PR c++/14032
[official-gcc.git] / gcc / reg-stack.c
blob1fbd322aaf43683b1b2987a748fd0b90be001549
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "cfglayout.h"
171 #include "varray.h"
172 #include "reload.h"
173 #include "ggc.h"
174 #include "timevar.h"
175 #include "tree-pass.h"
176 #include "target.h"
177 #include "df.h"
178 #include "vecprim.h"
180 #ifdef STACK_REGS
182 /* We use this array to cache info about insns, because otherwise we
183 spend too much time in stack_regs_mentioned_p.
185 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
186 the insn uses stack registers, two indicates the insn does not use
187 stack registers. */
188 static VEC(char,heap) *stack_regs_mentioned_data;
190 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
192 int regstack_completed = 0;
194 /* This is the basic stack record. TOP is an index into REG[] such
195 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
197 If TOP is -2, REG[] is not yet initialized. Stack initialization
198 consists of placing each live reg in array `reg' and setting `top'
199 appropriately.
201 REG_SET indicates which registers are live. */
203 typedef struct stack_def
205 int top; /* index to top stack element */
206 HARD_REG_SET reg_set; /* set of live registers */
207 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
208 } *stack;
210 /* This is used to carry information about basic blocks. It is
211 attached to the AUX field of the standard CFG block. */
213 typedef struct block_info_def
215 struct stack_def stack_in; /* Input stack configuration. */
216 struct stack_def stack_out; /* Output stack configuration. */
217 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
218 int done; /* True if block already converted. */
219 int predecessors; /* Number of predecessors that need
220 to be visited. */
221 } *block_info;
223 #define BLOCK_INFO(B) ((block_info) (B)->aux)
225 /* Passed to change_stack to indicate where to emit insns. */
226 enum emit_where
228 EMIT_AFTER,
229 EMIT_BEFORE
232 /* The block we're currently working on. */
233 static basic_block current_block;
235 /* In the current_block, whether we're processing the first register
236 stack or call instruction, i.e. the regstack is currently the
237 same as BLOCK_INFO(current_block)->stack_in. */
238 static bool starting_stack_p;
240 /* This is the register file for all register after conversion. */
241 static rtx
242 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
244 #define FP_MODE_REG(regno,mode) \
245 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
247 /* Used to initialize uninitialized registers. */
248 static rtx not_a_num;
250 /* Forward declarations */
252 static int stack_regs_mentioned_p (const_rtx pat);
253 static void pop_stack (stack, int);
254 static rtx *get_true_reg (rtx *);
256 static int check_asm_stack_operands (rtx);
257 static int get_asm_operand_n_inputs (rtx);
258 static rtx stack_result (tree);
259 static void replace_reg (rtx *, int);
260 static void remove_regno_note (rtx, enum reg_note, unsigned int);
261 static int get_hard_regnum (stack, rtx);
262 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
263 static void swap_to_top(rtx, stack, rtx, rtx);
264 static bool move_for_stack_reg (rtx, stack, rtx);
265 static bool move_nan_for_stack_reg (rtx, stack, rtx);
266 static int swap_rtx_condition_1 (rtx);
267 static int swap_rtx_condition (rtx);
268 static void compare_for_stack_reg (rtx, stack, rtx);
269 static bool subst_stack_regs_pat (rtx, stack, rtx);
270 static void subst_asm_stack_regs (rtx, stack);
271 static bool subst_stack_regs (rtx, stack);
272 static void change_stack (rtx, stack, stack, enum emit_where);
273 static void print_stack (FILE *, stack);
274 static rtx next_flags_user (rtx);
276 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
278 static int
279 stack_regs_mentioned_p (const_rtx pat)
281 const char *fmt;
282 int i;
284 if (STACK_REG_P (pat))
285 return 1;
287 fmt = GET_RTX_FORMAT (GET_CODE (pat));
288 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
290 if (fmt[i] == 'E')
292 int j;
294 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
295 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
296 return 1;
298 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
299 return 1;
302 return 0;
305 /* Return nonzero if INSN mentions stacked registers, else return zero. */
308 stack_regs_mentioned (const_rtx insn)
310 unsigned int uid, max;
311 int test;
313 if (! INSN_P (insn) || !stack_regs_mentioned_data)
314 return 0;
316 uid = INSN_UID (insn);
317 max = VEC_length (char, stack_regs_mentioned_data);
318 if (uid >= max)
320 /* Allocate some extra size to avoid too many reallocs, but
321 do not grow too quickly. */
322 max = uid + uid / 20 + 1;
323 VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
326 test = VEC_index (char, stack_regs_mentioned_data, uid);
327 if (test == 0)
329 /* This insn has yet to be examined. Do so now. */
330 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
331 VEC_replace (char, stack_regs_mentioned_data, uid, test);
334 return test == 1;
337 static rtx ix86_flags_rtx;
339 static rtx
340 next_flags_user (rtx insn)
342 /* Search forward looking for the first use of this value.
343 Stop at block boundaries. */
345 while (insn != BB_END (current_block))
347 insn = NEXT_INSN (insn);
349 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
350 return insn;
352 if (CALL_P (insn))
353 return NULL_RTX;
355 return NULL_RTX;
358 /* Reorganize the stack into ascending numbers, before this insn. */
360 static void
361 straighten_stack (rtx insn, stack regstack)
363 struct stack_def temp_stack;
364 int top;
366 /* If there is only a single register on the stack, then the stack is
367 already in increasing order and no reorganization is needed.
369 Similarly if the stack is empty. */
370 if (regstack->top <= 0)
371 return;
373 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
375 for (top = temp_stack.top = regstack->top; top >= 0; top--)
376 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
378 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
381 /* Pop a register from the stack. */
383 static void
384 pop_stack (stack regstack, int regno)
386 int top = regstack->top;
388 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
389 regstack->top--;
390 /* If regno was not at the top of stack then adjust stack. */
391 if (regstack->reg [top] != regno)
393 int i;
394 for (i = regstack->top; i >= 0; i--)
395 if (regstack->reg [i] == regno)
397 int j;
398 for (j = i; j < top; j++)
399 regstack->reg [j] = regstack->reg [j + 1];
400 break;
405 /* Return a pointer to the REG expression within PAT. If PAT is not a
406 REG, possible enclosed by a conversion rtx, return the inner part of
407 PAT that stopped the search. */
409 static rtx *
410 get_true_reg (rtx *pat)
412 for (;;)
413 switch (GET_CODE (*pat))
415 case SUBREG:
416 /* Eliminate FP subregister accesses in favor of the
417 actual FP register in use. */
419 rtx subreg;
420 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
422 int regno_off = subreg_regno_offset (REGNO (subreg),
423 GET_MODE (subreg),
424 SUBREG_BYTE (*pat),
425 GET_MODE (*pat));
426 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
427 GET_MODE (subreg));
428 return pat;
431 case FLOAT:
432 case FIX:
433 case FLOAT_EXTEND:
434 pat = & XEXP (*pat, 0);
435 break;
437 case UNSPEC:
438 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
439 pat = & XVECEXP (*pat, 0, 0);
440 return pat;
442 case FLOAT_TRUNCATE:
443 if (!flag_unsafe_math_optimizations)
444 return pat;
445 pat = & XEXP (*pat, 0);
446 break;
448 default:
449 return pat;
453 /* Set if we find any malformed asms in a block. */
454 static bool any_malformed_asm;
456 /* There are many rules that an asm statement for stack-like regs must
457 follow. Those rules are explained at the top of this file: the rule
458 numbers below refer to that explanation. */
460 static int
461 check_asm_stack_operands (rtx insn)
463 int i;
464 int n_clobbers;
465 int malformed_asm = 0;
466 rtx body = PATTERN (insn);
468 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
469 char implicitly_dies[FIRST_PSEUDO_REGISTER];
470 int alt;
472 rtx *clobber_reg = 0;
473 int n_inputs, n_outputs;
475 /* Find out what the constraints require. If no constraint
476 alternative matches, this asm is malformed. */
477 extract_insn (insn);
478 constrain_operands (1);
479 alt = which_alternative;
481 preprocess_constraints ();
483 n_inputs = get_asm_operand_n_inputs (body);
484 n_outputs = recog_data.n_operands - n_inputs;
486 if (alt < 0)
488 malformed_asm = 1;
489 /* Avoid further trouble with this insn. */
490 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
491 return 0;
494 /* Strip SUBREGs here to make the following code simpler. */
495 for (i = 0; i < recog_data.n_operands; i++)
496 if (GET_CODE (recog_data.operand[i]) == SUBREG
497 && REG_P (SUBREG_REG (recog_data.operand[i])))
498 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
500 /* Set up CLOBBER_REG. */
502 n_clobbers = 0;
504 if (GET_CODE (body) == PARALLEL)
506 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
508 for (i = 0; i < XVECLEN (body, 0); i++)
509 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
511 rtx clobber = XVECEXP (body, 0, i);
512 rtx reg = XEXP (clobber, 0);
514 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
515 reg = SUBREG_REG (reg);
517 if (STACK_REG_P (reg))
519 clobber_reg[n_clobbers] = reg;
520 n_clobbers++;
525 /* Enforce rule #4: Output operands must specifically indicate which
526 reg an output appears in after an asm. "=f" is not allowed: the
527 operand constraints must select a class with a single reg.
