1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
32 #include "coretypes.h"
37 #include "tree-pass.h"
40 #include "diagnostic.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
47 #include "toplev.h" /* get_random_seed */
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
58 #include "langhooks-def.h"
59 #include "tree-diagnostic.h"
62 #include "print-tree.h"
63 #include "ipa-utils.h"
65 #include "stringpool.h"
69 #include "tree-vector-builder.h"
71 /* Tree code classes. */
73 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
74 #define END_OF_BASE_TREE_CODES tcc_exceptional,
76 const enum tree_code_class tree_code_type
[] = {
77 #include "all-tree.def"
81 #undef END_OF_BASE_TREE_CODES
83 /* Table indexed by tree code giving number of expression
84 operands beyond the fixed part of the node structure.
85 Not used for types or decls. */
87 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
88 #define END_OF_BASE_TREE_CODES 0,
90 const unsigned char tree_code_length
[] = {
91 #include "all-tree.def"
95 #undef END_OF_BASE_TREE_CODES
97 /* Names of tree components.
98 Used for printing out the tree and error messages. */
99 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
100 #define END_OF_BASE_TREE_CODES "@dummy",
102 static const char *const tree_code_name
[] = {
103 #include "all-tree.def"
107 #undef END_OF_BASE_TREE_CODES
109 /* Each tree code class has an associated string representation.
110 These must correspond to the tree_code_class entries. */
112 const char *const tree_code_class_strings
[] =
127 /* obstack.[ch] explicitly declined to prototype this. */
128 extern int _obstack_allocated_p (struct obstack
*h
, void *obj
);
130 /* Statistics-gathering stuff. */
132 static uint64_t tree_code_counts
[MAX_TREE_CODES
];
133 uint64_t tree_node_counts
[(int) all_kinds
];
134 uint64_t tree_node_sizes
[(int) all_kinds
];
136 /* Keep in sync with tree.h:enum tree_node_kind. */
137 static const char * const tree_node_kind_names
[] = {
156 /* Unique id for next decl created. */
157 static GTY(()) int next_decl_uid
;
158 /* Unique id for next type created. */
159 static GTY(()) unsigned next_type_uid
= 1;
160 /* Unique id for next debug decl created. Use negative numbers,
161 to catch erroneous uses. */
162 static GTY(()) int next_debug_decl_uid
;
164 /* Since we cannot rehash a type after it is in the table, we have to
165 keep the hash code. */
167 struct GTY((for_user
)) type_hash
{
172 /* Initial size of the hash table (rounded to next prime). */
173 #define TYPE_HASH_INITIAL_SIZE 1000
175 struct type_cache_hasher
: ggc_cache_ptr_hash
<type_hash
>
177 static hashval_t
hash (type_hash
*t
) { return t
->hash
; }
178 static bool equal (type_hash
*a
, type_hash
*b
);
181 keep_cache_entry (type_hash
*&t
)
183 return ggc_marked_p (t
->type
);
187 /* Now here is the hash table. When recording a type, it is added to
188 the slot whose index is the hash code. Note that the hash table is
189 used for several kinds of types (function types, array types and
190 array index range types, for now). While all these live in the
191 same table, they are completely independent, and the hash code is
192 computed differently for each of these. */
194 static GTY ((cache
)) hash_table
<type_cache_hasher
> *type_hash_table
;
196 /* Hash table and temporary node for larger integer const values. */
197 static GTY (()) tree int_cst_node
;
199 struct int_cst_hasher
: ggc_cache_ptr_hash
<tree_node
>
201 static hashval_t
hash (tree t
);
202 static bool equal (tree x
, tree y
);
205 static GTY ((cache
)) hash_table
<int_cst_hasher
> *int_cst_hash_table
;
207 /* Class and variable for making sure that there is a single POLY_INT_CST
208 for a given value. */
209 struct poly_int_cst_hasher
: ggc_cache_ptr_hash
<tree_node
>
211 typedef std::pair
<tree
, const poly_wide_int
*> compare_type
;
212 static hashval_t
hash (tree t
);
213 static bool equal (tree x
, const compare_type
&y
);
216 static GTY ((cache
)) hash_table
<poly_int_cst_hasher
> *poly_int_cst_hash_table
;
218 /* Hash table for optimization flags and target option flags. Use the same
219 hash table for both sets of options. Nodes for building the current
220 optimization and target option nodes. The assumption is most of the time
221 the options created will already be in the hash table, so we avoid
222 allocating and freeing up a node repeatably. */
223 static GTY (()) tree cl_optimization_node
;
224 static GTY (()) tree cl_target_option_node
;
226 struct cl_option_hasher
: ggc_cache_ptr_hash
<tree_node
>
228 static hashval_t
hash (tree t
);
229 static bool equal (tree x
, tree y
);
232 static GTY ((cache
)) hash_table
<cl_option_hasher
> *cl_option_hash_table
;
234 /* General tree->tree mapping structure for use in hash tables. */
238 hash_table
<tree_decl_map_cache_hasher
> *debug_expr_for_decl
;
241 hash_table
<tree_decl_map_cache_hasher
> *value_expr_for_decl
;
243 struct tree_vec_map_cache_hasher
: ggc_cache_ptr_hash
<tree_vec_map
>
245 static hashval_t
hash (tree_vec_map
*m
) { return DECL_UID (m
->base
.from
); }
248 equal (tree_vec_map
*a
, tree_vec_map
*b
)
250 return a
->base
.from
== b
->base
.from
;
254 keep_cache_entry (tree_vec_map
*&m
)
256 return ggc_marked_p (m
->base
.from
);
261 hash_table
<tree_vec_map_cache_hasher
> *debug_args_for_decl
;
263 static void set_type_quals (tree
, int);
264 static void print_type_hash_statistics (void);
265 static void print_debug_expr_statistics (void);
266 static void print_value_expr_statistics (void);
268 tree global_trees
[TI_MAX
];
269 tree integer_types
[itk_none
];
271 bool int_n_enabled_p
[NUM_INT_N_ENTS
];
272 struct int_n_trees_t int_n_trees
[NUM_INT_N_ENTS
];
274 bool tree_contains_struct
[MAX_TREE_CODES
][64];
276 /* Number of operands for each OpenMP clause. */
277 unsigned const char omp_clause_num_ops
[] =
279 0, /* OMP_CLAUSE_ERROR */
280 1, /* OMP_CLAUSE_PRIVATE */
281 1, /* OMP_CLAUSE_SHARED */
282 1, /* OMP_CLAUSE_FIRSTPRIVATE */
283 2, /* OMP_CLAUSE_LASTPRIVATE */
284 5, /* OMP_CLAUSE_REDUCTION */
285 1, /* OMP_CLAUSE_COPYIN */
286 1, /* OMP_CLAUSE_COPYPRIVATE */
287 3, /* OMP_CLAUSE_LINEAR */
288 2, /* OMP_CLAUSE_ALIGNED */
289 1, /* OMP_CLAUSE_DEPEND */
290 1, /* OMP_CLAUSE_UNIFORM */
291 1, /* OMP_CLAUSE_TO_DECLARE */
292 1, /* OMP_CLAUSE_LINK */
293 2, /* OMP_CLAUSE_FROM */
294 2, /* OMP_CLAUSE_TO */
295 2, /* OMP_CLAUSE_MAP */
296 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
297 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
298 2, /* OMP_CLAUSE__CACHE_ */
299 2, /* OMP_CLAUSE_GANG */
300 1, /* OMP_CLAUSE_ASYNC */
301 1, /* OMP_CLAUSE_WAIT */
302 0, /* OMP_CLAUSE_AUTO */
303 0, /* OMP_CLAUSE_SEQ */
304 1, /* OMP_CLAUSE__LOOPTEMP_ */
305 1, /* OMP_CLAUSE_IF */
306 1, /* OMP_CLAUSE_NUM_THREADS */
307 1, /* OMP_CLAUSE_SCHEDULE */
308 0, /* OMP_CLAUSE_NOWAIT */
309 1, /* OMP_CLAUSE_ORDERED */
310 0, /* OMP_CLAUSE_DEFAULT */
311 3, /* OMP_CLAUSE_COLLAPSE */
312 0, /* OMP_CLAUSE_UNTIED */
313 1, /* OMP_CLAUSE_FINAL */
314 0, /* OMP_CLAUSE_MERGEABLE */
315 1, /* OMP_CLAUSE_DEVICE */
316 1, /* OMP_CLAUSE_DIST_SCHEDULE */
317 0, /* OMP_CLAUSE_INBRANCH */
318 0, /* OMP_CLAUSE_NOTINBRANCH */
319 1, /* OMP_CLAUSE_NUM_TEAMS */
320 1, /* OMP_CLAUSE_THREAD_LIMIT */
321 0, /* OMP_CLAUSE_PROC_BIND */
322 1, /* OMP_CLAUSE_SAFELEN */
323 1, /* OMP_CLAUSE_SIMDLEN */
324 0, /* OMP_CLAUSE_FOR */
325 0, /* OMP_CLAUSE_PARALLEL */
326 0, /* OMP_CLAUSE_SECTIONS */
327 0, /* OMP_CLAUSE_TASKGROUP */
328 1, /* OMP_CLAUSE_PRIORITY */
329 1, /* OMP_CLAUSE_GRAINSIZE */
330 1, /* OMP_CLAUSE_NUM_TASKS */
331 0, /* OMP_CLAUSE_NOGROUP */
332 0, /* OMP_CLAUSE_THREADS */
333 0, /* OMP_CLAUSE_SIMD */
334 1, /* OMP_CLAUSE_HINT */
335 0, /* OMP_CLAUSE_DEFALTMAP */
336 1, /* OMP_CLAUSE__SIMDUID_ */
337 0, /* OMP_CLAUSE__SIMT_ */
338 0, /* OMP_CLAUSE_INDEPENDENT */
339 1, /* OMP_CLAUSE_WORKER */
340 1, /* OMP_CLAUSE_VECTOR */
341 1, /* OMP_CLAUSE_NUM_GANGS */
342 1, /* OMP_CLAUSE_NUM_WORKERS */
343 1, /* OMP_CLAUSE_VECTOR_LENGTH */
344 3, /* OMP_CLAUSE_TILE */
345 2, /* OMP_CLAUSE__GRIDDIM_ */
348 const char * const omp_clause_code_name
[] =
420 /* Return the tree node structure used by tree code CODE. */
422 static inline enum tree_node_structure_enum
423 tree_node_structure_for_code (enum tree_code code
)
425 switch (TREE_CODE_CLASS (code
))
427 case tcc_declaration
:
432 return TS_FIELD_DECL
;
438 return TS_LABEL_DECL
;
440 return TS_RESULT_DECL
;
441 case DEBUG_EXPR_DECL
:
444 return TS_CONST_DECL
;
448 return TS_FUNCTION_DECL
;
449 case TRANSLATION_UNIT_DECL
:
450 return TS_TRANSLATION_UNIT_DECL
;
452 return TS_DECL_NON_COMMON
;
456 return TS_TYPE_NON_COMMON
;
465 default: /* tcc_constant and tcc_exceptional */
470 /* tcc_constant cases. */
471 case VOID_CST
: return TS_TYPED
;
472 case INTEGER_CST
: return TS_INT_CST
;
473 case POLY_INT_CST
: return TS_POLY_INT_CST
;
474 case REAL_CST
: return TS_REAL_CST
;
475 case FIXED_CST
: return TS_FIXED_CST
;
476 case COMPLEX_CST
: return TS_COMPLEX
;
477 case VECTOR_CST
: return TS_VECTOR
;
478 case STRING_CST
: return TS_STRING
;
479 /* tcc_exceptional cases. */
480 case ERROR_MARK
: return TS_COMMON
;
481 case IDENTIFIER_NODE
: return TS_IDENTIFIER
;
482 case TREE_LIST
: return TS_LIST
;
483 case TREE_VEC
: return TS_VEC
;
484 case SSA_NAME
: return TS_SSA_NAME
;
485 case PLACEHOLDER_EXPR
: return TS_COMMON
;
486 case STATEMENT_LIST
: return TS_STATEMENT_LIST
;
487 case BLOCK
: return TS_BLOCK
;
488 case CONSTRUCTOR
: return TS_CONSTRUCTOR
;
489 case TREE_BINFO
: return TS_BINFO
;
490 case OMP_CLAUSE
: return TS_OMP_CLAUSE
;
491 case OPTIMIZATION_NODE
: return TS_OPTIMIZATION
;
492 case TARGET_OPTION_NODE
: return TS_TARGET_OPTION
;
500 /* Initialize tree_contains_struct to describe the hierarchy of tree
504 initialize_tree_contains_struct (void)
508 for (i
= ERROR_MARK
; i
< LAST_AND_UNUSED_TREE_CODE
; i
++)
511 enum tree_node_structure_enum ts_code
;
513 code
= (enum tree_code
) i
;
514 ts_code
= tree_node_structure_for_code (code
);
516 /* Mark the TS structure itself. */
517 tree_contains_struct
[code
][ts_code
] = 1;
519 /* Mark all the structures that TS is derived from. */
524 case TS_OPTIMIZATION
:
525 case TS_TARGET_OPTION
:
531 case TS_POLY_INT_CST
:
540 case TS_STATEMENT_LIST
:
541 MARK_TS_TYPED (code
);
545 case TS_DECL_MINIMAL
:
551 MARK_TS_COMMON (code
);
554 case TS_TYPE_WITH_LANG_SPECIFIC
:
555 MARK_TS_TYPE_COMMON (code
);
558 case TS_TYPE_NON_COMMON
:
559 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code
);
563 MARK_TS_DECL_MINIMAL (code
);
568 MARK_TS_DECL_COMMON (code
);
571 case TS_DECL_NON_COMMON
:
572 MARK_TS_DECL_WITH_VIS (code
);
575 case TS_DECL_WITH_VIS
:
579 MARK_TS_DECL_WRTL (code
);
583 MARK_TS_DECL_COMMON (code
);
587 MARK_TS_DECL_WITH_VIS (code
);
591 case TS_FUNCTION_DECL
:
592 MARK_TS_DECL_NON_COMMON (code
);
595 case TS_TRANSLATION_UNIT_DECL
:
596 MARK_TS_DECL_COMMON (code
);
604 /* Basic consistency checks for attributes used in fold. */
605 gcc_assert (tree_contains_struct
[FUNCTION_DECL
][TS_DECL_NON_COMMON
]);
606 gcc_assert (tree_contains_struct
[TYPE_DECL
][TS_DECL_NON_COMMON
]);
607 gcc_assert (tree_contains_struct
[CONST_DECL
][TS_DECL_COMMON
]);
608 gcc_assert (tree_contains_struct
[VAR_DECL
][TS_DECL_COMMON
]);
609 gcc_assert (tree_contains_struct
[PARM_DECL
][TS_DECL_COMMON
]);
610 gcc_assert (tree_contains_struct
[RESULT_DECL
][TS_DECL_COMMON
]);
611 gcc_assert (tree_contains_struct
[FUNCTION_DECL
][TS_DECL_COMMON
]);
612 gcc_assert (tree_contains_struct
[TYPE_DECL
][TS_DECL_COMMON
]);
613 gcc_assert (tree_contains_struct
[TRANSLATION_UNIT_DECL
][TS_DECL_COMMON
]);
614 gcc_assert (tree_contains_struct
[LABEL_DECL
][TS_DECL_COMMON
]);
615 gcc_assert (tree_contains_struct
[FIELD_DECL
][TS_DECL_COMMON
]);
616 gcc_assert (tree_contains_struct
[VAR_DECL
][TS_DECL_WRTL
]);
617 gcc_assert (tree_contains_struct
[PARM_DECL
][TS_DECL_WRTL
]);
618 gcc_assert (tree_contains_struct
[RESULT_DECL
][TS_DECL_WRTL
]);
619 gcc_assert (tree_contains_struct
[FUNCTION_DECL
][TS_DECL_WRTL
]);
620 gcc_assert (tree_contains_struct
[LABEL_DECL
][TS_DECL_WRTL
]);
621 gcc_assert (tree_contains_struct
[CONST_DECL
][TS_DECL_MINIMAL
]);
622 gcc_assert (tree_contains_struct
[VAR_DECL
][TS_DECL_MINIMAL
]);
623 gcc_assert (tree_contains_struct
[PARM_DECL
][TS_DECL_MINIMAL
]);
624 gcc_assert (tree_contains_struct
[RESULT_DECL
][TS_DECL_MINIMAL
]);
625 gcc_assert (tree_contains_struct
[FUNCTION_DECL
][TS_DECL_MINIMAL
]);
626 gcc_assert (tree_contains_struct
[TYPE_DECL
][TS_DECL_MINIMAL
]);
627 gcc_assert (tree_contains_struct
[TRANSLATION_UNIT_DECL
][TS_DECL_MINIMAL
]);
628 gcc_assert (tree_contains_struct
[LABEL_DECL
][TS_DECL_MINIMAL
]);
629 gcc_assert (tree_contains_struct
[FIELD_DECL
][TS_DECL_MINIMAL
]);
630 gcc_assert (tree_contains_struct
[VAR_DECL
][TS_DECL_WITH_VIS
]);
631 gcc_assert (tree_contains_struct
[FUNCTION_DECL
][TS_DECL_WITH_VIS
]);
632 gcc_assert (tree_contains_struct
[TYPE_DECL
][TS_DECL_WITH_VIS
]);
633 gcc_assert (tree_contains_struct
[VAR_DECL
][TS_VAR_DECL
]);
634 gcc_assert (tree_contains_struct
[FIELD_DECL
][TS_FIELD_DECL
]);
635 gcc_assert (tree_contains_struct
[PARM_DECL
][TS_PARM_DECL
]);
636 gcc_assert (tree_contains_struct
[LABEL_DECL
][TS_LABEL_DECL
]);
637 gcc_assert (tree_contains_struct
[RESULT_DECL
][TS_RESULT_DECL
]);
638 gcc_assert (tree_contains_struct
[CONST_DECL
][TS_CONST_DECL
]);
639 gcc_assert (tree_contains_struct
[TYPE_DECL
][TS_TYPE_DECL
]);
640 gcc_assert (tree_contains_struct
[FUNCTION_DECL
][TS_FUNCTION_DECL
]);
641 gcc_assert (tree_contains_struct
[IMPORTED_DECL
][TS_DECL_MINIMAL
]);
642 gcc_assert (tree_contains_struct
[IMPORTED_DECL
][TS_DECL_COMMON
]);
643 gcc_assert (tree_contains_struct
[NAMELIST_DECL
][TS_DECL_MINIMAL
]);
644 gcc_assert (tree_contains_struct
[NAMELIST_DECL
][TS_DECL_COMMON
]);
653 /* Initialize the hash table of types. */
655 = hash_table
<type_cache_hasher
>::create_ggc (TYPE_HASH_INITIAL_SIZE
);
658 = hash_table
<tree_decl_map_cache_hasher
>::create_ggc (512);
661 = hash_table
<tree_decl_map_cache_hasher
>::create_ggc (512);
663 int_cst_hash_table
= hash_table
<int_cst_hasher
>::create_ggc (1024);
665 poly_int_cst_hash_table
= hash_table
<poly_int_cst_hasher
>::create_ggc (64);
667 int_cst_node
= make_int_cst (1, 1);
669 cl_option_hash_table
= hash_table
<cl_option_hasher
>::create_ggc (64);
671 cl_optimization_node
= make_node (OPTIMIZATION_NODE
);
672 cl_target_option_node
= make_node (TARGET_OPTION_NODE
);
674 /* Initialize the tree_contains_struct array. */
675 initialize_tree_contains_struct ();
676 lang_hooks
.init_ts ();
680 /* The name of the object as the assembler will see it (but before any
681 translations made by ASM_OUTPUT_LABELREF). Often this is the same
682 as DECL_NAME. It is an IDENTIFIER_NODE. */
684 decl_assembler_name (tree decl
)
686 if (!DECL_ASSEMBLER_NAME_SET_P (decl
))
687 lang_hooks
.set_decl_assembler_name (decl
);
688 return DECL_ASSEMBLER_NAME_RAW (decl
);
691 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
692 (either of which may be NULL). Inform the FE, if this changes the
696 overwrite_decl_assembler_name (tree decl
, tree name
)
698 if (DECL_ASSEMBLER_NAME_RAW (decl
) != name
)
699 lang_hooks
.overwrite_decl_assembler_name (decl
, name
);
702 /* When the target supports COMDAT groups, this indicates which group the
703 DECL is associated with. This can be either an IDENTIFIER_NODE or a
704 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
706 decl_comdat_group (const_tree node
)
708 struct symtab_node
*snode
= symtab_node::get (node
);
711 return snode
->get_comdat_group ();
714 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
716 decl_comdat_group_id (const_tree node
)
718 struct symtab_node
*snode
= symtab_node::get (node
);
721 return snode
->get_comdat_group_id ();
724 /* When the target supports named section, return its name as IDENTIFIER_NODE
725 or NULL if it is in no section. */
727 decl_section_name (const_tree node
)
729 struct symtab_node
*snode
= symtab_node::get (node
);
732 return snode
->get_section ();
735 /* Set section name of NODE to VALUE (that is expected to be
738 set_decl_section_name (tree node
, const char *value
)
740 struct symtab_node
*snode
;
744 snode
= symtab_node::get (node
);
748 else if (VAR_P (node
))
749 snode
= varpool_node::get_create (node
);
751 snode
= cgraph_node::get_create (node
);
752 snode
->set_section (value
);
755 /* Return TLS model of a variable NODE. */
757 decl_tls_model (const_tree node
)
759 struct varpool_node
*snode
= varpool_node::get (node
);
761 return TLS_MODEL_NONE
;
762 return snode
->tls_model
;
765 /* Set TLS model of variable NODE to MODEL. */
767 set_decl_tls_model (tree node
, enum tls_model model
)
769 struct varpool_node
*vnode
;
771 if (model
== TLS_MODEL_NONE
)
773 vnode
= varpool_node::get (node
);
778 vnode
= varpool_node::get_create (node
);
779 vnode
->tls_model
= model
;
782 /* Compute the number of bytes occupied by a tree with code CODE.
783 This function cannot be used for nodes that have variable sizes,
784 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
786 tree_code_size (enum tree_code code
)
788 switch (TREE_CODE_CLASS (code
))
790 case tcc_declaration
: /* A decl node */
793 case FIELD_DECL
: return sizeof (tree_field_decl
);
794 case PARM_DECL
: return sizeof (tree_parm_decl
);
795 case VAR_DECL
: return sizeof (tree_var_decl
);
796 case LABEL_DECL
: return sizeof (tree_label_decl
);
797 case RESULT_DECL
: return sizeof (tree_result_decl
);
798 case CONST_DECL
: return sizeof (tree_const_decl
);
799 case TYPE_DECL
: return sizeof (tree_type_decl
);
800 case FUNCTION_DECL
: return sizeof (tree_function_decl
);
801 case DEBUG_EXPR_DECL
: return sizeof (tree_decl_with_rtl
);
802 case TRANSLATION_UNIT_DECL
: return sizeof (tree_translation_unit_decl
);
805 case NAMELIST_DECL
: return sizeof (tree_decl_non_common
);
807 gcc_checking_assert (code
>= NUM_TREE_CODES
);
808 return lang_hooks
.tree_size (code
);
811 case tcc_type
: /* a type node */
822 case FIXED_POINT_TYPE
:
828 case QUAL_UNION_TYPE
:
830 case POINTER_BOUNDS_TYPE
:
833 case LANG_TYPE
: return sizeof (tree_type_non_common
);
835 gcc_checking_assert (code
>= NUM_TREE_CODES
);
836 return lang_hooks
.tree_size (code
);
839 case tcc_reference
: /* a reference */
840 case tcc_expression
: /* an expression */
841 case tcc_statement
: /* an expression with side effects */
842 case tcc_comparison
: /* a comparison expression */
843 case tcc_unary
: /* a unary arithmetic expression */
844 case tcc_binary
: /* a binary arithmetic expression */
845 return (sizeof (struct tree_exp
)
846 + (TREE_CODE_LENGTH (code
) - 1) * sizeof (tree
));
848 case tcc_constant
: /* a constant */
851 case VOID_CST
: return sizeof (tree_typed
);
852 case INTEGER_CST
: gcc_unreachable ();
853 case POLY_INT_CST
: return sizeof (tree_poly_int_cst
);
854 case REAL_CST
: return sizeof (tree_real_cst
);
855 case FIXED_CST
: return sizeof (tree_fixed_cst
);
856 case COMPLEX_CST
: return sizeof (tree_complex
);
857 case VECTOR_CST
: gcc_unreachable ();
858 case STRING_CST
: gcc_unreachable ();
860 gcc_checking_assert (code
>= NUM_TREE_CODES
);
861 return lang_hooks
.tree_size (code
);
864 case tcc_exceptional
: /* something random, like an identifier. */
867 case IDENTIFIER_NODE
: return lang_hooks
.identifier_size
;
868 case TREE_LIST
: return sizeof (tree_list
);
871 case PLACEHOLDER_EXPR
: return sizeof (tree_common
);
873 case TREE_VEC
: gcc_unreachable ();
874 case OMP_CLAUSE
: gcc_unreachable ();
876 case SSA_NAME
: return sizeof (tree_ssa_name
);
878 case STATEMENT_LIST
: return sizeof (tree_statement_list
);
879 case BLOCK
: return sizeof (struct tree_block
);
880 case CONSTRUCTOR
: return sizeof (tree_constructor
);
881 case OPTIMIZATION_NODE
: return sizeof (tree_optimization_option
);
882 case TARGET_OPTION_NODE
: return sizeof (tree_target_option
);
885 gcc_checking_assert (code
>= NUM_TREE_CODES
);
886 return lang_hooks
.tree_size (code
);
894 /* Compute the number of bytes occupied by NODE. This routine only
895 looks at TREE_CODE, except for those nodes that have variable sizes. */
897 tree_size (const_tree node
)
899 const enum tree_code code
= TREE_CODE (node
);
903 return (sizeof (struct tree_int_cst
)
904 + (TREE_INT_CST_EXT_NUNITS (node
) - 1) * sizeof (HOST_WIDE_INT
));
907 return (offsetof (struct tree_binfo
, base_binfos
)
909 ::embedded_size (BINFO_N_BASE_BINFOS (node
)));
912 return (sizeof (struct tree_vec
)
913 + (TREE_VEC_LENGTH (node
) - 1) * sizeof (tree
));
916 return (sizeof (struct tree_vector
)
917 + (vector_cst_encoded_nelts (node
) - 1) * sizeof (tree
));
920 return TREE_STRING_LENGTH (node
) + offsetof (struct tree_string
, str
) + 1;
923 return (sizeof (struct tree_omp_clause
)
924 + (omp_clause_num_ops
[OMP_CLAUSE_CODE (node
)] - 1)
928 if (TREE_CODE_CLASS (code
) == tcc_vl_exp
)
929 return (sizeof (struct tree_exp
)
930 + (VL_EXP_OPERAND_LENGTH (node
) - 1) * sizeof (tree
));
932 return tree_code_size (code
);
936 /* Record interesting allocation statistics for a tree node with CODE
940 record_node_allocation_statistics (enum tree_code code ATTRIBUTE_UNUSED
,
941 size_t length ATTRIBUTE_UNUSED
)
943 enum tree_code_class type
= TREE_CODE_CLASS (code
);
946 if (!GATHER_STATISTICS
)
951 case tcc_declaration
: /* A decl node */
955 case tcc_type
: /* a type node */
959 case tcc_statement
: /* an expression with side effects */
963 case tcc_reference
: /* a reference */
967 case tcc_expression
: /* an expression */
968 case tcc_comparison
: /* a comparison expression */
969 case tcc_unary
: /* a unary arithmetic expression */
970 case tcc_binary
: /* a binary arithmetic expression */
974 case tcc_constant
: /* a constant */
978 case tcc_exceptional
: /* something random, like an identifier. */
981 case IDENTIFIER_NODE
:
994 kind
= ssa_name_kind
;
1006 kind
= omp_clause_kind
;
1023 tree_code_counts
[(int) code
]++;
1024 tree_node_counts
[(int) kind
]++;
1025 tree_node_sizes
[(int) kind
] += length
;
1028 /* Allocate and return a new UID from the DECL_UID namespace. */
1031 allocate_decl_uid (void)
1033 return next_decl_uid
++;
1036 /* Return a newly allocated node of code CODE. For decl and type
1037 nodes, some other fields are initialized. The rest of the node is
1038 initialized to zero. This function cannot be used for TREE_VEC,
1039 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1042 Achoo! I got a code in the node. */
1045 make_node (enum tree_code code MEM_STAT_DECL
)
1048 enum tree_code_class type
= TREE_CODE_CLASS (code
);
1049 size_t length
= tree_code_size (code
);
1051 record_node_allocation_statistics (code
, length
);
1053 t
= ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT
);
1054 TREE_SET_CODE (t
, code
);
1059 if (code
!= DEBUG_BEGIN_STMT
)
1060 TREE_SIDE_EFFECTS (t
) = 1;
1063 case tcc_declaration
:
1064 if (CODE_CONTAINS_STRUCT (code
, TS_DECL_COMMON
))
1066 if (code
== FUNCTION_DECL
)
1068 SET_DECL_ALIGN (t
, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY
));
1069 SET_DECL_MODE (t
, FUNCTION_MODE
);
1072 SET_DECL_ALIGN (t
, 1);
1074 DECL_SOURCE_LOCATION (t
) = input_location
;
1075 if (TREE_CODE (t
) == DEBUG_EXPR_DECL
)
1076 DECL_UID (t
) = --next_debug_decl_uid
;
1079 DECL_UID (t
) = allocate_decl_uid ();
1080 SET_DECL_PT_UID (t
, -1);
1082 if (TREE_CODE (t
) == LABEL_DECL
)
1083 LABEL_DECL_UID (t
) = -1;
1088 TYPE_UID (t
) = next_type_uid
++;
1089 SET_TYPE_ALIGN (t
, BITS_PER_UNIT
);
1090 TYPE_USER_ALIGN (t
) = 0;
1091 TYPE_MAIN_VARIANT (t
) = t
;
1092 TYPE_CANONICAL (t
) = t
;
1094 /* Default to no attributes for type, but let target change that. */
1095 TYPE_ATTRIBUTES (t
) = NULL_TREE
;
1096 targetm
.set_default_type_attributes (t
);
1098 /* We have not yet computed the alias set for this type. */
1099 TYPE_ALIAS_SET (t
) = -1;
1103 TREE_CONSTANT (t
) = 1;
1106 case tcc_expression
:
1112 case PREDECREMENT_EXPR
:
1113 case PREINCREMENT_EXPR
:
1114 case POSTDECREMENT_EXPR
:
1115 case POSTINCREMENT_EXPR
:
1116 /* All of these have side-effects, no matter what their
1118 TREE_SIDE_EFFECTS (t
) = 1;
1126 case tcc_exceptional
:
1129 case TARGET_OPTION_NODE
:
1130 TREE_TARGET_OPTION(t
)
1131 = ggc_cleared_alloc
<struct cl_target_option
> ();
1134 case OPTIMIZATION_NODE
:
1135 TREE_OPTIMIZATION (t
)
1136 = ggc_cleared_alloc
<struct cl_optimization
> ();
1145 /* Other classes need no special treatment. */
1152 /* Free tree node. */
1155 free_node (tree node
)
1157 enum tree_code code
= TREE_CODE (node
);
1158 if (GATHER_STATISTICS
)
1160 tree_code_counts
[(int) TREE_CODE (node
)]--;
1161 tree_node_counts
[(int) t_kind
]--;
1162 tree_node_sizes
[(int) t_kind
] -= tree_size (node
);
1164 if (CODE_CONTAINS_STRUCT (code
, TS_CONSTRUCTOR
))
1165 vec_free (CONSTRUCTOR_ELTS (node
));
1166 else if (code
== BLOCK
)
1167 vec_free (BLOCK_NONLOCALIZED_VARS (node
));
1168 else if (code
== TREE_BINFO
)
1169 vec_free (BINFO_BASE_ACCESSES (node
));
1173 /* Return a new node with the same contents as NODE except that its
1174 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1177 copy_node (tree node MEM_STAT_DECL
)
1180 enum tree_code code
= TREE_CODE (node
);
1183 gcc_assert (code
!= STATEMENT_LIST
);
1185 length
= tree_size (node
);
1186 record_node_allocation_statistics (code
, length
);
1187 t
= ggc_alloc_tree_node_stat (length PASS_MEM_STAT
);
1188 memcpy (t
, node
, length
);
1190 if (CODE_CONTAINS_STRUCT (code
, TS_COMMON
))
1192 TREE_ASM_WRITTEN (t
) = 0;
1193 TREE_VISITED (t
) = 0;
1195 if (TREE_CODE_CLASS (code
) == tcc_declaration
)
1197 if (code
== DEBUG_EXPR_DECL
)
1198 DECL_UID (t
) = --next_debug_decl_uid
;
1201 DECL_UID (t
) = allocate_decl_uid ();
1202 if (DECL_PT_UID_SET_P (node
))
1203 SET_DECL_PT_UID (t
, DECL_PT_UID (node
));
1205 if ((TREE_CODE (node
) == PARM_DECL
|| VAR_P (node
))
1206 && DECL_HAS_VALUE_EXPR_P (node
))
1208 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (node
));
1209 DECL_HAS_VALUE_EXPR_P (t
) = 1;
1211 /* DECL_DEBUG_EXPR is copied explicitely by callers. */
1214 DECL_HAS_DEBUG_EXPR_P (t
) = 0;
1215 t
->decl_with_vis
.symtab_node
= NULL
;
1217 if (VAR_P (node
) && DECL_HAS_INIT_PRIORITY_P (node
))
1219 SET_DECL_INIT_PRIORITY (t
, DECL_INIT_PRIORITY (node
));
1220 DECL_HAS_INIT_PRIORITY_P (t
) = 1;
1222 if (TREE_CODE (node
) == FUNCTION_DECL
)
1224 DECL_STRUCT_FUNCTION (t
) = NULL
;
1225 t
->decl_with_vis
.symtab_node
= NULL
;
1228 else if (TREE_CODE_CLASS (code
) == tcc_type
)
1230 TYPE_UID (t
) = next_type_uid
++;
1231 /* The following is so that the debug code for
1232 the copy is different from the original type.
1233 The two statements usually duplicate each other
1234 (because they clear fields of the same union),
1235 but the optimizer should catch that. */
1236 TYPE_SYMTAB_ADDRESS (t
) = 0;
1237 TYPE_SYMTAB_DIE (t
) = 0;
1239 /* Do not copy the values cache. */
1240 if (TYPE_CACHED_VALUES_P (t
))
1242 TYPE_CACHED_VALUES_P (t
) = 0;
1243 TYPE_CACHED_VALUES (t
) = NULL_TREE
;
1246 else if (code
== TARGET_OPTION_NODE
)
1248 TREE_TARGET_OPTION (t
) = ggc_alloc
<struct cl_target_option
>();
1249 memcpy (TREE_TARGET_OPTION (t
), TREE_TARGET_OPTION (node
),
1250 sizeof (struct cl_target_option
));
1252 else if (code
== OPTIMIZATION_NODE
)
1254 TREE_OPTIMIZATION (t
) = ggc_alloc
<struct cl_optimization
>();
1255 memcpy (TREE_OPTIMIZATION (t
), TREE_OPTIMIZATION (node
),
1256 sizeof (struct cl_optimization
));
1262 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1263 For example, this can copy a list made of TREE_LIST nodes. */
1266 copy_list (tree list
)
1274 head
= prev
= copy_node (list
);
1275 next
= TREE_CHAIN (list
);
1278 TREE_CHAIN (prev
) = copy_node (next
);
1279 prev
= TREE_CHAIN (prev
);
1280 next
= TREE_CHAIN (next
);
1286 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1287 INTEGER_CST with value CST and type TYPE. */
1290 get_int_cst_ext_nunits (tree type
, const wide_int
&cst
)
1292 gcc_checking_assert (cst
.get_precision () == TYPE_PRECISION (type
));
1293 /* We need extra HWIs if CST is an unsigned integer with its
1295 if (TYPE_UNSIGNED (type
) && wi::neg_p (cst
))
1296 return cst
.get_precision () / HOST_BITS_PER_WIDE_INT
+ 1;
1297 return cst
.get_len ();
1300 /* Return a new INTEGER_CST with value CST and type TYPE. */
1303 build_new_int_cst (tree type
, const wide_int
&cst
)
1305 unsigned int len
= cst
.get_len ();
1306 unsigned int ext_len
= get_int_cst_ext_nunits (type
, cst
);
1307 tree nt
= make_int_cst (len
, ext_len
);
1312 TREE_INT_CST_ELT (nt
, ext_len
)
1313 = zext_hwi (-1, cst
.get_precision () % HOST_BITS_PER_WIDE_INT
);
1314 for (unsigned int i
= len
; i
< ext_len
; ++i
)
1315 TREE_INT_CST_ELT (nt
, i
) = -1;
1317 else if (TYPE_UNSIGNED (type
)
1318 && cst
.get_precision () < len
* HOST_BITS_PER_WIDE_INT
)
1321 TREE_INT_CST_ELT (nt
, len
)
1322 = zext_hwi (cst
.elt (len
),
1323 cst
.get_precision () % HOST_BITS_PER_WIDE_INT
);
1326 for (unsigned int i
= 0; i
< len
; i
++)
1327 TREE_INT_CST_ELT (nt
, i
) = cst
.elt (i
);
1328 TREE_TYPE (nt
) = type
;
1332 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1335 build_new_poly_int_cst (tree type
, tree (&coeffs
)[NUM_POLY_INT_COEFFS
]
1338 size_t length
= sizeof (struct tree_poly_int_cst
);
1339 record_node_allocation_statistics (POLY_INT_CST
, length
);
1341 tree t
= ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT
);
1343 TREE_SET_CODE (t
, POLY_INT_CST
);
1344 TREE_CONSTANT (t
) = 1;
1345 TREE_TYPE (t
) = type
;
1346 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
1347 POLY_INT_CST_COEFF (t
, i
) = coeffs
[i
];
1351 /* Create a constant tree that contains CST sign-extended to TYPE. */
1354 build_int_cst (tree type
, poly_int64 cst
)
1356 /* Support legacy code. */
1358 type
= integer_type_node
;
1360 return wide_int_to_tree (type
, wi::shwi (cst
, TYPE_PRECISION (type
)));
1363 /* Create a constant tree that contains CST zero-extended to TYPE. */
1366 build_int_cstu (tree type
, poly_uint64 cst
)
1368 return wide_int_to_tree (type
, wi::uhwi (cst
, TYPE_PRECISION (type
)));
1371 /* Create a constant tree that contains CST sign-extended to TYPE. */
1374 build_int_cst_type (tree type
, poly_int64 cst
)
1377 return wide_int_to_tree (type
, wi::shwi (cst
, TYPE_PRECISION (type
)));
1380 /* Constructs tree in type TYPE from with value given by CST. Signedness
1381 of CST is assumed to be the same as the signedness of TYPE. */
1384 double_int_to_tree (tree type
, double_int cst
)
1386 return wide_int_to_tree (type
, widest_int::from (cst
, TYPE_SIGN (type
)));
1389 /* We force the wide_int CST to the range of the type TYPE by sign or
1390 zero extending it. OVERFLOWABLE indicates if we are interested in
1391 overflow of the value, when >0 we are only interested in signed
1392 overflow, for <0 we are interested in any overflow. OVERFLOWED
1393 indicates whether overflow has already occurred. CONST_OVERFLOWED
1394 indicates whether constant overflow has already occurred. We force
1395 T's value to be within range of T's type (by setting to 0 or 1 all
1396 the bits outside the type's range). We set TREE_OVERFLOWED if,
1397 OVERFLOWED is nonzero,
1398 or OVERFLOWABLE is >0 and signed overflow occurs
1399 or OVERFLOWABLE is <0 and any overflow occurs
1400 We return a new tree node for the extended wide_int. The node
1401 is shared if no overflow flags are set. */
1405 force_fit_type (tree type
, const poly_wide_int_ref
&cst
,
1406 int overflowable
, bool overflowed
)
1408 signop sign
= TYPE_SIGN (type
);
1410 /* If we need to set overflow flags, return a new unshared node. */
1411 if (overflowed
|| !wi::fits_to_tree_p (cst
, type
))
1415 || (overflowable
> 0 && sign
== SIGNED
))
1417 poly_wide_int tmp
= poly_wide_int::from (cst
, TYPE_PRECISION (type
),
1420 if (tmp
.is_constant ())
1421 t
= build_new_int_cst (type
, tmp
.coeffs
[0]);
1424 tree coeffs
[NUM_POLY_INT_COEFFS
];
1425 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
1427 coeffs
[i
] = build_new_int_cst (type
, tmp
.coeffs
[i
]);
1428 TREE_OVERFLOW (coeffs
[i
]) = 1;
1430 t
= build_new_poly_int_cst (type
, coeffs
);
1432 TREE_OVERFLOW (t
) = 1;
1437 /* Else build a shared node. */
1438 return wide_int_to_tree (type
, cst
);
1441 /* These are the hash table functions for the hash table of INTEGER_CST
1442 nodes of a sizetype. */
1444 /* Return the hash code X, an INTEGER_CST. */
1447 int_cst_hasher::hash (tree x
)
1449 const_tree
const t
= x
;
1450 hashval_t code
= TYPE_UID (TREE_TYPE (t
));
1453 for (i
= 0; i
< TREE_INT_CST_NUNITS (t
); i
++)
1454 code
= iterative_hash_host_wide_int (TREE_INT_CST_ELT(t
, i
), code
);
1459 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1460 is the same as that given by *Y, which is the same. */
1463 int_cst_hasher::equal (tree x
, tree y
)
1465 const_tree
const xt
= x
;
1466 const_tree
const yt
= y
;
1468 if (TREE_TYPE (xt
) != TREE_TYPE (yt
)
1469 || TREE_INT_CST_NUNITS (xt
) != TREE_INT_CST_NUNITS (yt
)
1470 || TREE_INT_CST_EXT_NUNITS (xt
) != TREE_INT_CST_EXT_NUNITS (yt
))
1473 for (int i
= 0; i
< TREE_INT_CST_NUNITS (xt
); i
++)
1474 if (TREE_INT_CST_ELT (xt
, i
) != TREE_INT_CST_ELT (yt
, i
))
1480 /* Create an INT_CST node of TYPE and value CST.
1481 The returned node is always shared. For small integers we use a
1482 per-type vector cache, for larger ones we use a single hash table.
1483 The value is extended from its precision according to the sign of
1484 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1485 the upper bits and ensures that hashing and value equality based
1486 upon the underlying HOST_WIDE_INTs works without masking. */
1489 wide_int_to_tree_1 (tree type
, const wide_int_ref
&pcst
)
1496 unsigned int prec
= TYPE_PRECISION (type
);
1497 signop sgn
= TYPE_SIGN (type
);
1499 /* Verify that everything is canonical. */
1500 int l
= pcst
.get_len ();
1503 if (pcst
.elt (l
- 1) == 0)
1504 gcc_checking_assert (pcst
.elt (l
- 2) < 0);
1505 if (pcst
.elt (l
- 1) == HOST_WIDE_INT_M1
)
1506 gcc_checking_assert (pcst
.elt (l
- 2) >= 0);
1509 wide_int cst
= wide_int::from (pcst
, prec
, sgn
);
1510 unsigned int ext_len
= get_int_cst_ext_nunits (type
, cst
);
1514 /* We just need to store a single HOST_WIDE_INT. */
1516 if (TYPE_UNSIGNED (type
))
1517 hwi
= cst
.to_uhwi ();
1519 hwi
= cst
.to_shwi ();
1521 switch (TREE_CODE (type
))
1524 gcc_assert (hwi
== 0);
1528 case REFERENCE_TYPE
:
1529 case POINTER_BOUNDS_TYPE
:
1530 /* Cache NULL pointer and zero bounds. */
1539 /* Cache false or true. */
1541 if (IN_RANGE (hwi
, 0, 1))
1547 if (TYPE_SIGN (type
) == UNSIGNED
)
1550 limit
= INTEGER_SHARE_LIMIT
;
1551 if (IN_RANGE (hwi
, 0, INTEGER_SHARE_LIMIT
- 1))
1556 /* Cache [-1, N). */
1557 limit
= INTEGER_SHARE_LIMIT
+ 1;
1558 if (IN_RANGE (hwi
, -1, INTEGER_SHARE_LIMIT
- 1))
1572 /* Look for it in the type's vector of small shared ints. */
1573 if (!TYPE_CACHED_VALUES_P (type
))
1575 TYPE_CACHED_VALUES_P (type
) = 1;
1576 TYPE_CACHED_VALUES (type
) = make_tree_vec (limit
);
1579 t
= TREE_VEC_ELT (TYPE_CACHED_VALUES (type
), ix
);
1581 /* Make sure no one is clobbering the shared constant. */
1582 gcc_checking_assert (TREE_TYPE (t
) == type
1583 && TREE_INT_CST_NUNITS (t
) == 1
1584 && TREE_INT_CST_OFFSET_NUNITS (t
) == 1
1585 && TREE_INT_CST_EXT_NUNITS (t
) == 1
1586 && TREE_INT_CST_ELT (t
, 0) == hwi
);
1589 /* Create a new shared int. */
1590 t
= build_new_int_cst (type
, cst
);
1591 TREE_VEC_ELT (TYPE_CACHED_VALUES (type
), ix
) = t
;
1596 /* Use the cache of larger shared ints, using int_cst_node as
1599 TREE_INT_CST_ELT (int_cst_node
, 0) = hwi
;
1600 TREE_TYPE (int_cst_node
) = type
;
1602 tree
*slot
= int_cst_hash_table
->find_slot (int_cst_node
, INSERT
);
1606 /* Insert this one into the hash table. */
1609 /* Make a new node for next time round. */
1610 int_cst_node
= make_int_cst (1, 1);
1616 /* The value either hashes properly or we drop it on the floor
1617 for the gc to take care of. There will not be enough of them
1620 tree nt
= build_new_int_cst (type
, cst
);
1621 tree
*slot
= int_cst_hash_table
->find_slot (nt
, INSERT
);
1625 /* Insert this one into the hash table. */
1637 poly_int_cst_hasher::hash (tree t
)
1639 inchash::hash hstate
;
1641 hstate
.add_int (TYPE_UID (TREE_TYPE (t
)));
1642 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
1643 hstate
.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t
, i
)));
1645 return hstate
.end ();
1649 poly_int_cst_hasher::equal (tree x
, const compare_type
&y
)
1651 if (TREE_TYPE (x
) != y
.first
)
1653 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
1654 if (wi::to_wide (POLY_INT_CST_COEFF (x
, i
)) != y
.second
->coeffs
[i
])
1659 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1660 The elements must also have type TYPE. */
1663 build_poly_int_cst (tree type
, const poly_wide_int_ref
&values
)
1665 unsigned int prec
= TYPE_PRECISION (type
);
1666 gcc_assert (prec
<= values
.coeffs
[0].get_precision ());
1667 poly_wide_int c
= poly_wide_int::from (values
, prec
, SIGNED
);
1670 h
.add_int (TYPE_UID (type
));
1671 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
1672 h
.add_wide_int (c
.coeffs
[i
]);
1673 poly_int_cst_hasher::compare_type
comp (type
, &c
);
1674 tree
*slot
= poly_int_cst_hash_table
->find_slot_with_hash (comp
, h
.end (),
1676 if (*slot
== NULL_TREE
)
1678 tree coeffs
[NUM_POLY_INT_COEFFS
];
1679 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
1680 coeffs
[i
] = wide_int_to_tree_1 (type
, c
.coeffs
[i
]);
1681 *slot
= build_new_poly_int_cst (type
, coeffs
);
1686 /* Create a constant tree with value VALUE in type TYPE. */
1689 wide_int_to_tree (tree type
, const poly_wide_int_ref
&value
)
1691 if (value
.is_constant ())
1692 return wide_int_to_tree_1 (type
, value
.coeffs
[0]);
1693 return build_poly_int_cst (type
, value
);
1697 cache_integer_cst (tree t
)
1699 tree type
= TREE_TYPE (t
);
1702 int prec
= TYPE_PRECISION (type
);
1704 gcc_assert (!TREE_OVERFLOW (t
));
1706 switch (TREE_CODE (type
))
1709 gcc_assert (integer_zerop (t
));
1713 case REFERENCE_TYPE
:
1714 /* Cache NULL pointer. */
1715 if (integer_zerop (t
))
1723 /* Cache false or true. */
1725 if (wi::ltu_p (wi::to_wide (t
), 2))
1726 ix
= TREE_INT_CST_ELT (t
, 0);
1731 if (TYPE_UNSIGNED (type
))
1734 limit
= INTEGER_SHARE_LIMIT
;
1736 /* This is a little hokie, but if the prec is smaller than
1737 what is necessary to hold INTEGER_SHARE_LIMIT, then the
1738 obvious test will not get the correct answer. */
1739 if (prec
< HOST_BITS_PER_WIDE_INT
)
1741 if (tree_to_uhwi (t
) < (unsigned HOST_WIDE_INT
) INTEGER_SHARE_LIMIT
)
1742 ix
= tree_to_uhwi (t
);
1744 else if (wi::ltu_p (wi::to_wide (t
), INTEGER_SHARE_LIMIT
))
1745 ix
= tree_to_uhwi (t
);
1750 limit
= INTEGER_SHARE_LIMIT
+ 1;
1752 if (integer_minus_onep (t
))
1754 else if (!wi::neg_p (wi::to_wide (t
)))
1756 if (prec
< HOST_BITS_PER_WIDE_INT
)
1758 if (tree_to_shwi (t
) < INTEGER_SHARE_LIMIT
)
1759 ix
= tree_to_shwi (t
) + 1;
1761 else if (wi::ltu_p (wi::to_wide (t
), INTEGER_SHARE_LIMIT
))
1762 ix
= tree_to_shwi (t
) + 1;
1776 /* Look for it in the type's vector of small shared ints. */
1777 if (!TYPE_CACHED_VALUES_P (type
))
1779 TYPE_CACHED_VALUES_P (type
) = 1;
1780 TYPE_CACHED_VALUES (type
) = make_tree_vec (limit
);
1783 gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type
), ix
) == NULL_TREE
);
1784 TREE_VEC_ELT (TYPE_CACHED_VALUES (type
), ix
) = t
;
1788 /* Use the cache of larger shared ints. */
1789 tree
*slot
= int_cst_hash_table
->find_slot (t
, INSERT
);
1790 /* If there is already an entry for the number verify it's the
1793 gcc_assert (wi::to_wide (tree (*slot
)) == wi::to_wide (t
));
1795 /* Otherwise insert this one into the hash table. */
1801 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1802 and the rest are zeros. */
1805 build_low_bits_mask (tree type
, unsigned bits
)
1807 gcc_assert (bits
<= TYPE_PRECISION (type
));
1809 return wide_int_to_tree (type
, wi::mask (bits
, false,
1810 TYPE_PRECISION (type
)));
1813 /* Checks that X is integer constant that can be expressed in (unsigned)
1814 HOST_WIDE_INT without loss of precision. */
1817 cst_and_fits_in_hwi (const_tree x
)
1819 return (TREE_CODE (x
) == INTEGER_CST
1820 && (tree_fits_shwi_p (x
) || tree_fits_uhwi_p (x
)));
1823 /* Build a newly constructed VECTOR_CST with the given values of
1824 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1827 make_vector (unsigned log2_npatterns
,
1828 unsigned int nelts_per_pattern MEM_STAT_DECL
)
1830 gcc_assert (IN_RANGE (nelts_per_pattern
, 1, 3));
1832 unsigned npatterns
= 1 << log2_npatterns
;
1833 unsigned encoded_nelts
= npatterns
* nelts_per_pattern
;
1834 unsigned length
= (sizeof (struct tree_vector
)
1835 + (encoded_nelts
- 1) * sizeof (tree
));
1837 record_node_allocation_statistics (VECTOR_CST
, length
);
1839 t
= ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT
);
1841 TREE_SET_CODE (t
, VECTOR_CST
);
1842 TREE_CONSTANT (t
) = 1;
1843 VECTOR_CST_LOG2_NPATTERNS (t
) = log2_npatterns
;
1844 VECTOR_CST_NELTS_PER_PATTERN (t
) = nelts_per_pattern
;
1849 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1850 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1853 build_vector_from_ctor (tree type
, vec
<constructor_elt
, va_gc
> *v
)
1855 unsigned HOST_WIDE_INT idx
, nelts
;
1858 /* We can't construct a VECTOR_CST for a variable number of elements. */
1859 nelts
= TYPE_VECTOR_SUBPARTS (type
).to_constant ();
1860 tree_vector_builder
vec (type
, nelts
, 1);
1861 FOR_EACH_CONSTRUCTOR_VALUE (v
, idx
, value
)
1863 if (TREE_CODE (value
) == VECTOR_CST
)
1865 /* If NELTS is constant then this must be too. */
1866 unsigned int sub_nelts
= VECTOR_CST_NELTS (value
).to_constant ();
1867 for (unsigned i
= 0; i
< sub_nelts
; ++i
)
1868 vec
.quick_push (VECTOR_CST_ELT (value
, i
));
1871 vec
.quick_push (value
);
1873 while (vec
.length () < nelts
)
1874 vec
.quick_push (build_zero_cst (TREE_TYPE (type
)));
1876 return vec
.build ();
1879 /* Build a vector of type VECTYPE where all the elements are SCs. */
1881 build_vector_from_val (tree vectype
, tree sc
)
1883 unsigned HOST_WIDE_INT i
, nunits
;
1885 if (sc
== error_mark_node
)
1888 /* Verify that the vector type is suitable for SC. Note that there
1889 is some inconsistency in the type-system with respect to restrict
1890 qualifications of pointers. Vector types always have a main-variant
1891 element type and the qualification is applied to the vector-type.
