PR target/27829
[official-gcc.git] / gcc / libgcc2.c
blobd093616fe50534a9812d716490c05a7adf181db5
1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 In addition to the permissions in the GNU General Public License, the
14 Free Software Foundation gives you unlimited permission to link the
15 compiled version of this file into combinations with other programs,
16 and to distribute those combinations without any restriction coming
17 from the use of this file. (The General Public License restrictions
18 do apply in other respects; for example, they cover modification of
19 the file, and distribution when not linked into a combine
20 executable.)
22 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
23 WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 for more details.
27 You should have received a copy of the GNU General Public License
28 along with GCC; see the file COPYING. If not, write to the Free
29 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
30 02110-1301, USA. */
32 #include "tconfig.h"
33 #include "tsystem.h"
34 #include "coretypes.h"
35 #include "tm.h"
37 #ifdef HAVE_GAS_HIDDEN
38 #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
39 #else
40 #define ATTRIBUTE_HIDDEN
41 #endif
43 #ifndef MIN_UNITS_PER_WORD
44 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
45 #endif
47 /* Work out the largest "word" size that we can deal with on this target. */
48 #if MIN_UNITS_PER_WORD > 4
49 # define LIBGCC2_MAX_UNITS_PER_WORD 8
50 #elif (MIN_UNITS_PER_WORD > 2 \
51 || (MIN_UNITS_PER_WORD > 1 && LONG_LONG_TYPE_SIZE > 32))
52 # define LIBGCC2_MAX_UNITS_PER_WORD 4
53 #else
54 # define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
55 #endif
57 /* Work out what word size we are using for this compilation.
58 The value can be set on the command line. */
59 #ifndef LIBGCC2_UNITS_PER_WORD
60 #define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
61 #endif
63 #if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
65 #include "libgcc2.h"
67 #ifdef DECLARE_LIBRARY_RENAMES
68 DECLARE_LIBRARY_RENAMES
69 #endif
71 #if defined (L_negdi2)
72 DWtype
73 __negdi2 (DWtype u)
75 const DWunion uu = {.ll = u};
76 const DWunion w = { {.low = -uu.s.low,
77 .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
79 return w.ll;
81 #endif
83 #ifdef L_addvsi3
84 Wtype
85 __addvSI3 (Wtype a, Wtype b)
87 const Wtype w = a + b;
89 if (b >= 0 ? w < a : w > a)
90 abort ();
92 return w;
94 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
95 SItype
96 __addvsi3 (SItype a, SItype b)
98 const SItype w = a + b;
100 if (b >= 0 ? w < a : w > a)
101 abort ();
103 return w;
105 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
106 #endif
108 #ifdef L_addvdi3
109 DWtype
110 __addvDI3 (DWtype a, DWtype b)
112 const DWtype w = a + b;
114 if (b >= 0 ? w < a : w > a)
115 abort ();
117 return w;
119 #endif
121 #ifdef L_subvsi3
122 Wtype
123 __subvSI3 (Wtype a, Wtype b)
125 const Wtype w = a - b;
127 if (b >= 0 ? w > a : w < a)
128 abort ();
130 return w;
132 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
133 SItype
134 __subvsi3 (SItype a, SItype b)
136 const SItype w = a - b;
138 if (b >= 0 ? w > a : w < a)
139 abort ();
141 return w;
143 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
144 #endif
146 #ifdef L_subvdi3
147 DWtype
148 __subvDI3 (DWtype a, DWtype b)
150 const DWtype w = a - b;
152 if (b >= 0 ? w > a : w < a)
153 abort ();
155 return w;
157 #endif
159 #ifdef L_mulvsi3
160 Wtype
161 __mulvSI3 (Wtype a, Wtype b)
163 const DWtype w = (DWtype) a * (DWtype) b;
165 if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1))
166 abort ();
168 return w;
170 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
171 #undef WORD_SIZE
172 #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
173 SItype
174 __mulvsi3 (SItype a, SItype b)
176 const DItype w = (DItype) a * (DItype) b;
178 if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1))
179 abort ();
181 return w;
183 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
184 #endif
186 #ifdef L_negvsi2
187 Wtype
188 __negvSI2 (Wtype a)
190 const Wtype w = -a;
192 if (a >= 0 ? w > 0 : w < 0)
193 abort ();
195 return w;
197 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
198 SItype
199 __negvsi2 (SItype a)
201 const SItype w = -a;
203 if (a >= 0 ? w > 0 : w < 0)
204 abort ();
206 return w;
208 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
209 #endif
211 #ifdef L_negvdi2
212 DWtype
213 __negvDI2 (DWtype a)
215 const DWtype w = -a;
217 if (a >= 0 ? w > 0 : w < 0)
218 abort ();
220 return w;
222 #endif
224 #ifdef L_absvsi2
225 Wtype
226 __absvSI2 (Wtype a)
228 Wtype w = a;
230 if (a < 0)
231 #ifdef L_negvsi2
232 w = __negvSI2 (a);
233 #else
234 w = -a;
236 if (w < 0)
237 abort ();
238 #endif
240 return w;
242 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
243 SItype
244 __absvsi2 (SItype a)
246 SItype w = a;
248 if (a < 0)
249 #ifdef L_negvsi2
250 w = __negvsi2 (a);
251 #else
252 w = -a;
254 if (w < 0)
255 abort ();
256 #endif
258 return w;
260 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
261 #endif
263 #ifdef L_absvdi2
264 DWtype
265 __absvDI2 (DWtype a)
267 DWtype w = a;
269 if (a < 0)
270 #ifdef L_negvdi2
271 w = __negvDI2 (a);
272 #else
273 w = -a;
275 if (w < 0)
276 abort ();
277 #endif
279 return w;
281 #endif
283 #ifdef L_mulvdi3
284 DWtype
285 __mulvDI3 (DWtype u, DWtype v)
287 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
288 but the checked multiplication needs only two. */
289 const DWunion uu = {.ll = u};
290 const DWunion vv = {.ll = v};
292 if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
294 /* u fits in a single Wtype. */
295 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
297 /* v fits in a single Wtype as well. */
298 /* A single multiplication. No overflow risk. */
299 return (DWtype) uu.s.low * (DWtype) vv.s.low;
301 else
303 /* Two multiplications. */
304 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
305 * (UDWtype) (UWtype) vv.s.low};
306 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
307 * (UDWtype) (UWtype) vv.s.high};
309 if (vv.s.high < 0)
310 w1.s.high -= uu.s.low;
311 if (uu.s.low < 0)
312 w1.ll -= vv.ll;
313 w1.ll += (UWtype) w0.s.high;