529 Also enforce rule #5: Output operands must start at the top of
530 the reg-stack: output operands may not "skip" a reg. */
532 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
533 for (i = 0; i < n_outputs; i++)
534 if (STACK_REG_P (recog_data.operand[i]))
536 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
538 error_for_asm (insn, "output constraint %d must specify a single register", i);
539 malformed_asm = 1;
541 else
543 int j;
545 for (j = 0; j < n_clobbers; j++)
546 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
548 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
549 i, reg_names [REGNO (clobber_reg[j])]);
550 malformed_asm = 1;
551 break;
553 if (j == n_clobbers)
554 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
559 /* Search for first non-popped reg. */
560 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
561 if (! reg_used_as_output[i])
562 break;
564 /* If there are any other popped regs, that's an error. */
565 for (; i < LAST_STACK_REG + 1; i++)
566 if (reg_used_as_output[i])
567 break;
569 if (i != LAST_STACK_REG + 1)
571 error_for_asm (insn, "output regs must be grouped at top of stack");
572 malformed_asm = 1;
575 /* Enforce rule #2: All implicitly popped input regs must be closer
576 to the top of the reg-stack than any input that is not implicitly
577 popped. */
579 memset (implicitly_dies, 0, sizeof (implicitly_dies));
580 for (i = n_outputs; i < n_outputs + n_inputs; i++)
581 if (STACK_REG_P (recog_data.operand[i]))
583 /* An input reg is implicitly popped if it is tied to an
584 output, or if there is a CLOBBER for it. */
585 int j;
587 for (j = 0; j < n_clobbers; j++)
588 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
589 break;
591 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
592 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
595 /* Search for first non-popped reg. */
596 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
597 if (! implicitly_dies[i])
598 break;
600 /* If there are any other popped regs, that's an error. */
601 for (; i < LAST_STACK_REG + 1; i++)
602 if (implicitly_dies[i])
603 break;
605 if (i != LAST_STACK_REG + 1)
607 error_for_asm (insn,
608 "implicitly popped regs must be grouped at top of stack");
609 malformed_asm = 1;
612 /* Enforce rule #3: If any input operand uses the "f" constraint, all
613 output constraints must use the "&" earlyclobber.
615 ??? Detect this more deterministically by having constrain_asm_operands
616 record any earlyclobber. */
618 for (i = n_outputs; i < n_outputs + n_inputs; i++)
619 if (recog_op_alt[i][alt].matches == -1)
621 int j;
623 for (j = 0; j < n_outputs; j++)
624 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
626 error_for_asm (insn,
627 "output operand %d must use %<&%> constraint", j);
628 malformed_asm = 1;
632 if (malformed_asm)
634 /* Avoid further trouble with this insn. */
635 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
636 any_malformed_asm = true;
637 return 0;
640 return 1;
643 /* Calculate the number of inputs and outputs in BODY, an
644 asm_operands. N_OPERANDS is the total number of operands, and
645 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
646 placed. */
648 static int
649 get_asm_operand_n_inputs (rtx body)
651 switch (GET_CODE (body))
653 case SET:
654 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
655 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
657 case ASM_OPERANDS:
658 return ASM_OPERANDS_INPUT_LENGTH (body);
660 case PARALLEL:
661 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
663 default:
664 gcc_unreachable ();
668 /* If current function returns its result in an fp stack register,
669 return the REG. Otherwise, return 0. */
671 static rtx
672 stack_result (tree decl)
674 rtx result;
676 /* If the value is supposed to be returned in memory, then clearly
677 it is not returned in a stack register. */
678 if (aggregate_value_p (DECL_RESULT (decl), decl))
679 return 0;
681 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
682 if (result != 0)
683 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
684 decl, true);
686 return result != 0 && STACK_REG_P (result) ? result : 0;
691 * This section deals with stack register substitution, and forms the second
692 * pass over the RTL.
695 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
696 the desired hard REGNO. */
698 static void
699 replace_reg (rtx *reg, int regno)
701 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
702 gcc_assert (STACK_REG_P (*reg));
704 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
705 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
707 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
710 /* Remove a note of type NOTE, which must be found, for register
711 number REGNO from INSN. Remove only one such note. */
713 static void
714 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
716 rtx *note_link, this;
718 note_link = &REG_NOTES (insn);
719 for (this = *note_link; this; this = XEXP (this, 1))
720 if (REG_NOTE_KIND (this) == note
721 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
723 *note_link = XEXP (this, 1);
724 return;
726 else
727 note_link = &XEXP (this, 1);
729 gcc_unreachable ();
732 /* Find the hard register number of virtual register REG in REGSTACK.
733 The hard register number is relative to the top of the stack. -1 is
734 returned if the register is not found. */
736 static int
737 get_hard_regnum (stack regstack, rtx reg)
739 int i;
741 gcc_assert (STACK_REG_P (reg));
743 for (i = regstack->top; i >= 0; i--)
744 if (regstack->reg[i] == REGNO (reg))
745 break;
747 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
750 /* Emit an insn to pop virtual register REG before or after INSN.
751 REGSTACK is the stack state after INSN and is updated to reflect this
752 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
753 is represented as a SET whose destination is the register to be popped
754 and source is the top of stack. A death note for the top of stack
755 cases the movdf pattern to pop. */
757 static rtx
758 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
760 rtx pop_insn, pop_rtx;
761 int hard_regno;
763 /* For complex types take care to pop both halves. These may survive in
764 CLOBBER and USE expressions. */
765 if (COMPLEX_MODE_P (GET_MODE (reg)))
767 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
768 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
770 pop_insn = NULL_RTX;
771 if (get_hard_regnum (regstack, reg1) >= 0)
772 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
773 if (get_hard_regnum (regstack, reg2) >= 0)
774 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
775 gcc_assert (pop_insn);
776 return pop_insn;
779 hard_regno = get_hard_regnum (regstack, reg);
781 gcc_assert (hard_regno >= FIRST_STACK_REG);
783 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
784 FP_MODE_REG (FIRST_STACK_REG, DFmode));
786 if (where == EMIT_AFTER)
787 pop_insn = emit_insn_after (pop_rtx, insn);
788 else
789 pop_insn = emit_insn_before (pop_rtx, insn);
791 REG_NOTES (pop_insn)
792 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
793 REG_NOTES (pop_insn));
795 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
796 = regstack->reg[regstack->top];
797 regstack->top -= 1;
798 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
800 return pop_insn;
803 /* Emit an insn before or after INSN to swap virtual register REG with
804 the top of stack. REGSTACK is the stack state before the swap, and
805 is updated to reflect the swap. A swap insn is represented as a
806 PARALLEL of two patterns: each pattern moves one reg to the other.
808 If REG is already at the top of the stack, no insn is emitted. */
810 static void
811 emit_swap_insn (rtx insn, stack regstack, rtx reg)
813 int hard_regno;
814 rtx swap_rtx;
815 int tmp, other_reg; /* swap regno temps */
816 rtx i1; /* the stack-reg insn prior to INSN */
817 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
819 hard_regno = get_hard_regnum (regstack, reg);
821 if (hard_regno == FIRST_STACK_REG)
822 return;
823 if (hard_regno == -1)
825 /* Something failed if the register wasn't on the stack. If we had
826 malformed asms, we zapped the instruction itself, but that didn't
827 produce the same pattern of register sets as before. To prevent
828 further failure, adjust REGSTACK to include REG at TOP. */
829 gcc_assert (any_malformed_asm);
830 regstack->reg[++regstack->top] = REGNO (reg);
831 return;
833 gcc_assert (hard_regno >= FIRST_STACK_REG);
835 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
837 tmp = regstack->reg[other_reg];
838 regstack->reg[other_reg] = regstack->reg[regstack->top];
839 regstack->reg[regstack->top] = tmp;
841 /* Find the previous insn involving stack regs, but don't pass a
842 block boundary. */
843 i1 = NULL;
844 if (current_block && insn != BB_HEAD (current_block))
846 rtx tmp = PREV_INSN (insn);
847 rtx limit = PREV_INSN (BB_HEAD (current_block));
848 while (tmp != limit)
850 if (LABEL_P (tmp)
851 || CALL_P (tmp)
852 || NOTE_INSN_BASIC_BLOCK_P (tmp)
853 || (NONJUMP_INSN_P (tmp)
854 && stack_regs_mentioned (tmp)))
856 i1 = tmp;
857 break;
859 tmp = PREV_INSN (tmp);
863 if (i1 != NULL_RTX
864 && (i1set = single_set (i1)) != NULL_RTX)
866 rtx i1src = *get_true_reg (&SET_SRC (i1set));
867 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
869 /* If the previous register stack push was from the reg we are to
870 swap with, omit the swap. */
872 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
873 && REG_P (i1src)
874 && REGNO (i1src) == (unsigned) hard_regno - 1
875 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
876 return;
878 /* If the previous insn wrote to the reg we are to swap with,
879 omit the swap. */
881 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
882 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
883 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
884 return;
887 /* Avoid emitting the swap if this is the first register stack insn
888 of the current_block. Instead update the current_block's stack_in
889 and let compensate edges take care of this for us. */
890 if (current_block && starting_stack_p)
892 BLOCK_INFO (current_block)->stack_in = *regstack;
893 starting_stack_p = false;
894 return;
897 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
898 FP_MODE_REG (FIRST_STACK_REG, XFmode));
900 if (i1)
901 emit_insn_after (swap_rtx, i1);
902 else if (current_block)
903 emit_insn_before (swap_rtx, BB_HEAD (current_block));
904 else
905 emit_insn_before (swap_rtx, insn);
908 /* Emit an insns before INSN to swap virtual register SRC1 with
909 the top of stack and virtual register SRC2 with second stack
910 slot. REGSTACK is the stack state before the swaps, and
911 is updated to reflect the swaps. A swap insn is represented as a
912 PARALLEL of two patterns: each pattern moves one reg to the other.
914 If SRC1 and/or SRC2 are already at the right place, no swap insn
915 is emitted. */
917 static void
918 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
920 struct stack_def temp_stack;
921 int regno, j, k, temp;
923 temp_stack = *regstack;
925 /* Place operand 1 at the top of stack. */
926 regno = get_hard_regnum (&temp_stack, src1);
927 gcc_assert (regno >= 0);
928 if (regno != FIRST_STACK_REG)
930 k = temp_stack.top - (regno - FIRST_STACK_REG);
931 j = temp_stack.top;
933 temp = temp_stack.reg[k];
934 temp_stack.reg[k] = temp_stack.reg[j];
935 temp_stack.reg[j] = temp;
938 /* Place operand 2 next on the stack. */
939 regno = get_hard_regnum (&temp_stack, src2);
940 gcc_assert (regno >= 0);
941 if (regno != FIRST_STACK_REG + 1)
943 k = temp_stack.top - (regno - FIRST_STACK_REG);
944 j = temp_stack.top - 1;
946 temp = temp_stack.reg[k];
947 temp_stack.reg[k] = temp_stack.reg[j];
948 temp_stack.reg[j] = temp;
951 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
954 /* Handle a move to or from a stack register in PAT, which is in INSN.