1892 So TREE_TYPE (vector-type) does not return a properly qualified
1893 vector element-type. */
1894 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc
)),
1895 TREE_TYPE (vectype
)));
1897 if (CONSTANT_CLASS_P (sc
))
1899 tree_vector_builder
v (vectype
, 1, 1);
1903 else if (!TYPE_VECTOR_SUBPARTS (vectype
).is_constant (&nunits
))
1904 return fold_build1 (VEC_DUPLICATE_EXPR
, vectype
, sc
);
1907 vec
<constructor_elt
, va_gc
> *v
;
1908 vec_alloc (v
, nunits
);
1909 for (i
= 0; i
< nunits
; ++i
)
1910 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, sc
);
1911 return build_constructor (vectype
, v
);
1915 /* Build a vector series of type TYPE in which element I has the value
1916 BASE + I * STEP. The result is a constant if BASE and STEP are constant
1917 and a VEC_SERIES_EXPR otherwise. */
1920 build_vec_series (tree type
, tree base
, tree step
)
1922 if (integer_zerop (step
))
1923 return build_vector_from_val (type
, base
);
1924 if (TREE_CODE (base
) == INTEGER_CST
&& TREE_CODE (step
) == INTEGER_CST
)
1926 tree_vector_builder
builder (type
, 1, 3);
1927 tree elt1
= wide_int_to_tree (TREE_TYPE (base
),
1928 wi::to_wide (base
) + wi::to_wide (step
));
1929 tree elt2
= wide_int_to_tree (TREE_TYPE (base
),
1930 wi::to_wide (elt1
) + wi::to_wide (step
));
1931 builder
.quick_push (base
);
1932 builder
.quick_push (elt1
);
1933 builder
.quick_push (elt2
);
1934 return builder
.build ();
1936 return build2 (VEC_SERIES_EXPR
, type
, base
, step
);
1939 /* Return a vector with the same number of units and number of bits
1940 as VEC_TYPE, but in which the elements are a linear series of unsigned
1941 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
1944 build_index_vector (tree vec_type
, poly_uint64 base
, poly_uint64 step
)
1946 tree index_vec_type
= vec_type
;
1947 tree index_elt_type
= TREE_TYPE (vec_type
);
1948 poly_uint64 nunits
= TYPE_VECTOR_SUBPARTS (vec_type
);
1949 if (!INTEGRAL_TYPE_P (index_elt_type
) || !TYPE_UNSIGNED (index_elt_type
))
1951 index_elt_type
= build_nonstandard_integer_type
1952 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type
)), true);
1953 index_vec_type
= build_vector_type (index_elt_type
, nunits
);
1956 tree_vector_builder
v (index_vec_type
, 1, 3);
1957 for (unsigned int i
= 0; i
< 3; ++i
)
1958 v
.quick_push (build_int_cstu (index_elt_type
, base
+ i
* step
));
1962 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
1963 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
1966 recompute_constructor_flags (tree c
)
1970 bool constant_p
= true;
1971 bool side_effects_p
= false;
1972 vec
<constructor_elt
, va_gc
> *vals
= CONSTRUCTOR_ELTS (c
);
1974 FOR_EACH_CONSTRUCTOR_VALUE (vals
, i
, val
)
1976 /* Mostly ctors will have elts that don't have side-effects, so
1977 the usual case is to scan all the elements. Hence a single
1978 loop for both const and side effects, rather than one loop
1979 each (with early outs). */
1980 if (!TREE_CONSTANT (val
))
1982 if (TREE_SIDE_EFFECTS (val
))
1983 side_effects_p
= true;
1986 TREE_SIDE_EFFECTS (c
) = side_effects_p
;
1987 TREE_CONSTANT (c
) = constant_p
;
1990 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
1994 verify_constructor_flags (tree c
)
1998 bool constant_p
= TREE_CONSTANT (c
);
1999 bool side_effects_p
= TREE_SIDE_EFFECTS (c
);
2000 vec
<constructor_elt
, va_gc
> *vals
= CONSTRUCTOR_ELTS (c
);
2002 FOR_EACH_CONSTRUCTOR_VALUE (vals
, i
, val
)
2004 if (constant_p
&& !TREE_CONSTANT (val
))
2005 internal_error ("non-constant element in constant CONSTRUCTOR");
2006 if (!side_effects_p
&& TREE_SIDE_EFFECTS (val
))
2007 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
2011 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2012 are in the vec pointed to by VALS. */
2014 build_constructor (tree type
, vec
<constructor_elt
, va_gc
> *vals
)
2016 tree c
= make_node (CONSTRUCTOR
);
2018 TREE_TYPE (c
) = type
;
2019 CONSTRUCTOR_ELTS (c
) = vals
;
2021 recompute_constructor_flags (c
);
2026 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2029 build_constructor_single (tree type
, tree index
, tree value
)
2031 vec
<constructor_elt
, va_gc
> *v
;
2032 constructor_elt elt
= {index
, value
};
2035 v
->quick_push (elt
);
2037 return build_constructor (type
, v
);
2041 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2042 are in a list pointed to by VALS. */
2044 build_constructor_from_list (tree type
, tree vals
)
2047 vec
<constructor_elt
, va_gc
> *v
= NULL
;
2051 vec_alloc (v
, list_length (vals
));
2052 for (t
= vals
; t
; t
= TREE_CHAIN (t
))
2053 CONSTRUCTOR_APPEND_ELT (v
, TREE_PURPOSE (t
), TREE_VALUE (t
));
2056 return build_constructor (type
, v
);
2059 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2060 of elements, provided as index/value pairs. */
2063 build_constructor_va (tree type
, int nelts
, ...)
2065 vec
<constructor_elt
, va_gc
> *v
= NULL
;
2068 va_start (p
, nelts
);
2069 vec_alloc (v
, nelts
);
2072 tree index
= va_arg (p
, tree
);
2073 tree value
= va_arg (p
, tree
);
2074 CONSTRUCTOR_APPEND_ELT (v
, index
, value
);
2077 return build_constructor (type
, v
);
2080 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2083 build_fixed (tree type
, FIXED_VALUE_TYPE f
)
2086 FIXED_VALUE_TYPE
*fp
;
2088 v
= make_node (FIXED_CST
);
2089 fp
= ggc_alloc
<fixed_value
> ();
2090 memcpy (fp
, &f
, sizeof (FIXED_VALUE_TYPE
));
2092 TREE_TYPE (v
) = type
;
2093 TREE_FIXED_CST_PTR (v
) = fp
;
2097 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2100 build_real (tree type
, REAL_VALUE_TYPE d
)
2103 REAL_VALUE_TYPE
*dp
;
2106 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2107 Consider doing it via real_convert now. */
2109 v
= make_node (REAL_CST
);
2110 dp
= ggc_alloc
<real_value
> ();
2111 memcpy (dp
, &d
, sizeof (REAL_VALUE_TYPE
));
2113 TREE_TYPE (v
) = type
;
2114 TREE_REAL_CST_PTR (v
) = dp
;
2115 TREE_OVERFLOW (v
) = overflow
;
2119 /* Like build_real, but first truncate D to the type. */
2122 build_real_truncate (tree type
, REAL_VALUE_TYPE d
)
2124 return build_real (type
, real_value_truncate (TYPE_MODE (type
), d
));
2127 /* Return a new REAL_CST node whose type is TYPE
2128 and whose value is the integer value of the INTEGER_CST node I. */
2131 real_value_from_int_cst (const_tree type
, const_tree i
)
2135 /* Clear all bits of the real value type so that we can later do
2136 bitwise comparisons to see if two values are the same. */
2137 memset (&d
, 0, sizeof d
);
2139 real_from_integer (&d
, type
? TYPE_MODE (type
) : VOIDmode
, wi::to_wide (i
),
2140 TYPE_SIGN (TREE_TYPE (i
)));
2144 /* Given a tree representing an integer constant I, return a tree
2145 representing the same value as a floating-point constant of type TYPE. */
2148 build_real_from_int_cst (tree type
, const_tree i
)
2151 int overflow
= TREE_OVERFLOW (i
);
2153 v
= build_real (type
, real_value_from_int_cst (type
, i
));
2155 TREE_OVERFLOW (v
) |= overflow
;
2159 /* Return a newly constructed STRING_CST node whose value is
2160 the LEN characters at STR.
2161 Note that for a C string literal, LEN should include the trailing NUL.
2162 The TREE_TYPE is not initialized. */
2165 build_string (int len
, const char *str
)
2170 /* Do not waste bytes provided by padding of struct tree_string. */
2171 length
= len
+ offsetof (struct tree_string
, str
) + 1;
2173 record_node_allocation_statistics (STRING_CST
, length
);
2175 s
= (tree
) ggc_internal_alloc (length
);
2177 memset (s
, 0, sizeof (struct tree_typed
));
2178 TREE_SET_CODE (s
, STRING_CST
);
2179 TREE_CONSTANT (s
) = 1;
2180 TREE_STRING_LENGTH (s
) = len
;
2181 memcpy (s
->string
.str
, str
, len
);
2182 s
->string
.str
[len
] = '\0';
2187 /* Return a newly constructed COMPLEX_CST node whose value is
2188 specified by the real and imaginary parts REAL and IMAG.
2189 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2190 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2193 build_complex (tree type
, tree real
, tree imag
)
2195 tree t
= make_node (COMPLEX_CST
);
2197 TREE_REALPART (t
) = real
;
2198 TREE_IMAGPART (t
) = imag
;
2199 TREE_TYPE (t
) = type
? type
: build_complex_type (TREE_TYPE (real
));
2200 TREE_OVERFLOW (t
) = TREE_OVERFLOW (real
) | TREE_OVERFLOW (imag
);
2204 /* Build a complex (inf +- 0i), such as for the result of cproj.
2205 TYPE is the complex tree type of the result. If NEG is true, the
2206 imaginary zero is negative. */
2209 build_complex_inf (tree type
, bool neg
)
2211 REAL_VALUE_TYPE rinf
, rzero
= dconst0
;
2215 return build_complex (type
, build_real (TREE_TYPE (type
), rinf
),
2216 build_real (TREE_TYPE (type
), rzero
));
2219 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2220 element is set to 1. In particular, this is 1 + i for complex types. */
2223 build_each_one_cst (tree type
)
2225 if (TREE_CODE (type
) == COMPLEX_TYPE
)
2227 tree scalar
= build_one_cst (TREE_TYPE (type
));
2228 return build_complex (type
, scalar
, scalar
);
2231 return build_one_cst (type
);
2234 /* Return a constant of arithmetic type TYPE which is the
2235 multiplicative identity of the set TYPE. */
2238 build_one_cst (tree type
)
2240 switch (TREE_CODE (type
))
2242 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2243 case POINTER_TYPE
: case REFERENCE_TYPE
:
2245 return build_int_cst (type
, 1);
2248 return build_real (type
, dconst1
);
2250 case FIXED_POINT_TYPE
:
2251 /* We can only generate 1 for accum types. */
2252 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type
)));
2253 return build_fixed (type
, FCONST1 (TYPE_MODE (type
)));
2257 tree scalar
= build_one_cst (TREE_TYPE (type
));
2259 return build_vector_from_val (type
, scalar
);
2263 return build_complex (type
,
2264 build_one_cst (TREE_TYPE (type
)),
2265 build_zero_cst (TREE_TYPE (type
)));
2272 /* Return an integer of type TYPE containing all 1's in as much precision as
2273 it contains, or a complex or vector whose subparts are such integers. */
2276 build_all_ones_cst (tree type
)
2278 if (TREE_CODE (type
) == COMPLEX_TYPE
)
2280 tree scalar
= build_all_ones_cst (TREE_TYPE (type
));
2281 return build_complex (type
, scalar
, scalar
);
2284 return build_minus_one_cst (type
);
2287 /* Return a constant of arithmetic type TYPE which is the
2288 opposite of the multiplicative identity of the set TYPE. */
2291 build_minus_one_cst (tree type
)
2293 switch (TREE_CODE (type
))
2295 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2296 case POINTER_TYPE
: case REFERENCE_TYPE
:
2298 return build_int_cst (type
, -1);
2301 return build_real (type
, dconstm1
);
2303 case FIXED_POINT_TYPE
:
2304 /* We can only generate 1 for accum types. */
2305 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type
)));
2306 return build_fixed (type
,
2307 fixed_from_double_int (double_int_minus_one
,
2308 SCALAR_TYPE_MODE (type
)));
2312 tree scalar
= build_minus_one_cst (TREE_TYPE (type
));
2314 return build_vector_from_val (type
, scalar
);
2318 return build_complex (type
,
2319 build_minus_one_cst (TREE_TYPE (type
)),
2320 build_zero_cst (TREE_TYPE (type
)));
2327 /* Build 0 constant of type TYPE. This is used by constructor folding
2328 and thus the constant should be represented in memory by
2332 build_zero_cst (tree type
)
2334 switch (TREE_CODE (type
))
2336 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2337 case POINTER_TYPE
: case REFERENCE_TYPE
:
2338 case OFFSET_TYPE
: case NULLPTR_TYPE
:
2339 return build_int_cst (type
, 0);
2342 return build_real (type
, dconst0
);
2344 case FIXED_POINT_TYPE
:
2345 return build_fixed (type
, FCONST0 (TYPE_MODE (type
)));
2349 tree scalar
= build_zero_cst (TREE_TYPE (type
));
2351 return build_vector_from_val (type
, scalar
);
2356 tree zero
= build_zero_cst (TREE_TYPE (type
));
2358 return build_complex (type
, zero
, zero
);
2362 if (!AGGREGATE_TYPE_P (type
))
2363 return fold_convert (type
, integer_zero_node
);
2364 return build_constructor (type
, NULL
);
2369 /* Build a BINFO with LEN language slots. */
2372 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL
)
2375 size_t length
= (offsetof (struct tree_binfo
, base_binfos
)
2376 + vec
<tree
, va_gc
>::embedded_size (base_binfos
));
2378 record_node_allocation_statistics (TREE_BINFO
, length
);
2380 t
= ggc_alloc_tree_node_stat (length PASS_MEM_STAT
);
2382 memset (t
, 0, offsetof (struct tree_binfo
, base_binfos
));
2384 TREE_SET_CODE (t
, TREE_BINFO
);
2386 BINFO_BASE_BINFOS (t
)->embedded_init (base_binfos
);
2391 /* Create a CASE_LABEL_EXPR tree node and return it. */
2394 build_case_label (tree low_value
, tree high_value
, tree label_decl
)
2396 tree t
= make_node (CASE_LABEL_EXPR
);
2398 TREE_TYPE (t
) = void_type_node
;
2399 SET_EXPR_LOCATION (t
, DECL_SOURCE_LOCATION (label_decl
));
2401 CASE_LOW (t
) = low_value
;
2402 CASE_HIGH (t
) = high_value
;
2403 CASE_LABEL (t
) = label_decl
;
2404 CASE_CHAIN (t
) = NULL_TREE
;
2409 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2410 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2411 The latter determines the length of the HOST_WIDE_INT vector. */
2414 make_int_cst (int len
, int ext_len MEM_STAT_DECL
)
2417 int length
= ((ext_len
- 1) * sizeof (HOST_WIDE_INT
)
2418 + sizeof (struct tree_int_cst
));
2421 record_node_allocation_statistics (INTEGER_CST
, length
);
2423 t
= ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT
);
2425 TREE_SET_CODE (t
, INTEGER_CST
);
2426 TREE_INT_CST_NUNITS (t
) = len
;
2427 TREE_INT_CST_EXT_NUNITS (t
) = ext_len
;
2428 /* to_offset can only be applied to trees that are offset_int-sized
2429 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2430 must be exactly the precision of offset_int and so LEN is correct. */
2431 if (ext_len
<= OFFSET_INT_ELTS
)
2432 TREE_INT_CST_OFFSET_NUNITS (t
) = ext_len
;
2434 TREE_INT_CST_OFFSET_NUNITS (t
) = len
;
2436 TREE_CONSTANT (t
) = 1;
2441 /* Build a newly constructed TREE_VEC node of length LEN. */
2444 make_tree_vec (int len MEM_STAT_DECL
)
2447 size_t length
= (len
- 1) * sizeof (tree
) + sizeof (struct tree_vec
);
2449 record_node_allocation_statistics (TREE_VEC
, length
);
2451 t
= ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT
);
2453 TREE_SET_CODE (t
, TREE_VEC
);
2454 TREE_VEC_LENGTH (t
) = len
;
2459 /* Grow a TREE_VEC node to new length LEN. */
2462 grow_tree_vec (tree v
, int len MEM_STAT_DECL
)
2464 gcc_assert (TREE_CODE (v
) == TREE_VEC
);
2466 int oldlen
= TREE_VEC_LENGTH (v
);
2467 gcc_assert (len
> oldlen
);
2469 size_t oldlength
= (oldlen
- 1) * sizeof (tree
) + sizeof (struct tree_vec
);
2470 size_t length
= (len
- 1) * sizeof (tree
) + sizeof (struct tree_vec
);
2472 record_node_allocation_statistics (TREE_VEC
, length
- oldlength
);
2474 v
= (tree
) ggc_realloc (v
, length PASS_MEM_STAT
);
2476 TREE_VEC_LENGTH (v
) = len
;
2481 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2482 fixed, and scalar, complex or vector. */
2485 zerop (const_tree expr
)
2487 return (integer_zerop (expr
)
2488 || real_zerop (expr
)
2489 || fixed_zerop (expr
));
2492 /* Return 1 if EXPR is the integer constant zero or a complex constant
2496 integer_zerop (const_tree expr
)
2498 switch (TREE_CODE (expr
))
2501 return wi::to_wide (expr
) == 0;
2503 return (integer_zerop (TREE_REALPART (expr
))
2504 && integer_zerop (TREE_IMAGPART (expr
)));
2506 return (VECTOR_CST_NPATTERNS (expr
) == 1
2507 && VECTOR_CST_DUPLICATE_P (expr
)
2508 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr
, 0)));
2514 /* Return 1 if EXPR is the integer constant one or the corresponding
2515 complex constant. */
2518 integer_onep (const_tree expr
)
2520 switch (TREE_CODE (expr
))
2523 return wi::eq_p (wi::to_widest (expr
), 1);
2525 return (integer_onep (TREE_REALPART (expr
))
2526 && integer_zerop (TREE_IMAGPART (expr
)));
2528 return (VECTOR_CST_NPATTERNS (expr
) == 1
2529 && VECTOR_CST_DUPLICATE_P (expr
)
2530 && integer_onep (VECTOR_CST_ENCODED_ELT (expr
, 0)));
2536 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2537 return 1 if every piece is the integer constant one. */
2540 integer_each_onep (const_tree expr
)
2542 if (TREE_CODE (expr
) == COMPLEX_CST
)
2543 return (integer_onep (TREE_REALPART (expr
))
2544 && integer_onep (TREE_IMAGPART (expr
)));
2546 return integer_onep (expr
);
2549 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2550 it contains, or a complex or vector whose subparts are such integers. */
2553 integer_all_onesp (const_tree expr
)
2555 if (TREE_CODE (expr
) == COMPLEX_CST
2556 && integer_all_onesp (TREE_REALPART (expr
))
2557 && integer_all_onesp (TREE_IMAGPART (expr
)))
2560 else if (TREE_CODE (expr
) == VECTOR_CST
)
2561 return (VECTOR_CST_NPATTERNS (expr
) == 1
2562 && VECTOR_CST_DUPLICATE_P (expr
)
2563 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr
, 0)));
2565 else if (TREE_CODE (expr
) != INTEGER_CST
)
2568 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr
)), UNSIGNED
)
2569 == wi::to_wide (expr
));
2572 /* Return 1 if EXPR is the integer constant minus one. */
2575 integer_minus_onep (const_tree expr
)
2577 if (TREE_CODE (expr
) == COMPLEX_CST
)
2578 return (integer_all_onesp (TREE_REALPART (expr
))
2579 && integer_zerop (TREE_IMAGPART (expr
)));
2581 return integer_all_onesp (expr
);
2584 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2588 integer_pow2p (const_tree expr
)
2590 if (TREE_CODE (expr
) == COMPLEX_CST
2591 && integer_pow2p (TREE_REALPART (expr
))
2592 && integer_zerop (TREE_IMAGPART (expr
)))
2595 if (TREE_CODE (expr
) != INTEGER_CST
)
2598 return wi::popcount (wi::to_wide (expr
)) == 1;
2601 /* Return 1 if EXPR is an integer constant other than zero or a
2602 complex constant other than zero. */
2605 integer_nonzerop (const_tree expr
)
2607 return ((TREE_CODE (expr
) == INTEGER_CST
2608 && wi::to_wide (expr
) != 0)
2609 || (TREE_CODE (expr
) == COMPLEX_CST
2610 && (integer_nonzerop (TREE_REALPART (expr
))
2611 || integer_nonzerop (TREE_IMAGPART (expr
)))));
2614 /* Return 1 if EXPR is the integer constant one. For vector,
2615 return 1 if every piece is the integer constant minus one
2616 (representing the value TRUE). */
2619 integer_truep (const_tree expr
)
2621 if (TREE_CODE (expr
) == VECTOR_CST
)
2622 return integer_all_onesp (expr
);
2623 return integer_onep (expr
);
2626 /* Return 1 if EXPR is the fixed-point constant zero. */
2629 fixed_zerop (const_tree expr
)
2631 return (TREE_CODE (expr
) == FIXED_CST
2632 && TREE_FIXED_CST (expr
).data
.is_zero ());
2635 /* Return the power of two represented by a tree node known to be a
2639 tree_log2 (const_tree expr
)
2641 if (TREE_CODE (expr
) == COMPLEX_CST
)
2642 return tree_log2 (TREE_REALPART (expr
));
2644 return wi::exact_log2 (wi::to_wide (expr
));
2647 /* Similar, but return the largest integer Y such that 2 ** Y is less
2648 than or equal to EXPR. */
2651 tree_floor_log2 (const_tree expr
)
2653 if (TREE_CODE (expr
) == COMPLEX_CST
)
2654 return tree_log2 (TREE_REALPART (expr
));
2656 return wi::floor_log2 (wi::to_wide (expr
));
2659 /* Return number of known trailing zero bits in EXPR, or, if the value of
2660 EXPR is known to be zero, the precision of it's type. */
2663 tree_ctz (const_tree expr
)
2665 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr
))
2666 && !POINTER_TYPE_P (TREE_TYPE (expr
)))
2669 unsigned int ret1
, ret2
, prec
= TYPE_PRECISION (TREE_TYPE (expr
));
2670 switch (TREE_CODE (expr
))
2673 ret1
= wi::ctz (wi::to_wide (expr
));
2674 return MIN (ret1
, prec
);
2676 ret1
= wi::ctz (get_nonzero_bits (expr
));
2677 return MIN (ret1
, prec
);
2684 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2687 ret2
= tree_ctz (TREE_OPERAND (expr
, 1));
2688 return MIN (ret1
, ret2
);
2689 case POINTER_PLUS_EXPR
:
2690 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2691 ret2
= tree_ctz (TREE_OPERAND (expr
, 1));
2692 /* Second operand is sizetype, which could be in theory
2693 wider than pointer's precision. Make sure we never
2694 return more than prec. */
2695 ret2
= MIN (ret2
, prec
);
2696 return MIN (ret1
, ret2
);
2698 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2699 ret2
= tree_ctz (TREE_OPERAND (expr
, 1));
2700 return MAX (ret1
, ret2
);
2702 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2703 ret2
= tree_ctz (TREE_OPERAND (expr
, 1));
2704 return MIN (ret1
+ ret2
, prec
);
2706 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2707 if (tree_fits_uhwi_p (TREE_OPERAND (expr
, 1))
2708 && (tree_to_uhwi (TREE_OPERAND (expr
, 1)) < prec
))
2710 ret2
= tree_to_uhwi (TREE_OPERAND (expr
, 1));
2711 return MIN (ret1
+ ret2
, prec
);
2715 if (tree_fits_uhwi_p (TREE_OPERAND (expr
, 1))
2716 && (tree_to_uhwi (TREE_OPERAND (expr
, 1)) < prec
))
2718 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2719 ret2
= tree_to_uhwi (TREE_OPERAND (expr
, 1));
2724 case TRUNC_DIV_EXPR
:
2726 case FLOOR_DIV_EXPR
:
2727 case ROUND_DIV_EXPR
:
2728 case EXACT_DIV_EXPR
:
2729 if (TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
2730 && tree_int_cst_sgn (TREE_OPERAND (expr
, 1)) == 1)
2732 int l
= tree_log2 (TREE_OPERAND (expr
, 1));
2735 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2743 ret1
= tree_ctz (TREE_OPERAND (expr
, 0));
2744 if (ret1
&& ret1
== TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr
, 0))))
2746 return MIN (ret1
, prec
);
2748 return tree_ctz (TREE_OPERAND (expr
, 0));
2750 ret1
= tree_ctz (TREE_OPERAND (expr
, 1));
2753 ret2
= tree_ctz (TREE_OPERAND (expr
, 2));
2754 return MIN (ret1
, ret2
);
2756 return tree_ctz (TREE_OPERAND (expr
, 1));
2758 ret1
= get_pointer_alignment (CONST_CAST_TREE (expr
));
2759 if (ret1
> BITS_PER_UNIT
)
2761 ret1
= ctz_hwi (ret1
/ BITS_PER_UNIT
);
2762 return MIN (ret1
, prec
);
2770 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2771 decimal float constants, so don't return 1 for them. */
2774 real_zerop (const_tree expr
)
2776 switch (TREE_CODE (expr
))
2779 return real_equal (&TREE_REAL_CST (expr
), &dconst0
)
2780 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr
))));
2782 return real_zerop (TREE_REALPART (expr
))
2783 && real_zerop (TREE_IMAGPART (expr
));
2786 /* Don't simply check for a duplicate because the predicate
2787 accepts both +0.0 and -0.0. */
2788 unsigned count
= vector_cst_encoded_nelts (expr
);
2789 for (unsigned int i
= 0; i
< count
; ++i
)
2790 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr
, i
)))
2799 /* Return 1 if EXPR is the real constant one in real or complex form.
2800 Trailing zeroes matter for decimal float constants, so don't return
2804 real_onep (const_tree expr
)
2806 switch (TREE_CODE (expr
))
2809 return real_equal (&TREE_REAL_CST (expr
), &dconst1
)
2810 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr
))));
2812 return real_onep (TREE_REALPART (expr
))
2813 && real_zerop (TREE_IMAGPART (expr
));
2815 return (VECTOR_CST_NPATTERNS (expr
) == 1
2816 && VECTOR_CST_DUPLICATE_P (expr
)
2817 && real_onep (VECTOR_CST_ENCODED_ELT (expr
, 0)));
2823 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
2824 matter for decimal float constants, so don't return 1 for them. */
2827 real_minus_onep (const_tree expr
)
2829 switch (TREE_CODE (expr
))
2832 return real_equal (&TREE_REAL_CST (expr
), &dconstm1
)
2833 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr
))));
2835 return real_minus_onep (TREE_REALPART (expr
))
2836 && real_zerop (TREE_IMAGPART (expr
));
2838 return (VECTOR_CST_NPATTERNS (expr
) == 1
2839 && VECTOR_CST_DUPLICATE_P (expr
)
2840 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr
, 0)));
2846 /* Nonzero if EXP is a constant or a cast of a constant. */
2849 really_constant_p (const_tree exp
)
2851 /* This is not quite the same as STRIP_NOPS. It does more. */
2852 while (CONVERT_EXPR_P (exp
)
2853 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
2854 exp
= TREE_OPERAND (exp
, 0);
2855 return TREE_CONSTANT (exp
);
2858 /* Return true if T holds a polynomial pointer difference, storing it in
2859 *VALUE if so. A true return means that T's precision is no greater
2860 than 64 bits, which is the largest address space we support, so *VALUE
2861 never loses precision. However, the signedness of the result does
2862 not necessarily match the signedness of T: sometimes an unsigned type
2863 like sizetype is used to encode a value that is actually negative. */
2866 ptrdiff_tree_p (const_tree t
, poly_int64_pod
*value
)
2870 if (TREE_CODE (t
) == INTEGER_CST
)
2872 if (!cst_and_fits_in_hwi (t
))
2874 *value
= int_cst_value (t
);
2877 if (POLY_INT_CST_P (t
))
2879 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2880 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t
, i
)))
2882 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
2883 value
->coeffs
[i
] = int_cst_value (POLY_INT_CST_COEFF (t
, i
));
2890 tree_to_poly_int64 (const_tree t
)
2892 gcc_assert (tree_fits_poly_int64_p (t
));
2893 if (POLY_INT_CST_P (t
))
2894 return poly_int_cst_value (t
).force_shwi ();
2895 return TREE_INT_CST_LOW (t
);
2899 tree_to_poly_uint64 (const_tree t
)
2901 gcc_assert (tree_fits_poly_uint64_p (t
));
2902 if (POLY_INT_CST_P (t
))
2903 return poly_int_cst_value (t
).force_uhwi ();
2904 return TREE_INT_CST_LOW (t
);
2907 /* Return first list element whose TREE_VALUE is ELEM.
2908 Return 0 if ELEM is not in LIST. */
2911 value_member (tree elem
, tree list
)
2915 if (elem
== TREE_VALUE (list
))
2917 list
= TREE_CHAIN (list
);
2922 /* Return first list element whose TREE_PURPOSE is ELEM.
2923 Return 0 if ELEM is not in LIST. */
2926 purpose_member (const_tree elem
, tree list
)
2930 if (elem
== TREE_PURPOSE (list
))
2932 list
= TREE_CHAIN (list
);
2937 /* Return true if ELEM is in V. */
2940 vec_member (const_tree elem
, vec
<tree
, va_gc
> *v
)
2944 FOR_EACH_VEC_SAFE_ELT (v
, ix
, t
)
2950 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2954 chain_index (int idx
, tree chain
)
2956 for (; chain
&& idx
> 0; --idx
)
2957 chain
= TREE_CHAIN (chain
);
2961 /* Return nonzero if ELEM is part of the chain CHAIN. */
2964 chain_member (const_tree elem
, const_tree chain
)
2970 chain
= DECL_CHAIN (chain
);
2976 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2977 We expect a null pointer to mark the end of the chain.
2978 This is the Lisp primitive `length'. */
2981 list_length (const_tree t
)
2984 #ifdef ENABLE_TREE_CHECKING
2992 #ifdef ENABLE_TREE_CHECKING
2995 gcc_assert (p
!= q
);
3003 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3004 UNION_TYPE TYPE, or NULL_TREE if none. */
3007 first_field (const_tree type
)
3009 tree t
= TYPE_FIELDS (type
);
3010 while (t
&& TREE_CODE (t
) != FIELD_DECL
)
3015 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3016 by modifying the last node in chain 1 to point to chain 2.
3017 This is the Lisp primitive `nconc'. */
3020 chainon (tree op1
, tree op2
)
3029 for (t1
= op1
; TREE_CHAIN (t1
); t1
= TREE_CHAIN (t1
))
3031 TREE_CHAIN (t1
) = op2
;
3033 #ifdef ENABLE_TREE_CHECKING
3036 for (t2
= op2
; t2
; t2
= TREE_CHAIN (t2
))
3037 gcc_assert (t2
!= t1
);
3044 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3047 tree_last (tree chain
)
3051 while ((next
= TREE_CHAIN (chain
)))
3056 /* Reverse the order of elements in the chain T,
3057 and return the new head of the chain (old last element). */
3062 tree prev
= 0, decl
, next
;
3063 for (decl
= t
; decl
; decl
= next
)
3065 /* We shouldn't be using this function to reverse BLOCK chains; we
3066 have blocks_nreverse for that. */
3067 gcc_checking_assert (TREE_CODE (decl
) != BLOCK
);
3068 next
= TREE_CHAIN (decl
);
3069 TREE_CHAIN (decl
) = prev
;
3075 /* Return a newly created TREE_LIST node whose
3076 purpose and value fields are PARM and VALUE. */
3079 build_tree_list (tree parm
, tree value MEM_STAT_DECL
)
3081 tree t
= make_node (TREE_LIST PASS_MEM_STAT
);
3082 TREE_PURPOSE (t
) = parm
;
3083 TREE_VALUE (t
) = value
;
3087 /* Build a chain of TREE_LIST nodes from a vector. */
3090 build_tree_list_vec (const vec
<tree
, va_gc
> *vec MEM_STAT_DECL
)
3092 tree ret
= NULL_TREE
;
3096 FOR_EACH_VEC_SAFE_ELT (vec
, i
, t
)
3098 *pp
= build_tree_list (NULL
, t PASS_MEM_STAT
);
3099 pp
= &TREE_CHAIN (*pp
);
3104 /* Return a newly created TREE_LIST node whose
3105 purpose and value fields are PURPOSE and VALUE
3106 and whose TREE_CHAIN is CHAIN. */
3109 tree_cons (tree purpose
, tree value
, tree chain MEM_STAT_DECL
)
3113 node
= ggc_alloc_tree_node_stat (sizeof (struct tree_list
) PASS_MEM_STAT
);
3114 memset (node
, 0, sizeof (struct tree_common
));
3116 record_node_allocation_statistics (TREE_LIST
, sizeof (struct tree_list
));
3118 TREE_SET_CODE (node
, TREE_LIST
);
3119 TREE_CHAIN (node
) = chain
;
3120 TREE_PURPOSE (node
) = purpose
;
3121 TREE_VALUE (node
) = value
;
3125 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3129 ctor_to_vec (tree ctor
)
3131 vec
<tree
, va_gc
> *vec
;
3132 vec_alloc (vec
, CONSTRUCTOR_NELTS (ctor
));
3136 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor
), ix
, val
)
3137 vec
->quick_push (val
);
3142 /* Return the size nominally occupied by an object of type TYPE
3143 when it resides in memory. The value is measured in units of bytes,
3144 and its data type is that normally used for type sizes
3145 (which is the first type created by make_signed_type or
3146 make_unsigned_type). */
3149 size_in_bytes_loc (location_t loc
, const_tree type
)
3153 if (type
== error_mark_node
)
3154 return integer_zero_node
;
3156 type
= TYPE_MAIN_VARIANT (type
);
3157 t
= TYPE_SIZE_UNIT (type
);
3161 lang_hooks
.types
.incomplete_type_error (loc
, NULL_TREE
, type
);
3162 return size_zero_node
;
3168 /* Return the size of TYPE (in bytes) as a wide integer
3169 or return -1 if the size can vary or is larger than an integer. */
3172 int_size_in_bytes (const_tree type
)
3176 if (type
== error_mark_node
)
3179 type
= TYPE_MAIN_VARIANT (type
);
3180 t
= TYPE_SIZE_UNIT (type
);
3182 if (t
&& tree_fits_uhwi_p (t
))
3183 return TREE_INT_CST_LOW (t
);
3188 /* Return the maximum size of TYPE (in bytes) as a wide integer
3189 or return -1 if the size can vary or is larger than an integer. */
3192 max_int_size_in_bytes (const_tree type
)
3194 HOST_WIDE_INT size
= -1;
3197 /* If this is an array type, check for a possible MAX_SIZE attached. */
3199 if (TREE_CODE (type
) == ARRAY_TYPE
)
3201 size_tree
= TYPE_ARRAY_MAX_SIZE (type
);
3203 if (size_tree
&& tree_fits_uhwi_p (size_tree
))
3204 size
= tree_to_uhwi (size_tree
);
3207 /* If we still haven't been able to get a size, see if the language
3208 can compute a maximum size. */
3212 size_tree
= lang_hooks
.types
.max_size (type
);
3214 if (size_tree
&& tree_fits_uhwi_p (size_tree
))
3215 size
= tree_to_uhwi (size_tree
);
3221 /* Return the bit position of FIELD, in bits from the start of the record.
3222 This is a tree of type bitsizetype. */
3225 bit_position (const_tree field
)
3227 return bit_from_pos (DECL_FIELD_OFFSET (field
),
3228 DECL_FIELD_BIT_OFFSET (field
));
3231 /* Return the byte position of FIELD, in bytes from the start of the record.
3232 This is a tree of type sizetype. */
3235 byte_position (const_tree field
)
3237 return byte_from_pos (DECL_FIELD_OFFSET (field
),
3238 DECL_FIELD_BIT_OFFSET (field
));
3241 /* Likewise, but return as an integer. It must be representable in
3242 that way (since it could be a signed value, we don't have the
3243 option of returning -1 like int_size_in_byte can. */
3246 int_byte_position (const_tree field
)
3248 return tree_to_shwi (byte_position (field
));
3251 /* Return the strictest alignment, in bits, that T is known to have. */
3254 expr_align (const_tree t
)
3256 unsigned int align0
, align1
;
3258 switch (TREE_CODE (t
))
3260 CASE_CONVERT
: case NON_LVALUE_EXPR
:
3261 /* If we have conversions, we know that the alignment of the
3262 object must meet each of the alignments of the types. */
3263 align0
= expr_align (TREE_OPERAND (t
, 0));
3264 align1
= TYPE_ALIGN (TREE_TYPE (t
));
3265 return MAX (align0
, align1
);
3267 case SAVE_EXPR
: case COMPOUND_EXPR
: case MODIFY_EXPR
:
3268 case INIT_EXPR
: case TARGET_EXPR
: case WITH_CLEANUP_EXPR
:
3269 case CLEANUP_POINT_EXPR
:
3270 /* These don't change the alignment of an object. */
3271 return expr_align (TREE_OPERAND (t
, 0));
3274 /* The best we can do is say that the alignment is the least aligned
3276 align0
= expr_align (TREE_OPERAND (t
, 1));
3277 align1
= expr_align (TREE_OPERAND (t
, 2));
3278 return MIN (align0
, align1
);
3280 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
3281 meaningfully, it's always 1. */
3282 case LABEL_DECL
: case CONST_DECL
:
3283 case VAR_DECL
: case PARM_DECL
: case RESULT_DECL
:
3285 gcc_assert (DECL_ALIGN (t
) != 0);
3286 return DECL_ALIGN (t
);
3292 /* Otherwise take the alignment from that of the type. */
3293 return TYPE_ALIGN (TREE_TYPE (t
));
3296 /* Return, as a tree node, the number of elements for TYPE (which is an
3297 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3300 array_type_nelts (const_tree type
)
3302 tree index_type
, min
, max
;
3304 /* If they did it with unspecified bounds, then we should have already
3305 given an error about it before we got here. */
3306 if (! TYPE_DOMAIN (type
))
3307 return error_mark_node
;
3309 index_type
= TYPE_DOMAIN (type
);
3310 min
= TYPE_MIN_VALUE (index_type
);
3311 max
= TYPE_MAX_VALUE (index_type
);
3313 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3315 return error_mark_node
;
3317 return (integer_zerop (min
)
3319 : fold_build2 (MINUS_EXPR
, TREE_TYPE (max
), max
, min
));
3322 /* If arg is static -- a reference to an object in static storage -- then
3323 return the object. This is not the same as the C meaning of `static'.
3324 If arg isn't static, return NULL. */
3329 switch (TREE_CODE (arg
))
3332 /* Nested functions are static, even though taking their address will
3333 involve a trampoline as we unnest the nested function and create
3334 the trampoline on the tree level. */
3338 return ((TREE_STATIC (arg
) || DECL_EXTERNAL (arg
))
3339 && ! DECL_THREAD_LOCAL_P (arg
)
3340 && ! DECL_DLLIMPORT_P (arg
)
3344 return ((TREE_STATIC (arg
) || DECL_EXTERNAL (arg
))
3348 return TREE_STATIC (arg
) ? arg
: NULL
;
3355 /* If the thing being referenced is not a field, then it is
3356 something language specific. */
3357 gcc_assert (TREE_CODE (TREE_OPERAND (arg
, 1)) == FIELD_DECL
);
3359 /* If we are referencing a bitfield, we can't evaluate an
3360 ADDR_EXPR at compile time and so it isn't a constant. */
3361 if (DECL_BIT_FIELD (TREE_OPERAND (arg
, 1)))
3364 return staticp (TREE_OPERAND (arg
, 0));
3370 return TREE_CONSTANT (TREE_OPERAND (arg
, 0)) ? arg
: NULL
;
3373 case ARRAY_RANGE_REF
:
3374 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg
))) == INTEGER_CST
3375 && TREE_CODE (TREE_OPERAND (arg
, 1)) == INTEGER_CST
)
3376 return staticp (TREE_OPERAND (arg
, 0));
3380 case COMPOUND_LITERAL_EXPR
:
3381 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg
)) ? arg
: NULL
;
3391 /* Return whether OP is a DECL whose address is function-invariant. */
3394 decl_address_invariant_p (const_tree op
)
3396 /* The conditions below are slightly less strict than the one in
3399 switch (TREE_CODE (op
))
3408 if ((TREE_STATIC (op
) || DECL_EXTERNAL (op
))
3409 || DECL_THREAD_LOCAL_P (op
)
3410 || DECL_CONTEXT (op
) == current_function_decl
3411 || decl_function_context (op
) == current_function_decl
)
3416 if ((TREE_STATIC (op
) || DECL_EXTERNAL (op
))
3417 || decl_function_context (op
) == current_function_decl
)
3428 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3431 decl_address_ip_invariant_p (const_tree op
)
3433 /* The conditions below are slightly less strict than the one in
3436 switch (TREE_CODE (op
))
3444 if (((TREE_STATIC (op
) || DECL_EXTERNAL (op
))
3445 && !DECL_DLLIMPORT_P (op
))
3446 || DECL_THREAD_LOCAL_P (op
))
3451 if ((TREE_STATIC (op
) || DECL_EXTERNAL (op
)))
3463 /* Return true if T is function-invariant (internal function, does
3464 not handle arithmetic; that's handled in skip_simple_arithmetic and
3465 tree_invariant_p). */
3468 tree_invariant_p_1 (tree t
)
3472 if (TREE_CONSTANT (t
)
3473 || (TREE_READONLY (t
) && !TREE_SIDE_EFFECTS (t
)))
3476 switch (TREE_CODE (t
))
3482 op
= TREE_OPERAND (t
, 0);
3483 while (handled_component_p (op
))
3485 switch (TREE_CODE (op
))
3488 case ARRAY_RANGE_REF
:
3489 if (!tree_invariant_p (TREE_OPERAND (op
, 1))
3490 || TREE_OPERAND (op
, 2) != NULL_TREE
3491 || TREE_OPERAND (op
, 3) != NULL_TREE
)
3496 if (TREE_OPERAND (op
, 2) != NULL_TREE
)
3502 op
= TREE_OPERAND (op
, 0);
3505 return CONSTANT_CLASS_P (op
) || decl_address_invariant_p (op
);
3514 /* Return true if T is function-invariant. */
3517 tree_invariant_p (tree t
)
3519 tree inner
= skip_simple_arithmetic (t
);
3520 return tree_invariant_p_1 (inner
);
3523 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3524 Do this to any expression which may be used in more than one place,
3525 but must be evaluated only once.
3527 Normally, expand_expr would reevaluate the expression each time.
3528 Calling save_expr produces something that is evaluated and recorded
3529 the first time expand_expr is called on it. Subsequent calls to
3530 expand_expr just reuse the recorded value.
3532 The call to expand_expr that generates code that actually computes
3533 the value is the first call *at compile time*. Subsequent calls
3534 *at compile time* generate code to use the saved value.
3535 This produces correct result provided that *at run time* control
3536 always flows through the insns made by the first expand_expr
3537 before reaching the other places where the save_expr was evaluated.
3538 You, the caller of save_expr, must make sure this is so.
3540 Constants, and certain read-only nodes, are returned with no
3541 SAVE_EXPR because that is safe. Expressions containing placeholders
3542 are not touched; see tree.def for an explanation of what these
3546 save_expr (tree expr
)
3550 /* If the tree evaluates to a constant, then we don't want to hide that
3551 fact (i.e. this allows further folding, and direct checks for constants).
3552 However, a read-only object that has side effects cannot be bypassed.
3553 Since it is no problem to reevaluate literals, we just return the
3555 inner
= skip_simple_arithmetic (expr
);
3556 if (TREE_CODE (inner
) == ERROR_MARK
)
3559 if (tree_invariant_p_1 (inner
))
3562 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3563 it means that the size or offset of some field of an object depends on
3564 the value within another field.
3566 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3567 and some variable since it would then need to be both evaluated once and
3568 evaluated more than once. Front-ends must assure this case cannot
3569 happen by surrounding any such subexpressions in their own SAVE_EXPR
3570 and forcing evaluation at the proper time. */
3571 if (contains_placeholder_p (inner
))
3574 expr
= build1_loc (EXPR_LOCATION (expr
), SAVE_EXPR
, TREE_TYPE (expr
), expr
);
3576 /* This expression might be placed ahead of a jump to ensure that the
3577 value was computed on both sides of the jump. So make sure it isn't
3578 eliminated as dead. */
3579 TREE_SIDE_EFFECTS (expr
) = 1;
3583 /* Look inside EXPR into any simple arithmetic operations. Return the
3584 outermost non-arithmetic or non-invariant node. */
3587 skip_simple_arithmetic (tree expr
)
3589 /* We don't care about whether this can be used as an lvalue in this
3591 while (TREE_CODE (expr
) == NON_LVALUE_EXPR
)
3592 expr
= TREE_OPERAND (expr
, 0);
3594 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3595 a constant, it will be more efficient to not make another SAVE_EXPR since
3596 it will allow better simplification and GCSE will be able to merge the
3597 computations if they actually occur. */
3600 if (UNARY_CLASS_P (expr
))
3601 expr
= TREE_OPERAND (expr
, 0);
3602 else if (BINARY_CLASS_P (expr
))
3604 if (tree_invariant_p (TREE_OPERAND (expr
, 1)))
3605 expr
= TREE_OPERAND (expr
, 0);
3606 else if (tree_invariant_p (TREE_OPERAND (expr
, 0)))
3607 expr
= TREE_OPERAND (expr
, 1);
3618 /* Look inside EXPR into simple arithmetic operations involving constants.
3619 Return the outermost non-arithmetic or non-constant node. */
3622 skip_simple_constant_arithmetic (tree expr
)
3624 while (TREE_CODE (expr
) == NON_LVALUE_EXPR
)
3625 expr
= TREE_OPERAND (expr
, 0);
3629 if (UNARY_CLASS_P (expr
))
3630 expr
= TREE_OPERAND (expr
, 0);
3631 else if (BINARY_CLASS_P (expr
))
3633 if (TREE_CONSTANT (TREE_OPERAND (expr
, 1)))
3634 expr
= TREE_OPERAND (expr
, 0);
3635 else if (TREE_CONSTANT (TREE_OPERAND (expr
, 0)))
3636 expr
= TREE_OPERAND (expr
, 1);
3647 /* Return which tree structure is used by T. */
3649 enum tree_node_structure_enum
3650 tree_node_structure (const_tree t
)
3652 const enum tree_code code
= TREE_CODE (t
);
3653 return tree_node_structure_for_code (code
);
3656 /* Set various status flags when building a CALL_EXPR object T. */
3659 process_call_operands (tree t
)
3661 bool side_effects
= TREE_SIDE_EFFECTS (t
);
3662 bool read_only
= false;
3663 int i
= call_expr_flags (t
);
3665 /* Calls have side-effects, except those to const or pure functions. */
3666 if ((i
& ECF_LOOPING_CONST_OR_PURE
) || !(i
& (ECF_CONST
| ECF_PURE
)))
3667 side_effects
= true;
3668 /* Propagate TREE_READONLY of arguments for const functions. */
3672 if (!side_effects
|| read_only
)
3673 for (i
= 1; i
< TREE_OPERAND_LENGTH (t
); i
++)
3675 tree op
= TREE_OPERAND (t
, i
);
3676 if (op
&& TREE_SIDE_EFFECTS (op
))
3677 side_effects
= true;
3678 if (op
&& !TREE_READONLY (op
) && !CONSTANT_CLASS_P (op
))
3682 TREE_SIDE_EFFECTS (t
) = side_effects
;
3683 TREE_READONLY (t
) = read_only
;
3686 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3687 size or offset that depends on a field within a record. */
3690 contains_placeholder_p (const_tree exp
)
3692 enum tree_code code
;
3697 code
= TREE_CODE (exp
);
3698 if (code
== PLACEHOLDER_EXPR
)
3701 switch (TREE_CODE_CLASS (code
))
3704 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3705 position computations since they will be converted into a
3706 WITH_RECORD_EXPR involving the reference, which will assume
3707 here will be valid. */
3708 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0));
3710 case tcc_exceptional
:
3711 if (code
== TREE_LIST
)
3712 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp
))
3713 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp
)));
3718 case tcc_comparison
:
3719 case tcc_expression
:
3723 /* Ignoring the first operand isn't quite right, but works best. */
3724 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1));
3727 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0))
3728 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1))
3729 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 2)));
3732 /* The save_expr function never wraps anything containing
3733 a PLACEHOLDER_EXPR. */
3740 switch (TREE_CODE_LENGTH (code
))
3743 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0));
3745 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0))
3746 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1)));
3757 const_call_expr_arg_iterator iter
;
3758 FOR_EACH_CONST_CALL_EXPR_ARG (arg
, iter
, exp
)
3759 if (CONTAINS_PLACEHOLDER_P (arg
))
3773 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3774 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3778 type_contains_placeholder_1 (const_tree type
)
3780 /* If the size contains a placeholder or the parent type (component type in
3781 the case of arrays) type involves a placeholder, this type does. */
3782 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type
))
3783 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type
))
3784 || (!POINTER_TYPE_P (type
)
3786 && type_contains_placeholder_p (TREE_TYPE (type
))))
3789 /* Now do type-specific checks. Note that the last part of the check above
3790 greatly limits what we have to do below. */
3791 switch (TREE_CODE (type
))
3794 case POINTER_BOUNDS_TYPE
:
3800 case REFERENCE_TYPE
:
3809 case FIXED_POINT_TYPE
:
3810 /* Here we just check the bounds. */
3811 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type
))
3812 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type
)));
3815 /* We have already checked the component type above, so just check
3816 the domain type. Flexible array members have a null domain. */
3817 return TYPE_DOMAIN (type
) ?
3818 type_contains_placeholder_p (TYPE_DOMAIN (type
)) : false;
3822 case QUAL_UNION_TYPE
:
3826 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
3827 if (TREE_CODE (field
) == FIELD_DECL
3828 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field
))
3829 || (TREE_CODE (type
) == QUAL_UNION_TYPE
3830 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field
)))
3831 || type_contains_placeholder_p (TREE_TYPE (field
))))
3842 /* Wrapper around above function used to cache its result. */
3845 type_contains_placeholder_p (tree type
)
3849 /* If the contains_placeholder_bits field has been initialized,
3850 then we know the answer. */
3851 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type
) > 0)
3852 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type
) - 1;
3854 /* Indicate that we've seen this type node, and the answer is false.
3855 This is what we want to return if we run into recursion via fields. */
3856 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type
) = 1;
3858 /* Compute the real value. */
3859 result
= type_contains_placeholder_1 (type
);
3861 /* Store the real value. */
3862 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type
) = result
+ 1;
3867 /* Push tree EXP onto vector QUEUE if it is not already present. */
3870 push_without_duplicates (tree exp
, vec
<tree
> *queue
)
3875 FOR_EACH_VEC_ELT (*queue
, i
, iter
)
3876 if (simple_cst_equal (iter
, exp
) == 1)
3880 queue
->safe_push (exp
);
3883 /* Given a tree EXP, find all occurrences of references to fields
3884 in a PLACEHOLDER_EXPR and place them in vector REFS without
3885 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
3886 we assume here that EXP contains only arithmetic expressions
3887 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
3891 find_placeholder_in_expr (tree exp
, vec
<tree
> *refs
)
3893 enum tree_code code
= TREE_CODE (exp
);
3897 /* We handle TREE_LIST and COMPONENT_REF separately. */
3898 if (code
== TREE_LIST
)
3900 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp
), refs
);
3901 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp
), refs
);
3903 else if (code
== COMPONENT_REF
)
3905 for (inner
= TREE_OPERAND (exp
, 0);
3906 REFERENCE_CLASS_P (inner
);
3907 inner
= TREE_OPERAND (inner
, 0))
3910 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
3911 push_without_duplicates (exp
, refs
);
3913 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 0), refs
);
3916 switch (TREE_CODE_CLASS (code
))
3921 case tcc_declaration
:
3922 /* Variables allocated to static storage can stay. */
3923 if (!TREE_STATIC (exp
))
3924 push_without_duplicates (exp
, refs
);
3927 case tcc_expression
:
3928 /* This is the pattern built in ada/make_aligning_type. */
3929 if (code
== ADDR_EXPR
3930 && TREE_CODE (TREE_OPERAND (exp
, 0)) == PLACEHOLDER_EXPR
)
3932 push_without_duplicates (exp
, refs
);
3938 case tcc_exceptional
:
3941 case tcc_comparison
:
3943 for (i
= 0; i
< TREE_CODE_LENGTH (code
); i
++)
3944 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, i
), refs
);
3948 for (i
= 1; i
< TREE_OPERAND_LENGTH (exp
); i
++)
3949 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, i
), refs
);
3957 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3958 return a tree with all occurrences of references to F in a
3959 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3960 CONST_DECLs. Note that we assume here that EXP contains only
3961 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3962 occurring only in their argument list. */
3965 substitute_in_expr (tree exp
, tree f
, tree r
)
3967 enum tree_code code
= TREE_CODE (exp
);
3968 tree op0
, op1
, op2
, op3
;
3971 /* We handle TREE_LIST and COMPONENT_REF separately. */
3972 if (code
== TREE_LIST
)
3974 op0
= SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp
), f
, r
);
3975 op1
= SUBSTITUTE_IN_EXPR (TREE_VALUE (exp
), f
, r
);
3976 if (op0
== TREE_CHAIN (exp
) && op1
== TREE_VALUE (exp
))
3979 return tree_cons (TREE_PURPOSE (exp
), op1
, op0
);
3981 else if (code
== COMPONENT_REF
)
3985 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3986 and it is the right field, replace it with R. */
3987 for (inner
= TREE_OPERAND (exp
, 0);
3988 REFERENCE_CLASS_P (inner
);
3989 inner
= TREE_OPERAND (inner
, 0))
3993 op1
= TREE_OPERAND (exp
, 1);
3995 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
&& op1
== f
)
3998 /* If this expression hasn't been completed let, leave it alone. */
3999 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
&& !TREE_TYPE (inner
))
4002 op0
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 0), f
, r
);
4003 if (op0
== TREE_OPERAND (exp
, 0))
4007 = fold_build3 (COMPONENT_REF
, TREE_TYPE (exp
), op0
, op1
, NULL_TREE
);
4010 switch (TREE_CODE_CLASS (code
))
4015 case tcc_declaration
:
4021 case tcc_expression
:
4027 case tcc_exceptional
:
4030 case tcc_comparison
:
4032 switch (TREE_CODE_LENGTH (code
))
4038 op0
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 0), f
, r
);
4039 if (op0
== TREE_OPERAND (exp
, 0))
4042 new_tree
= fold_build1 (code
, TREE_TYPE (exp
), op0
);
4046 op0
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 0), f
, r
);
4047 op1
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 1), f
, r
);
4049 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1))
4052 new_tree
= fold_build2 (code
, TREE_TYPE (exp
), op0
, op1
);
4056 op0
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 0), f
, r
);
4057 op1
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 1), f
, r
);
4058 op2
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 2), f
, r
);
4060 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
4061 && op2
== TREE_OPERAND (exp
, 2))
4064 new_tree
= fold_build3 (code
, TREE_TYPE (exp
), op0
, op1
, op2
);
4068 op0
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 0), f
, r
);
4069 op1
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 1), f
, r
);
4070 op2
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 2), f
, r
);
4071 op3
= SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp
, 3), f
, r
);
4073 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
4074 && op2
== TREE_OPERAND (exp
, 2)
4075 && op3
== TREE_OPERAND (exp
, 3))
4079 = fold (build4 (code
, TREE_TYPE (exp
), op0
, op1
, op2
, op3
));
4091 new_tree
= NULL_TREE
;
4093 /* If we are trying to replace F with a constant or with another
4094 instance of one of the arguments of the call, inline back
4095 functions which do nothing else than computing a value from
4096 the arguments they are passed. This makes it possible to
4097 fold partially or entirely the replacement expression. */
4098 if (code
== CALL_EXPR
)
4100 bool maybe_inline
= false;
4101 if (CONSTANT_CLASS_P (r
))
4102 maybe_inline
= true;
4104 for (i
= 3; i
< TREE_OPERAND_LENGTH (exp
); i
++)
4105 if (operand_equal_p (TREE_OPERAND (exp
, i
), r
, 0))
4107 maybe_inline
= true;
4112 tree t
= maybe_inline_call_in_expr (exp
);
4114 return SUBSTITUTE_IN_EXPR (t
, f
, r
);
4118 for (i
= 1; i
< TREE_OPERAND_LENGTH (exp
); i
++)
4120 tree op
= TREE_OPERAND (exp
, i
);
4121 tree new_op
= SUBSTITUTE_IN_EXPR (op
, f
, r
);
4125 new_tree
= copy_node (exp
);
4126 TREE_OPERAND (new_tree
, i
) = new_op
;
4132 new_tree
= fold (new_tree
);
4133 if (TREE_CODE (new_tree
) == CALL_EXPR
)
4134 process_call_operands (new_tree
);
4145 TREE_READONLY (new_tree
) |= TREE_READONLY (exp
);
4147 if (code
== INDIRECT_REF
|| code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
4148 TREE_THIS_NOTRAP (new_tree
) |= TREE_THIS_NOTRAP (exp
);
4153 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4154 for it within OBJ, a tree that is an object or a chain of references. */
4157 substitute_placeholder_in_expr (tree exp
, tree obj
)
4159 enum tree_code code
= TREE_CODE (exp
);
4160 tree op0
, op1
, op2
, op3
;
4163 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4164 in the chain of OBJ. */
4165 if (code
== PLACEHOLDER_EXPR
)
4167 tree need_type
= TYPE_MAIN_VARIANT (TREE_TYPE (exp
));
4170 for (elt
= obj
; elt
!= 0;
4171 elt
= ((TREE_CODE (elt
) == COMPOUND_EXPR
4172 || TREE_CODE (elt
) == COND_EXPR
)
4173 ? TREE_OPERAND (elt
, 1)
4174 : (REFERENCE_CLASS_P (elt
)
4175 || UNARY_CLASS_P (elt
)
4176 || BINARY_CLASS_P (elt
)
4177 || VL_EXP_CLASS_P (elt
)
4178 || EXPRESSION_CLASS_P (elt
))
4179 ? TREE_OPERAND (elt
, 0) : 0))
4180 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt
)) == need_type
)
4183 for (elt
= obj
; elt
!= 0;
4184 elt
= ((TREE_CODE (elt
) == COMPOUND_EXPR
4185 || TREE_CODE (elt
) == COND_EXPR
)
4186 ? TREE_OPERAND (elt
, 1)
4187 : (REFERENCE_CLASS_P (elt
)
4188 || UNARY_CLASS_P (elt
)
4189 || BINARY_CLASS_P (elt
)
4190 || VL_EXP_CLASS_P (elt
)
4191 || EXPRESSION_CLASS_P (elt
))
4192 ? TREE_OPERAND (elt
, 0) : 0))
4193 if (POINTER_TYPE_P (TREE_TYPE (elt
))
4194 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt
)))
4196 return fold_build1 (INDIRECT_REF
, need_type
, elt
);
4198 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4199 survives until RTL generation, there will be an error. */
4203 /* TREE_LIST is special because we need to look at TREE_VALUE
4204 and TREE_CHAIN, not TREE_OPERANDS. */
4205 else if (code
== TREE_LIST
)
4207 op0
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp
), obj
);
4208 op1
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp
), obj
);
4209 if (op0
== TREE_CHAIN (exp
) && op1
== TREE_VALUE (exp
))
4212 return tree_cons (TREE_PURPOSE (exp
), op1
, op0
);
4215 switch (TREE_CODE_CLASS (code
))
4218 case tcc_declaration
:
4221 case tcc_exceptional
:
4224 case tcc_comparison
:
4225 case tcc_expression
:
4228 switch (TREE_CODE_LENGTH (code
))
4234 op0
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 0), obj
);
4235 if (op0
== TREE_OPERAND (exp
, 0))
4238 new_tree
= fold_build1 (code
, TREE_TYPE (exp
), op0
);
4242 op0
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 0), obj
);
4243 op1
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 1), obj
);
4245 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1))
4248 new_tree
= fold_build2 (code
, TREE_TYPE (exp
), op0
, op1
);
4252 op0
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 0), obj
);
4253 op1
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 1), obj
);
4254 op2
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 2), obj
);
4256 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
4257 && op2
== TREE_OPERAND (exp
, 2))
4260 new_tree
= fold_build3 (code
, TREE_TYPE (exp
), op0
, op1
, op2
);
4264 op0
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 0), obj
);
4265 op1
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 1), obj
);
4266 op2
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 2), obj
);
4267 op3
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp
, 3), obj
);
4269 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
4270 && op2
== TREE_OPERAND (exp
, 2)
4271 && op3
== TREE_OPERAND (exp
, 3))
4275 = fold (build4 (code
, TREE_TYPE (exp
), op0
, op1
, op2
, op3
));
4287 new_tree
= NULL_TREE
;
4289 for (i
= 1; i
< TREE_OPERAND_LENGTH (exp
); i
++)
4291 tree op
= TREE_OPERAND (exp
, i
);
4292 tree new_op
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (op
, obj
);
4296 new_tree
= copy_node (exp
);
4297 TREE_OPERAND (new_tree
, i
) = new_op
;
4303 new_tree
= fold (new_tree
);
4304 if (TREE_CODE (new_tree
) == CALL_EXPR
)
4305 process_call_operands (new_tree
);
4316 TREE_READONLY (new_tree
) |= TREE_READONLY (exp
);
4318 if (code
== INDIRECT_REF
|| code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
4319 TREE_THIS_NOTRAP (new_tree
) |= TREE_THIS_NOTRAP (exp
);
4325 /* Subroutine of stabilize_reference; this is called for subtrees of
4326 references. Any expression with side-effects must be put in a SAVE_EXPR
4327 to ensure that it is only evaluated once.