314 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
316 w0.s.high = w1.s.low;
317 return w0.ll;
321 else
323 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
325 /* v fits into a single Wtype. */
326 /* Two multiplications. */
327 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
328 * (UDWtype) (UWtype) vv.s.low};
329 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
330 * (UDWtype) (UWtype) vv.s.low};
332 if (uu.s.high < 0)
333 w1.s.high -= vv.s.low;
334 if (vv.s.low < 0)
335 w1.ll -= uu.ll;
336 w1.ll += (UWtype) w0.s.high;
337 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
339 w0.s.high = w1.s.low;
340 return w0.ll;
343 else
345 /* A few sign checks and a single multiplication. */
346 if (uu.s.high >= 0)
348 if (vv.s.high >= 0)
350 if (uu.s.high == 0 && vv.s.high == 0)
352 const DWtype w = (UDWtype) (UWtype) uu.s.low
353 * (UDWtype) (UWtype) vv.s.low;
354 if (__builtin_expect (w >= 0, 1))
355 return w;
358 else
360 if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
362 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
363 * (UDWtype) (UWtype) vv.s.low};
365 ww.s.high -= uu.s.low;
366 if (__builtin_expect (ww.s.high < 0, 1))
367 return ww.ll;
371 else
373 if (vv.s.high >= 0)
375 if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
377 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
378 * (UDWtype) (UWtype) vv.s.low};
380 ww.s.high -= vv.s.low;
381 if (__builtin_expect (ww.s.high < 0, 1))
382 return ww.ll;
385 else
387 if (uu.s.high == (Wtype) -1 && vv.s.high == (Wtype) - 1)
389 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
390 * (UDWtype) (UWtype) vv.s.low};
392 ww.s.high -= uu.s.low;
393 ww.s.high -= vv.s.low;
394 if (__builtin_expect (ww.s.high >= 0, 1))
395 return ww.ll;
402 /* Overflow. */
403 abort ();
405 #endif
408 /* Unless shift functions are defined with full ANSI prototypes,
409 parameter b will be promoted to int if word_type is smaller than an int. */
410 #ifdef L_lshrdi3
411 DWtype
412 __lshrdi3 (DWtype u, word_type b)
414 if (b == 0)
415 return u;
417 const DWunion uu = {.ll = u};
418 const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
419 DWunion w;
421 if (bm <= 0)
423 w.s.high = 0;
424 w.s.low = (UWtype) uu.s.high >> -bm;
426 else
428 const UWtype carries = (UWtype) uu.s.high << bm;
430 w.s.high = (UWtype) uu.s.high >> b;
431 w.s.low = ((UWtype) uu.s.low >> b) | carries;
434 return w.ll;
436 #endif
438 #ifdef L_ashldi3
439 DWtype
440 __ashldi3 (DWtype u, word_type b)
442 if (b == 0)
443 return u;
445 const DWunion uu = {.ll = u};
446 const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
447 DWunion w;
449 if (bm <= 0)
451 w.s.low = 0;
452 w.s.high = (UWtype) uu.s.low << -bm;
454 else
456 const UWtype carries = (UWtype) uu.s.low >> bm;
458 w.s.low = (UWtype) uu.s.low << b;
459 w.s.high = ((UWtype) uu.s.high << b) | carries;
462 return w.ll;
464 #endif
466 #ifdef L_ashrdi3
467 DWtype
468 __ashrdi3 (DWtype u, word_type b)
470 if (b == 0)
471 return u;
473 const DWunion uu = {.ll = u};
474 const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
475 DWunion w;
477 if (bm <= 0)
479 /* w.s.high = 1..1 or 0..0 */
480 w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1);
481 w.s.low = uu.s.high >> -bm;
483 else
485 const UWtype carries = (UWtype) uu.s.high << bm;
487 w.s.high = uu.s.high >> b;
488 w.s.low = ((UWtype) uu.s.low >> b) | carries;
491 return w.ll;
493 #endif
495 #ifdef L_ffssi2
496 #undef int
498 __ffsSI2 (UWtype u)
500 UWtype count;
502 if (u == 0)
503 return 0;
505 count_trailing_zeros (count, u);
506 return count + 1;
508 #endif
510 #ifdef L_ffsdi2
511 #undef int
513 __ffsDI2 (DWtype u)
515 const DWunion uu = {.ll = u};
516 UWtype word, count, add;
518 if (uu.s.low != 0)
519 word = uu.s.low, add = 0;
520 else if (uu.s.high != 0)
521 word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype);
522 else
523 return 0;
525 count_trailing_zeros (count, word);
526 return count + add + 1;
528 #endif
530 #ifdef L_muldi3
531 DWtype
532 __muldi3 (DWtype u, DWtype v)
534 const DWunion uu = {.ll = u};
535 const DWunion vv = {.ll = v};
536 DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
538 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
539 + (UWtype) uu.s.high * (UWtype) vv.s.low);
541 return w.ll;
543 #endif
545 #if (defined (L_udivdi3) || defined (L_divdi3) || \
546 defined (L_umoddi3) || defined (L_moddi3))
547 #if defined (sdiv_qrnnd)
548 #define L_udiv_w_sdiv
549 #endif
550 #endif
552 #ifdef L_udiv_w_sdiv
553 #if defined (sdiv_qrnnd)
554 #if (defined (L_udivdi3) || defined (L_divdi3) || \
555 defined (L_umoddi3) || defined (L_moddi3))
556 static inline __attribute__ ((__always_inline__))
557 #endif
558 UWtype
559 __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
561 UWtype q, r;
562 UWtype c0, c1, b1;
564 if ((Wtype) d >= 0)
566 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
568 /* Dividend, divisor, and quotient are nonnegative. */
569 sdiv_qrnnd (q, r, a1, a0, d);
571 else
573 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
574 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
575 /* Divide (c1*2^32 + c0) by d. */
576 sdiv_qrnnd (q, r, c1, c0, d);
577 /* Add 2^31 to quotient. */
578 q += (UWtype) 1 << (W_TYPE_SIZE - 1);
581 else
583 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
584 c1 = a1 >> 1; /* A/2 */
585 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
587 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
589 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
591 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
592 if ((d & 1) != 0)
594 if (r >= q)
595 r = r - q;
596 else if (q - r <= d)
598 r = r - q + d;
599 q--;
601 else
603 r = r - q + 2*d;
604 q -= 2;
608 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
610 c1 = (b1 - 1) - c1;
611 c0 = ~c0; /* logical NOT */
613 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
615 q = ~q; /* (A/2)/b1 */
616 r = (b1 - 1) - r;
618 r = 2*r + (a0 & 1); /* A/(2*b1) */
620 if ((d & 1) != 0)
622 if (r >= q)
623 r = r - q;
624 else if (q - r <= d)
626 r = r - q + d;
627 q--;
629 else
631 r = r - q + 2*d;
632 q -= 2;
636 else /* Implies c1 = b1 */
637 { /* Hence a1 = d - 1 = 2*b1 - 1 */
638 if (a0 >= -d)
640 q = -1;