955 REGSTACK is the current stack. Return whether a control flow insn
956 was deleted in the process. */
958 static bool
959 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
961 rtx *psrc = get_true_reg (&SET_SRC (pat));
962 rtx *pdest = get_true_reg (&SET_DEST (pat));
963 rtx src, dest;
964 rtx note;
965 bool control_flow_insn_deleted = false;
967 src = *psrc; dest = *pdest;
969 if (STACK_REG_P (src) && STACK_REG_P (dest))
971 /* Write from one stack reg to another. If SRC dies here, then
972 just change the register mapping and delete the insn. */
974 note = find_regno_note (insn, REG_DEAD, REGNO (src));
975 if (note)
977 int i;
979 /* If this is a no-op move, there must not be a REG_DEAD note. */
980 gcc_assert (REGNO (src) != REGNO (dest));
982 for (i = regstack->top; i >= 0; i--)
983 if (regstack->reg[i] == REGNO (src))
984 break;
986 /* The destination must be dead, or life analysis is borked. */
987 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
989 /* If the source is not live, this is yet another case of
990 uninitialized variables. Load up a NaN instead. */
991 if (i < 0)
992 return move_nan_for_stack_reg (insn, regstack, dest);
994 /* It is possible that the dest is unused after this insn.
995 If so, just pop the src. */
997 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
998 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
999 else
1001 regstack->reg[i] = REGNO (dest);
1002 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1003 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1006 control_flow_insn_deleted |= control_flow_insn_p (insn);
1007 delete_insn (insn);
1008 return control_flow_insn_deleted;
1011 /* The source reg does not die. */
1013 /* If this appears to be a no-op move, delete it, or else it
1014 will confuse the machine description output patterns. But if
1015 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1016 for REG_UNUSED will not work for deleted insns. */
1018 if (REGNO (src) == REGNO (dest))
1020 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1021 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1023 control_flow_insn_deleted |= control_flow_insn_p (insn);
1024 delete_insn (insn);
1025 return control_flow_insn_deleted;
1028 /* The destination ought to be dead. */
1029 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1031 replace_reg (psrc, get_hard_regnum (regstack, src));
1033 regstack->reg[++regstack->top] = REGNO (dest);
1034 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1035 replace_reg (pdest, FIRST_STACK_REG);
1037 else if (STACK_REG_P (src))
1039 /* Save from a stack reg to MEM, or possibly integer reg. Since
1040 only top of stack may be saved, emit an exchange first if
1041 needs be. */
1043 emit_swap_insn (insn, regstack, src);
1045 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1046 if (note)
1048 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1049 regstack->top--;
1050 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1052 else if ((GET_MODE (src) == XFmode)
1053 && regstack->top < REG_STACK_SIZE - 1)
1055 /* A 387 cannot write an XFmode value to a MEM without
1056 clobbering the source reg. The output code can handle
1057 this by reading back the value from the MEM.
1058 But it is more efficient to use a temp register if one is
1059 available. Push the source value here if the register
1060 stack is not full, and then write the value to memory via
1061 a pop. */
1062 rtx push_rtx;
1063 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1065 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1066 emit_insn_before (push_rtx, insn);
1067 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1068 REG_NOTES (insn));
1071 replace_reg (psrc, FIRST_STACK_REG);
1073 else
1075 rtx pat = PATTERN (insn);
1077 gcc_assert (STACK_REG_P (dest));
1079 /* Load from MEM, or possibly integer REG or constant, into the
1080 stack regs. The actual target is always the top of the
1081 stack. The stack mapping is changed to reflect that DEST is
1082 now at top of stack. */
1084 /* The destination ought to be dead. However, there is a
1085 special case with i387 UNSPEC_TAN, where destination is live
1086 (an argument to fptan) but inherent load of 1.0 is modelled
1087 as a load from a constant. */
1088 if (! (GET_CODE (pat) == PARALLEL
1089 && XVECLEN (pat, 0) == 2
1090 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1091 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1092 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN))
1093 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1095 gcc_assert (regstack->top < REG_STACK_SIZE);
1097 regstack->reg[++regstack->top] = REGNO (dest);
1098 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1099 replace_reg (pdest, FIRST_STACK_REG);
1102 return control_flow_insn_deleted;
1105 /* A helper function which replaces INSN with a pattern that loads up
1106 a NaN into DEST, then invokes move_for_stack_reg. */
1108 static bool
1109 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1111 rtx pat;
1113 dest = FP_MODE_REG (REGNO (dest), SFmode);
1114 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1115 PATTERN (insn) = pat;
1116 INSN_CODE (insn) = -1;
1118 return move_for_stack_reg (insn, regstack, pat);
1121 /* Swap the condition on a branch, if there is one. Return true if we
1122 found a condition to swap. False if the condition was not used as
1123 such. */
1125 static int
1126 swap_rtx_condition_1 (rtx pat)
1128 const char *fmt;
1129 int i, r = 0;
1131 if (COMPARISON_P (pat))
1133 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1134 r = 1;
1136 else
1138 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1139 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1141 if (fmt[i] == 'E')
1143 int j;
1145 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1146 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1148 else if (fmt[i] == 'e')
1149 r |= swap_rtx_condition_1 (XEXP (pat, i));
1153 return r;
1156 static int
1157 swap_rtx_condition (rtx insn)
1159 rtx pat = PATTERN (insn);
1161 /* We're looking for a single set to cc0 or an HImode temporary. */
1163 if (GET_CODE (pat) == SET
1164 && REG_P (SET_DEST (pat))
1165 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1167 insn = next_flags_user (insn);
1168 if (insn == NULL_RTX)
1169 return 0;
1170 pat = PATTERN (insn);
1173 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1174 with the cc value right now. We may be able to search for one
1175 though. */
1177 if (GET_CODE (pat) == SET
1178 && GET_CODE (SET_SRC (pat)) == UNSPEC
1179 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1181 rtx dest = SET_DEST (pat);
1183 /* Search forward looking for the first use of this value.
1184 Stop at block boundaries. */
1185 while (insn != BB_END (current_block))
1187 insn = NEXT_INSN (insn);
1188 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1189 break;
1190 if (CALL_P (insn))
1191 return 0;
1194 /* We haven't found it. */
1195 if (insn == BB_END (current_block))
1196 return 0;
1198 /* So we've found the insn using this value. If it is anything
1199 other than sahf or the value does not die (meaning we'd have
1200 to search further), then we must give up. */
1201 pat = PATTERN (insn);
1202 if (GET_CODE (pat) != SET
1203 || GET_CODE (SET_SRC (pat)) != UNSPEC
1204 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1205 || ! dead_or_set_p (insn, dest))
1206 return 0;
1208 /* Now we are prepared to handle this as a normal cc0 setter. */
1209 insn = next_flags_user (insn);
1210 if (insn == NULL_RTX)
1211 return 0;
1212 pat = PATTERN (insn);
1215 if (swap_rtx_condition_1 (pat))
1217 int fail = 0;
1218 INSN_CODE (insn) = -1;
1219 if (recog_memoized (insn) == -1)
1220 fail = 1;
1221 /* In case the flags don't die here, recurse to try fix
1222 following user too. */
1223 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1225 insn = next_flags_user (insn);
1226 if (!insn || !swap_rtx_condition (insn))
1227 fail = 1;
1229 if (fail)
1231 swap_rtx_condition_1 (pat);
1232 return 0;
1234 return 1;
1236 return 0;
1239 /* Handle a comparison. Special care needs to be taken to avoid
1240 causing comparisons that a 387 cannot do correctly, such as EQ.
1242 Also, a pop insn may need to be emitted. The 387 does have an
1243 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1244 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1245 set up. */
1247 static void
1248 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1250 rtx *src1, *src2;
1251 rtx src1_note, src2_note;
1253 src1 = get_true_reg (&XEXP (pat_src, 0));
1254 src2 = get_true_reg (&XEXP (pat_src, 1));
1256 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1257 registers that die in this insn - move those to stack top first. */
1258 if ((! STACK_REG_P (*src1)
1259 || (STACK_REG_P (*src2)
1260 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1261 && swap_rtx_condition (insn))
1263 rtx temp;
1264 temp = XEXP (pat_src, 0);
1265 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1266 XEXP (pat_src, 1) = temp;
1268 src1 = get_true_reg (&XEXP (pat_src, 0));
1269 src2 = get_true_reg (&XEXP (pat_src, 1));
1271 INSN_CODE (insn) = -1;
1274 /* We will fix any death note later. */
1276 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1278 if (STACK_REG_P (*src2))
1279 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1280 else
1281 src2_note = NULL_RTX;
1283 emit_swap_insn (insn, regstack, *src1);
1285 replace_reg (src1, FIRST_STACK_REG);
1287 if (STACK_REG_P (*src2))
1288 replace_reg (src2, get_hard_regnum (regstack, *src2));
1290 if (src1_note)
1292 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1293 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1296 /* If the second operand dies, handle that. But if the operands are
1297 the same stack register, don't bother, because only one death is
1298 needed, and it was just handled. */
1300 if (src2_note
1301 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1302 && REGNO (*src1) == REGNO (*src2)))
1304 /* As a special case, two regs may die in this insn if src2 is
1305 next to top of stack and the top of stack also dies. Since
1306 we have already popped src1, "next to top of stack" is really
1307 at top (FIRST_STACK_REG) now. */
1309 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1310 && src1_note)
1312 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1313 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1315 else
1317 /* The 386 can only represent death of the first operand in
1318 the case handled above. In all other cases, emit a separate
1319 pop and remove the death note from here. */
1321 /* link_cc0_insns (insn); */
1323 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1325 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1326 EMIT_AFTER);
1331 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1332 is the current register layout. Return whether a control flow insn
1333 was deleted in the process. */
1335 static bool
1336 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1338 rtx *dest, *src;
1339 bool control_flow_insn_deleted = false;
1341 switch (GET_CODE (pat))
1343 case USE:
1344 /* Deaths in USE insns can happen in non optimizing compilation.
1345 Handle them by popping the dying register. */
1346 src = get_true_reg (&XEXP (pat, 0));
1347 if (STACK_REG_P (*src)
1348 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1350 /* USEs are ignored for liveness information so USEs of dead
1351 register might happen. */
1352 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1353 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1354 return control_flow_insn_deleted;
1356 /* Uninitialized USE might happen for functions returning uninitialized
1357 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1358 so it is safe to ignore the use here. This is consistent with behavior
1359 of dataflow analyzer that ignores USE too. (This also imply that
1360 forcibly initializing the register to NaN here would lead to ICE later,
1361 since the REG_DEAD notes are not issued.) */
1362 break;
1364 case CLOBBER:
1366 rtx note;
1368 dest = get_true_reg (&XEXP (pat, 0));
1369 if (STACK_REG_P (*dest))
1371 note = find_reg_note (insn, REG_DEAD, *dest);
1373 if (pat != PATTERN (insn))
1375 /* The fix_truncdi_1 pattern wants to be able to allocate
1376 its own scratch register. It does this by clobbering
1377 an fp reg so that it is assured of an empty reg-stack
1378 register. If the register is live, kill it now.