4329 We don't put SAVE_EXPR nodes around everything, because assigning very
4330 simple expressions to temporaries causes us to miss good opportunities
4331 for optimizations. Among other things, the opportunity to fold in the
4332 addition of a constant into an addressing mode often gets lost, e.g.
4333 "y[i+1] += x;". In general, we take the approach that we should not make
4334 an assignment unless we are forced into it - i.e., that any non-side effect
4335 operator should be allowed, and that cse should take care of coalescing
4336 multiple utterances of the same expression should that prove fruitful. */
4339 stabilize_reference_1 (tree e
)
4342 enum tree_code code
= TREE_CODE (e
);
4344 /* We cannot ignore const expressions because it might be a reference
4345 to a const array but whose index contains side-effects. But we can
4346 ignore things that are actual constant or that already have been
4347 handled by this function. */
4349 if (tree_invariant_p (e
))
4352 switch (TREE_CODE_CLASS (code
))
4354 case tcc_exceptional
:
4356 case tcc_declaration
:
4357 case tcc_comparison
:
4359 case tcc_expression
:
4362 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4363 so that it will only be evaluated once. */
4364 /* The reference (r) and comparison (<) classes could be handled as
4365 below, but it is generally faster to only evaluate them once. */
4366 if (TREE_SIDE_EFFECTS (e
))
4367 return save_expr (e
);
4371 /* Constants need no processing. In fact, we should never reach
4376 /* Division is slow and tends to be compiled with jumps,
4377 especially the division by powers of 2 that is often
4378 found inside of an array reference. So do it just once. */
4379 if (code
== TRUNC_DIV_EXPR
|| code
== TRUNC_MOD_EXPR
4380 || code
== FLOOR_DIV_EXPR
|| code
== FLOOR_MOD_EXPR
4381 || code
== CEIL_DIV_EXPR
|| code
== CEIL_MOD_EXPR
4382 || code
== ROUND_DIV_EXPR
|| code
== ROUND_MOD_EXPR
)
4383 return save_expr (e
);
4384 /* Recursively stabilize each operand. */
4385 result
= build_nt (code
, stabilize_reference_1 (TREE_OPERAND (e
, 0)),
4386 stabilize_reference_1 (TREE_OPERAND (e
, 1)));
4390 /* Recursively stabilize each operand. */
4391 result
= build_nt (code
, stabilize_reference_1 (TREE_OPERAND (e
, 0)));
4398 TREE_TYPE (result
) = TREE_TYPE (e
);
4399 TREE_READONLY (result
) = TREE_READONLY (e
);
4400 TREE_SIDE_EFFECTS (result
) = TREE_SIDE_EFFECTS (e
);
4401 TREE_THIS_VOLATILE (result
) = TREE_THIS_VOLATILE (e
);
4406 /* Stabilize a reference so that we can use it any number of times
4407 without causing its operands to be evaluated more than once.
4408 Returns the stabilized reference. This works by means of save_expr,
4409 so see the caveats in the comments about save_expr.
4411 Also allows conversion expressions whose operands are references.
4412 Any other kind of expression is returned unchanged. */
4415 stabilize_reference (tree ref
)
4418 enum tree_code code
= TREE_CODE (ref
);
4425 /* No action is needed in this case. */
4430 case FIX_TRUNC_EXPR
:
4431 result
= build_nt (code
, stabilize_reference (TREE_OPERAND (ref
, 0)));
4435 result
= build_nt (INDIRECT_REF
,
4436 stabilize_reference_1 (TREE_OPERAND (ref
, 0)));
4440 result
= build_nt (COMPONENT_REF
,
4441 stabilize_reference (TREE_OPERAND (ref
, 0)),
4442 TREE_OPERAND (ref
, 1), NULL_TREE
);
4446 result
= build_nt (BIT_FIELD_REF
,
4447 stabilize_reference (TREE_OPERAND (ref
, 0)),
4448 TREE_OPERAND (ref
, 1), TREE_OPERAND (ref
, 2));
4449 REF_REVERSE_STORAGE_ORDER (result
) = REF_REVERSE_STORAGE_ORDER (ref
);
4453 result
= build_nt (ARRAY_REF
,
4454 stabilize_reference (TREE_OPERAND (ref
, 0)),
4455 stabilize_reference_1 (TREE_OPERAND (ref
, 1)),
4456 TREE_OPERAND (ref
, 2), TREE_OPERAND (ref
, 3));
4459 case ARRAY_RANGE_REF
:
4460 result
= build_nt (ARRAY_RANGE_REF
,
4461 stabilize_reference (TREE_OPERAND (ref
, 0)),
4462 stabilize_reference_1 (TREE_OPERAND (ref
, 1)),
4463 TREE_OPERAND (ref
, 2), TREE_OPERAND (ref
, 3));
4467 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4468 it wouldn't be ignored. This matters when dealing with
4470 return stabilize_reference_1 (ref
);
4472 /* If arg isn't a kind of lvalue we recognize, make no change.
4473 Caller should recognize the error for an invalid lvalue. */
4478 return error_mark_node
;
4481 TREE_TYPE (result
) = TREE_TYPE (ref
);
4482 TREE_READONLY (result
) = TREE_READONLY (ref
);
4483 TREE_SIDE_EFFECTS (result
) = TREE_SIDE_EFFECTS (ref
);
4484 TREE_THIS_VOLATILE (result
) = TREE_THIS_VOLATILE (ref
);
4489 /* Low-level constructors for expressions. */
4491 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4492 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4495 recompute_tree_invariant_for_addr_expr (tree t
)
4498 bool tc
= true, se
= false;
4500 gcc_assert (TREE_CODE (t
) == ADDR_EXPR
);
4502 /* We started out assuming this address is both invariant and constant, but
4503 does not have side effects. Now go down any handled components and see if
4504 any of them involve offsets that are either non-constant or non-invariant.
4505 Also check for side-effects.
4507 ??? Note that this code makes no attempt to deal with the case where
4508 taking the address of something causes a copy due to misalignment. */
4510 #define UPDATE_FLAGS(NODE) \
4511 do { tree _node = (NODE); \
4512 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4513 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4515 for (node
= TREE_OPERAND (t
, 0); handled_component_p (node
);
4516 node
= TREE_OPERAND (node
, 0))
4518 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4519 array reference (probably made temporarily by the G++ front end),
4520 so ignore all the operands. */
4521 if ((TREE_CODE (node
) == ARRAY_REF
4522 || TREE_CODE (node
) == ARRAY_RANGE_REF
)
4523 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node
, 0))) == ARRAY_TYPE
)
4525 UPDATE_FLAGS (TREE_OPERAND (node
, 1));
4526 if (TREE_OPERAND (node
, 2))
4527 UPDATE_FLAGS (TREE_OPERAND (node
, 2));
4528 if (TREE_OPERAND (node
, 3))
4529 UPDATE_FLAGS (TREE_OPERAND (node
, 3));
4531 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4532 FIELD_DECL, apparently. The G++ front end can put something else
4533 there, at least temporarily. */
4534 else if (TREE_CODE (node
) == COMPONENT_REF
4535 && TREE_CODE (TREE_OPERAND (node
, 1)) == FIELD_DECL
)
4537 if (TREE_OPERAND (node
, 2))
4538 UPDATE_FLAGS (TREE_OPERAND (node
, 2));
4542 node
= lang_hooks
.expr_to_decl (node
, &tc
, &se
);
4544 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4545 the address, since &(*a)->b is a form of addition. If it's a constant, the
4546 address is constant too. If it's a decl, its address is constant if the
4547 decl is static. Everything else is not constant and, furthermore,
4548 taking the address of a volatile variable is not volatile. */
4549 if (TREE_CODE (node
) == INDIRECT_REF
4550 || TREE_CODE (node
) == MEM_REF
)
4551 UPDATE_FLAGS (TREE_OPERAND (node
, 0));
4552 else if (CONSTANT_CLASS_P (node
))
4554 else if (DECL_P (node
))
4555 tc
&= (staticp (node
) != NULL_TREE
);
4559 se
|= TREE_SIDE_EFFECTS (node
);
4563 TREE_CONSTANT (t
) = tc
;
4564 TREE_SIDE_EFFECTS (t
) = se
;
4568 /* Build an expression of code CODE, data type TYPE, and operands as
4569 specified. Expressions and reference nodes can be created this way.
4570 Constants, decls, types and misc nodes cannot be.
4572 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4573 enough for all extant tree codes. */
4576 build0 (enum tree_code code
, tree tt MEM_STAT_DECL
)
4580 gcc_assert (TREE_CODE_LENGTH (code
) == 0);
4582 t
= make_node (code PASS_MEM_STAT
);
4589 build1 (enum tree_code code
, tree type
, tree node MEM_STAT_DECL
)
4591 int length
= sizeof (struct tree_exp
);
4594 record_node_allocation_statistics (code
, length
);
4596 gcc_assert (TREE_CODE_LENGTH (code
) == 1);
4598 t
= ggc_alloc_tree_node_stat (length PASS_MEM_STAT
);
4600 memset (t
, 0, sizeof (struct tree_common
));
4602 TREE_SET_CODE (t
, code
);
4604 TREE_TYPE (t
) = type
;
4605 SET_EXPR_LOCATION (t
, UNKNOWN_LOCATION
);
4606 TREE_OPERAND (t
, 0) = node
;
4607 if (node
&& !TYPE_P (node
))
4609 TREE_SIDE_EFFECTS (t
) = TREE_SIDE_EFFECTS (node
);
4610 TREE_READONLY (t
) = TREE_READONLY (node
);
4613 if (TREE_CODE_CLASS (code
) == tcc_statement
)
4615 if (code
!= DEBUG_BEGIN_STMT
)
4616 TREE_SIDE_EFFECTS (t
) = 1;
4621 /* All of these have side-effects, no matter what their
4623 TREE_SIDE_EFFECTS (t
) = 1;
4624 TREE_READONLY (t
) = 0;
4628 /* Whether a dereference is readonly has nothing to do with whether
4629 its operand is readonly. */
4630 TREE_READONLY (t
) = 0;
4635 recompute_tree_invariant_for_addr_expr (t
);
4639 if ((TREE_CODE_CLASS (code
) == tcc_unary
|| code
== VIEW_CONVERT_EXPR
)
4640 && node
&& !TYPE_P (node
)
4641 && TREE_CONSTANT (node
))
4642 TREE_CONSTANT (t
) = 1;
4643 if (TREE_CODE_CLASS (code
) == tcc_reference
4644 && node
&& TREE_THIS_VOLATILE (node
))
4645 TREE_THIS_VOLATILE (t
) = 1;
4652 #define PROCESS_ARG(N) \
4654 TREE_OPERAND (t, N) = arg##N; \
4655 if (arg##N &&!TYPE_P (arg##N)) \
4657 if (TREE_SIDE_EFFECTS (arg##N)) \
4659 if (!TREE_READONLY (arg##N) \
4660 && !CONSTANT_CLASS_P (arg##N)) \
4661 (void) (read_only = 0); \
4662 if (!TREE_CONSTANT (arg##N)) \
4663 (void) (constant = 0); \
4668 build2 (enum tree_code code
, tree tt
, tree arg0
, tree arg1 MEM_STAT_DECL
)
4670 bool constant
, read_only
, side_effects
, div_by_zero
;
4673 gcc_assert (TREE_CODE_LENGTH (code
) == 2);
4675 if ((code
== MINUS_EXPR
|| code
== PLUS_EXPR
|| code
== MULT_EXPR
)
4676 && arg0
&& arg1
&& tt
&& POINTER_TYPE_P (tt
)
4677 /* When sizetype precision doesn't match that of pointers
4678 we need to be able to build explicit extensions or truncations
4679 of the offset argument. */
4680 && TYPE_PRECISION (sizetype
) == TYPE_PRECISION (tt
))
4681 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
4682 && TREE_CODE (arg1
) == INTEGER_CST
);
4684 if (code
== POINTER_PLUS_EXPR
&& arg0
&& arg1
&& tt
)
4685 gcc_assert (POINTER_TYPE_P (tt
) && POINTER_TYPE_P (TREE_TYPE (arg0
))
4686 && ptrofftype_p (TREE_TYPE (arg1
)));
4688 t
= make_node (code PASS_MEM_STAT
);
4691 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4692 result based on those same flags for the arguments. But if the
4693 arguments aren't really even `tree' expressions, we shouldn't be trying
4696 /* Expressions without side effects may be constant if their
4697 arguments are as well. */
4698 constant
= (TREE_CODE_CLASS (code
) == tcc_comparison
4699 || TREE_CODE_CLASS (code
) == tcc_binary
);
4701 side_effects
= TREE_SIDE_EFFECTS (t
);
4705 case TRUNC_DIV_EXPR
:
4707 case FLOOR_DIV_EXPR
:
4708 case ROUND_DIV_EXPR
:
4709 case EXACT_DIV_EXPR
:
4711 case FLOOR_MOD_EXPR
:
4712 case ROUND_MOD_EXPR
:
4713 case TRUNC_MOD_EXPR
:
4714 div_by_zero
= integer_zerop (arg1
);
4717 div_by_zero
= false;
4723 TREE_SIDE_EFFECTS (t
) = side_effects
;
4724 if (code
== MEM_REF
)
4726 if (arg0
&& TREE_CODE (arg0
) == ADDR_EXPR
)
4728 tree o
= TREE_OPERAND (arg0
, 0);
4729 TREE_READONLY (t
) = TREE_READONLY (o
);
4730 TREE_THIS_VOLATILE (t
) = TREE_THIS_VOLATILE (o
);
4735 TREE_READONLY (t
) = read_only
;
4736 /* Don't mark X / 0 as constant. */
4737 TREE_CONSTANT (t
) = constant
&& !div_by_zero
;
4738 TREE_THIS_VOLATILE (t
)
4739 = (TREE_CODE_CLASS (code
) == tcc_reference
4740 && arg0
&& TREE_THIS_VOLATILE (arg0
));
4748 build3 (enum tree_code code
, tree tt
, tree arg0
, tree arg1
,
4749 tree arg2 MEM_STAT_DECL
)
4751 bool constant
, read_only
, side_effects
;
4754 gcc_assert (TREE_CODE_LENGTH (code
) == 3);
4755 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
4757 t
= make_node (code PASS_MEM_STAT
);
4762 /* As a special exception, if COND_EXPR has NULL branches, we
4763 assume that it is a gimple statement and always consider
4764 it to have side effects. */
4765 if (code
== COND_EXPR
4766 && tt
== void_type_node
4767 && arg1
== NULL_TREE
4768 && arg2
== NULL_TREE
)
4769 side_effects
= true;
4771 side_effects
= TREE_SIDE_EFFECTS (t
);
4777 if (code
== COND_EXPR
)
4778 TREE_READONLY (t
) = read_only
;
4780 TREE_SIDE_EFFECTS (t
) = side_effects
;
4781 TREE_THIS_VOLATILE (t
)
4782 = (TREE_CODE_CLASS (code
) == tcc_reference
4783 && arg0
&& TREE_THIS_VOLATILE (arg0
));
4789 build4 (enum tree_code code
, tree tt
, tree arg0
, tree arg1
,
4790 tree arg2
, tree arg3 MEM_STAT_DECL
)
4792 bool constant
, read_only
, side_effects
;
4795 gcc_assert (TREE_CODE_LENGTH (code
) == 4);
4797 t
= make_node (code PASS_MEM_STAT
);
4800 side_effects
= TREE_SIDE_EFFECTS (t
);
4807 TREE_SIDE_EFFECTS (t
) = side_effects
;
4808 TREE_THIS_VOLATILE (t
)
4809 = (TREE_CODE_CLASS (code
) == tcc_reference
4810 && arg0
&& TREE_THIS_VOLATILE (arg0
));
4816 build5 (enum tree_code code
, tree tt
, tree arg0
, tree arg1
,
4817 tree arg2
, tree arg3
, tree arg4 MEM_STAT_DECL
)
4819 bool constant
, read_only
, side_effects
;
4822 gcc_assert (TREE_CODE_LENGTH (code
) == 5);
4824 t
= make_node (code PASS_MEM_STAT
);
4827 side_effects
= TREE_SIDE_EFFECTS (t
);
4835 TREE_SIDE_EFFECTS (t
) = side_effects
;
4836 if (code
== TARGET_MEM_REF
)
4838 if (arg0
&& TREE_CODE (arg0
) == ADDR_EXPR
)
4840 tree o
= TREE_OPERAND (arg0
, 0);
4841 TREE_READONLY (t
) = TREE_READONLY (o
);
4842 TREE_THIS_VOLATILE (t
) = TREE_THIS_VOLATILE (o
);
4846 TREE_THIS_VOLATILE (t
)
4847 = (TREE_CODE_CLASS (code
) == tcc_reference
4848 && arg0
&& TREE_THIS_VOLATILE (arg0
));
4853 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
4854 on the pointer PTR. */
4857 build_simple_mem_ref_loc (location_t loc
, tree ptr
)
4859 poly_int64 offset
= 0;
4860 tree ptype
= TREE_TYPE (ptr
);
4862 /* For convenience allow addresses that collapse to a simple base
4864 if (TREE_CODE (ptr
) == ADDR_EXPR
4865 && (handled_component_p (TREE_OPERAND (ptr
, 0))
4866 || TREE_CODE (TREE_OPERAND (ptr
, 0)) == MEM_REF
))
4868 ptr
= get_addr_base_and_unit_offset (TREE_OPERAND (ptr
, 0), &offset
);
4870 if (TREE_CODE (ptr
) == MEM_REF
)
4872 offset
+= mem_ref_offset (ptr
).force_shwi ();
4873 ptr
= TREE_OPERAND (ptr
, 0);
4876 ptr
= build_fold_addr_expr (ptr
);
4877 gcc_assert (is_gimple_reg (ptr
) || is_gimple_min_invariant (ptr
));
4879 tem
= build2 (MEM_REF
, TREE_TYPE (ptype
),
4880 ptr
, build_int_cst (ptype
, offset
));
4881 SET_EXPR_LOCATION (tem
, loc
);
4885 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
4888 mem_ref_offset (const_tree t
)
4890 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t
, 1)),
4894 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
4895 offsetted by OFFSET units. */
4898 build_invariant_address (tree type
, tree base
, poly_int64 offset
)
4900 tree ref
= fold_build2 (MEM_REF
, TREE_TYPE (type
),
4901 build_fold_addr_expr (base
),
4902 build_int_cst (ptr_type_node
, offset
));
4903 tree addr
= build1 (ADDR_EXPR
, type
, ref
);
4904 recompute_tree_invariant_for_addr_expr (addr
);
4908 /* Similar except don't specify the TREE_TYPE
4909 and leave the TREE_SIDE_EFFECTS as 0.
4910 It is permissible for arguments to be null,
4911 or even garbage if their values do not matter. */
4914 build_nt (enum tree_code code
, ...)
4921 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
4925 t
= make_node (code
);
4926 length
= TREE_CODE_LENGTH (code
);
4928 for (i
= 0; i
< length
; i
++)
4929 TREE_OPERAND (t
, i
) = va_arg (p
, tree
);
4935 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4939 build_nt_call_vec (tree fn
, vec
<tree
, va_gc
> *args
)
4944 ret
= build_vl_exp (CALL_EXPR
, vec_safe_length (args
) + 3);
4945 CALL_EXPR_FN (ret
) = fn
;
4946 CALL_EXPR_STATIC_CHAIN (ret
) = NULL_TREE
;
4947 FOR_EACH_VEC_SAFE_ELT (args
, ix
, t
)
4948 CALL_EXPR_ARG (ret
, ix
) = t
;
4952 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4953 We do NOT enter this node in any sort of symbol table.
4955 LOC is the location of the decl.
4957 layout_decl is used to set up the decl's storage layout.
4958 Other slots are initialized to 0 or null pointers. */
4961 build_decl (location_t loc
, enum tree_code code
, tree name
,
4962 tree type MEM_STAT_DECL
)
4966 t
= make_node (code PASS_MEM_STAT
);
4967 DECL_SOURCE_LOCATION (t
) = loc
;
4969 /* if (type == error_mark_node)
4970 type = integer_type_node; */
4971 /* That is not done, deliberately, so that having error_mark_node
4972 as the type can suppress useless errors in the use of this variable. */
4974 DECL_NAME (t
) = name
;
4975 TREE_TYPE (t
) = type
;
4977 if (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
)
4983 /* Builds and returns function declaration with NAME and TYPE. */
4986 build_fn_decl (const char *name
, tree type
)
4988 tree id
= get_identifier (name
);
4989 tree decl
= build_decl (input_location
, FUNCTION_DECL
, id
, type
);
4991 DECL_EXTERNAL (decl
) = 1;
4992 TREE_PUBLIC (decl
) = 1;
4993 DECL_ARTIFICIAL (decl
) = 1;
4994 TREE_NOTHROW (decl
) = 1;
4999 vec
<tree
, va_gc
> *all_translation_units
;
5001 /* Builds a new translation-unit decl with name NAME, queues it in the
5002 global list of translation-unit decls and returns it. */
5005 build_translation_unit_decl (tree name
)
5007 tree tu
= build_decl (UNKNOWN_LOCATION
, TRANSLATION_UNIT_DECL
,
5009 TRANSLATION_UNIT_LANGUAGE (tu
) = lang_hooks
.name
;
5010 vec_safe_push (all_translation_units
, tu
);
5015 /* BLOCK nodes are used to represent the structure of binding contours
5016 and declarations, once those contours have been exited and their contents
5017 compiled. This information is used for outputting debugging info. */
5020 build_block (tree vars
, tree subblocks
, tree supercontext
, tree chain
)
5022 tree block
= make_node (BLOCK
);
5024 BLOCK_VARS (block
) = vars
;
5025 BLOCK_SUBBLOCKS (block
) = subblocks
;
5026 BLOCK_SUPERCONTEXT (block
) = supercontext
;
5027 BLOCK_CHAIN (block
) = chain
;
5032 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5034 LOC is the location to use in tree T. */
5037 protected_set_expr_location (tree t
, location_t loc
)
5039 if (CAN_HAVE_LOCATION_P (t
))
5040 SET_EXPR_LOCATION (t
, loc
);
5043 /* Reset the expression *EXPR_P, a size or position.
5045 ??? We could reset all non-constant sizes or positions. But it's cheap
5046 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5048 We need to reset self-referential sizes or positions because they cannot
5049 be gimplified and thus can contain a CALL_EXPR after the gimplification
5050 is finished, which will run afoul of LTO streaming. And they need to be
5051 reset to something essentially dummy but not constant, so as to preserve
5052 the properties of the object they are attached to. */
5055 free_lang_data_in_one_sizepos (tree
*expr_p
)
5057 tree expr
= *expr_p
;
5058 if (CONTAINS_PLACEHOLDER_P (expr
))
5059 *expr_p
= build0 (PLACEHOLDER_EXPR
, TREE_TYPE (expr
));
5063 /* Reset all the fields in a binfo node BINFO. We only keep
5064 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5067 free_lang_data_in_binfo (tree binfo
)
5072 gcc_assert (TREE_CODE (binfo
) == TREE_BINFO
);
5074 BINFO_VIRTUALS (binfo
) = NULL_TREE
;
5075 BINFO_BASE_ACCESSES (binfo
) = NULL
;
5076 BINFO_INHERITANCE_CHAIN (binfo
) = NULL_TREE
;
5077 BINFO_SUBVTT_INDEX (binfo
) = NULL_TREE
;
5079 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo
), i
, t
)
5080 free_lang_data_in_binfo (t
);
5084 /* Reset all language specific information still present in TYPE. */
5087 free_lang_data_in_type (tree type
)
5089 gcc_assert (TYPE_P (type
));
5091 /* Give the FE a chance to remove its own data first. */
5092 lang_hooks
.free_lang_data (type
);
5094 TREE_LANG_FLAG_0 (type
) = 0;
5095 TREE_LANG_FLAG_1 (type
) = 0;
5096 TREE_LANG_FLAG_2 (type
) = 0;
5097 TREE_LANG_FLAG_3 (type
) = 0;
5098 TREE_LANG_FLAG_4 (type
) = 0;
5099 TREE_LANG_FLAG_5 (type
) = 0;
5100 TREE_LANG_FLAG_6 (type
) = 0;
5102 if (TREE_CODE (type
) == FUNCTION_TYPE
)
5104 /* Remove the const and volatile qualifiers from arguments. The
5105 C++ front end removes them, but the C front end does not,
5106 leading to false ODR violation errors when merging two
5107 instances of the same function signature compiled by
5108 different front ends. */
5109 for (tree p
= TYPE_ARG_TYPES (type
); p
; p
= TREE_CHAIN (p
))
5111 tree arg_type
= TREE_VALUE (p
);
5113 if (TYPE_READONLY (arg_type
) || TYPE_VOLATILE (arg_type
))
5115 int quals
= TYPE_QUALS (arg_type
)
5117 & ~TYPE_QUAL_VOLATILE
;
5118 TREE_VALUE (p
) = build_qualified_type (arg_type
, quals
);
5119 free_lang_data_in_type (TREE_VALUE (p
));
5121 /* C++ FE uses TREE_PURPOSE to store initial values. */
5122 TREE_PURPOSE (p
) = NULL
;
5125 else if (TREE_CODE (type
) == METHOD_TYPE
)
5126 for (tree p
= TYPE_ARG_TYPES (type
); p
; p
= TREE_CHAIN (p
))
5127 /* C++ FE uses TREE_PURPOSE to store initial values. */
5128 TREE_PURPOSE (p
) = NULL
;
5129 else if (RECORD_OR_UNION_TYPE_P (type
))
5131 /* Remove members that are not FIELD_DECLs from the field list
5132 of an aggregate. These occur in C++. */
5133 for (tree
*prev
= &TYPE_FIELDS (type
), member
; (member
= *prev
);)
5134 if (TREE_CODE (member
) == FIELD_DECL
)
5135 prev
= &DECL_CHAIN (member
);
5137 *prev
= DECL_CHAIN (member
);
5139 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
5140 and danagle the pointer from time to time. */
5141 if (TYPE_VFIELD (type
) && TREE_CODE (TYPE_VFIELD (type
)) != FIELD_DECL
)
5142 TYPE_VFIELD (type
) = NULL_TREE
;
5144 if (TYPE_BINFO (type
))
5146 free_lang_data_in_binfo (TYPE_BINFO (type
));
5147 /* We need to preserve link to bases and virtual table for all
5148 polymorphic types to make devirtualization machinery working. */
5149 if (!BINFO_VTABLE (TYPE_BINFO (type
))
5150 || !flag_devirtualize
)
5151 TYPE_BINFO (type
) = NULL
;
5154 else if (INTEGRAL_TYPE_P (type
)
5155 || SCALAR_FLOAT_TYPE_P (type
)
5156 || FIXED_POINT_TYPE_P (type
))
5158 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type
));
5159 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type
));
5162 TYPE_LANG_SLOT_1 (type
) = NULL_TREE
;
5164 free_lang_data_in_one_sizepos (&TYPE_SIZE (type
));
5165 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type
));
5167 if (TYPE_CONTEXT (type
)
5168 && TREE_CODE (TYPE_CONTEXT (type
)) == BLOCK
)
5170 tree ctx
= TYPE_CONTEXT (type
);
5173 ctx
= BLOCK_SUPERCONTEXT (ctx
);
5175 while (ctx
&& TREE_CODE (ctx
) == BLOCK
);
5176 TYPE_CONTEXT (type
) = ctx
;
5179 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5180 TYPE_DECL if the type doesn't have linkage. */
5181 if (! type_with_linkage_p (type
))
5182 TYPE_NAME (type
) = TYPE_IDENTIFIER (type
);
5186 /* Return true if DECL may need an assembler name to be set. */
5189 need_assembler_name_p (tree decl
)
5191 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5192 Rule merging. This makes type_odr_p to return true on those types during
5193 LTO and by comparing the mangled name, we can say what types are intended
5194 to be equivalent across compilation unit.
5196 We do not store names of type_in_anonymous_namespace_p.
5198 Record, union and enumeration type have linkage that allows use
5199 to check type_in_anonymous_namespace_p. We do not mangle compound types
5200 that always can be compared structurally.
5202 Similarly for builtin types, we compare properties of their main variant.
5203 A special case are integer types where mangling do make differences
5204 between char/signed char/unsigned char etc. Storing name for these makes
5205 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5206 See cp/mangle.c:write_builtin_type for details. */
5208 if (flag_lto_odr_type_mering
5209 && TREE_CODE (decl
) == TYPE_DECL
5211 && decl
== TYPE_NAME (TREE_TYPE (decl
))
5212 && TYPE_MAIN_VARIANT (TREE_TYPE (decl
)) == TREE_TYPE (decl
)
5213 && !TYPE_ARTIFICIAL (TREE_TYPE (decl
))
5214 && (type_with_linkage_p (TREE_TYPE (decl
))
5215 || TREE_CODE (TREE_TYPE (decl
)) == INTEGER_TYPE
)
5216 && !variably_modified_type_p (TREE_TYPE (decl
), NULL_TREE
))
5217 return !DECL_ASSEMBLER_NAME_SET_P (decl
);
5218 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5219 if (!VAR_OR_FUNCTION_DECL_P (decl
))
5222 /* If DECL already has its assembler name set, it does not need a
5224 if (!HAS_DECL_ASSEMBLER_NAME_P (decl
)
5225 || DECL_ASSEMBLER_NAME_SET_P (decl
))
5228 /* Abstract decls do not need an assembler name. */
5229 if (DECL_ABSTRACT_P (decl
))
5232 /* For VAR_DECLs, only static, public and external symbols need an
5235 && !TREE_STATIC (decl
)
5236 && !TREE_PUBLIC (decl
)
5237 && !DECL_EXTERNAL (decl
))
5240 if (TREE_CODE (decl
) == FUNCTION_DECL
)
5242 /* Do not set assembler name on builtins. Allow RTL expansion to
5243 decide whether to expand inline or via a regular call. */
5244 if (DECL_BUILT_IN (decl
)
5245 && DECL_BUILT_IN_CLASS (decl
) != BUILT_IN_FRONTEND
)
5248 /* Functions represented in the callgraph need an assembler name. */
5249 if (cgraph_node::get (decl
) != NULL
)
5252 /* Unused and not public functions don't need an assembler name. */
5253 if (!TREE_USED (decl
) && !TREE_PUBLIC (decl
))
5261 /* Reset all language specific information still present in symbol
5265 free_lang_data_in_decl (tree decl
)
5267 gcc_assert (DECL_P (decl
));
5269 /* Give the FE a chance to remove its own data first. */
5270 lang_hooks
.free_lang_data (decl
);
5272 TREE_LANG_FLAG_0 (decl
) = 0;
5273 TREE_LANG_FLAG_1 (decl
) = 0;
5274 TREE_LANG_FLAG_2 (decl
) = 0;
5275 TREE_LANG_FLAG_3 (decl
) = 0;
5276 TREE_LANG_FLAG_4 (decl
) = 0;
5277 TREE_LANG_FLAG_5 (decl
) = 0;
5278 TREE_LANG_FLAG_6 (decl
) = 0;
5280 free_lang_data_in_one_sizepos (&DECL_SIZE (decl
));
5281 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl
));
5282 if (TREE_CODE (decl
) == FIELD_DECL
)
5284 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl
));
5285 if (TREE_CODE (DECL_CONTEXT (decl
)) == QUAL_UNION_TYPE
)
5286 DECL_QUALIFIER (decl
) = NULL_TREE
;
5289 if (TREE_CODE (decl
) == FUNCTION_DECL
)
5291 struct cgraph_node
*node
;
5292 if (!(node
= cgraph_node::get (decl
))
5293 || (!node
->definition
&& !node
->clones
))
5296 node
->release_body ();
5299 release_function_body (decl
);
5300 DECL_ARGUMENTS (decl
) = NULL
;
5301 DECL_RESULT (decl
) = NULL
;
5302 DECL_INITIAL (decl
) = error_mark_node
;
5305 if (gimple_has_body_p (decl
) || (node
&& node
->thunk
.thunk_p
))
5309 /* If DECL has a gimple body, then the context for its
5310 arguments must be DECL. Otherwise, it doesn't really
5311 matter, as we will not be emitting any code for DECL. In
5312 general, there may be other instances of DECL created by
5313 the front end and since PARM_DECLs are generally shared,
5314 their DECL_CONTEXT changes as the replicas of DECL are
5315 created. The only time where DECL_CONTEXT is important
5316 is for the FUNCTION_DECLs that have a gimple body (since
5317 the PARM_DECL will be used in the function's body). */
5318 for (t
= DECL_ARGUMENTS (decl
); t
; t
= TREE_CHAIN (t
))
5319 DECL_CONTEXT (t
) = decl
;
5320 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl
))
5321 DECL_FUNCTION_SPECIFIC_TARGET (decl
)
5322 = target_option_default_node
;
5323 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl
))
5324 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl
)
5325 = optimization_default_node
;
5328 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5329 At this point, it is not needed anymore. */
5330 DECL_SAVED_TREE (decl
) = NULL_TREE
;
5332 /* Clear the abstract origin if it refers to a method.
5333 Otherwise dwarf2out.c will ICE as we splice functions out of
5334 TYPE_FIELDS and thus the origin will not be output
5336 if (DECL_ABSTRACT_ORIGIN (decl
)
5337 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl
))
5338 && RECORD_OR_UNION_TYPE_P
5339 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl
))))
5340 DECL_ABSTRACT_ORIGIN (decl
) = NULL_TREE
;
5342 /* Sometimes the C++ frontend doesn't manage to transform a temporary
5343 DECL_VINDEX referring to itself into a vtable slot number as it
5344 should. Happens with functions that are copied and then forgotten
5345 about. Just clear it, it won't matter anymore. */
5346 if (DECL_VINDEX (decl
) && !tree_fits_shwi_p (DECL_VINDEX (decl
)))
5347 DECL_VINDEX (decl
) = NULL_TREE
;
5349 else if (VAR_P (decl
))
5351 if ((DECL_EXTERNAL (decl
)
5352 && (!TREE_STATIC (decl
) || !TREE_READONLY (decl
)))
5353 || (decl_function_context (decl
) && !TREE_STATIC (decl
)))
5354 DECL_INITIAL (decl
) = NULL_TREE
;
5356 else if (TREE_CODE (decl
) == TYPE_DECL
)
5358 DECL_VISIBILITY (decl
) = VISIBILITY_DEFAULT
;
5359 DECL_VISIBILITY_SPECIFIED (decl
) = 0;
5360 DECL_INITIAL (decl
) = NULL_TREE
;
5362 else if (TREE_CODE (decl
) == FIELD_DECL
)
5363 DECL_INITIAL (decl
) = NULL_TREE
;
5364 else if (TREE_CODE (decl
) == TRANSLATION_UNIT_DECL
5365 && DECL_INITIAL (decl
)
5366 && TREE_CODE (DECL_INITIAL (decl
)) == BLOCK
)
5368 /* Strip builtins from the translation-unit BLOCK. We still have targets
5369 without builtin_decl_explicit support and also builtins are shared
5370 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5371 tree
*nextp
= &BLOCK_VARS (DECL_INITIAL (decl
));
5375 if (TREE_CODE (var
) == FUNCTION_DECL
5376 && DECL_BUILT_IN (var
))
5377 *nextp
= TREE_CHAIN (var
);
5379 nextp
= &TREE_CHAIN (var
);
5385 /* Data used when collecting DECLs and TYPEs for language data removal. */
5387 struct free_lang_data_d
5389 free_lang_data_d () : decls (100), types (100) {}
5391 /* Worklist to avoid excessive recursion. */
5392 auto_vec
<tree
> worklist
;
5394 /* Set of traversed objects. Used to avoid duplicate visits. */
5395 hash_set
<tree
> pset
;
5397 /* Array of symbols to process with free_lang_data_in_decl. */
5398 auto_vec
<tree
> decls
;
5400 /* Array of types to process with free_lang_data_in_type. */
5401 auto_vec
<tree
> types
;
5405 /* Add type or decl T to one of the list of tree nodes that need their
5406 language data removed. The lists are held inside FLD. */
5409 add_tree_to_fld_list (tree t
, struct free_lang_data_d
*fld
)
5412 fld
->decls
.safe_push (t
);
5413 else if (TYPE_P (t
))
5414 fld
->types
.safe_push (t
);
5419 /* Push tree node T into FLD->WORKLIST. */
5422 fld_worklist_push (tree t
, struct free_lang_data_d
*fld
)
5424 if (t
&& !is_lang_specific (t
) && !fld
->pset
.contains (t
))
5425 fld
->worklist
.safe_push ((t
));
5429 /* Operand callback helper for free_lang_data_in_node. *TP is the
5430 subtree operand being considered. */
5433 find_decls_types_r (tree
*tp
, int *ws
, void *data
)
5436 struct free_lang_data_d
*fld
= (struct free_lang_data_d
*) data
;
5438 if (TREE_CODE (t
) == TREE_LIST
)
5441 /* Language specific nodes will be removed, so there is no need
5442 to gather anything under them. */
5443 if (is_lang_specific (t
))
5451 /* Note that walk_tree does not traverse every possible field in
5452 decls, so we have to do our own traversals here. */
5453 add_tree_to_fld_list (t
, fld
);
5455 fld_worklist_push (DECL_NAME (t
), fld
);
5456 fld_worklist_push (DECL_CONTEXT (t
), fld
);
5457 fld_worklist_push (DECL_SIZE (t
), fld
);
5458 fld_worklist_push (DECL_SIZE_UNIT (t
), fld
);
5460 /* We are going to remove everything under DECL_INITIAL for
5461 TYPE_DECLs. No point walking them. */
5462 if (TREE_CODE (t
) != TYPE_DECL
)
5463 fld_worklist_push (DECL_INITIAL (t
), fld
);
5465 fld_worklist_push (DECL_ATTRIBUTES (t
), fld
);
5466 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t
), fld
);
5468 if (TREE_CODE (t
) == FUNCTION_DECL
)
5470 fld_worklist_push (DECL_ARGUMENTS (t
), fld
);
5471 fld_worklist_push (DECL_RESULT (t
), fld
);
5473 else if (TREE_CODE (t
) == TYPE_DECL
)
5475 fld_worklist_push (DECL_ORIGINAL_TYPE (t
), fld
);
5477 else if (TREE_CODE (t
) == FIELD_DECL
)
5479 fld_worklist_push (DECL_FIELD_OFFSET (t
), fld
);
5480 fld_worklist_push (DECL_BIT_FIELD_TYPE (t
), fld
);
5481 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t
), fld
);
5482 fld_worklist_push (DECL_FCONTEXT (t
), fld
);
5485 if ((VAR_P (t
) || TREE_CODE (t
) == PARM_DECL
)
5486 && DECL_HAS_VALUE_EXPR_P (t
))
5487 fld_worklist_push (DECL_VALUE_EXPR (t
), fld
);
5489 if (TREE_CODE (t
) != FIELD_DECL
5490 && TREE_CODE (t
) != TYPE_DECL
)
5491 fld_worklist_push (TREE_CHAIN (t
), fld
);
5494 else if (TYPE_P (t
))
5496 /* Note that walk_tree does not traverse every possible field in
5497 types, so we have to do our own traversals here. */
5498 add_tree_to_fld_list (t
, fld
);
5500 if (!RECORD_OR_UNION_TYPE_P (t
))
5501 fld_worklist_push (TYPE_CACHED_VALUES (t
), fld
);
5502 fld_worklist_push (TYPE_SIZE (t
), fld
);
5503 fld_worklist_push (TYPE_SIZE_UNIT (t
), fld
);
5504 fld_worklist_push (TYPE_ATTRIBUTES (t
), fld
);
5505 fld_worklist_push (TYPE_POINTER_TO (t
), fld
);
5506 fld_worklist_push (TYPE_REFERENCE_TO (t
), fld
);
5507 fld_worklist_push (TYPE_NAME (t
), fld
);
5508 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
5509 them and thus do not and want not to reach unused pointer types
5511 if (!POINTER_TYPE_P (t
))
5512 fld_worklist_push (TYPE_MIN_VALUE_RAW (t
), fld
);
5513 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
5514 if (!RECORD_OR_UNION_TYPE_P (t
))
5515 fld_worklist_push (TYPE_MAX_VALUE_RAW (t
), fld
);
5516 fld_worklist_push (TYPE_MAIN_VARIANT (t
), fld
);
5517 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
5518 do not and want not to reach unused variants this way. */
5519 if (TYPE_CONTEXT (t
))
5521 tree ctx
= TYPE_CONTEXT (t
);
5522 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
5523 So push that instead. */
5524 while (ctx
&& TREE_CODE (ctx
) == BLOCK
)
5525 ctx
= BLOCK_SUPERCONTEXT (ctx
);
5526 fld_worklist_push (ctx
, fld
);
5528 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
5529 and want not to reach unused types this way. */
5531 if (RECORD_OR_UNION_TYPE_P (t
) && TYPE_BINFO (t
))
5535 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t
)), i
, tem
)
5536 fld_worklist_push (TREE_TYPE (tem
), fld
);
5537 fld_worklist_push (BINFO_VIRTUALS (TYPE_BINFO (t
)), fld
);
5539 if (RECORD_OR_UNION_TYPE_P (t
))
5542 /* Push all TYPE_FIELDS - there can be interleaving interesting
5543 and non-interesting things. */
5544 tem
= TYPE_FIELDS (t
);
5547 if (TREE_CODE (tem
) == FIELD_DECL
5548 || (TREE_CODE (tem
) == TYPE_DECL
5549 && !DECL_IGNORED_P (tem
)
5550 && debug_info_level
> DINFO_LEVEL_TERSE
5551 && !is_redundant_typedef (tem
)))
5552 fld_worklist_push (tem
, fld
);
5553 tem
= TREE_CHAIN (tem
);
5557 fld_worklist_push (TYPE_STUB_DECL (t
), fld
);
5560 else if (TREE_CODE (t
) == BLOCK
)
5563 for (tem
= BLOCK_VARS (t
); tem
; tem
= TREE_CHAIN (tem
))
5564 fld_worklist_push (tem
, fld
);
5565 for (tem
= BLOCK_SUBBLOCKS (t
); tem
; tem
= BLOCK_CHAIN (tem
))
5566 fld_worklist_push (tem
, fld
);
5567 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t
), fld
);
5570 if (TREE_CODE (t
) != IDENTIFIER_NODE
5571 && CODE_CONTAINS_STRUCT (TREE_CODE (t
), TS_TYPED
))
5572 fld_worklist_push (TREE_TYPE (t
), fld
);
5578 /* Find decls and types in T. */
5581 find_decls_types (tree t
, struct free_lang_data_d
*fld
)
5585 if (!fld
->pset
.contains (t
))
5586 walk_tree (&t
, find_decls_types_r
, fld
, &fld
->pset
);
5587 if (fld
->worklist
.is_empty ())
5589 t
= fld
->worklist
.pop ();
5593 /* Translate all the types in LIST with the corresponding runtime
5597 get_eh_types_for_runtime (tree list
)
5601 if (list
== NULL_TREE
)
5604 head
= build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list
)));
5606 list
= TREE_CHAIN (list
);
5609 tree n
= build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list
)));
5610 TREE_CHAIN (prev
) = n
;
5611 prev
= TREE_CHAIN (prev
);
5612 list
= TREE_CHAIN (list
);
5619 /* Find decls and types referenced in EH region R and store them in
5620 FLD->DECLS and FLD->TYPES. */
5623 find_decls_types_in_eh_region (eh_region r
, struct free_lang_data_d
*fld
)
5634 /* The types referenced in each catch must first be changed to the
5635 EH types used at runtime. This removes references to FE types
5637 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
5639 c
->type_list
= get_eh_types_for_runtime (c
->type_list
);
5640 walk_tree (&c
->type_list
, find_decls_types_r
, fld
, &fld
->pset
);
5645 case ERT_ALLOWED_EXCEPTIONS
:
5646 r
->u
.allowed
.type_list
5647 = get_eh_types_for_runtime (r
->u
.allowed
.type_list
);
5648 walk_tree (&r
->u
.allowed
.type_list
, find_decls_types_r
, fld
, &fld
->pset
);
5651 case ERT_MUST_NOT_THROW
:
5652 walk_tree (&r
->u
.must_not_throw
.failure_decl
,
5653 find_decls_types_r
, fld
, &fld
->pset
);
5659 /* Find decls and types referenced in cgraph node N and store them in
5660 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5661 look for *every* kind of DECL and TYPE node reachable from N,
5662 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5663 NAMESPACE_DECLs, etc). */
5666 find_decls_types_in_node (struct cgraph_node
*n
, struct free_lang_data_d
*fld
)
5669 struct function
*fn
;
5673 find_decls_types (n
->decl
, fld
);
5675 if (!gimple_has_body_p (n
->decl
))
5678 gcc_assert (current_function_decl
== NULL_TREE
&& cfun
== NULL
);
5680 fn
= DECL_STRUCT_FUNCTION (n
->decl
);
5682 /* Traverse locals. */
5683 FOR_EACH_LOCAL_DECL (fn
, ix
, t
)
5684 find_decls_types (t
, fld
);
5686 /* Traverse EH regions in FN. */
5689 FOR_ALL_EH_REGION_FN (r
, fn
)
5690 find_decls_types_in_eh_region (r
, fld
);
5693 /* Traverse every statement in FN. */
5694 FOR_EACH_BB_FN (bb
, fn
)
5697 gimple_stmt_iterator si
;
5700 for (psi
= gsi_start_phis (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
5702 gphi
*phi
= psi
.phi ();
5704 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5706 tree
*arg_p
= gimple_phi_arg_def_ptr (phi
, i
);
5707 find_decls_types (*arg_p
, fld
);
5711 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5713 gimple
*stmt
= gsi_stmt (si
);
5715 if (is_gimple_call (stmt
))
5716 find_decls_types (gimple_call_fntype (stmt
), fld
);
5718 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
5720 tree arg
= gimple_op (stmt
, i
);
5721 find_decls_types (arg
, fld
);
5728 /* Find decls and types referenced in varpool node N and store them in
5729 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
5730 look for *every* kind of DECL and TYPE node reachable from N,
5731 including those embedded inside types and decls (i.e,, TYPE_DECLs,
5732 NAMESPACE_DECLs, etc). */
5735 find_decls_types_in_var (varpool_node
*v
, struct free_lang_data_d
*fld
)
5737 find_decls_types (v
->decl
, fld
);
5740 /* If T needs an assembler name, have one created for it. */
5743 assign_assembler_name_if_needed (tree t
)
5745 if (need_assembler_name_p (t
))
5747 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
5748 diagnostics that use input_location to show locus
5749 information. The problem here is that, at this point,
5750 input_location is generally anchored to the end of the file
5751 (since the parser is long gone), so we don't have a good
5752 position to pin it to.
5754 To alleviate this problem, this uses the location of T's
5755 declaration. Examples of this are
5756 testsuite/g++.dg/template/cond2.C and
5757 testsuite/g++.dg/template/pr35240.C. */
5758 location_t saved_location
= input_location
;
5759 input_location
= DECL_SOURCE_LOCATION (t
);
5761 decl_assembler_name (t
);
5763 input_location
= saved_location
;
5768 /* Free language specific information for every operand and expression
5769 in every node of the call graph. This process operates in three stages:
5771 1- Every callgraph node and varpool node is traversed looking for
5772 decls and types embedded in them. This is a more exhaustive
5773 search than that done by find_referenced_vars, because it will
5774 also collect individual fields, decls embedded in types, etc.
5776 2- All the decls found are sent to free_lang_data_in_decl.
5778 3- All the types found are sent to free_lang_data_in_type.