641 r = a0 + d;
643 else
645 q = -2;
646 r = a0 + 2*d;
651 *rp = r;
652 return q;
654 #else
655 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
656 UWtype
657 __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
658 UWtype a1 __attribute__ ((__unused__)),
659 UWtype a0 __attribute__ ((__unused__)),
660 UWtype d __attribute__ ((__unused__)))
662 return 0;
664 #endif
665 #endif
667 #if (defined (L_udivdi3) || defined (L_divdi3) || \
668 defined (L_umoddi3) || defined (L_moddi3))
669 #define L_udivmoddi4
670 #endif
672 #ifdef L_clz
673 const UQItype __clz_tab[256] =
675 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
676 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
677 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
678 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
679 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
680 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
681 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
682 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
684 #endif
686 #ifdef L_clzsi2
687 #undef int
689 __clzSI2 (UWtype x)
691 Wtype ret;
693 count_leading_zeros (ret, x);
695 return ret;
697 #endif
699 #ifdef L_clzdi2
700 #undef int
702 __clzDI2 (UDWtype x)
704 const DWunion uu = {.ll = x};
705 UWtype word;
706 Wtype ret, add;
708 if (uu.s.high)
709 word = uu.s.high, add = 0;
710 else
711 word = uu.s.low, add = W_TYPE_SIZE;
713 count_leading_zeros (ret, word);
714 return ret + add;
716 #endif
718 #ifdef L_ctzsi2
719 #undef int
721 __ctzSI2 (UWtype x)
723 Wtype ret;
725 count_trailing_zeros (ret, x);
727 return ret;
729 #endif
731 #ifdef L_ctzdi2
732 #undef int
734 __ctzDI2 (UDWtype x)
736 const DWunion uu = {.ll = x};
737 UWtype word;
738 Wtype ret, add;
740 if (uu.s.low)
741 word = uu.s.low, add = 0;
742 else
743 word = uu.s.high, add = W_TYPE_SIZE;
745 count_trailing_zeros (ret, word);
746 return ret + add;
748 #endif
750 #ifdef L_popcount_tab
751 const UQItype __popcount_tab[256] =
753 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
754 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
755 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
756 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
757 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
758 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
759 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
760 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
762 #endif
764 #ifdef L_popcountsi2
765 #undef int
767 __popcountSI2 (UWtype x)
769 int i, ret = 0;
771 for (i = 0; i < W_TYPE_SIZE; i += 8)
772 ret += __popcount_tab[(x >> i) & 0xff];
774 return ret;
776 #endif
778 #ifdef L_popcountdi2
779 #undef int
781 __popcountDI2 (UDWtype x)
783 int i, ret = 0;
785 for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
786 ret += __popcount_tab[(x >> i) & 0xff];
788 return ret;
790 #endif
792 #ifdef L_paritysi2
793 #undef int
795 __paritySI2 (UWtype x)
797 #if W_TYPE_SIZE > 64
798 # error "fill out the table"
799 #endif
800 #if W_TYPE_SIZE > 32
801 x ^= x >> 32;
802 #endif
803 #if W_TYPE_SIZE > 16
804 x ^= x >> 16;
805 #endif
806 x ^= x >> 8;
807 x ^= x >> 4;
808 x &= 0xf;
809 return (0x6996 >> x) & 1;
811 #endif
813 #ifdef L_paritydi2
814 #undef int
816 __parityDI2 (UDWtype x)
818 const DWunion uu = {.ll = x};
819 UWtype nx = uu.s.low ^ uu.s.high;
821 #if W_TYPE_SIZE > 64
822 # error "fill out the table"
823 #endif
824 #if W_TYPE_SIZE > 32
825 nx ^= nx >> 32;
826 #endif
827 #if W_TYPE_SIZE > 16
828 nx ^= nx >> 16;
829 #endif
830 nx ^= nx >> 8;
831 nx ^= nx >> 4;
832 nx &= 0xf;
833 return (0x6996 >> nx) & 1;
835 #endif
837 #ifdef L_udivmoddi4
839 #if (defined (L_udivdi3) || defined (L_divdi3) || \
840 defined (L_umoddi3) || defined (L_moddi3))
841 static inline __attribute__ ((__always_inline__))
842 #endif
843 UDWtype
844 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
846 const DWunion nn = {.ll = n};
847 const DWunion dd = {.ll = d};
848 DWunion rr;
849 UWtype d0, d1, n0, n1, n2;
850 UWtype q0, q1;
851 UWtype b, bm;
853 d0 = dd.s.low;
854 d1 = dd.s.high;
855 n0 = nn.s.low;
856 n1 = nn.s.high;
858 #if !UDIV_NEEDS_NORMALIZATION
859 if (d1 == 0)
861 if (d0 > n1)
863 /* 0q = nn / 0D */
865 udiv_qrnnd (q0, n0, n1, n0, d0);
866 q1 = 0;
868 /* Remainder in n0. */
870 else
872 /* qq = NN / 0d */
874 if (d0 == 0)
875 d0 = 1 / d0; /* Divide intentionally by zero. */
877 udiv_qrnnd (q1, n1, 0, n1, d0);
878 udiv_qrnnd (q0, n0, n1, n0, d0);
880 /* Remainder in n0. */
883 if (rp != 0)
885 rr.s.low = n0;
886 rr.s.high = 0;
887 *rp = rr.ll;
891 #else /* UDIV_NEEDS_NORMALIZATION */
893 if (d1 == 0)
895 if (d0 > n1)
897 /* 0q = nn / 0D */
899 count_leading_zeros (bm, d0);
901 if (bm != 0)
903 /* Normalize, i.e. make the most significant bit of the
904 denominator set. */
906 d0 = d0 << bm;
907 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
908 n0 = n0 << bm;
911 udiv_qrnnd (q0, n0, n1, n0, d0);
912 q1 = 0;
914 /* Remainder in n0 >> bm. */
916 else
918 /* qq = NN / 0d */
920 if (d0 == 0)
921 d0 = 1 / d0; /* Divide intentionally by zero. */
923 count_leading_zeros (bm, d0);
925 if (bm == 0)
927 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
928 conclude (the most significant bit of n1 is set) /\ (the
929 leading quotient digit q1 = 1).
931 This special case is necessary, not an optimization.
932 (Shifts counts of W_TYPE_SIZE are undefined.) */
934 n1 -= d0;
935 q1 = 1;
937 else
939 /* Normalize. */
941 b = W_TYPE_SIZE - bm;
943 d0 = d0 << bm;
944 n2 = n1 >> b;
945 n1 = (n1 << bm) | (n0 >> b);
946 n0 = n0 << bm;
948 udiv_qrnnd (q1, n1, n2, n1, d0);
951 /* n1 != d0... */
953 udiv_qrnnd (q0, n0, n1, n0, d0);
955 /* Remainder in n0 >> bm. */
958 if (rp != 0)
960 rr.s.low = n0 >> bm;
961 rr.s.high = 0;
962 *rp = rr.ll;
965 #endif /* UDIV_NEEDS_NORMALIZATION */
967 else
969 if (d1 > n1)
971 /* 00 = nn / DD */
973 q0 = 0;
974 q1 = 0;
976 /* Remainder in n1n0. */
977 if (rp != 0)
979 rr.s.low = n0;
980 rr.s.high = n1;
981 *rp = rr.ll;
984 else
986 /* 0q = NN / dd */
988 count_leading_zeros (bm, d1);
989 if (bm == 0)
991 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
992 conclude (the most significant bit of n1 is set) /\ (the
993 quotient digit q0 = 0 or 1).