1379 Remove the DEAD/UNUSED note so we don't try to kill it
1380 later too. */
1382 if (note)
1383 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1384 else
1386 note = find_reg_note (insn, REG_UNUSED, *dest);
1387 gcc_assert (note);
1389 remove_note (insn, note);
1390 replace_reg (dest, FIRST_STACK_REG + 1);
1392 else
1394 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1395 indicates an uninitialized value. Because reload removed
1396 all other clobbers, this must be due to a function
1397 returning without a value. Load up a NaN. */
1399 if (!note)
1401 rtx t = *dest;
1402 if (COMPLEX_MODE_P (GET_MODE (t)))
1404 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1405 if (get_hard_regnum (regstack, u) == -1)
1407 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1408 rtx insn2 = emit_insn_before (pat2, insn);
1409 control_flow_insn_deleted
1410 |= move_nan_for_stack_reg (insn2, regstack, u);
1413 if (get_hard_regnum (regstack, t) == -1)
1414 control_flow_insn_deleted
1415 |= move_nan_for_stack_reg (insn, regstack, t);
1419 break;
1422 case SET:
1424 rtx *src1 = (rtx *) 0, *src2;
1425 rtx src1_note, src2_note;
1426 rtx pat_src;
1428 dest = get_true_reg (&SET_DEST (pat));
1429 src = get_true_reg (&SET_SRC (pat));
1430 pat_src = SET_SRC (pat);
1432 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1433 if (STACK_REG_P (*src)
1434 || (STACK_REG_P (*dest)
1435 && (REG_P (*src) || MEM_P (*src)
1436 || GET_CODE (*src) == CONST_DOUBLE)))
1438 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1439 break;
1442 switch (GET_CODE (pat_src))
1444 case COMPARE:
1445 compare_for_stack_reg (insn, regstack, pat_src);
1446 break;
1448 case CALL:
1450 int count;
1451 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1452 --count >= 0;)
1454 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1455 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1458 replace_reg (dest, FIRST_STACK_REG);
1459 break;
1461 case REG:
1462 /* This is a `tstM2' case. */
1463 gcc_assert (*dest == cc0_rtx);
1464 src1 = src;
1466 /* Fall through. */
1468 case FLOAT_TRUNCATE:
1469 case SQRT:
1470 case ABS:
1471 case NEG:
1472 /* These insns only operate on the top of the stack. DEST might
1473 be cc0_rtx if we're processing a tstM pattern. Also, it's
1474 possible that the tstM case results in a REG_DEAD note on the
1475 source. */
1477 if (src1 == 0)
1478 src1 = get_true_reg (&XEXP (pat_src, 0));
1480 emit_swap_insn (insn, regstack, *src1);
1482 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1484 if (STACK_REG_P (*dest))
1485 replace_reg (dest, FIRST_STACK_REG);
1487 if (src1_note)
1489 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1490 regstack->top--;
1491 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1494 replace_reg (src1, FIRST_STACK_REG);
1495 break;
1497 case MINUS:
1498 case DIV:
1499 /* On i386, reversed forms of subM3 and divM3 exist for
1500 MODE_FLOAT, so the same code that works for addM3 and mulM3
1501 can be used. */
1502 case MULT:
1503 case PLUS:
1504 /* These insns can accept the top of stack as a destination
1505 from a stack reg or mem, or can use the top of stack as a
1506 source and some other stack register (possibly top of stack)
1507 as a destination. */
1509 src1 = get_true_reg (&XEXP (pat_src, 0));
1510 src2 = get_true_reg (&XEXP (pat_src, 1));
1512 /* We will fix any death note later. */
1514 if (STACK_REG_P (*src1))
1515 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1516 else
1517 src1_note = NULL_RTX;
1518 if (STACK_REG_P (*src2))
1519 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1520 else
1521 src2_note = NULL_RTX;
1523 /* If either operand is not a stack register, then the dest
1524 must be top of stack. */
1526 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1527 emit_swap_insn (insn, regstack, *dest);
1528 else
1530 /* Both operands are REG. If neither operand is already
1531 at the top of stack, choose to make the one that is the dest
1532 the new top of stack. */
1534 int src1_hard_regnum, src2_hard_regnum;
1536 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1537 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1538 gcc_assert (src1_hard_regnum != -1);
1539 gcc_assert (src2_hard_regnum != -1);
1541 if (src1_hard_regnum != FIRST_STACK_REG
1542 && src2_hard_regnum != FIRST_STACK_REG)
1543 emit_swap_insn (insn, regstack, *dest);
1546 if (STACK_REG_P (*src1))
1547 replace_reg (src1, get_hard_regnum (regstack, *src1));
1548 if (STACK_REG_P (*src2))
1549 replace_reg (src2, get_hard_regnum (regstack, *src2));
1551 if (src1_note)
1553 rtx src1_reg = XEXP (src1_note, 0);
1555 /* If the register that dies is at the top of stack, then
1556 the destination is somewhere else - merely substitute it.
1557 But if the reg that dies is not at top of stack, then
1558 move the top of stack to the dead reg, as though we had
1559 done the insn and then a store-with-pop. */
1561 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1563 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1564 replace_reg (dest, get_hard_regnum (regstack, *dest));
1566 else
1568 int regno = get_hard_regnum (regstack, src1_reg);
1570 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1571 replace_reg (dest, regno);
1573 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1574 = regstack->reg[regstack->top];
1577 CLEAR_HARD_REG_BIT (regstack->reg_set,
1578 REGNO (XEXP (src1_note, 0)));
1579 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1580 regstack->top--;
1582 else if (src2_note)
1584 rtx src2_reg = XEXP (src2_note, 0);
1585 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1587 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1588 replace_reg (dest, get_hard_regnum (regstack, *dest));
1590 else
1592 int regno = get_hard_regnum (regstack, src2_reg);
1594 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1595 replace_reg (dest, regno);
1597 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1598 = regstack->reg[regstack->top];
1601 CLEAR_HARD_REG_BIT (regstack->reg_set,
1602 REGNO (XEXP (src2_note, 0)));
1603 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1604 regstack->top--;
1606 else
1608 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1609 replace_reg (dest, get_hard_regnum (regstack, *dest));
1612 /* Keep operand 1 matching with destination. */
1613 if (COMMUTATIVE_ARITH_P (pat_src)
1614 && REG_P (*src1) && REG_P (*src2)
1615 && REGNO (*src1) != REGNO (*dest))
1617 int tmp = REGNO (*src1);
1618 replace_reg (src1, REGNO (*src2));
1619 replace_reg (src2, tmp);
1621 break;
1623 case UNSPEC:
1624 switch (XINT (pat_src, 1))
1626 case UNSPEC_FIST:
1628 case UNSPEC_FIST_FLOOR:
1629 case UNSPEC_FIST_CEIL:
1631 /* These insns only operate on the top of the stack. */
1633 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1634 emit_swap_insn (insn, regstack, *src1);
1636 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1638 if (STACK_REG_P (*dest))
1639 replace_reg (dest, FIRST_STACK_REG);
1641 if (src1_note)
1643 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1644 regstack->top--;
1645 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1648 replace_reg (src1, FIRST_STACK_REG);
1649 break;
1651 case UNSPEC_FXAM:
1653 /* This insn only operate on the top of the stack. */
1655 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1656 emit_swap_insn (insn, regstack, *src1);
1658 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1660 replace_reg (src1, FIRST_STACK_REG);
1662 if (src1_note)
1664 remove_regno_note (insn, REG_DEAD,
1665 REGNO (XEXP (src1_note, 0)));
1666 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1667 EMIT_AFTER);
1670 break;
1672 case UNSPEC_SIN:
1673 case UNSPEC_COS:
1674 case UNSPEC_FRNDINT:
1675 case UNSPEC_F2XM1:
1677 case UNSPEC_FRNDINT_FLOOR:
1678 case UNSPEC_FRNDINT_CEIL:
1679 case UNSPEC_FRNDINT_TRUNC:
1680 case UNSPEC_FRNDINT_MASK_PM:
1682 /* Above insns operate on the top of the stack. */
1684 case UNSPEC_SINCOS_COS:
1685 case UNSPEC_XTRACT_FRACT:
1687 /* Above insns operate on the top two stack slots,
1688 first part of one input, double output insn. */
1690 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1692 emit_swap_insn (insn, regstack, *src1);
1694 /* Input should never die, it is replaced with output. */
1695 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1696 gcc_assert (!src1_note);
1698 if (STACK_REG_P (*dest))
1699 replace_reg (dest, FIRST_STACK_REG);
1701 replace_reg (src1, FIRST_STACK_REG);
1702 break;
1704 case UNSPEC_SINCOS_SIN:
1705 case UNSPEC_XTRACT_EXP:
1707 /* These insns operate on the top two stack slots,
1708 second part of one input, double output insn. */
1710 regstack->top++;
1711 /* FALLTHRU */
1713 case UNSPEC_TAN:
1715 /* For UNSPEC_TAN, regstack->top is already increased
1716 by inherent load of constant 1.0. */
1718 /* Output value is generated in the second stack slot.