5780 The ordering between decls and types is important because
5781 free_lang_data_in_decl sets assembler names, which includes
5782 mangling. So types cannot be freed up until assembler names have
5786 free_lang_data_in_cgraph (void)
5788 struct cgraph_node
*n
;
5790 struct free_lang_data_d fld
;
5795 /* Find decls and types in the body of every function in the callgraph. */
5796 FOR_EACH_FUNCTION (n
)
5797 find_decls_types_in_node (n
, &fld
);
5799 FOR_EACH_VEC_SAFE_ELT (alias_pairs
, i
, p
)
5800 find_decls_types (p
->decl
, &fld
);
5802 /* Find decls and types in every varpool symbol. */
5803 FOR_EACH_VARIABLE (v
)
5804 find_decls_types_in_var (v
, &fld
);
5806 /* Set the assembler name on every decl found. We need to do this
5807 now because free_lang_data_in_decl will invalidate data needed
5808 for mangling. This breaks mangling on interdependent decls. */
5809 FOR_EACH_VEC_ELT (fld
.decls
, i
, t
)
5810 assign_assembler_name_if_needed (t
);
5812 /* Traverse every decl found freeing its language data. */
5813 FOR_EACH_VEC_ELT (fld
.decls
, i
, t
)
5814 free_lang_data_in_decl (t
);
5816 /* Traverse every type found freeing its language data. */
5817 FOR_EACH_VEC_ELT (fld
.types
, i
, t
)
5818 free_lang_data_in_type (t
);
5821 FOR_EACH_VEC_ELT (fld
.types
, i
, t
)
5827 /* Free resources that are used by FE but are not needed once they are done. */
5830 free_lang_data (void)
5834 /* If we are the LTO frontend we have freed lang-specific data already. */
5836 || (!flag_generate_lto
&& !flag_generate_offload
))
5839 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
5840 if (vec_safe_is_empty (all_translation_units
))
5841 build_translation_unit_decl (NULL_TREE
);
5843 /* Allocate and assign alias sets to the standard integer types
5844 while the slots are still in the way the frontends generated them. */
5845 for (i
= 0; i
< itk_none
; ++i
)
5846 if (integer_types
[i
])
5847 TYPE_ALIAS_SET (integer_types
[i
]) = get_alias_set (integer_types
[i
]);
5849 /* Traverse the IL resetting language specific information for
5850 operands, expressions, etc. */
5851 free_lang_data_in_cgraph ();
5853 /* Create gimple variants for common types. */
5854 for (unsigned i
= 0;
5855 i
< sizeof (builtin_structptr_types
) / sizeof (builtin_structptr_type
);
5857 builtin_structptr_types
[i
].node
= builtin_structptr_types
[i
].base
;
5859 /* Reset some langhooks. Do not reset types_compatible_p, it may
5860 still be used indirectly via the get_alias_set langhook. */
5861 lang_hooks
.dwarf_name
= lhd_dwarf_name
;
5862 lang_hooks
.decl_printable_name
= gimple_decl_printable_name
;
5863 lang_hooks
.gimplify_expr
= lhd_gimplify_expr
;
5865 /* We do not want the default decl_assembler_name implementation,
5866 rather if we have fixed everything we want a wrapper around it
5867 asserting that all non-local symbols already got their assembler
5868 name and only produce assembler names for local symbols. Or rather
5869 make sure we never call decl_assembler_name on local symbols and
5870 devise a separate, middle-end private scheme for it. */
5872 /* Reset diagnostic machinery. */
5873 tree_diagnostics_defaults (global_dc
);
5881 const pass_data pass_data_ipa_free_lang_data
=
5883 SIMPLE_IPA_PASS
, /* type */
5884 "*free_lang_data", /* name */
5885 OPTGROUP_NONE
, /* optinfo_flags */
5886 TV_IPA_FREE_LANG_DATA
, /* tv_id */
5887 0, /* properties_required */
5888 0, /* properties_provided */
5889 0, /* properties_destroyed */
5890 0, /* todo_flags_start */
5891 0, /* todo_flags_finish */
5894 class pass_ipa_free_lang_data
: public simple_ipa_opt_pass
5897 pass_ipa_free_lang_data (gcc::context
*ctxt
)
5898 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data
, ctxt
)
5901 /* opt_pass methods: */
5902 virtual unsigned int execute (function
*) { return free_lang_data (); }
5904 }; // class pass_ipa_free_lang_data
5908 simple_ipa_opt_pass
*
5909 make_pass_ipa_free_lang_data (gcc::context
*ctxt
)
5911 return new pass_ipa_free_lang_data (ctxt
);
5914 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5915 of the various TYPE_QUAL values. */
5918 set_type_quals (tree type
, int type_quals
)
5920 TYPE_READONLY (type
) = (type_quals
& TYPE_QUAL_CONST
) != 0;
5921 TYPE_VOLATILE (type
) = (type_quals
& TYPE_QUAL_VOLATILE
) != 0;
5922 TYPE_RESTRICT (type
) = (type_quals
& TYPE_QUAL_RESTRICT
) != 0;
5923 TYPE_ATOMIC (type
) = (type_quals
& TYPE_QUAL_ATOMIC
) != 0;
5924 TYPE_ADDR_SPACE (type
) = DECODE_QUAL_ADDR_SPACE (type_quals
);
5927 /* Returns true iff CAND and BASE have equivalent language-specific
5931 check_lang_type (const_tree cand
, const_tree base
)
5933 if (lang_hooks
.types
.type_hash_eq
== NULL
)
5935 /* type_hash_eq currently only applies to these types. */
5936 if (TREE_CODE (cand
) != FUNCTION_TYPE
5937 && TREE_CODE (cand
) != METHOD_TYPE
)
5939 return lang_hooks
.types
.type_hash_eq (cand
, base
);
5942 /* Returns true iff unqualified CAND and BASE are equivalent. */
5945 check_base_type (const_tree cand
, const_tree base
)
5947 return (TYPE_NAME (cand
) == TYPE_NAME (base
)
5948 /* Apparently this is needed for Objective-C. */
5949 && TYPE_CONTEXT (cand
) == TYPE_CONTEXT (base
)
5950 /* Check alignment. */
5951 && TYPE_ALIGN (cand
) == TYPE_ALIGN (base
)
5952 && attribute_list_equal (TYPE_ATTRIBUTES (cand
),
5953 TYPE_ATTRIBUTES (base
)));
5956 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5959 check_qualified_type (const_tree cand
, const_tree base
, int type_quals
)
5961 return (TYPE_QUALS (cand
) == type_quals
5962 && check_base_type (cand
, base
)
5963 && check_lang_type (cand
, base
));
5966 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5969 check_aligned_type (const_tree cand
, const_tree base
, unsigned int align
)
5971 return (TYPE_QUALS (cand
) == TYPE_QUALS (base
)
5972 && TYPE_NAME (cand
) == TYPE_NAME (base
)
5973 /* Apparently this is needed for Objective-C. */
5974 && TYPE_CONTEXT (cand
) == TYPE_CONTEXT (base
)
5975 /* Check alignment. */
5976 && TYPE_ALIGN (cand
) == align
5977 && attribute_list_equal (TYPE_ATTRIBUTES (cand
),
5978 TYPE_ATTRIBUTES (base
))
5979 && check_lang_type (cand
, base
));
5982 /* This function checks to see if TYPE matches the size one of the built-in
5983 atomic types, and returns that core atomic type. */
5986 find_atomic_core_type (tree type
)
5988 tree base_atomic_type
;
5990 /* Only handle complete types. */
5991 if (!tree_fits_uhwi_p (TYPE_SIZE (type
)))
5994 switch (tree_to_uhwi (TYPE_SIZE (type
)))
5997 base_atomic_type
= atomicQI_type_node
;
6001 base_atomic_type
= atomicHI_type_node
;
6005 base_atomic_type
= atomicSI_type_node
;
6009 base_atomic_type
= atomicDI_type_node
;
6013 base_atomic_type
= atomicTI_type_node
;
6017 base_atomic_type
= NULL_TREE
;
6020 return base_atomic_type
;
6023 /* Return a version of the TYPE, qualified as indicated by the
6024 TYPE_QUALS, if one exists. If no qualified version exists yet,
6025 return NULL_TREE. */
6028 get_qualified_type (tree type
, int type_quals
)
6032 if (TYPE_QUALS (type
) == type_quals
)
6035 /* Search the chain of variants to see if there is already one there just
6036 like the one we need to have. If so, use that existing one. We must
6037 preserve the TYPE_NAME, since there is code that depends on this. */
6038 for (t
= TYPE_MAIN_VARIANT (type
); t
; t
= TYPE_NEXT_VARIANT (t
))
6039 if (check_qualified_type (t
, type
, type_quals
))
6045 /* Like get_qualified_type, but creates the type if it does not
6046 exist. This function never returns NULL_TREE. */
6049 build_qualified_type (tree type
, int type_quals MEM_STAT_DECL
)
6053 /* See if we already have the appropriate qualified variant. */
6054 t
= get_qualified_type (type
, type_quals
);
6056 /* If not, build it. */
6059 t
= build_variant_type_copy (type PASS_MEM_STAT
);
6060 set_type_quals (t
, type_quals
);
6062 if (((type_quals
& TYPE_QUAL_ATOMIC
) == TYPE_QUAL_ATOMIC
))
6064 /* See if this object can map to a basic atomic type. */
6065 tree atomic_type
= find_atomic_core_type (type
);
6068 /* Ensure the alignment of this type is compatible with
6069 the required alignment of the atomic type. */
6070 if (TYPE_ALIGN (atomic_type
) > TYPE_ALIGN (t
))
6071 SET_TYPE_ALIGN (t
, TYPE_ALIGN (atomic_type
));
6075 if (TYPE_STRUCTURAL_EQUALITY_P (type
))
6076 /* Propagate structural equality. */
6077 SET_TYPE_STRUCTURAL_EQUALITY (t
);
6078 else if (TYPE_CANONICAL (type
) != type
)
6079 /* Build the underlying canonical type, since it is different
6082 tree c
= build_qualified_type (TYPE_CANONICAL (type
), type_quals
);
6083 TYPE_CANONICAL (t
) = TYPE_CANONICAL (c
);
6086 /* T is its own canonical type. */
6087 TYPE_CANONICAL (t
) = t
;
6094 /* Create a variant of type T with alignment ALIGN. */
6097 build_aligned_type (tree type
, unsigned int align
)
6101 if (TYPE_PACKED (type
)
6102 || TYPE_ALIGN (type
) == align
)
6105 for (t
= TYPE_MAIN_VARIANT (type
); t
; t
= TYPE_NEXT_VARIANT (t
))
6106 if (check_aligned_type (t
, type
, align
))
6109 t
= build_variant_type_copy (type
);
6110 SET_TYPE_ALIGN (t
, align
);
6111 TYPE_USER_ALIGN (t
) = 1;
6116 /* Create a new distinct copy of TYPE. The new type is made its own
6117 MAIN_VARIANT. If TYPE requires structural equality checks, the
6118 resulting type requires structural equality checks; otherwise, its
6119 TYPE_CANONICAL points to itself. */
6122 build_distinct_type_copy (tree type MEM_STAT_DECL
)
6124 tree t
= copy_node (type PASS_MEM_STAT
);
6126 TYPE_POINTER_TO (t
) = 0;
6127 TYPE_REFERENCE_TO (t
) = 0;
6129 /* Set the canonical type either to a new equivalence class, or
6130 propagate the need for structural equality checks. */
6131 if (TYPE_STRUCTURAL_EQUALITY_P (type
))
6132 SET_TYPE_STRUCTURAL_EQUALITY (t
);
6134 TYPE_CANONICAL (t
) = t
;
6136 /* Make it its own variant. */
6137 TYPE_MAIN_VARIANT (t
) = t
;
6138 TYPE_NEXT_VARIANT (t
) = 0;
6140 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6141 whose TREE_TYPE is not t. This can also happen in the Ada
6142 frontend when using subtypes. */
6147 /* Create a new variant of TYPE, equivalent but distinct. This is so
6148 the caller can modify it. TYPE_CANONICAL for the return type will
6149 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6150 are considered equal by the language itself (or that both types
6151 require structural equality checks). */
6154 build_variant_type_copy (tree type MEM_STAT_DECL
)
6156 tree t
, m
= TYPE_MAIN_VARIANT (type
);
6158 t
= build_distinct_type_copy (type PASS_MEM_STAT
);
6160 /* Since we're building a variant, assume that it is a non-semantic
6161 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6162 TYPE_CANONICAL (t
) = TYPE_CANONICAL (type
);
6163 /* Type variants have no alias set defined. */
6164 TYPE_ALIAS_SET (t
) = -1;
6166 /* Add the new type to the chain of variants of TYPE. */
6167 TYPE_NEXT_VARIANT (t
) = TYPE_NEXT_VARIANT (m
);
6168 TYPE_NEXT_VARIANT (m
) = t
;
6169 TYPE_MAIN_VARIANT (t
) = m
;
6174 /* Return true if the from tree in both tree maps are equal. */
6177 tree_map_base_eq (const void *va
, const void *vb
)
6179 const struct tree_map_base
*const a
= (const struct tree_map_base
*) va
,
6180 *const b
= (const struct tree_map_base
*) vb
;
6181 return (a
->from
== b
->from
);
6184 /* Hash a from tree in a tree_base_map. */
6187 tree_map_base_hash (const void *item
)
6189 return htab_hash_pointer (((const struct tree_map_base
*)item
)->from
);
6192 /* Return true if this tree map structure is marked for garbage collection
6193 purposes. We simply return true if the from tree is marked, so that this
6194 structure goes away when the from tree goes away. */
6197 tree_map_base_marked_p (const void *p
)
6199 return ggc_marked_p (((const struct tree_map_base
*) p
)->from
);
6202 /* Hash a from tree in a tree_map. */
6205 tree_map_hash (const void *item
)
6207 return (((const struct tree_map
*) item
)->hash
);
6210 /* Hash a from tree in a tree_decl_map. */
6213 tree_decl_map_hash (const void *item
)
6215 return DECL_UID (((const struct tree_decl_map
*) item
)->base
.from
);
6218 /* Return the initialization priority for DECL. */
6221 decl_init_priority_lookup (tree decl
)
6223 symtab_node
*snode
= symtab_node::get (decl
);
6226 return DEFAULT_INIT_PRIORITY
;
6228 snode
->get_init_priority ();
6231 /* Return the finalization priority for DECL. */
6234 decl_fini_priority_lookup (tree decl
)
6236 cgraph_node
*node
= cgraph_node::get (decl
);
6239 return DEFAULT_INIT_PRIORITY
;
6241 node
->get_fini_priority ();
6244 /* Set the initialization priority for DECL to PRIORITY. */
6247 decl_init_priority_insert (tree decl
, priority_type priority
)
6249 struct symtab_node
*snode
;
6251 if (priority
== DEFAULT_INIT_PRIORITY
)
6253 snode
= symtab_node::get (decl
);
6257 else if (VAR_P (decl
))
6258 snode
= varpool_node::get_create (decl
);
6260 snode
= cgraph_node::get_create (decl
);
6261 snode
->set_init_priority (priority
);
6264 /* Set the finalization priority for DECL to PRIORITY. */
6267 decl_fini_priority_insert (tree decl
, priority_type priority
)
6269 struct cgraph_node
*node
;
6271 if (priority
== DEFAULT_INIT_PRIORITY
)
6273 node
= cgraph_node::get (decl
);
6278 node
= cgraph_node::get_create (decl
);
6279 node
->set_fini_priority (priority
);
6282 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6285 print_debug_expr_statistics (void)
6287 fprintf (stderr
, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6288 (long) debug_expr_for_decl
->size (),
6289 (long) debug_expr_for_decl
->elements (),
6290 debug_expr_for_decl
->collisions ());
6293 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6296 print_value_expr_statistics (void)
6298 fprintf (stderr
, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6299 (long) value_expr_for_decl
->size (),
6300 (long) value_expr_for_decl
->elements (),
6301 value_expr_for_decl
->collisions ());
6304 /* Lookup a debug expression for FROM, and return it if we find one. */
6307 decl_debug_expr_lookup (tree from
)
6309 struct tree_decl_map
*h
, in
;
6310 in
.base
.from
= from
;
6312 h
= debug_expr_for_decl
->find_with_hash (&in
, DECL_UID (from
));
6318 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6321 decl_debug_expr_insert (tree from
, tree to
)
6323 struct tree_decl_map
*h
;
6325 h
= ggc_alloc
<tree_decl_map
> ();
6326 h
->base
.from
= from
;
6328 *debug_expr_for_decl
->find_slot_with_hash (h
, DECL_UID (from
), INSERT
) = h
;
6331 /* Lookup a value expression for FROM, and return it if we find one. */
6334 decl_value_expr_lookup (tree from
)
6336 struct tree_decl_map
*h
, in
;
6337 in
.base
.from
= from
;
6339 h
= value_expr_for_decl
->find_with_hash (&in
, DECL_UID (from
));
6345 /* Insert a mapping FROM->TO in the value expression hashtable. */
6348 decl_value_expr_insert (tree from
, tree to
)
6350 struct tree_decl_map
*h
;
6352 h
= ggc_alloc
<tree_decl_map
> ();
6353 h
->base
.from
= from
;
6355 *value_expr_for_decl
->find_slot_with_hash (h
, DECL_UID (from
), INSERT
) = h
;
6358 /* Lookup a vector of debug arguments for FROM, and return it if we
6362 decl_debug_args_lookup (tree from
)
6364 struct tree_vec_map
*h
, in
;
6366 if (!DECL_HAS_DEBUG_ARGS_P (from
))
6368 gcc_checking_assert (debug_args_for_decl
!= NULL
);
6369 in
.base
.from
= from
;
6370 h
= debug_args_for_decl
->find_with_hash (&in
, DECL_UID (from
));
6376 /* Insert a mapping FROM->empty vector of debug arguments in the value
6377 expression hashtable. */
6380 decl_debug_args_insert (tree from
)
6382 struct tree_vec_map
*h
;
6385 if (DECL_HAS_DEBUG_ARGS_P (from
))
6386 return decl_debug_args_lookup (from
);
6387 if (debug_args_for_decl
== NULL
)
6388 debug_args_for_decl
= hash_table
<tree_vec_map_cache_hasher
>::create_ggc (64);
6389 h
= ggc_alloc
<tree_vec_map
> ();
6390 h
->base
.from
= from
;
6392 loc
= debug_args_for_decl
->find_slot_with_hash (h
, DECL_UID (from
), INSERT
);
6394 DECL_HAS_DEBUG_ARGS_P (from
) = 1;
6398 /* Hashing of types so that we don't make duplicates.
6399 The entry point is `type_hash_canon'. */
6401 /* Generate the default hash code for TYPE. This is designed for
6402 speed, rather than maximum entropy. */
6405 type_hash_canon_hash (tree type
)
6407 inchash::hash hstate
;
6409 hstate
.add_int (TREE_CODE (type
));
6411 if (TREE_TYPE (type
))
6412 hstate
.add_object (TYPE_HASH (TREE_TYPE (type
)));
6414 for (tree t
= TYPE_ATTRIBUTES (type
); t
; t
= TREE_CHAIN (t
))
6415 /* Just the identifier is adequate to distinguish. */
6416 hstate
.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t
)));
6418 switch (TREE_CODE (type
))
6421 hstate
.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type
)));
6424 for (tree t
= TYPE_ARG_TYPES (type
); t
; t
= TREE_CHAIN (t
))
6425 if (TREE_VALUE (t
) != error_mark_node
)
6426 hstate
.add_object (TYPE_HASH (TREE_VALUE (t
)));
6430 hstate
.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type
)));
6435 if (TYPE_DOMAIN (type
))
6436 hstate
.add_object (TYPE_HASH (TYPE_DOMAIN (type
)));
6437 if (!AGGREGATE_TYPE_P (TREE_TYPE (type
)))
6439 unsigned typeless
= TYPE_TYPELESS_STORAGE (type
);
6440 hstate
.add_object (typeless
);
6447 tree t
= TYPE_MAX_VALUE (type
);
6449 t
= TYPE_MIN_VALUE (type
);
6450 for (int i
= 0; i
< TREE_INT_CST_NUNITS (t
); i
++)
6451 hstate
.add_object (TREE_INT_CST_ELT (t
, i
));
6456 case FIXED_POINT_TYPE
:
6458 unsigned prec
= TYPE_PRECISION (type
);
6459 hstate
.add_object (prec
);
6464 hstate
.add_poly_int (TYPE_VECTOR_SUBPARTS (type
));
6471 return hstate
.end ();
6474 /* These are the Hashtable callback functions. */
6476 /* Returns true iff the types are equivalent. */
6479 type_cache_hasher::equal (type_hash
*a
, type_hash
*b
)
6481 /* First test the things that are the same for all types. */
6482 if (a
->hash
!= b
->hash
6483 || TREE_CODE (a
->type
) != TREE_CODE (b
->type
)
6484 || TREE_TYPE (a
->type
) != TREE_TYPE (b
->type
)
6485 || !attribute_list_equal (TYPE_ATTRIBUTES (a
->type
),
6486 TYPE_ATTRIBUTES (b
->type
))
6487 || (TREE_CODE (a
->type
) != COMPLEX_TYPE
6488 && TYPE_NAME (a
->type
) != TYPE_NAME (b
->type
)))
6491 /* Be careful about comparing arrays before and after the element type
6492 has been completed; don't compare TYPE_ALIGN unless both types are
6494 if (COMPLETE_TYPE_P (a
->type
) && COMPLETE_TYPE_P (b
->type
)
6495 && (TYPE_ALIGN (a
->type
) != TYPE_ALIGN (b
->type
)
6496 || TYPE_MODE (a
->type
) != TYPE_MODE (b
->type
)))
6499 switch (TREE_CODE (a
->type
))
6504 case REFERENCE_TYPE
:
6509 return known_eq (TYPE_VECTOR_SUBPARTS (a
->type
),
6510 TYPE_VECTOR_SUBPARTS (b
->type
));
6513 if (TYPE_VALUES (a
->type
) != TYPE_VALUES (b
->type
)
6514 && !(TYPE_VALUES (a
->type
)
6515 && TREE_CODE (TYPE_VALUES (a
->type
)) == TREE_LIST
6516 && TYPE_VALUES (b
->type
)
6517 && TREE_CODE (TYPE_VALUES (b
->type
)) == TREE_LIST
6518 && type_list_equal (TYPE_VALUES (a
->type
),
6519 TYPE_VALUES (b
->type
))))
6527 if (TYPE_PRECISION (a
->type
) != TYPE_PRECISION (b
->type
))
6529 return ((TYPE_MAX_VALUE (a
->type
) == TYPE_MAX_VALUE (b
->type
)
6530 || tree_int_cst_equal (TYPE_MAX_VALUE (a
->type
),
6531 TYPE_MAX_VALUE (b
->type
)))
6532 && (TYPE_MIN_VALUE (a
->type
) == TYPE_MIN_VALUE (b
->type
)
6533 || tree_int_cst_equal (TYPE_MIN_VALUE (a
->type
),
6534 TYPE_MIN_VALUE (b
->type
))));
6536 case FIXED_POINT_TYPE
:
6537 return TYPE_SATURATING (a
->type
) == TYPE_SATURATING (b
->type
);
6540 return TYPE_OFFSET_BASETYPE (a
->type
) == TYPE_OFFSET_BASETYPE (b
->type
);
6543 if (TYPE_METHOD_BASETYPE (a
->type
) == TYPE_METHOD_BASETYPE (b
->type
)
6544 && (TYPE_ARG_TYPES (a
->type
) == TYPE_ARG_TYPES (b
->type
)
6545 || (TYPE_ARG_TYPES (a
->type
)
6546 && TREE_CODE (TYPE_ARG_TYPES (a
->type
)) == TREE_LIST
6547 && TYPE_ARG_TYPES (b
->type
)
6548 && TREE_CODE (TYPE_ARG_TYPES (b
->type
)) == TREE_LIST
6549 && type_list_equal (TYPE_ARG_TYPES (a
->type
),
6550 TYPE_ARG_TYPES (b
->type
)))))
6554 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
6555 where the flag should be inherited from the element type
6556 and can change after ARRAY_TYPEs are created; on non-aggregates
6557 compare it and hash it, scalars will never have that flag set
6558 and we need to differentiate between arrays created by different
6559 front-ends or middle-end created arrays. */
6560 return (TYPE_DOMAIN (a
->type
) == TYPE_DOMAIN (b
->type
)
6561 && (AGGREGATE_TYPE_P (TREE_TYPE (a
->type
))
6562 || (TYPE_TYPELESS_STORAGE (a
->type
)
6563 == TYPE_TYPELESS_STORAGE (b
->type
))));
6567 case QUAL_UNION_TYPE
:
6568 return (TYPE_FIELDS (a
->type
) == TYPE_FIELDS (b
->type
)
6569 || (TYPE_FIELDS (a
->type
)
6570 && TREE_CODE (TYPE_FIELDS (a
->type
)) == TREE_LIST
6571 && TYPE_FIELDS (b
->type
)
6572 && TREE_CODE (TYPE_FIELDS (b
->type
)) == TREE_LIST
6573 && type_list_equal (TYPE_FIELDS (a
->type
),
6574 TYPE_FIELDS (b
->type
))));
6577 if (TYPE_ARG_TYPES (a
->type
) == TYPE_ARG_TYPES (b
->type
)
6578 || (TYPE_ARG_TYPES (a
->type
)
6579 && TREE_CODE (TYPE_ARG_TYPES (a
->type
)) == TREE_LIST
6580 && TYPE_ARG_TYPES (b
->type
)
6581 && TREE_CODE (TYPE_ARG_TYPES (b
->type
)) == TREE_LIST
6582 && type_list_equal (TYPE_ARG_TYPES (a
->type
),
6583 TYPE_ARG_TYPES (b
->type
))))
6591 if (lang_hooks
.types
.type_hash_eq
!= NULL
)
6592 return lang_hooks
.types
.type_hash_eq (a
->type
, b
->type
);
6597 /* Given TYPE, and HASHCODE its hash code, return the canonical
6598 object for an identical type if one already exists.
6599 Otherwise, return TYPE, and record it as the canonical object.
6601 To use this function, first create a type of the sort you want.
6602 Then compute its hash code from the fields of the type that
6603 make it different from other similar types.
6604 Then call this function and use the value. */
6607 type_hash_canon (unsigned int hashcode
, tree type
)
6612 /* The hash table only contains main variants, so ensure that's what we're
6614 gcc_assert (TYPE_MAIN_VARIANT (type
) == type
);
6616 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6617 must call that routine before comparing TYPE_ALIGNs. */
6623 loc
= type_hash_table
->find_slot_with_hash (&in
, hashcode
, INSERT
);
6626 tree t1
= ((type_hash
*) *loc
)->type
;
6627 gcc_assert (TYPE_MAIN_VARIANT (t1
) == t1
);
6628 if (TYPE_UID (type
) + 1 == next_type_uid
)
6630 /* Free also min/max values and the cache for integer
6631 types. This can't be done in free_node, as LTO frees
6632 those on its own. */
6633 if (TREE_CODE (type
) == INTEGER_TYPE
)
6635 if (TYPE_MIN_VALUE (type
)
6636 && TREE_TYPE (TYPE_MIN_VALUE (type
)) == type
)
6638 /* Zero is always in TYPE_CACHED_VALUES. */
6639 if (! TYPE_UNSIGNED (type
))
6640 int_cst_hash_table
->remove_elt (TYPE_MIN_VALUE (type
));
6641 ggc_free (TYPE_MIN_VALUE (type
));
6643 if (TYPE_MAX_VALUE (type
)
6644 && TREE_TYPE (TYPE_MAX_VALUE (type
)) == type
)
6646 int_cst_hash_table
->remove_elt (TYPE_MAX_VALUE (type
));
6647 ggc_free (TYPE_MAX_VALUE (type
));
6649 if (TYPE_CACHED_VALUES_P (type
))
6650 ggc_free (TYPE_CACHED_VALUES (type
));
6657 struct type_hash
*h
;
6659 h
= ggc_alloc
<type_hash
> ();
6669 print_type_hash_statistics (void)
6671 fprintf (stderr
, "Type hash: size %ld, %ld elements, %f collisions\n",
6672 (long) type_hash_table
->size (),
6673 (long) type_hash_table
->elements (),
6674 type_hash_table
->collisions ());
6677 /* Given two lists of types
6678 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6679 return 1 if the lists contain the same types in the same order.
6680 Also, the TREE_PURPOSEs must match. */
6683 type_list_equal (const_tree l1
, const_tree l2
)
6687 for (t1
= l1
, t2
= l2
; t1
&& t2
; t1
= TREE_CHAIN (t1
), t2
= TREE_CHAIN (t2
))
6688 if (TREE_VALUE (t1
) != TREE_VALUE (t2
)
6689 || (TREE_PURPOSE (t1
) != TREE_PURPOSE (t2
)
6690 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1
), TREE_PURPOSE (t2
))
6691 && (TREE_TYPE (TREE_PURPOSE (t1
))
6692 == TREE_TYPE (TREE_PURPOSE (t2
))))))
6698 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6699 given by TYPE. If the argument list accepts variable arguments,
6700 then this function counts only the ordinary arguments. */
6703 type_num_arguments (const_tree type
)
6708 for (t
= TYPE_ARG_TYPES (type
); t
; t
= TREE_CHAIN (t
))
6709 /* If the function does not take a variable number of arguments,
6710 the last element in the list will have type `void'. */
6711 if (VOID_TYPE_P (TREE_VALUE (t
)))
6719 /* Nonzero if integer constants T1 and T2
6720 represent the same constant value. */
6723 tree_int_cst_equal (const_tree t1
, const_tree t2
)
6728 if (t1
== 0 || t2
== 0)
6731 if (TREE_CODE (t1
) == INTEGER_CST
6732 && TREE_CODE (t2
) == INTEGER_CST
6733 && wi::to_widest (t1
) == wi::to_widest (t2
))
6739 /* Return true if T is an INTEGER_CST whose numerical value (extended
6740 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
6743 tree_fits_shwi_p (const_tree t
)
6745 return (t
!= NULL_TREE
6746 && TREE_CODE (t
) == INTEGER_CST
6747 && wi::fits_shwi_p (wi::to_widest (t
)));
6750 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6751 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
6754 tree_fits_poly_int64_p (const_tree t
)
6758 if (POLY_INT_CST_P (t
))
6760 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; i
++)
6761 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t
, i
))))
6765 return (TREE_CODE (t
) == INTEGER_CST
6766 && wi::fits_shwi_p (wi::to_widest (t
)));
6769 /* Return true if T is an INTEGER_CST whose numerical value (extended
6770 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
6773 tree_fits_uhwi_p (const_tree t
)
6775 return (t
!= NULL_TREE
6776 && TREE_CODE (t
) == INTEGER_CST
6777 && wi::fits_uhwi_p (wi::to_widest (t
)));
6780 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
6781 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
6784 tree_fits_poly_uint64_p (const_tree t
)
6788 if (POLY_INT_CST_P (t
))
6790 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; i
++)
6791 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t
, i
))))
6795 return (TREE_CODE (t
) == INTEGER_CST
6796 && wi::fits_uhwi_p (wi::to_widest (t
)));
6799 /* T is an INTEGER_CST whose numerical value (extended according to
6800 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
6804 tree_to_shwi (const_tree t
)
6806 gcc_assert (tree_fits_shwi_p (t
));
6807 return TREE_INT_CST_LOW (t
);
6810 /* T is an INTEGER_CST whose numerical value (extended according to
6811 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
6814 unsigned HOST_WIDE_INT
6815 tree_to_uhwi (const_tree t
)
6817 gcc_assert (tree_fits_uhwi_p (t
));
6818 return TREE_INT_CST_LOW (t
);
6821 /* Return the most significant (sign) bit of T. */
6824 tree_int_cst_sign_bit (const_tree t
)
6826 unsigned bitno
= TYPE_PRECISION (TREE_TYPE (t
)) - 1;
6828 return wi::extract_uhwi (wi::to_wide (t
), bitno
, 1);
6831 /* Return an indication of the sign of the integer constant T.
6832 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6833 Note that -1 will never be returned if T's type is unsigned. */
6836 tree_int_cst_sgn (const_tree t
)
6838 if (wi::to_wide (t
) == 0)
6840 else if (TYPE_UNSIGNED (TREE_TYPE (t
)))
6842 else if (wi::neg_p (wi::to_wide (t
)))
6848 /* Return the minimum number of bits needed to represent VALUE in a
6849 signed or unsigned type, UNSIGNEDP says which. */
6852 tree_int_cst_min_precision (tree value
, signop sgn
)
6854 /* If the value is negative, compute its negative minus 1. The latter
6855 adjustment is because the absolute value of the largest negative value
6856 is one larger than the largest positive value. This is equivalent to
6857 a bit-wise negation, so use that operation instead. */
6859 if (tree_int_cst_sgn (value
) < 0)
6860 value
= fold_build1 (BIT_NOT_EXPR
, TREE_TYPE (value
), value
);
6862 /* Return the number of bits needed, taking into account the fact
6863 that we need one more bit for a signed than unsigned type.
6864 If value is 0 or -1, the minimum precision is 1 no matter
6865 whether unsignedp is true or false. */
6867 if (integer_zerop (value
))
6870 return tree_floor_log2 (value
) + 1 + (sgn
== SIGNED
? 1 : 0) ;
6873 /* Return truthvalue of whether T1 is the same tree structure as T2.
6874 Return 1 if they are the same.
6875 Return 0 if they are understandably different.
6876 Return -1 if either contains tree structure not understood by
6880 simple_cst_equal (const_tree t1
, const_tree t2
)
6882 enum tree_code code1
, code2
;
6888 if (t1
== 0 || t2
== 0)
6891 code1
= TREE_CODE (t1
);
6892 code2
= TREE_CODE (t2
);
6894 if (CONVERT_EXPR_CODE_P (code1
) || code1
== NON_LVALUE_EXPR
)
6896 if (CONVERT_EXPR_CODE_P (code2
)
6897 || code2
== NON_LVALUE_EXPR
)
6898 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
6900 return simple_cst_equal (TREE_OPERAND (t1
, 0), t2
);
6903 else if (CONVERT_EXPR_CODE_P (code2
)
6904 || code2
== NON_LVALUE_EXPR
)
6905 return simple_cst_equal (t1
, TREE_OPERAND (t2
, 0));
6913 return wi::to_widest (t1
) == wi::to_widest (t2
);
6916 return real_identical (&TREE_REAL_CST (t1
), &TREE_REAL_CST (t2
));
6919 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1
), TREE_FIXED_CST (t2
));
6922 return (TREE_STRING_LENGTH (t1
) == TREE_STRING_LENGTH (t2
)
6923 && ! memcmp (TREE_STRING_POINTER (t1
), TREE_STRING_POINTER (t2
),
6924 TREE_STRING_LENGTH (t1
)));
6928 unsigned HOST_WIDE_INT idx
;
6929 vec
<constructor_elt
, va_gc
> *v1
= CONSTRUCTOR_ELTS (t1
);
6930 vec
<constructor_elt
, va_gc
> *v2
= CONSTRUCTOR_ELTS (t2
);
6932 if (vec_safe_length (v1
) != vec_safe_length (v2
))
6935 for (idx
= 0; idx
< vec_safe_length (v1
); ++idx
)
6936 /* ??? Should we handle also fields here? */
6937 if (!simple_cst_equal ((*v1
)[idx
].value
, (*v2
)[idx
].value
))
6943 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
6946 cmp
= simple_cst_equal (CALL_EXPR_FN (t1
), CALL_EXPR_FN (t2
));
6949 if (call_expr_nargs (t1
) != call_expr_nargs (t2
))
6952 const_tree arg1
, arg2
;
6953 const_call_expr_arg_iterator iter1
, iter2
;
6954 for (arg1
= first_const_call_expr_arg (t1
, &iter1
),
6955 arg2
= first_const_call_expr_arg (t2
, &iter2
);
6957 arg1
= next_const_call_expr_arg (&iter1
),
6958 arg2
= next_const_call_expr_arg (&iter2
))
6960 cmp
= simple_cst_equal (arg1
, arg2
);
6964 return arg1
== arg2
;
6968 /* Special case: if either target is an unallocated VAR_DECL,
6969 it means that it's going to be unified with whatever the
6970 TARGET_EXPR is really supposed to initialize, so treat it
6971 as being equivalent to anything. */
6972 if ((TREE_CODE (TREE_OPERAND (t1
, 0)) == VAR_DECL
6973 && DECL_NAME (TREE_OPERAND (t1
, 0)) == NULL_TREE
6974 && !DECL_RTL_SET_P (TREE_OPERAND (t1
, 0)))
6975 || (TREE_CODE (TREE_OPERAND (t2
, 0)) == VAR_DECL
6976 && DECL_NAME (TREE_OPERAND (t2
, 0)) == NULL_TREE
6977 && !DECL_RTL_SET_P (TREE_OPERAND (t2
, 0))))
6980 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
6985 return simple_cst_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t2
, 1));
6987 case WITH_CLEANUP_EXPR
:
6988 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
6992 return simple_cst_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t1
, 1));
6995 if (TREE_OPERAND (t1
, 1) == TREE_OPERAND (t2
, 1))
6996 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
7007 if (POLY_INT_CST_P (t1
))
7008 /* A false return means maybe_ne rather than known_ne. */
7009 return known_eq (poly_widest_int::from (poly_int_cst_value (t1
),
7010 TYPE_SIGN (TREE_TYPE (t1
))),
7011 poly_widest_int::from (poly_int_cst_value (t2
),
7012 TYPE_SIGN (TREE_TYPE (t2
))));
7016 /* This general rule works for most tree codes. All exceptions should be
7017 handled above. If this is a language-specific tree code, we can't
7018 trust what might be in the operand, so say we don't know
7020 if ((int) code1
>= (int) LAST_AND_UNUSED_TREE_CODE
)
7023 switch (TREE_CODE_CLASS (code1
))
7027 case tcc_comparison
:
7028 case tcc_expression
:
7032 for (i
= 0; i
< TREE_CODE_LENGTH (code1
); i
++)
7034 cmp
= simple_cst_equal (TREE_OPERAND (t1
, i
), TREE_OPERAND (t2
, i
));
7046 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7047 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7048 than U, respectively. */
7051 compare_tree_int (const_tree t
, unsigned HOST_WIDE_INT u
)
7053 if (tree_int_cst_sgn (t
) < 0)
7055 else if (!tree_fits_uhwi_p (t
))
7057 else if (TREE_INT_CST_LOW (t
) == u
)
7059 else if (TREE_INT_CST_LOW (t
) < u
)
7065 /* Return true if SIZE represents a constant size that is in bounds of
7066 what the middle-end and the backend accepts (covering not more than
7067 half of the address-space). */
7070 valid_constant_size_p (const_tree size
)
7072 if (POLY_INT_CST_P (size
))
7074 if (TREE_OVERFLOW (size
))
7076 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
7077 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size
, i
)))
7081 if (! tree_fits_uhwi_p (size
)
7082 || TREE_OVERFLOW (size
)
7083 || tree_int_cst_sign_bit (size
) != 0)
7088 /* Return the precision of the type, or for a complex or vector type the
7089 precision of the type of its elements. */
7092 element_precision (const_tree type
)
7095 type
= TREE_TYPE (type
);
7096 enum tree_code code
= TREE_CODE (type
);
7097 if (code
== COMPLEX_TYPE
|| code
== VECTOR_TYPE
)
7098 type
= TREE_TYPE (type
);
7100 return TYPE_PRECISION (type
);
7103 /* Return true if CODE represents an associative tree code. Otherwise
7106 associative_tree_code (enum tree_code code
)
7125 /* Return true if CODE represents a commutative tree code. Otherwise
7128 commutative_tree_code (enum tree_code code
)
7134 case MULT_HIGHPART_EXPR
:
7142 case UNORDERED_EXPR
:
7146 case TRUTH_AND_EXPR
:
7147 case TRUTH_XOR_EXPR
:
7149 case WIDEN_MULT_EXPR
:
7150 case VEC_WIDEN_MULT_HI_EXPR
:
7151 case VEC_WIDEN_MULT_LO_EXPR
:
7152 case VEC_WIDEN_MULT_EVEN_EXPR
:
7153 case VEC_WIDEN_MULT_ODD_EXPR
:
7162 /* Return true if CODE represents a ternary tree code for which the
7163 first two operands are commutative. Otherwise return false. */
7165 commutative_ternary_tree_code (enum tree_code code
)
7169 case WIDEN_MULT_PLUS_EXPR
:
7170 case WIDEN_MULT_MINUS_EXPR
:
7181 /* Returns true if CODE can overflow. */
7184 operation_can_overflow (enum tree_code code
)
7192 /* Can overflow in various ways. */
7194 case TRUNC_DIV_EXPR
:
7195 case EXACT_DIV_EXPR
:
7196 case FLOOR_DIV_EXPR
:
7198 /* For INT_MIN / -1. */
7205 /* These operators cannot overflow. */
7210 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7211 ftrapv doesn't generate trapping insns for CODE. */
7214 operation_no_trapping_overflow (tree type
, enum tree_code code
)
7216 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type
));
7218 /* We don't generate instructions that trap on overflow for complex or vector
7220 if (!INTEGRAL_TYPE_P (type
))
7223 if (!TYPE_OVERFLOW_TRAPS (type
))
7233 /* These operators can overflow, and -ftrapv generates trapping code for
7236 case TRUNC_DIV_EXPR
:
7237 case EXACT_DIV_EXPR
:
7238 case FLOOR_DIV_EXPR
:
7241 /* These operators can overflow, but -ftrapv does not generate trapping
7245 /* These operators cannot overflow. */
7253 /* Generate a hash value for an expression. This can be used iteratively
7254 by passing a previous result as the HSTATE argument.
7256 This function is intended to produce the same hash for expressions which
7257 would compare equal using operand_equal_p. */
7259 add_expr (const_tree t
, inchash::hash
&hstate
, unsigned int flags
)
7262 enum tree_code code
;
7263 enum tree_code_class tclass
;
7265 if (t
== NULL_TREE
|| t
== error_mark_node
)
7267 hstate
.merge_hash (0);
7271 if (!(flags
& OEP_ADDRESS_OF
))
7274 code
= TREE_CODE (t
);
7278 /* Alas, constants aren't shared, so we can't rely on pointer
7281 hstate
.merge_hash (0);
7284 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
7285 for (i
= 0; i
< TREE_INT_CST_EXT_NUNITS (t
); i
++)
7286 hstate
.add_hwi (TREE_INT_CST_ELT (t
, i
));
7291 if (!HONOR_SIGNED_ZEROS (t
) && real_zerop (t
))
7294 val2
= real_hash (TREE_REAL_CST_PTR (t
));
7295 hstate
.merge_hash (val2
);
7300 unsigned int val2
= fixed_hash (TREE_FIXED_CST_PTR (t
));
7301 hstate
.merge_hash (val2
);
7305 hstate
.add ((const void *) TREE_STRING_POINTER (t
),
7306 TREE_STRING_LENGTH (t
));
7309 inchash::add_expr (TREE_REALPART (t
), hstate
, flags
);
7310 inchash::add_expr (TREE_IMAGPART (t
), hstate
, flags
);
7314 hstate
.add_int (VECTOR_CST_NPATTERNS (t
));
7315 hstate
.add_int (VECTOR_CST_NELTS_PER_PATTERN (t
));
7316 unsigned int count
= vector_cst_encoded_nelts (t
);
7317 for (unsigned int i
= 0; i
< count
; ++i
)
7318 inchash::add_expr (VECTOR_CST_ENCODED_ELT (t
, i
), hstate
, flags
);
7322 /* We can just compare by pointer. */
7323 hstate
.add_hwi (SSA_NAME_VERSION (t
));
7325 case PLACEHOLDER_EXPR
:
7326 /* The node itself doesn't matter. */
7333 /* A list of expressions, for a CALL_EXPR or as the elements of a
7335 for (; t
; t
= TREE_CHAIN (t
))
7336 inchash::add_expr (TREE_VALUE (t
), hstate
, flags
);
7340 unsigned HOST_WIDE_INT idx
;
7342 flags
&= ~OEP_ADDRESS_OF
;
7343 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t
), idx
, field
, value
)
7345 inchash::add_expr (field
, hstate
, flags
);
7346 inchash::add_expr (value
, hstate
, flags
);
7350 case STATEMENT_LIST
:
7352 tree_stmt_iterator i
;
7353 for (i
= tsi_start (CONST_CAST_TREE (t
));
7354 !tsi_end_p (i
); tsi_next (&i
))
7355 inchash::add_expr (tsi_stmt (i
), hstate
, flags
);
7359 for (i
= 0; i
< TREE_VEC_LENGTH (t
); ++i
)
7360 inchash::add_expr (TREE_VEC_ELT (t
, i
), hstate
, flags
);
7363 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
7364 Otherwise nodes that compare equal according to operand_equal_p might
7365 get different hash codes. However, don't do this for machine specific
7366 or front end builtins, since the function code is overloaded in those
7368 if (DECL_BUILT_IN_CLASS (t
) == BUILT_IN_NORMAL
7369 && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t
)))
7371 t
= builtin_decl_explicit (DECL_FUNCTION_CODE (t
));
7372 code
= TREE_CODE (t
);
7376 if (POLY_INT_CST_P (t
))
7378 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
7379 hstate
.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t
, i
)));
7382 tclass
= TREE_CODE_CLASS (code
);
7384 if (tclass
== tcc_declaration
)
7386 /* DECL's have a unique ID */
7387 hstate
.add_hwi (DECL_UID (t
));
7389 else if (tclass
== tcc_comparison
&& !commutative_tree_code (code
))
7391 /* For comparisons that can be swapped, use the lower
7393 enum tree_code ccode
= swap_tree_comparison (code
);
7396 hstate
.add_object (ccode
);
7397 inchash::add_expr (TREE_OPERAND (t
, ccode
!= code
), hstate
, flags
);
7398 inchash::add_expr (TREE_OPERAND (t
, ccode
== code
), hstate
, flags
);
7400 else if (CONVERT_EXPR_CODE_P (code
))
7402 /* NOP_EXPR and CONVERT_EXPR are considered equal by
7404 enum tree_code ccode
= NOP_EXPR
;
7405 hstate
.add_object (ccode
);
7407 /* Don't hash the type, that can lead to having nodes which
7408 compare equal according to operand_equal_p, but which
7409 have different hash codes. Make sure to include signedness
7410 in the hash computation. */
7411 hstate
.add_int (TYPE_UNSIGNED (TREE_TYPE (t
)));
7412 inchash::add_expr (TREE_OPERAND (t
, 0), hstate
, flags
);
7414 /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
7415 else if (code
== MEM_REF
7416 && (flags
& OEP_ADDRESS_OF
) != 0
7417 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
7418 && DECL_P (TREE_OPERAND (TREE_OPERAND (t
, 0), 0))
7419 && integer_zerop (TREE_OPERAND (t
, 1)))
7420 inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t
, 0), 0),
7422 /* Don't ICE on FE specific trees, or their arguments etc.
7423 during operand_equal_p hash verification. */
7424 else if (!IS_EXPR_CODE_CLASS (tclass
))
7425 gcc_assert (flags
& OEP_HASH_CHECK
);
7428 unsigned int sflags
= flags
;
7430 hstate
.add_object (code
);
7435 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
7436 flags
|= OEP_ADDRESS_OF
;
7442 case TARGET_MEM_REF
:
7443 flags
&= ~OEP_ADDRESS_OF
;
7448 case ARRAY_RANGE_REF
:
7451 sflags
&= ~OEP_ADDRESS_OF
;
7455 flags
&= ~OEP_ADDRESS_OF
;
7459 case WIDEN_MULT_PLUS_EXPR
:
7460 case WIDEN_MULT_MINUS_EXPR
:
7462 /* The multiplication operands are commutative. */
7463 inchash::hash one
, two
;
7464 inchash::add_expr (TREE_OPERAND (t
, 0), one
, flags
);
7465 inchash::add_expr (TREE_OPERAND (t
, 1), two
, flags
);
7466 hstate
.add_commutative (one
, two
);
7467 inchash::add_expr (TREE_OPERAND (t
, 2), two
, flags
);
7472 if (CALL_EXPR_FN (t
) == NULL_TREE
)
7473 hstate
.add_int (CALL_EXPR_IFN (t
));
7477 /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
7478 Usually different TARGET_EXPRs just should use
7479 different temporaries in their slots. */
7480 inchash::add_expr (TARGET_EXPR_SLOT (t
), hstate
, flags
);
7487 /* Don't hash the type, that can lead to having nodes which
7488 compare equal according to operand_equal_p, but which
7489 have different hash codes. */
7490 if (code
== NON_LVALUE_EXPR
)
7492 /* Make sure to include signness in the hash computation. */
7493 hstate
.add_int (TYPE_UNSIGNED (TREE_TYPE (t
)));
7494 inchash::add_expr (TREE_OPERAND (t
, 0), hstate
, flags
);
7497 else if (commutative_tree_code (code
))
7499 /* It's a commutative expression. We want to hash it the same
7500 however it appears. We do this by first hashing both operands
7501 and then rehashing based on the order of their independent
7503 inchash::hash one
, two
;
7504 inchash::add_expr (TREE_OPERAND (t
, 0), one
, flags
);
7505 inchash::add_expr (TREE_OPERAND (t
, 1), two
, flags
);
7506 hstate
.add_commutative (one
, two
);
7509 for (i
= TREE_OPERAND_LENGTH (t
) - 1; i
>= 0; --i
)
7510 inchash::add_expr (TREE_OPERAND (t
, i
), hstate
,
7511 i
== 0 ? flags
: sflags
);
7519 /* Constructors for pointer, array and function types.
7520 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7521 constructed by language-dependent code, not here.) */
7523 /* Construct, lay out and return the type of pointers to TO_TYPE with
7524 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7525 reference all of memory. If such a type has already been
7526 constructed, reuse it. */
7529 build_pointer_type_for_mode (tree to_type
, machine_mode mode
,
7533 bool could_alias
= can_alias_all
;
7535 if (to_type
== error_mark_node
)
7536 return error_mark_node
;
7538 /* If the pointed-to type has the may_alias attribute set, force
7539 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7540 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type
)))
7541 can_alias_all
= true;
7543 /* In some cases, languages will have things that aren't a POINTER_TYPE
7544 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7545 In that case, return that type without regard to the rest of our
7548 ??? This is a kludge, but consistent with the way this function has
7549 always operated and there doesn't seem to be a good way to avoid this
7551 if (TYPE_POINTER_TO (to_type
) != 0
7552 && TREE_CODE (TYPE_POINTER_TO (to_type
)) != POINTER_TYPE
)
7553 return TYPE_POINTER_TO (to_type
);
7555 /* First, if we already have a type for pointers to TO_TYPE and it's
7556 the proper mode, use it. */
7557 for (t
= TYPE_POINTER_TO (to_type
); t
; t
= TYPE_NEXT_PTR_TO (t
))
7558 if (TYPE_MODE (t
) == mode
&& TYPE_REF_CAN_ALIAS_ALL (t
) == can_alias_all
)
7561 t
= make_node (POINTER_TYPE
);
7563 TREE_TYPE (t
) = to_type
;
7564 SET_TYPE_MODE (t
, mode
);
7565 TYPE_REF_CAN_ALIAS_ALL (t
) = can_alias_all
;
7566 TYPE_NEXT_PTR_TO (t
) = TYPE_POINTER_TO (to_type
);
7567 TYPE_POINTER_TO (to_type
) = t
;
7569 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7570 if (TYPE_STRUCTURAL_EQUALITY_P (to_type
) || in_lto_p
)
7571 SET_TYPE_STRUCTURAL_EQUALITY (t
);
7572 else if (TYPE_CANONICAL (to_type
) != to_type
|| could_alias
)
7574 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type
),
7577 /* Lay out the type. This function has many callers that are concerned
7578 with expression-construction, and this simplifies them all. */
7584 /* By default build pointers in ptr_mode. */
7587 build_pointer_type (tree to_type
)
7589 addr_space_t as
= to_type
== error_mark_node
? ADDR_SPACE_GENERIC
7590 : TYPE_ADDR_SPACE (to_type
);
7591 machine_mode pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7592 return build_pointer_type_for_mode (to_type
, pointer_mode
, false);
7595 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
7598 build_reference_type_for_mode (tree to_type
, machine_mode mode
,
7602 bool could_alias
= can_alias_all
;
7604 if (to_type
== error_mark_node
)
7605 return error_mark_node
;
7607 /* If the pointed-to type has the may_alias attribute set, force
7608 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7609 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type
)))
7610 can_alias_all
= true;
7612 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
7613 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
7614 In that case, return that type without regard to the rest of our
7617 ??? This is a kludge, but consistent with the way this function has
7618 always operated and there doesn't seem to be a good way to avoid this
7620 if (TYPE_REFERENCE_TO (to_type
) != 0
7621 && TREE_CODE (TYPE_REFERENCE_TO (to_type
)) != REFERENCE_TYPE
)
7622 return TYPE_REFERENCE_TO (to_type
);
7624 /* First, if we already have a type for pointers to TO_TYPE and it's
7625 the proper mode, use it. */
7626 for (t
= TYPE_REFERENCE_TO (to_type
); t
; t
= TYPE_NEXT_REF_TO (t
))
7627 if (TYPE_MODE (t
) == mode
&& TYPE_REF_CAN_ALIAS_ALL (t
) == can_alias_all
)
7630 t
= make_node (REFERENCE_TYPE
);
7632 TREE_TYPE (t
) = to_type
;
7633 SET_TYPE_MODE (t
, mode
);
7634 TYPE_REF_CAN_ALIAS_ALL (t
) = can_alias_all
;
7635 TYPE_NEXT_REF_TO (t
) = TYPE_REFERENCE_TO (to_type
);
7636 TYPE_REFERENCE_TO (to_type
) = t
;
7638 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7639 if (TYPE_STRUCTURAL_EQUALITY_P (to_type
) || in_lto_p
)
7640 SET_TYPE_STRUCTURAL_EQUALITY (t
);
7641 else if (TYPE_CANONICAL (to_type
) != to_type
|| could_alias
)
7643 = build_reference_type_for_mode (TYPE_CANONICAL (to_type
),
7652 /* Build the node for the type of references-to-TO_TYPE by default
7656 build_reference_type (tree to_type
)
7658 addr_space_t as
= to_type
== error_mark_node
? ADDR_SPACE_GENERIC
7659 : TYPE_ADDR_SPACE (to_type
);
7660 machine_mode pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7661 return build_reference_type_for_mode (to_type
, pointer_mode
, false);
7664 #define MAX_INT_CACHED_PREC \
7665 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7666 static GTY(()) tree nonstandard_integer_type_cache
[2 * MAX_INT_CACHED_PREC
+ 2];
7668 /* Builds a signed or unsigned integer type of precision PRECISION.
7669 Used for C bitfields whose precision does not match that of
7670 built-in target types. */
7672 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision
,
7678 unsignedp
= MAX_INT_CACHED_PREC
+ 1;
7680 if (precision
<= MAX_INT_CACHED_PREC
)
7682 itype
= nonstandard_integer_type_cache
[precision
+ unsignedp
];
7687 itype
= make_node (INTEGER_TYPE
);
7688 TYPE_PRECISION (itype
) = precision
;
7691 fixup_unsigned_type (itype
);
7693 fixup_signed_type (itype
);
7697 inchash::hash hstate
;
7698 inchash::add_expr (TYPE_MAX_VALUE (itype
), hstate
);
7699 ret
= type_hash_canon (hstate
.end (), itype
);
7700 if (precision
<= MAX_INT_CACHED_PREC
)
7701 nonstandard_integer_type_cache
[precision
+ unsignedp
] = ret
;
7706 #define MAX_BOOL_CACHED_PREC \
7707 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7708 static GTY(()) tree nonstandard_boolean_type_cache
[MAX_BOOL_CACHED_PREC
+ 1];
7710 /* Builds a boolean type of precision PRECISION.
7711 Used for boolean vectors to choose proper vector element size. */
7713 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision
)
7717 if (precision
<= MAX_BOOL_CACHED_PREC
)
7719 type
= nonstandard_boolean_type_cache
[precision
];
7724 type
= make_node (BOOLEAN_TYPE
);
7725 TYPE_PRECISION (type
) = precision
;
7726 fixup_signed_type (type
);
7728 if (precision
<= MAX_INT_CACHED_PREC
)
7729 nonstandard_boolean_type_cache
[precision
] = type
;
7734 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7735 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7736 is true, reuse such a type that has already been constructed. */
7739 build_range_type_1 (tree type
, tree lowval
, tree highval
, bool shared
)
7741 tree itype
= make_node (INTEGER_TYPE
);
7743 TREE_TYPE (itype
) = type
;
7745 TYPE_MIN_VALUE (itype
) = fold_convert (type
, lowval
);
7746 TYPE_MAX_VALUE (itype
) = highval
? fold_convert (type
, highval
) : NULL
;
7748 TYPE_PRECISION (itype
) = TYPE_PRECISION (type
);
7749 SET_TYPE_MODE (itype
, TYPE_MODE (type
));
7750 TYPE_SIZE (itype
) = TYPE_SIZE (type
);
7751 TYPE_SIZE_UNIT (itype
) = TYPE_SIZE_UNIT (type
);
7752 SET_TYPE_ALIGN (itype
, TYPE_ALIGN (type
));
7753 TYPE_USER_ALIGN (itype
) = TYPE_USER_ALIGN (type
);
7754 SET_TYPE_WARN_IF_NOT_ALIGN (itype
, TYPE_WARN_IF_NOT_ALIGN (type
));
7759 if ((TYPE_MIN_VALUE (itype
)
7760 && TREE_CODE (TYPE_MIN_VALUE (itype
)) != INTEGER_CST
)
7761 || (TYPE_MAX_VALUE (itype
)
7762 && TREE_CODE (TYPE_MAX_VALUE (itype
)) != INTEGER_CST
))
7764 /* Since we cannot reliably merge this type, we need to compare it using
7765 structural equality checks. */
7766 SET_TYPE_STRUCTURAL_EQUALITY (itype
);
7770 hashval_t hash
= type_hash_canon_hash (itype
);
7771 itype
= type_hash_canon (hash
, itype
);
7776 /* Wrapper around build_range_type_1 with SHARED set to true. */
7779 build_range_type (tree type
, tree lowval
, tree highval
)
7781 return build_range_type_1 (type
, lowval
, highval
, true);
7784 /* Wrapper around build_range_type_1 with SHARED set to false. */
7787 build_nonshared_range_type (tree type
, tree lowval
, tree highval
)
7789 return build_range_type_1 (type
, lowval
, highval
, false);
7792 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7793 MAXVAL should be the maximum value in the domain
7794 (one less than the length of the array).
7796 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7797 We don't enforce this limit, that is up to caller (e.g. language front end).
7798 The limit exists because the result is a signed type and we don't handle
7799 sizes that use more than one HOST_WIDE_INT. */
7802 build_index_type (tree maxval
)
7804 return build_range_type (sizetype
, size_zero_node
, maxval
);
7807 /* Return true if the debug information for TYPE, a subtype, should be emitted
7808 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7809 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7810 debug info and doesn't reflect the source code. */
7813 subrange_type_for_debug_p (const_tree type
, tree
*lowval
, tree
*highval
)
7815 tree base_type
= TREE_TYPE (type
), low
, high
;
7817 /* Subrange types have a base type which is an integral type. */
7818 if (!INTEGRAL_TYPE_P (base_type
))
7821 /* Get the real bounds of the subtype. */
7822 if (lang_hooks
.types
.get_subrange_bounds
)
7823 lang_hooks
.types
.get_subrange_bounds (type
, &low
, &high
);
7826 low
= TYPE_MIN_VALUE (type
);
7827 high
= TYPE_MAX_VALUE (type
);
7830 /* If the type and its base type have the same representation and the same
7831 name, then the type is not a subrange but a copy of the base type. */
7832 if ((TREE_CODE (base_type
) == INTEGER_TYPE
7833 || TREE_CODE (base_type
) == BOOLEAN_TYPE
)
7834 && int_size_in_bytes (type
) == int_size_in_bytes (base_type
)
7835 && tree_int_cst_equal (low
, TYPE_MIN_VALUE (base_type
))
7836 && tree_int_cst_equal (high
, TYPE_MAX_VALUE (base_type
))
7837 && TYPE_IDENTIFIER (type
) == TYPE_IDENTIFIER (base_type
))
7847 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7848 and number of elements specified by the range of values of INDEX_TYPE.
7849 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
7850 If SHARED is true, reuse such a type that has already been constructed. */
7853 build_array_type_1 (tree elt_type
, tree index_type
, bool typeless_storage
,
7858 if (TREE_CODE (elt_type
) == FUNCTION_TYPE
)
7860 error ("arrays of functions are not meaningful");
7861 elt_type
= integer_type_node
;
7864 t
= make_node (ARRAY_TYPE
);
7865 TREE_TYPE (t
) = elt_type
;
7866 TYPE_DOMAIN (t
) = index_type
;
7867 TYPE_ADDR_SPACE (t
) = TYPE_ADDR_SPACE (elt_type
);
7868 TYPE_TYPELESS_STORAGE (t
) = typeless_storage
;
7871 /* If the element type is incomplete at this point we get marked for
7872 structural equality. Do not record these types in the canonical
7874 if (TYPE_STRUCTURAL_EQUALITY_P (t
))
7879 hashval_t hash
= type_hash_canon_hash (t
);
7880 t
= type_hash_canon (hash
, t
);
7883 if (TYPE_CANONICAL (t
) == t
)
7885 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type
)
7886 || (index_type
&& TYPE_STRUCTURAL_EQUALITY_P (index_type
))
7888 SET_TYPE_STRUCTURAL_EQUALITY (t
);
7889 else if (TYPE_CANONICAL (elt_type
) != elt_type
7890 || (index_type
&& TYPE_CANONICAL (index_type
) != index_type
))
7892 = build_array_type_1 (TYPE_CANONICAL (elt_type
),
7894 ? TYPE_CANONICAL (index_type
) : NULL_TREE
,
7895 typeless_storage
, shared
);
7901 /* Wrapper around build_array_type_1 with SHARED set to true. */
7904 build_array_type (tree elt_type
, tree index_type
, bool typeless_storage
)
7906 return build_array_type_1 (elt_type
, index_type
, typeless_storage
, true);
7909 /* Wrapper around build_array_type_1 with SHARED set to false. */
7912 build_nonshared_array_type (tree elt_type
, tree index_type
)
7914 return build_array_type_1 (elt_type
, index_type
, false, false);
7917 /* Return a representation of ELT_TYPE[NELTS], using indices of type
7921 build_array_type_nelts (tree elt_type
, poly_uint64 nelts
)
7923 return build_array_type (elt_type
, build_index_type (size_int (nelts
- 1)));
7926 /* Recursively examines the array elements of TYPE, until a non-array
7927 element type is found. */
7930 strip_array_types (tree type
)
7932 while (TREE_CODE (type
) == ARRAY_TYPE
)
7933 type
= TREE_TYPE (type
);
7938 /* Computes the canonical argument types from the argument type list
7941 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7942 on entry to this function, or if any of the ARGTYPES are
7945 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7946 true on entry to this function, or if any of the ARGTYPES are
7949 Returns a canonical argument list, which may be ARGTYPES when the
7950 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7951 true) or would not differ from ARGTYPES. */
7954 maybe_canonicalize_argtypes (tree argtypes
,
7955 bool *any_structural_p
,
7956 bool *any_noncanonical_p
)
7959 bool any_noncanonical_argtypes_p
= false;
7961 for (arg
= argtypes
; arg
&& !(*any_structural_p
); arg
= TREE_CHAIN (arg
))
7963 if (!TREE_VALUE (arg
) || TREE_VALUE (arg
) == error_mark_node
)
7964 /* Fail gracefully by stating that the type is structural. */
7965 *any_structural_p
= true;
7966 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg
)))
7967 *any_structural_p
= true;
7968 else if (TYPE_CANONICAL (TREE_VALUE (arg
)) != TREE_VALUE (arg
)
7969 || TREE_PURPOSE (arg
))
7970 /* If the argument has a default argument, we consider it
7971 non-canonical even though the type itself is canonical.
7972 That way, different variants of function and method types
7973 with default arguments will all point to the variant with
7974 no defaults as their canonical type. */
7975 any_noncanonical_argtypes_p
= true;
7978 if (*any_structural_p
)
7981 if (any_noncanonical_argtypes_p
)
7983 /* Build the canonical list of argument types. */
7984 tree canon_argtypes
= NULL_TREE
;
7985 bool is_void
= false;
7987 for (arg
= argtypes
; arg
; arg
= TREE_CHAIN (arg
))
7989 if (arg
== void_list_node
)
7992 canon_argtypes
= tree_cons (NULL_TREE
,
7993 TYPE_CANONICAL (TREE_VALUE (arg
)),
7997 canon_argtypes
= nreverse (canon_argtypes
);
7999 canon_argtypes
= chainon (canon_argtypes
, void_list_node
);
8001 /* There is a non-canonical type. */
8002 *any_noncanonical_p
= true;
8003 return canon_argtypes
;
8006 /* The canonical argument types are the same as ARGTYPES. */
8010 /* Construct, lay out and return
8011 the type of functions returning type VALUE_TYPE
8012 given arguments of types ARG_TYPES.
8013 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8014 are data type nodes for the arguments of the function.
8015 If such a type has already been constructed, reuse it. */
8018 build_function_type (tree value_type
, tree arg_types
)
8021 inchash::hash hstate
;
8022 bool any_structural_p
, any_noncanonical_p
;
8023 tree canon_argtypes
;
8025 if (TREE_CODE (value_type
) == FUNCTION_TYPE
)
8027 error ("function return type cannot be function");
8028 value_type
= integer_type_node
;
8031 /* Make a node of the sort we want. */
8032 t
= make_node (FUNCTION_TYPE
);
8033 TREE_TYPE (t
) = value_type
;
8034 TYPE_ARG_TYPES (t
) = arg_types
;
8036 /* If we already have such a type, use the old one. */
8037 hashval_t hash
= type_hash_canon_hash (t
);
8038 t
= type_hash_canon (hash
, t
);
8040 /* Set up the canonical type. */
8041 any_structural_p
= TYPE_STRUCTURAL_EQUALITY_P (value_type
);
8042 any_noncanonical_p
= TYPE_CANONICAL (value_type
) != value_type
;
8043 canon_argtypes
= maybe_canonicalize_argtypes (arg_types
,
8045 &any_noncanonical_p
);
8046 if (any_structural_p
)
8047 SET_TYPE_STRUCTURAL_EQUALITY (t
);
8048 else if (any_noncanonical_p
)
8049 TYPE_CANONICAL (t
) = build_function_type (TYPE_CANONICAL (value_type
),
8052 if (!COMPLETE_TYPE_P (t
))
8057 /* Build a function type. The RETURN_TYPE is the type returned by the
8058 function. If VAARGS is set, no void_type_node is appended to the
8059 list. ARGP must be always be terminated be a NULL_TREE. */
8062 build_function_type_list_1 (bool vaargs
, tree return_type
, va_list argp
)
8066 t
= va_arg (argp
, tree
);
8067 for (args
= NULL_TREE
; t
!= NULL_TREE
; t
= va_arg (argp
, tree
))
8068 args
= tree_cons (NULL_TREE
, t
, args
);
8073 if (args
!= NULL_TREE
)
8074 args
= nreverse (args
);
8075 gcc_assert (last
!= void_list_node
);
8077 else if (args
== NULL_TREE
)
8078 args
= void_list_node
;
8082 args
= nreverse (args
);
8083 TREE_CHAIN (last
) = void_list_node
;
8085 args
= build_function_type (return_type
, args
);
8090 /* Build a function type. The RETURN_TYPE is the type returned by the
8091 function. If additional arguments are provided, they are
8092 additional argument types. The list of argument types must always
8093 be terminated by NULL_TREE. */
8096 build_function_type_list (tree return_type
, ...)
8101 va_start (p
, return_type
);
8102 args
= build_function_type_list_1 (false, return_type
, p
);
8107 /* Build a variable argument function type. The RETURN_TYPE is the
8108 type returned by the function. If additional arguments are provided,
8109 they are additional argument types. The list of argument types must
8110 always be terminated by NULL_TREE. */
8113 build_varargs_function_type_list (tree return_type
, ...)
8118 va_start (p
, return_type
);
8119 args
= build_function_type_list_1 (true, return_type
, p
);
8125 /* Build a function type. RETURN_TYPE is the type returned by the
8126 function; VAARGS indicates whether the function takes varargs. The
8127 function takes N named arguments, the types of which are provided in
8131 build_function_type_array_1 (bool vaargs
, tree return_type
, int n
,
8135 tree t
= vaargs
? NULL_TREE
: void_list_node
;
8137 for (i
= n
- 1; i
>= 0; i
--)
8138 t
= tree_cons (NULL_TREE
, arg_types
[i
], t
);
8140 return build_function_type (return_type
, t
);
8143 /* Build a function type. RETURN_TYPE is the type returned by the
8144 function. The function takes N named arguments, the types of which
8145 are provided in ARG_TYPES. */
8148 build_function_type_array (tree return_type
, int n
, tree
*arg_types
)
8150 return build_function_type_array_1 (false, return_type
, n
, arg_types
);
8153 /* Build a variable argument function type. RETURN_TYPE is the type
8154 returned by the function. The function takes N named arguments, the
8155 types of which are provided in ARG_TYPES. */
8158 build_varargs_function_type_array (tree return_type
, int n
, tree
*arg_types
)
8160 return build_function_type_array_1 (true, return_type
, n
, arg_types
);
8163 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8164 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8165 for the method. An implicit additional parameter (of type
8166 pointer-to-BASETYPE) is added to the ARGTYPES. */
8169 build_method_type_directly (tree basetype
,
8175 bool any_structural_p
, any_noncanonical_p
;
8176 tree canon_argtypes
;
8178 /* Make a node of the sort we want. */
8179 t
= make_node (METHOD_TYPE
);
8181 TYPE_METHOD_BASETYPE (t
) = TYPE_MAIN_VARIANT (basetype
);
8182 TREE_TYPE (t
) = rettype
;
8183 ptype
= build_pointer_type (basetype
);
8185 /* The actual arglist for this function includes a "hidden" argument
8186 which is "this". Put it into the list of argument types. */
8187 argtypes
= tree_cons (NULL_TREE
, ptype
, argtypes
);
8188 TYPE_ARG_TYPES (t
) = argtypes
;
8190 /* If we already have such a type, use the old one. */
8191 hashval_t hash
= type_hash_canon_hash (t
);
8192 t
= type_hash_canon (hash
, t
);
8194 /* Set up the canonical type. */
8196 = (TYPE_STRUCTURAL_EQUALITY_P (basetype
)
8197 || TYPE_STRUCTURAL_EQUALITY_P (rettype
));
8199 = (TYPE_CANONICAL (basetype
) != basetype
8200 || TYPE_CANONICAL (rettype
) != rettype
);
8201 canon_argtypes
= maybe_canonicalize_argtypes (TREE_CHAIN (argtypes
),
8203 &any_noncanonical_p
);
8204 if (any_structural_p
)
8205 SET_TYPE_STRUCTURAL_EQUALITY (t
);
8206 else if (any_noncanonical_p
)
8208 = build_method_type_directly (TYPE_CANONICAL (basetype
),
8209 TYPE_CANONICAL (rettype
),
8211 if (!COMPLETE_TYPE_P (t
))
8217 /* Construct, lay out and return the type of methods belonging to class
8218 BASETYPE and whose arguments and values are described by TYPE.
8219 If that type exists already, reuse it.
8220 TYPE must be a FUNCTION_TYPE node. */
8223 build_method_type (tree basetype
, tree type
)
8225 gcc_assert (TREE_CODE (type
) == FUNCTION_TYPE
);
8227 return build_method_type_directly (basetype
,
8229 TYPE_ARG_TYPES (type
));
8232 /* Construct, lay out and return the type of offsets to a value
8233 of type TYPE, within an object of type BASETYPE.
8234 If a suitable offset type exists already, reuse it. */
8237 build_offset_type (tree basetype
, tree type
)
8241 /* Make a node of the sort we want. */
8242 t
= make_node (OFFSET_TYPE
);
8244 TYPE_OFFSET_BASETYPE (t
) = TYPE_MAIN_VARIANT (basetype
);
8245 TREE_TYPE (t
) = type
;
8247 /* If we already have such a type, use the old one. */
8248 hashval_t hash
= type_hash_canon_hash (t
);
8249 t
= type_hash_canon (hash
, t
);
8251 if (!COMPLETE_TYPE_P (t
))
8254 if (TYPE_CANONICAL (t
) == t
)
8256 if (TYPE_STRUCTURAL_EQUALITY_P (basetype
)
8257 || TYPE_STRUCTURAL_EQUALITY_P (type
))
8258 SET_TYPE_STRUCTURAL_EQUALITY (t
);
8259 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype
)) != basetype
8260 || TYPE_CANONICAL (type
) != type
)
8262 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype
)),
8263 TYPE_CANONICAL (type
));
8269 /* Create a complex type whose components are COMPONENT_TYPE.
8271 If NAMED is true, the type is given a TYPE_NAME. We do not always
8272 do so because this creates a DECL node and thus make the DECL_UIDs
8273 dependent on the type canonicalization hashtable, which is GC-ed,
8274 so the DECL_UIDs would not be stable wrt garbage collection. */
8277 build_complex_type (tree component_type
, bool named
)
8279 gcc_assert (INTEGRAL_TYPE_P (component_type
)
8280 || SCALAR_FLOAT_TYPE_P (component_type
)
8281 || FIXED_POINT_TYPE_P (component_type
));
8283 /* Make a node of the sort we want. */
8284 tree probe
= make_node (COMPLEX_TYPE
);
8286 TREE_TYPE (probe
) = TYPE_MAIN_VARIANT (component_type
);
8288 /* If we already have such a type, use the old one. */
8289 hashval_t hash
= type_hash_canon_hash (probe
);
8290 tree t
= type_hash_canon (hash
, probe
);
8294 /* We created a new type. The hash insertion will have laid
8295 out the type. We need to check the canonicalization and
8296 maybe set the name. */
8297 gcc_checking_assert (COMPLETE_TYPE_P (t
)
8299 && TYPE_CANONICAL (t
) == t
);
8301 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t
)))
8302 SET_TYPE_STRUCTURAL_EQUALITY (t
);
8303 else if (TYPE_CANONICAL (TREE_TYPE (t
)) != TREE_TYPE (t
))
8305 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t
)), named
);
8307 /* We need to create a name, since complex is a fundamental type. */
8310 const char *name
= NULL
;
8312 if (TREE_TYPE (t
) == char_type_node
)
8313 name
= "complex char";
8314 else if (TREE_TYPE (t
) == signed_char_type_node
)
8315 name
= "complex signed char";
8316 else if (TREE_TYPE (t
) == unsigned_char_type_node
)
8317 name
= "complex unsigned char";
8318 else if (TREE_TYPE (t
) == short_integer_type_node
)
8319 name
= "complex short int";
8320 else if (TREE_TYPE (t
) == short_unsigned_type_node
)
8321 name
= "complex short unsigned int";
8322 else if (TREE_TYPE (t
) == integer_type_node
)
8323 name
= "complex int";
8324 else if (TREE_TYPE (t
) == unsigned_type_node
)
8325 name
= "complex unsigned int";
8326 else if (TREE_TYPE (t
) == long_integer_type_node
)
8327 name
= "complex long int";
8328 else if (TREE_TYPE (t
) == long_unsigned_type_node
)
8329 name
= "complex long unsigned int";
8330 else if (TREE_TYPE (t
) == long_long_integer_type_node
)
8331 name
= "complex long long int";
8332 else if (TREE_TYPE (t
) == long_long_unsigned_type_node
)
8333 name
= "complex long long unsigned int";
8336 TYPE_NAME (t
) = build_decl (UNKNOWN_LOCATION
, TYPE_DECL
,
8337 get_identifier (name
), t
);
8341 return build_qualified_type (t
, TYPE_QUALS (component_type
));
8344 /* If TYPE is a real or complex floating-point type and the target
8345 does not directly support arithmetic on TYPE then return the wider
8346 type to be used for arithmetic on TYPE. Otherwise, return
8350 excess_precision_type (tree type
)
8352 /* The target can give two different responses to the question of
8353 which excess precision mode it would like depending on whether we
8354 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8356 enum excess_precision_type requested_type
8357 = (flag_excess_precision
== EXCESS_PRECISION_FAST
8358 ? EXCESS_PRECISION_TYPE_FAST
8359 : EXCESS_PRECISION_TYPE_STANDARD
);
8361 enum flt_eval_method target_flt_eval_method
8362 = targetm
.c
.excess_precision (requested_type
);
8364 /* The target should not ask for unpredictable float evaluation (though
8365 it might advertise that implicitly the evaluation is unpredictable,
8366 but we don't care about that here, it will have been reported
8367 elsewhere). If it does ask for unpredictable evaluation, we have
8368 nothing to do here. */
8369 gcc_assert (target_flt_eval_method
!= FLT_EVAL_METHOD_UNPREDICTABLE
);
8371 /* Nothing to do. The target has asked for all types we know about
8372 to be computed with their native precision and range. */
8373 if (target_flt_eval_method
== FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16
)
8376 /* The target will promote this type in a target-dependent way, so excess
8377 precision ought to leave it alone. */
8378 if (targetm
.promoted_type (type
) != NULL_TREE
)
8381 machine_mode float16_type_mode
= (float16_type_node
8382 ? TYPE_MODE (float16_type_node
)
8384 machine_mode float_type_mode
= TYPE_MODE (float_type_node
);
8385 machine_mode double_type_mode
= TYPE_MODE (double_type_node
);
8387 switch (TREE_CODE (type
))
8391 machine_mode type_mode
= TYPE_MODE (type
);
8392 switch (target_flt_eval_method
)
8394 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT
:
8395 if (type_mode
== float16_type_mode
)
8396 return float_type_node
;
8398 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE
:
8399 if (type_mode
== float16_type_mode
8400 || type_mode
== float_type_mode
)
8401 return double_type_node
;
8403 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE
:
8404 if (type_mode
== float16_type_mode
8405 || type_mode
== float_type_mode
8406 || type_mode
== double_type_mode
)
8407 return long_double_type_node
;
8416 if (TREE_CODE (TREE_TYPE (type
)) != REAL_TYPE
)
8418 machine_mode type_mode
= TYPE_MODE (TREE_TYPE (type
));
8419 switch (target_flt_eval_method
)
8421 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT
:
8422 if (type_mode
== float16_type_mode
)
8423 return complex_float_type_node
;
8425 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE
:
8426 if (type_mode
== float16_type_mode
8427 || type_mode
== float_type_mode
)
8428 return complex_double_type_node
;
8430 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE
:
8431 if (type_mode
== float16_type_mode
8432 || type_mode
== float_type_mode
8433 || type_mode
== double_type_mode
)
8434 return complex_long_double_type_node
;
8448 /* Return OP, stripped of any conversions to wider types as much as is safe.
8449 Converting the value back to OP's type makes a value equivalent to OP.
8451 If FOR_TYPE is nonzero, we return a value which, if converted to
8452 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8454 OP must have integer, real or enumeral type. Pointers are not allowed!
8456 There are some cases where the obvious value we could return
8457 would regenerate to OP if converted to OP's type,
8458 but would not extend like OP to wider types.
8459 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8460 For example, if OP is (unsigned short)(signed char)-1,
8461 we avoid returning (signed char)-1 if FOR_TYPE is int,
8462 even though extending that to an unsigned short would regenerate OP,
8463 since the result of extending (signed char)-1 to (int)
8464 is different from (int) OP. */
8467 get_unwidened (tree op
, tree for_type
)
8469 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8470 tree type
= TREE_TYPE (op
);
8472 = TYPE_PRECISION (for_type
!= 0 ? for_type
: type
);
8474 = (for_type
!= 0 && for_type
!= type
8475 && final_prec
> TYPE_PRECISION (type
)
8476 && TYPE_UNSIGNED (type
));
8479 while (CONVERT_EXPR_P (op
))
8483 /* TYPE_PRECISION on vector types has different meaning
8484 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8485 so avoid them here. */
8486 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op
, 0))) == VECTOR_TYPE
)
8489 bitschange
= TYPE_PRECISION (TREE_TYPE (op
))
8490 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op
, 0)));
8492 /* Truncations are many-one so cannot be removed.
8493 Unless we are later going to truncate down even farther. */
8495 && final_prec
> TYPE_PRECISION (TREE_TYPE (op
)))
8498 /* See what's inside this conversion. If we decide to strip it,
8500 op
= TREE_OPERAND (op
, 0);
8502 /* If we have not stripped any zero-extensions (uns is 0),
8503 we can strip any kind of extension.
8504 If we have previously stripped a zero-extension,
8505 only zero-extensions can safely be stripped.
8506 Any extension can be stripped if the bits it would produce
8507 are all going to be discarded later by truncating to FOR_TYPE. */
8511 if (! uns
|| final_prec
<= TYPE_PRECISION (TREE_TYPE (op
)))
8513 /* TYPE_UNSIGNED says whether this is a zero-extension.
8514 Let's avoid computing it if it does not affect WIN
8515 and if UNS will not be needed again. */
8517 || CONVERT_EXPR_P (op
))
8518 && TYPE_UNSIGNED (TREE_TYPE (op
)))
8526 /* If we finally reach a constant see if it fits in sth smaller and
8527 in that case convert it. */
8528 if (TREE_CODE (win
) == INTEGER_CST
)
8530 tree wtype
= TREE_TYPE (win
);
8531 unsigned prec
= wi::min_precision (wi::to_wide (win
), TYPE_SIGN (wtype
));
8533 prec
= MAX (prec
, final_prec
);
8534 if (prec
< TYPE_PRECISION (wtype
))
8536 tree t
= lang_hooks
.types
.type_for_size (prec
, TYPE_UNSIGNED (wtype
));
8537 if (t
&& TYPE_PRECISION (t
) < TYPE_PRECISION (wtype
))
8538 win
= fold_convert (t
, win
);
8545 /* Return OP or a simpler expression for a narrower value
8546 which can be sign-extended or zero-extended to give back OP.
8547 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8548 or 0 if the value should be sign-extended. */
8551 get_narrower (tree op
, int *unsignedp_ptr
)
8556 bool integral_p
= INTEGRAL_TYPE_P (TREE_TYPE (op
));
8558 while (TREE_CODE (op
) == NOP_EXPR
)
8561 = (TYPE_PRECISION (TREE_TYPE (op
))
8562 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op
, 0))));
8564 /* Truncations are many-one so cannot be removed. */
8568 /* See what's inside this conversion. If we decide to strip it,
8573 op
= TREE_OPERAND (op
, 0);
8574 /* An extension: the outermost one can be stripped,
8575 but remember whether it is zero or sign extension. */
8577 uns
= TYPE_UNSIGNED (TREE_TYPE (op
));
8578 /* Otherwise, if a sign extension has been stripped,
8579 only sign extensions can now be stripped;
8580 if a zero extension has been stripped, only zero-extensions. */
8581 else if (uns
!= TYPE_UNSIGNED (TREE_TYPE (op
)))
8585 else /* bitschange == 0 */
8587 /* A change in nominal type can always be stripped, but we must
8588 preserve the unsignedness. */
8590 uns
= TYPE_UNSIGNED (TREE_TYPE (op
));
8592 op
= TREE_OPERAND (op
, 0);
8593 /* Keep trying to narrow, but don't assign op to win if it
8594 would turn an integral type into something else. */
8595 if (INTEGRAL_TYPE_P (TREE_TYPE (op
)) != integral_p
)
8602 if (TREE_CODE (op
) == COMPONENT_REF
8603 /* Since type_for_size always gives an integer type. */
8604 && TREE_CODE (TREE_TYPE (op
)) != REAL_TYPE
8605 && TREE_CODE (TREE_TYPE (op
)) != FIXED_POINT_TYPE
8606 /* Ensure field is laid out already. */
8607 && DECL_SIZE (TREE_OPERAND (op
, 1)) != 0
8608 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op
, 1))))
8610 unsigned HOST_WIDE_INT innerprec
8611 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op
, 1)));
8612 int unsignedp
= (DECL_UNSIGNED (TREE_OPERAND (op
, 1))
8613 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op
, 1))));
8614 tree type
= lang_hooks
.types
.type_for_size (innerprec
, unsignedp
);
8616 /* We can get this structure field in a narrower type that fits it,
8617 but the resulting extension to its nominal type (a fullword type)
8618 must satisfy the same conditions as for other extensions.
8620 Do this only for fields that are aligned (not bit-fields),
8621 because when bit-field insns will be used there is no
8622 advantage in doing this. */
8624 if (innerprec
< TYPE_PRECISION (TREE_TYPE (op
))
8625 && ! DECL_BIT_FIELD (TREE_OPERAND (op
, 1))
8626 && (first
|| uns
== DECL_UNSIGNED (TREE_OPERAND (op
, 1)))
8630 uns
= DECL_UNSIGNED (TREE_OPERAND (op
, 1));
8631 win
= fold_convert (type
, op
);
8635 *unsignedp_ptr
= uns
;
8639 /* Return true if integer constant C has a value that is permissible
8640 for TYPE, an integral type. */
8643 int_fits_type_p (const_tree c
, const_tree type
)
8645 tree type_low_bound
, type_high_bound
;
8646 bool ok_for_low_bound
, ok_for_high_bound
;
8647 signop sgn_c
= TYPE_SIGN (TREE_TYPE (c
));
8649 /* Non-standard boolean types can have arbitrary precision but various
8650 transformations assume that they can only take values 0 and +/-1. */
8651 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
8652 return wi::fits_to_boolean_p (wi::to_wide (c
), type
);
8655 type_low_bound
= TYPE_MIN_VALUE (type
);
8656 type_high_bound
= TYPE_MAX_VALUE (type
);
8658 /* If at least one bound of the type is a constant integer, we can check
8659 ourselves and maybe make a decision. If no such decision is possible, but
8660 this type is a subtype, try checking against that. Otherwise, use
8661 fits_to_tree_p, which checks against the precision.
8663 Compute the status for each possibly constant bound, and return if we see
8664 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
8665 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
8666 for "constant known to fit". */
8668 /* Check if c >= type_low_bound. */
8669 if (type_low_bound
&& TREE_CODE (type_low_bound
) == INTEGER_CST
)
8671 if (tree_int_cst_lt (c
, type_low_bound
))
8673 ok_for_low_bound
= true;
8676 ok_for_low_bound
= false;
8678 /* Check if c <= type_high_bound. */
8679 if (type_high_bound
&& TREE_CODE (type_high_bound
) == INTEGER_CST
)
8681 if (tree_int_cst_lt (type_high_bound
, c
))
8683 ok_for_high_bound
= true;
8686 ok_for_high_bound
= false;
8688 /* If the constant fits both bounds, the result is known. */
8689 if (ok_for_low_bound
&& ok_for_high_bound
)
8692 /* Perform some generic filtering which may allow making a decision
8693 even if the bounds are not constant. First, negative integers
8694 never fit in unsigned types, */
8695 if (TYPE_UNSIGNED (type
) && sgn_c
== SIGNED
&& wi::neg_p (wi::to_wide (c
)))
8698 /* Second, narrower types always fit in wider ones. */
8699 if (TYPE_PRECISION (type
) > TYPE_PRECISION (TREE_TYPE (c
)))
8702 /* Third, unsigned integers with top bit set never fit signed types. */
8703 if (!TYPE_UNSIGNED (type
) && sgn_c
== UNSIGNED
)
8705 int prec
= GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c
))) - 1;
8706 if (prec
< TYPE_PRECISION (TREE_TYPE (c
)))
8708 /* When a tree_cst is converted to a wide-int, the precision
8709 is taken from the type. However, if the precision of the
8710 mode underneath the type is smaller than that, it is
8711 possible that the value will not fit. The test below
8712 fails if any bit is set between the sign bit of the
8713 underlying mode and the top bit of the type. */
8714 if (wi::zext (wi::to_wide (c
), prec
- 1) != wi::to_wide (c
))
8717 else if (wi::neg_p (wi::to_wide (c
)))
8721 /* If we haven't been able to decide at this point, there nothing more we
8722 can check ourselves here. Look at the base type if we have one and it
8723 has the same precision. */
8724 if (TREE_CODE (type
) == INTEGER_TYPE
8725 && TREE_TYPE (type
) != 0
8726 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (type
)))
8728 type
= TREE_TYPE (type
);
8732 /* Or to fits_to_tree_p, if nothing else. */
8733 return wi::fits_to_tree_p (wi::to_wide (c
), type
);
8736 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8737 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8738 represented (assuming two's-complement arithmetic) within the bit
8739 precision of the type are returned instead. */
8742 get_type_static_bounds (const_tree type
, mpz_t min
, mpz_t max
)
8744 if (!POINTER_TYPE_P (type
) && TYPE_MIN_VALUE (type
)
8745 && TREE_CODE (TYPE_MIN_VALUE (type
)) == INTEGER_CST
)
8746 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type
)), min
, TYPE_SIGN (type
));
8749 if (TYPE_UNSIGNED (type
))
8750 mpz_set_ui (min
, 0);
8753 wide_int mn
= wi::min_value (TYPE_PRECISION (type
), SIGNED
);
8754 wi::to_mpz (mn
, min
, SIGNED
);
8758 if (!POINTER_TYPE_P (type
) && TYPE_MAX_VALUE (type
)
8759 && TREE_CODE (TYPE_MAX_VALUE (type
)) == INTEGER_CST
)
8760 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type
)), max
, TYPE_SIGN (type
));
8763 wide_int mn
= wi::max_value (TYPE_PRECISION (type
), TYPE_SIGN (type
));
8764 wi::to_mpz (mn
, max
, TYPE_SIGN (type
));
8768 /* Return true if VAR is an automatic variable defined in function FN. */
8771 auto_var_in_fn_p (const_tree var
, const_tree fn
)
8773 return (DECL_P (var
) && DECL_CONTEXT (var
) == fn
8774 && ((((VAR_P (var
) && ! DECL_EXTERNAL (var
))
8775 || TREE_CODE (var
) == PARM_DECL
)
8776 && ! TREE_STATIC (var
))
8777 || TREE_CODE (var
) == LABEL_DECL
8778 || TREE_CODE (var
) == RESULT_DECL
));
8781 /* Subprogram of following function. Called by walk_tree.
8783 Return *TP if it is an automatic variable or parameter of the
8784 function passed in as DATA. */
8787 find_var_from_fn (tree
*tp
, int *walk_subtrees
, void *data
)
8789 tree fn
= (tree
) data
;
8794 else if (DECL_P (*tp
)
8795 && auto_var_in_fn_p (*tp
, fn
))
8801 /* Returns true if T is, contains, or refers to a type with variable
8802 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8803 arguments, but not the return type. If FN is nonzero, only return
8804 true if a modifier of the type or position of FN is a variable or
8805 parameter inside FN.
8807 This concept is more general than that of C99 'variably modified types':
8808 in C99, a struct type is never variably modified because a VLA may not
8809 appear as a structure member. However, in GNU C code like:
8811 struct S { int i[f()]; };
8813 is valid, and other languages may define similar constructs. */
8816 variably_modified_type_p (tree type
, tree fn
)
8820 /* Test if T is either variable (if FN is zero) or an expression containing
8821 a variable in FN. If TYPE isn't gimplified, return true also if
8822 gimplify_one_sizepos would gimplify the expression into a local
8824 #define RETURN_TRUE_IF_VAR(T) \
8825 do { tree _t = (T); \
8826 if (_t != NULL_TREE \
8827 && _t != error_mark_node \
8828 && !CONSTANT_CLASS_P (_t) \
8829 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
8831 || (!TYPE_SIZES_GIMPLIFIED (type) \
8832 && (TREE_CODE (_t) != VAR_DECL \
8833 && !CONTAINS_PLACEHOLDER_P (_t))) \
8834 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8835 return true; } while (0)
8837 if (type
== error_mark_node
)
8840 /* If TYPE itself has variable size, it is variably modified. */
8841 RETURN_TRUE_IF_VAR (TYPE_SIZE (type
));
8842 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type
));
8844 switch (TREE_CODE (type
))
8847 case REFERENCE_TYPE
:
8849 /* Ada can have pointer types refering to themselves indirectly. */
8850 if (TREE_VISITED (type
))
8852 TREE_VISITED (type
) = true;
8853 if (variably_modified_type_p (TREE_TYPE (type
), fn
))
8855 TREE_VISITED (type
) = false;
8858 TREE_VISITED (type
) = false;
8863 /* If TYPE is a function type, it is variably modified if the
8864 return type is variably modified. */
8865 if (variably_modified_type_p (TREE_TYPE (type
), fn
))
8871 case FIXED_POINT_TYPE
:
8874 /* Scalar types are variably modified if their end points
8876 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type
));
8877 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type
));
8882 case QUAL_UNION_TYPE
:
8883 /* We can't see if any of the fields are variably-modified by the
8884 definition we normally use, since that would produce infinite
8885 recursion via pointers. */
8886 /* This is variably modified if some field's type is. */
8887 for (t
= TYPE_FIELDS (type
); t
; t
= DECL_CHAIN (t
))
8888 if (TREE_CODE (t
) == FIELD_DECL
)
8890 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t
));
8891 RETURN_TRUE_IF_VAR (DECL_SIZE (t
));
8892 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t
));
8894 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
8895 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t
));
8900 /* Do not call ourselves to avoid infinite recursion. This is
8901 variably modified if the element type is. */
8902 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type
)));
8903 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type
)));
8910 /* The current language may have other cases to check, but in general,
8911 all other types are not variably modified. */
8912 return lang_hooks
.tree_inlining
.var_mod_type_p (type
, fn
);
8914 #undef RETURN_TRUE_IF_VAR
8917 /* Given a DECL or TYPE, return the scope in which it was declared, or
8918 NULL_TREE if there is no containing scope. */
8921 get_containing_scope (const_tree t
)
8923 return (TYPE_P (t
) ? TYPE_CONTEXT (t
) : DECL_CONTEXT (t
));
8926 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
8929 get_ultimate_context (const_tree decl
)
8931 while (decl
&& TREE_CODE (decl
) != TRANSLATION_UNIT_DECL
)
8933 if (TREE_CODE (decl
) == BLOCK
)
8934 decl
= BLOCK_SUPERCONTEXT (decl
);
8936 decl
= get_containing_scope (decl
);
8941 /* Return the innermost context enclosing DECL that is
8942 a FUNCTION_DECL, or zero if none. */
8945 decl_function_context (const_tree decl
)
8949 if (TREE_CODE (decl
) == ERROR_MARK
)
8952 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8953 where we look up the function at runtime. Such functions always take
8954 a first argument of type 'pointer to real context'.
8956 C++ should really be fixed to use DECL_CONTEXT for the real context,
8957 and use something else for the "virtual context". */
8958 else if (TREE_CODE (decl
) == FUNCTION_DECL
&& DECL_VINDEX (decl
))
8961 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
8963 context
= DECL_CONTEXT (decl
);
8965 while (context
&& TREE_CODE (context
) != FUNCTION_DECL
)
8967 if (TREE_CODE (context
) == BLOCK
)
8968 context
= BLOCK_SUPERCONTEXT (context
);
8970 context
= get_containing_scope (context
);
8976 /* Return the innermost context enclosing DECL that is
8977 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8978 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8981 decl_type_context (const_tree decl
)
8983 tree context
= DECL_CONTEXT (decl
);
8986 switch (TREE_CODE (context
))
8988 case NAMESPACE_DECL
:
8989 case TRANSLATION_UNIT_DECL
:
8994 case QUAL_UNION_TYPE
:
8999 context
= DECL_CONTEXT (context
);
9003 context
= BLOCK_SUPERCONTEXT (context
);
9013 /* CALL is a CALL_EXPR. Return the declaration for the function
9014 called, or NULL_TREE if the called function cannot be
9018 get_callee_fndecl (const_tree call
)
9022 if (call
== error_mark_node
)
9023 return error_mark_node
;
9025 /* It's invalid to call this function with anything but a
9027 gcc_assert (TREE_CODE (call
) == CALL_EXPR
);
9029 /* The first operand to the CALL is the address of the function
9031 addr
= CALL_EXPR_FN (call
);
9033 /* If there is no function, return early. */
9034 if (addr
== NULL_TREE
)
9039 /* If this is a readonly function pointer, extract its initial value. */
9040 if (DECL_P (addr
) && TREE_CODE (addr
) != FUNCTION_DECL
9041 && TREE_READONLY (addr
) && ! TREE_THIS_VOLATILE (addr
)
9042 && DECL_INITIAL (addr
))
9043 addr
= DECL_INITIAL (addr
);
9045 /* If the address is just `&f' for some function `f', then we know
9046 that `f' is being called. */
9047 if (TREE_CODE (addr
) == ADDR_EXPR
9048 && TREE_CODE (TREE_OPERAND (addr
, 0)) == FUNCTION_DECL
)
9049 return TREE_OPERAND (addr
, 0);
9051 /* We couldn't figure out what was being called. */
9055 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9056 return the associated function code, otherwise return CFN_LAST. */
9059 get_call_combined_fn (const_tree call
)
9061 /* It's invalid to call this function with anything but a CALL_EXPR. */
9062 gcc_assert (TREE_CODE (call
) == CALL_EXPR
);
9064 if (!CALL_EXPR_FN (call
))
9065 return as_combined_fn (CALL_EXPR_IFN (call
));
9067 tree fndecl
= get_callee_fndecl (call
);
9068 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
9069 return as_combined_fn (DECL_FUNCTION_CODE (fndecl
));
9074 #define TREE_MEM_USAGE_SPACES 40
9076 /* Print debugging information about tree nodes generated during the compile,
9077 and any language-specific information. */
9080 dump_tree_statistics (void)
9082 if (GATHER_STATISTICS
)
9085 uint64_t total_nodes
, total_bytes
;
9086 fprintf (stderr
, "\nKind Nodes Bytes\n");
9087 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES
);
9088 total_nodes
= total_bytes
= 0;
9089 for (i
= 0; i
< (int) all_kinds
; i
++)
9091 fprintf (stderr
, "%-20s %7" PRIu64
" %10" PRIu64
"\n",
9092 tree_node_kind_names
[i
], tree_node_counts
[i
],
9093 tree_node_sizes
[i
]);
9094 total_nodes
+= tree_node_counts
[i
];
9095 total_bytes
+= tree_node_sizes
[i
];
9097 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES
);
9098 fprintf (stderr
, "%-20s %7" PRIu64
" %10" PRIu64
"\n", "Total",
9099 total_nodes
, total_bytes
);
9100 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES
);
9101 fprintf (stderr
, "Code Nodes\n");
9102 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES
);
9103 for (i
= 0; i
< (int) MAX_TREE_CODES
; i
++)
9104 fprintf (stderr
, "%-32s %7" PRIu64
"\n",
9105 get_tree_code_name ((enum tree_code
) i
), tree_code_counts
[i
]);
9106 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES
);
9107 fprintf (stderr
, "\n");
9108 ssanames_print_statistics ();
9109 fprintf (stderr
, "\n");
9110 phinodes_print_statistics ();
9111 fprintf (stderr
, "\n");
9114 fprintf (stderr
, "(No per-node statistics)\n");
9116 print_type_hash_statistics ();
9117 print_debug_expr_statistics ();
9118 print_value_expr_statistics ();
9119 lang_hooks
.print_statistics ();
9122 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9124 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9127 crc32_unsigned_n (unsigned chksum
, unsigned value
, unsigned bytes
)
9129 /* This relies on the raw feedback's top 4 bits being zero. */
9130 #define FEEDBACK(X) ((X) * 0x04c11db7)
9131 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9132 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9133 static const unsigned syndromes
[16] =
9135 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9136 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9137 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9138 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9143 value
<<= (32 - bytes
* 8);
9144 for (unsigned ix
= bytes
* 2; ix
--; value
<<= 4)
9146 unsigned feedback
= syndromes
[((value
^ chksum
) >> 28) & 0xf];
9148 chksum
= (chksum
<< 4) ^ feedback
;
9154 /* Generate a crc32 of a string. */
9157 crc32_string (unsigned chksum
, const char *string
)
9160 chksum
= crc32_byte (chksum
, *string
);
9165 /* P is a string that will be used in a symbol. Mask out any characters
9166 that are not valid in that context. */
9169 clean_symbol_name (char *p
)
9173 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9176 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9183 /* For anonymous aggregate types, we need some sort of name to
9184 hold on to. In practice, this should not appear, but it should
9185 not be harmful if it does. */
9187 anon_aggrname_p(const_tree id_node
)
9189 #ifndef NO_DOT_IN_LABEL
9190 return (IDENTIFIER_POINTER (id_node
)[0] == '.'
9191 && IDENTIFIER_POINTER (id_node
)[1] == '_');
9192 #else /* NO_DOT_IN_LABEL */
9193 #ifndef NO_DOLLAR_IN_LABEL
9194 return (IDENTIFIER_POINTER (id_node
)[0] == '$' \
9195 && IDENTIFIER_POINTER (id_node
)[1] == '_');
9196 #else /* NO_DOLLAR_IN_LABEL */
9197 #define ANON_AGGRNAME_PREFIX "__anon_"
9198 return (!strncmp (IDENTIFIER_POINTER (id_node
), ANON_AGGRNAME_PREFIX
,
9199 sizeof (ANON_AGGRNAME_PREFIX
) - 1));
9200 #endif /* NO_DOLLAR_IN_LABEL */
9201 #endif /* NO_DOT_IN_LABEL */
9204 /* Return a format for an anonymous aggregate name. */
9206 anon_aggrname_format()
9208 #ifndef NO_DOT_IN_LABEL
9210 #else /* NO_DOT_IN_LABEL */
9211 #ifndef NO_DOLLAR_IN_LABEL
9213 #else /* NO_DOLLAR_IN_LABEL */
9215 #endif /* NO_DOLLAR_IN_LABEL */
9216 #endif /* NO_DOT_IN_LABEL */
9219 /* Generate a name for a special-purpose function.
9220 The generated name may need to be unique across the whole link.
9221 Changes to this function may also require corresponding changes to
9222 xstrdup_mask_random.
9223 TYPE is some string to identify the purpose of this function to the
9224 linker or collect2; it must start with an uppercase letter,
9226 I - for constructors
9228 N - for C++ anonymous namespaces
9229 F - for DWARF unwind frame information. */
9232 get_file_function_name (const char *type
)
9238 /* If we already have a name we know to be unique, just use that. */
9239 if (first_global_object_name
)
9240 p
= q
= ASTRDUP (first_global_object_name
);
9241 /* If the target is handling the constructors/destructors, they
9242 will be local to this file and the name is only necessary for
9244 We also assign sub_I and sub_D sufixes to constructors called from
9245 the global static constructors. These are always local. */
9246 else if (((type
[0] == 'I' || type
[0] == 'D') && targetm
.have_ctors_dtors
)
9247 || (strncmp (type
, "sub_", 4) == 0
9248 && (type
[4] == 'I' || type
[4] == 'D')))
9250 const char *file
= main_input_filename
;
9252 file
= LOCATION_FILE (input_location
);
9253 /* Just use the file's basename, because the full pathname
9254 might be quite long. */
9255 p
= q
= ASTRDUP (lbasename (file
));
9259 /* Otherwise, the name must be unique across the entire link.
9260 We don't have anything that we know to be unique to this translation
9261 unit, so use what we do have and throw in some randomness. */
9263 const char *name
= weak_global_object_name
;
9264 const char *file
= main_input_filename
;
9269 file
= LOCATION_FILE (input_location
);
9271 len
= strlen (file
);
9272 q
= (char *) alloca (9 + 19 + len
+ 1);
9273 memcpy (q
, file
, len
+ 1);
9275 snprintf (q
+ len
, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX
,
9276 crc32_string (0, name
), get_random_seed (false));
9281 clean_symbol_name (q
);
9282 buf
= (char *) alloca (sizeof (FILE_FUNCTION_FORMAT
) + strlen (p
)
9285 /* Set up the name of the file-level functions we may need.
9286 Use a global object (which is already required to be unique over
9287 the program) rather than the file name (which imposes extra
9289 sprintf (buf
, FILE_FUNCTION_FORMAT
, type
, p
);
9291 return get_identifier (buf
);
9294 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9296 /* Complain that the tree code of NODE does not match the expected 0
9297 terminated list of trailing codes. The trailing code list can be
9298 empty, for a more vague error message. FILE, LINE, and FUNCTION
9299 are of the caller. */
9302 tree_check_failed (const_tree node
, const char *file
,
9303 int line
, const char *function
, ...)
9307 unsigned length
= 0;
9308 enum tree_code code
;
9310 va_start (args
, function
);
9311 while ((code
= (enum tree_code
) va_arg (args
, int)))
9312 length
+= 4 + strlen (get_tree_code_name (code
));
9317 va_start (args
, function
);
9318 length
+= strlen ("expected ");
9319 buffer
= tmp
= (char *) alloca (length
);
9321 while ((code
= (enum tree_code
) va_arg (args
, int)))
9323 const char *prefix
= length
? " or " : "expected ";
9325 strcpy (tmp
+ length
, prefix
);
9326 length
+= strlen (prefix
);
9327 strcpy (tmp
+ length
, get_tree_code_name (code
));
9328 length
+= strlen (get_tree_code_name (code
));
9333 buffer
= "unexpected node";
9335 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9336 buffer
, get_tree_code_name (TREE_CODE (node
)),
9337 function
, trim_filename (file
), line
);
9340 /* Complain that the tree code of NODE does match the expected 0
9341 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9345 tree_not_check_failed (const_tree node
, const char *file
,
9346 int line
, const char *function
, ...)
9350 unsigned length
= 0;
9351 enum tree_code code
;
9353 va_start (args
, function
);
9354 while ((code
= (enum tree_code
) va_arg (args
, int)))
9355 length
+= 4 + strlen (get_tree_code_name (code
));
9357 va_start (args
, function
);
9358 buffer
= (char *) alloca (length
);
9360 while ((code
= (enum tree_code
) va_arg (args
, int)))
9364 strcpy (buffer
+ length
, " or ");
9367 strcpy (buffer
+ length
, get_tree_code_name (code
));
9368 length
+= strlen (get_tree_code_name (code
));
9372 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9373 buffer
, get_tree_code_name (TREE_CODE (node
)),
9374 function
, trim_filename (file
), line
);
9377 /* Similar to tree_check_failed, except that we check for a class of tree
9378 code, given in CL. */
9381 tree_class_check_failed (const_tree node
, const enum tree_code_class cl
,
9382 const char *file
, int line
, const char *function
)
9385 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9386 TREE_CODE_CLASS_STRING (cl
),
9387 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node
))),
9388 get_tree_code_name (TREE_CODE (node
)), function
, trim_filename (file
), line
);
9391 /* Similar to tree_check_failed, except that instead of specifying a
9392 dozen codes, use the knowledge that they're all sequential. */
9395 tree_range_check_failed (const_tree node
, const char *file
, int line
,
9396 const char *function
, enum tree_code c1
,
9400 unsigned length
= 0;
9403 for (c
= c1
; c
<= c2
; ++c
)
9404 length
+= 4 + strlen (get_tree_code_name ((enum tree_code
) c
));
9406 length
+= strlen ("expected ");
9407 buffer
= (char *) alloca (length
);
9410 for (c
= c1
; c
<= c2
; ++c
)
9412 const char *prefix
= length
? " or " : "expected ";
9414 strcpy (buffer
+ length
, prefix
);
9415 length
+= strlen (prefix
);
9416 strcpy (buffer
+ length
, get_tree_code_name ((enum tree_code
) c
));
9417 length
+= strlen (get_tree_code_name ((enum tree_code
) c
));
9420 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9421 buffer
, get_tree_code_name (TREE_CODE (node
)),
9422 function
, trim_filename (file
), line
);
9426 /* Similar to tree_check_failed, except that we check that a tree does
9427 not have the specified code, given in CL. */
9430 tree_not_class_check_failed (const_tree node
, const enum tree_code_class cl
,
9431 const char *file
, int line
, const char *function
)
9434 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9435 TREE_CODE_CLASS_STRING (cl
),
9436 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node
))),
9437 get_tree_code_name (TREE_CODE (node
)), function
, trim_filename (file
), line
);
9441 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9444 omp_clause_check_failed (const_tree node
, const char *file
, int line
,
9445 const char *function
, enum omp_clause_code code
)
9447 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
9448 omp_clause_code_name
[code
], get_tree_code_name (TREE_CODE (node
)),
9449 function
, trim_filename (file
), line
);
9453 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9456 omp_clause_range_check_failed (const_tree node
, const char *file
, int line
,
9457 const char *function
, enum omp_clause_code c1
,
9458 enum omp_clause_code c2
)
9461 unsigned length
= 0;
9464 for (c
= c1
; c
<= c2
; ++c
)
9465 length
+= 4 + strlen (omp_clause_code_name
[c
]);
9467 length
+= strlen ("expected ");
9468 buffer
= (char *) alloca (length
);
9471 for (c
= c1
; c
<= c2
; ++c
)
9473 const char *prefix
= length
? " or " : "expected ";
9475 strcpy (buffer
+ length
, prefix
);
9476 length
+= strlen (prefix
);
9477 strcpy (buffer
+ length
, omp_clause_code_name
[c
]);
9478 length
+= strlen (omp_clause_code_name
[c
]);
9481 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9482 buffer
, omp_clause_code_name
[TREE_CODE (node
)],
9483 function
, trim_filename (file
), line
);
9487 #undef DEFTREESTRUCT
9488 #define DEFTREESTRUCT(VAL, NAME) NAME,
9490 static const char *ts_enum_names
[] = {
9491 #include "treestruct.def"
9493 #undef DEFTREESTRUCT
9495 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9497 /* Similar to tree_class_check_failed, except that we check for
9498 whether CODE contains the tree structure identified by EN. */
9501 tree_contains_struct_check_failed (const_tree node
,
9502 const enum tree_node_structure_enum en
,
9503 const char *file
, int line
,
9504 const char *function
)
9507 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9509 get_tree_code_name (TREE_CODE (node
)), function
, trim_filename (file
), line
);
9513 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9514 (dynamically sized) vector. */
9517 tree_int_cst_elt_check_failed (int idx
, int len
, const char *file
, int line
,
9518 const char *function
)
9521 ("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
9522 idx
+ 1, len
, function
, trim_filename (file
), line
);
9525 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9526 (dynamically sized) vector. */
9529 tree_vec_elt_check_failed (int idx
, int len
, const char *file
, int line
,
9530 const char *function
)
9533 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
9534 idx
+ 1, len
, function
, trim_filename (file
), line
);
9537 /* Similar to above, except that the check is for the bounds of the operand
9538 vector of an expression node EXP. */
9541 tree_operand_check_failed (int idx
, const_tree exp
, const char *file
,
9542 int line
, const char *function
)
9544 enum tree_code code
= TREE_CODE (exp
);
9546 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
9547 idx
+ 1, get_tree_code_name (code
), TREE_OPERAND_LENGTH (exp
),
9548 function
, trim_filename (file
), line
);
9551 /* Similar to above, except that the check is for the number of
9552 operands of an OMP_CLAUSE node. */
9555 omp_clause_operand_check_failed (int idx
, const_tree t
, const char *file
,
9556 int line
, const char *function
)
9559 ("tree check: accessed operand %d of omp_clause %s with %d operands "
9560 "in %s, at %s:%d", idx
+ 1, omp_clause_code_name
[OMP_CLAUSE_CODE (t
)],
9561 omp_clause_num_ops
[OMP_CLAUSE_CODE (t
)], function
,
9562 trim_filename (file
), line
);
9564 #endif /* ENABLE_TREE_CHECKING */
9566 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
9567 and mapped to the machine mode MODE. Initialize its fields and build
9568 the information necessary for debugging output. */
9571 make_vector_type (tree innertype
, poly_int64 nunits
, machine_mode mode
)
9574 tree mv_innertype
= TYPE_MAIN_VARIANT (innertype
);
9576 t
= make_node (VECTOR_TYPE
);
9577 TREE_TYPE (t
) = mv_innertype
;
9578 SET_TYPE_VECTOR_SUBPARTS (t
, nunits
);
9579 SET_TYPE_MODE (t
, mode
);
9581 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype
) || in_lto_p
)
9582 SET_TYPE_STRUCTURAL_EQUALITY (t
);
9583 else if ((TYPE_CANONICAL (mv_innertype
) != innertype
9584 || mode
!= VOIDmode
)
9585 && !VECTOR_BOOLEAN_TYPE_P (t
))
9587 = make_vector_type (TYPE_CANONICAL (mv_innertype
), nunits
, VOIDmode
);
9591 hashval_t hash
= type_hash_canon_hash (t
);
9592 t
= type_hash_canon (hash
, t
);
9594 /* We have built a main variant, based on the main variant of the
9595 inner type. Use it to build the variant we return. */
9596 if ((TYPE_ATTRIBUTES (innertype
) || TYPE_QUALS (innertype
))
9597 && TREE_TYPE (t
) != innertype
)
9598 return build_type_attribute_qual_variant (t
,
9599 TYPE_ATTRIBUTES (innertype
),
9600 TYPE_QUALS (innertype
));
9606 make_or_reuse_type (unsigned size
, int unsignedp
)
9610 if (size
== INT_TYPE_SIZE
)
9611 return unsignedp
? unsigned_type_node
: integer_type_node
;
9612 if (size
== CHAR_TYPE_SIZE
)
9613 return unsignedp
? unsigned_char_type_node
: signed_char_type_node
;
9614 if (size
== SHORT_TYPE_SIZE
)
9615 return unsignedp
? short_unsigned_type_node
: short_integer_type_node
;
9616 if (size
== LONG_TYPE_SIZE
)
9617 return unsignedp
? long_unsigned_type_node
: long_integer_type_node
;
9618 if (size
== LONG_LONG_TYPE_SIZE
)
9619 return (unsignedp
? long_long_unsigned_type_node
9620 : long_long_integer_type_node
);
9622 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
9623 if (size
== int_n_data
[i
].bitsize
9624 && int_n_enabled_p
[i
])
9625 return (unsignedp
? int_n_trees
[i
].unsigned_type
9626 : int_n_trees
[i
].signed_type
);
9629 return make_unsigned_type (size
);
9631 return make_signed_type (size
);
9634 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
9637 make_or_reuse_fract_type (unsigned size
, int unsignedp
, int satp
)
9641 if (size
== SHORT_FRACT_TYPE_SIZE
)
9642 return unsignedp
? sat_unsigned_short_fract_type_node
9643 : sat_short_fract_type_node
;
9644 if (size
== FRACT_TYPE_SIZE
)
9645 return unsignedp
? sat_unsigned_fract_type_node
: sat_fract_type_node
;
9646 if (size
== LONG_FRACT_TYPE_SIZE
)
9647 return unsignedp
? sat_unsigned_long_fract_type_node
9648 : sat_long_fract_type_node
;
9649 if (size
== LONG_LONG_FRACT_TYPE_SIZE
)
9650 return unsignedp
? sat_unsigned_long_long_fract_type_node
9651 : sat_long_long_fract_type_node
;
9655 if (size
== SHORT_FRACT_TYPE_SIZE
)
9656 return unsignedp
? unsigned_short_fract_type_node
9657 : short_fract_type_node
;
9658 if (size
== FRACT_TYPE_SIZE
)
9659 return unsignedp
? unsigned_fract_type_node
: fract_type_node
;
9660 if (size
== LONG_FRACT_TYPE_SIZE
)
9661 return unsignedp
? unsigned_long_fract_type_node
9662 : long_fract_type_node
;
9663 if (size
== LONG_LONG_FRACT_TYPE_SIZE
)
9664 return unsignedp
? unsigned_long_long_fract_type_node
9665 : long_long_fract_type_node
;
9668 return make_fract_type (size
, unsignedp
, satp
);
9671 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
9674 make_or_reuse_accum_type (unsigned size
, int unsignedp
, int satp
)
9678 if (size
== SHORT_ACCUM_TYPE_SIZE
)
9679 return unsignedp
? sat_unsigned_short_accum_type_node
9680 : sat_short_accum_type_node
;
9681 if (size
== ACCUM_TYPE_SIZE
)
9682 return unsignedp
? sat_unsigned_accum_type_node
: sat_accum_type_node
;
9683 if (size
== LONG_ACCUM_TYPE_SIZE
)
9684 return unsignedp
? sat_unsigned_long_accum_type_node
9685 : sat_long_accum_type_node
;
9686 if (size
== LONG_LONG_ACCUM_TYPE_SIZE
)
9687 return unsignedp
? sat_unsigned_long_long_accum_type_node
9688 : sat_long_long_accum_type_node
;
9692 if (size
== SHORT_ACCUM_TYPE_SIZE
)
9693 return unsignedp
? unsigned_short_accum_type_node
9694 : short_accum_type_node
;
9695 if (size
== ACCUM_TYPE_SIZE
)
9696 return unsignedp
? unsigned_accum_type_node
: accum_type_node
;
9697 if (size
== LONG_ACCUM_TYPE_SIZE
)
9698 return unsignedp
? unsigned_long_accum_type_node
9699 : long_accum_type_node
;
9700 if (size
== LONG_LONG_ACCUM_TYPE_SIZE
)
9701 return unsignedp
? unsigned_long_long_accum_type_node
9702 : long_long_accum_type_node
;
9705 return make_accum_type (size
, unsignedp
, satp
);
9709 /* Create an atomic variant node for TYPE. This routine is called
9710 during initialization of data types to create the 5 basic atomic
9711 types. The generic build_variant_type function requires these to
9712 already be set up in order to function properly, so cannot be
9713 called from there. If ALIGN is non-zero, then ensure alignment is
9714 overridden to this value. */
9717 build_atomic_base (tree type
, unsigned int align
)
9721 /* Make sure its not already registered. */
9722 if ((t
= get_qualified_type (type
, TYPE_QUAL_ATOMIC
)))
9725 t
= build_variant_type_copy (type
);
9726 set_type_quals (t
, TYPE_QUAL_ATOMIC
);
9729 SET_TYPE_ALIGN (t
, align
);
9734 /* Information about the _FloatN and _FloatNx types. This must be in
9735 the same order as the corresponding TI_* enum values. */
9736 const floatn_type_info floatn_nx_types
[NUM_FLOATN_NX_TYPES
] =
9748 /* Create nodes for all integer types (and error_mark_node) using the sizes
9749 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
9752 build_common_tree_nodes (bool signed_char
)
9756 error_mark_node
= make_node (ERROR_MARK
);
9757 TREE_TYPE (error_mark_node
) = error_mark_node
;
9759 initialize_sizetypes ();
9761 /* Define both `signed char' and `unsigned char'. */
9762 signed_char_type_node
= make_signed_type (CHAR_TYPE_SIZE
);
9763 TYPE_STRING_FLAG (signed_char_type_node
) = 1;
9764 unsigned_char_type_node
= make_unsigned_type (CHAR_TYPE_SIZE
);
9765 TYPE_STRING_FLAG (unsigned_char_type_node
) = 1;
9767 /* Define `char', which is like either `signed char' or `unsigned char'
9768 but not the same as either. */
9771 ? make_signed_type (CHAR_TYPE_SIZE
)
9772 : make_unsigned_type (CHAR_TYPE_SIZE
));
9773 TYPE_STRING_FLAG (char_type_node
) = 1;
9775 short_integer_type_node
= make_signed_type (SHORT_TYPE_SIZE
);
9776 short_unsigned_type_node
= make_unsigned_type (SHORT_TYPE_SIZE
);
9777 integer_type_node
= make_signed_type (INT_TYPE_SIZE
);
9778 unsigned_type_node
= make_unsigned_type (INT_TYPE_SIZE
);
9779 long_integer_type_node
= make_signed_type (LONG_TYPE_SIZE
);
9780 long_unsigned_type_node
= make_unsigned_type (LONG_TYPE_SIZE
);
9781 long_long_integer_type_node
= make_signed_type (LONG_LONG_TYPE_SIZE
);
9782 long_long_unsigned_type_node
= make_unsigned_type (LONG_LONG_TYPE_SIZE
);
9784 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
9786 int_n_trees
[i
].signed_type
= make_signed_type (int_n_data
[i
].bitsize
);
9787 int_n_trees
[i
].unsigned_type
= make_unsigned_type (int_n_data
[i
].bitsize
);
9788 TYPE_SIZE (int_n_trees
[i
].signed_type
) = bitsize_int (int_n_data
[i
].bitsize
);
9789 TYPE_SIZE (int_n_trees
[i
].unsigned_type
) = bitsize_int (int_n_data
[i
].bitsize
);
9791 if (int_n_data
[i
].bitsize
> LONG_LONG_TYPE_SIZE
9792 && int_n_enabled_p
[i
])
9794 integer_types
[itk_intN_0
+ i
* 2] = int_n_trees
[i
].signed_type
;
9795 integer_types
[itk_unsigned_intN_0
+ i
* 2] = int_n_trees
[i
].unsigned_type
;
9799 /* Define a boolean type. This type only represents boolean values but
9800 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
9801 boolean_type_node
= make_unsigned_type (BOOL_TYPE_SIZE
);
9802 TREE_SET_CODE (boolean_type_node
, BOOLEAN_TYPE
);
9803 TYPE_PRECISION (boolean_type_node
) = 1;
9804 TYPE_MAX_VALUE (boolean_type_node
) = build_int_cst (boolean_type_node
, 1);
9806 /* Define what type to use for size_t. */
9807 if (strcmp (SIZE_TYPE
, "unsigned int") == 0)
9808 size_type_node
= unsigned_type_node
;
9809 else if (strcmp (SIZE_TYPE
, "long unsigned int") == 0)
9810 size_type_node
= long_unsigned_type_node
;
9811 else if (strcmp (SIZE_TYPE
, "long long unsigned int") == 0)
9812 size_type_node
= long_long_unsigned_type_node
;
9813 else if (strcmp (SIZE_TYPE
, "short unsigned int") == 0)
9814 size_type_node
= short_unsigned_type_node
;
9819 size_type_node
= NULL_TREE
;
9820 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
9821 if (int_n_enabled_p
[i
])
9824 sprintf (name
, "__int%d unsigned", int_n_data
[i
].bitsize
);
9826 if (strcmp (name
, SIZE_TYPE
) == 0)
9828 size_type_node
= int_n_trees
[i
].unsigned_type
;
9831 if (size_type_node
== NULL_TREE
)
9835 /* Define what type to use for ptrdiff_t. */
9836 if (strcmp (PTRDIFF_TYPE
, "int") == 0)
9837 ptrdiff_type_node
= integer_type_node
;
9838 else if (strcmp (PTRDIFF_TYPE
, "long int") == 0)
9839 ptrdiff_type_node
= long_integer_type_node
;
9840 else if (strcmp (PTRDIFF_TYPE
, "long long int") == 0)
9841 ptrdiff_type_node
= long_long_integer_type_node
;
9842 else if (strcmp (PTRDIFF_TYPE
, "short int") == 0)
9843 ptrdiff_type_node
= short_integer_type_node
;
9846 ptrdiff_type_node
= NULL_TREE
;
9847 for (int i
= 0; i
< NUM_INT_N_ENTS
; i
++)
9848 if (int_n_enabled_p
[i
])
9851 sprintf (name
, "__int%d", int_n_data
[i
].bitsize
);
9852 if (strcmp (name
, PTRDIFF_TYPE
) == 0)
9853 ptrdiff_type_node
= int_n_trees
[i
].signed_type
;
9855 if (ptrdiff_type_node
== NULL_TREE
)
9859 /* Fill in the rest of the sized types. Reuse existing type nodes
9861 intQI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (QImode
), 0);
9862 intHI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (HImode
), 0);
9863 intSI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (SImode
), 0);
9864 intDI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (DImode
), 0);
9865 intTI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (TImode
), 0);
9867 unsigned_intQI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (QImode
), 1);
9868 unsigned_intHI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (HImode
), 1);
9869 unsigned_intSI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (SImode
), 1);
9870 unsigned_intDI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (DImode
), 1);
9871 unsigned_intTI_type_node
= make_or_reuse_type (GET_MODE_BITSIZE (TImode
), 1);
9873 /* Don't call build_qualified type for atomics. That routine does
9874 special processing for atomics, and until they are initialized
9875 it's better not to make that call.
9877 Check to see if there is a target override for atomic types. */
9879 atomicQI_type_node
= build_atomic_base (unsigned_intQI_type_node
,
9880 targetm
.atomic_align_for_mode (QImode
));
9881 atomicHI_type_node
= build_atomic_base (unsigned_intHI_type_node
,
9882 targetm
.atomic_align_for_mode (HImode
));
9883 atomicSI_type_node
= build_atomic_base (unsigned_intSI_type_node
,
9884 targetm
.atomic_align_for_mode (SImode
));
9885 atomicDI_type_node
= build_atomic_base (unsigned_intDI_type_node
,
9886 targetm
.atomic_align_for_mode (DImode
));
9887 atomicTI_type_node
= build_atomic_base (unsigned_intTI_type_node
,
9888 targetm
.atomic_align_for_mode (TImode
));
9890 access_public_node
= get_identifier ("public");
9891 access_protected_node
= get_identifier ("protected");
9892 access_private_node
= get_identifier ("private");
9894 /* Define these next since types below may used them. */
9895 integer_zero_node
= build_int_cst (integer_type_node
, 0);
9896 integer_one_node
= build_int_cst (integer_type_node
, 1);
9897 integer_three_node
= build_int_cst (integer_type_node
, 3);
9898 integer_minus_one_node
= build_int_cst (integer_type_node
, -1);
9900 size_zero_node
= size_int (0);
9901 size_one_node
= size_int (1);
9902 bitsize_zero_node
= bitsize_int (0);
9903 bitsize_one_node
= bitsize_int (1);
9904 bitsize_unit_node
= bitsize_int (BITS_PER_UNIT
);
9906 boolean_false_node
= TYPE_MIN_VALUE (boolean_type_node
);
9907 boolean_true_node
= TYPE_MAX_VALUE (boolean_type_node
);
9909 void_type_node
= make_node (VOID_TYPE
);
9910 layout_type (void_type_node
);
9912 pointer_bounds_type_node
= targetm
.chkp_bound_type ();
9914 /* We are not going to have real types in C with less than byte alignment,
9915 so we might as well not have any types that claim to have it. */
9916 SET_TYPE_ALIGN (void_type_node
, BITS_PER_UNIT
);
9917 TYPE_USER_ALIGN (void_type_node
) = 0;
9919 void_node
= make_node (VOID_CST
);
9920 TREE_TYPE (void_node
) = void_type_node
;
9922 null_pointer_node
= build_int_cst (build_pointer_type (void_type_node
), 0);
9923 layout_type (TREE_TYPE (null_pointer_node
));
9925 ptr_type_node
= build_pointer_type (void_type_node
);
9927 = build_pointer_type (build_type_variant (void_type_node
, 1, 0));
9928 for (unsigned i
= 0;
9929 i
< sizeof (builtin_structptr_types
) / sizeof (builtin_structptr_type
);
9931 builtin_structptr_types
[i
].node
= builtin_structptr_types
[i
].base
;
9933 pointer_sized_int_node
= build_nonstandard_integer_type (POINTER_SIZE
, 1);
9935 float_type_node
= make_node (REAL_TYPE
);
9936 TYPE_PRECISION (float_type_node
) = FLOAT_TYPE_SIZE
;
9937 layout_type (float_type_node
);
9939 double_type_node
= make_node (REAL_TYPE
);
9940 TYPE_PRECISION (double_type_node
) = DOUBLE_TYPE_SIZE
;
9941 layout_type (double_type_node
);
9943 long_double_type_node
= make_node (REAL_TYPE
);
9944 TYPE_PRECISION (long_double_type_node
) = LONG_DOUBLE_TYPE_SIZE
;
9945 layout_type (long_double_type_node
);
9947 for (i
= 0; i
< NUM_FLOATN_NX_TYPES
; i
++)
9949 int n
= floatn_nx_types
[i
].n
;
9950 bool extended
= floatn_nx_types
[i
].extended
;
9951 scalar_float_mode mode
;
9952 if (!targetm
.floatn_mode (n
, extended
).exists (&mode
))
9954 int precision
= GET_MODE_PRECISION (mode
);
9955 /* Work around the rs6000 KFmode having precision 113 not
9957 const struct real_format
*fmt
= REAL_MODE_FORMAT (mode
);
9958 gcc_assert (fmt
->b
== 2 && fmt
->emin
+ fmt
->emax
== 3);
9959 int min_precision
= fmt
->p
+ ceil_log2 (fmt
->emax
- fmt
->emin
);
9961 gcc_assert (min_precision
== n
);
9962 if (precision
< min_precision
)
9963 precision
= min_precision
;
9964 FLOATN_NX_TYPE_NODE (i
) = make_node (REAL_TYPE
);
9965 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i
)) = precision
;
9966 layout_type (FLOATN_NX_TYPE_NODE (i
));
9967 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i
), mode
);
9970 float_ptr_type_node
= build_pointer_type (float_type_node
);
9971 double_ptr_type_node
= build_pointer_type (double_type_node
);
9972 long_double_ptr_type_node
= build_pointer_type (long_double_type_node
);
9973 integer_ptr_type_node
= build_pointer_type (integer_type_node
);
9975 /* Fixed size integer types. */
9976 uint16_type_node
= make_or_reuse_type (16, 1);
9977 uint32_type_node
= make_or_reuse_type (32, 1);
9978 uint64_type_node
= make_or_reuse_type (64, 1);
9980 /* Decimal float types. */
9981 dfloat32_type_node
= make_node (REAL_TYPE
);
9982 TYPE_PRECISION (dfloat32_type_node
) = DECIMAL32_TYPE_SIZE
;
9983 SET_TYPE_MODE (dfloat32_type_node
, SDmode
);
9984 layout_type (dfloat32_type_node
);
9985 dfloat32_ptr_type_node
= build_pointer_type (dfloat32_type_node
);
9987 dfloat64_type_node
= make_node (REAL_TYPE
);
9988 TYPE_PRECISION (dfloat64_type_node
) = DECIMAL64_TYPE_SIZE
;
9989 SET_TYPE_MODE (dfloat64_type_node
, DDmode
);
9990 layout_type (dfloat64_type_node
);
9991 dfloat64_ptr_type_node
= build_pointer_type (dfloat64_type_node
);
9993 dfloat128_type_node
= make_node (REAL_TYPE
);
9994 TYPE_PRECISION (dfloat128_type_node
) = DECIMAL128_TYPE_SIZE
;
9995 SET_TYPE_MODE (dfloat128_type_node
, TDmode
);
9996 layout_type (dfloat128_type_node
);
9997 dfloat128_ptr_type_node
= build_pointer_type (dfloat128_type_node
);
9999 complex_integer_type_node
= build_complex_type (integer_type_node
, true);
10000 complex_float_type_node
= build_complex_type (float_type_node
, true);
10001 complex_double_type_node
= build_complex_type (double_type_node
, true);
10002 complex_long_double_type_node
= build_complex_type (long_double_type_node
,
10005 for (i
= 0; i
< NUM_FLOATN_NX_TYPES
; i
++)
10007 if (FLOATN_NX_TYPE_NODE (i
) != NULL_TREE
)
10008 COMPLEX_FLOATN_NX_TYPE_NODE (i
)
10009 = build_complex_type (FLOATN_NX_TYPE_NODE (i
));
10012 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10013 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10014 sat_ ## KIND ## _type_node = \
10015 make_sat_signed_ ## KIND ## _type (SIZE); \
10016 sat_unsigned_ ## KIND ## _type_node = \
10017 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10018 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10019 unsigned_ ## KIND ## _type_node = \
10020 make_unsigned_ ## KIND ## _type (SIZE);
10022 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10023 sat_ ## WIDTH ## KIND ## _type_node = \
10024 make_sat_signed_ ## KIND ## _type (SIZE); \
10025 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10026 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10027 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10028 unsigned_ ## WIDTH ## KIND ## _type_node = \
10029 make_unsigned_ ## KIND ## _type (SIZE);
10031 /* Make fixed-point type nodes based on four different widths. */
10032 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10033 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10034 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10035 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10036 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10038 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10039 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10040 NAME ## _type_node = \
10041 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10042 u ## NAME ## _type_node = \
10043 make_or_reuse_unsigned_ ## KIND ## _type \
10044 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10045 sat_ ## NAME ## _type_node = \
10046 make_or_reuse_sat_signed_ ## KIND ## _type \
10047 (GET_MODE_BITSIZE (MODE ## mode)); \
10048 sat_u ## NAME ## _type_node = \
10049 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10050 (GET_MODE_BITSIZE (U ## MODE ## mode));
10052 /* Fixed-point type and mode nodes. */
10053 MAKE_FIXED_TYPE_NODE_FAMILY (fract
, FRACT
)
10054 MAKE_FIXED_TYPE_NODE_FAMILY (accum
, ACCUM
)
10055 MAKE_FIXED_MODE_NODE (fract
, qq
, QQ
)
10056 MAKE_FIXED_MODE_NODE (fract
, hq
, HQ
)
10057 MAKE_FIXED_MODE_NODE (fract
, sq
, SQ
)
10058 MAKE_FIXED_MODE_NODE (fract
, dq
, DQ
)
10059 MAKE_FIXED_MODE_NODE (fract
, tq
, TQ
)
10060 MAKE_FIXED_MODE_NODE (accum
, ha
, HA
)
10061 MAKE_FIXED_MODE_NODE (accum
, sa
, SA
)
10062 MAKE_FIXED_MODE_NODE (accum
, da
, DA
)
10063 MAKE_FIXED_MODE_NODE (accum
, ta
, TA
)
10066 tree t
= targetm
.build_builtin_va_list ();
10068 /* Many back-ends define record types without setting TYPE_NAME.
10069 If we copied the record type here, we'd keep the original
10070 record type without a name. This breaks name mangling. So,
10071 don't copy record types and let c_common_nodes_and_builtins()
10072 declare the type to be __builtin_va_list. */
10073 if (TREE_CODE (t
) != RECORD_TYPE
)
10074 t
= build_variant_type_copy (t
);
10076 va_list_type_node
= t
;
10080 /* Modify DECL for given flags.
10081 TM_PURE attribute is set only on types, so the function will modify
10082 DECL's type when ECF_TM_PURE is used. */
10085 set_call_expr_flags (tree decl
, int flags
)
10087 if (flags
& ECF_NOTHROW
)
10088 TREE_NOTHROW (decl
) = 1;
10089 if (flags
& ECF_CONST
)
10090 TREE_READONLY (decl
) = 1;
10091 if (flags
& ECF_PURE
)
10092 DECL_PURE_P (decl
) = 1;
10093 if (flags
& ECF_LOOPING_CONST_OR_PURE
)
10094 DECL_LOOPING_CONST_OR_PURE_P (decl
) = 1;
10095 if (flags
& ECF_NOVOPS
)
10096 DECL_IS_NOVOPS (decl
) = 1;
10097 if (flags
& ECF_NORETURN
)
10098 TREE_THIS_VOLATILE (decl
) = 1;
10099 if (flags
& ECF_MALLOC
)
10100 DECL_IS_MALLOC (decl
) = 1;
10101 if (flags
& ECF_RETURNS_TWICE
)
10102 DECL_IS_RETURNS_TWICE (decl
) = 1;
10103 if (flags
& ECF_LEAF
)
10104 DECL_ATTRIBUTES (decl
) = tree_cons (get_identifier ("leaf"),
10105 NULL
, DECL_ATTRIBUTES (decl
));
10106 if (flags
& ECF_COLD
)
10107 DECL_ATTRIBUTES (decl
) = tree_cons (get_identifier ("cold"),
10108 NULL
, DECL_ATTRIBUTES (decl
));
10109 if (flags
& ECF_RET1
)
10110 DECL_ATTRIBUTES (decl
)
10111 = tree_cons (get_identifier ("fn spec"),
10112 build_tree_list (NULL_TREE
, build_string (1, "1")),
10113 DECL_ATTRIBUTES (decl
));
10114 if ((flags
& ECF_TM_PURE
) && flag_tm
)
10115 apply_tm_attr (decl
, get_identifier ("transaction_pure"));
10116 /* Looping const or pure is implied by noreturn.
10117 There is currently no way to declare looping const or looping pure alone. */
10118 gcc_assert (!(flags
& ECF_LOOPING_CONST_OR_PURE
)
10119 || ((flags
& ECF_NORETURN
) && (flags
& (ECF_CONST
| ECF_PURE
))));
10123 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10126 local_define_builtin (const char *name
, tree type
, enum built_in_function code
,
10127 const char *library_name
, int ecf_flags
)
10131 decl
= add_builtin_function (name
, type
, code
, BUILT_IN_NORMAL
,
10132 library_name
, NULL_TREE
);
10133 set_call_expr_flags (decl
, ecf_flags
);
10135 set_builtin_decl (code
, decl
, true);
10138 /* Call this function after instantiating all builtins that the language
10139 front end cares about. This will build the rest of the builtins
10140 and internal functions that are relied upon by the tree optimizers and
10144 build_common_builtin_nodes (void)
10149 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE
)
10150 || !builtin_decl_explicit_p (BUILT_IN_ABORT
))
10152 ftype
= build_function_type (void_type_node
, void_list_node
);
10153 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE
))
10154 local_define_builtin ("__builtin_unreachable", ftype
,
10155 BUILT_IN_UNREACHABLE
,
10156 "__builtin_unreachable",
10157 ECF_NOTHROW
| ECF_LEAF
| ECF_NORETURN
10158 | ECF_CONST
| ECF_COLD
);
10159 if (!builtin_decl_explicit_p (BUILT_IN_ABORT
))
10160 local_define_builtin ("__builtin_abort", ftype
, BUILT_IN_ABORT
,
10162 ECF_LEAF
| ECF_NORETURN
| ECF_CONST
| ECF_COLD
);
10165 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY
)
10166 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE
))
10168 ftype
= build_function_type_list (ptr_type_node
,
10169 ptr_type_node
, const_ptr_type_node
,
10170 size_type_node
, NULL_TREE
);
10172 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY
))
10173 local_define_builtin ("__builtin_memcpy", ftype
, BUILT_IN_MEMCPY
,
10174 "memcpy", ECF_NOTHROW
| ECF_LEAF
| ECF_RET1
);
10175 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE
))
10176 local_define_builtin ("__builtin_memmove", ftype
, BUILT_IN_MEMMOVE
,
10177 "memmove", ECF_NOTHROW
| ECF_LEAF
| ECF_RET1
);
10180 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP
))
10182 ftype
= build_function_type_list (integer_type_node
, const_ptr_type_node
,
10183 const_ptr_type_node
, size_type_node
,
10185 local_define_builtin ("__builtin_memcmp", ftype
, BUILT_IN_MEMCMP
,
10186 "memcmp", ECF_PURE
| ECF_NOTHROW
| ECF_LEAF
);
10189 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET
))
10191 ftype
= build_function_type_list (ptr_type_node
,
10192 ptr_type_node
, integer_type_node
,
10193 size_type_node
, NULL_TREE
);
10194 local_define_builtin ("__builtin_memset", ftype
, BUILT_IN_MEMSET
,
10195 "memset", ECF_NOTHROW
| ECF_LEAF
| ECF_RET1
);
10198 /* If we're checking the stack, `alloca' can throw. */
10199 const int alloca_flags
10200 = ECF_MALLOC
| ECF_LEAF
| (flag_stack_check
? 0 : ECF_NOTHROW
);
10202 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA
))
10204 ftype
= build_function_type_list (ptr_type_node
,
10205 size_type_node
, NULL_TREE
);
10206 local_define_builtin ("__builtin_alloca", ftype
, BUILT_IN_ALLOCA
,
10207 "alloca", alloca_flags
);
10210 ftype
= build_function_type_list (ptr_type_node
, size_type_node
,
10211 size_type_node
, NULL_TREE
);
10212 local_define_builtin ("__builtin_alloca_with_align", ftype
,
10213 BUILT_IN_ALLOCA_WITH_ALIGN
,
10214 "__builtin_alloca_with_align",
10217 ftype
= build_function_type_list (ptr_type_node
, size_type_node
,
10218 size_type_node
, size_type_node
, NULL_TREE
);
10219 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype
,
10220 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX
,
10221 "__builtin_alloca_with_align_and_max",
10224 ftype
= build_function_type_list (void_type_node
,
10225 ptr_type_node
, ptr_type_node
,
10226 ptr_type_node
, NULL_TREE
);
10227 local_define_builtin ("__builtin_init_trampoline", ftype
,
10228 BUILT_IN_INIT_TRAMPOLINE
,
10229 "__builtin_init_trampoline", ECF_NOTHROW
| ECF_LEAF
);
10230 local_define_builtin ("__builtin_init_heap_trampoline", ftype
,
10231 BUILT_IN_INIT_HEAP_TRAMPOLINE
,
10232 "__builtin_init_heap_trampoline",
10233 ECF_NOTHROW
| ECF_LEAF
);
10234 local_define_builtin ("__builtin_init_descriptor", ftype
,
10235 BUILT_IN_INIT_DESCRIPTOR
,
10236 "__builtin_init_descriptor", ECF_NOTHROW
| ECF_LEAF
);
10238 ftype
= build_function_type_list (ptr_type_node
, ptr_type_node
, NULL_TREE
);
10239 local_define_builtin ("__builtin_adjust_trampoline", ftype
,
10240 BUILT_IN_ADJUST_TRAMPOLINE
,
10241 "__builtin_adjust_trampoline",
10242 ECF_CONST
| ECF_NOTHROW
);
10243 local_define_builtin ("__builtin_adjust_descriptor", ftype
,
10244 BUILT_IN_ADJUST_DESCRIPTOR
,
10245 "__builtin_adjust_descriptor",
10246 ECF_CONST
| ECF_NOTHROW
);
10248 ftype
= build_function_type_list (void_type_node
,
10249 ptr_type_node
, ptr_type_node
, NULL_TREE
);
10250 local_define_builtin ("__builtin_nonlocal_goto", ftype
,
10251 BUILT_IN_NONLOCAL_GOTO
,
10252 "__builtin_nonlocal_goto",
10253 ECF_NORETURN
| ECF_NOTHROW
);
10255 ftype
= build_function_type_list (void_type_node
,
10256 ptr_type_node
, ptr_type_node
, NULL_TREE
);
10257 local_define_builtin ("__builtin_setjmp_setup", ftype
,
10258 BUILT_IN_SETJMP_SETUP
,
10259 "__builtin_setjmp_setup", ECF_NOTHROW
);
10261 ftype
= build_function_type_list (void_type_node
, ptr_type_node
, NULL_TREE
);
10262 local_define_builtin ("__builtin_setjmp_receiver", ftype
,
10263 BUILT_IN_SETJMP_RECEIVER
,
10264 "__builtin_setjmp_receiver", ECF_NOTHROW
| ECF_LEAF
);
10266 ftype
= build_function_type_list (ptr_type_node
, NULL_TREE
);
10267 local_define_builtin ("__builtin_stack_save", ftype
, BUILT_IN_STACK_SAVE
,
10268 "__builtin_stack_save", ECF_NOTHROW
| ECF_LEAF
);
10270 ftype
= build_function_type_list (void_type_node
, ptr_type_node
, NULL_TREE
);
10271 local_define_builtin ("__builtin_stack_restore", ftype
,
10272 BUILT_IN_STACK_RESTORE
,
10273 "__builtin_stack_restore", ECF_NOTHROW
| ECF_LEAF
);
10275 ftype
= build_function_type_list (integer_type_node
, const_ptr_type_node
,
10276 const_ptr_type_node
, size_type_node
,
10278 local_define_builtin ("__builtin_memcmp_eq", ftype
, BUILT_IN_MEMCMP_EQ
,
10279 "__builtin_memcmp_eq",
10280 ECF_PURE
| ECF_NOTHROW
| ECF_LEAF
);
10282 /* If there's a possibility that we might use the ARM EABI, build the
10283 alternate __cxa_end_cleanup node used to resume from C++. */
10284 if (targetm
.arm_eabi_unwinder
)
10286 ftype
= build_function_type_list (void_type_node
, NULL_TREE
);
10287 local_define_builtin ("__builtin_cxa_end_cleanup", ftype
,
10288 BUILT_IN_CXA_END_CLEANUP
,
10289 "__cxa_end_cleanup", ECF_NORETURN
| ECF_LEAF
);
10292 ftype
= build_function_type_list (void_type_node
, ptr_type_node
, NULL_TREE
);
10293 local_define_builtin ("__builtin_unwind_resume", ftype
,
10294 BUILT_IN_UNWIND_RESUME
,
10295 ((targetm_common
.except_unwind_info (&global_options
)
10297 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10300 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS
) == NULL_TREE
)
10302 ftype
= build_function_type_list (ptr_type_node
, integer_type_node
,
10304 local_define_builtin ("__builtin_return_address", ftype
,
10305 BUILT_IN_RETURN_ADDRESS
,
10306 "__builtin_return_address",
10310 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER
)
10311 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT
))
10313 ftype
= build_function_type_list (void_type_node
, ptr_type_node
,
10314 ptr_type_node
, NULL_TREE
);
10315 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER
))
10316 local_define_builtin ("__cyg_profile_func_enter", ftype
,
10317 BUILT_IN_PROFILE_FUNC_ENTER
,
10318 "__cyg_profile_func_enter", 0);
10319 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT
))
10320 local_define_builtin ("__cyg_profile_func_exit", ftype
,
10321 BUILT_IN_PROFILE_FUNC_EXIT
,
10322 "__cyg_profile_func_exit", 0);
10325 /* The exception object and filter values from the runtime. The argument
10326 must be zero before exception lowering, i.e. from the front end. After
10327 exception lowering, it will be the region number for the exception
10328 landing pad. These functions are PURE instead of CONST to prevent
10329 them from being hoisted past the exception edge that will initialize
10330 its value in the landing pad. */
10331 ftype
= build_function_type_list (ptr_type_node
,
10332 integer_type_node
, NULL_TREE
);
10333 ecf_flags
= ECF_PURE
| ECF_NOTHROW
| ECF_LEAF
;
10334 /* Only use TM_PURE if we have TM language support. */
10335 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1
))
10336 ecf_flags
|= ECF_TM_PURE
;
10337 local_define_builtin ("__builtin_eh_pointer", ftype
, BUILT_IN_EH_POINTER
,
10338 "__builtin_eh_pointer", ecf_flags
);
10340 tmp
= lang_hooks
.types
.type_for_mode (targetm
.eh_return_filter_mode (), 0);
10341 ftype
= build_function_type_list (tmp
, integer_type_node
, NULL_TREE
);
10342 local_define_builtin ("__builtin_eh_filter", ftype
, BUILT_IN_EH_FILTER
,
10343 "__builtin_eh_filter", ECF_PURE
| ECF_NOTHROW
| ECF_LEAF
);
10345 ftype
= build_function_type_list (void_type_node
,
10346 integer_type_node
, integer_type_node
,
10348 local_define_builtin ("__builtin_eh_copy_values", ftype
,
10349 BUILT_IN_EH_COPY_VALUES
,
10350 "__builtin_eh_copy_values", ECF_NOTHROW
);
10352 /* Complex multiplication and division. These are handled as builtins
10353 rather than optabs because emit_library_call_value doesn't support
10354 complex. Further, we can do slightly better with folding these
10355 beasties if the real and complex parts of the arguments are separate. */
10359 for (mode
= MIN_MODE_COMPLEX_FLOAT
; mode
<= MAX_MODE_COMPLEX_FLOAT
; ++mode
)
10361 char mode_name_buf
[4], *q
;
10363 enum built_in_function mcode
, dcode
;
10364 tree type
, inner_type
;
10365 const char *prefix
= "__";
10367 if (targetm
.libfunc_gnu_prefix
)
10370 type
= lang_hooks
.types
.type_for_mode ((machine_mode
) mode
, 0);
10373 inner_type
= TREE_TYPE (type
);
10375 ftype
= build_function_type_list (type
, inner_type
, inner_type
,
10376 inner_type
, inner_type
, NULL_TREE
);
10378 mcode
= ((enum built_in_function
)
10379 (BUILT_IN_COMPLEX_MUL_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
10380 dcode
= ((enum built_in_function
)
10381 (BUILT_IN_COMPLEX_DIV_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
10383 for (p
= GET_MODE_NAME (mode
), q
= mode_name_buf
; *p
; p
++, q
++)
10387 built_in_names
[mcode
] = concat (prefix
, "mul", mode_name_buf
, "3",
10389 local_define_builtin (built_in_names
[mcode
], ftype
, mcode
,
10390 built_in_names
[mcode
],
10391 ECF_CONST
| ECF_NOTHROW
| ECF_LEAF
);
10393 built_in_names
[dcode
] = concat (prefix
, "div", mode_name_buf
, "3",
10395 local_define_builtin (built_in_names
[dcode
], ftype
, dcode
,
10396 built_in_names
[dcode
],
10397 ECF_CONST
| ECF_NOTHROW
| ECF_LEAF
);
10401 init_internal_fns ();
10404 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10407 If we requested a pointer to a vector, build up the pointers that
10408 we stripped off while looking for the inner type. Similarly for
10409 return values from functions.
10411 The argument TYPE is the top of the chain, and BOTTOM is the
10412 new type which we will point to. */
10415 reconstruct_complex_type (tree type
, tree bottom
)
10419 if (TREE_CODE (type
) == POINTER_TYPE
)
10421 inner
= reconstruct_complex_type (TREE_TYPE (type
), bottom
);
10422 outer
= build_pointer_type_for_mode (inner
, TYPE_MODE (type
),
10423 TYPE_REF_CAN_ALIAS_ALL (type
));
10425 else if (TREE_CODE (type
) == REFERENCE_TYPE
)
10427 inner
= reconstruct_complex_type (TREE_TYPE (type
), bottom
);
10428 outer
= build_reference_type_for_mode (inner
, TYPE_MODE (type
),
10429 TYPE_REF_CAN_ALIAS_ALL (type
));
10431 else if (TREE_CODE (type
) == ARRAY_TYPE
)
10433 inner
= reconstruct_complex_type (TREE_TYPE (type
), bottom
);
10434 outer
= build_array_type (inner
, TYPE_DOMAIN (type
));
10436 else if (TREE_CODE (type
) == FUNCTION_TYPE
)
10438 inner
= reconstruct_complex_type (TREE_TYPE (type
), bottom
);
10439 outer
= build_function_type (inner
, TYPE_ARG_TYPES (type
));
10441 else if (TREE_CODE (type
) == METHOD_TYPE
)
10443 inner
= reconstruct_complex_type (TREE_TYPE (type
), bottom
);
10444 /* The build_method_type_directly() routine prepends 'this' to argument list,
10445 so we must compensate by getting rid of it. */
10447 = build_method_type_directly
10448 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type
))),
10450 TREE_CHAIN (TYPE_ARG_TYPES (type
)));
10452 else if (TREE_CODE (type
) == OFFSET_TYPE
)
10454 inner
= reconstruct_complex_type (TREE_TYPE (type
), bottom
);
10455 outer
= build_offset_type (TYPE_OFFSET_BASETYPE (type
), inner
);
10460 return build_type_attribute_qual_variant (outer
, TYPE_ATTRIBUTES (type
),
10461 TYPE_QUALS (type
));
10464 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10467 build_vector_type_for_mode (tree innertype
, machine_mode mode
)
10470 unsigned int bitsize
;
10472 switch (GET_MODE_CLASS (mode
))
10474 case MODE_VECTOR_BOOL
:
10475 case MODE_VECTOR_INT
:
10476 case MODE_VECTOR_FLOAT
:
10477 case MODE_VECTOR_FRACT
:
10478 case MODE_VECTOR_UFRACT
:
10479 case MODE_VECTOR_ACCUM
:
10480 case MODE_VECTOR_UACCUM
:
10481 nunits
= GET_MODE_NUNITS (mode
);
10485 /* Check that there are no leftover bits. */
10486 bitsize
= GET_MODE_BITSIZE (as_a
<scalar_int_mode
> (mode
));
10487 gcc_assert (bitsize
% TREE_INT_CST_LOW (TYPE_SIZE (innertype
)) == 0);
10488 nunits
= bitsize
/ TREE_INT_CST_LOW (TYPE_SIZE (innertype
));
10492 gcc_unreachable ();
10495 return make_vector_type (innertype
, nunits
, mode
);
10498 /* Similarly, but takes the inner type and number of units, which must be
10502 build_vector_type (tree innertype
, poly_int64 nunits
)
10504 return make_vector_type (innertype
, nunits
, VOIDmode
);
10507 /* Build truth vector with specified length and number of units. */
10510 build_truth_vector_type (poly_uint64 nunits
, poly_uint64 vector_size
)
10512 machine_mode mask_mode
10513 = targetm
.vectorize
.get_mask_mode (nunits
, vector_size
).else_blk ();
10516 if (mask_mode
== BLKmode
)
10517 vsize
= vector_size
* BITS_PER_UNIT
;
10519 vsize
= GET_MODE_BITSIZE (mask_mode
);
10521 unsigned HOST_WIDE_INT esize
= vector_element_size (vsize
, nunits
);
10523 tree bool_type
= build_nonstandard_boolean_type (esize
);
10525 return make_vector_type (bool_type
, nunits
, mask_mode
);
10528 /* Returns a vector type corresponding to a comparison of VECTYPE. */
10531 build_same_sized_truth_vector_type (tree vectype
)
10533 if (VECTOR_BOOLEAN_TYPE_P (vectype
))
10536 poly_uint64 size
= GET_MODE_SIZE (TYPE_MODE (vectype
));
10538 if (known_eq (size
, 0U))
10539 size
= tree_to_uhwi (TYPE_SIZE_UNIT (vectype
));
10541 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype
), size
);
10544 /* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
10547 build_opaque_vector_type (tree innertype
, poly_int64 nunits
)
10549 tree t
= make_vector_type (innertype
, nunits
, VOIDmode
);
10551 /* We always build the non-opaque variant before the opaque one,
10552 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
10553 cand
= TYPE_NEXT_VARIANT (t
);
10555 && TYPE_VECTOR_OPAQUE (cand
)
10556 && check_qualified_type (cand
, t
, TYPE_QUALS (t
)))
10558 /* Othewise build a variant type and make sure to queue it after
10559 the non-opaque type. */
10560 cand
= build_distinct_type_copy (t
);
10561 TYPE_VECTOR_OPAQUE (cand
) = true;
10562 TYPE_CANONICAL (cand
) = TYPE_CANONICAL (t
);
10563 TYPE_NEXT_VARIANT (cand
) = TYPE_NEXT_VARIANT (t
);
10564 TYPE_NEXT_VARIANT (t
) = cand
;
10565 TYPE_MAIN_VARIANT (cand
) = TYPE_MAIN_VARIANT (t
);
10569 /* Return the value of element I of VECTOR_CST T as a wide_int. */
10572 vector_cst_int_elt (const_tree t
, unsigned int i
)
10574 /* First handle elements that are directly encoded. */
10575 unsigned int encoded_nelts
= vector_cst_encoded_nelts (t
);
10576 if (i
< encoded_nelts
)
10577 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t
, i
));
10579 /* Identify the pattern that contains element I and work out the index of
10580 the last encoded element for that pattern. */
10581 unsigned int npatterns
= VECTOR_CST_NPATTERNS (t
);
10582 unsigned int pattern
= i
% npatterns
;
10583 unsigned int count
= i
/ npatterns
;
10584 unsigned int final_i
= encoded_nelts
- npatterns
+ pattern
;
10586 /* If there are no steps, the final encoded value is the right one. */
10587 if (!VECTOR_CST_STEPPED_P (t
))
10588 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t
, final_i
));
10590 /* Otherwise work out the value from the last two encoded elements. */
10591 tree v1
= VECTOR_CST_ENCODED_ELT (t
, final_i
- npatterns
);
10592 tree v2
= VECTOR_CST_ENCODED_ELT (t
, final_i
);
10593 wide_int diff
= wi::to_wide (v2
) - wi::to_wide (v1
);
10594 return wi::to_wide (v2
) + (count
- 2) * diff
;
10597 /* Return the value of element I of VECTOR_CST T. */
10600 vector_cst_elt (const_tree t
, unsigned int i
)
10602 /* First handle elements that are directly encoded. */
10603 unsigned int encoded_nelts
= vector_cst_encoded_nelts (t
);
10604 if (i
< encoded_nelts
)
10605 return VECTOR_CST_ENCODED_ELT (t
, i
);
10607 /* If there are no steps, the final encoded value is the right one. */
10608 if (!VECTOR_CST_STEPPED_P (t
))
10610 /* Identify the pattern that contains element I and work out the index of
10611 the last encoded element for that pattern. */
10612 unsigned int npatterns
= VECTOR_CST_NPATTERNS (t
);
10613 unsigned int pattern
= i
% npatterns
;
10614 unsigned int final_i
= encoded_nelts
- npatterns
+ pattern
;
10615 return VECTOR_CST_ENCODED_ELT (t
, final_i
);
10618 /* Otherwise work out the value from the last two encoded elements. */
10619 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t
)),
10620 vector_cst_int_elt (t
, i
));
10623 /* Given an initializer INIT, return TRUE if INIT is zero or some
10624 aggregate of zeros. Otherwise return FALSE. */
10626 initializer_zerop (const_tree init
)
10632 switch (TREE_CODE (init
))
10635 return integer_zerop (init
);
10638 /* ??? Note that this is not correct for C4X float formats. There,
10639 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
10640 negative exponent. */
10641 return real_zerop (init
)
10642 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init
));
10645 return fixed_zerop (init
);
10648 return integer_zerop (init
)
10649 || (real_zerop (init
)
10650 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init
)))
10651 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init
))));
10654 return (VECTOR_CST_NPATTERNS (init
) == 1
10655 && VECTOR_CST_DUPLICATE_P (init
)
10656 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init
, 0)));
10660 unsigned HOST_WIDE_INT idx
;
10662 if (TREE_CLOBBER_P (init
))
10664 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init
), idx
, elt
)
10665 if (!initializer_zerop (elt
))
10674 /* We need to loop through all elements to handle cases like
10675 "\0" and "\0foobar". */
10676 for (i
= 0; i
< TREE_STRING_LENGTH (init
); ++i
)
10677 if (TREE_STRING_POINTER (init
)[i
] != '\0')
10688 /* Check if vector VEC consists of all the equal elements and
10689 that the number of elements corresponds to the type of VEC.
10690 The function returns first element of the vector
10691 or NULL_TREE if the vector is not uniform. */
10693 uniform_vector_p (const_tree vec
)
10696 unsigned HOST_WIDE_INT i
, nelts
;
10698 if (vec
== NULL_TREE
)
10701 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec
)));
10703 if (TREE_CODE (vec
) == VEC_DUPLICATE_EXPR
)
10704 return TREE_OPERAND (vec
, 0);
10706 else if (TREE_CODE (vec
) == VECTOR_CST
)
10708 if (VECTOR_CST_NPATTERNS (vec
) == 1 && VECTOR_CST_DUPLICATE_P (vec
))
10709 return VECTOR_CST_ENCODED_ELT (vec
, 0);
10713 else if (TREE_CODE (vec
) == CONSTRUCTOR
10714 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec
)).is_constant (&nelts
))
10716 first
= error_mark_node
;
10718 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec
), i
, t
)
10725 if (!operand_equal_p (first
, t
, 0))
10737 /* Build an empty statement at location LOC. */
10740 build_empty_stmt (location_t loc
)
10742 tree t
= build1 (NOP_EXPR
, void_type_node
, size_zero_node
);
10743 SET_EXPR_LOCATION (t
, loc
);
10748 /* Build an OpenMP clause with code CODE. LOC is the location of the
10752 build_omp_clause (location_t loc
, enum omp_clause_code code
)
10757 length
= omp_clause_num_ops
[code
];
10758 size
= (sizeof (struct tree_omp_clause
) + (length
- 1) * sizeof (tree
));
10760 record_node_allocation_statistics (OMP_CLAUSE
, size
);
10762 t
= (tree
) ggc_internal_alloc (size
);
10763 memset (t
, 0, size
);
10764 TREE_SET_CODE (t
, OMP_CLAUSE
);
10765 OMP_CLAUSE_SET_CODE (t
, code
);
10766 OMP_CLAUSE_LOCATION (t
) = loc
;
10771 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
10772 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
10773 Except for the CODE and operand count field, other storage for the
10774 object is initialized to zeros. */
10777 build_vl_exp (enum tree_code code
, int len MEM_STAT_DECL
)
10780 int length
= (len
- 1) * sizeof (tree
) + sizeof (struct tree_exp
);
10782 gcc_assert (TREE_CODE_CLASS (code
) == tcc_vl_exp
);
10783 gcc_assert (len
>= 1);
10785 record_node_allocation_statistics (code
, length
);
10787 t
= ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT
);
10789 TREE_SET_CODE (t
, code
);
10791 /* Can't use TREE_OPERAND to store the length because if checking is
10792 enabled, it will try to check the length before we store it. :-P */
10793 t
->exp
.operands
[0] = build_int_cst (sizetype
, len
);
10798 /* Helper function for build_call_* functions; build a CALL_EXPR with
10799 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
10800 the argument slots. */
10803 build_call_1 (tree return_type
, tree fn
, int nargs
)
10807 t
= build_vl_exp (CALL_EXPR
, nargs
+ 3);
10808 TREE_TYPE (t
) = return_type
;
10809 CALL_EXPR_FN (t
) = fn
;
10810 CALL_EXPR_STATIC_CHAIN (t
) = NULL
;
10815 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10816 FN and a null static chain slot. NARGS is the number of call arguments
10817 which are specified as "..." arguments. */
10820 build_call_nary (tree return_type
, tree fn
, int nargs
, ...)
10824 va_start (args
, nargs
);
10825 ret
= build_call_valist (return_type
, fn
, nargs
, args
);
10830 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10831 FN and a null static chain slot. NARGS is the number of call arguments
10832 which are specified as a va_list ARGS. */
10835 build_call_valist (tree return_type
, tree fn
, int nargs
, va_list args
)
10840 t
= build_call_1 (return_type
, fn
, nargs
);
10841 for (i
= 0; i
< nargs
; i
++)
10842 CALL_EXPR_ARG (t
, i
) = va_arg (args
, tree
);
10843 process_call_operands (t
);
10847 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
10848 FN and a null static chain slot. NARGS is the number of call arguments
10849 which are specified as a tree array ARGS. */
10852 build_call_array_loc (location_t loc
, tree return_type
, tree fn
,
10853 int nargs
, const tree
*args
)
10858 t
= build_call_1 (return_type
, fn
, nargs
);
10859 for (i
= 0; i
< nargs
; i
++)
10860 CALL_EXPR_ARG (t
, i
) = args
[i
];
10861 process_call_operands (t
);
10862 SET_EXPR_LOCATION (t
, loc
);
10866 /* Like build_call_array, but takes a vec. */
10869 build_call_vec (tree return_type
, tree fn
, vec
<tree
, va_gc
> *args
)
10874 ret
= build_call_1 (return_type
, fn
, vec_safe_length (args
));
10875 FOR_EACH_VEC_SAFE_ELT (args
, ix
, t
)
10876 CALL_EXPR_ARG (ret
, ix
) = t
;
10877 process_call_operands (ret
);
10881 /* Conveniently construct a function call expression. FNDECL names the
10882 function to be called and N arguments are passed in the array
10886 build_call_expr_loc_array (location_t loc
, tree fndecl
, int n
, tree
*argarray
)
10888 tree fntype
= TREE_TYPE (fndecl
);
10889 tree fn
= build1 (ADDR_EXPR
, build_pointer_type (fntype
), fndecl
);
10891 return fold_build_call_array_loc (loc
, TREE_TYPE (fntype
), fn
, n
, argarray
);
10894 /* Conveniently construct a function call expression. FNDECL names the
10895 function to be called and the arguments are passed in the vector
10899 build_call_expr_loc_vec (location_t loc
, tree fndecl
, vec
<tree
, va_gc
> *vec
)
10901 return build_call_expr_loc_array (loc
, fndecl
, vec_safe_length (vec
),
10902 vec_safe_address (vec
));
10906 /* Conveniently construct a function call expression. FNDECL names the
10907 function to be called, N is the number of arguments, and the "..."
10908 parameters are the argument expressions. */
10911 build_call_expr_loc (location_t loc
, tree fndecl
, int n
, ...)
10914 tree
*argarray
= XALLOCAVEC (tree
, n
);
10918 for (i
= 0; i
< n
; i
++)
10919 argarray
[i
] = va_arg (ap
, tree
);
10921 return build_call_expr_loc_array (loc
, fndecl
, n
, argarray
);
10924 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
10925 varargs macros aren't supported by all bootstrap compilers. */
10928 build_call_expr (tree fndecl
, int n
, ...)
10931 tree
*argarray
= XALLOCAVEC (tree
, n
);
10935 for (i
= 0; i
< n
; i
++)
10936 argarray
[i
] = va_arg (ap
, tree
);
10938 return build_call_expr_loc_array (UNKNOWN_LOCATION
, fndecl
, n
, argarray
);
10941 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
10942 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
10943 It will get gimplified later into an ordinary internal function. */
10946 build_call_expr_internal_loc_array (location_t loc
, internal_fn ifn
,
10947 tree type
, int n
, const tree
*args
)
10949 tree t
= build_call_1 (type
, NULL_TREE
, n
);
10950 for (int i
= 0; i
< n
; ++i
)
10951 CALL_EXPR_ARG (t
, i
) = args
[i
];
10952 SET_EXPR_LOCATION (t
, loc
);
10953 CALL_EXPR_IFN (t
) = ifn
;
10957 /* Build internal call expression. This is just like CALL_EXPR, except
10958 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
10959 internal function. */
10962 build_call_expr_internal_loc (location_t loc
, enum internal_fn ifn
,
10963 tree type
, int n
, ...)
10966 tree
*argarray
= XALLOCAVEC (tree
, n
);
10970 for (i
= 0; i
< n
; i
++)
10971 argarray
[i
] = va_arg (ap
, tree
);
10973 return build_call_expr_internal_loc_array (loc
, ifn
, type
, n
, argarray
);
10976 /* Return a function call to FN, if the target is guaranteed to support it,
10979 N is the number of arguments, passed in the "...", and TYPE is the
10980 type of the return value. */
10983 maybe_build_call_expr_loc (location_t loc
, combined_fn fn
, tree type
,
10987 tree
*argarray
= XALLOCAVEC (tree
, n
);
10991 for (i
= 0; i
< n
; i
++)
10992 argarray
[i
] = va_arg (ap
, tree
);
10994 if (internal_fn_p (fn
))
10996 internal_fn ifn
= as_internal_fn (fn
);
10997 if (direct_internal_fn_p (ifn
))
10999 tree_pair types
= direct_internal_fn_types (ifn
, type
, argarray
);
11000 if (!direct_internal_fn_supported_p (ifn
, types
,
11001 OPTIMIZE_FOR_BOTH
))
11004 return build_call_expr_internal_loc_array (loc
, ifn
, type
, n
, argarray
);
11008 tree fndecl
= builtin_decl_implicit (as_builtin_fn (fn
));
11011 return build_call_expr_loc_array (loc
, fndecl
, n
, argarray
);
11015 /* Return a function call to the appropriate builtin alloca variant.