995 This special case is necessary, not an optimization. */
997 /* The condition on the next line takes advantage of that
998 n1 >= d1 (true due to program flow). */
999 if (n1 > d1 || n0 >= d0)
1001 q0 = 1;
1002 sub_ddmmss (n1, n0, n1, n0, d1, d0);
1004 else
1005 q0 = 0;
1007 q1 = 0;
1009 if (rp != 0)
1011 rr.s.low = n0;
1012 rr.s.high = n1;
1013 *rp = rr.ll;
1016 else
1018 UWtype m1, m0;
1019 /* Normalize. */
1021 b = W_TYPE_SIZE - bm;
1023 d1 = (d1 << bm) | (d0 >> b);
1024 d0 = d0 << bm;
1025 n2 = n1 >> b;
1026 n1 = (n1 << bm) | (n0 >> b);
1027 n0 = n0 << bm;
1029 udiv_qrnnd (q0, n1, n2, n1, d1);
1030 umul_ppmm (m1, m0, q0, d0);
1032 if (m1 > n1 || (m1 == n1 && m0 > n0))
1034 q0--;
1035 sub_ddmmss (m1, m0, m1, m0, d1, d0);
1038 q1 = 0;
1040 /* Remainder in (n1n0 - m1m0) >> bm. */
1041 if (rp != 0)
1043 sub_ddmmss (n1, n0, n1, n0, m1, m0);
1044 rr.s.low = (n1 << b) | (n0 >> bm);
1045 rr.s.high = n1 >> bm;
1046 *rp = rr.ll;
1052 const DWunion ww = {{.low = q0, .high = q1}};
1053 return ww.ll;
1055 #endif
1057 #ifdef L_divdi3
1058 DWtype
1059 __divdi3 (DWtype u, DWtype v)
1061 word_type c = 0;
1062 DWunion uu = {.ll = u};
1063 DWunion vv = {.ll = v};
1064 DWtype w;
1066 if (uu.s.high < 0)
1067 c = ~c,
1068 uu.ll = -uu.ll;
1069 if (vv.s.high < 0)
1070 c = ~c,
1071 vv.ll = -vv.ll;
1073 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
1074 if (c)
1075 w = -w;
1077 return w;
1079 #endif
1081 #ifdef L_moddi3
1082 DWtype
1083 __moddi3 (DWtype u, DWtype v)
1085 word_type c = 0;
1086 DWunion uu = {.ll = u};
1087 DWunion vv = {.ll = v};
1088 DWtype w;
1090 if (uu.s.high < 0)
1091 c = ~c,
1092 uu.ll = -uu.ll;
1093 if (vv.s.high < 0)
1094 vv.ll = -vv.ll;
1096 (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
1097 if (c)
1098 w = -w;
1100 return w;
1102 #endif
1104 #ifdef L_umoddi3
1105 UDWtype
1106 __umoddi3 (UDWtype u, UDWtype v)
1108 UDWtype w;
1110 (void) __udivmoddi4 (u, v, &w);
1112 return w;
1114 #endif
1116 #ifdef L_udivdi3
1117 UDWtype
1118 __udivdi3 (UDWtype n, UDWtype d)
1120 return __udivmoddi4 (n, d, (UDWtype *) 0);
1122 #endif
1124 #ifdef L_cmpdi2
1125 word_type
1126 __cmpdi2 (DWtype a, DWtype b)
1128 const DWunion au = {.ll = a};
1129 const DWunion bu = {.ll = b};
1131 if (au.s.high < bu.s.high)
1132 return 0;
1133 else if (au.s.high > bu.s.high)
1134 return 2;
1135 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1136 return 0;
1137 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1138 return 2;
1139 return 1;
1141 #endif
1143 #ifdef L_ucmpdi2
1144 word_type
1145 __ucmpdi2 (DWtype a, DWtype b)
1147 const DWunion au = {.ll = a};
1148 const DWunion bu = {.ll = b};
1150 if ((UWtype) au.s.high < (UWtype) bu.s.high)
1151 return 0;
1152 else if ((UWtype) au.s.high > (UWtype) bu.s.high)
1153 return 2;
1154 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1155 return 0;
1156 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1157 return 2;
1158 return 1;
1160 #endif
1162 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1163 DWtype
1164 __fixunstfDI (TFtype a)
1166 if (a < 0)
1167 return 0;
1169 /* Compute high word of result, as a flonum. */
1170 const TFtype b = (a / Wtype_MAXp1_F);
1171 /* Convert that to fixed (but not to DWtype!),
1172 and shift it into the high word. */
1173 UDWtype v = (UWtype) b;
1174 v <<= W_TYPE_SIZE;
1175 /* Remove high part from the TFtype, leaving the low part as flonum. */
1176 a -= (TFtype)v;
1177 /* Convert that to fixed (but not to DWtype!) and add it in.
1178 Sometimes A comes out negative. This is significant, since
1179 A has more bits than a long int does. */
1180 if (a < 0)
1181 v -= (UWtype) (- a);
1182 else
1183 v += (UWtype) a;
1184 return v;
1186 #endif
1188 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1189 DWtype
1190 __fixtfdi (TFtype a)
1192 if (a < 0)
1193 return - __fixunstfDI (-a);
1194 return __fixunstfDI (a);
1196 #endif
1198 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1199 DWtype
1200 __fixunsxfDI (XFtype a)
1202 if (a < 0)
1203 return 0;
1205 /* Compute high word of result, as a flonum. */
1206 const XFtype b = (a / Wtype_MAXp1_F);
1207 /* Convert that to fixed (but not to DWtype!),
1208 and shift it into the high word. */
1209 UDWtype v = (UWtype) b;
1210 v <<= W_TYPE_SIZE;
1211 /* Remove high part from the XFtype, leaving the low part as flonum. */
1212 a -= (XFtype)v;
1213 /* Convert that to fixed (but not to DWtype!) and add it in.