1719 Move current value from second slot to the top. */
1720 regstack->reg[regstack->top]
1721 = regstack->reg[regstack->top - 1];
1723 gcc_assert (STACK_REG_P (*dest));
1725 regstack->reg[regstack->top - 1] = REGNO (*dest);
1726 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1727 replace_reg (dest, FIRST_STACK_REG + 1);
1729 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1731 replace_reg (src1, FIRST_STACK_REG);
1732 break;
1734 case UNSPEC_FPATAN:
1735 case UNSPEC_FYL2X:
1736 case UNSPEC_FYL2XP1:
1737 /* These insns operate on the top two stack slots. */
1739 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1740 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1742 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1743 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1745 swap_to_top (insn, regstack, *src1, *src2);
1747 replace_reg (src1, FIRST_STACK_REG);
1748 replace_reg (src2, FIRST_STACK_REG + 1);
1750 if (src1_note)
1751 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1752 if (src2_note)
1753 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1755 /* Pop both input operands from the stack. */
1756 CLEAR_HARD_REG_BIT (regstack->reg_set,
1757 regstack->reg[regstack->top]);
1758 CLEAR_HARD_REG_BIT (regstack->reg_set,
1759 regstack->reg[regstack->top - 1]);
1760 regstack->top -= 2;
1762 /* Push the result back onto the stack. */
1763 regstack->reg[++regstack->top] = REGNO (*dest);
1764 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1765 replace_reg (dest, FIRST_STACK_REG);
1766 break;
1768 case UNSPEC_FSCALE_FRACT:
1769 case UNSPEC_FPREM_F:
1770 case UNSPEC_FPREM1_F:
1771 /* These insns operate on the top two stack slots,
1772 first part of double input, double output insn. */
1774 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1775 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1777 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1778 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1780 /* Inputs should never die, they are
1781 replaced with outputs. */
1782 gcc_assert (!src1_note);
1783 gcc_assert (!src2_note);
1785 swap_to_top (insn, regstack, *src1, *src2);
1787 /* Push the result back onto stack. Empty stack slot
1788 will be filled in second part of insn. */
1789 if (STACK_REG_P (*dest))
1791 regstack->reg[regstack->top] = REGNO (*dest);
1792 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1793 replace_reg (dest, FIRST_STACK_REG);
1796 replace_reg (src1, FIRST_STACK_REG);
1797 replace_reg (src2, FIRST_STACK_REG + 1);
1798 break;
1800 case UNSPEC_FSCALE_EXP:
1801 case UNSPEC_FPREM_U:
1802 case UNSPEC_FPREM1_U:
1803 /* These insns operate on the top two stack slots,
1804 second part of double input, double output insn. */
1806 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1807 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1809 /* Push the result back onto stack. Fill empty slot from
1810 first part of insn and fix top of stack pointer. */
1811 if (STACK_REG_P (*dest))
1813 regstack->reg[regstack->top - 1] = REGNO (*dest);
1814 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1815 replace_reg (dest, FIRST_STACK_REG + 1);
1818 replace_reg (src1, FIRST_STACK_REG);
1819 replace_reg (src2, FIRST_STACK_REG + 1);
1820 break;
1822 case UNSPEC_C2_FLAG:
1823 /* This insn operates on the top two stack slots,
1824 third part of C2 setting double input insn. */
1826 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1827 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1829 replace_reg (src1, FIRST_STACK_REG);
1830 replace_reg (src2, FIRST_STACK_REG + 1);
1831 break;
1833 case UNSPEC_SAHF:
1834 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1835 The combination matches the PPRO fcomi instruction. */
1837 pat_src = XVECEXP (pat_src, 0, 0);
1838 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1839 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1840 /* Fall through. */
1842 case UNSPEC_FNSTSW:
1843 /* Combined fcomp+fnstsw generated for doing well with
1844 CSE. When optimizing this would have been broken
1845 up before now. */
1847 pat_src = XVECEXP (pat_src, 0, 0);
1848 gcc_assert (GET_CODE (pat_src) == COMPARE);
1850 compare_for_stack_reg (insn, regstack, pat_src);
1851 break;
1853 default:
1854 gcc_unreachable ();
1856 break;
1858 case IF_THEN_ELSE:
1859 /* This insn requires the top of stack to be the destination. */
1861 src1 = get_true_reg (&XEXP (pat_src, 1));
1862 src2 = get_true_reg (&XEXP (pat_src, 2));
1864 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1865 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1867 /* If the comparison operator is an FP comparison operator,
1868 it is handled correctly by compare_for_stack_reg () who
1869 will move the destination to the top of stack. But if the
1870 comparison operator is not an FP comparison operator, we
1871 have to handle it here. */
1872 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1873 && REGNO (*dest) != regstack->reg[regstack->top])
1875 /* In case one of operands is the top of stack and the operands
1876 dies, it is safe to make it the destination operand by
1877 reversing the direction of cmove and avoid fxch. */
1878 if ((REGNO (*src1) == regstack->reg[regstack->top]
1879 && src1_note)
1880 || (REGNO (*src2) == regstack->reg[regstack->top]
1881 && src2_note))
1883 int idx1 = (get_hard_regnum (regstack, *src1)
1884 - FIRST_STACK_REG);
1885 int idx2 = (get_hard_regnum (regstack, *src2)
1886 - FIRST_STACK_REG);
1888 /* Make reg-stack believe that the operands are already
1889 swapped on the stack */
1890 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1891 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1893 /* Reverse condition to compensate the operand swap.
1894 i386 do have comparison always reversible. */
1895 PUT_CODE (XEXP (pat_src, 0),
1896 reversed_comparison_code (XEXP (pat_src, 0), insn));
1898 else
1899 emit_swap_insn (insn, regstack, *dest);
1903 rtx src_note [3];
1904 int i;
1906 src_note[0] = 0;
1907 src_note[1] = src1_note;
1908 src_note[2] = src2_note;
1910 if (STACK_REG_P (*src1))
1911 replace_reg (src1, get_hard_regnum (regstack, *src1));
1912 if (STACK_REG_P (*src2))
1913 replace_reg (src2, get_hard_regnum (regstack, *src2));
1915 for (i = 1; i <= 2; i++)
1916 if (src_note [i])
1918 int regno = REGNO (XEXP (src_note[i], 0));
1920 /* If the register that dies is not at the top of
1921 stack, then move the top of stack to the dead reg.
1922 Top of stack should never die, as it is the
1923 destination. */
1924 gcc_assert (regno != regstack->reg[regstack->top]);
1925 remove_regno_note (insn, REG_DEAD, regno);
1926 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1927 EMIT_AFTER);
1931 /* Make dest the top of stack. Add dest to regstack if
1932 not present. */
1933 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1934 regstack->reg[++regstack->top] = REGNO (*dest);
1935 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1936 replace_reg (dest, FIRST_STACK_REG);
1937 break;
1939 default:
1940 gcc_unreachable ();
1942 break;
1945 default:
1946 break;
1949 return control_flow_insn_deleted;
1952 /* Substitute hard regnums for any stack regs in INSN, which has
1953 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1954 before the insn, and is updated with changes made here.
1956 There are several requirements and assumptions about the use of
1957 stack-like regs in asm statements. These rules are enforced by
1958 record_asm_stack_regs; see comments there for details. Any
1959 asm_operands left in the RTL at this point may be assume to meet the
1960 requirements, since record_asm_stack_regs removes any problem asm. */
1962 static void
1963 subst_asm_stack_regs (rtx insn, stack regstack)
1965 rtx body = PATTERN (insn);
1966 int alt;
1968 rtx *note_reg; /* Array of note contents */
1969 rtx **note_loc; /* Address of REG field of each note */
1970 enum reg_note *note_kind; /* The type of each note */
1972 rtx *clobber_reg = 0;
1973 rtx **clobber_loc = 0;
1975 struct stack_def temp_stack;
1976 int n_notes;
1977 int n_clobbers;
1978 rtx note;
1979 int i;
1980 int n_inputs, n_outputs;
1982 if (! check_asm_stack_operands (insn))
1983 return;
1985 /* Find out what the constraints required. If no constraint
1986 alternative matches, that is a compiler bug: we should have caught
1987 such an insn in check_asm_stack_operands. */
1988 extract_insn (insn);
1989 constrain_operands (1);
1990 alt = which_alternative;
1992 preprocess_constraints ();
1994 n_inputs = get_asm_operand_n_inputs (body);
1995 n_outputs = recog_data.n_operands - n_inputs;
1997 gcc_assert (alt >= 0);
1999 /* Strip SUBREGs here to make the following code simpler. */
2000 for (i = 0; i < recog_data.n_operands; i++)
2001 if (GET_CODE (recog_data.operand[i]) == SUBREG
2002 && REG_P (SUBREG_REG (recog_data.operand[i])))
2004 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2005 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2008 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2010 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2011 i++;
2013 note_reg = alloca (i * sizeof (rtx));
2014 note_loc = alloca (i * sizeof (rtx *));
2015 note_kind = alloca (i * sizeof (enum reg_note));
2017 n_notes = 0;
2018 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2020 rtx reg = XEXP (note, 0);
2021 rtx *loc = & XEXP (note, 0);
2023 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2025 loc = & SUBREG_REG (reg);
2026 reg = SUBREG_REG (reg);
2029 if (STACK_REG_P (reg)
2030 && (REG_NOTE_KIND (note) == REG_DEAD
2031 || REG_NOTE_KIND (note) == REG_UNUSED))
2033 note_reg[n_notes] = reg;
2034 note_loc[n_notes] = loc;
2035 note_kind[n_notes] = REG_NOTE_KIND (note);
2036 n_notes++;
2040 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2042 n_clobbers = 0;
2044 if (GET_CODE (body) == PARALLEL)
2046 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2047 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2049 for (i = 0; i < XVECLEN (body, 0); i++)
2050 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2052 rtx clobber = XVECEXP (body, 0, i);
2053 rtx reg = XEXP (clobber, 0);
2054 rtx *loc = & XEXP (clobber, 0);
2056 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2058 loc = & SUBREG_REG (reg);
2059 reg = SUBREG_REG (reg);
2062 if (STACK_REG_P (reg))
2064 clobber_reg[n_clobbers] = reg;
2065 clobber_loc[n_clobbers] = loc;
2066 n_clobbers++;
2071 temp_stack = *regstack;
2073 /* Put the input regs into the desired place in TEMP_STACK. */
2075 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2076 if (STACK_REG_P (recog_data.operand[i])
2077 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2078 FLOAT_REGS)
2079 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2081 /* If an operand needs to be in a particular reg in
2082 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2083 these constraints are for single register classes, and
2084 reload guaranteed that operand[i] is already in that class,
2085 we can just use REGNO (recog_data.operand[i]) to know which
2086 actual reg this operand needs to be in. */
2088 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2090 gcc_assert (regno >= 0);
2092 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2094 /* recog_data.operand[i] is not in the right place. Find
2095 it and swap it with whatever is already in I's place.
2096 K is where recog_data.operand[i] is now. J is where it
2097 should be. */
2098 int j, k, temp;
2100 k = temp_stack.top - (regno - FIRST_STACK_REG);
2101 j = (temp_stack.top
2102 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2104 temp = temp_stack.reg[k];
2105 temp_stack.reg[k] = temp_stack.reg[j];
2106 temp_stack.reg[j] = temp;
2110 /* Emit insns before INSN to make sure the reg-stack is in the right
2111 order. */
2113 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2115 /* Make the needed input register substitutions. Do death notes and
2116 clobbers too, because these are for inputs, not outputs. */
2118 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2119 if (STACK_REG_P (recog_data.operand[i]))
2121 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2123 gcc_assert (regnum >= 0);
2125 replace_reg (recog_data.operand_loc[i], regnum);
2128 for (i = 0; i < n_notes; i++)
2129 if (note_kind[i] == REG_DEAD)
2131 int regnum = get_hard_regnum (regstack, note_reg[i]);
2133 gcc_assert (regnum >= 0);
2135 replace_reg (note_loc[i], regnum);
2138 for (i = 0; i < n_clobbers; i++)
2140 /* It's OK for a CLOBBER to reference a reg that is not live.
2141 Don't try to replace it in that case. */
2142 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2144 if (regnum >= 0)
2146 /* Sigh - clobbers always have QImode. But replace_reg knows
2147 that these regs can't be MODE_INT and will assert. Just put
2148 the right reg there without calling replace_reg. */
2150 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2154 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2156 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2157 if (STACK_REG_P (recog_data.operand[i]))
2159 /* An input reg is implicitly popped if it is tied to an
2160 output, or if there is a CLOBBER for it. */
2161 int j;
2163 for (j = 0; j < n_clobbers; j++)
2164 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2165 break;
2167 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2169 /* recog_data.operand[i] might not be at the top of stack.
2170 But that's OK, because all we need to do is pop the
2171 right number of regs off of the top of the reg-stack.
2172 record_asm_stack_regs guaranteed that all implicitly
2173 popped regs were grouped at the top of the reg-stack. */
2175 CLEAR_HARD_REG_BIT (regstack->reg_set,
2176 regstack->reg[regstack->top]);
2177 regstack->top--;
2181 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2182 Note that there isn't any need to substitute register numbers.
2183 ??? Explain why this is true. */
2185 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2187 /* See if there is an output for this hard reg. */
2188 int j;
2190 for (j = 0; j < n_outputs; j++)
2191 if (STACK_REG_P (recog_data.operand[j])
2192 && REGNO (recog_data.operand[j]) == (unsigned) i)
2194 regstack->reg[++regstack->top] = i;
2195 SET_HARD_REG_BIT (regstack->reg_set, i);
2196 break;
2200 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2201 input that the asm didn't implicitly pop. If the asm didn't
2202 implicitly pop an input reg, that reg will still be live.
2204 Note that we can't use find_regno_note here: the register numbers
2205 in the death notes have already been substituted. */
2207 for (i = 0; i < n_outputs; i++)
2208 if (STACK_REG_P (recog_data.operand[i]))
2210 int j;
2212 for (j = 0; j < n_notes; j++)
2213 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2214 && note_kind[j] == REG_UNUSED)
2216 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2217 EMIT_AFTER);
2218 break;
2222 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2223 if (STACK_REG_P (recog_data.operand[i]))
2225 int j;
2227 for (j = 0; j < n_notes; j++)
2228 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2229 && note_kind[j] == REG_DEAD
2230 && TEST_HARD_REG_BIT (regstack->reg_set,
2231 REGNO (recog_data.operand[i])))
2233 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2234 EMIT_AFTER);
2235 break;
2240 /* Substitute stack hard reg numbers for stack virtual registers in
2241 INSN. Non-stack register numbers are not changed. REGSTACK is the
2242 current stack content. Insns may be emitted as needed to arrange the
2243 stack for the 387 based on the contents of the insn. Return whether
2244 a control flow insn was deleted in the process. */
2246 static bool
2247 subst_stack_regs (rtx insn, stack regstack)
2249 rtx *note_link, note;
2250 bool control_flow_insn_deleted = false;
2251 int i;
2253 if (CALL_P (insn))
2255 int top = regstack->top;
2257 /* If there are any floating point parameters to be passed in
2258 registers for this call, make sure they are in the right
2259 order. */
2261 if (top >= 0)
2263 straighten_stack (insn, regstack);
2265 /* Now mark the arguments as dead after the call. */
2267 while (regstack->top >= 0)
2269 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2270 regstack->top--;
2275 /* Do the actual substitution if any stack regs are mentioned.
2276 Since we only record whether entire insn mentions stack regs, and
2277 subst_stack_regs_pat only works for patterns that contain stack regs,
2278 we must check each pattern in a parallel here. A call_value_pop could
2279 fail otherwise. */
2281 if (stack_regs_mentioned (insn))
2283 int n_operands = asm_noperands (PATTERN (insn));
2284 if (n_operands >= 0)
2286 /* This insn is an `asm' with operands. Decode the operands,
2287 decide how many are inputs, and do register substitution.
2288 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2290 subst_asm_stack_regs (insn, regstack);
2291 return control_flow_insn_deleted;
2294 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2295 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2297 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2299 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2300 XVECEXP (PATTERN (insn), 0, i)
2301 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2302 control_flow_insn_deleted
2303 |= subst_stack_regs_pat (insn, regstack,
2304 XVECEXP (PATTERN (insn), 0, i));
2307 else
2308 control_flow_insn_deleted
2309 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2312 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2313 REG_UNUSED will already have been dealt with, so just return. */
2315 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2316 return control_flow_insn_deleted;
2318 /* If this a noreturn call, we can't insert pop insns after it.
2319 Instead, reset the stack state to empty. */
2320 if (CALL_P (insn)
2321 && find_reg_note (insn, REG_NORETURN, NULL))
2323 regstack->top = -1;
2324 CLEAR_HARD_REG_SET (regstack->reg_set);
2325 return control_flow_insn_deleted;
2328 /* If there is a REG_UNUSED note on a stack register on this insn,
2329 the indicated reg must be popped. The REG_UNUSED note is removed,
2330 since the form of the newly emitted pop insn references the reg,
2331 making it no longer `unset'. */
2333 note_link = &REG_NOTES (insn);
2334 for (note = *note_link; note; note = XEXP (note, 1))
2335 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2337 *note_link = XEXP (note, 1);
2338 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2340 else
2341 note_link = &XEXP (note, 1);
2343 return control_flow_insn_deleted;
2346 /* Change the organization of the stack so that it fits a new basic
2347 block. Some registers might have to be popped, but there can never be
2348 a register live in the new block that is not now live.
2350 Insert any needed insns before or after INSN, as indicated by
2351 WHERE. OLD is the original stack layout, and NEW is the desired
2352 form. OLD is updated to reflect the code emitted, i.e., it will be
2353 the same as NEW upon return.
2355 This function will not preserve block_end[]. But that information
2356 is no longer needed once this has executed. */
2358 static void
2359 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2361 int reg;
2362 int update_end = 0;
2363 int i;
2365 /* Stack adjustments for the first insn in a block update the
2366 current_block's stack_in instead of inserting insns directly.
2367 compensate_edges will add the necessary code later. */
2368 if (current_block
2369 && starting_stack_p
2370 && where == EMIT_BEFORE)
2372 BLOCK_INFO (current_block)->stack_in = *new;
2373 starting_stack_p = false;
2374 *old = *new;
2375 return;
2378 /* We will be inserting new insns "backwards". If we are to insert
2379 after INSN, find the next insn, and insert before it. */
2381 if (where == EMIT_AFTER)
2383 if (current_block && BB_END (current_block) == insn)
2384 update_end = 1;
2385 insn = NEXT_INSN (insn);
2388 /* Initialize partially dead variables. */
2389 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2390 if (TEST_HARD_REG_BIT (new->reg_set, i)
2391 && !TEST_HARD_REG_BIT (old->reg_set, i))
2393 old->reg[++old->top] = i;
2394 SET_HARD_REG_BIT (old->reg_set, i);
2395 emit_insn_before (gen_rtx_SET (VOIDmode,
2396 FP_MODE_REG (i, SFmode), not_a_num), insn);
2399 /* Pop any registers that are not needed in the new block. */
2401 /* If the destination block's stack already has a specified layout
2402 and contains two or more registers, use a more intelligent algorithm
2403 to pop registers that minimizes the number number of fxchs below. */
2404 if (new->top > 0)
2406 bool slots[REG_STACK_SIZE];
2407 int pops[REG_STACK_SIZE];
2408 int next, dest, topsrc;
2410 /* First pass to determine the free slots. */
2411 for (reg = 0; reg <= new->top; reg++)
2412 slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
2414 /* Second pass to allocate preferred slots. */
2415 topsrc = -1;
2416 for (reg = old->top; reg > new->top; reg--)
2417 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2419 dest = -1;
2420 for (next = 0; next <= new->top; next++)
2421 if (!slots[next] && new->reg[next] == old->reg[reg])
2423 /* If this is a preference for the new top of stack, record
2424 the fact by remembering it's old->reg in topsrc. */
2425 if (next == new->top)
2426 topsrc = reg;
2427 slots[next] = true;
2428 dest = next;
2429 break;
2431 pops[reg] = dest;
2433 else
2434 pops[reg] = reg;
2436 /* Intentionally, avoid placing the top of stack in it's correct
2437 location, if we still need to permute the stack below and we
2438 can usefully place it somewhere else. This is the case if any
2439 slot is still unallocated, in which case we should place the
2440 top of stack there. */
2441 if (topsrc != -1)
2442 for (reg = 0; reg < new->top; reg++)
2443 if (!slots[reg])
2445 pops[topsrc] = reg;
2446 slots[new->top] = false;
2447 slots[reg] = true;
2448 break;
2451 /* Third pass allocates remaining slots and emits pop insns. */
2452 next = new->top;
2453 for (reg = old->top; reg > new->top; reg--)
2455 dest = pops[reg];
2456 if (dest == -1)
2458 /* Find next free slot. */
2459 while (slots[next])
2460 next--;
2461 dest = next--;
2463 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2464 EMIT_BEFORE);
2467 else
2469 /* The following loop attempts to maximize the number of times we
2470 pop the top of the stack, as this permits the use of the faster
2471 ffreep instruction on platforms that support it. */
2472 int live, next;
2474 live = 0;
2475 for (reg = 0; reg <= old->top; reg++)
2476 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2477 live++;
2479 next = live;
2480 while (old->top >= live)
2481 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
2483 while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
2484 next--;
2485 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2486 EMIT_BEFORE);
2488 else
2489 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2490 EMIT_BEFORE);
2493 if (new->top == -2)
2495 /* If the new block has never been processed, then it can inherit
2496 the old stack order. */
2498 new->top = old->top;
2499 memcpy (new->reg, old->reg, sizeof (new->reg));
2501 else
2503 /* This block has been entered before, and we must match the
2504 previously selected stack order. */
2506 /* By now, the only difference should be the order of the stack,
2507 not their depth or liveliness. */
2509 gcc_assert (hard_reg_set_equal_p (old->reg_set, new->reg_set));
2510 gcc_assert (old->top == new->top);
2512 /* If the stack is not empty (new->top != -1), loop here emitting
2513 swaps until the stack is correct.
2515 The worst case number of swaps emitted is N + 2, where N is the
2516 depth of the stack. In some cases, the reg at the top of
2517 stack may be correct, but swapped anyway in order to fix
2518 other regs. But since we never swap any other reg away from
2519 its correct slot, this algorithm will converge. */
2521 if (new->top != -1)
2524 /* Swap the reg at top of stack into the position it is
2525 supposed to be in, until the correct top of stack appears. */
2527 while (old->reg[old->top] != new->reg[new->top])
2529 for (reg = new->top; reg >= 0; reg--)
2530 if (new->reg[reg] == old->reg[old->top])
2531 break;
2533 gcc_assert (reg != -1);
2535 emit_swap_insn (insn, old,
2536 FP_MODE_REG (old->reg[reg], DFmode));
2539 /* See if any regs remain incorrect. If so, bring an
2540 incorrect reg to the top of stack, and let the while loop
2541 above fix it. */
2543 for (reg = new->top; reg >= 0; reg--)
2544 if (new->reg[reg] != old->reg[reg])
2546 emit_swap_insn (insn, old,
2547 FP_MODE_REG (old->reg[reg], DFmode));
2548 break;
2550 } while (reg >= 0);
2552 /* At this point there must be no differences. */
2554 for (reg = old->top; reg >= 0; reg--)
2555 gcc_assert (old->reg[reg] == new->reg[reg]);
2558 if (update_end)
2559 BB_END (current_block) = PREV_INSN (insn);
2562 /* Print stack configuration. */
2564 static void
2565 print_stack (FILE *file, stack s)
2567 if (! file)
2568 return;
2570 if (s->top == -2)
2571 fprintf (file, "uninitialized\n");
2572 else if (s->top == -1)
2573 fprintf (file, "empty\n");
2574 else
2576 int i;
2577 fputs ("[ ", file);
2578 for (i = 0; i <= s->top; ++i)
2579 fprintf (file, "%d ", s->reg[i]);
2580 fputs ("]\n", file);
2584 /* This function was doing life analysis. We now let the regular live
2585 code do it's job, so we only need to check some extra invariants
2586 that reg-stack expects. Primary among these being that all registers
2587 are initialized before use.
2589 The function returns true when code was emitted to CFG edges and
2590 commit_edge_insertions needs to be called. */
2592 static int
2593 convert_regs_entry (void)
2595 int inserted = 0;
2596 edge e;
2597 edge_iterator ei;
2599 /* Load something into each stack register live at function entry.
2600 Such live registers can be caused by uninitialized variables or
2601 functions not returning values on all paths. In order to keep
2602 the push/pop code happy, and to not scrog the register stack, we
2603 must put something in these registers. Use a QNaN.
2605 Note that we are inserting converted code here. This code is
2606 never seen by the convert_regs pass. */
2608 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2610 basic_block block = e->dest;
2611 block_info bi = BLOCK_INFO (block);
2612 int reg, top = -1;
2614 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2615 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2617 rtx init;
2619 bi->stack_in.reg[++top] = reg;
2621 init = gen_rtx_SET (VOIDmode,
2622 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2623 not_a_num);
2624 insert_insn_on_edge (init, e);
2625 inserted = 1;
2628 bi->stack_in.top = top;
2631 return inserted;
2634 /* Construct the desired stack for function exit. This will either
2635 be `empty', or the function return value at top-of-stack. */
2637 static void
2638 convert_regs_exit (void)
2640 int value_reg_low, value_reg_high;
2641 stack output_stack;
2642 rtx retvalue;
2644 retvalue = stack_result (current_function_decl);
2645 value_reg_low = value_reg_high = -1;
2646 if (retvalue)
2648 value_reg_low = REGNO (retvalue);
2649 value_reg_high = END_HARD_REGNO (retvalue) - 1;
2652 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2653 if (value_reg_low == -1)
2654 output_stack->top = -1;
2655 else
2657 int reg;
2659 output_stack->top = value_reg_high - value_reg_low;
2660 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2662 output_stack->reg[value_reg_high - reg] = reg;
2663 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2668 /* Copy the stack info from the end of edge E's source block to the
2669 start of E's destination block. */
2671 static void
2672 propagate_stack (edge e)
2674 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2675 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2676 int reg;
2678 /* Preserve the order of the original stack, but check whether
2679 any pops are needed. */
2680 dest_stack->top = -1;
2681 for (reg = 0; reg <= src_stack->top; ++reg)
2682 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2683 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2685 /* Push in any partially dead values. */
2686 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2687 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2688 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2689 dest_stack->reg[++dest_stack->top] = reg;
2693 /* Adjust the stack of edge E's source block on exit to match the stack
2694 of it's target block upon input. The stack layouts of both blocks
2695 should have been defined by now. */
2697 static bool
2698 compensate_edge (edge e)
2700 basic_block source = e->src, target = e->dest;
2701 stack target_stack = &BLOCK_INFO (target)->stack_in;
2702 stack source_stack = &BLOCK_INFO (source)->stack_out;
2703 struct stack_def regstack;
2704 int reg;
2706 if (dump_file)
2707 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2709 gcc_assert (target_stack->top != -2);
2711 /* Check whether stacks are identical. */
2712 if (target_stack->top == source_stack->top)
2714 for (reg = target_stack->top; reg >= 0; --reg)
2715 if (target_stack->reg[reg] != source_stack->reg[reg])
2716 break;
2718 if (reg == -1)
2720 if (dump_file)
2721 fprintf (dump_file, "no changes needed\n");
2722 return false;
2726 if (dump_file)
2728 fprintf (dump_file, "correcting stack to ");
2729 print_stack (dump_file, target_stack);
2732 /* Abnormal calls may appear to have values live in st(0), but the
2733 abnormal return path will not have actually loaded the values. */
2734 if (e->flags & EDGE_ABNORMAL_CALL)
2736 /* Assert that the lifetimes are as we expect -- one value
2737 live at st(0) on the end of the source block, and no
2738 values live at the beginning of the destination block.
2739 For complex return values, we may have st(1) live as well. */
2740 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2741 gcc_assert (target_stack->top == -1);
2742 return false;
2745 /* Handle non-call EH edges specially. The normal return path have
2746 values in registers. These will be popped en masse by the unwind
2747 library. */
2748 if (e->flags & EDGE_EH)
2750 gcc_assert (target_stack->top == -1);
2751 return false;
2754 /* We don't support abnormal edges. Global takes care to
2755 avoid any live register across them, so we should never
2756 have to insert instructions on such edges. */
2757 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2759 /* Make a copy of source_stack as change_stack is destructive. */
2760 regstack = *source_stack;
2762 /* It is better to output directly to the end of the block
2763 instead of to the edge, because emit_swap can do minimal
2764 insn scheduling. We can do this when there is only one
2765 edge out, and it is not abnormal. */
2766 if (EDGE_COUNT (source->succs) == 1)
2768 current_block = source;
2769 change_stack (BB_END (source), &regstack, target_stack,
2770 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2772 else
2774 rtx seq, after;
2776 current_block = NULL;
2777 start_sequence ();
2779 /* ??? change_stack needs some point to emit insns after. */
2780 after = emit_note (NOTE_INSN_DELETED);
2782 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2784 seq = get_insns ();
2785 end_sequence ();
2787 insert_insn_on_edge (seq, e);
2788 return true;
2790 return false;
2793 /* Traverse all non-entry edges in the CFG, and emit the necessary
2794 edge compensation code to change the stack from stack_out of the
2795 source block to the stack_in of the destination block. */
2797 static bool
2798 compensate_edges (void)
2800 bool inserted = false;
2801 basic_block bb;
2803 starting_stack_p = false;
2805 FOR_EACH_BB (bb)
2806 if (bb != ENTRY_BLOCK_PTR)
2808 edge e;
2809 edge_iterator ei;
2811 FOR_EACH_EDGE (e, ei, bb->succs)
2812 inserted |= compensate_edge (e);
2814 return inserted;
2817 /* Select the better of two edges E1 and E2 to use to determine the
2818 stack layout for their shared destination basic block. This is
2819 typically the more frequently executed. The edge E1 may be NULL
2820 (in which case E2 is returned), but E2 is always non-NULL. */
2822 static edge
2823 better_edge (edge e1, edge e2)
2825 if (!e1)
2826 return e2;
2828 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2829 return e1;
2830 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2831 return e2;
2833 if (e1->count > e2->count)
2834 return e1;
2835 if (e1->count < e2->count)
2836 return e2;
2838 /* Prefer critical edges to minimize inserting compensation code on
2839 critical edges. */
2841 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2842 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2844 /* Avoid non-deterministic behavior. */
2845 return (e1->src->index < e2->src->index) ? e1 : e2;
2848 /* Convert stack register references in one block. */
2850 static void
2851 convert_regs_1 (basic_block block)
2853 struct stack_def regstack;
2854 block_info bi = BLOCK_INFO (block);
2855 int reg;
2856 rtx insn, next;
2857 bool control_flow_insn_deleted = false;
2859 any_malformed_asm = false;
2861 /* Choose an initial stack layout, if one hasn't already been chosen. */
2862 if (bi->stack_in.top == -2)
2864 edge e, beste = NULL;
2865 edge_iterator ei;
2867 /* Select the best incoming edge (typically the most frequent) to
2868 use as a template for this basic block. */
2869 FOR_EACH_EDGE (e, ei, block->preds)
2870 if (BLOCK_INFO (e->src)->done)
2871 beste = better_edge (beste, e);
2873 if (beste)
2874 propagate_stack (beste);
2875 else
2877 /* No predecessors. Create an arbitrary input stack. */
2878 bi->stack_in.top = -1;
2879 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2880 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2881 bi->stack_in.reg[++bi->stack_in.top] = reg;
2885 if (dump_file)
2887 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2888 print_stack (dump_file, &bi->stack_in);
2891 /* Process all insns in this block. Keep track of NEXT so that we
2892 don't process insns emitted while substituting in INSN. */
2893 current_block = block;
2894 next = BB_HEAD (block);
2895 regstack = bi->stack_in;
2896 starting_stack_p = true;
2900 insn = next;
2901 next = NEXT_INSN (insn);
2903 /* Ensure we have not missed a block boundary. */
2904 gcc_assert (next);
2905 if (insn == BB_END (block))
2906 next = NULL;
2908 /* Don't bother processing unless there is a stack reg
2909 mentioned or if it's a CALL_INSN. */
2910 if (stack_regs_mentioned (insn)
2911 || CALL_P (insn))
2913 if (dump_file)
2915 fprintf (dump_file, " insn %d input stack: ",
2916 INSN_UID (insn));
2917 print_stack (dump_file, &regstack);
2919 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2920 starting_stack_p = false;
2923 while (next);
2925 if (dump_file)
2927 fprintf (dump_file, "Expected live registers [");
2928 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2929 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2930 fprintf (dump_file, " %d", reg);
2931 fprintf (dump_file, " ]\nOutput stack: ");
2932 print_stack (dump_file, &regstack);
2935 insn = BB_END (block);
2936 if (JUMP_P (insn))
2937 insn = PREV_INSN (insn);
2939 /* If the function is declared to return a value, but it returns one
2940 in only some cases, some registers might come live here. Emit
2941 necessary moves for them. */
2943 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2945 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2946 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2948 rtx set;
2950 if (dump_file)
2951 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
2953 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2954 insn = emit_insn_after (set, insn);
2955 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2959 /* Amongst the insns possibly deleted during the substitution process above,
2960 might have been the only trapping insn in the block. We purge the now
2961 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2962 called at the end of convert_regs. The order in which we process the
2963 blocks ensures that we never delete an already processed edge.
2965 Note that, at this point, the CFG may have been damaged by the emission
2966 of instructions after an abnormal call, which moves the basic block end
2967 (and is the reason why we call fixup_abnormal_edges later). So we must
2968 be sure that the trapping insn has been deleted before trying to purge
2969 dead edges, otherwise we risk purging valid edges.
2971 ??? We are normally supposed not to delete trapping insns, so we pretend
2972 that the insns deleted above don't actually trap. It would have been
2973 better to detect this earlier and avoid creating the EH edge in the first
2974 place, still, but we don't have enough information at that time. */
2976 if (control_flow_insn_deleted)
2977 purge_dead_edges (block);
2979 /* Something failed if the stack lives don't match. If we had malformed
2980 asms, we zapped the instruction itself, but that didn't produce the
2981 same pattern of register kills as before. */
2983 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
2984 || any_malformed_asm);
2985 bi->stack_out = regstack;
2986 bi->done = true;
2989 /* Convert registers in all blocks reachable from BLOCK. */
2991 static void
2992 convert_regs_2 (basic_block block)
2994 basic_block *stack, *sp;
2996 /* We process the blocks in a top-down manner, in a way such that one block
2997 is only processed after all its predecessors. The number of predecessors
2998 of every block has already been computed. */
3000 stack = XNEWVEC (basic_block, n_basic_blocks);
3001 sp = stack;
3003 *sp++ = block;
3007 edge e;
3008 edge_iterator ei;
3010 block = *--sp;
3012 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3013 some dead EH outgoing edge after the deletion of the trapping
3014 insn inside the block. Since the number of predecessors of
3015 BLOCK's successors was computed based on the initial edge set,
3016 we check the necessity to process some of these successors
3017 before such an edge deletion may happen. However, there is
3018 a pitfall: if BLOCK is the only predecessor of a successor and
3019 the edge between them happens to be deleted, the successor
3020 becomes unreachable and should not be processed. The problem
3021 is that there is no way to preventively detect this case so we
3022 stack the successor in all cases and hand over the task of
3023 fixing up the discrepancy to convert_regs_1. */
3025 FOR_EACH_EDGE (e, ei, block->succs)
3026 if (! (e->flags & EDGE_DFS_BACK))
3028 BLOCK_INFO (e->dest)->predecessors--;
3029 if (!BLOCK_INFO (e->dest)->predecessors)
3030 *sp++ = e->dest;
3033 convert_regs_1 (block);
3035 while (sp != stack);
3037 free (stack);
3040 /* Traverse all basic blocks in a function, converting the register
3041 references in each insn from the "flat" register file that gcc uses,
3042 to the stack-like registers the 387 uses. */
3044 static void
3045 convert_regs (void)
3047 int inserted;
3048 basic_block b;
3049 edge e;
3050 edge_iterator ei;
3052 /* Initialize uninitialized registers on function entry. */
3053 inserted = convert_regs_entry ();
3055 /* Construct the desired stack for function exit. */
3056 convert_regs_exit ();
3057 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3059 /* ??? Future: process inner loops first, and give them arbitrary
3060 initial stacks which emit_swap_insn can modify. This ought to
3061 prevent double fxch that often appears at the head of a loop. */
3063 /* Process all blocks reachable from all entry points. */
3064 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3065 convert_regs_2 (e->dest);
3067 /* ??? Process all unreachable blocks. Though there's no excuse
3068 for keeping these even when not optimizing. */
3069 FOR_EACH_BB (b)
3071 block_info bi = BLOCK_INFO (b);
3073 if (! bi->done)
3074 convert_regs_2 (b);
3077 inserted |= compensate_edges ();
3079 clear_aux_for_blocks ();
3081 fixup_abnormal_edges ();
3082 if (inserted)
3083 commit_edge_insertions ();
3085 if (dump_file)
3086 fputc ('\n', dump_file);
3089 /* Convert register usage from "flat" register file usage to a "stack
3090 register file. FILE is the dump file, if used.
3092 Construct a CFG and run life analysis. Then convert each insn one
3093 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3094 code duplication created when the converter inserts pop insns on
3095 the edges. */
3097 static bool
3098 reg_to_stack (void)
3100 basic_block bb;
3101 int i;
3102 int max_uid;
3104 /* Clean up previous run. */
3105 if (stack_regs_mentioned_data != NULL)
3106 VEC_free (char, heap, stack_regs_mentioned_data);
3108 /* See if there is something to do. Flow analysis is quite
3109 expensive so we might save some compilation time. */
3110 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3111 if (df_regs_ever_live_p (i))
3112 break;
3113 if (i > LAST_STACK_REG)
3114 return false;
3116 df_note_add_problem ();
3117 df_analyze ();
3119 mark_dfs_back_edges ();
3121 /* Set up block info for each basic block. */
3122 alloc_aux_for_blocks (sizeof (struct block_info_def));
3123 FOR_EACH_BB (bb)
3125 block_info bi = BLOCK_INFO (bb);
3126 edge_iterator ei;
3127 edge e;
3128 int reg;
3130 FOR_EACH_EDGE (e, ei, bb->preds)
3131 if (!(e->flags & EDGE_DFS_BACK)
3132 && e->src != ENTRY_BLOCK_PTR)
3133 bi->predecessors++;
3135 /* Set current register status at last instruction `uninitialized'. */
3136 bi->stack_in.top = -2;
3138 /* Copy live_at_end and live_at_start into temporaries. */
3139 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3141 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3142 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3143 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3144 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3148 /* Create the replacement registers up front. */
3149 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3151 enum machine_mode mode;
3152 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3153 mode != VOIDmode;
3154 mode = GET_MODE_WIDER_MODE (mode))
3155 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3156 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3157 mode != VOIDmode;
3158 mode = GET_MODE_WIDER_MODE (mode))
3159 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3162 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3164 /* A QNaN for initializing uninitialized variables.
3166 ??? We can't load from constant memory in PIC mode, because
3167 we're inserting these instructions before the prologue and
3168 the PIC register hasn't been set up. In that case, fall back
3169 on zero, which we can get from `ldz'. */
3171 if ((flag_pic && !TARGET_64BIT)
3172 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3173 not_a_num = CONST0_RTX (SFmode);
3174 else
3176 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
3177 not_a_num = force_const_mem (SFmode, not_a_num);
3180 /* Allocate a cache for stack_regs_mentioned. */
3181 max_uid = get_max_uid ();
3182 stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3183 memset (VEC_address (char, stack_regs_mentioned_data),
3184 0, sizeof (char) * max_uid + 1);
3186 convert_regs ();
3188 free_aux_for_blocks ();
3189 return true;
3191 #endif /* STACK_REGS */
3193 static bool
3194 gate_handle_stack_regs (void)
3196 #ifdef STACK_REGS
3197 return 1;
3198 #else
3199 return 0;
3200 #endif
3203 struct tree_opt_pass pass_stack_regs =
3205 NULL, /* name */
3206 gate_handle_stack_regs, /* gate */
3207 NULL, /* execute */
3208 NULL, /* sub */
3209 NULL, /* next */
3210 0, /* static_pass_number */
3211 TV_REG_STACK, /* tv_id */
3212 0, /* properties_required */
3213 0, /* properties_provided */
3214 0, /* properties_destroyed */
3215 0, /* todo_flags_start */
3216 0, /* todo_flags_finish */
3217 0 /* letter */
3220 /* Convert register usage from flat register file usage to a stack
3221 register file. */
3222 static unsigned int
3223 rest_of_handle_stack_regs (void)
3225 #ifdef STACK_REGS
3226 reg_to_stack ();
3227 regstack_completed = 1;
3228 #endif
3229 return 0;
3232 struct tree_opt_pass pass_stack_regs_run =
3234 "stack", /* name */
3235 NULL, /* gate */
3236 rest_of_handle_stack_regs, /* execute */
3237 NULL, /* sub */
3238 NULL, /* next */
3239 0, /* static_pass_number */
3240 TV_REG_STACK, /* tv_id */
3241 0, /* properties_required */
3242 0, /* properties_provided */
3243 0, /* properties_destroyed */
3244 0, /* todo_flags_start */
3245 TODO_df_finish |
3246 TODO_dump_func |
3247 TODO_ggc_collect, /* todo_flags_finish */
3248 'k' /* letter */