11017 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11018 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11019 bound for SIZE in case it is not a fixed value. */
11022 build_alloca_call_expr (tree size
, unsigned int align
, HOST_WIDE_INT max_size
)
11026 tree t
= builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX
);
11028 build_call_expr (t
, 3, size
, size_int (align
), size_int (max_size
));
11030 else if (align
> 0)
11032 tree t
= builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN
);
11033 return build_call_expr (t
, 2, size
, size_int (align
));
11037 tree t
= builtin_decl_explicit (BUILT_IN_ALLOCA
);
11038 return build_call_expr (t
, 1, size
);
11042 /* Create a new constant string literal and return a char* pointer to it.
11043 The STRING_CST value is the LEN characters at STR. */
11045 build_string_literal (int len
, const char *str
)
11047 tree t
, elem
, index
, type
;
11049 t
= build_string (len
, str
);
11050 elem
= build_type_variant (char_type_node
, 1, 0);
11051 index
= build_index_type (size_int (len
- 1));
11052 type
= build_array_type (elem
, index
);
11053 TREE_TYPE (t
) = type
;
11054 TREE_CONSTANT (t
) = 1;
11055 TREE_READONLY (t
) = 1;
11056 TREE_STATIC (t
) = 1;
11058 type
= build_pointer_type (elem
);
11059 t
= build1 (ADDR_EXPR
, type
,
11060 build4 (ARRAY_REF
, elem
,
11061 t
, integer_zero_node
, NULL_TREE
, NULL_TREE
));
11067 /* Return true if T (assumed to be a DECL) must be assigned a memory
11071 needs_to_live_in_memory (const_tree t
)
11073 return (TREE_ADDRESSABLE (t
)
11074 || is_global_var (t
)
11075 || (TREE_CODE (t
) == RESULT_DECL
11076 && !DECL_BY_REFERENCE (t
)
11077 && aggregate_value_p (t
, current_function_decl
)));
11080 /* Return value of a constant X and sign-extend it. */
11083 int_cst_value (const_tree x
)
11085 unsigned bits
= TYPE_PRECISION (TREE_TYPE (x
));
11086 unsigned HOST_WIDE_INT val
= TREE_INT_CST_LOW (x
);
11088 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11089 gcc_assert (cst_and_fits_in_hwi (x
));
11091 if (bits
< HOST_BITS_PER_WIDE_INT
)
11093 bool negative
= ((val
>> (bits
- 1)) & 1) != 0;
11095 val
|= HOST_WIDE_INT_M1U
<< (bits
- 1) << 1;
11097 val
&= ~(HOST_WIDE_INT_M1U
<< (bits
- 1) << 1);
11103 /* If TYPE is an integral or pointer type, return an integer type with
11104 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11105 if TYPE is already an integer type of signedness UNSIGNEDP. */
11108 signed_or_unsigned_type_for (int unsignedp
, tree type
)
11110 if (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
) == unsignedp
)
11113 if (TREE_CODE (type
) == VECTOR_TYPE
)
11115 tree inner
= TREE_TYPE (type
);
11116 tree inner2
= signed_or_unsigned_type_for (unsignedp
, inner
);
11119 if (inner
== inner2
)
11121 return build_vector_type (inner2
, TYPE_VECTOR_SUBPARTS (type
));
11124 if (!INTEGRAL_TYPE_P (type
)
11125 && !POINTER_TYPE_P (type
)
11126 && TREE_CODE (type
) != OFFSET_TYPE
)
11129 return build_nonstandard_integer_type (TYPE_PRECISION (type
), unsignedp
);
11132 /* If TYPE is an integral or pointer type, return an integer type with
11133 the same precision which is unsigned, or itself if TYPE is already an
11134 unsigned integer type. */
11137 unsigned_type_for (tree type
)
11139 return signed_or_unsigned_type_for (1, type
);
11142 /* If TYPE is an integral or pointer type, return an integer type with
11143 the same precision which is signed, or itself if TYPE is already a
11144 signed integer type. */
11147 signed_type_for (tree type
)
11149 return signed_or_unsigned_type_for (0, type
);
11152 /* If TYPE is a vector type, return a signed integer vector type with the
11153 same width and number of subparts. Otherwise return boolean_type_node. */
11156 truth_type_for (tree type
)
11158 if (TREE_CODE (type
) == VECTOR_TYPE
)
11160 if (VECTOR_BOOLEAN_TYPE_P (type
))
11162 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type
),
11163 GET_MODE_SIZE (TYPE_MODE (type
)));
11166 return boolean_type_node
;
11169 /* Returns the largest value obtainable by casting something in INNER type to
11173 upper_bound_in_type (tree outer
, tree inner
)
11175 unsigned int det
= 0;
11176 unsigned oprec
= TYPE_PRECISION (outer
);
11177 unsigned iprec
= TYPE_PRECISION (inner
);
11180 /* Compute a unique number for every combination. */
11181 det
|= (oprec
> iprec
) ? 4 : 0;
11182 det
|= TYPE_UNSIGNED (outer
) ? 2 : 0;
11183 det
|= TYPE_UNSIGNED (inner
) ? 1 : 0;
11185 /* Determine the exponent to use. */
11190 /* oprec <= iprec, outer: signed, inner: don't care. */
11195 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11199 /* oprec > iprec, outer: signed, inner: signed. */
11203 /* oprec > iprec, outer: signed, inner: unsigned. */
11207 /* oprec > iprec, outer: unsigned, inner: signed. */
11211 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11215 gcc_unreachable ();
11218 return wide_int_to_tree (outer
,
11219 wi::mask (prec
, false, TYPE_PRECISION (outer
)));
11222 /* Returns the smallest value obtainable by casting something in INNER type to
11226 lower_bound_in_type (tree outer
, tree inner
)
11228 unsigned oprec
= TYPE_PRECISION (outer
);
11229 unsigned iprec
= TYPE_PRECISION (inner
);
11231 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11233 if (TYPE_UNSIGNED (outer
)
11234 /* If we are widening something of an unsigned type, OUTER type
11235 contains all values of INNER type. In particular, both INNER
11236 and OUTER types have zero in common. */
11237 || (oprec
> iprec
&& TYPE_UNSIGNED (inner
)))
11238 return build_int_cst (outer
, 0);
11241 /* If we are widening a signed type to another signed type, we
11242 want to obtain -2^^(iprec-1). If we are keeping the
11243 precision or narrowing to a signed type, we want to obtain
11245 unsigned prec
= oprec
> iprec
? iprec
: oprec
;
11246 return wide_int_to_tree (outer
,
11247 wi::mask (prec
- 1, true,
11248 TYPE_PRECISION (outer
)));
11252 /* Return nonzero if two operands that are suitable for PHI nodes are
11253 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11254 SSA_NAME or invariant. Note that this is strictly an optimization.
11255 That is, callers of this function can directly call operand_equal_p
11256 and get the same result, only slower. */
11259 operand_equal_for_phi_arg_p (const_tree arg0
, const_tree arg1
)
11263 if (TREE_CODE (arg0
) == SSA_NAME
|| TREE_CODE (arg1
) == SSA_NAME
)
11265 return operand_equal_p (arg0
, arg1
, 0);
11268 /* Returns number of zeros at the end of binary representation of X. */
11271 num_ending_zeros (const_tree x
)
11273 return build_int_cst (TREE_TYPE (x
), wi::ctz (wi::to_wide (x
)));
11277 #define WALK_SUBTREE(NODE) \
11280 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11286 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11287 be walked whenever a type is seen in the tree. Rest of operands and return
11288 value are as for walk_tree. */
11291 walk_type_fields (tree type
, walk_tree_fn func
, void *data
,
11292 hash_set
<tree
> *pset
, walk_tree_lh lh
)
11294 tree result
= NULL_TREE
;
11296 switch (TREE_CODE (type
))
11299 case REFERENCE_TYPE
:
11301 /* We have to worry about mutually recursive pointers. These can't
11302 be written in C. They can in Ada. It's pathological, but
11303 there's an ACATS test (c38102a) that checks it. Deal with this
11304 by checking if we're pointing to another pointer, that one
11305 points to another pointer, that one does too, and we have no htab.
11306 If so, get a hash table. We check three levels deep to avoid
11307 the cost of the hash table if we don't need one. */
11308 if (POINTER_TYPE_P (TREE_TYPE (type
))
11309 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type
)))
11310 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type
))))
11313 result
= walk_tree_without_duplicates (&TREE_TYPE (type
),
11324 WALK_SUBTREE (TREE_TYPE (type
));
11328 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type
));
11330 /* Fall through. */
11332 case FUNCTION_TYPE
:
11333 WALK_SUBTREE (TREE_TYPE (type
));
11337 /* We never want to walk into default arguments. */
11338 for (arg
= TYPE_ARG_TYPES (type
); arg
; arg
= TREE_CHAIN (arg
))
11339 WALK_SUBTREE (TREE_VALUE (arg
));
11344 /* Don't follow this nodes's type if a pointer for fear that
11345 we'll have infinite recursion. If we have a PSET, then we
11348 || (!POINTER_TYPE_P (TREE_TYPE (type
))
11349 && TREE_CODE (TREE_TYPE (type
)) != OFFSET_TYPE
))
11350 WALK_SUBTREE (TREE_TYPE (type
));
11351 WALK_SUBTREE (TYPE_DOMAIN (type
));
11355 WALK_SUBTREE (TREE_TYPE (type
));
11356 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type
));
11366 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
11367 called with the DATA and the address of each sub-tree. If FUNC returns a
11368 non-NULL value, the traversal is stopped, and the value returned by FUNC
11369 is returned. If PSET is non-NULL it is used to record the nodes visited,
11370 and to avoid visiting a node more than once. */
11373 walk_tree_1 (tree
*tp
, walk_tree_fn func
, void *data
,
11374 hash_set
<tree
> *pset
, walk_tree_lh lh
)
11376 enum tree_code code
;
11380 #define WALK_SUBTREE_TAIL(NODE) \
11384 goto tail_recurse; \
11389 /* Skip empty subtrees. */
11393 /* Don't walk the same tree twice, if the user has requested
11394 that we avoid doing so. */
11395 if (pset
&& pset
->add (*tp
))
11398 /* Call the function. */
11400 result
= (*func
) (tp
, &walk_subtrees
, data
);
11402 /* If we found something, return it. */
11406 code
= TREE_CODE (*tp
);
11408 /* Even if we didn't, FUNC may have decided that there was nothing
11409 interesting below this point in the tree. */
11410 if (!walk_subtrees
)
11412 /* But we still need to check our siblings. */
11413 if (code
== TREE_LIST
)
11414 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp
));
11415 else if (code
== OMP_CLAUSE
)
11416 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp
));
11423 result
= (*lh
) (tp
, &walk_subtrees
, func
, data
, pset
);
11424 if (result
|| !walk_subtrees
)
11431 case IDENTIFIER_NODE
:
11438 case PLACEHOLDER_EXPR
:
11442 /* None of these have subtrees other than those already walked
11447 WALK_SUBTREE (TREE_VALUE (*tp
));
11448 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp
));
11453 int len
= TREE_VEC_LENGTH (*tp
);
11458 /* Walk all elements but the first. */
11460 WALK_SUBTREE (TREE_VEC_ELT (*tp
, len
));
11462 /* Now walk the first one as a tail call. */
11463 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp
, 0));
11467 WALK_SUBTREE (TREE_REALPART (*tp
));
11468 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp
));
11472 unsigned HOST_WIDE_INT idx
;
11473 constructor_elt
*ce
;
11475 for (idx
= 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp
), idx
, &ce
);
11477 WALK_SUBTREE (ce
->value
);
11482 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp
, 0));
11487 for (decl
= BIND_EXPR_VARS (*tp
); decl
; decl
= DECL_CHAIN (decl
))
11489 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
11490 into declarations that are just mentioned, rather than
11491 declared; they don't really belong to this part of the tree.
11492 And, we can see cycles: the initializer for a declaration
11493 can refer to the declaration itself. */
11494 WALK_SUBTREE (DECL_INITIAL (decl
));
11495 WALK_SUBTREE (DECL_SIZE (decl
));
11496 WALK_SUBTREE (DECL_SIZE_UNIT (decl
));
11498 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp
));
11501 case STATEMENT_LIST
:
11503 tree_stmt_iterator i
;
11504 for (i
= tsi_start (*tp
); !tsi_end_p (i
); tsi_next (&i
))
11505 WALK_SUBTREE (*tsi_stmt_ptr (i
));
11510 switch (OMP_CLAUSE_CODE (*tp
))
11512 case OMP_CLAUSE_GANG
:
11513 case OMP_CLAUSE__GRIDDIM_
:
11514 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp
, 1));
11517 case OMP_CLAUSE_ASYNC
:
11518 case OMP_CLAUSE_WAIT
:
11519 case OMP_CLAUSE_WORKER
:
11520 case OMP_CLAUSE_VECTOR
:
11521 case OMP_CLAUSE_NUM_GANGS
:
11522 case OMP_CLAUSE_NUM_WORKERS
:
11523 case OMP_CLAUSE_VECTOR_LENGTH
:
11524 case OMP_CLAUSE_PRIVATE
:
11525 case OMP_CLAUSE_SHARED
:
11526 case OMP_CLAUSE_FIRSTPRIVATE
:
11527 case OMP_CLAUSE_COPYIN
:
11528 case OMP_CLAUSE_COPYPRIVATE
:
11529 case OMP_CLAUSE_FINAL
:
11530 case OMP_CLAUSE_IF
:
11531 case OMP_CLAUSE_NUM_THREADS
:
11532 case OMP_CLAUSE_SCHEDULE
:
11533 case OMP_CLAUSE_UNIFORM
:
11534 case OMP_CLAUSE_DEPEND
:
11535 case OMP_CLAUSE_NUM_TEAMS
:
11536 case OMP_CLAUSE_THREAD_LIMIT
:
11537 case OMP_CLAUSE_DEVICE
:
11538 case OMP_CLAUSE_DIST_SCHEDULE
:
11539 case OMP_CLAUSE_SAFELEN
:
11540 case OMP_CLAUSE_SIMDLEN
:
11541 case OMP_CLAUSE_ORDERED
:
11542 case OMP_CLAUSE_PRIORITY
:
11543 case OMP_CLAUSE_GRAINSIZE
:
11544 case OMP_CLAUSE_NUM_TASKS
:
11545 case OMP_CLAUSE_HINT
:
11546 case OMP_CLAUSE_TO_DECLARE
:
11547 case OMP_CLAUSE_LINK
:
11548 case OMP_CLAUSE_USE_DEVICE_PTR
:
11549 case OMP_CLAUSE_IS_DEVICE_PTR
:
11550 case OMP_CLAUSE__LOOPTEMP_
:
11551 case OMP_CLAUSE__SIMDUID_
:
11552 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp
, 0));
11555 case OMP_CLAUSE_INDEPENDENT
:
11556 case OMP_CLAUSE_NOWAIT
:
11557 case OMP_CLAUSE_DEFAULT
:
11558 case OMP_CLAUSE_UNTIED
:
11559 case OMP_CLAUSE_MERGEABLE
:
11560 case OMP_CLAUSE_PROC_BIND
:
11561 case OMP_CLAUSE_INBRANCH
:
11562 case OMP_CLAUSE_NOTINBRANCH
:
11563 case OMP_CLAUSE_FOR
:
11564 case OMP_CLAUSE_PARALLEL
:
11565 case OMP_CLAUSE_SECTIONS
:
11566 case OMP_CLAUSE_TASKGROUP
:
11567 case OMP_CLAUSE_NOGROUP
:
11568 case OMP_CLAUSE_THREADS
:
11569 case OMP_CLAUSE_SIMD
:
11570 case OMP_CLAUSE_DEFAULTMAP
:
11571 case OMP_CLAUSE_AUTO
:
11572 case OMP_CLAUSE_SEQ
:
11573 case OMP_CLAUSE_TILE
:
11574 case OMP_CLAUSE__SIMT_
:
11575 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp
));
11577 case OMP_CLAUSE_LASTPRIVATE
:
11578 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp
));
11579 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp
));
11580 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp
));
11582 case OMP_CLAUSE_COLLAPSE
:
11585 for (i
= 0; i
< 3; i
++)
11586 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp
, i
));
11587 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp
));
11590 case OMP_CLAUSE_LINEAR
:
11591 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp
));
11592 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp
));
11593 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp
));
11594 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp
));
11596 case OMP_CLAUSE_ALIGNED
:
11597 case OMP_CLAUSE_FROM
:
11598 case OMP_CLAUSE_TO
:
11599 case OMP_CLAUSE_MAP
:
11600 case OMP_CLAUSE__CACHE_
:
11601 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp
));
11602 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp
, 1));
11603 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp
));
11605 case OMP_CLAUSE_REDUCTION
:
11608 for (i
= 0; i
< 5; i
++)
11609 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp
, i
));
11610 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp
));
11614 gcc_unreachable ();
11622 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
11623 But, we only want to walk once. */
11624 len
= (TREE_OPERAND (*tp
, 3) == TREE_OPERAND (*tp
, 1)) ? 2 : 3;
11625 for (i
= 0; i
< len
; ++i
)
11626 WALK_SUBTREE (TREE_OPERAND (*tp
, i
));
11627 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp
, len
));
11631 /* If this is a TYPE_DECL, walk into the fields of the type that it's
11632 defining. We only want to walk into these fields of a type in this
11633 case and not in the general case of a mere reference to the type.
11635 The criterion is as follows: if the field can be an expression, it
11636 must be walked only here. This should be in keeping with the fields
11637 that are directly gimplified in gimplify_type_sizes in order for the
11638 mark/copy-if-shared/unmark machinery of the gimplifier to work with
11639 variable-sized types.
11641 Note that DECLs get walked as part of processing the BIND_EXPR. */
11642 if (TREE_CODE (DECL_EXPR_DECL (*tp
)) == TYPE_DECL
)
11644 tree
*type_p
= &TREE_TYPE (DECL_EXPR_DECL (*tp
));
11645 if (TREE_CODE (*type_p
) == ERROR_MARK
)
11648 /* Call the function for the type. See if it returns anything or
11649 doesn't want us to continue. If we are to continue, walk both
11650 the normal fields and those for the declaration case. */
11651 result
= (*func
) (type_p
, &walk_subtrees
, data
);
11652 if (result
|| !walk_subtrees
)
11655 /* But do not walk a pointed-to type since it may itself need to
11656 be walked in the declaration case if it isn't anonymous. */
11657 if (!POINTER_TYPE_P (*type_p
))
11659 result
= walk_type_fields (*type_p
, func
, data
, pset
, lh
);
11664 /* If this is a record type, also walk the fields. */
11665 if (RECORD_OR_UNION_TYPE_P (*type_p
))
11669 for (field
= TYPE_FIELDS (*type_p
); field
;
11670 field
= DECL_CHAIN (field
))
11672 /* We'd like to look at the type of the field, but we can
11673 easily get infinite recursion. So assume it's pointed
11674 to elsewhere in the tree. Also, ignore things that
11676 if (TREE_CODE (field
) != FIELD_DECL
)
11679 WALK_SUBTREE (DECL_FIELD_OFFSET (field
));
11680 WALK_SUBTREE (DECL_SIZE (field
));
11681 WALK_SUBTREE (DECL_SIZE_UNIT (field
));
11682 if (TREE_CODE (*type_p
) == QUAL_UNION_TYPE
)
11683 WALK_SUBTREE (DECL_QUALIFIER (field
));
11687 /* Same for scalar types. */
11688 else if (TREE_CODE (*type_p
) == BOOLEAN_TYPE
11689 || TREE_CODE (*type_p
) == ENUMERAL_TYPE
11690 || TREE_CODE (*type_p
) == INTEGER_TYPE
11691 || TREE_CODE (*type_p
) == FIXED_POINT_TYPE
11692 || TREE_CODE (*type_p
) == REAL_TYPE
)
11694 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p
));
11695 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p
));
11698 WALK_SUBTREE (TYPE_SIZE (*type_p
));
11699 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p
));
11704 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
11708 /* Walk over all the sub-trees of this operand. */
11709 len
= TREE_OPERAND_LENGTH (*tp
);
11711 /* Go through the subtrees. We need to do this in forward order so
11712 that the scope of a FOR_EXPR is handled properly. */
11715 for (i
= 0; i
< len
- 1; ++i
)
11716 WALK_SUBTREE (TREE_OPERAND (*tp
, i
));
11717 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp
, len
- 1));
11720 /* If this is a type, walk the needed fields in the type. */
11721 else if (TYPE_P (*tp
))
11722 return walk_type_fields (*tp
, func
, data
, pset
, lh
);
11726 /* We didn't find what we were looking for. */
11729 #undef WALK_SUBTREE_TAIL
11731 #undef WALK_SUBTREE
11733 /* Like walk_tree, but does not walk duplicate nodes more than once. */
11736 walk_tree_without_duplicates_1 (tree
*tp
, walk_tree_fn func
, void *data
,
11741 hash_set
<tree
> pset
;
11742 result
= walk_tree_1 (tp
, func
, data
, &pset
, lh
);
11748 tree_block (tree t
)
11750 const enum tree_code_class c
= TREE_CODE_CLASS (TREE_CODE (t
));
11752 if (IS_EXPR_CODE_CLASS (c
))
11753 return LOCATION_BLOCK (t
->exp
.locus
);
11754 gcc_unreachable ();
11759 tree_set_block (tree t
, tree b
)
11761 const enum tree_code_class c
= TREE_CODE_CLASS (TREE_CODE (t
));
11763 if (IS_EXPR_CODE_CLASS (c
))
11765 t
->exp
.locus
= set_block (t
->exp
.locus
, b
);
11768 gcc_unreachable ();
11771 /* Create a nameless artificial label and put it in the current
11772 function context. The label has a location of LOC. Returns the
11773 newly created label. */
11776 create_artificial_label (location_t loc
)
11778 tree lab
= build_decl (loc
,
11779 LABEL_DECL
, NULL_TREE
, void_type_node
);
11781 DECL_ARTIFICIAL (lab
) = 1;
11782 DECL_IGNORED_P (lab
) = 1;
11783 DECL_CONTEXT (lab
) = current_function_decl
;
11787 /* Given a tree, try to return a useful variable name that we can use
11788 to prefix a temporary that is being assigned the value of the tree.
11789 I.E. given <temp> = &A, return A. */
11794 tree stripped_decl
;
11797 STRIP_NOPS (stripped_decl
);
11798 if (DECL_P (stripped_decl
) && DECL_NAME (stripped_decl
))
11799 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl
));
11800 else if (TREE_CODE (stripped_decl
) == SSA_NAME
)
11802 tree name
= SSA_NAME_IDENTIFIER (stripped_decl
);
11805 return IDENTIFIER_POINTER (name
);
11809 switch (TREE_CODE (stripped_decl
))
11812 return get_name (TREE_OPERAND (stripped_decl
, 0));
11819 /* Return true if TYPE has a variable argument list. */
11822 stdarg_p (const_tree fntype
)
11824 function_args_iterator args_iter
;
11825 tree n
= NULL_TREE
, t
;
11830 FOREACH_FUNCTION_ARGS (fntype
, t
, args_iter
)
11835 return n
!= NULL_TREE
&& n
!= void_type_node
;
11838 /* Return true if TYPE has a prototype. */
11841 prototype_p (const_tree fntype
)
11845 gcc_assert (fntype
!= NULL_TREE
);
11847 t
= TYPE_ARG_TYPES (fntype
);
11848 return (t
!= NULL_TREE
);
11851 /* If BLOCK is inlined from an __attribute__((__artificial__))
11852 routine, return pointer to location from where it has been
11855 block_nonartificial_location (tree block
)
11857 location_t
*ret
= NULL
;
11859 while (block
&& TREE_CODE (block
) == BLOCK
11860 && BLOCK_ABSTRACT_ORIGIN (block
))
11862 tree ao
= BLOCK_ABSTRACT_ORIGIN (block
);
11864 while (TREE_CODE (ao
) == BLOCK
11865 && BLOCK_ABSTRACT_ORIGIN (ao
)
11866 && BLOCK_ABSTRACT_ORIGIN (ao
) != ao
)
11867 ao
= BLOCK_ABSTRACT_ORIGIN (ao
);
11869 if (TREE_CODE (ao
) == FUNCTION_DECL
)
11871 /* If AO is an artificial inline, point RET to the
11872 call site locus at which it has been inlined and continue
11873 the loop, in case AO's caller is also an artificial
11875 if (DECL_DECLARED_INLINE_P (ao
)
11876 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao
)))
11877 ret
= &BLOCK_SOURCE_LOCATION (block
);
11881 else if (TREE_CODE (ao
) != BLOCK
)
11884 block
= BLOCK_SUPERCONTEXT (block
);
11890 /* If EXP is inlined from an __attribute__((__artificial__))
11891 function, return the location of the original call expression. */
11894 tree_nonartificial_location (tree exp
)
11896 location_t
*loc
= block_nonartificial_location (TREE_BLOCK (exp
));
11901 return EXPR_LOCATION (exp
);
11905 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
11908 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
11911 cl_option_hasher::hash (tree x
)
11913 const_tree
const t
= x
;
11917 hashval_t hash
= 0;
11919 if (TREE_CODE (t
) == OPTIMIZATION_NODE
)
11921 p
= (const char *)TREE_OPTIMIZATION (t
);
11922 len
= sizeof (struct cl_optimization
);
11925 else if (TREE_CODE (t
) == TARGET_OPTION_NODE
)
11926 return cl_target_option_hash (TREE_TARGET_OPTION (t
));
11929 gcc_unreachable ();
11931 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
11933 for (i
= 0; i
< len
; i
++)
11935 hash
= (hash
<< 4) ^ ((i
<< 2) | p
[i
]);
11940 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
11941 TARGET_OPTION tree node) is the same as that given by *Y, which is the
11945 cl_option_hasher::equal (tree x
, tree y
)
11947 const_tree
const xt
= x
;
11948 const_tree
const yt
= y
;
11953 if (TREE_CODE (xt
) != TREE_CODE (yt
))
11956 if (TREE_CODE (xt
) == OPTIMIZATION_NODE
)
11958 xp
= (const char *)TREE_OPTIMIZATION (xt
);
11959 yp
= (const char *)TREE_OPTIMIZATION (yt
);
11960 len
= sizeof (struct cl_optimization
);
11963 else if (TREE_CODE (xt
) == TARGET_OPTION_NODE
)
11965 return cl_target_option_eq (TREE_TARGET_OPTION (xt
),
11966 TREE_TARGET_OPTION (yt
));
11970 gcc_unreachable ();
11972 return (memcmp (xp
, yp
, len
) == 0);
11975 /* Build an OPTIMIZATION_NODE based on the options in OPTS. */
11978 build_optimization_node (struct gcc_options
*opts
)
11982 /* Use the cache of optimization nodes. */
11984 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node
),
11987 tree
*slot
= cl_option_hash_table
->find_slot (cl_optimization_node
, INSERT
);
11991 /* Insert this one into the hash table. */
11992 t
= cl_optimization_node
;
11995 /* Make a new node for next time round. */
11996 cl_optimization_node
= make_node (OPTIMIZATION_NODE
);
12002 /* Build a TARGET_OPTION_NODE based on the options in OPTS. */
12005 build_target_option_node (struct gcc_options
*opts
)
12009 /* Use the cache of optimization nodes. */
12011 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node
),
12014 tree
*slot
= cl_option_hash_table
->find_slot (cl_target_option_node
, INSERT
);
12018 /* Insert this one into the hash table. */
12019 t
= cl_target_option_node
;
12022 /* Make a new node for next time round. */
12023 cl_target_option_node
= make_node (TARGET_OPTION_NODE
);
12029 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12030 so that they aren't saved during PCH writing. */
12033 prepare_target_option_nodes_for_pch (void)
12035 hash_table
<cl_option_hasher
>::iterator iter
= cl_option_hash_table
->begin ();
12036 for (; iter
!= cl_option_hash_table
->end (); ++iter
)
12037 if (TREE_CODE (*iter
) == TARGET_OPTION_NODE
)
12038 TREE_TARGET_GLOBALS (*iter
) = NULL
;
12041 /* Determine the "ultimate origin" of a block. The block may be an inlined
12042 instance of an inlined instance of a block which is local to an inline
12043 function, so we have to trace all of the way back through the origin chain
12044 to find out what sort of node actually served as the original seed for the
12048 block_ultimate_origin (const_tree block
)
12050 tree immediate_origin
= BLOCK_ABSTRACT_ORIGIN (block
);
12052 /* BLOCK_ABSTRACT_ORIGIN can point to itself; ignore that if
12053 we're trying to output the abstract instance of this function. */
12054 if (BLOCK_ABSTRACT (block
) && immediate_origin
== block
)
12057 if (immediate_origin
== NULL_TREE
)
12062 tree lookahead
= immediate_origin
;
12066 ret_val
= lookahead
;
12067 lookahead
= (TREE_CODE (ret_val
) == BLOCK
12068 ? BLOCK_ABSTRACT_ORIGIN (ret_val
) : NULL
);
12070 while (lookahead
!= NULL
&& lookahead
!= ret_val
);
12072 /* The block's abstract origin chain may not be the *ultimate* origin of
12073 the block. It could lead to a DECL that has an abstract origin set.
12074 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
12075 will give us if it has one). Note that DECL's abstract origins are
12076 supposed to be the most distant ancestor (or so decl_ultimate_origin
12077 claims), so we don't need to loop following the DECL origins. */
12078 if (DECL_P (ret_val
))
12079 return DECL_ORIGIN (ret_val
);
12085 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12089 tree_nop_conversion_p (const_tree outer_type
, const_tree inner_type
)
12091 /* Do not strip casts into or out of differing address spaces. */
12092 if (POINTER_TYPE_P (outer_type
)
12093 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type
)) != ADDR_SPACE_GENERIC
)
12095 if (!POINTER_TYPE_P (inner_type
)
12096 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type
))
12097 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type
))))
12100 else if (POINTER_TYPE_P (inner_type
)
12101 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type
)) != ADDR_SPACE_GENERIC
)
12103 /* We already know that outer_type is not a pointer with
12104 a non-generic address space. */
12108 /* Use precision rather then machine mode when we can, which gives
12109 the correct answer even for submode (bit-field) types. */
12110 if ((INTEGRAL_TYPE_P (outer_type
)
12111 || POINTER_TYPE_P (outer_type
)
12112 || TREE_CODE (outer_type
) == OFFSET_TYPE
)
12113 && (INTEGRAL_TYPE_P (inner_type
)
12114 || POINTER_TYPE_P (inner_type
)
12115 || TREE_CODE (inner_type
) == OFFSET_TYPE
))
12116 return TYPE_PRECISION (outer_type
) == TYPE_PRECISION (inner_type
);
12118 /* Otherwise fall back on comparing machine modes (e.g. for
12119 aggregate types, floats). */
12120 return TYPE_MODE (outer_type
) == TYPE_MODE (inner_type
);
12123 /* Return true iff conversion in EXP generates no instruction. Mark
12124 it inline so that we fully inline into the stripping functions even
12125 though we have two uses of this function. */
12128 tree_nop_conversion (const_tree exp
)
12130 tree outer_type
, inner_type
;
12132 if (location_wrapper_p (exp
))
12134 if (!CONVERT_EXPR_P (exp
)
12135 && TREE_CODE (exp
) != NON_LVALUE_EXPR
)
12137 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
12140 outer_type
= TREE_TYPE (exp
);
12141 inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
12146 return tree_nop_conversion_p (outer_type
, inner_type
);
12149 /* Return true iff conversion in EXP generates no instruction. Don't
12150 consider conversions changing the signedness. */
12153 tree_sign_nop_conversion (const_tree exp
)
12155 tree outer_type
, inner_type
;
12157 if (!tree_nop_conversion (exp
))
12160 outer_type
= TREE_TYPE (exp
);
12161 inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
12163 return (TYPE_UNSIGNED (outer_type
) == TYPE_UNSIGNED (inner_type
)
12164 && POINTER_TYPE_P (outer_type
) == POINTER_TYPE_P (inner_type
));
12167 /* Strip conversions from EXP according to tree_nop_conversion and
12168 return the resulting expression. */
12171 tree_strip_nop_conversions (tree exp
)
12173 while (tree_nop_conversion (exp
))
12174 exp
= TREE_OPERAND (exp
, 0);
12178 /* Strip conversions from EXP according to tree_sign_nop_conversion
12179 and return the resulting expression. */
12182 tree_strip_sign_nop_conversions (tree exp
)
12184 while (tree_sign_nop_conversion (exp
))
12185 exp
= TREE_OPERAND (exp
, 0);
12189 /* Avoid any floating point extensions from EXP. */
12191 strip_float_extensions (tree exp
)
12193 tree sub
, expt
, subt
;
12195 /* For floating point constant look up the narrowest type that can hold
12196 it properly and handle it like (type)(narrowest_type)constant.
12197 This way we can optimize for instance a=a*2.0 where "a" is float
12198 but 2.0 is double constant. */
12199 if (TREE_CODE (exp
) == REAL_CST
&& !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp
)))
12201 REAL_VALUE_TYPE orig
;
12204 orig
= TREE_REAL_CST (exp
);
12205 if (TYPE_PRECISION (TREE_TYPE (exp
)) > TYPE_PRECISION (float_type_node
)
12206 && exact_real_truncate (TYPE_MODE (float_type_node
), &orig
))
12207 type
= float_type_node
;
12208 else if (TYPE_PRECISION (TREE_TYPE (exp
))
12209 > TYPE_PRECISION (double_type_node
)
12210 && exact_real_truncate (TYPE_MODE (double_type_node
), &orig
))
12211 type
= double_type_node
;
12213 return build_real_truncate (type
, orig
);
12216 if (!CONVERT_EXPR_P (exp
))
12219 sub
= TREE_OPERAND (exp
, 0);
12220 subt
= TREE_TYPE (sub
);
12221 expt
= TREE_TYPE (exp
);
12223 if (!FLOAT_TYPE_P (subt
))
12226 if (DECIMAL_FLOAT_TYPE_P (expt
) != DECIMAL_FLOAT_TYPE_P (subt
))
12229 if (TYPE_PRECISION (subt
) > TYPE_PRECISION (expt
))
12232 return strip_float_extensions (sub
);
12235 /* Strip out all handled components that produce invariant
12239 strip_invariant_refs (const_tree op
)
12241 while (handled_component_p (op
))
12243 switch (TREE_CODE (op
))
12246 case ARRAY_RANGE_REF
:
12247 if (!is_gimple_constant (TREE_OPERAND (op
, 1))
12248 || TREE_OPERAND (op
, 2) != NULL_TREE
12249 || TREE_OPERAND (op
, 3) != NULL_TREE
)
12253 case COMPONENT_REF
:
12254 if (TREE_OPERAND (op
, 2) != NULL_TREE
)
12260 op
= TREE_OPERAND (op
, 0);
12266 static GTY(()) tree gcc_eh_personality_decl
;
12268 /* Return the GCC personality function decl. */
12271 lhd_gcc_personality (void)
12273 if (!gcc_eh_personality_decl
)
12274 gcc_eh_personality_decl
= build_personality_function ("gcc");
12275 return gcc_eh_personality_decl
;
12278 /* TARGET is a call target of GIMPLE call statement
12279 (obtained by gimple_call_fn). Return true if it is
12280 OBJ_TYPE_REF representing an virtual call of C++ method.
12281 (As opposed to OBJ_TYPE_REF representing objc calls
12282 through a cast where middle-end devirtualization machinery
12286 virtual_method_call_p (const_tree target
)
12288 if (TREE_CODE (target
) != OBJ_TYPE_REF
)
12290 tree t
= TREE_TYPE (target
);
12291 gcc_checking_assert (TREE_CODE (t
) == POINTER_TYPE
);
12293 if (TREE_CODE (t
) == FUNCTION_TYPE
)
12295 gcc_checking_assert (TREE_CODE (t
) == METHOD_TYPE
);
12296 /* If we do not have BINFO associated, it means that type was built
12297 without devirtualization enabled. Do not consider this a virtual
12299 if (!TYPE_BINFO (obj_type_ref_class (target
)))
12304 /* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
12307 obj_type_ref_class (const_tree ref
)
12309 gcc_checking_assert (TREE_CODE (ref
) == OBJ_TYPE_REF
);
12310 ref
= TREE_TYPE (ref
);
12311 gcc_checking_assert (TREE_CODE (ref
) == POINTER_TYPE
);
12312 ref
= TREE_TYPE (ref
);
12313 /* We look for type THIS points to. ObjC also builds
12314 OBJ_TYPE_REF with non-method calls, Their first parameter
12315 ID however also corresponds to class type. */
12316 gcc_checking_assert (TREE_CODE (ref
) == METHOD_TYPE
12317 || TREE_CODE (ref
) == FUNCTION_TYPE
);
12318 ref
= TREE_VALUE (TYPE_ARG_TYPES (ref
));
12319 gcc_checking_assert (TREE_CODE (ref
) == POINTER_TYPE
);
12320 return TREE_TYPE (ref
);
12323 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
12326 lookup_binfo_at_offset (tree binfo
, tree type
, HOST_WIDE_INT pos
)
12329 tree base_binfo
, b
;
12331 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
12332 if (pos
== tree_to_shwi (BINFO_OFFSET (base_binfo
))
12333 && types_same_for_odr (TREE_TYPE (base_binfo
), type
))
12335 else if ((b
= lookup_binfo_at_offset (base_binfo
, type
, pos
)) != NULL
)
12340 /* Try to find a base info of BINFO that would have its field decl at offset
12341 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
12342 found, return, otherwise return NULL_TREE. */
12345 get_binfo_at_offset (tree binfo
, poly_int64 offset
, tree expected_type
)
12347 tree type
= BINFO_TYPE (binfo
);
12351 HOST_WIDE_INT pos
, size
;
12355 if (types_same_for_odr (type
, expected_type
))
12357 if (maybe_lt (offset
, 0))
12360 for (fld
= TYPE_FIELDS (type
); fld
; fld
= DECL_CHAIN (fld
))
12362 if (TREE_CODE (fld
) != FIELD_DECL
|| !DECL_ARTIFICIAL (fld
))
12365 pos
= int_bit_position (fld
);
12366 size
= tree_to_uhwi (DECL_SIZE (fld
));
12367 if (known_in_range_p (offset
, pos
, size
))
12370 if (!fld
|| TREE_CODE (TREE_TYPE (fld
)) != RECORD_TYPE
)
12373 /* Offset 0 indicates the primary base, whose vtable contents are
12374 represented in the binfo for the derived class. */
12375 else if (maybe_ne (offset
, 0))
12377 tree found_binfo
= NULL
, base_binfo
;
12378 /* Offsets in BINFO are in bytes relative to the whole structure
12379 while POS is in bits relative to the containing field. */
12380 int binfo_offset
= (tree_to_shwi (BINFO_OFFSET (binfo
)) + pos
12383 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
12384 if (tree_to_shwi (BINFO_OFFSET (base_binfo
)) == binfo_offset
12385 && types_same_for_odr (TREE_TYPE (base_binfo
), TREE_TYPE (fld
)))
12387 found_binfo
= base_binfo
;
12391 binfo
= found_binfo
;
12393 binfo
= lookup_binfo_at_offset (binfo
, TREE_TYPE (fld
),
12397 type
= TREE_TYPE (fld
);
12402 /* Returns true if X is a typedef decl. */
12405 is_typedef_decl (const_tree x
)
12407 return (x
&& TREE_CODE (x
) == TYPE_DECL
12408 && DECL_ORIGINAL_TYPE (x
) != NULL_TREE
);
12411 /* Returns true iff TYPE is a type variant created for a typedef. */
12414 typedef_variant_p (const_tree type
)
12416 return is_typedef_decl (TYPE_NAME (type
));
12419 /* Warn about a use of an identifier which was marked deprecated. */
12421 warn_deprecated_use (tree node
, tree attr
)
12425 if (node
== 0 || !warn_deprecated_decl
)
12431 attr
= DECL_ATTRIBUTES (node
);
12432 else if (TYPE_P (node
))
12434 tree decl
= TYPE_STUB_DECL (node
);
12436 attr
= lookup_attribute ("deprecated",
12437 TYPE_ATTRIBUTES (TREE_TYPE (decl
)));
12442 attr
= lookup_attribute ("deprecated", attr
);
12445 msg
= TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
)));
12453 w
= warning (OPT_Wdeprecated_declarations
,
12454 "%qD is deprecated: %s", node
, msg
);
12456 w
= warning (OPT_Wdeprecated_declarations
,
12457 "%qD is deprecated", node
);
12459 inform (DECL_SOURCE_LOCATION (node
), "declared here");
12461 else if (TYPE_P (node
))
12463 tree what
= NULL_TREE
;
12464 tree decl
= TYPE_STUB_DECL (node
);
12466 if (TYPE_NAME (node
))
12468 if (TREE_CODE (TYPE_NAME (node
)) == IDENTIFIER_NODE
)
12469 what
= TYPE_NAME (node
);
12470 else if (TREE_CODE (TYPE_NAME (node
)) == TYPE_DECL
12471 && DECL_NAME (TYPE_NAME (node
)))
12472 what
= DECL_NAME (TYPE_NAME (node
));
12480 w
= warning (OPT_Wdeprecated_declarations
,
12481 "%qE is deprecated: %s", what
, msg
);
12483 w
= warning (OPT_Wdeprecated_declarations
,
12484 "%qE is deprecated", what
);
12489 w
= warning (OPT_Wdeprecated_declarations
,
12490 "type is deprecated: %s", msg
);
12492 w
= warning (OPT_Wdeprecated_declarations
,
12493 "type is deprecated");
12496 inform (DECL_SOURCE_LOCATION (decl
), "declared here");
12503 warning (OPT_Wdeprecated_declarations
, "%qE is deprecated: %s",
12506 warning (OPT_Wdeprecated_declarations
, "%qE is deprecated", what
);
12511 warning (OPT_Wdeprecated_declarations
, "type is deprecated: %s",
12514 warning (OPT_Wdeprecated_declarations
, "type is deprecated");
12520 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
12521 somewhere in it. */
12524 contains_bitfld_component_ref_p (const_tree ref
)
12526 while (handled_component_p (ref
))
12528 if (TREE_CODE (ref
) == COMPONENT_REF
12529 && DECL_BIT_FIELD (TREE_OPERAND (ref
, 1)))
12531 ref
= TREE_OPERAND (ref
, 0);
12537 /* Try to determine whether a TRY_CATCH expression can fall through.
12538 This is a subroutine of block_may_fallthru. */
12541 try_catch_may_fallthru (const_tree stmt
)
12543 tree_stmt_iterator i
;
12545 /* If the TRY block can fall through, the whole TRY_CATCH can
12547 if (block_may_fallthru (TREE_OPERAND (stmt
, 0)))
12550 i
= tsi_start (TREE_OPERAND (stmt
, 1));
12551 switch (TREE_CODE (tsi_stmt (i
)))
12554 /* We expect to see a sequence of CATCH_EXPR trees, each with a
12555 catch expression and a body. The whole TRY_CATCH may fall
12556 through iff any of the catch bodies falls through. */
12557 for (; !tsi_end_p (i
); tsi_next (&i
))
12559 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i
))))
12564 case EH_FILTER_EXPR
:
12565 /* The exception filter expression only matters if there is an
12566 exception. If the exception does not match EH_FILTER_TYPES,
12567 we will execute EH_FILTER_FAILURE, and we will fall through
12568 if that falls through. If the exception does match
12569 EH_FILTER_TYPES, the stack unwinder will continue up the
12570 stack, so we will not fall through. We don't know whether we
12571 will throw an exception which matches EH_FILTER_TYPES or not,
12572 so we just ignore EH_FILTER_TYPES and assume that we might
12573 throw an exception which doesn't match. */
12574 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i
)));
12577 /* This case represents statements to be executed when an
12578 exception occurs. Those statements are implicitly followed
12579 by a RESX statement to resume execution after the exception.
12580 So in this case the TRY_CATCH never falls through. */
12585 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
12586 need not be 100% accurate; simply be conservative and return true if we
12587 don't know. This is used only to avoid stupidly generating extra code.
12588 If we're wrong, we'll just delete the extra code later. */
12591 block_may_fallthru (const_tree block
)
12593 /* This CONST_CAST is okay because expr_last returns its argument
12594 unmodified and we assign it to a const_tree. */
12595 const_tree stmt
= expr_last (CONST_CAST_TREE (block
));
12597 switch (stmt
? TREE_CODE (stmt
) : ERROR_MARK
)
12601 /* Easy cases. If the last statement of the block implies
12602 control transfer, then we can't fall through. */
12606 /* If there is a default: label or case labels cover all possible
12607 SWITCH_COND values, then the SWITCH_EXPR will transfer control
12608 to some case label in all cases and all we care is whether the
12609 SWITCH_BODY falls through. */
12610 if (SWITCH_ALL_CASES_P (stmt
))
12611 return block_may_fallthru (SWITCH_BODY (stmt
));
12615 if (block_may_fallthru (COND_EXPR_THEN (stmt
)))
12617 return block_may_fallthru (COND_EXPR_ELSE (stmt
));
12620 return block_may_fallthru (BIND_EXPR_BODY (stmt
));
12622 case TRY_CATCH_EXPR
:
12623 return try_catch_may_fallthru (stmt
);
12625 case TRY_FINALLY_EXPR
:
12626 /* The finally clause is always executed after the try clause,
12627 so if it does not fall through, then the try-finally will not
12628 fall through. Otherwise, if the try clause does not fall
12629 through, then when the finally clause falls through it will
12630 resume execution wherever the try clause was going. So the
12631 whole try-finally will only fall through if both the try
12632 clause and the finally clause fall through. */
12633 return (block_may_fallthru (TREE_OPERAND (stmt
, 0))
12634 && block_may_fallthru (TREE_OPERAND (stmt
, 1)));
12637 if (TREE_CODE (TREE_OPERAND (stmt
, 1)) == CALL_EXPR
)
12638 stmt
= TREE_OPERAND (stmt
, 1);
12644 /* Functions that do not return do not fall through. */
12645 return (call_expr_flags (stmt
) & ECF_NORETURN
) == 0;
12647 case CLEANUP_POINT_EXPR
:
12648 return block_may_fallthru (TREE_OPERAND (stmt
, 0));
12651 return block_may_fallthru (TREE_OPERAND (stmt
, 1));
12657 return lang_hooks
.block_may_fallthru (stmt
);
12661 /* True if we are using EH to handle cleanups. */
12662 static bool using_eh_for_cleanups_flag
= false;
12664 /* This routine is called from front ends to indicate eh should be used for
12667 using_eh_for_cleanups (void)
12669 using_eh_for_cleanups_flag
= true;
12672 /* Query whether EH is used for cleanups. */
12674 using_eh_for_cleanups_p (void)
12676 return using_eh_for_cleanups_flag
;
12679 /* Wrapper for tree_code_name to ensure that tree code is valid */
12681 get_tree_code_name (enum tree_code code
)
12683 const char *invalid
= "<invalid tree code>";
12685 if (code
>= MAX_TREE_CODES
)
12688 return tree_code_name
[code
];
12691 /* Drops the TREE_OVERFLOW flag from T. */
12694 drop_tree_overflow (tree t
)
12696 gcc_checking_assert (TREE_OVERFLOW (t
));
12698 /* For tree codes with a sharing machinery re-build the result. */
12699 if (poly_int_tree_p (t
))
12700 return wide_int_to_tree (TREE_TYPE (t
), wi::to_poly_wide (t
));
12702 /* For VECTOR_CST, remove the overflow bits from the encoded elements
12703 and canonicalize the result. */
12704 if (TREE_CODE (t
) == VECTOR_CST
)
12706 tree_vector_builder builder
;
12707 builder
.new_unary_operation (TREE_TYPE (t
), t
, true);
12708 unsigned int count
= builder
.encoded_nelts ();
12709 for (unsigned int i
= 0; i
< count
; ++i
)
12711 tree elt
= VECTOR_CST_ELT (t
, i
);
12712 if (TREE_OVERFLOW (elt
))
12713 elt
= drop_tree_overflow (elt
);
12714 builder
.quick_push (elt
);
12716 return builder
.build ();
12719 /* Otherwise, as all tcc_constants are possibly shared, copy the node
12720 and drop the flag. */
12722 TREE_OVERFLOW (t
) = 0;
12724 /* For constants that contain nested constants, drop the flag
12725 from those as well. */
12726 if (TREE_CODE (t
) == COMPLEX_CST
)
12728 if (TREE_OVERFLOW (TREE_REALPART (t
)))
12729 TREE_REALPART (t
) = drop_tree_overflow (TREE_REALPART (t
));
12730 if (TREE_OVERFLOW (TREE_IMAGPART (t
)))
12731 TREE_IMAGPART (t
) = drop_tree_overflow (TREE_IMAGPART (t
));
12737 /* Given a memory reference expression T, return its base address.
12738 The base address of a memory reference expression is the main
12739 object being referenced. For instance, the base address for
12740 'array[i].fld[j]' is 'array'. You can think of this as stripping
12741 away the offset part from a memory address.
12743 This function calls handled_component_p to strip away all the inner
12744 parts of the memory reference until it reaches the base object. */
12747 get_base_address (tree t
)
12749 while (handled_component_p (t
))
12750 t
= TREE_OPERAND (t
, 0);
12752 if ((TREE_CODE (t
) == MEM_REF
12753 || TREE_CODE (t
) == TARGET_MEM_REF
)
12754 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
)
12755 t
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
12757 /* ??? Either the alias oracle or all callers need to properly deal
12758 with WITH_SIZE_EXPRs before we can look through those. */
12759 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
12765 /* Return a tree of sizetype representing the size, in bytes, of the element
12766 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12769 array_ref_element_size (tree exp
)
12771 tree aligned_size
= TREE_OPERAND (exp
, 3);
12772 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
12773 location_t loc
= EXPR_LOCATION (exp
);
12775 /* If a size was specified in the ARRAY_REF, it's the size measured
12776 in alignment units of the element type. So multiply by that value. */
12779 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12780 sizetype from another type of the same width and signedness. */
12781 if (TREE_TYPE (aligned_size
) != sizetype
)
12782 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
12783 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
12784 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
12787 /* Otherwise, take the size from that of the element type. Substitute
12788 any PLACEHOLDER_EXPR that we have. */
12790 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
12793 /* Return a tree representing the lower bound of the array mentioned in
12794 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12797 array_ref_low_bound (tree exp
)
12799 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
12801 /* If a lower bound is specified in EXP, use it. */
12802 if (TREE_OPERAND (exp
, 2))
12803 return TREE_OPERAND (exp
, 2);
12805 /* Otherwise, if there is a domain type and it has a lower bound, use it,
12806 substituting for a PLACEHOLDER_EXPR as needed. */
12807 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
12808 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
12810 /* Otherwise, return a zero of the appropriate type. */
12811 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
12814 /* Return a tree representing the upper bound of the array mentioned in
12815 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
12818 array_ref_up_bound (tree exp
)
12820 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
12822 /* If there is a domain type and it has an upper bound, use it, substituting
12823 for a PLACEHOLDER_EXPR as needed. */
12824 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
12825 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
12827 /* Otherwise fail. */
12831 /* Returns true if REF is an array reference or a component reference
12832 to an array at the end of a structure.
12833 If this is the case, the array may be allocated larger
12834 than its upper bound implies. */
12837 array_at_struct_end_p (tree ref
)
12841 if (TREE_CODE (ref
) == ARRAY_REF
12842 || TREE_CODE (ref
) == ARRAY_RANGE_REF
)
12844 atype
= TREE_TYPE (TREE_OPERAND (ref
, 0));
12845 ref
= TREE_OPERAND (ref
, 0);
12847 else if (TREE_CODE (ref
) == COMPONENT_REF
12848 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 1))) == ARRAY_TYPE
)
12849 atype
= TREE_TYPE (TREE_OPERAND (ref
, 1));
12853 if (TREE_CODE (ref
) == STRING_CST
)
12856 tree ref_to_array
= ref
;
12857 while (handled_component_p (ref
))
12859 /* If the reference chain contains a component reference to a
12860 non-union type and there follows another field the reference
12861 is not at the end of a structure. */
12862 if (TREE_CODE (ref
) == COMPONENT_REF
)
12864 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
12866 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
12867 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
12868 nextf
= DECL_CHAIN (nextf
);
12873 /* If we have a multi-dimensional array we do not consider
12874 a non-innermost dimension as flex array if the whole
12875 multi-dimensional array is at struct end.
12876 Same for an array of aggregates with a trailing array
12878 else if (TREE_CODE (ref
) == ARRAY_REF
)
12880 else if (TREE_CODE (ref
) == ARRAY_RANGE_REF
)
12882 /* If we view an underlying object as sth else then what we
12883 gathered up to now is what we have to rely on. */
12884 else if (TREE_CODE (ref
) == VIEW_CONVERT_EXPR
)
12887 gcc_unreachable ();
12889 ref
= TREE_OPERAND (ref
, 0);
12892 /* The array now is at struct end. Treat flexible arrays as
12893 always subject to extend, even into just padding constrained by
12894 an underlying decl. */
12895 if (! TYPE_SIZE (atype
)
12896 || ! TYPE_DOMAIN (atype
)
12897 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype
)))
12900 if (TREE_CODE (ref
) == MEM_REF
12901 && TREE_CODE (TREE_OPERAND (ref
, 0)) == ADDR_EXPR
)
12902 ref
= TREE_OPERAND (TREE_OPERAND (ref
, 0), 0);
12904 /* If the reference is based on a declared entity, the size of the array
12905 is constrained by its given domain. (Do not trust commons PR/69368). */
12907 && !(flag_unconstrained_commons
12908 && VAR_P (ref
) && DECL_COMMON (ref
))
12909 && DECL_SIZE_UNIT (ref
)
12910 && TREE_CODE (DECL_SIZE_UNIT (ref
)) == INTEGER_CST
)
12912 /* Check whether the array domain covers all of the available
12915 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype
))) != INTEGER_CST
12916 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype
))) != INTEGER_CST
12917 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype
))) != INTEGER_CST
)
12919 if (! get_addr_base_and_unit_offset (ref_to_array
, &offset
))
12922 /* If at least one extra element fits it is a flexarray. */
12923 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype
)))
12924 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype
)))
12926 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype
))),
12927 wi::to_offset (DECL_SIZE_UNIT (ref
)) - offset
))
12936 /* Return a tree representing the offset, in bytes, of the field referenced
12937 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
12940 component_ref_field_offset (tree exp
)
12942 tree aligned_offset
= TREE_OPERAND (exp
, 2);
12943 tree field
= TREE_OPERAND (exp
, 1);
12944 location_t loc
= EXPR_LOCATION (exp
);
12946 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
12947 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
12949 if (aligned_offset
)
12951 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
12952 sizetype from another type of the same width and signedness. */
12953 if (TREE_TYPE (aligned_offset
) != sizetype
)
12954 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
12955 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
12956 size_int (DECL_OFFSET_ALIGN (field
)
12960 /* Otherwise, take the offset from that of the field. Substitute
12961 any PLACEHOLDER_EXPR that we have. */
12963 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
12966 /* Return the machine mode of T. For vectors, returns the mode of the
12967 inner type. The main use case is to feed the result to HONOR_NANS,
12968 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
12971 element_mode (const_tree t
)
12975 if (VECTOR_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
12977 return TYPE_MODE (t
);
12980 /* Vector types need to re-check the target flags each time we report
12981 the machine mode. We need to do this because attribute target can
12982 change the result of vector_mode_supported_p and have_regs_of_mode
12983 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
12984 change on a per-function basis. */
12985 /* ??? Possibly a better solution is to run through all the types
12986 referenced by a function and re-compute the TYPE_MODE once, rather
12987 than make the TYPE_MODE macro call a function. */
12990 vector_type_mode (const_tree t
)
12994 gcc_assert (TREE_CODE (t
) == VECTOR_TYPE
);
12996 mode
= t
->type_common
.mode
;
12997 if (VECTOR_MODE_P (mode
)
12998 && (!targetm
.vector_mode_supported_p (mode
)
12999 || !have_regs_of_mode
[mode
]))
13001 scalar_int_mode innermode
;
13003 /* For integers, try mapping it to a same-sized scalar mode. */
13004 if (is_int_mode (TREE_TYPE (t
)->type_common
.mode
, &innermode
))
13006 poly_int64 size
= (TYPE_VECTOR_SUBPARTS (t
)
13007 * GET_MODE_BITSIZE (innermode
));
13008 scalar_int_mode mode
;
13009 if (int_mode_for_size (size
, 0).exists (&mode
)
13010 && have_regs_of_mode
[mode
])
13020 /* Verify that basic properties of T match TV and thus T can be a variant of
13021 TV. TV should be the more specified variant (i.e. the main variant). */
13024 verify_type_variant (const_tree t
, tree tv
)
13026 /* Type variant can differ by:
13028 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
13029 ENCODE_QUAL_ADDR_SPACE.
13030 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
13031 in this case some values may not be set in the variant types
13032 (see TYPE_COMPLETE_P checks).
13033 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
13034 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
13035 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
13036 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
13037 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
13038 this is necessary to make it possible to merge types form different TUs
13039 - arrays, pointers and references may have TREE_TYPE that is a variant
13040 of TREE_TYPE of their main variants.
13041 - aggregates may have new TYPE_FIELDS list that list variants of
13042 the main variant TYPE_FIELDS.
13043 - vector types may differ by TYPE_VECTOR_OPAQUE
13046 /* Convenience macro for matching individual fields. */
13047 #define verify_variant_match(flag) \
13049 if (flag (tv) != flag (t)) \
13051 error ("type variant differs by " #flag "."); \
13057 /* tree_base checks. */
13059 verify_variant_match (TREE_CODE
);
13060 /* FIXME: Ada builds non-artificial variants of artificial types. */
13061 if (TYPE_ARTIFICIAL (tv
) && 0)
13062 verify_variant_match (TYPE_ARTIFICIAL
);
13063 if (POINTER_TYPE_P (tv
))
13064 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL
);
13065 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
13066 verify_variant_match (TYPE_UNSIGNED
);
13067 verify_variant_match (TYPE_PACKED
);
13068 if (TREE_CODE (t
) == REFERENCE_TYPE
)
13069 verify_variant_match (TYPE_REF_IS_RVALUE
);
13070 if (AGGREGATE_TYPE_P (t
))
13071 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER
);
13073 verify_variant_match (TYPE_SATURATING
);
13074 /* FIXME: This check trigger during libstdc++ build. */
13075 if (RECORD_OR_UNION_TYPE_P (t
) && COMPLETE_TYPE_P (t
) && 0)
13076 verify_variant_match (TYPE_FINAL_P
);
13078 /* tree_type_common checks. */
13080 if (COMPLETE_TYPE_P (t
))
13082 verify_variant_match (TYPE_MODE
);
13083 if (TREE_CODE (TYPE_SIZE (t
)) != PLACEHOLDER_EXPR
13084 && TREE_CODE (TYPE_SIZE (tv
)) != PLACEHOLDER_EXPR
)
13085 verify_variant_match (TYPE_SIZE
);
13086 if (TREE_CODE (TYPE_SIZE_UNIT (t
)) != PLACEHOLDER_EXPR
13087 && TREE_CODE (TYPE_SIZE_UNIT (tv
)) != PLACEHOLDER_EXPR
13088 && TYPE_SIZE_UNIT (t
) != TYPE_SIZE_UNIT (tv
))
13090 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t
),
13091 TYPE_SIZE_UNIT (tv
), 0));
13092 error ("type variant has different TYPE_SIZE_UNIT");
13094 error ("type variant's TYPE_SIZE_UNIT");
13095 debug_tree (TYPE_SIZE_UNIT (tv
));
13096 error ("type's TYPE_SIZE_UNIT");
13097 debug_tree (TYPE_SIZE_UNIT (t
));
13101 verify_variant_match (TYPE_PRECISION
);
13102 verify_variant_match (TYPE_NEEDS_CONSTRUCTING
);
13103 if (RECORD_OR_UNION_TYPE_P (t
))
13104 verify_variant_match (TYPE_TRANSPARENT_AGGR
);
13105 else if (TREE_CODE (t
) == ARRAY_TYPE
)
13106 verify_variant_match (TYPE_NONALIASED_COMPONENT
);
13107 /* During LTO we merge variant lists from diferent translation units
13108 that may differ BY TYPE_CONTEXT that in turn may point
13109 to TRANSLATION_UNIT_DECL.
13110 Ada also builds variants of types with different TYPE_CONTEXT. */
13111 if ((!in_lto_p
|| !TYPE_FILE_SCOPE_P (t
)) && 0)
13112 verify_variant_match (TYPE_CONTEXT
);
13113 verify_variant_match (TYPE_STRING_FLAG
);
13114 if (TYPE_ALIAS_SET_KNOWN_P (t
))
13116 error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
13121 /* tree_type_non_common checks. */
13123 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13124 and dangle the pointer from time to time. */
13125 if (RECORD_OR_UNION_TYPE_P (t
) && TYPE_VFIELD (t
) != TYPE_VFIELD (tv
)
13126 && (in_lto_p
|| !TYPE_VFIELD (tv
)
13127 || TREE_CODE (TYPE_VFIELD (tv
)) != TREE_LIST
))
13129 error ("type variant has different TYPE_VFIELD");
13133 if ((TREE_CODE (t
) == ENUMERAL_TYPE
&& COMPLETE_TYPE_P (t
))
13134 || TREE_CODE (t
) == INTEGER_TYPE
13135 || TREE_CODE (t
) == BOOLEAN_TYPE
13136 || TREE_CODE (t
) == REAL_TYPE
13137 || TREE_CODE (t
) == FIXED_POINT_TYPE
)
13139 verify_variant_match (TYPE_MAX_VALUE
);
13140 verify_variant_match (TYPE_MIN_VALUE
);
13142 if (TREE_CODE (t
) == METHOD_TYPE
)
13143 verify_variant_match (TYPE_METHOD_BASETYPE
);
13144 if (TREE_CODE (t
) == OFFSET_TYPE
)
13145 verify_variant_match (TYPE_OFFSET_BASETYPE
);
13146 if (TREE_CODE (t
) == ARRAY_TYPE
)
13147 verify_variant_match (TYPE_ARRAY_MAX_SIZE
);
13148 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
13149 or even type's main variant. This is needed to make bootstrap pass
13150 and the bug seems new in GCC 5.
13151 C++ FE should be updated to make this consistent and we should check
13152 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
13153 is a match with main variant.
13155 Also disable the check for Java for now because of parser hack that builds
13156 first an dummy BINFO and then sometimes replace it by real BINFO in some
13158 if (RECORD_OR_UNION_TYPE_P (t
) && TYPE_BINFO (t
) && TYPE_BINFO (tv
)
13159 && TYPE_BINFO (t
) != TYPE_BINFO (tv
)
13160 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
13161 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
13162 at LTO time only. */
13163 && (in_lto_p
&& odr_type_p (t
)))
13165 error ("type variant has different TYPE_BINFO");
13167 error ("type variant's TYPE_BINFO");
13168 debug_tree (TYPE_BINFO (tv
));
13169 error ("type's TYPE_BINFO");
13170 debug_tree (TYPE_BINFO (t
));
13174 /* Check various uses of TYPE_VALUES_RAW. */
13175 if (TREE_CODE (t
) == ENUMERAL_TYPE
)
13176 verify_variant_match (TYPE_VALUES
);
13177 else if (TREE_CODE (t
) == ARRAY_TYPE
)
13178 verify_variant_match (TYPE_DOMAIN
);
13179 /* Permit incomplete variants of complete type. While FEs may complete
13180 all variants, this does not happen for C++ templates in all cases. */
13181 else if (RECORD_OR_UNION_TYPE_P (t
)
13182 && COMPLETE_TYPE_P (t
)
13183 && TYPE_FIELDS (t
) != TYPE_FIELDS (tv
))
13187 /* Fortran builds qualified variants as new records with items of
13188 qualified type. Verify that they looks same. */
13189 for (f1
= TYPE_FIELDS (t
), f2
= TYPE_FIELDS (tv
);
13191 f1
= TREE_CHAIN (f1
), f2
= TREE_CHAIN (f2
))
13192 if (TREE_CODE (f1
) != FIELD_DECL
|| TREE_CODE (f2
) != FIELD_DECL
13193 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1
))
13194 != TYPE_MAIN_VARIANT (TREE_TYPE (f2
))
13195 /* FIXME: gfc_nonrestricted_type builds all types as variants
13196 with exception of pointer types. It deeply copies the type
13197 which means that we may end up with a variant type
13198 referring non-variant pointer. We may change it to
13199 produce types as variants, too, like
13200 objc_get_protocol_qualified_type does. */
13201 && !POINTER_TYPE_P (TREE_TYPE (f1
)))
13202 || DECL_FIELD_OFFSET (f1
) != DECL_FIELD_OFFSET (f2
)
13203 || DECL_FIELD_BIT_OFFSET (f1
) != DECL_FIELD_BIT_OFFSET (f2
))
13207 error ("type variant has different TYPE_FIELDS");
13209 error ("first mismatch is field");
13211 error ("and field");
13216 else if ((TREE_CODE (t
) == FUNCTION_TYPE
|| TREE_CODE (t
) == METHOD_TYPE
))
13217 verify_variant_match (TYPE_ARG_TYPES
);
13218 /* For C++ the qualified variant of array type is really an array type
13219 of qualified TREE_TYPE.
13220 objc builds variants of pointer where pointer to type is a variant, too
13221 in objc_get_protocol_qualified_type. */
13222 if (TREE_TYPE (t
) != TREE_TYPE (tv
)
13223 && ((TREE_CODE (t
) != ARRAY_TYPE
13224 && !POINTER_TYPE_P (t
))
13225 || TYPE_MAIN_VARIANT (TREE_TYPE (t
))
13226 != TYPE_MAIN_VARIANT (TREE_TYPE (tv
))))
13228 error ("type variant has different TREE_TYPE");
13230 error ("type variant's TREE_TYPE");
13231 debug_tree (TREE_TYPE (tv
));
13232 error ("type's TREE_TYPE");
13233 debug_tree (TREE_TYPE (t
));
13236 if (type_with_alias_set_p (t
)
13237 && !gimple_canonical_types_compatible_p (t
, tv
, false))
13239 error ("type is not compatible with its variant");
13241 error ("type variant's TREE_TYPE");
13242 debug_tree (TREE_TYPE (tv
));
13243 error ("type's TREE_TYPE");
13244 debug_tree (TREE_TYPE (t
));
13248 #undef verify_variant_match
13252 /* The TYPE_CANONICAL merging machinery. It should closely resemble
13253 the middle-end types_compatible_p function. It needs to avoid
13254 claiming types are different for types that should be treated
13255 the same with respect to TBAA. Canonical types are also used
13256 for IL consistency checks via the useless_type_conversion_p
13257 predicate which does not handle all type kinds itself but falls
13258 back to pointer-comparison of TYPE_CANONICAL for aggregates
13261 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
13262 type calculation because we need to allow inter-operability between signed
13263 and unsigned variants. */
13266 type_with_interoperable_signedness (const_tree type
)
13268 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
13269 signed char and unsigned char. Similarly fortran FE builds
13270 C_SIZE_T as signed type, while C defines it unsigned. */
13272 return tree_code_for_canonical_type_merging (TREE_CODE (type
))
13274 && (TYPE_PRECISION (type
) == TYPE_PRECISION (signed_char_type_node
)
13275 || TYPE_PRECISION (type
) == TYPE_PRECISION (size_type_node
));
13278 /* Return true iff T1 and T2 are structurally identical for what
13280 This function is used both by lto.c canonical type merging and by the
13281 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
13282 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
13283 only for LTO because only in these cases TYPE_CANONICAL equivalence
13284 correspond to one defined by gimple_canonical_types_compatible_p. */
13287 gimple_canonical_types_compatible_p (const_tree t1
, const_tree t2
,
13288 bool trust_type_canonical
)
13290 /* Type variants should be same as the main variant. When not doing sanity
13291 checking to verify this fact, go to main variants and save some work. */
13292 if (trust_type_canonical
)
13294 t1
= TYPE_MAIN_VARIANT (t1
);
13295 t2
= TYPE_MAIN_VARIANT (t2
);
13298 /* Check first for the obvious case of pointer identity. */
13302 /* Check that we have two types to compare. */
13303 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
13306 /* We consider complete types always compatible with incomplete type.
13307 This does not make sense for canonical type calculation and thus we
13308 need to ensure that we are never called on it.
13310 FIXME: For more correctness the function probably should have three modes
13311 1) mode assuming that types are complete mathcing their structure
13312 2) mode allowing incomplete types but producing equivalence classes
13313 and thus ignoring all info from complete types
13314 3) mode allowing incomplete types to match complete but checking
13315 compatibility between complete types.
13317 1 and 2 can be used for canonical type calculation. 3 is the real
13318 definition of type compatibility that can be used i.e. for warnings during
13319 declaration merging. */
13321 gcc_assert (!trust_type_canonical
13322 || (type_with_alias_set_p (t1
) && type_with_alias_set_p (t2
)));
13323 /* If the types have been previously registered and found equal
13326 if (TYPE_CANONICAL (t1
) && TYPE_CANONICAL (t2
)
13327 && trust_type_canonical
)
13329 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
13330 they are always NULL, but they are set to non-NULL for types
13331 constructed by build_pointer_type and variants. In this case the
13332 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
13333 all pointers are considered equal. Be sure to not return false
13335 gcc_checking_assert (canonical_type_used_p (t1
)
13336 && canonical_type_used_p (t2
));
13337 return TYPE_CANONICAL (t1
) == TYPE_CANONICAL (t2
);
13340 /* Can't be the same type if the types don't have the same code. */
13341 enum tree_code code
= tree_code_for_canonical_type_merging (TREE_CODE (t1
));
13342 if (code
!= tree_code_for_canonical_type_merging (TREE_CODE (t2
)))
13345 /* Qualifiers do not matter for canonical type comparison purposes. */
13347 /* Void types and nullptr types are always the same. */
13348 if (TREE_CODE (t1
) == VOID_TYPE
13349 || TREE_CODE (t1
) == NULLPTR_TYPE
)
13352 /* Can't be the same type if they have different mode. */
13353 if (TYPE_MODE (t1
) != TYPE_MODE (t2
))
13356 /* Non-aggregate types can be handled cheaply. */
13357 if (INTEGRAL_TYPE_P (t1
)
13358 || SCALAR_FLOAT_TYPE_P (t1
)
13359 || FIXED_POINT_TYPE_P (t1
)
13360 || TREE_CODE (t1
) == VECTOR_TYPE
13361 || TREE_CODE (t1
) == COMPLEX_TYPE
13362 || TREE_CODE (t1
) == OFFSET_TYPE
13363 || POINTER_TYPE_P (t1
))
13365 /* Can't be the same type if they have different recision. */
13366 if (TYPE_PRECISION (t1
) != TYPE_PRECISION (t2
))
13369 /* In some cases the signed and unsigned types are required to be
13371 if (TYPE_UNSIGNED (t1
) != TYPE_UNSIGNED (t2
)
13372 && !type_with_interoperable_signedness (t1
))
13375 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
13376 interoperable with "signed char". Unless all frontends are revisited
13377 to agree on these types, we must ignore the flag completely. */
13379 /* Fortran standard define C_PTR type that is compatible with every
13380 C pointer. For this reason we need to glob all pointers into one.
13381 Still pointers in different address spaces are not compatible. */
13382 if (POINTER_TYPE_P (t1
))
13384 if (TYPE_ADDR_SPACE (TREE_TYPE (t1
))
13385 != TYPE_ADDR_SPACE (TREE_TYPE (t2
)))
13389 /* Tail-recurse to components. */
13390 if (TREE_CODE (t1
) == VECTOR_TYPE
13391 || TREE_CODE (t1
) == COMPLEX_TYPE
)
13392 return gimple_canonical_types_compatible_p (TREE_TYPE (t1
),
13394 trust_type_canonical
);
13399 /* Do type-specific comparisons. */
13400 switch (TREE_CODE (t1
))
13403 /* Array types are the same if the element types are the same and
13404 the number of elements are the same. */
13405 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1
), TREE_TYPE (t2
),
13406 trust_type_canonical
)
13407 || TYPE_STRING_FLAG (t1
) != TYPE_STRING_FLAG (t2
)
13408 || TYPE_REVERSE_STORAGE_ORDER (t1
) != TYPE_REVERSE_STORAGE_ORDER (t2
)
13409 || TYPE_NONALIASED_COMPONENT (t1
) != TYPE_NONALIASED_COMPONENT (t2
))
13413 tree i1
= TYPE_DOMAIN (t1
);
13414 tree i2
= TYPE_DOMAIN (t2
);
13416 /* For an incomplete external array, the type domain can be
13417 NULL_TREE. Check this condition also. */
13418 if (i1
== NULL_TREE
&& i2
== NULL_TREE
)
13420 else if (i1
== NULL_TREE
|| i2
== NULL_TREE
)
13424 tree min1
= TYPE_MIN_VALUE (i1
);
13425 tree min2
= TYPE_MIN_VALUE (i2
);
13426 tree max1
= TYPE_MAX_VALUE (i1
);
13427 tree max2
= TYPE_MAX_VALUE (i2
);
13429 /* The minimum/maximum values have to be the same. */
13432 && ((TREE_CODE (min1
) == PLACEHOLDER_EXPR
13433 && TREE_CODE (min2
) == PLACEHOLDER_EXPR
)
13434 || operand_equal_p (min1
, min2
, 0))))
13437 && ((TREE_CODE (max1
) == PLACEHOLDER_EXPR
13438 && TREE_CODE (max2
) == PLACEHOLDER_EXPR
)
13439 || operand_equal_p (max1
, max2
, 0)))))
13447 case FUNCTION_TYPE
:
13448 /* Function types are the same if the return type and arguments types
13450 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1
), TREE_TYPE (t2
),
13451 trust_type_canonical
))
13454 if (TYPE_ARG_TYPES (t1
) == TYPE_ARG_TYPES (t2
))
13458 tree parms1
, parms2
;
13460 for (parms1
= TYPE_ARG_TYPES (t1
), parms2
= TYPE_ARG_TYPES (t2
);
13462 parms1
= TREE_CHAIN (parms1
), parms2
= TREE_CHAIN (parms2
))
13464 if (!gimple_canonical_types_compatible_p
13465 (TREE_VALUE (parms1
), TREE_VALUE (parms2
),
13466 trust_type_canonical
))
13470 if (parms1
|| parms2
)
13478 case QUAL_UNION_TYPE
:
13482 /* Don't try to compare variants of an incomplete type, before
13483 TYPE_FIELDS has been copied around. */
13484 if (!COMPLETE_TYPE_P (t1
) && !COMPLETE_TYPE_P (t2
))
13488 if (TYPE_REVERSE_STORAGE_ORDER (t1
) != TYPE_REVERSE_STORAGE_ORDER (t2
))
13491 /* For aggregate types, all the fields must be the same. */
13492 for (f1
= TYPE_FIELDS (t1
), f2
= TYPE_FIELDS (t2
);
13494 f1
= TREE_CHAIN (f1
), f2
= TREE_CHAIN (f2
))
13496 /* Skip non-fields and zero-sized fields. */
13497 while (f1
&& (TREE_CODE (f1
) != FIELD_DECL
13499 && integer_zerop (DECL_SIZE (f1
)))))
13500 f1
= TREE_CHAIN (f1
);
13501 while (f2
&& (TREE_CODE (f2
) != FIELD_DECL
13503 && integer_zerop (DECL_SIZE (f2
)))))
13504 f2
= TREE_CHAIN (f2
);
13507 /* The fields must have the same name, offset and type. */
13508 if (DECL_NONADDRESSABLE_P (f1
) != DECL_NONADDRESSABLE_P (f2
)
13509 || !gimple_compare_field_offset (f1
, f2
)
13510 || !gimple_canonical_types_compatible_p
13511 (TREE_TYPE (f1
), TREE_TYPE (f2
),
13512 trust_type_canonical
))
13516 /* If one aggregate has more fields than the other, they
13517 are not the same. */
13525 /* Consider all types with language specific trees in them mutually
13526 compatible. This is executed only from verify_type and false
13527 positives can be tolerated. */
13528 gcc_assert (!in_lto_p
);
13533 /* Verify type T. */
13536 verify_type (const_tree t
)
13538 bool error_found
= false;
13539 tree mv
= TYPE_MAIN_VARIANT (t
);
13542 error ("Main variant is not defined");
13543 error_found
= true;
13545 else if (mv
!= TYPE_MAIN_VARIANT (mv
))
13547 error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
13549 error_found
= true;
13551 else if (t
!= mv
&& !verify_type_variant (t
, mv
))
13552 error_found
= true;
13554 tree ct
= TYPE_CANONICAL (t
);
13557 else if (TYPE_CANONICAL (t
) != ct
)
13559 error ("TYPE_CANONICAL has different TYPE_CANONICAL");
13561 error_found
= true;
13563 /* Method and function types can not be used to address memory and thus
13564 TYPE_CANONICAL really matters only for determining useless conversions.
13566 FIXME: C++ FE produce declarations of builtin functions that are not
13567 compatible with main variants. */
13568 else if (TREE_CODE (t
) == FUNCTION_TYPE
)
13571 /* FIXME: gimple_canonical_types_compatible_p can not compare types
13572 with variably sized arrays because their sizes possibly
13573 gimplified to different variables. */
13574 && !variably_modified_type_p (ct
, NULL
)
13575 && !gimple_canonical_types_compatible_p (t
, ct
, false))
13577 error ("TYPE_CANONICAL is not compatible");
13579 error_found
= true;
13582 if (COMPLETE_TYPE_P (t
) && TYPE_CANONICAL (t
)
13583 && TYPE_MODE (t
) != TYPE_MODE (TYPE_CANONICAL (t
)))
13585 error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
13587 error_found
= true;
13589 if (TYPE_MAIN_VARIANT (t
) == t
&& ct
&& TYPE_MAIN_VARIANT (ct
) != ct
)
13591 error ("TYPE_CANONICAL of main variant is not main variant");
13593 debug_tree (TYPE_MAIN_VARIANT (ct
));
13594 error_found
= true;
13598 /* Check various uses of TYPE_MIN_VALUE_RAW. */
13599 if (RECORD_OR_UNION_TYPE_P (t
))
13601 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
13602 and danagle the pointer from time to time. */
13603 if (TYPE_VFIELD (t
)
13604 && TREE_CODE (TYPE_VFIELD (t
)) != FIELD_DECL
13605 && TREE_CODE (TYPE_VFIELD (t
)) != TREE_LIST
)
13607 error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
13608 debug_tree (TYPE_VFIELD (t
));
13609 error_found
= true;
13612 else if (TREE_CODE (t
) == POINTER_TYPE
)
13614 if (TYPE_NEXT_PTR_TO (t
)
13615 && TREE_CODE (TYPE_NEXT_PTR_TO (t
)) != POINTER_TYPE
)
13617 error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
13618 debug_tree (TYPE_NEXT_PTR_TO (t
));
13619 error_found
= true;
13622 else if (TREE_CODE (t
) == REFERENCE_TYPE
)
13624 if (TYPE_NEXT_REF_TO (t
)
13625 && TREE_CODE (TYPE_NEXT_REF_TO (t
)) != REFERENCE_TYPE
)
13627 error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
13628 debug_tree (TYPE_NEXT_REF_TO (t
));
13629 error_found
= true;
13632 else if (INTEGRAL_TYPE_P (t
) || TREE_CODE (t
) == REAL_TYPE
13633 || TREE_CODE (t
) == FIXED_POINT_TYPE
)
13635 /* FIXME: The following check should pass:
13636 useless_type_conversion_p (const_cast <tree> (t),
13637 TREE_TYPE (TYPE_MIN_VALUE (t))
13638 but does not for C sizetypes in LTO. */
13641 /* Check various uses of TYPE_MAXVAL_RAW. */
13642 if (RECORD_OR_UNION_TYPE_P (t
))
13644 if (!TYPE_BINFO (t
))
13646 else if (TREE_CODE (TYPE_BINFO (t
)) != TREE_BINFO
)
13648 error ("TYPE_BINFO is not TREE_BINFO");
13649 debug_tree (TYPE_BINFO (t
));
13650 error_found
= true;
13652 else if (TREE_TYPE (TYPE_BINFO (t
)) != TYPE_MAIN_VARIANT (t
))
13654 error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
13655 debug_tree (TREE_TYPE (TYPE_BINFO (t
)));
13656 error_found
= true;
13659 else if (TREE_CODE (t
) == FUNCTION_TYPE
|| TREE_CODE (t
) == METHOD_TYPE
)
13661 if (TYPE_METHOD_BASETYPE (t
)
13662 && TREE_CODE (TYPE_METHOD_BASETYPE (t
)) != RECORD_TYPE
13663 && TREE_CODE (TYPE_METHOD_BASETYPE (t
)) != UNION_TYPE
)
13665 error ("TYPE_METHOD_BASETYPE is not record nor union");
13666 debug_tree (TYPE_METHOD_BASETYPE (t
));
13667 error_found
= true;
13670 else if (TREE_CODE (t
) == OFFSET_TYPE
)
13672 if (TYPE_OFFSET_BASETYPE (t
)
13673 && TREE_CODE (TYPE_OFFSET_BASETYPE (t
)) != RECORD_TYPE
13674 && TREE_CODE (TYPE_OFFSET_BASETYPE (t
)) != UNION_TYPE
)
13676 error ("TYPE_OFFSET_BASETYPE is not record nor union");
13677 debug_tree (TYPE_OFFSET_BASETYPE (t
));
13678 error_found
= true;
13681 else if (INTEGRAL_TYPE_P (t
) || TREE_CODE (t
) == REAL_TYPE
13682 || TREE_CODE (t
) == FIXED_POINT_TYPE
)
13684 /* FIXME: The following check should pass:
13685 useless_type_conversion_p (const_cast <tree> (t),
13686 TREE_TYPE (TYPE_MAX_VALUE (t))
13687 but does not for C sizetypes in LTO. */
13689 else if (TREE_CODE (t
) == ARRAY_TYPE
)
13691 if (TYPE_ARRAY_MAX_SIZE (t
)
13692 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t
)) != INTEGER_CST
)
13694 error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
13695 debug_tree (TYPE_ARRAY_MAX_SIZE (t
));
13696 error_found
= true;
13699 else if (TYPE_MAX_VALUE_RAW (t
))
13701 error ("TYPE_MAX_VALUE_RAW non-NULL");
13702 debug_tree (TYPE_MAX_VALUE_RAW (t
));
13703 error_found
= true;
13706 if (TYPE_LANG_SLOT_1 (t
) && in_lto_p
)
13708 error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
13709 debug_tree (TYPE_LANG_SLOT_1 (t
));
13710 error_found
= true;
13713 /* Check various uses of TYPE_VALUES_RAW. */
13714 if (TREE_CODE (t
) == ENUMERAL_TYPE
)
13715 for (tree l
= TYPE_VALUES (t
); l
; l
= TREE_CHAIN (l
))
13717 tree value
= TREE_VALUE (l
);
13718 tree name
= TREE_PURPOSE (l
);
13720 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
13721 CONST_DECL of ENUMERAL TYPE. */
13722 if (TREE_CODE (value
) != INTEGER_CST
&& TREE_CODE (value
) != CONST_DECL
)
13724 error ("Enum value is not CONST_DECL or INTEGER_CST");
13725 debug_tree (value
);
13727 error_found
= true;
13729 if (TREE_CODE (TREE_TYPE (value
)) != INTEGER_TYPE
13730 && !useless_type_conversion_p (const_cast <tree
> (t
), TREE_TYPE (value
)))
13732 error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
13733 debug_tree (value
);
13735 error_found
= true;
13737 if (TREE_CODE (name
) != IDENTIFIER_NODE
)
13739 error ("Enum value name is not IDENTIFIER_NODE");
13740 debug_tree (value
);
13742 error_found
= true;
13745 else if (TREE_CODE (t
) == ARRAY_TYPE
)
13747 if (TYPE_DOMAIN (t
) && TREE_CODE (TYPE_DOMAIN (t
)) != INTEGER_TYPE
)
13749 error ("Array TYPE_DOMAIN is not integer type");
13750 debug_tree (TYPE_DOMAIN (t
));
13751 error_found
= true;
13754 else if (RECORD_OR_UNION_TYPE_P (t
))
13756 if (TYPE_FIELDS (t
) && !COMPLETE_TYPE_P (t
) && in_lto_p
)
13758 error ("TYPE_FIELDS defined in incomplete type");
13759 error_found
= true;
13761 for (tree fld
= TYPE_FIELDS (t
); fld
; fld
= TREE_CHAIN (fld
))
13763 /* TODO: verify properties of decls. */
13764 if (TREE_CODE (fld
) == FIELD_DECL
)
13766 else if (TREE_CODE (fld
) == TYPE_DECL
)
13768 else if (TREE_CODE (fld
) == CONST_DECL
)
13770 else if (VAR_P (fld
))
13772 else if (TREE_CODE (fld
) == TEMPLATE_DECL
)
13774 else if (TREE_CODE (fld
) == USING_DECL
)
13776 else if (TREE_CODE (fld
) == FUNCTION_DECL
)
13780 error ("Wrong tree in TYPE_FIELDS list");
13782 error_found
= true;
13786 else if (TREE_CODE (t
) == INTEGER_TYPE
13787 || TREE_CODE (t
) == BOOLEAN_TYPE
13788 || TREE_CODE (t
) == OFFSET_TYPE
13789 || TREE_CODE (t
) == REFERENCE_TYPE
13790 || TREE_CODE (t
) == NULLPTR_TYPE
13791 || TREE_CODE (t
) == POINTER_TYPE
)
13793 if (TYPE_CACHED_VALUES_P (t
) != (TYPE_CACHED_VALUES (t
) != NULL
))
13795 error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
13796 TYPE_CACHED_VALUES_P (t
), (void *)TYPE_CACHED_VALUES (t
));
13797 error_found
= true;
13799 else if (TYPE_CACHED_VALUES_P (t
) && TREE_CODE (TYPE_CACHED_VALUES (t
)) != TREE_VEC
)
13801 error ("TYPE_CACHED_VALUES is not TREE_VEC");
13802 debug_tree (TYPE_CACHED_VALUES (t
));
13803 error_found
= true;
13805 /* Verify just enough of cache to ensure that no one copied it to new type.
13806 All copying should go by copy_node that should clear it. */
13807 else if (TYPE_CACHED_VALUES_P (t
))
13810 for (i
= 0; i
< TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t
)); i
++)
13811 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t
), i
)
13812 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t
), i
)) != t
)
13814 error ("wrong TYPE_CACHED_VALUES entry");
13815 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t
), i
));
13816 error_found
= true;
13821 else if (TREE_CODE (t
) == FUNCTION_TYPE
|| TREE_CODE (t
) == METHOD_TYPE
)
13822 for (tree l
= TYPE_ARG_TYPES (t
); l
; l
= TREE_CHAIN (l
))
13824 /* C++ FE uses TREE_PURPOSE to store initial values. */
13825 if (TREE_PURPOSE (l
) && in_lto_p
)
13827 error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
13829 error_found
= true;
13831 if (!TYPE_P (TREE_VALUE (l
)))
13833 error ("Wrong entry in TYPE_ARG_TYPES list");
13835 error_found
= true;
13838 else if (!is_lang_specific (t
) && TYPE_VALUES_RAW (t
))
13840 error ("TYPE_VALUES_RAW field is non-NULL");
13841 debug_tree (TYPE_VALUES_RAW (t
));
13842 error_found
= true;
13844 if (TREE_CODE (t
) != INTEGER_TYPE
13845 && TREE_CODE (t
) != BOOLEAN_TYPE
13846 && TREE_CODE (t
) != OFFSET_TYPE
13847 && TREE_CODE (t
) != REFERENCE_TYPE
13848 && TREE_CODE (t
) != NULLPTR_TYPE
13849 && TREE_CODE (t
) != POINTER_TYPE
13850 && TYPE_CACHED_VALUES_P (t
))
13852 error ("TYPE_CACHED_VALUES_P is set while it should not");
13853 error_found
= true;
13855 if (TYPE_STRING_FLAG (t
)
13856 && TREE_CODE (t
) != ARRAY_TYPE
&& TREE_CODE (t
) != INTEGER_TYPE
)
13858 error ("TYPE_STRING_FLAG is set on wrong type code");
13859 error_found
= true;
13862 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
13863 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
13865 if (TREE_CODE (t
) == METHOD_TYPE
13866 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t
)) != TYPE_METHOD_BASETYPE (t
))
13868 error ("TYPE_METHOD_BASETYPE is not main variant");
13869 error_found
= true;
13874 debug_tree (const_cast <tree
> (t
));
13875 internal_error ("verify_type failed");
13880 /* Return 1 if ARG interpreted as signed in its precision is known to be
13881 always positive or 2 if ARG is known to be always negative, or 3 if
13882 ARG may be positive or negative. */
13885 get_range_pos_neg (tree arg
)
13887 if (arg
== error_mark_node
)
13890 int prec
= TYPE_PRECISION (TREE_TYPE (arg
));
13892 if (TREE_CODE (arg
) == INTEGER_CST
)
13894 wide_int w
= wi::sext (wi::to_wide (arg
), prec
);
13900 while (CONVERT_EXPR_P (arg
)
13901 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg
, 0)))
13902 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg
, 0))) <= prec
)
13904 arg
= TREE_OPERAND (arg
, 0);
13905 /* Narrower value zero extended into wider type
13906 will always result in positive values. */
13907 if (TYPE_UNSIGNED (TREE_TYPE (arg
))
13908 && TYPE_PRECISION (TREE_TYPE (arg
)) < prec
)
13910 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
13915 if (TREE_CODE (arg
) != SSA_NAME
)
13917 wide_int arg_min
, arg_max
;
13918 while (get_range_info (arg
, &arg_min
, &arg_max
) != VR_RANGE
)
13920 gimple
*g
= SSA_NAME_DEF_STMT (arg
);
13921 if (is_gimple_assign (g
)
13922 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g
)))
13924 tree t
= gimple_assign_rhs1 (g
);
13925 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
13926 && TYPE_PRECISION (TREE_TYPE (t
)) <= prec
)
13928 if (TYPE_UNSIGNED (TREE_TYPE (t
))
13929 && TYPE_PRECISION (TREE_TYPE (t
)) < prec
)
13931 prec
= TYPE_PRECISION (TREE_TYPE (t
));
13940 if (TYPE_UNSIGNED (TREE_TYPE (arg
)))
13942 /* For unsigned values, the "positive" range comes
13943 below the "negative" range. */
13944 if (!wi::neg_p (wi::sext (arg_max
, prec
), SIGNED
))
13946 if (wi::neg_p (wi::sext (arg_min
, prec
), SIGNED
))
13951 if (!wi::neg_p (wi::sext (arg_min
, prec
), SIGNED
))
13953 if (wi::neg_p (wi::sext (arg_max
, prec
), SIGNED
))
13962 /* Return true if ARG is marked with the nonnull attribute in the
13963 current function signature. */
13966 nonnull_arg_p (const_tree arg
)
13968 tree t
, attrs
, fntype
;
13969 unsigned HOST_WIDE_INT arg_num
;
13971 gcc_assert (TREE_CODE (arg
) == PARM_DECL
13972 && (POINTER_TYPE_P (TREE_TYPE (arg
))
13973 || TREE_CODE (TREE_TYPE (arg
)) == OFFSET_TYPE
));
13975 /* The static chain decl is always non null. */
13976 if (arg
== cfun
->static_chain_decl
)
13979 /* THIS argument of method is always non-NULL. */
13980 if (TREE_CODE (TREE_TYPE (cfun
->decl
)) == METHOD_TYPE
13981 && arg
== DECL_ARGUMENTS (cfun
->decl
)
13982 && flag_delete_null_pointer_checks
)
13985 /* Values passed by reference are always non-NULL. */
13986 if (TREE_CODE (TREE_TYPE (arg
)) == REFERENCE_TYPE
13987 && flag_delete_null_pointer_checks
)
13990 fntype
= TREE_TYPE (cfun
->decl
);
13991 for (attrs
= TYPE_ATTRIBUTES (fntype
); attrs
; attrs
= TREE_CHAIN (attrs
))
13993 attrs
= lookup_attribute ("nonnull", attrs
);
13995 /* If "nonnull" wasn't specified, we know nothing about the argument. */
13996 if (attrs
== NULL_TREE
)
13999 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
14000 if (TREE_VALUE (attrs
) == NULL_TREE
)
14003 /* Get the position number for ARG in the function signature. */
14004 for (arg_num
= 1, t
= DECL_ARGUMENTS (cfun
->decl
);
14006 t
= DECL_CHAIN (t
), arg_num
++)
14012 gcc_assert (t
== arg
);
14014 /* Now see if ARG_NUM is mentioned in the nonnull list. */
14015 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
14017 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
14025 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
14029 set_block (location_t loc
, tree block
)
14031 location_t pure_loc
= get_pure_location (loc
);
14032 source_range src_range
= get_range_from_loc (line_table
, loc
);
14033 return COMBINE_LOCATION_DATA (line_table
, pure_loc
, src_range
, block
);
14037 set_source_range (tree expr
, location_t start
, location_t finish
)
14039 source_range src_range
;
14040 src_range
.m_start
= start
;
14041 src_range
.m_finish
= finish
;
14042 return set_source_range (expr
, src_range
);
14046 set_source_range (tree expr
, source_range src_range
)
14048 if (!EXPR_P (expr
))
14049 return UNKNOWN_LOCATION
;
14051 location_t pure_loc
= get_pure_location (EXPR_LOCATION (expr
));
14052 location_t adhoc
= COMBINE_LOCATION_DATA (line_table
,
14056 SET_EXPR_LOCATION (expr
, adhoc
);
14060 /* Return EXPR, potentially wrapped with a node expression LOC,
14061 if !CAN_HAVE_LOCATION_P (expr).
14063 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
14064 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
14066 Wrapper nodes can be identified using location_wrapper_p. */
14069 maybe_wrap_with_location (tree expr
, location_t loc
)
14073 if (loc
== UNKNOWN_LOCATION
)
14075 if (CAN_HAVE_LOCATION_P (expr
))
14077 /* We should only be adding wrappers for constants and for decls,
14078 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
14079 gcc_assert (CONSTANT_CLASS_P (expr
)
14081 || EXCEPTIONAL_CLASS_P (expr
));
14083 /* For now, don't add wrappers to exceptional tree nodes, to minimize
14084 any impact of the wrapper nodes. */
14085 if (EXCEPTIONAL_CLASS_P (expr
))
14089 = (((CONSTANT_CLASS_P (expr
) && TREE_CODE (expr
) != STRING_CST
)
14090 || (TREE_CODE (expr
) == CONST_DECL
&& !TREE_STATIC (expr
)))
14091 ? NON_LVALUE_EXPR
: VIEW_CONVERT_EXPR
);
14092 tree wrapper
= build1_loc (loc
, code
, TREE_TYPE (expr
), expr
);
14093 /* Mark this node as being a wrapper. */
14094 EXPR_LOCATION_WRAPPER_P (wrapper
) = 1;
14098 /* Return the name of combined function FN, for debugging purposes. */
14101 combined_fn_name (combined_fn fn
)
14103 if (builtin_fn_p (fn
))
14105 tree fndecl
= builtin_decl_explicit (as_builtin_fn (fn
));
14106 return IDENTIFIER_POINTER (DECL_NAME (fndecl
));
14109 return internal_fn_name (as_internal_fn (fn
));
14112 /* Return a bitmap with a bit set corresponding to each argument in
14113 a function call type FNTYPE declared with attribute nonnull,
14114 or null if none of the function's argument are nonnull. The caller
14115 must free the bitmap. */
14118 get_nonnull_args (const_tree fntype
)
14120 if (fntype
== NULL_TREE
)
14123 tree attrs
= TYPE_ATTRIBUTES (fntype
);
14127 bitmap argmap
= NULL
;
14129 /* A function declaration can specify multiple attribute nonnull,
14130 each with zero or more arguments. The loop below creates a bitmap
14131 representing a union of all the arguments. An empty (but non-null)
14132 bitmap means that all arguments have been declaraed nonnull. */
14133 for ( ; attrs
; attrs
= TREE_CHAIN (attrs
))
14135 attrs
= lookup_attribute ("nonnull", attrs
);
14140 argmap
= BITMAP_ALLOC (NULL
);
14142 if (!TREE_VALUE (attrs
))
14144 /* Clear the bitmap in case a previous attribute nonnull
14145 set it and this one overrides it for all arguments. */
14146 bitmap_clear (argmap
);
14150 /* Iterate over the indices of the format arguments declared nonnull
14151 and set a bit for each. */
14152 for (tree idx
= TREE_VALUE (attrs
); idx
; idx
= TREE_CHAIN (idx
))
14154 unsigned int val
= TREE_INT_CST_LOW (TREE_VALUE (idx
)) - 1;
14155 bitmap_set_bit (argmap
, val
);
14162 /* Returns true if TYPE is a type where it and all of its subobjects
14163 (recursively) are of structure, union, or array type. */
14166 default_is_empty_type (tree type
)
14168 if (RECORD_OR_UNION_TYPE_P (type
))
14170 for (tree field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
14171 if (TREE_CODE (field
) == FIELD_DECL
14172 && !DECL_PADDING_P (field
)
14173 && !default_is_empty_type (TREE_TYPE (field
)))
14177 else if (TREE_CODE (type
) == ARRAY_TYPE
)
14178 return (integer_minus_onep (array_type_nelts (type
))
14179 || TYPE_DOMAIN (type
) == NULL_TREE
14180 || default_is_empty_type (TREE_TYPE (type
)));
14184 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
14185 that shouldn't be passed via stack. */
14188 default_is_empty_record (const_tree type
)
14190 if (!abi_version_at_least (12))
14193 if (type
== error_mark_node
)
14196 if (TREE_ADDRESSABLE (type
))
14199 return default_is_empty_type (TYPE_MAIN_VARIANT (type
));
14202 /* Like int_size_in_bytes, but handle empty records specially. */
14205 arg_int_size_in_bytes (const_tree type
)
14207 return TYPE_EMPTY_P (type
) ? 0 : int_size_in_bytes (type
);
14210 /* Like size_in_bytes, but handle empty records specially. */
14213 arg_size_in_bytes (const_tree type
)
14215 return TYPE_EMPTY_P (type
) ? size_zero_node
: size_in_bytes (type
);
14218 /* Return true if an expression with CODE has to have the same result type as
14219 its first operand. */
14222 expr_type_first_operand_type_p (tree_code code
)
14235 case TRUNC_DIV_EXPR
:
14236 case CEIL_DIV_EXPR
:
14237 case FLOOR_DIV_EXPR
:
14238 case ROUND_DIV_EXPR
:
14239 case TRUNC_MOD_EXPR
:
14240 case CEIL_MOD_EXPR
:
14241 case FLOOR_MOD_EXPR
:
14242 case ROUND_MOD_EXPR
:
14244 case EXACT_DIV_EXPR
:
14262 /* List of pointer types used to declare builtins before we have seen their
14265 Keep the size up to date in tree.h ! */
14266 const builtin_structptr_type builtin_structptr_types
[6] =
14268 { fileptr_type_node
, ptr_type_node
, "FILE" },
14269 { const_tm_ptr_type_node
, const_ptr_type_node
, "tm" },
14270 { fenv_t_ptr_type_node
, ptr_type_node
, "fenv_t" },
14271 { const_fenv_t_ptr_type_node
, const_ptr_type_node
, "fenv_t" },
14272 { fexcept_t_ptr_type_node
, ptr_type_node
, "fexcept_t" },
14273 { const_fexcept_t_ptr_type_node
, const_ptr_type_node
, "fexcept_t" }
14278 namespace selftest
{
14280 /* Selftests for tree. */
14282 /* Verify that integer constants are sane. */
14285 test_integer_constants ()
14287 ASSERT_TRUE (integer_type_node
!= NULL
);
14288 ASSERT_TRUE (build_int_cst (integer_type_node
, 0) != NULL
);
14290 tree type
= integer_type_node
;
14292 tree zero
= build_zero_cst (type
);
14293 ASSERT_EQ (INTEGER_CST
, TREE_CODE (zero
));
14294 ASSERT_EQ (type
, TREE_TYPE (zero
));
14296 tree one
= build_int_cst (type
, 1);
14297 ASSERT_EQ (INTEGER_CST
, TREE_CODE (one
));
14298 ASSERT_EQ (type
, TREE_TYPE (zero
));
14301 /* Verify identifiers. */
14304 test_identifiers ()
14306 tree identifier
= get_identifier ("foo");
14307 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier
));
14308 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier
));
14311 /* Verify LABEL_DECL. */
14316 tree identifier
= get_identifier ("err");
14317 tree label_decl
= build_decl (UNKNOWN_LOCATION
, LABEL_DECL
,
14318 identifier
, void_type_node
);
14319 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl
));
14320 ASSERT_FALSE (FORCED_LABEL (label_decl
));
14323 /* Return a new VECTOR_CST node whose type is TYPE and whose values
14324 are given by VALS. */
14327 build_vector (tree type
, vec
<tree
> vals MEM_STAT_DECL
)
14329 gcc_assert (known_eq (vals
.length (), TYPE_VECTOR_SUBPARTS (type
)));
14330 tree_vector_builder
builder (type
, vals
.length (), 1);
14331 builder
.splice (vals
);
14332 return builder
.build ();
14335 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
14338 check_vector_cst (vec
<tree
> expected
, tree actual
)
14340 ASSERT_KNOWN_EQ (expected
.length (),
14341 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual
)));
14342 for (unsigned int i
= 0; i
< expected
.length (); ++i
)
14343 ASSERT_EQ (wi::to_wide (expected
[i
]),
14344 wi::to_wide (vector_cst_elt (actual
, i
)));
14347 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
14348 and that its elements match EXPECTED. */
14351 check_vector_cst_duplicate (vec
<tree
> expected
, tree actual
,
14352 unsigned int npatterns
)
14354 ASSERT_EQ (npatterns
, VECTOR_CST_NPATTERNS (actual
));
14355 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual
));
14356 ASSERT_EQ (npatterns
, vector_cst_encoded_nelts (actual
));
14357 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual
));
14358 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual
));
14359 check_vector_cst (expected
, actual
);
14362 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
14363 and NPATTERNS background elements, and that its elements match
14367 check_vector_cst_fill (vec
<tree
> expected
, tree actual
,
14368 unsigned int npatterns
)
14370 ASSERT_EQ (npatterns
, VECTOR_CST_NPATTERNS (actual
));
14371 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual
));
14372 ASSERT_EQ (2 * npatterns
, vector_cst_encoded_nelts (actual
));
14373 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual
));
14374 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual
));
14375 check_vector_cst (expected
, actual
);
14378 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
14379 and that its elements match EXPECTED. */
14382 check_vector_cst_stepped (vec
<tree
> expected
, tree actual
,
14383 unsigned int npatterns
)
14385 ASSERT_EQ (npatterns
, VECTOR_CST_NPATTERNS (actual
));
14386 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual
));
14387 ASSERT_EQ (3 * npatterns
, vector_cst_encoded_nelts (actual
));
14388 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual
));
14389 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual
));
14390 check_vector_cst (expected
, actual
);
14393 /* Test the creation of VECTOR_CSTs. */
14396 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO
)
14398 auto_vec
<tree
, 8> elements (8);
14399 elements
.quick_grow (8);
14400 tree element_type
= build_nonstandard_integer_type (16, true);
14401 tree vector_type
= build_vector_type (element_type
, 8);
14403 /* Test a simple linear series with a base of 0 and a step of 1:
14404 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
14405 for (unsigned int i
= 0; i
< 8; ++i
)
14406 elements
[i
] = build_int_cst (element_type
, i
);
14407 tree vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14408 check_vector_cst_stepped (elements
, vector
, 1);
14410 /* Try the same with the first element replaced by 100:
14411 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
14412 elements
[0] = build_int_cst (element_type
, 100);
14413 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14414 check_vector_cst_stepped (elements
, vector
, 1);
14416 /* Try a series that wraps around.
14417 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
14418 for (unsigned int i
= 1; i
< 8; ++i
)
14419 elements
[i
] = build_int_cst (element_type
, (65530 + i
) & 0xffff);
14420 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14421 check_vector_cst_stepped (elements
, vector
, 1);
14423 /* Try a downward series:
14424 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
14425 for (unsigned int i
= 1; i
< 8; ++i
)
14426 elements
[i
] = build_int_cst (element_type
, 80 - i
);
14427 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14428 check_vector_cst_stepped (elements
, vector
, 1);
14430 /* Try two interleaved series with different bases and steps:
14431 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
14432 elements
[1] = build_int_cst (element_type
, 53);
14433 for (unsigned int i
= 2; i
< 8; i
+= 2)
14435 elements
[i
] = build_int_cst (element_type
, 70 - i
* 2);
14436 elements
[i
+ 1] = build_int_cst (element_type
, 200 + i
* 3);
14438 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14439 check_vector_cst_stepped (elements
, vector
, 2);
14441 /* Try a duplicated value:
14442 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
14443 for (unsigned int i
= 1; i
< 8; ++i
)
14444 elements
[i
] = elements
[0];
14445 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14446 check_vector_cst_duplicate (elements
, vector
, 1);
14448 /* Try an interleaved duplicated value:
14449 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
14450 elements
[1] = build_int_cst (element_type
, 55);
14451 for (unsigned int i
= 2; i
< 8; ++i
)
14452 elements
[i
] = elements
[i
- 2];
14453 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14454 check_vector_cst_duplicate (elements
, vector
, 2);
14456 /* Try a duplicated value with 2 exceptions
14457 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
14458 elements
[0] = build_int_cst (element_type
, 41);
14459 elements
[1] = build_int_cst (element_type
, 97);
14460 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14461 check_vector_cst_fill (elements
, vector
, 2);
14463 /* Try with and without a step
14464 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
14465 for (unsigned int i
= 3; i
< 8; i
+= 2)
14466 elements
[i
] = build_int_cst (element_type
, i
* 7);
14467 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14468 check_vector_cst_stepped (elements
, vector
, 2);
14470 /* Try a fully-general constant:
14471 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
14472 elements
[5] = build_int_cst (element_type
, 9990);
14473 vector
= build_vector (vector_type
, elements PASS_MEM_STAT
);
14474 check_vector_cst_fill (elements
, vector
, 4);
14477 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
14478 Helper function for test_location_wrappers, to deal with STRIP_NOPS
14479 modifying its argument in-place. */
14482 check_strip_nops (tree node
, tree expected
)
14485 ASSERT_EQ (expected
, node
);
14488 /* Verify location wrappers. */
14491 test_location_wrappers ()
14493 location_t loc
= BUILTINS_LOCATION
;
14495 ASSERT_EQ (NULL_TREE
, maybe_wrap_with_location (NULL_TREE
, loc
));
14497 /* Wrapping a constant. */
14498 tree int_cst
= build_int_cst (integer_type_node
, 42);
14499 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst
));
14500 ASSERT_FALSE (location_wrapper_p (int_cst
));
14502 tree wrapped_int_cst
= maybe_wrap_with_location (int_cst
, loc
);
14503 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst
));
14504 ASSERT_EQ (loc
, EXPR_LOCATION (wrapped_int_cst
));
14505 ASSERT_EQ (int_cst
, tree_strip_any_location_wrapper (wrapped_int_cst
));
14507 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
14508 ASSERT_EQ (int_cst
, maybe_wrap_with_location (int_cst
, UNKNOWN_LOCATION
));
14510 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
14511 tree cast
= build1 (NOP_EXPR
, char_type_node
, int_cst
);
14512 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast
));
14513 ASSERT_EQ (cast
, maybe_wrap_with_location (cast
, loc
));
14515 /* Wrapping a STRING_CST. */
14516 tree string_cst
= build_string (4, "foo");
14517 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst
));
14518 ASSERT_FALSE (location_wrapper_p (string_cst
));
14520 tree wrapped_string_cst
= maybe_wrap_with_location (string_cst
, loc
);
14521 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst
));
14522 ASSERT_EQ (VIEW_CONVERT_EXPR
, TREE_CODE (wrapped_string_cst
));
14523 ASSERT_EQ (loc
, EXPR_LOCATION (wrapped_string_cst
));
14524 ASSERT_EQ (string_cst
, tree_strip_any_location_wrapper (wrapped_string_cst
));
14527 /* Wrapping a variable. */
14528 tree int_var
= build_decl (UNKNOWN_LOCATION
, VAR_DECL
,
14529 get_identifier ("some_int_var"),
14530 integer_type_node
);
14531 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var
));
14532 ASSERT_FALSE (location_wrapper_p (int_var
));
14534 tree wrapped_int_var
= maybe_wrap_with_location (int_var
, loc
);
14535 ASSERT_TRUE (location_wrapper_p (wrapped_int_var
));
14536 ASSERT_EQ (loc
, EXPR_LOCATION (wrapped_int_var
));
14537 ASSERT_EQ (int_var
, tree_strip_any_location_wrapper (wrapped_int_var
));
14539 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
14541 tree r_cast
= build1 (NON_LVALUE_EXPR
, integer_type_node
, int_var
);
14542 ASSERT_FALSE (location_wrapper_p (r_cast
));
14543 ASSERT_EQ (r_cast
, tree_strip_any_location_wrapper (r_cast
));
14545 /* Verify that STRIP_NOPS removes wrappers. */
14546 check_strip_nops (wrapped_int_cst
, int_cst
);
14547 check_strip_nops (wrapped_string_cst
, string_cst
);
14548 check_strip_nops (wrapped_int_var
, int_var
);
14551 /* Run all of the selftests within this file. */
14556 test_integer_constants ();
14557 test_identifiers ();
14559 test_vector_cst_patterns ();
14560 test_location_wrappers ();
14563 } // namespace selftest
14565 #endif /* CHECKING_P */
14567 #include "gt-tree.h"