1214 Sometimes A comes out negative. This is significant, since
1215 A has more bits than a long int does. */
1216 if (a < 0)
1217 v -= (UWtype) (- a);
1218 else
1219 v += (UWtype) a;
1220 return v;
1222 #endif
1224 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1225 DWtype
1226 __fixxfdi (XFtype a)
1228 if (a < 0)
1229 return - __fixunsxfDI (-a);
1230 return __fixunsxfDI (a);
1232 #endif
1234 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1235 DWtype
1236 __fixunsdfDI (DFtype a)
1238 /* Get high part of result. The division here will just moves the radix
1239 point and will not cause any rounding. Then the conversion to integral
1240 type chops result as desired. */
1241 const UWtype hi = a / Wtype_MAXp1_F;
1243 /* Get low part of result. Convert `hi' to floating type and scale it back,
1244 then subtract this from the number being converted. This leaves the low
1245 part. Convert that to integral type. */
1246 const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
1248 /* Assemble result from the two parts. */
1249 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1251 #endif
1253 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1254 DWtype
1255 __fixdfdi (DFtype a)
1257 if (a < 0)
1258 return - __fixunsdfDI (-a);
1259 return __fixunsdfDI (a);
1261 #endif
1263 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1264 DWtype
1265 __fixunssfDI (SFtype a)
1267 #if LIBGCC2_HAS_DF_MODE
1268 /* Convert the SFtype to a DFtype, because that is surely not going
1269 to lose any bits. Some day someone else can write a faster version
1270 that avoids converting to DFtype, and verify it really works right. */
1271 const DFtype dfa = a;
1273 /* Get high part of result. The division here will just moves the radix
1274 point and will not cause any rounding. Then the conversion to integral
1275 type chops result as desired. */
1276 const UWtype hi = dfa / Wtype_MAXp1_F;
1278 /* Get low part of result. Convert `hi' to floating type and scale it back,
1279 then subtract this from the number being converted. This leaves the low
1280 part. Convert that to integral type. */
1281 const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
1283 /* Assemble result from the two parts. */
1284 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1285 #elif FLT_MANT_DIG < W_TYPE_SIZE
1286 if (a < 1)
1287 return 0;
1288 if (a < Wtype_MAXp1_F)
1289 return (UWtype)a;
1290 if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
1292 /* Since we know that there are fewer significant bits in the SFmode
1293 quantity than in a word, we know that we can convert out all the
1294 significant bits in one step, and thus avoid losing bits. */
1296 /* ??? This following loop essentially performs frexpf. If we could
1297 use the real libm function, or poke at the actual bits of the fp
1298 format, it would be significantly faster. */
1300 UWtype shift = 0, counter;
1301 SFtype msb;
1303 a /= Wtype_MAXp1_F;
1304 for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
1306 SFtype counterf = (UWtype)1 << counter;
1307 if (a >= counterf)
1309 shift |= counter;
1310 a /= counterf;
1314 /* Rescale into the range of one word, extract the bits of that
1315 one word, and shift the result into position. */
1316 a *= Wtype_MAXp1_F;
1317 counter = a;
1318 return (DWtype)counter << shift;
1320 return -1;
1321 #else
1322 # error
1323 #endif
1325 #endif
1327 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1328 DWtype
1329 __fixsfdi (SFtype a)
1331 if (a < 0)
1332 return - __fixunssfDI (-a);
1333 return __fixunssfDI (a);
1335 #endif
1337 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1338 XFtype
1339 __floatdixf (DWtype u)
1341 #if W_TYPE_SIZE > XF_SIZE
1342 # error
1343 #endif
1344 XFtype d = (Wtype) (u >> W_TYPE_SIZE);
1345 d *= Wtype_MAXp1_F;
1346 d += (UWtype)u;
1347 return d;
1349 #endif
1351 #if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
1352 XFtype
1353 __floatundixf (UDWtype u)
1355 #if W_TYPE_SIZE > XF_SIZE
1356 # error
1357 #endif
1358 XFtype d = (UWtype) (u >> W_TYPE_SIZE);
1359 d *= Wtype_MAXp1_F;
1360 d += (UWtype)u;
1361 return d;
1363 #endif
1365 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1366 TFtype
1367 __floatditf (DWtype u)
1369 #if W_TYPE_SIZE > TF_SIZE
1370 # error
1371 #endif
1372 TFtype d = (Wtype) (u >> W_TYPE_SIZE);
1373 d *= Wtype_MAXp1_F;
1374 d += (UWtype)u;
1375 return d;
1377 #endif
1379 #if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
1380 TFtype
1381 __floatunditf (UDWtype u)
1383 #if W_TYPE_SIZE > TF_SIZE
1384 # error
1385 #endif
1386 TFtype d = (UWtype) (u >> W_TYPE_SIZE);
1387 d *= Wtype_MAXp1_F;
1388 d += (UWtype)u;
1389 return d;
1391 #endif
1393 #if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
1394 || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
1395 #define DI_SIZE (W_TYPE_SIZE * 2)
1396 #define F_MODE_OK(SIZE) \
1397 (SIZE < DI_SIZE \
1398 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1399 /* Don't use IBM Extended Double TFmode for TI->SF calculations. \
1400 The conversion from long double to float suffers from double \
1401 rounding, because we convert via double. In any case, the \
1402 fallback code is faster. */ \
1403 && !IS_IBM_EXTENDED (SIZE))
1404 #if defined(L_floatdisf)
1405 #define FUNC __floatdisf
1406 #define FSTYPE SFtype
1407 #define FSSIZE SF_SIZE
1408 #else
1409 #define FUNC __floatdidf
1410 #define FSTYPE DFtype
1411 #define FSSIZE DF_SIZE
1412 #endif
1414 FSTYPE
1415 FUNC (DWtype u)
1417 #if FSSIZE >= W_TYPE_SIZE
1418 /* When the word size is small, we never get any rounding error. */
1419 FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1420 f *= Wtype_MAXp1_F;
1421 f += (UWtype)u;
1422 return f;
1423 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1424 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1425 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1427 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1428 # define FSIZE DF_SIZE
1429 # define FTYPE DFtype
1430 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1431 # define FSIZE XF_SIZE
1432 # define FTYPE XFtype
1433 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1434 # define FSIZE TF_SIZE
1435 # define FTYPE TFtype
1436 #else
1437 # error
1438 #endif
1440 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1442 /* Protect against double-rounding error.
