 output_addr_const (file, XEXP (x, 0));
4011 break;
4013 case CONST_WIDE_INT:
4014 /* We do not know the mode here so we have to use a round about
4015 way to build a wide-int to get it printed properly. */
4017 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4018 CONST_WIDE_INT_NUNITS (x),
4019 CONST_WIDE_INT_NUNITS (x)
4020 * HOST_BITS_PER_WIDE_INT,
4021 false);
4022 print_decs (w, file);
4024 break;
4026 case CONST_DOUBLE:
4027 if (CONST_DOUBLE_AS_INT_P (x))
4029 /* We can use %d if the number is one word and positive. */
4030 if (CONST_DOUBLE_HIGH (x))
4031 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4032 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4033 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4034 else if (CONST_DOUBLE_LOW (x) < 0)
4035 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4036 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4037 else
4038 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4040 else
4041 /* We can't handle floating point constants;
4042 PRINT_OPERAND must handle them. */
4043 output_operand_lossage ("floating constant misused");
4044 break;
4046 case CONST_FIXED:
4047 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4048 break;
4050 case PLUS:
4051 /* Some assemblers need integer constants to appear last (eg masm). */
4052 if (CONST_INT_P (XEXP (x, 0)))
4054 output_addr_const (file, XEXP (x, 1));
4055 if (INTVAL (XEXP (x, 0)) >= 0)
4056 fprintf (file, "+");
4057 output_addr_const (file, XEXP (x, 0));
4059 else
4061 output_addr_const (file, XEXP (x, 0));
4062 if (!CONST_INT_P (XEXP (x, 1))
4063 || INTVAL (XEXP (x, 1)) >= 0)
4064 fprintf (file, "+");
4065 output_addr_const (file, XEXP (x, 1));
4067 break;
4069 case MINUS:
4070 /* Avoid outputting things like x-x or x+5-x,
4071 since some assemblers can't handle that. */
4072 x = simplify_subtraction (x);
4073 if (GET_CODE (x) != MINUS)
4074 goto restart;
4076 output_addr_const (file, XEXP (x, 0));
4077 fprintf (file, "-");
4078 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4079 || GET_CODE (XEXP (x, 1)) == PC
4080 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4081 output_addr_const (file, XEXP (x, 1));
4082 else
4084 fputs (targetm.asm_out.open_paren, file);
4085 output_addr_const (file, XEXP (x, 1));
4086 fputs (targetm.asm_out.close_paren, file);
4088 break;
4090 case ZERO_EXTEND:
4091 case SIGN_EXTEND:
4092 case SUBREG:
4093 case TRUNCATE:
4094 output_addr_const (file, XEXP (x, 0));
4095 break;
4097 default:
4098 if (targetm.asm_out.output_addr_const_extra (file, x))
4099 break;
4101 output_operand_lossage ("invalid expression as operand");
4105 /* Output a quoted string. */
4107 void
4108 output_quoted_string (FILE *asm_file, const char *string)
4110 #ifdef OUTPUT_QUOTED_STRING
4111 OUTPUT_QUOTED_STRING (asm_file, string);
4112 #else
4113 char c;
4115 putc ('\"', asm_file);
4116 while ((c = *string++) != 0)
4118 if (ISPRINT (c))
4120 if (c == '\"' || c == '\\')
4121 putc ('\\', asm_file);
4122 putc (c, asm_file);
4124 else
4125 fprintf (asm_file, "\\%03o", (unsigned char) c);
4127 putc ('\"', asm_file);
4128 #endif
4131 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4133 void
4134 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4136 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4137 if (value == 0)
4138 putc ('0', f);
4139 else
4141 char *p = buf + sizeof (buf);
4143 *--p = "0123456789abcdef"[value % 16];
4144 while ((value /= 16) != 0);
4145 *--p = 'x';
4146 *--p = '0';
4147 fwrite (p, 1, buf + sizeof (buf) - p, f);
4151 /* Internal function that prints an unsigned long in decimal in reverse.
4152 The output string IS NOT null-terminated. */
4154 static int
4155 sprint_ul_rev (char *s, unsigned long value)
4157 int i = 0;
4160 s[i] = "0123456789"[value % 10];
4161 value /= 10;
4162 i++;
4163 /* alternate version, without modulo */
4164 /* oldval = value; */
4165 /* value /= 10; */
4166 /* s[i] = "0123456789" [oldval - 10*value]; */
4167 /* i++ */
4169 while (value != 0);
4170 return i;
4173 /* Write an unsigned long as decimal to a file, fast. */
4175 void
4176 fprint_ul (FILE *f, unsigned long value)
4178 /* python says: len(str(2**64)) == 20 */
4179 char s[20];
4180 int i;
4182 i = sprint_ul_rev (s, value);
4184 /* It's probably too small to bother with string reversal and fputs. */
4187 i--;
4188 putc (s[i], f);
4190 while (i != 0);
4193 /* Write an unsigned long as decimal to a string, fast.
4194 s must be wide enough to not overflow, at least 21 chars.
4195 Returns the length of the string (without terminating '\0'). */
4198 sprint_ul (char *s, unsigned long value)
4200 int len = sprint_ul_rev (s, value);
4201 s[len] = '\0';
4203 std::reverse (s, s + len);
4204 return len;
4207 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4208 %R prints the value of REGISTER_PREFIX.
4209 %L prints the value of LOCAL_LABEL_PREFIX.
4210 %U prints the value of USER_LABEL_PREFIX.
4211 %I prints the value of IMMEDIATE_PREFIX.
4212 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4213 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4215 We handle alternate assembler dialects here, just like output_asm_insn. */
4217 void
4218 asm_fprintf (FILE *file, const char *p, ...)
4220 char buf[10];
4221 char *q, c;
4222 #ifdef ASSEMBLER_DIALECT
4223 int dialect = 0;
4224 #endif
4225 va_list argptr;
4227 va_start (argptr, p);
4229 buf[0] = '%';
4231 while ((c = *p++))
4232 switch (c)
4234 #ifdef ASSEMBLER_DIALECT
4235 case '{':
4236 case '}':
4237 case '|':
4238 p = do_assembler_dialects (p, &dialect);
4239 break;
4240 #endif
4242 case '%':
4243 c = *p++;
4244 q = &buf[1];
4245 while (strchr ("-+ #0", c))
4247 *q++ = c;
4248 c = *p++;
4250 while (ISDIGIT (c) || c == '.')
4252 *q++ = c;
4253 c = *p++;
4255 switch (c)
4257 case '%':
4258 putc ('%', file);
4259 break;
4261 case 'd': case 'i': case 'u':
4262 case 'x': case 'X': case 'o':
4263 case 'c':
4264 *q++ = c;
4265 *q = 0;
4266 fprintf (file, buf, va_arg (argptr, int));
4267 break;
4269 case 'w':
4270 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4271 'o' cases, but we do not check for those cases. It
4272 means that the value is a HOST_WIDE_INT, which may be
4273 either `long' or `long long'. */
4274 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4275 q += strlen (HOST_WIDE_INT_PRINT);
4276 *q++ = *p++;
4277 *q = 0;
4278 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4279 break;
4281 case 'l':
4282 *q++ = c;
4283 #ifdef HAVE_LONG_LONG
4284 if (*p == 'l')
4286 *q++ = *p++;
4287 *q++ = *p++;
4288 *q = 0;
4289 fprintf (file, buf, va_arg (argptr, long long));
4291 else
4292 #endif
4294 *q++ = *p++;
4295 *q = 0;
4296 fprintf (file, buf, va_arg (argptr, long));
4299 break;
4301 case 's':
4302 *q++ = c;
4303 *q = 0;
4304 fprintf (file, buf, va_arg (argptr, char *));
4305 break;
4307 case 'O':
4308 #ifdef ASM_OUTPUT_OPCODE
4309 ASM_OUTPUT_OPCODE (asm_out_file, p);
4310 #endif
4311 break;
4313 case 'R':
4314 #ifdef REGISTER_PREFIX
4315 fprintf (file, "%s", REGISTER_PREFIX);
4316 #endif
4317 break;
4319 case 'I':
4320 #ifdef IMMEDIATE_PREFIX
4321 fprintf (file, "%s", IMMEDIATE_PREFIX);
4322 #endif
4323 break;
4325 case 'L':
4326 #ifdef LOCAL_LABEL_PREFIX
4327 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4328 #endif
4329 break;
4331 case 'U':
4332 fputs (user_label_prefix, file);
4333 break;
4335 #ifdef ASM_FPRINTF_EXTENSIONS
4336 /* Uppercase letters are reserved for general use by asm_fprintf
4337 and so are not available to target specific code. In order to
4338 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4339 they are defined here. As they get turned into real extensions
4340 to asm_fprintf they should be removed from this list. */
4341 case 'A': case 'B': case 'C': case 'D': case 'E':
4342 case 'F': case 'G': case 'H': case 'J': case 'K':
4343 case 'M': case 'N': case 'P': case 'Q': case 'S':
4344 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4345 break;
4347 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4348 #endif
4349 default:
4350 gcc_unreachable ();
4352 break;
4354 default:
4355 putc (c, file);
4357 va_end (argptr);
4360 /* Return nonzero if this function has no function calls. */
4363 leaf_function_p (void)
4365 rtx_insn *insn;
4367 /* Ensure we walk the entire function body. */
4368 gcc_assert (!in_sequence_p ());
4370 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4371 functions even if they call mcount. */
4372 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4373 return 0;
4375 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4377 if (CALL_P (insn)
4378 && ! SIBLING_CALL_P (insn))
4379 return 0;
4380 if (NONJUMP_INSN_P (insn)
4381 && GET_CODE (PATTERN (insn)) == SEQUENCE
4382 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4383 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4384 return 0;
4387 return 1;
4390 /* Return 1 if branch is a forward branch.
4391 Uses insn_shuid array, so it works only in the final pass. May be used by
4392 output templates to customary add branch prediction hints.
4395 final_forward_branch_p (rtx_insn *insn)
4397 int insn_id, label_id;
4399 gcc_assert (uid_shuid);
4400 insn_id = INSN_SHUID (insn);
4401 label_id = INSN_SHUID (JUMP_LABEL (insn));
4402 /* We've hit some insns that does not have id information available. */
4403 gcc_assert (insn_id && label_id);
4404 return insn_id < label_id;
4407 /* On some machines, a function with no call insns
4408 can run faster if it doesn't create its own register window.
4409 When output, the leaf function should use only the "output"
4410 registers. Ordinarily, the function would be compiled to use
4411 the "input" registers to find its arguments; it is a candidate
4412 for leaf treatment if it uses only the "input" registers.
4413 Leaf function treatment means renumbering so the function
4414 uses the "output" registers instead. */
4416 #ifdef LEAF_REGISTERS
4418 /* Return 1 if this function uses only the registers that can be
4419 safely renumbered. */
4422 only_leaf_regs_used (void)
4424 int i;
4425 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4427 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4428 if ((df_regs_ever_live_p (i) || global_regs[i])
4429 && ! permitted_reg_in_leaf_functions[i])
4430 return 0;
4432 if (crtl->uses_pic_offset_table
4433 && pic_offset_table_rtx != 0
4434 && REG_P (pic_offset_table_rtx)
4435 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4436 return 0;
4438 return 1;
4441 /* Scan all instructions and renumber all registers into those
4442 available in leaf functions. */
4444 static void
4445 leaf_renumber_regs (rtx_insn *first)
4447 rtx_insn *insn;
4449 /* Renumber only the actual patterns.
4450 The reg-notes can contain frame pointer refs,
4451 and renumbering them could crash, and should not be needed. */
4452 for (insn = first; insn; insn = NEXT_INSN (insn))
4453 if (INSN_P (insn))
4454 leaf_renumber_regs_insn (PATTERN (insn));
4457 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4458 available in leaf functions. */
4460 void
4461 leaf_renumber_regs_insn (rtx in_rtx)
4463 int i, j;
4464 const char *format_ptr;
4466 if (in_rtx == 0)
4467 return;
4469 /* Renumber all input-registers into output-registers.
4470 renumbered_regs would be 1 for an output-register;
4471 they */
4473 if (REG_P (in_rtx))
4475 int newreg;
4477 /* Don't renumber the same reg twice. */
4478 if (in_rtx->used)
4479 return;
4481 newreg = REGNO (in_rtx);
4482 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4483 to reach here as part of a REG_NOTE. */
4484 if (newreg >= FIRST_PSEUDO_REGISTER)
4486 in_rtx->used = 1;
4487 return;
4489 newreg = LEAF_REG_REMAP (newreg);
4490 gcc_assert (newreg >= 0);
4491 df_set_regs_ever_live (REGNO (in_rtx), false);
4492 df_set_regs_ever_live (newreg, true);
4493 SET_REGNO (in_rtx, newreg);
4494 in_rtx->used = 1;
4495 return;
4498 if (INSN_P (in_rtx))
4500 /* Inside a SEQUENCE, we find insns.
4501 Renumber just the patterns of these insns,
4502 just as we do for the top-level insns. */
4503 leaf_renumber_regs_insn (PATTERN (in_rtx));
4504 return;
4507 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4509 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4510 switch (*format_ptr++)
4512 case 'e':
4513 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4514 break;
4516 case 'E':
4517 if (XVEC (in_rtx, i) != NULL)
4518 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4519 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4520 break;
4522 case 'S':
4523 case 's':
4524 case '0':
4525 case 'i':
4526 case 'w':
4527 case 'p':
4528 case 'n':
4529 case 'u':
4530 break;
4532 default:
4533 gcc_unreachable ();
4536 #endif
4538 /* Turn the RTL into assembly. */
4539 static unsigned int
4540 rest_of_handle_final (void)
4542 const char *fnname = get_fnname_from_decl (current_function_decl);
4544 /* Turn debug markers into notes if the var-tracking pass has not
4545 been invoked. */
4546 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4547 variable_tracking_main ();
4549 assemble_start_function (current_function_decl, fnname);
4550 final_start_function (get_insns (), asm_out_file, optimize);
4551 final (get_insns (), asm_out_file, optimize);
4552 if (flag_ipa_ra
4553 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl)))
4554 collect_fn_hard_reg_usage ();
4555 final_end_function ();
4557 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4558 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4559 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4560 output_function_exception_table (fnname);
4562 assemble_end_function (current_function_decl, fnname);
4564 /* Free up reg info memory. */
4565 free_reg_info ();
4567 if (! quiet_flag)
4568 fflush (asm_out_file);
4570 /* Write DBX symbols if requested. */
4572 /* Note that for those inline functions where we don't initially
4573 know for certain that we will be generating an out-of-line copy,
4574 the first invocation of this routine (rest_of_compilation) will
4575 skip over this code by doing a `goto exit_rest_of_compilation;'.
4576 Later on, wrapup_global_declarations will (indirectly) call
4577 rest_of_compilation again for those inline functions that need
4578 to have out-of-line copies generated. During that call, we
4579 *will* be routed past here. */
4581 timevar_push (TV_SYMOUT);
4582 if (!DECL_IGNORED_P (current_function_decl))
4583 debug_hooks->function_decl (current_function_decl);
4584 timevar_pop (TV_SYMOUT);
4586 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4587 DECL_INITIAL (current_function_decl) = error_mark_node;
4589 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4590 && targetm.have_ctors_dtors)
4591 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4592 decl_init_priority_lookup
4593 (current_function_decl));
4594 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4595 && targetm.have_ctors_dtors)
4596 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4597 decl_fini_priority_lookup
4598 (current_function_decl));
4599 return 0;
4602 namespace {
4604 const pass_data pass_data_final =
4606 RTL_PASS, /* type */
4607 "final", /* name */
4608 OPTGROUP_NONE, /* optinfo_flags */
4609 TV_FINAL, /* tv_id */
4610 0, /* properties_required */
4611 0, /* properties_provided */
4612 0, /* properties_destroyed */
4613 0, /* todo_flags_start */
4614 0, /* todo_flags_finish */
4617 class pass_final : public rtl_opt_pass
4619 public:
4620 pass_final (gcc::context *ctxt)
4621 : rtl_opt_pass (pass_data_final, ctxt)
4624 /* opt_pass methods: */
4625 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4627 }; // class pass_final
4629 } // anon namespace
4631 rtl_opt_pass *
4632 make_pass_final (gcc::context *ctxt)
4634 return new pass_final (ctxt);
4638 static unsigned int
4639 rest_of_handle_shorten_branches (void)
4641 /* Shorten branches. */
4642 shorten_branches (get_insns ());
4643 return 0;
4646 namespace {
4648 const pass_data pass_data_shorten_branches =
4650 RTL_PASS, /* type */
4651 "shorten", /* name */
4652 OPTGROUP_NONE, /* optinfo_flags */
4653 TV_SHORTEN_BRANCH, /* tv_id */
4654 0, /* properties_required */
4655 0, /* properties_provided */
4656 0, /* properties_destroyed */
4657 0, /* todo_flags_start */
4658 0, /* todo_flags_finish */
4661 class pass_shorten_branches : public rtl_opt_pass
4663 public:
4664 pass_shorten_branches (gcc::context *ctxt)
4665 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4668 /* opt_pass methods: */
4669 virtual unsigned int execute (function *)
4671 return rest_of_handle_shorten_branches ();
4674 }; // class pass_shorten_branches
4676 } // anon namespace
4678 rtl_opt_pass *
4679 make_pass_shorten_branches (gcc::context *ctxt)
4681 return new pass_shorten_branches (ctxt);
4685 static unsigned int
4686 rest_of_clean_state (void)
4688 rtx_insn *insn, *next;
4689 FILE *final_output = NULL;
4690 int save_unnumbered = flag_dump_unnumbered;
4691 int save_noaddr = flag_dump_noaddr;
4693 if (flag_dump_final_insns)
4695 final_output = fopen (flag_dump_final_insns, "a");
4696 if (!final_output)
4698 error ("could not open final insn dump file %qs: %m",
4699 flag_dump_final_insns);
4700 flag_dump_final_insns = NULL;
4702 else
4704 flag_dump_noaddr = flag_dump_unnumbered = 1;
4705 if (flag_compare_debug_opt || flag_compare_debug)
4706 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4707 dump_function_header (final_output, current_function_decl,
4708 dump_flags);
4709 final_insns_dump_p = true;
4711 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4712 if (LABEL_P (insn))
4713 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4714 else
4716 if (NOTE_P (insn))
4717 set_block_for_insn (insn, NULL);
4718 INSN_UID (insn) = 0;
4723 /* It is very important to decompose the RTL instruction chain here:
4724 debug information keeps pointing into CODE_LABEL insns inside the function
4725 body. If these remain pointing to the other insns, we end up preserving
4726 whole RTL chain and attached detailed debug info in memory. */
4727 for (insn = get_insns (); insn; insn = next)
4729 next = NEXT_INSN (insn);
4730 SET_NEXT_INSN (insn) = NULL;
4731 SET_PREV_INSN (insn) = NULL;
4733 if (final_output
4734 && (!NOTE_P (insn) ||
4735 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4736 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4737 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4738 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4739 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4740 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4741 print_rtl_single (final_output, insn);
4744 if (final_output)
4746 flag_dump_noaddr = save_noaddr;
4747 flag_dump_unnumbered = save_unnumbered;
4748 final_insns_dump_p = false;
4750 if (fclose (final_output))
4752 error ("could not close final insn dump file %qs: %m",
4753 flag_dump_final_insns);
4754 flag_dump_final_insns = NULL;
4758 flag_rerun_cse_after_global_opts = 0;
4759 reload_completed = 0;
4760 epilogue_completed = 0;
4761 #ifdef STACK_REGS
4762 regstack_completed = 0;
4763 #endif
4765 /* Clear out the insn_length contents now that they are no
4766 longer valid. */
4767 init_insn_lengths ();
4769 /* Show no temporary slots allocated. */
4770 init_temp_slots ();
4772 free_bb_for_insn ();
4774 if (cfun->gimple_df)
4775 delete_tree_ssa (cfun);
4777 /* We can reduce stack alignment on call site only when we are sure that
4778 the function body just produced will be actually used in the final
4779 executable. */
4780 if (decl_binds_to_current_def_p (current_function_decl))
4782 unsigned int pref = crtl->preferred_stack_boundary;
4783 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4784 pref = crtl->stack_alignment_needed;
4785 cgraph_node::rtl_info (current_function_decl)
4786 ->preferred_incoming_stack_boundary = pref;
4789 /* Make sure volatile mem refs aren't considered valid operands for
4790 arithmetic insns. We must call this here if this is a nested inline
4791 function, since the above code leaves us in the init_recog state,
4792 and the function context push/pop code does not save/restore volatile_ok.
4794 ??? Maybe it isn't necessary for expand_start_function to call this
4795 anymore if we do it here? */
4797 init_recog_no_volatile ();
4799 /* We're done with this function. Free up memory if we can. */
4800 free_after_parsing (cfun);
4801 free_after_compilation (cfun);
4802 return 0;
4805 namespace {
4807 const pass_data pass_data_clean_state =
4809 RTL_PASS, /* type */
4810 "*clean_state", /* name */
4811 OPTGROUP_NONE, /* optinfo_flags */
4812 TV_FINAL, /* tv_id */
4813 0, /* properties_required */
4814 0, /* properties_provided */
4815 PROP_rtl, /* properties_destroyed */
4816 0, /* todo_flags_start */
4817 0, /* todo_flags_finish */
4820 class pass_clean_state : public rtl_opt_pass
4822 public:
4823 pass_clean_state (gcc::context *ctxt)
4824 : rtl_opt_pass (pass_data_clean_state, ctxt)
4827 /* opt_pass methods: */
4828 virtual unsigned int execute (function *)
4830 return rest_of_clean_state ();
4833 }; // class pass_clean_state
4835 } // anon namespace
4837 rtl_opt_pass *
4838 make_pass_clean_state (gcc::context *ctxt)
4840 return new pass_clean_state (ctxt);
4843 /* Return true if INSN is a call to the current function. */
4845 static bool
4846 self_recursive_call_p (rtx_insn *insn)
4848 tree fndecl = get_call_fndecl (insn);
4849 return (fndecl == current_function_decl
4850 && decl_binds_to_current_def_p (fndecl));
4853 /* Collect hard register usage for the current function. */
4855 static void
4856 collect_fn_hard_reg_usage (void)
4858 rtx_insn *insn;
4859 #ifdef STACK_REGS
4860 int i;
4861 #endif
4862 struct cgraph_rtl_info *node;
4863 HARD_REG_SET function_used_regs;
4865 /* ??? To be removed when all the ports have been fixed. */
4866 if (!targetm.call_fusage_contains_non_callee_clobbers)
4867 return;
4869 CLEAR_HARD_REG_SET (function_used_regs);
4871 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4873 HARD_REG_SET insn_used_regs;
4875 if (!NONDEBUG_INSN_P (insn))
4876 continue;
4878 if (CALL_P (insn)
4879 && !self_recursive_call_p (insn))
4881 if (!get_call_reg_set_usage (insn, &insn_used_regs,
4882 call_used_reg_set))
4883 return;
4885 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4888 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4889 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4892 /* Be conservative - mark fixed and global registers as used. */
4893 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4895 #ifdef STACK_REGS
4896 /* Handle STACK_REGS conservatively, since the df-framework does not
4897 provide accurate information for them. */
4899 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4900 SET_HARD_REG_BIT (function_used_regs, i);
4901 #endif
4903 /* The information we have gathered is only interesting if it exposes a
4904 register from the call_used_regs that is not used in this function. */
4905 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4906 return;
4908 node = cgraph_node::rtl_info (current_function_decl);
4909 gcc_assert (node != NULL);
4911 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4912 node->function_used_regs_valid = 1;
4915 /* Get the declaration of the function called by INSN. */
4917 static tree
4918 get_call_fndecl (rtx_insn *insn)
4920 rtx note, datum;
4922 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4923 if (note == NULL_RTX)
4924 return NULL_TREE;
4926 datum = XEXP (note, 0);
4927 if (datum != NULL_RTX)
4928 return SYMBOL_REF_DECL (datum);
4930 return NULL_TREE;
4933 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4934 call targets that can be overwritten. */
4936 static struct cgraph_rtl_info *
4937 get_call_cgraph_rtl_info (rtx_insn *insn)
4939 tree fndecl;
4941 if (insn == NULL_RTX)
4942 return NULL;
4944 fndecl = get_call_fndecl (insn);
4945 if (fndecl == NULL_TREE
4946 || !decl_binds_to_current_def_p (fndecl))
4947 return NULL;
4949 return cgraph_node::rtl_info (fndecl);
4952 /* Find hard registers used by function call instruction INSN, and return them
4953 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4955 bool
4956 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
4957 HARD_REG_SET default_set)
4959 if (flag_ipa_ra)
4961 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
4962 if (node != NULL
4963 && node->function_used_regs_valid)
4965 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
4966 AND_HARD_REG_SET (*reg_set, default_set);
4967 return true;
4971 COPY_HARD_REG_SET (*reg_set, default_set);
4972 return false;