1443 Represent any low-order bits, that might be truncated by a bit that
1444 won't be lost. The bit can go in anywhere below the rounding position
1445 of the FSTYPE. A fixed mask and bit position handles all usual
1446 configurations. */
1447 if (! (- ((DWtype) 1 << FSIZE) < u
1448 && u < ((DWtype) 1 << FSIZE)))
1450 if ((UDWtype) u & (REP_BIT - 1))
1452 u &= ~ (REP_BIT - 1);
1453 u |= REP_BIT;
1457 /* Do the calculation in a wider type so that we don't lose any of
1458 the precision of the high word while multiplying it. */
1459 FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
1460 f *= Wtype_MAXp1_F;
1461 f += (UWtype)u;
1462 return (FSTYPE) f;
1463 #else
1464 #if FSSIZE >= W_TYPE_SIZE - 2
1465 # error
1466 #endif
1467 /* Finally, the word size is larger than the number of bits in the
1468 required FSTYPE, and we've got no suitable wider type. The only
1469 way to avoid double rounding is to special case the
1470 extraction. */
1472 /* If there are no high bits set, fall back to one conversion. */
1473 if ((Wtype)u == u)
1474 return (FSTYPE)(Wtype)u;
1476 /* Otherwise, find the power of two. */
1477 Wtype hi = u >> W_TYPE_SIZE;
1478 if (hi < 0)
1479 hi = -hi;
1481 UWtype count, shift;
1482 count_leading_zeros (count, hi);
1484 /* No leading bits means u == minimum. */
1485 if (count == 0)
1486 return -(Wtype_MAXp1_F * (Wtype_MAXp1_F / 2));
1488 shift = 1 + W_TYPE_SIZE - count;
1490 /* Shift down the most significant bits. */
1491 hi = u >> shift;
1493 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1494 if (u & (((DWtype)1 << shift) - 1))
1495 hi |= 1;
1497 /* Convert the one word of data, and rescale. */
1498 FSTYPE f = hi;
1499 f *= (UDWtype)1 << shift;
1500 return f;
1501 #endif
1503 #endif
1505 #if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
1506 || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
1507 #define DI_SIZE (W_TYPE_SIZE * 2)
1508 #define F_MODE_OK(SIZE) \
1509 (SIZE < DI_SIZE \
1510 && SIZE > (DI_SIZE - SIZE + FSSIZE) \
1511 /* Don't use IBM Extended Double TFmode for TI->SF calculations. \
1512 The conversion from long double to float suffers from double \
1513 rounding, because we convert via double. In any case, the \
1514 fallback code is faster. */ \
1515 && !IS_IBM_EXTENDED (SIZE))
1516 #if defined(L_floatundisf)
1517 #define FUNC __floatundisf
1518 #define FSTYPE SFtype
1519 #define FSSIZE SF_SIZE
1520 #else
1521 #define FUNC __floatundidf
1522 #define FSTYPE DFtype
1523 #define FSSIZE DF_SIZE
1524 #endif
1526 FSTYPE
1527 FUNC (UDWtype u)
1529 #if FSSIZE >= W_TYPE_SIZE
1530 /* When the word size is small, we never get any rounding error. */
1531 FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1532 f *= Wtype_MAXp1_F;
1533 f += (UWtype)u;
1534 return f;
1535 #elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE)) \
1536 || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE)) \
1537 || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1539 #if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
1540 # define FSIZE DF_SIZE
1541 # define FTYPE DFtype
1542 #elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
1543 # define FSIZE XF_SIZE
1544 # define FTYPE XFtype
1545 #elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
1546 # define FSIZE TF_SIZE
1547 # define FTYPE TFtype
1548 #else
1549 # error
1550 #endif
1552 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
1554 /* Protect against double-rounding error.
1555 Represent any low-order bits, that might be truncated by a bit that
1556 won't be lost. The bit can go in anywhere below the rounding position
1557 of the FSTYPE. A fixed mask and bit position handles all usual
1558 configurations. */
1559 if (u >= ((UDWtype) 1 << FSIZE))
1561 if ((UDWtype) u & (REP_BIT - 1))
1563 u &= ~ (REP_BIT - 1);
1564 u |= REP_BIT;
1568 /* Do the calculation in a wider type so that we don't lose any of
1569 the precision of the high word while multiplying it. */
1570 FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
1571 f *= Wtype_MAXp1_F;
1572 f += (UWtype)u;
1573 return (FSTYPE) f;
1574 #else
1575 #if FSSIZE == W_TYPE_SIZE - 1
1576 # error
1577 #endif
1578 /* Finally, the word size is larger than the number of bits in the
1579 required FSTYPE, and we've got no suitable wider type. The only
1580 way to avoid double rounding is to special case the
1581 extraction. */
1583 /* If there are no high bits set, fall back to one conversion. */
1584 if ((UWtype)u == u)
1585 return (FSTYPE)(UWtype)u;
1587 /* Otherwise, find the power of two. */
1588 UWtype hi = u >> W_TYPE_SIZE;
1590 UWtype count, shift;
1591 count_leading_zeros (count, hi);
1593 shift = W_TYPE_SIZE - count;
1595 /* Shift down the most significant bits. */
1596 hi = u >> shift;
1598 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1599 if (u & (((UDWtype)1 << shift) - 1))
1600 hi |= 1;
1602 /* Convert the one word of data, and rescale. */
1603 FSTYPE f = hi;
1604 f *= (UDWtype)1 << shift;
1605 return f;
1606 #endif
1608 #endif
1610 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1611 /* Reenable the normal types, in case limits.h needs them. */
1612 #undef char
1613 #undef short
1614 #undef int
1615 #undef long
1616 #undef unsigned
1617 #undef float
1618 #undef double
1619 #undef MIN
1620 #undef MAX
1621 #include <limits.h>
1623 UWtype
1624 __fixunsxfSI (XFtype a)
1626 if (a >= - (DFtype) Wtype_MIN)
1627 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1628 return (Wtype) a;
1630 #endif
1632 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1633 /* Reenable the normal types, in case limits.h needs them. */
1634 #undef char
1635 #undef short
1636 #undef int
1637 #undef long
1638 #undef unsigned
1639 #undef float
1640 #undef double
1641 #undef MIN
1642 #undef MAX
1643 #include <limits.h>
1645 UWtype
1646 __fixunsdfSI (DFtype a)
1648 if (a >= - (DFtype) Wtype_MIN)
1649 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1650 return (Wtype) a;
1652 #endif
1654 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1655 /* Reenable the normal types, in case limits.h needs them. */
1656 #undef char
1657 #undef short
1658 #undef int
1659 #undef long
1660 #undef unsigned
1661 #undef float
1662 #undef double
1663 #undef MIN
1664 #undef MAX
1665 #include <limits.h>
1667 UWtype
1668 __fixunssfSI (SFtype a)
1670 if (a >= - (SFtype) Wtype_MIN)
1671 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1672 return (Wtype) a;
1674 #endif
1676 /* Integer power helper used from __builtin_powi for non-constant
1677 exponents. */
1679 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1680 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1681 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1682 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1683 # if defined(L_powisf2)
1684 # define TYPE SFtype
1685 # define NAME __powisf2
1686 # elif defined(L_powidf2)
1687 # define TYPE DFtype
1688 # define NAME __powidf2
1689 # elif defined(L_powixf2)
1690 # define TYPE XFtype
1691 # define NAME __powixf2
1692 # elif defined(L_powitf2)
1693 # define TYPE TFtype
1694 # define NAME __powitf2
1695 # endif
1697 #undef int
1698 #undef unsigned
1699 TYPE
1700 NAME (TYPE x, int m)
1702 unsigned int n = m < 0 ? -m : m;
1703 TYPE y = n % 2 ? x : 1;
1704 while (n >>= 1)
1706 x = x * x;
1707 if (n % 2)
1708 y = y * x;
1710 return m < 0 ? 1/y : y;
1713 #endif
1715 #if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1716 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1717 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1718 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1720 #undef float
1721 #undef double
1722 #undef long
1724 #if defined(L_mulsc3) || defined(L_divsc3)
1725 # define MTYPE SFtype
1726 # define CTYPE SCtype
1727 # define MODE sc
1728 # define CEXT f
1729 # define NOTRUNC __FLT_EVAL_METHOD__ == 0
1730 #elif defined(L_muldc3) || defined(L_divdc3)
1731 # define MTYPE DFtype
1732 # define CTYPE DCtype
1733 # define MODE dc
1734 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1735 # define CEXT l
1736 # define NOTRUNC 1
1737 # else
1738 # define CEXT
1739 # define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
1740 # endif
1741 #elif defined(L_mulxc3) || defined(L_divxc3)
1742 # define MTYPE XFtype
1743 # define CTYPE XCtype
1744 # define MODE xc
1745 # define CEXT l
1746 # define NOTRUNC 1
1747 #elif defined(L_multc3) || defined(L_divtc3)
1748 # define MTYPE TFtype
1749 # define CTYPE TCtype
1750 # define MODE tc
1751 # define CEXT l
1752 # define NOTRUNC 1
1753 #else
1754 # error
1755 #endif
1757 #define CONCAT3(A,B,C) _CONCAT3(A,B,C)
1758 #define _CONCAT3(A,B,C) A##B##C
1760 #define CONCAT2(A,B) _CONCAT2(A,B)
1761 #define _CONCAT2(A,B) A##B
1763 /* All of these would be present in a full C99 implementation of <math.h>
1764 and <complex.h>. Our problem is that only a few systems have such full
1765 implementations. Further, libgcc_s.so isn't currently linked against
1766 libm.so, and even for systems that do provide full C99, the extra overhead
1767 of all programs using libgcc having to link against libm. So avoid it. */
1769 #define isnan(x) __builtin_expect ((x) != (x), 0)
1770 #define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1)
1771 #define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0)
1773 #define INFINITY CONCAT2(__builtin_inf, CEXT) ()
1774 #define I 1i
1776 /* Helpers to make the following code slightly less gross. */
1777 #define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
1778 #define FABS CONCAT2(__builtin_fabs, CEXT)
1780 /* Verify that MTYPE matches up with CEXT. */
1781 extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
1783 /* Ensure that we've lost any extra precision. */
1784 #if NOTRUNC
1785 # define TRUNC(x)
1786 #else
1787 # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
1788 #endif
1790 #if defined(L_mulsc3) || defined(L_muldc3) \
1791 || defined(L_mulxc3) || defined(L_multc3)
1793 CTYPE
1794 CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1796 MTYPE ac, bd, ad, bc, x, y;
1798 ac = a * c;
1799 bd = b * d;
1800 ad = a * d;
1801 bc = b * c;
1803 TRUNC (ac);
1804 TRUNC (bd);
1805 TRUNC (ad);
1806 TRUNC (bc);
1808 x = ac - bd;
1809 y = ad + bc;
1811 if (isnan (x) && isnan (y))
1813 /* Recover infinities that computed as NaN + iNaN. */
1814 _Bool recalc = 0;
1815 if (isinf (a) || isinf (b))
1817 /* z is infinite. "Box" the infinity and change NaNs in
1818 the other factor to 0. */
1819 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1820 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1821 if (isnan (c)) c = COPYSIGN (0, c);
1822 if (isnan (d)) d = COPYSIGN (0, d);
1823 recalc = 1;
1825 if (isinf (c) || isinf (d))
1827 /* w is infinite. "Box" the infinity and change NaNs in
1828 the other factor to 0. */
1829 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1830 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1831 if (isnan (a)) a = COPYSIGN (0, a);
1832 if (isnan (b)) b = COPYSIGN (0, b);
1833 recalc = 1;
1835 if (!recalc
1836 && (isinf (ac) || isinf (bd)
1837 || isinf (ad) || isinf (bc)))
1839 /* Recover infinities from overflow by changing NaNs to 0. */
1840 if (isnan (a)) a = COPYSIGN (0, a);
1841 if (isnan (b)) b = COPYSIGN (0, b);
1842 if (isnan (c)) c = COPYSIGN (0, c);
1843 if (isnan (d)) d = COPYSIGN (0, d);
1844 recalc = 1;
1846 if (recalc)
1848 x = INFINITY * (a * c - b * d);
1849 y = INFINITY * (a * d + b * c);
1853 return x + I * y;
1855 #endif /* complex multiply */
1857 #if defined(L_divsc3) || defined(L_divdc3) \
1858 || defined(L_divxc3) || defined(L_divtc3)
1860 CTYPE
1861 CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1863 MTYPE denom, ratio, x, y;
1865 /* ??? We can get better behavior from logarithmic scaling instead of
1866 the division. But that would mean starting to link libgcc against
1867 libm. We could implement something akin to ldexp/frexp as gcc builtins
1868 fairly easily... */
1869 if (FABS (c) < FABS (d))
1871 ratio = c / d;
1872 denom = (c * ratio) + d;
1873 x = ((a * ratio) + b) / denom;
1874 y = ((b * ratio) - a) / denom;
1876 else
1878 ratio = d / c;
1879 denom = (d * ratio) + c;
1880 x = ((b * ratio) + a) / denom;
1881 y = (b - (a * ratio)) / denom;
1884 /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
1885 are nonzero/zero, infinite/finite, and finite/infinite. */
1886 if (isnan (x) && isnan (y))
1888 if (denom == 0.0 && (!isnan (a) || !isnan (b)))
1890 x = COPYSIGN (INFINITY, c) * a;
1891 y = COPYSIGN (INFINITY, c) * b;
1893 else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
1895 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1896 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1897 x = INFINITY * (a * c + b * d);
1898 y = INFINITY * (b * c - a * d);
1900 else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
1902 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1903 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1904 x = 0.0 * (a * c + b * d);
1905 y = 0.0 * (b * c - a * d);
1909 return x + I * y;
1911 #endif /* complex divide */
1913 #endif /* all complex float routines */
1915 /* From here on down, the routines use normal data types. */
1917 #define SItype bogus_type
1918 #define USItype bogus_type
1919 #define DItype bogus_type
1920 #define UDItype bogus_type
1921 #define SFtype bogus_type
1922 #define DFtype bogus_type
1923 #undef Wtype
1924 #undef UWtype
1925 #undef HWtype
1926 #undef UHWtype
1927 #undef DWtype
1928 #undef UDWtype
1930 #undef char
1931 #undef short
1932 #undef int
1933 #undef long
1934 #undef unsigned
1935 #undef float
1936 #undef double
1938 #ifdef L__gcc_bcmp
1940 /* Like bcmp except the sign is meaningful.
1941 Result is negative if S1 is less than S2,
1942 positive if S1 is greater, 0 if S1 and S2 are equal. */
1945 __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
1947 while (size > 0)
1949 const unsigned char c1 = *s1++, c2 = *s2++;
1950 if (c1 != c2)
1951 return c1 - c2;
1952 size--;
1954 return 0;
1957 #endif
1959 /* __eprintf used to be used by GCC's private version of <assert.h>.
1960 We no longer provide that header, but this routine remains in libgcc.a
1961 for binary backward compatibility. Note that it is not included in
1962 the shared version of libgcc. */
1963 #ifdef L_eprintf
1964 #ifndef inhibit_libc
1966 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1967 #include <stdio.h>
1969 void
1970 __eprintf (const char *string, const char *expression,
1971 unsigned int line, const char *filename)
1973 fprintf (stderr, string, expression, line, filename);
1974 fflush (stderr);
1975 abort ();
1978 #endif
1979 #endif
1982 #ifdef L_clear_cache
1983 /* Clear part of an instruction cache. */
1985 void
1986 __clear_cache (char *beg __attribute__((__unused__)),
1987 char *end __attribute__((__unused__)))
1989 #ifdef CLEAR_INSN_CACHE
1990 CLEAR_INSN_CACHE (beg, end);
1991 #endif /* CLEAR_INSN_CACHE */
1994 #endif /* L_clear_cache */
1996 #ifdef L_enable_execute_stack
1997 /* Attempt to turn on execute permission for the stack. */
1999 #ifdef ENABLE_EXECUTE_STACK
2000 ENABLE_EXECUTE_STACK
2001 #else
2002 void
2003 __enable_execute_stack (void *addr __attribute__((__unused__)))
2005 #endif /* ENABLE_EXECUTE_STACK */
2007 #endif /* L_enable_execute_stack */
2009 #ifdef L_trampoline
2011 /* Jump to a trampoline, loading the static chain address. */
2013 #if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN)
2016 getpagesize (void)
2018 #ifdef _ALPHA_
2019 return 8192;
2020 #else
2021 return 4096;
2022 #endif
2025 #ifdef __i386__
2026 extern int VirtualProtect (char *, int, int, int *) __attribute__((stdcall));
2027 #endif
2030 mprotect (char *addr, int len, int prot)
2032 int np, op;
2034 if (prot == 7)
2035 np = 0x40;
2036 else if (prot == 5)
2037 np = 0x20;
2038 else if (prot == 4)
2039 np = 0x10;
2040 else if (prot == 3)
2041 np = 0x04;
2042 else if (prot == 1)
2043 np = 0x02;
2044 else if (prot == 0)
2045 np = 0x01;
2047 if (VirtualProtect (addr, len, np, &op))
2048 return 0;
2049 else
2050 return -1;
2053 #endif /* WINNT && ! __CYGWIN__ && ! _UWIN */
2055 #ifdef TRANSFER_FROM_TRAMPOLINE
2056 TRANSFER_FROM_TRAMPOLINE
2057 #endif
2058 #endif /* L_trampoline */
2060 #ifndef __CYGWIN__
2061 #ifdef L__main
2063 #include "gbl-ctors.h"
2065 /* Some systems use __main in a way incompatible with its use in gcc, in these
2066 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
2067 give the same symbol without quotes for an alternative entry point. You
2068 must define both, or neither. */
2069 #ifndef NAME__MAIN
2070 #define NAME__MAIN "__main"
2071 #define SYMBOL__MAIN __main
2072 #endif
2074 #if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
2075 #undef HAS_INIT_SECTION
2076 #define HAS_INIT_SECTION
2077 #endif
2079 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
2081 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
2082 code to run constructors. In that case, we need to handle EH here, too. */
2084 #ifdef EH_FRAME_SECTION_NAME
2085 #include "unwind-dw2-fde.h"
2086 extern unsigned char __EH_FRAME_BEGIN__[];
2087 #endif
2089 /* Run all the global destructors on exit from the program. */
2091 void
2092 __do_global_dtors (void)
2094 #ifdef DO_GLOBAL_DTORS_BODY
2095 DO_GLOBAL_DTORS_BODY;
2096 #else
2097 static func_ptr *p = __DTOR_LIST__ + 1;
2098 while (*p)
2100 p++;
2101 (*(p-1)) ();
2103 #endif
2104 #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
2106 static int completed = 0;
2107 if (! completed)
2109 completed = 1;
2110 __deregister_frame_info (__EH_FRAME_BEGIN__);
2113 #endif
2115 #endif
2117 #ifndef HAS_INIT_SECTION
2118 /* Run all the global constructors on entry to the program. */
2120 void
2121 __do_global_ctors (void)
2123 #ifdef EH_FRAME_SECTION_NAME
2125 static struct object object;
2126 __register_frame_info (__EH_FRAME_BEGIN__, &object);
2128 #endif
2129 DO_GLOBAL_CTORS_BODY;
2130 atexit (__do_global_dtors);
2132 #endif /* no HAS_INIT_SECTION */
2134 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
2135 /* Subroutine called automatically by `main'.
2136 Compiling a global function named `main'
2137 produces an automatic call to this function at the beginning.
2139 For many systems, this routine calls __do_global_ctors.
2140 For systems which support a .init section we use the .init section
2141 to run __do_global_ctors, so we need not do anything here. */
2143 extern void SYMBOL__MAIN (void);
2144 void
2145 SYMBOL__MAIN (void)
2147 /* Support recursive calls to `main': run initializers just once. */
2148 static int initialized;
2149 if (! initialized)
2151 initialized = 1;
2152 __do_global_ctors ();
2155 #endif /* no HAS_INIT_SECTION or INVOKE__main */
2157 #endif /* L__main */
2158 #endif /* __CYGWIN__ */
2160 #ifdef L_ctors
2162 #include "gbl-ctors.h"
2164 /* Provide default definitions for the lists of constructors and
2165 destructors, so that we don't get linker errors. These symbols are
2166 intentionally bss symbols, so that gld and/or collect will provide
2167 the right values. */
2169 /* We declare the lists here with two elements each,
2170 so that they are valid empty lists if no other definition is loaded.
2172 If we are using the old "set" extensions to have the gnu linker
2173 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2174 must be in the bss/common section.
2176 Long term no port should use those extensions. But many still do. */
2177 #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2178 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2179 func_ptr __CTOR_LIST__[2] = {0, 0};
2180 func_ptr __DTOR_LIST__[2] = {0, 0};
2181 #else
2182 func_ptr __CTOR_LIST__[2];
2183 func_ptr __DTOR_LIST__[2];
2184 #endif
2185 #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2186 #endif /* L_ctors */
2187 #endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */