1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
34 #include "coretypes.h"
47 #include "langhooks.h"
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p (struct obstack
*h
, void *obj
);
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
55 int tree_node_counts
[(int) all_kinds
];
56 int tree_node_sizes
[(int) all_kinds
];
58 /* Keep in sync with tree.h:enum tree_node_kind. */
59 static const char * const tree_node_kind_names
[] = {
75 #endif /* GATHER_STATISTICS */
77 /* Unique id for next decl created. */
78 static GTY(()) int next_decl_uid
;
79 /* Unique id for next type created. */
80 static GTY(()) int next_type_uid
= 1;
82 /* Since we cannot rehash a type after it is in the table, we have to
83 keep the hash code. */
85 struct type_hash
GTY(())
91 /* Initial size of the hash table (rounded to next prime). */
92 #define TYPE_HASH_INITIAL_SIZE 1000
94 /* Now here is the hash table. When recording a type, it is added to
95 the slot whose index is the hash code. Note that the hash table is
96 used for several kinds of types (function types, array types and
97 array index range types, for now). While all these live in the
98 same table, they are completely independent, and the hash code is
99 computed differently for each of these. */
101 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash
)))
102 htab_t type_hash_table
;
104 static void set_type_quals (tree
, int);
105 static int type_hash_eq (const void *, const void *);
106 static hashval_t
type_hash_hash (const void *);
107 static void print_type_hash_statistics (void);
108 static void finish_vector_type (tree
);
109 static tree
make_vector (enum machine_mode
, tree
, int);
110 static int type_hash_marked_p (const void *);
112 tree global_trees
[TI_MAX
];
113 tree integer_types
[itk_none
];
120 /* Initialize the hash table of types. */
121 type_hash_table
= htab_create_ggc (TYPE_HASH_INITIAL_SIZE
, type_hash_hash
,
126 /* The name of the object as the assembler will see it (but before any
127 translations made by ASM_OUTPUT_LABELREF). Often this is the same
128 as DECL_NAME. It is an IDENTIFIER_NODE. */
130 decl_assembler_name (tree decl
)
132 if (!DECL_ASSEMBLER_NAME_SET_P (decl
))
133 (*lang_hooks
.set_decl_assembler_name
) (decl
);
134 return DECL_CHECK (decl
)->decl
.assembler_name
;
137 /* Compute the number of bytes occupied by 'node'. This routine only
138 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
140 tree_size (tree node
)
142 enum tree_code code
= TREE_CODE (node
);
144 switch (TREE_CODE_CLASS (code
))
146 case 'd': /* A decl node */
147 return sizeof (struct tree_decl
);
149 case 't': /* a type node */
150 return sizeof (struct tree_type
);
152 case 'b': /* a lexical block node */
153 return sizeof (struct tree_block
);
155 case 'r': /* a reference */
156 case 'e': /* an expression */
157 case 's': /* an expression with side effects */
158 case '<': /* a comparison expression */
159 case '1': /* a unary arithmetic expression */
160 case '2': /* a binary arithmetic expression */
161 return (sizeof (struct tree_exp
)
162 + TREE_CODE_LENGTH (code
) * sizeof (char *) - sizeof (char *));
164 case 'c': /* a constant */
167 case INTEGER_CST
: return sizeof (struct tree_int_cst
);
168 case REAL_CST
: return sizeof (struct tree_real_cst
);
169 case COMPLEX_CST
: return sizeof (struct tree_complex
);
170 case VECTOR_CST
: return sizeof (struct tree_vector
);
171 case STRING_CST
: return sizeof (struct tree_string
);
173 return (*lang_hooks
.tree_size
) (code
);
176 case 'x': /* something random, like an identifier. */
179 case IDENTIFIER_NODE
: return lang_hooks
.identifier_size
;
180 case TREE_LIST
: return sizeof (struct tree_list
);
181 case TREE_VEC
: return (sizeof (struct tree_vec
)
182 + TREE_VEC_LENGTH(node
) * sizeof(char *)
186 case PLACEHOLDER_EXPR
: return sizeof (struct tree_common
);
189 return (*lang_hooks
.tree_size
) (code
);
197 /* Return a newly allocated node of code CODE.
198 For decl and type nodes, some other fields are initialized.
199 The rest of the node is initialized to zero.
201 Achoo! I got a code in the node. */
204 make_node (enum tree_code code
)
207 int type
= TREE_CODE_CLASS (code
);
209 #ifdef GATHER_STATISTICS
212 struct tree_common ttmp
;
214 /* We can't allocate a TREE_VEC without knowing how many elements
216 if (code
== TREE_VEC
)
219 TREE_SET_CODE ((tree
)&ttmp
, code
);
220 length
= tree_size ((tree
)&ttmp
);
222 #ifdef GATHER_STATISTICS
225 case 'd': /* A decl node */
229 case 't': /* a type node */
233 case 'b': /* a lexical block */
237 case 's': /* an expression with side effects */
241 case 'r': /* a reference */
245 case 'e': /* an expression */
246 case '<': /* a comparison expression */
247 case '1': /* a unary arithmetic expression */
248 case '2': /* a binary arithmetic expression */
252 case 'c': /* a constant */
256 case 'x': /* something random, like an identifier. */
257 if (code
== IDENTIFIER_NODE
)
259 else if (code
== TREE_VEC
)
269 tree_node_counts
[(int) kind
]++;
270 tree_node_sizes
[(int) kind
] += length
;
273 t
= ggc_alloc_tree (length
);
275 memset (t
, 0, length
);
277 TREE_SET_CODE (t
, code
);
282 TREE_SIDE_EFFECTS (t
) = 1;
286 if (code
!= FUNCTION_DECL
)
288 DECL_USER_ALIGN (t
) = 0;
289 DECL_IN_SYSTEM_HEADER (t
) = in_system_header
;
290 DECL_SOURCE_LOCATION (t
) = input_location
;
291 DECL_UID (t
) = next_decl_uid
++;
293 /* We have not yet computed the alias set for this declaration. */
294 DECL_POINTER_ALIAS_SET (t
) = -1;
298 TYPE_UID (t
) = next_type_uid
++;
299 TYPE_ALIGN (t
) = char_type_node
? TYPE_ALIGN (char_type_node
) : 0;
300 TYPE_USER_ALIGN (t
) = 0;
301 TYPE_MAIN_VARIANT (t
) = t
;
303 /* Default to no attributes for type, but let target change that. */
304 TYPE_ATTRIBUTES (t
) = NULL_TREE
;
305 (*targetm
.set_default_type_attributes
) (t
);
307 /* We have not yet computed the alias set for this type. */
308 TYPE_ALIAS_SET (t
) = -1;
312 TREE_CONSTANT (t
) = 1;
322 case PREDECREMENT_EXPR
:
323 case PREINCREMENT_EXPR
:
324 case POSTDECREMENT_EXPR
:
325 case POSTINCREMENT_EXPR
:
326 /* All of these have side-effects, no matter what their
328 TREE_SIDE_EFFECTS (t
) = 1;
340 /* Return a new node with the same contents as NODE except that its
341 TREE_CHAIN is zero and it has a fresh uid. */
344 copy_node (tree node
)
347 enum tree_code code
= TREE_CODE (node
);
350 length
= tree_size (node
);
351 t
= ggc_alloc_tree (length
);
352 memcpy (t
, node
, length
);
355 TREE_ASM_WRITTEN (t
) = 0;
357 if (TREE_CODE_CLASS (code
) == 'd')
358 DECL_UID (t
) = next_decl_uid
++;
359 else if (TREE_CODE_CLASS (code
) == 't')
361 TYPE_UID (t
) = next_type_uid
++;
362 /* The following is so that the debug code for
363 the copy is different from the original type.
364 The two statements usually duplicate each other
365 (because they clear fields of the same union),
366 but the optimizer should catch that. */
367 TYPE_SYMTAB_POINTER (t
) = 0;
368 TYPE_SYMTAB_ADDRESS (t
) = 0;
374 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
375 For example, this can copy a list made of TREE_LIST nodes. */
378 copy_list (tree list
)
386 head
= prev
= copy_node (list
);
387 next
= TREE_CHAIN (list
);
390 TREE_CHAIN (prev
) = copy_node (next
);
391 prev
= TREE_CHAIN (prev
);
392 next
= TREE_CHAIN (next
);
398 /* Return a newly constructed INTEGER_CST node whose constant value
399 is specified by the two ints LOW and HI.
400 The TREE_TYPE is set to `int'.
402 This function should be used via the `build_int_2' macro. */
405 build_int_2_wide (unsigned HOST_WIDE_INT low
, HOST_WIDE_INT hi
)
407 tree t
= make_node (INTEGER_CST
);
409 TREE_INT_CST_LOW (t
) = low
;
410 TREE_INT_CST_HIGH (t
) = hi
;
411 TREE_TYPE (t
) = integer_type_node
;
415 /* Return a new VECTOR_CST node whose type is TYPE and whose values
416 are in a list pointed by VALS. */
419 build_vector (tree type
, tree vals
)
421 tree v
= make_node (VECTOR_CST
);
422 int over1
= 0, over2
= 0;
425 TREE_VECTOR_CST_ELTS (v
) = vals
;
426 TREE_TYPE (v
) = type
;
428 /* Iterate through elements and check for overflow. */
429 for (link
= vals
; link
; link
= TREE_CHAIN (link
))
431 tree value
= TREE_VALUE (link
);
433 over1
|= TREE_OVERFLOW (value
);
434 over2
|= TREE_CONSTANT_OVERFLOW (value
);
437 TREE_OVERFLOW (v
) = over1
;
438 TREE_CONSTANT_OVERFLOW (v
) = over2
;
443 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
444 are in a list pointed to by VALS. */
446 build_constructor (tree type
, tree vals
)
448 tree c
= make_node (CONSTRUCTOR
);
449 TREE_TYPE (c
) = type
;
450 CONSTRUCTOR_ELTS (c
) = vals
;
452 /* ??? May not be necessary. Mirrors what build does. */
455 TREE_SIDE_EFFECTS (c
) = TREE_SIDE_EFFECTS (vals
);
456 TREE_READONLY (c
) = TREE_READONLY (vals
);
457 TREE_CONSTANT (c
) = TREE_CONSTANT (vals
);
460 TREE_CONSTANT (c
) = 0; /* safe side */
465 /* Return a new REAL_CST node whose type is TYPE and value is D. */
468 build_real (tree type
, REAL_VALUE_TYPE d
)
474 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
475 Consider doing it via real_convert now. */
477 v
= make_node (REAL_CST
);
478 dp
= ggc_alloc (sizeof (REAL_VALUE_TYPE
));
479 memcpy (dp
, &d
, sizeof (REAL_VALUE_TYPE
));
481 TREE_TYPE (v
) = type
;
482 TREE_REAL_CST_PTR (v
) = dp
;
483 TREE_OVERFLOW (v
) = TREE_CONSTANT_OVERFLOW (v
) = overflow
;
487 /* Return a new REAL_CST node whose type is TYPE
488 and whose value is the integer value of the INTEGER_CST node I. */
491 real_value_from_int_cst (tree type
, tree i
)
495 /* Clear all bits of the real value type so that we can later do
496 bitwise comparisons to see if two values are the same. */
497 memset (&d
, 0, sizeof d
);
499 real_from_integer (&d
, type
? TYPE_MODE (type
) : VOIDmode
,
500 TREE_INT_CST_LOW (i
), TREE_INT_CST_HIGH (i
),
501 TREE_UNSIGNED (TREE_TYPE (i
)));
505 /* Given a tree representing an integer constant I, return a tree
506 representing the same value as a floating-point constant of type TYPE. */
509 build_real_from_int_cst (tree type
, tree i
)
512 int overflow
= TREE_OVERFLOW (i
);
514 v
= build_real (type
, real_value_from_int_cst (type
, i
));
516 TREE_OVERFLOW (v
) |= overflow
;
517 TREE_CONSTANT_OVERFLOW (v
) |= overflow
;
521 /* Return a newly constructed STRING_CST node whose value is
522 the LEN characters at STR.
523 The TREE_TYPE is not initialized. */
526 build_string (int len
, const char *str
)
528 tree s
= make_node (STRING_CST
);
530 TREE_STRING_LENGTH (s
) = len
;
531 TREE_STRING_POINTER (s
) = ggc_alloc_string (str
, len
);
536 /* Return a newly constructed COMPLEX_CST node whose value is
537 specified by the real and imaginary parts REAL and IMAG.
538 Both REAL and IMAG should be constant nodes. TYPE, if specified,
539 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
542 build_complex (tree type
, tree real
, tree imag
)
544 tree t
= make_node (COMPLEX_CST
);
546 TREE_REALPART (t
) = real
;
547 TREE_IMAGPART (t
) = imag
;
548 TREE_TYPE (t
) = type
? type
: build_complex_type (TREE_TYPE (real
));
549 TREE_OVERFLOW (t
) = TREE_OVERFLOW (real
) | TREE_OVERFLOW (imag
);
550 TREE_CONSTANT_OVERFLOW (t
)
551 = TREE_CONSTANT_OVERFLOW (real
) | TREE_CONSTANT_OVERFLOW (imag
);
555 /* Build a newly constructed TREE_VEC node of length LEN. */
558 make_tree_vec (int len
)
561 int length
= (len
- 1) * sizeof (tree
) + sizeof (struct tree_vec
);
563 #ifdef GATHER_STATISTICS
564 tree_node_counts
[(int) vec_kind
]++;
565 tree_node_sizes
[(int) vec_kind
] += length
;
568 t
= ggc_alloc_tree (length
);
570 memset (t
, 0, length
);
571 TREE_SET_CODE (t
, TREE_VEC
);
572 TREE_VEC_LENGTH (t
) = len
;
577 /* Return 1 if EXPR is the integer constant zero or a complex constant
581 integer_zerop (tree expr
)
585 return ((TREE_CODE (expr
) == INTEGER_CST
586 && ! TREE_CONSTANT_OVERFLOW (expr
)
587 && TREE_INT_CST_LOW (expr
) == 0
588 && TREE_INT_CST_HIGH (expr
) == 0)
589 || (TREE_CODE (expr
) == COMPLEX_CST
590 && integer_zerop (TREE_REALPART (expr
))
591 && integer_zerop (TREE_IMAGPART (expr
))));
594 /* Return 1 if EXPR is the integer constant one or the corresponding
598 integer_onep (tree expr
)
602 return ((TREE_CODE (expr
) == INTEGER_CST
603 && ! TREE_CONSTANT_OVERFLOW (expr
)
604 && TREE_INT_CST_LOW (expr
) == 1
605 && TREE_INT_CST_HIGH (expr
) == 0)
606 || (TREE_CODE (expr
) == COMPLEX_CST
607 && integer_onep (TREE_REALPART (expr
))
608 && integer_zerop (TREE_IMAGPART (expr
))));
611 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
612 it contains. Likewise for the corresponding complex constant. */
615 integer_all_onesp (tree expr
)
622 if (TREE_CODE (expr
) == COMPLEX_CST
623 && integer_all_onesp (TREE_REALPART (expr
))
624 && integer_zerop (TREE_IMAGPART (expr
)))
627 else if (TREE_CODE (expr
) != INTEGER_CST
628 || TREE_CONSTANT_OVERFLOW (expr
))
631 uns
= TREE_UNSIGNED (TREE_TYPE (expr
));
633 return (TREE_INT_CST_LOW (expr
) == ~(unsigned HOST_WIDE_INT
) 0
634 && TREE_INT_CST_HIGH (expr
) == -1);
636 /* Note that using TYPE_PRECISION here is wrong. We care about the
637 actual bits, not the (arbitrary) range of the type. */
638 prec
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr
)));
639 if (prec
>= HOST_BITS_PER_WIDE_INT
)
641 HOST_WIDE_INT high_value
;
644 shift_amount
= prec
- HOST_BITS_PER_WIDE_INT
;
646 if (shift_amount
> HOST_BITS_PER_WIDE_INT
)
647 /* Can not handle precisions greater than twice the host int size. */
649 else if (shift_amount
== HOST_BITS_PER_WIDE_INT
)
650 /* Shifting by the host word size is undefined according to the ANSI
651 standard, so we must handle this as a special case. */
654 high_value
= ((HOST_WIDE_INT
) 1 << shift_amount
) - 1;
656 return (TREE_INT_CST_LOW (expr
) == ~(unsigned HOST_WIDE_INT
) 0
657 && TREE_INT_CST_HIGH (expr
) == high_value
);
660 return TREE_INT_CST_LOW (expr
) == ((unsigned HOST_WIDE_INT
) 1 << prec
) - 1;
663 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
667 integer_pow2p (tree expr
)
670 HOST_WIDE_INT high
, low
;
674 if (TREE_CODE (expr
) == COMPLEX_CST
675 && integer_pow2p (TREE_REALPART (expr
))
676 && integer_zerop (TREE_IMAGPART (expr
)))
679 if (TREE_CODE (expr
) != INTEGER_CST
|| TREE_CONSTANT_OVERFLOW (expr
))
682 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
683 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
684 high
= TREE_INT_CST_HIGH (expr
);
685 low
= TREE_INT_CST_LOW (expr
);
687 /* First clear all bits that are beyond the type's precision in case
688 we've been sign extended. */
690 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
)
692 else if (prec
> HOST_BITS_PER_WIDE_INT
)
693 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
697 if (prec
< HOST_BITS_PER_WIDE_INT
)
698 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
701 if (high
== 0 && low
== 0)
704 return ((high
== 0 && (low
& (low
- 1)) == 0)
705 || (low
== 0 && (high
& (high
- 1)) == 0));
708 /* Return 1 if EXPR is an integer constant other than zero or a
709 complex constant other than zero. */
712 integer_nonzerop (tree expr
)
716 return ((TREE_CODE (expr
) == INTEGER_CST
717 && ! TREE_CONSTANT_OVERFLOW (expr
)
718 && (TREE_INT_CST_LOW (expr
) != 0
719 || TREE_INT_CST_HIGH (expr
) != 0))
720 || (TREE_CODE (expr
) == COMPLEX_CST
721 && (integer_nonzerop (TREE_REALPART (expr
))
722 || integer_nonzerop (TREE_IMAGPART (expr
)))));
725 /* Return the power of two represented by a tree node known to be a
729 tree_log2 (tree expr
)
732 HOST_WIDE_INT high
, low
;
736 if (TREE_CODE (expr
) == COMPLEX_CST
)
737 return tree_log2 (TREE_REALPART (expr
));
739 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
740 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
742 high
= TREE_INT_CST_HIGH (expr
);
743 low
= TREE_INT_CST_LOW (expr
);
745 /* First clear all bits that are beyond the type's precision in case
746 we've been sign extended. */
748 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
)
750 else if (prec
> HOST_BITS_PER_WIDE_INT
)
751 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
755 if (prec
< HOST_BITS_PER_WIDE_INT
)
756 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
759 return (high
!= 0 ? HOST_BITS_PER_WIDE_INT
+ exact_log2 (high
)
763 /* Similar, but return the largest integer Y such that 2 ** Y is less
764 than or equal to EXPR. */
767 tree_floor_log2 (tree expr
)
770 HOST_WIDE_INT high
, low
;
774 if (TREE_CODE (expr
) == COMPLEX_CST
)
775 return tree_log2 (TREE_REALPART (expr
));
777 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
778 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
780 high
= TREE_INT_CST_HIGH (expr
);
781 low
= TREE_INT_CST_LOW (expr
);
783 /* First clear all bits that are beyond the type's precision in case
784 we've been sign extended. Ignore if type's precision hasn't been set
785 since what we are doing is setting it. */
787 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
|| prec
== 0)
789 else if (prec
> HOST_BITS_PER_WIDE_INT
)
790 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
794 if (prec
< HOST_BITS_PER_WIDE_INT
)
795 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
798 return (high
!= 0 ? HOST_BITS_PER_WIDE_INT
+ floor_log2 (high
)
802 /* Return 1 if EXPR is the real constant zero. */
805 real_zerop (tree expr
)
809 return ((TREE_CODE (expr
) == REAL_CST
810 && ! TREE_CONSTANT_OVERFLOW (expr
)
811 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst0
))
812 || (TREE_CODE (expr
) == COMPLEX_CST
813 && real_zerop (TREE_REALPART (expr
))
814 && real_zerop (TREE_IMAGPART (expr
))));
817 /* Return 1 if EXPR is the real constant one in real or complex form. */
820 real_onep (tree expr
)
824 return ((TREE_CODE (expr
) == REAL_CST
825 && ! TREE_CONSTANT_OVERFLOW (expr
)
826 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst1
))
827 || (TREE_CODE (expr
) == COMPLEX_CST
828 && real_onep (TREE_REALPART (expr
))
829 && real_zerop (TREE_IMAGPART (expr
))));
832 /* Return 1 if EXPR is the real constant two. */
835 real_twop (tree expr
)
839 return ((TREE_CODE (expr
) == REAL_CST
840 && ! TREE_CONSTANT_OVERFLOW (expr
)
841 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst2
))
842 || (TREE_CODE (expr
) == COMPLEX_CST
843 && real_twop (TREE_REALPART (expr
))
844 && real_zerop (TREE_IMAGPART (expr
))));
847 /* Return 1 if EXPR is the real constant minus one. */
850 real_minus_onep (tree expr
)
854 return ((TREE_CODE (expr
) == REAL_CST
855 && ! TREE_CONSTANT_OVERFLOW (expr
)
856 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconstm1
))
857 || (TREE_CODE (expr
) == COMPLEX_CST
858 && real_minus_onep (TREE_REALPART (expr
))
859 && real_zerop (TREE_IMAGPART (expr
))));
862 /* Nonzero if EXP is a constant or a cast of a constant. */
865 really_constant_p (tree exp
)
867 /* This is not quite the same as STRIP_NOPS. It does more. */
868 while (TREE_CODE (exp
) == NOP_EXPR
869 || TREE_CODE (exp
) == CONVERT_EXPR
870 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
871 exp
= TREE_OPERAND (exp
, 0);
872 return TREE_CONSTANT (exp
);
875 /* Return first list element whose TREE_VALUE is ELEM.
876 Return 0 if ELEM is not in LIST. */
879 value_member (tree elem
, tree list
)
883 if (elem
== TREE_VALUE (list
))
885 list
= TREE_CHAIN (list
);
890 /* Return first list element whose TREE_PURPOSE is ELEM.
891 Return 0 if ELEM is not in LIST. */
894 purpose_member (tree elem
, tree list
)
898 if (elem
== TREE_PURPOSE (list
))
900 list
= TREE_CHAIN (list
);
905 /* Return first list element whose BINFO_TYPE is ELEM.
906 Return 0 if ELEM is not in LIST. */
909 binfo_member (tree elem
, tree list
)
913 if (elem
== BINFO_TYPE (list
))
915 list
= TREE_CHAIN (list
);
920 /* Return nonzero if ELEM is part of the chain CHAIN. */
923 chain_member (tree elem
, tree chain
)
929 chain
= TREE_CHAIN (chain
);
935 /* Return the length of a chain of nodes chained through TREE_CHAIN.
936 We expect a null pointer to mark the end of the chain.
937 This is the Lisp primitive `length'. */
945 for (tail
= t
; tail
; tail
= TREE_CHAIN (tail
))
951 /* Returns the number of FIELD_DECLs in TYPE. */
954 fields_length (tree type
)
956 tree t
= TYPE_FIELDS (type
);
959 for (; t
; t
= TREE_CHAIN (t
))
960 if (TREE_CODE (t
) == FIELD_DECL
)
966 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
967 by modifying the last node in chain 1 to point to chain 2.
968 This is the Lisp primitive `nconc'. */
971 chainon (tree op1
, tree op2
)
980 for (t1
= op1
; TREE_CHAIN (t1
); t1
= TREE_CHAIN (t1
))
982 TREE_CHAIN (t1
) = op2
;
984 #ifdef ENABLE_TREE_CHECKING
987 for (t2
= op2
; t2
; t2
= TREE_CHAIN (t2
))
989 abort (); /* Circularity created. */
996 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
999 tree_last (tree chain
)
1003 while ((next
= TREE_CHAIN (chain
)))
1008 /* Reverse the order of elements in the chain T,
1009 and return the new head of the chain (old last element). */
1014 tree prev
= 0, decl
, next
;
1015 for (decl
= t
; decl
; decl
= next
)
1017 next
= TREE_CHAIN (decl
);
1018 TREE_CHAIN (decl
) = prev
;
1024 /* Return a newly created TREE_LIST node whose
1025 purpose and value fields are PARM and VALUE. */
1028 build_tree_list (tree parm
, tree value
)
1030 tree t
= make_node (TREE_LIST
);
1031 TREE_PURPOSE (t
) = parm
;
1032 TREE_VALUE (t
) = value
;
1036 /* Return a newly created TREE_LIST node whose
1037 purpose and value fields are PURPOSE and VALUE
1038 and whose TREE_CHAIN is CHAIN. */
1041 tree_cons (tree purpose
, tree value
, tree chain
)
1045 node
= ggc_alloc_tree (sizeof (struct tree_list
));
1047 memset (node
, 0, sizeof (struct tree_common
));
1049 #ifdef GATHER_STATISTICS
1050 tree_node_counts
[(int) x_kind
]++;
1051 tree_node_sizes
[(int) x_kind
] += sizeof (struct tree_list
);
1054 TREE_SET_CODE (node
, TREE_LIST
);
1055 TREE_CHAIN (node
) = chain
;
1056 TREE_PURPOSE (node
) = purpose
;
1057 TREE_VALUE (node
) = value
;
1061 /* Return the first expression in a sequence of COMPOUND_EXPRs. */
1064 expr_first (tree expr
)
1066 if (expr
== NULL_TREE
)
1068 while (TREE_CODE (expr
) == COMPOUND_EXPR
)
1069 expr
= TREE_OPERAND (expr
, 0);
1073 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1076 expr_last (tree expr
)
1078 if (expr
== NULL_TREE
)
1080 while (TREE_CODE (expr
) == COMPOUND_EXPR
)
1081 expr
= TREE_OPERAND (expr
, 1);
1085 /* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
1088 expr_length (tree expr
)
1092 if (expr
== NULL_TREE
)
1094 for (; TREE_CODE (expr
) == COMPOUND_EXPR
; expr
= TREE_OPERAND (expr
, 1))
1095 len
+= expr_length (TREE_OPERAND (expr
, 0));
1100 /* Return the size nominally occupied by an object of type TYPE
1101 when it resides in memory. The value is measured in units of bytes,
1102 and its data type is that normally used for type sizes
1103 (which is the first type created by make_signed_type or
1104 make_unsigned_type). */
1107 size_in_bytes (tree type
)
1111 if (type
== error_mark_node
)
1112 return integer_zero_node
;
1114 type
= TYPE_MAIN_VARIANT (type
);
1115 t
= TYPE_SIZE_UNIT (type
);
1119 (*lang_hooks
.types
.incomplete_type_error
) (NULL_TREE
, type
);
1120 return size_zero_node
;
1123 if (TREE_CODE (t
) == INTEGER_CST
)
1124 force_fit_type (t
, 0);
1129 /* Return the size of TYPE (in bytes) as a wide integer
1130 or return -1 if the size can vary or is larger than an integer. */
1133 int_size_in_bytes (tree type
)
1137 if (type
== error_mark_node
)
1140 type
= TYPE_MAIN_VARIANT (type
);
1141 t
= TYPE_SIZE_UNIT (type
);
1143 || TREE_CODE (t
) != INTEGER_CST
1144 || TREE_OVERFLOW (t
)
1145 || TREE_INT_CST_HIGH (t
) != 0
1146 /* If the result would appear negative, it's too big to represent. */
1147 || (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) < 0)
1150 return TREE_INT_CST_LOW (t
);
1153 /* Return the bit position of FIELD, in bits from the start of the record.
1154 This is a tree of type bitsizetype. */
1157 bit_position (tree field
)
1159 return bit_from_pos (DECL_FIELD_OFFSET (field
),
1160 DECL_FIELD_BIT_OFFSET (field
));
1163 /* Likewise, but return as an integer. Abort if it cannot be represented
1164 in that way (since it could be a signed value, we don't have the option
1165 of returning -1 like int_size_in_byte can. */
1168 int_bit_position (tree field
)
1170 return tree_low_cst (bit_position (field
), 0);
1173 /* Return the byte position of FIELD, in bytes from the start of the record.
1174 This is a tree of type sizetype. */
1177 byte_position (tree field
)
1179 return byte_from_pos (DECL_FIELD_OFFSET (field
),
1180 DECL_FIELD_BIT_OFFSET (field
));
1183 /* Likewise, but return as an integer. Abort if it cannot be represented
1184 in that way (since it could be a signed value, we don't have the option
1185 of returning -1 like int_size_in_byte can. */
1188 int_byte_position (tree field
)
1190 return tree_low_cst (byte_position (field
), 0);
1193 /* Return the strictest alignment, in bits, that T is known to have. */
1198 unsigned int align0
, align1
;
1200 switch (TREE_CODE (t
))
1202 case NOP_EXPR
: case CONVERT_EXPR
: case NON_LVALUE_EXPR
:
1203 /* If we have conversions, we know that the alignment of the
1204 object must meet each of the alignments of the types. */
1205 align0
= expr_align (TREE_OPERAND (t
, 0));
1206 align1
= TYPE_ALIGN (TREE_TYPE (t
));
1207 return MAX (align0
, align1
);
1209 case SAVE_EXPR
: case COMPOUND_EXPR
: case MODIFY_EXPR
:
1210 case INIT_EXPR
: case TARGET_EXPR
: case WITH_CLEANUP_EXPR
:
1211 case WITH_RECORD_EXPR
: case CLEANUP_POINT_EXPR
: case UNSAVE_EXPR
:
1212 /* These don't change the alignment of an object. */
1213 return expr_align (TREE_OPERAND (t
, 0));
1216 /* The best we can do is say that the alignment is the least aligned
1218 align0
= expr_align (TREE_OPERAND (t
, 1));
1219 align1
= expr_align (TREE_OPERAND (t
, 2));
1220 return MIN (align0
, align1
);
1222 case LABEL_DECL
: case CONST_DECL
:
1223 case VAR_DECL
: case PARM_DECL
: case RESULT_DECL
:
1224 if (DECL_ALIGN (t
) != 0)
1225 return DECL_ALIGN (t
);
1229 return FUNCTION_BOUNDARY
;
1235 /* Otherwise take the alignment from that of the type. */
1236 return TYPE_ALIGN (TREE_TYPE (t
));
1239 /* Return, as a tree node, the number of elements for TYPE (which is an
1240 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1243 array_type_nelts (tree type
)
1245 tree index_type
, min
, max
;
1247 /* If they did it with unspecified bounds, then we should have already
1248 given an error about it before we got here. */
1249 if (! TYPE_DOMAIN (type
))
1250 return error_mark_node
;
1252 index_type
= TYPE_DOMAIN (type
);
1253 min
= TYPE_MIN_VALUE (index_type
);
1254 max
= TYPE_MAX_VALUE (index_type
);
1256 return (integer_zerop (min
)
1258 : fold (build (MINUS_EXPR
, TREE_TYPE (max
), max
, min
)));
1261 /* Return nonzero if arg is static -- a reference to an object in
1262 static storage. This is not the same as the C meaning of `static'. */
1267 switch (TREE_CODE (arg
))
1270 /* Nested functions aren't static, since taking their address
1271 involves a trampoline. */
1272 return ((decl_function_context (arg
) == 0 || DECL_NO_STATIC_CHAIN (arg
))
1273 && ! DECL_NON_ADDR_CONST_P (arg
));
1276 return ((TREE_STATIC (arg
) || DECL_EXTERNAL (arg
))
1277 && ! DECL_THREAD_LOCAL (arg
)
1278 && ! DECL_NON_ADDR_CONST_P (arg
));
1281 return TREE_STATIC (arg
);
1287 /* If we are referencing a bitfield, we can't evaluate an
1288 ADDR_EXPR at compile time and so it isn't a constant. */
1290 return (! DECL_BIT_FIELD (TREE_OPERAND (arg
, 1))
1291 && staticp (TREE_OPERAND (arg
, 0)));
1297 /* This case is technically correct, but results in setting
1298 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1301 return TREE_CONSTANT (TREE_OPERAND (arg
, 0));
1305 case ARRAY_RANGE_REF
:
1306 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg
))) == INTEGER_CST
1307 && TREE_CODE (TREE_OPERAND (arg
, 1)) == INTEGER_CST
)
1308 return staticp (TREE_OPERAND (arg
, 0));
1311 if ((unsigned int) TREE_CODE (arg
)
1312 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
)
1313 return (*lang_hooks
.staticp
) (arg
);
1319 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1320 Do this to any expression which may be used in more than one place,
1321 but must be evaluated only once.
1323 Normally, expand_expr would reevaluate the expression each time.
1324 Calling save_expr produces something that is evaluated and recorded
1325 the first time expand_expr is called on it. Subsequent calls to
1326 expand_expr just reuse the recorded value.
1328 The call to expand_expr that generates code that actually computes
1329 the value is the first call *at compile time*. Subsequent calls
1330 *at compile time* generate code to use the saved value.
1331 This produces correct result provided that *at run time* control
1332 always flows through the insns made by the first expand_expr
1333 before reaching the other places where the save_expr was evaluated.
1334 You, the caller of save_expr, must make sure this is so.
1336 Constants, and certain read-only nodes, are returned with no
1337 SAVE_EXPR because that is safe. Expressions containing placeholders
1338 are not touched; see tree.def for an explanation of what these
1342 save_expr (tree expr
)
1344 tree t
= fold (expr
);
1347 /* If the tree evaluates to a constant, then we don't want to hide that
1348 fact (i.e. this allows further folding, and direct checks for constants).
1349 However, a read-only object that has side effects cannot be bypassed.
1350 Since it is no problem to reevaluate literals, we just return the
1352 inner
= skip_simple_arithmetic (t
);
1353 if (TREE_CONSTANT (inner
)
1354 || (TREE_READONLY (inner
) && ! TREE_SIDE_EFFECTS (inner
))
1355 || TREE_CODE (inner
) == SAVE_EXPR
1356 || TREE_CODE (inner
) == ERROR_MARK
)
1359 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1360 it means that the size or offset of some field of an object depends on
1361 the value within another field.
1363 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1364 and some variable since it would then need to be both evaluated once and
1365 evaluated more than once. Front-ends must assure this case cannot
1366 happen by surrounding any such subexpressions in their own SAVE_EXPR
1367 and forcing evaluation at the proper time. */
1368 if (contains_placeholder_p (inner
))
1371 t
= build (SAVE_EXPR
, TREE_TYPE (expr
), t
, current_function_decl
, NULL_TREE
);
1373 /* This expression might be placed ahead of a jump to ensure that the
1374 value was computed on both sides of the jump. So make sure it isn't
1375 eliminated as dead. */
1376 TREE_SIDE_EFFECTS (t
) = 1;
1377 TREE_READONLY (t
) = 1;
1381 /* Look inside EXPR and into any simple arithmetic operations. Return
1382 the innermost non-arithmetic node. */
1385 skip_simple_arithmetic (tree expr
)
1389 /* We don't care about whether this can be used as an lvalue in this
1391 while (TREE_CODE (expr
) == NON_LVALUE_EXPR
)
1392 expr
= TREE_OPERAND (expr
, 0);
1394 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1395 a constant, it will be more efficient to not make another SAVE_EXPR since
1396 it will allow better simplification and GCSE will be able to merge the
1397 computations if they actually occur. */
1401 if (TREE_CODE_CLASS (TREE_CODE (inner
)) == '1')
1402 inner
= TREE_OPERAND (inner
, 0);
1403 else if (TREE_CODE_CLASS (TREE_CODE (inner
)) == '2')
1405 if (TREE_CONSTANT (TREE_OPERAND (inner
, 1)))
1406 inner
= TREE_OPERAND (inner
, 0);
1407 else if (TREE_CONSTANT (TREE_OPERAND (inner
, 0)))
1408 inner
= TREE_OPERAND (inner
, 1);
1419 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1420 SAVE_EXPR. Return FALSE otherwise. */
1423 saved_expr_p (tree expr
)
1425 return TREE_CODE (skip_simple_arithmetic (expr
)) == SAVE_EXPR
;
1428 /* Arrange for an expression to be expanded multiple independent
1429 times. This is useful for cleanup actions, as the backend can
1430 expand them multiple times in different places. */
1433 unsave_expr (tree expr
)
1437 /* If this is already protected, no sense in protecting it again. */
1438 if (TREE_CODE (expr
) == UNSAVE_EXPR
)
1441 t
= build1 (UNSAVE_EXPR
, TREE_TYPE (expr
), expr
);
1442 TREE_SIDE_EFFECTS (t
) = TREE_SIDE_EFFECTS (expr
);
1446 /* Returns the index of the first non-tree operand for CODE, or the number
1447 of operands if all are trees. */
1450 first_rtl_op (enum tree_code code
)
1456 case GOTO_SUBROUTINE_EXPR
:
1459 case WITH_CLEANUP_EXPR
:
1462 return TREE_CODE_LENGTH (code
);
1466 /* Return which tree structure is used by T. */
1468 enum tree_node_structure_enum
1469 tree_node_structure (tree t
)
1471 enum tree_code code
= TREE_CODE (t
);
1473 switch (TREE_CODE_CLASS (code
))
1475 case 'd': return TS_DECL
;
1476 case 't': return TS_TYPE
;
1477 case 'b': return TS_BLOCK
;
1478 case 'r': case '<': case '1': case '2': case 'e': case 's':
1480 default: /* 'c' and 'x' */
1486 case INTEGER_CST
: return TS_INT_CST
;
1487 case REAL_CST
: return TS_REAL_CST
;
1488 case COMPLEX_CST
: return TS_COMPLEX
;
1489 case VECTOR_CST
: return TS_VECTOR
;
1490 case STRING_CST
: return TS_STRING
;
1492 case ERROR_MARK
: return TS_COMMON
;
1493 case IDENTIFIER_NODE
: return TS_IDENTIFIER
;
1494 case TREE_LIST
: return TS_LIST
;
1495 case TREE_VEC
: return TS_VEC
;
1496 case PLACEHOLDER_EXPR
: return TS_COMMON
;
1503 /* Perform any modifications to EXPR required when it is unsaved. Does
1504 not recurse into EXPR's subtrees. */
1507 unsave_expr_1 (tree expr
)
1509 switch (TREE_CODE (expr
))
1512 if (! SAVE_EXPR_PERSISTENT_P (expr
))
1513 SAVE_EXPR_RTL (expr
) = 0;
1517 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1518 It's OK for this to happen if it was part of a subtree that
1519 isn't immediately expanded, such as operand 2 of another
1521 if (TREE_OPERAND (expr
, 1))
1524 TREE_OPERAND (expr
, 1) = TREE_OPERAND (expr
, 3);
1525 TREE_OPERAND (expr
, 3) = NULL_TREE
;
1529 /* I don't yet know how to emit a sequence multiple times. */
1530 if (RTL_EXPR_SEQUENCE (expr
) != 0)
1539 /* Default lang hook for "unsave_expr_now". */
1542 lhd_unsave_expr_now (tree expr
)
1544 enum tree_code code
;
1546 /* There's nothing to do for NULL_TREE. */
1550 unsave_expr_1 (expr
);
1552 code
= TREE_CODE (expr
);
1553 switch (TREE_CODE_CLASS (code
))
1555 case 'c': /* a constant */
1556 case 't': /* a type node */
1557 case 'd': /* A decl node */
1558 case 'b': /* A block node */
1561 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1562 if (code
== TREE_LIST
)
1564 lhd_unsave_expr_now (TREE_VALUE (expr
));
1565 lhd_unsave_expr_now (TREE_CHAIN (expr
));
1569 case 'e': /* an expression */
1570 case 'r': /* a reference */
1571 case 's': /* an expression with side effects */
1572 case '<': /* a comparison expression */
1573 case '2': /* a binary arithmetic expression */
1574 case '1': /* a unary arithmetic expression */
1578 for (i
= first_rtl_op (code
) - 1; i
>= 0; i
--)
1579 lhd_unsave_expr_now (TREE_OPERAND (expr
, i
));
1590 /* Return 0 if it is safe to evaluate EXPR multiple times,
1591 return 1 if it is safe if EXPR is unsaved afterward, or
1592 return 2 if it is completely unsafe.
1594 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1595 an expression tree, so that it safe to unsave them and the surrounding
1596 context will be correct.
1598 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1599 occasionally across the whole of a function. It is therefore only
1600 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1601 below the UNSAVE_EXPR.
1603 RTL_EXPRs consume their rtl during evaluation. It is therefore
1604 never possible to unsave them. */
1607 unsafe_for_reeval (tree expr
)
1610 enum tree_code code
;
1615 if (expr
== NULL_TREE
)
1618 code
= TREE_CODE (expr
);
1619 first_rtl
= first_rtl_op (code
);
1628 for (exp
= expr
; exp
!= 0; exp
= TREE_CHAIN (exp
))
1630 tmp
= unsafe_for_reeval (TREE_VALUE (exp
));
1631 unsafeness
= MAX (tmp
, unsafeness
);
1637 tmp2
= unsafe_for_reeval (TREE_OPERAND (expr
, 0));
1638 tmp
= unsafe_for_reeval (TREE_OPERAND (expr
, 1));
1639 return MAX (MAX (tmp
, 1), tmp2
);
1646 tmp
= (*lang_hooks
.unsafe_for_reeval
) (expr
);
1652 switch (TREE_CODE_CLASS (code
))
1654 case 'c': /* a constant */
1655 case 't': /* a type node */
1656 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1657 case 'd': /* A decl node */
1658 case 'b': /* A block node */
1661 case 'e': /* an expression */
1662 case 'r': /* a reference */
1663 case 's': /* an expression with side effects */
1664 case '<': /* a comparison expression */
1665 case '2': /* a binary arithmetic expression */
1666 case '1': /* a unary arithmetic expression */
1667 for (i
= first_rtl
- 1; i
>= 0; i
--)
1669 tmp
= unsafe_for_reeval (TREE_OPERAND (expr
, i
));
1670 unsafeness
= MAX (tmp
, unsafeness
);
1680 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1681 or offset that depends on a field within a record. */
1684 contains_placeholder_p (tree exp
)
1686 enum tree_code code
;
1692 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1693 in it since it is supplying a value for it. */
1694 code
= TREE_CODE (exp
);
1695 if (code
== WITH_RECORD_EXPR
)
1697 else if (code
== PLACEHOLDER_EXPR
)
1700 switch (TREE_CODE_CLASS (code
))
1703 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1704 position computations since they will be converted into a
1705 WITH_RECORD_EXPR involving the reference, which will assume
1706 here will be valid. */
1707 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0));
1710 if (code
== TREE_LIST
)
1711 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp
))
1712 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp
)));
1721 /* Ignoring the first operand isn't quite right, but works best. */
1722 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1));
1729 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0))
1730 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1))
1731 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 2)));
1734 /* If we already know this doesn't have a placeholder, don't
1736 if (SAVE_EXPR_NOPLACEHOLDER (exp
) || SAVE_EXPR_RTL (exp
) != 0)
1739 SAVE_EXPR_NOPLACEHOLDER (exp
) = 1;
1740 result
= CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0));
1742 SAVE_EXPR_NOPLACEHOLDER (exp
) = 0;
1747 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1));
1753 switch (TREE_CODE_LENGTH (code
))
1756 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0));
1758 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0))
1759 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1)));
1770 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1771 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1775 type_contains_placeholder_p (tree type
)
1777 /* If the size contains a placeholder or the parent type (component type in
1778 the case of arrays) type involves a placeholder, this type does. */
1779 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type
))
1780 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type
))
1781 || (TREE_TYPE (type
) != 0
1782 && type_contains_placeholder_p (TREE_TYPE (type
))))
1785 /* Now do type-specific checks. Note that the last part of the check above
1786 greatly limits what we have to do below. */
1787 switch (TREE_CODE (type
))
1797 case REFERENCE_TYPE
:
1805 /* Here we just check the bounds. */
1806 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type
))
1807 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type
)));
1811 /* We're already checked the component type (TREE_TYPE), so just check
1813 return type_contains_placeholder_p (TYPE_DOMAIN (type
));
1817 case QUAL_UNION_TYPE
:
1819 static tree seen_types
= 0;
1823 /* We have to be careful here that we don't end up in infinite
1824 recursions due to a field of a type being a pointer to that type
1825 or to a mutually-recursive type. So we store a list of record
1826 types that we've seen and see if this type is in them. To save
1827 memory, we don't use a list for just one type. Here we check
1828 whether we've seen this type before and store it if not. */
1829 if (seen_types
== 0)
1831 else if (TREE_CODE (seen_types
) != TREE_LIST
)
1833 if (seen_types
== type
)
1836 seen_types
= tree_cons (NULL_TREE
, type
,
1837 build_tree_list (NULL_TREE
, seen_types
));
1841 if (value_member (type
, seen_types
) != 0)
1844 seen_types
= tree_cons (NULL_TREE
, type
, seen_types
);
1847 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
1848 if (TREE_CODE (field
) == FIELD_DECL
1849 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field
))
1850 || (TREE_CODE (type
) == QUAL_UNION_TYPE
1851 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field
)))
1852 || type_contains_placeholder_p (TREE_TYPE (field
))))
1858 /* Now remove us from seen_types and return the result. */
1859 if (seen_types
== type
)
1862 seen_types
= TREE_CHAIN (seen_types
);
1872 /* Return 1 if EXP contains any expressions that produce cleanups for an
1873 outer scope to deal with. Used by fold. */
1876 has_cleanups (tree exp
)
1880 if (! TREE_SIDE_EFFECTS (exp
))
1883 switch (TREE_CODE (exp
))
1886 case GOTO_SUBROUTINE_EXPR
:
1887 case WITH_CLEANUP_EXPR
:
1890 case CLEANUP_POINT_EXPR
:
1894 for (exp
= TREE_OPERAND (exp
, 1); exp
; exp
= TREE_CHAIN (exp
))
1896 cmp
= has_cleanups (TREE_VALUE (exp
));
1906 /* This general rule works for most tree codes. All exceptions should be
1907 handled above. If this is a language-specific tree code, we can't
1908 trust what might be in the operand, so say we don't know
1910 if ((int) TREE_CODE (exp
) >= (int) LAST_AND_UNUSED_TREE_CODE
)
1913 nops
= first_rtl_op (TREE_CODE (exp
));
1914 for (i
= 0; i
< nops
; i
++)
1915 if (TREE_OPERAND (exp
, i
) != 0)
1917 int type
= TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp
, i
)));
1918 if (type
== 'e' || type
== '<' || type
== '1' || type
== '2'
1919 || type
== 'r' || type
== 's')
1921 cmp
= has_cleanups (TREE_OPERAND (exp
, i
));
1930 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1931 return a tree with all occurrences of references to F in a
1932 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1933 contains only arithmetic expressions or a CALL_EXPR with a
1934 PLACEHOLDER_EXPR occurring only in its arglist. */
1937 substitute_in_expr (tree exp
, tree f
, tree r
)
1939 enum tree_code code
= TREE_CODE (exp
);
1944 switch (TREE_CODE_CLASS (code
))
1951 if (code
== PLACEHOLDER_EXPR
)
1953 else if (code
== TREE_LIST
)
1955 op0
= (TREE_CHAIN (exp
) == 0
1956 ? 0 : substitute_in_expr (TREE_CHAIN (exp
), f
, r
));
1957 op1
= substitute_in_expr (TREE_VALUE (exp
), f
, r
);
1958 if (op0
== TREE_CHAIN (exp
) && op1
== TREE_VALUE (exp
))
1961 return tree_cons (TREE_PURPOSE (exp
), op1
, op0
);
1970 switch (TREE_CODE_LENGTH (code
))
1973 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
1974 if (op0
== TREE_OPERAND (exp
, 0))
1977 if (code
== NON_LVALUE_EXPR
)
1980 new = fold (build1 (code
, TREE_TYPE (exp
), op0
));
1984 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1985 could, but we don't support it. */
1986 if (code
== RTL_EXPR
)
1988 else if (code
== CONSTRUCTOR
)
1991 op0
= TREE_OPERAND (exp
, 0);
1992 op1
= TREE_OPERAND (exp
, 1);
1993 if (CONTAINS_PLACEHOLDER_P (op0
))
1994 op0
= substitute_in_expr (op0
, f
, r
);
1995 if (CONTAINS_PLACEHOLDER_P (op1
))
1996 op1
= substitute_in_expr (op1
, f
, r
);
1998 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1))
2001 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
));
2005 /* It cannot be that anything inside a SAVE_EXPR contains a
2006 PLACEHOLDER_EXPR. */
2007 if (code
== SAVE_EXPR
)
2010 else if (code
== CALL_EXPR
)
2012 op1
= substitute_in_expr (TREE_OPERAND (exp
, 1), f
, r
);
2013 if (op1
== TREE_OPERAND (exp
, 1))
2016 return build (code
, TREE_TYPE (exp
),
2017 TREE_OPERAND (exp
, 0), op1
, NULL_TREE
);
2020 else if (code
!= COND_EXPR
)
2023 op0
= TREE_OPERAND (exp
, 0);
2024 op1
= TREE_OPERAND (exp
, 1);
2025 op2
= TREE_OPERAND (exp
, 2);
2027 if (CONTAINS_PLACEHOLDER_P (op0
))
2028 op0
= substitute_in_expr (op0
, f
, r
);
2029 if (CONTAINS_PLACEHOLDER_P (op1
))
2030 op1
= substitute_in_expr (op1
, f
, r
);
2031 if (CONTAINS_PLACEHOLDER_P (op2
))
2032 op2
= substitute_in_expr (op2
, f
, r
);
2034 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
2035 && op2
== TREE_OPERAND (exp
, 2))
2038 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
, op2
));
2051 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2052 and it is the right field, replace it with R. */
2053 for (inner
= TREE_OPERAND (exp
, 0);
2054 TREE_CODE_CLASS (TREE_CODE (inner
)) == 'r';
2055 inner
= TREE_OPERAND (inner
, 0))
2057 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
2058 && TREE_OPERAND (exp
, 1) == f
)
2061 /* If this expression hasn't been completed let, leave it
2063 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
2064 && TREE_TYPE (inner
) == 0)
2067 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
2068 if (op0
== TREE_OPERAND (exp
, 0))
2071 new = fold (build (code
, TREE_TYPE (exp
), op0
,
2072 TREE_OPERAND (exp
, 1)));
2076 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
2077 op1
= substitute_in_expr (TREE_OPERAND (exp
, 1), f
, r
);
2078 op2
= substitute_in_expr (TREE_OPERAND (exp
, 2), f
, r
);
2079 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
2080 && op2
== TREE_OPERAND (exp
, 2))
2083 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
, op2
));
2088 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
2089 if (op0
== TREE_OPERAND (exp
, 0))
2092 new = fold (build1 (code
, TREE_TYPE (exp
), op0
));
2104 TREE_READONLY (new) = TREE_READONLY (exp
);
2108 /* Stabilize a reference so that we can use it any number of times
2109 without causing its operands to be evaluated more than once.
2110 Returns the stabilized reference. This works by means of save_expr,
2111 so see the caveats in the comments about save_expr.
2113 Also allows conversion expressions whose operands are references.
2114 Any other kind of expression is returned unchanged. */
2117 stabilize_reference (tree ref
)
2120 enum tree_code code
= TREE_CODE (ref
);
2127 /* No action is needed in this case. */
2133 case FIX_TRUNC_EXPR
:
2134 case FIX_FLOOR_EXPR
:
2135 case FIX_ROUND_EXPR
:
2137 result
= build_nt (code
, stabilize_reference (TREE_OPERAND (ref
, 0)));
2141 result
= build_nt (INDIRECT_REF
,
2142 stabilize_reference_1 (TREE_OPERAND (ref
, 0)));
2146 result
= build_nt (COMPONENT_REF
,
2147 stabilize_reference (TREE_OPERAND (ref
, 0)),
2148 TREE_OPERAND (ref
, 1));
2152 result
= build_nt (BIT_FIELD_REF
,
2153 stabilize_reference (TREE_OPERAND (ref
, 0)),
2154 stabilize_reference_1 (TREE_OPERAND (ref
, 1)),
2155 stabilize_reference_1 (TREE_OPERAND (ref
, 2)));
2159 result
= build_nt (ARRAY_REF
,
2160 stabilize_reference (TREE_OPERAND (ref
, 0)),
2161 stabilize_reference_1 (TREE_OPERAND (ref
, 1)));
2164 case ARRAY_RANGE_REF
:
2165 result
= build_nt (ARRAY_RANGE_REF
,
2166 stabilize_reference (TREE_OPERAND (ref
, 0)),
2167 stabilize_reference_1 (TREE_OPERAND (ref
, 1)));
2171 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2172 it wouldn't be ignored. This matters when dealing with
2174 return stabilize_reference_1 (ref
);
2177 result
= build1 (INDIRECT_REF
, TREE_TYPE (ref
),
2178 save_expr (build1 (ADDR_EXPR
,
2179 build_pointer_type (TREE_TYPE (ref
)),
2183 /* If arg isn't a kind of lvalue we recognize, make no change.
2184 Caller should recognize the error for an invalid lvalue. */
2189 return error_mark_node
;
2192 TREE_TYPE (result
) = TREE_TYPE (ref
);
2193 TREE_READONLY (result
) = TREE_READONLY (ref
);
2194 TREE_SIDE_EFFECTS (result
) = TREE_SIDE_EFFECTS (ref
);
2195 TREE_THIS_VOLATILE (result
) = TREE_THIS_VOLATILE (ref
);
2200 /* Subroutine of stabilize_reference; this is called for subtrees of
2201 references. Any expression with side-effects must be put in a SAVE_EXPR
2202 to ensure that it is only evaluated once.
2204 We don't put SAVE_EXPR nodes around everything, because assigning very
2205 simple expressions to temporaries causes us to miss good opportunities
2206 for optimizations. Among other things, the opportunity to fold in the
2207 addition of a constant into an addressing mode often gets lost, e.g.
2208 "y[i+1] += x;". In general, we take the approach that we should not make
2209 an assignment unless we are forced into it - i.e., that any non-side effect
2210 operator should be allowed, and that cse should take care of coalescing
2211 multiple utterances of the same expression should that prove fruitful. */
2214 stabilize_reference_1 (tree e
)
2217 enum tree_code code
= TREE_CODE (e
);
2219 /* We cannot ignore const expressions because it might be a reference
2220 to a const array but whose index contains side-effects. But we can
2221 ignore things that are actual constant or that already have been
2222 handled by this function. */
2224 if (TREE_CONSTANT (e
) || code
== SAVE_EXPR
)
2227 switch (TREE_CODE_CLASS (code
))
2237 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2238 so that it will only be evaluated once. */
2239 /* The reference (r) and comparison (<) classes could be handled as
2240 below, but it is generally faster to only evaluate them once. */
2241 if (TREE_SIDE_EFFECTS (e
))
2242 return save_expr (e
);
2246 /* Constants need no processing. In fact, we should never reach
2251 /* Division is slow and tends to be compiled with jumps,
2252 especially the division by powers of 2 that is often
2253 found inside of an array reference. So do it just once. */
2254 if (code
== TRUNC_DIV_EXPR
|| code
== TRUNC_MOD_EXPR
2255 || code
== FLOOR_DIV_EXPR
|| code
== FLOOR_MOD_EXPR
2256 || code
== CEIL_DIV_EXPR
|| code
== CEIL_MOD_EXPR
2257 || code
== ROUND_DIV_EXPR
|| code
== ROUND_MOD_EXPR
)
2258 return save_expr (e
);
2259 /* Recursively stabilize each operand. */
2260 result
= build_nt (code
, stabilize_reference_1 (TREE_OPERAND (e
, 0)),
2261 stabilize_reference_1 (TREE_OPERAND (e
, 1)));
2265 /* Recursively stabilize each operand. */
2266 result
= build_nt (code
, stabilize_reference_1 (TREE_OPERAND (e
, 0)));
2273 TREE_TYPE (result
) = TREE_TYPE (e
);
2274 TREE_READONLY (result
) = TREE_READONLY (e
);
2275 TREE_SIDE_EFFECTS (result
) = TREE_SIDE_EFFECTS (e
);
2276 TREE_THIS_VOLATILE (result
) = TREE_THIS_VOLATILE (e
);
2281 /* Low-level constructors for expressions. */
2283 /* Build an expression of code CODE, data type TYPE,
2284 and operands as specified by the arguments ARG1 and following arguments.
2285 Expressions and reference nodes can be created this way.
2286 Constants, decls, types and misc nodes cannot be. */
2289 build (enum tree_code code
, tree tt
, ...)
2301 t
= make_node (code
);
2302 length
= TREE_CODE_LENGTH (code
);
2305 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2306 result based on those same flags for the arguments. But if the
2307 arguments aren't really even `tree' expressions, we shouldn't be trying
2309 fro
= first_rtl_op (code
);
2311 /* Expressions without side effects may be constant if their
2312 arguments are as well. */
2313 constant
= (TREE_CODE_CLASS (code
) == '<'
2314 || TREE_CODE_CLASS (code
) == '1'
2315 || TREE_CODE_CLASS (code
) == '2'
2316 || TREE_CODE_CLASS (code
) == 'c');
2320 /* This is equivalent to the loop below, but faster. */
2321 tree arg0
= va_arg (p
, tree
);
2322 tree arg1
= va_arg (p
, tree
);
2324 TREE_OPERAND (t
, 0) = arg0
;
2325 TREE_OPERAND (t
, 1) = arg1
;
2326 TREE_READONLY (t
) = 1;
2327 if (arg0
&& fro
> 0)
2329 if (TREE_SIDE_EFFECTS (arg0
))
2330 TREE_SIDE_EFFECTS (t
) = 1;
2331 if (!TREE_READONLY (arg0
))
2332 TREE_READONLY (t
) = 0;
2333 if (!TREE_CONSTANT (arg0
))
2337 if (arg1
&& fro
> 1)
2339 if (TREE_SIDE_EFFECTS (arg1
))
2340 TREE_SIDE_EFFECTS (t
) = 1;
2341 if (!TREE_READONLY (arg1
))
2342 TREE_READONLY (t
) = 0;
2343 if (!TREE_CONSTANT (arg1
))
2347 else if (length
== 1)
2349 tree arg0
= va_arg (p
, tree
);
2351 /* The only one-operand cases we handle here are those with side-effects.
2352 Others are handled with build1. So don't bother checked if the
2353 arg has side-effects since we'll already have set it.
2355 ??? This really should use build1 too. */
2356 if (TREE_CODE_CLASS (code
) != 's')
2358 TREE_OPERAND (t
, 0) = arg0
;
2362 for (i
= 0; i
< length
; i
++)
2364 tree operand
= va_arg (p
, tree
);
2366 TREE_OPERAND (t
, i
) = operand
;
2367 if (operand
&& fro
> i
)
2369 if (TREE_SIDE_EFFECTS (operand
))
2370 TREE_SIDE_EFFECTS (t
) = 1;
2371 if (!TREE_CONSTANT (operand
))
2378 TREE_CONSTANT (t
) = constant
;
2380 if (code
== CALL_EXPR
&& !TREE_SIDE_EFFECTS (t
))
2382 /* Calls have side-effects, except those to const or
2384 i
= call_expr_flags (t
);
2385 if (!(i
& (ECF_CONST
| ECF_PURE
)))
2386 TREE_SIDE_EFFECTS (t
) = 1;
2388 /* And even those have side-effects if their arguments do. */
2389 else for (node
= TREE_OPERAND (t
, 1); node
; node
= TREE_CHAIN (node
))
2390 if (TREE_SIDE_EFFECTS (TREE_VALUE (node
)))
2392 TREE_SIDE_EFFECTS (t
) = 1;
2400 /* Same as above, but only builds for unary operators.
2401 Saves lions share of calls to `build'; cuts down use
2402 of varargs, which is expensive for RISC machines. */
2405 build1 (enum tree_code code
, tree type
, tree node
)
2407 int length
= sizeof (struct tree_exp
);
2408 #ifdef GATHER_STATISTICS
2409 tree_node_kind kind
;
2413 #ifdef GATHER_STATISTICS
2414 switch (TREE_CODE_CLASS (code
))
2416 case 's': /* an expression with side effects */
2419 case 'r': /* a reference */
2427 tree_node_counts
[(int) kind
]++;
2428 tree_node_sizes
[(int) kind
] += length
;
2431 #ifdef ENABLE_CHECKING
2432 if (TREE_CODE_CLASS (code
) == '2'
2433 || TREE_CODE_CLASS (code
) == '<'
2434 || TREE_CODE_LENGTH (code
) != 1)
2436 #endif /* ENABLE_CHECKING */
2438 t
= ggc_alloc_tree (length
);
2440 memset (t
, 0, sizeof (struct tree_common
));
2442 TREE_SET_CODE (t
, code
);
2444 TREE_TYPE (t
) = type
;
2445 TREE_COMPLEXITY (t
) = 0;
2446 TREE_OPERAND (t
, 0) = node
;
2447 if (node
&& first_rtl_op (code
) != 0)
2449 TREE_SIDE_EFFECTS (t
) = TREE_SIDE_EFFECTS (node
);
2450 TREE_READONLY (t
) = TREE_READONLY (node
);
2453 if (TREE_CODE_CLASS (code
) == 's')
2454 TREE_SIDE_EFFECTS (t
) = 1;
2461 case PREDECREMENT_EXPR
:
2462 case PREINCREMENT_EXPR
:
2463 case POSTDECREMENT_EXPR
:
2464 case POSTINCREMENT_EXPR
:
2465 /* All of these have side-effects, no matter what their
2467 TREE_SIDE_EFFECTS (t
) = 1;
2468 TREE_READONLY (t
) = 0;
2472 /* Whether a dereference is readonly has nothing to do with whether
2473 its operand is readonly. */
2474 TREE_READONLY (t
) = 0;
2480 /* The address of a volatile decl or reference does not have
2481 side-effects. But be careful not to ignore side-effects from
2482 other sources deeper in the expression--if node is a _REF and
2483 one of its operands has side-effects, so do we. */
2484 if (TREE_THIS_VOLATILE (node
))
2486 TREE_SIDE_EFFECTS (t
) = 0;
2489 int i
= first_rtl_op (TREE_CODE (node
)) - 1;
2492 if (TREE_SIDE_EFFECTS (TREE_OPERAND (node
, i
)))
2493 TREE_SIDE_EFFECTS (t
) = 1;
2501 if (TREE_CODE_CLASS (code
) == '1' && node
&& TREE_CONSTANT (node
))
2502 TREE_CONSTANT (t
) = 1;
2509 /* Similar except don't specify the TREE_TYPE
2510 and leave the TREE_SIDE_EFFECTS as 0.
2511 It is permissible for arguments to be null,
2512 or even garbage if their values do not matter. */
2515 build_nt (enum tree_code code
, ...)
2524 t
= make_node (code
);
2525 length
= TREE_CODE_LENGTH (code
);
2527 for (i
= 0; i
< length
; i
++)
2528 TREE_OPERAND (t
, i
) = va_arg (p
, tree
);
2534 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2535 We do NOT enter this node in any sort of symbol table.
2537 layout_decl is used to set up the decl's storage layout.
2538 Other slots are initialized to 0 or null pointers. */
2541 build_decl (enum tree_code code
, tree name
, tree type
)
2545 t
= make_node (code
);
2547 /* if (type == error_mark_node)
2548 type = integer_type_node; */
2549 /* That is not done, deliberately, so that having error_mark_node
2550 as the type can suppress useless errors in the use of this variable. */
2552 DECL_NAME (t
) = name
;
2553 TREE_TYPE (t
) = type
;
2555 if (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
)
2557 else if (code
== FUNCTION_DECL
)
2558 DECL_MODE (t
) = FUNCTION_MODE
;
2563 /* BLOCK nodes are used to represent the structure of binding contours
2564 and declarations, once those contours have been exited and their contents
2565 compiled. This information is used for outputting debugging info. */
2568 build_block (tree vars
, tree tags ATTRIBUTE_UNUSED
, tree subblocks
,
2569 tree supercontext
, tree chain
)
2571 tree block
= make_node (BLOCK
);
2573 BLOCK_VARS (block
) = vars
;
2574 BLOCK_SUBBLOCKS (block
) = subblocks
;
2575 BLOCK_SUPERCONTEXT (block
) = supercontext
;
2576 BLOCK_CHAIN (block
) = chain
;
2580 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2581 location where an expression or an identifier were encountered. It
2582 is necessary for languages where the frontend parser will handle
2583 recursively more than one file (Java is one of them). */
2586 build_expr_wfl (tree node
, const char *file
, int line
, int col
)
2588 static const char *last_file
= 0;
2589 static tree last_filenode
= NULL_TREE
;
2590 tree wfl
= make_node (EXPR_WITH_FILE_LOCATION
);
2592 EXPR_WFL_NODE (wfl
) = node
;
2593 EXPR_WFL_SET_LINECOL (wfl
, line
, col
);
2594 if (file
!= last_file
)
2597 last_filenode
= file
? get_identifier (file
) : NULL_TREE
;
2600 EXPR_WFL_FILENAME_NODE (wfl
) = last_filenode
;
2603 TREE_SIDE_EFFECTS (wfl
) = TREE_SIDE_EFFECTS (node
);
2604 TREE_TYPE (wfl
) = TREE_TYPE (node
);
2610 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2614 build_decl_attribute_variant (tree ddecl
, tree attribute
)
2616 DECL_ATTRIBUTES (ddecl
) = attribute
;
2620 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2623 Record such modified types already made so we don't make duplicates. */
2626 build_type_attribute_variant (tree ttype
, tree attribute
)
2628 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype
), attribute
))
2630 unsigned int hashcode
;
2633 ntype
= copy_node (ttype
);
2635 TYPE_POINTER_TO (ntype
) = 0;
2636 TYPE_REFERENCE_TO (ntype
) = 0;
2637 TYPE_ATTRIBUTES (ntype
) = attribute
;
2639 /* Create a new main variant of TYPE. */
2640 TYPE_MAIN_VARIANT (ntype
) = ntype
;
2641 TYPE_NEXT_VARIANT (ntype
) = 0;
2642 set_type_quals (ntype
, TYPE_UNQUALIFIED
);
2644 hashcode
= (TYPE_HASH (TREE_CODE (ntype
))
2645 + TYPE_HASH (TREE_TYPE (ntype
))
2646 + attribute_hash_list (attribute
));
2648 switch (TREE_CODE (ntype
))
2651 hashcode
+= TYPE_HASH (TYPE_ARG_TYPES (ntype
));
2654 hashcode
+= TYPE_HASH (TYPE_DOMAIN (ntype
));
2657 hashcode
+= TYPE_HASH (TYPE_MAX_VALUE (ntype
));
2660 hashcode
+= TYPE_HASH (TYPE_PRECISION (ntype
));
2666 ntype
= type_hash_canon (hashcode
, ntype
);
2667 ttype
= build_qualified_type (ntype
, TYPE_QUALS (ttype
));
2673 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2676 We try both `text' and `__text__', ATTR may be either one. */
2677 /* ??? It might be a reasonable simplification to require ATTR to be only
2678 `text'. One might then also require attribute lists to be stored in
2679 their canonicalized form. */
2682 is_attribute_p (const char *attr
, tree ident
)
2684 int ident_len
, attr_len
;
2687 if (TREE_CODE (ident
) != IDENTIFIER_NODE
)
2690 if (strcmp (attr
, IDENTIFIER_POINTER (ident
)) == 0)
2693 p
= IDENTIFIER_POINTER (ident
);
2694 ident_len
= strlen (p
);
2695 attr_len
= strlen (attr
);
2697 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2701 || attr
[attr_len
- 2] != '_'
2702 || attr
[attr_len
- 1] != '_')
2704 if (ident_len
== attr_len
- 4
2705 && strncmp (attr
+ 2, p
, attr_len
- 4) == 0)
2710 if (ident_len
== attr_len
+ 4
2711 && p
[0] == '_' && p
[1] == '_'
2712 && p
[ident_len
- 2] == '_' && p
[ident_len
- 1] == '_'
2713 && strncmp (attr
, p
+ 2, attr_len
) == 0)
2720 /* Given an attribute name and a list of attributes, return a pointer to the
2721 attribute's list element if the attribute is part of the list, or NULL_TREE
2722 if not found. If the attribute appears more than once, this only
2723 returns the first occurrence; the TREE_CHAIN of the return value should
2724 be passed back in if further occurrences are wanted. */
2727 lookup_attribute (const char *attr_name
, tree list
)
2731 for (l
= list
; l
; l
= TREE_CHAIN (l
))
2733 if (TREE_CODE (TREE_PURPOSE (l
)) != IDENTIFIER_NODE
)
2735 if (is_attribute_p (attr_name
, TREE_PURPOSE (l
)))
2742 /* Return an attribute list that is the union of a1 and a2. */
2745 merge_attributes (tree a1
, tree a2
)
2749 /* Either one unset? Take the set one. */
2751 if ((attributes
= a1
) == 0)
2754 /* One that completely contains the other? Take it. */
2756 else if (a2
!= 0 && ! attribute_list_contained (a1
, a2
))
2758 if (attribute_list_contained (a2
, a1
))
2762 /* Pick the longest list, and hang on the other list. */
2764 if (list_length (a1
) < list_length (a2
))
2765 attributes
= a2
, a2
= a1
;
2767 for (; a2
!= 0; a2
= TREE_CHAIN (a2
))
2770 for (a
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2
)),
2773 a
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2
)),
2776 if (simple_cst_equal (TREE_VALUE (a
), TREE_VALUE (a2
)) == 1)
2781 a1
= copy_node (a2
);
2782 TREE_CHAIN (a1
) = attributes
;
2791 /* Given types T1 and T2, merge their attributes and return
2795 merge_type_attributes (tree t1
, tree t2
)
2797 return merge_attributes (TYPE_ATTRIBUTES (t1
),
2798 TYPE_ATTRIBUTES (t2
));
2801 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2805 merge_decl_attributes (tree olddecl
, tree newdecl
)
2807 return merge_attributes (DECL_ATTRIBUTES (olddecl
),
2808 DECL_ATTRIBUTES (newdecl
));
2811 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2813 /* Specialization of merge_decl_attributes for various Windows targets.
2815 This handles the following situation:
2817 __declspec (dllimport) int foo;
2820 The second instance of `foo' nullifies the dllimport. */
2823 merge_dllimport_decl_attributes (tree old
, tree
new)
2826 int delete_dllimport_p
;
2828 old
= DECL_ATTRIBUTES (old
);
2829 new = DECL_ATTRIBUTES (new);
2831 /* What we need to do here is remove from `old' dllimport if it doesn't
2832 appear in `new'. dllimport behaves like extern: if a declaration is
2833 marked dllimport and a definition appears later, then the object
2834 is not dllimport'd. */
2835 if (lookup_attribute ("dllimport", old
) != NULL_TREE
2836 && lookup_attribute ("dllimport", new) == NULL_TREE
)
2837 delete_dllimport_p
= 1;
2839 delete_dllimport_p
= 0;
2841 a
= merge_attributes (old
, new);
2843 if (delete_dllimport_p
)
2847 /* Scan the list for dllimport and delete it. */
2848 for (prev
= NULL_TREE
, t
= a
; t
; prev
= t
, t
= TREE_CHAIN (t
))
2850 if (is_attribute_p ("dllimport", TREE_PURPOSE (t
)))
2852 if (prev
== NULL_TREE
)
2855 TREE_CHAIN (prev
) = TREE_CHAIN (t
);
2864 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2866 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2867 of the various TYPE_QUAL values. */
2870 set_type_quals (tree type
, int type_quals
)
2872 TYPE_READONLY (type
) = (type_quals
& TYPE_QUAL_CONST
) != 0;
2873 TYPE_VOLATILE (type
) = (type_quals
& TYPE_QUAL_VOLATILE
) != 0;
2874 TYPE_RESTRICT (type
) = (type_quals
& TYPE_QUAL_RESTRICT
) != 0;
2877 /* Return a version of the TYPE, qualified as indicated by the
2878 TYPE_QUALS, if one exists. If no qualified version exists yet,
2879 return NULL_TREE. */
2882 get_qualified_type (tree type
, int type_quals
)
2886 /* Search the chain of variants to see if there is already one there just
2887 like the one we need to have. If so, use that existing one. We must
2888 preserve the TYPE_NAME, since there is code that depends on this. */
2889 for (t
= TYPE_MAIN_VARIANT (type
); t
; t
= TYPE_NEXT_VARIANT (t
))
2890 if (TYPE_QUALS (t
) == type_quals
&& TYPE_NAME (t
) == TYPE_NAME (type
)
2891 && TYPE_CONTEXT (t
) == TYPE_CONTEXT (type
)
2892 && attribute_list_equal (TYPE_ATTRIBUTES (t
), TYPE_ATTRIBUTES (type
)))
2898 /* Like get_qualified_type, but creates the type if it does not
2899 exist. This function never returns NULL_TREE. */
2902 build_qualified_type (tree type
, int type_quals
)
2906 /* See if we already have the appropriate qualified variant. */
2907 t
= get_qualified_type (type
, type_quals
);
2909 /* If not, build it. */
2912 t
= build_type_copy (type
);
2913 set_type_quals (t
, type_quals
);
2919 /* Create a new variant of TYPE, equivalent but distinct.
2920 This is so the caller can modify it. */
2923 build_type_copy (tree type
)
2925 tree t
, m
= TYPE_MAIN_VARIANT (type
);
2927 t
= copy_node (type
);
2929 TYPE_POINTER_TO (t
) = 0;
2930 TYPE_REFERENCE_TO (t
) = 0;
2932 /* Add this type to the chain of variants of TYPE. */
2933 TYPE_NEXT_VARIANT (t
) = TYPE_NEXT_VARIANT (m
);
2934 TYPE_NEXT_VARIANT (m
) = t
;
2939 /* Hashing of types so that we don't make duplicates.
2940 The entry point is `type_hash_canon'. */
2942 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2943 with types in the TREE_VALUE slots), by adding the hash codes
2944 of the individual types. */
2947 type_hash_list (tree list
)
2949 unsigned int hashcode
;
2952 for (hashcode
= 0, tail
= list
; tail
; tail
= TREE_CHAIN (tail
))
2953 hashcode
+= TYPE_HASH (TREE_VALUE (tail
));
2958 /* These are the Hashtable callback functions. */
2960 /* Returns true if the types are equal. */
2963 type_hash_eq (const void *va
, const void *vb
)
2965 const struct type_hash
*a
= va
, *b
= vb
;
2966 if (a
->hash
== b
->hash
2967 && TREE_CODE (a
->type
) == TREE_CODE (b
->type
)
2968 && TREE_TYPE (a
->type
) == TREE_TYPE (b
->type
)
2969 && attribute_list_equal (TYPE_ATTRIBUTES (a
->type
),
2970 TYPE_ATTRIBUTES (b
->type
))
2971 && TYPE_ALIGN (a
->type
) == TYPE_ALIGN (b
->type
)
2972 && (TYPE_MAX_VALUE (a
->type
) == TYPE_MAX_VALUE (b
->type
)
2973 || tree_int_cst_equal (TYPE_MAX_VALUE (a
->type
),
2974 TYPE_MAX_VALUE (b
->type
)))
2975 && (TYPE_MIN_VALUE (a
->type
) == TYPE_MIN_VALUE (b
->type
)
2976 || tree_int_cst_equal (TYPE_MIN_VALUE (a
->type
),
2977 TYPE_MIN_VALUE (b
->type
)))
2978 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2979 && (TYPE_DOMAIN (a
->type
) == TYPE_DOMAIN (b
->type
)
2980 || (TYPE_DOMAIN (a
->type
)
2981 && TREE_CODE (TYPE_DOMAIN (a
->type
)) == TREE_LIST
2982 && TYPE_DOMAIN (b
->type
)
2983 && TREE_CODE (TYPE_DOMAIN (b
->type
)) == TREE_LIST
2984 && type_list_equal (TYPE_DOMAIN (a
->type
),
2985 TYPE_DOMAIN (b
->type
)))))
2990 /* Return the cached hash value. */
2993 type_hash_hash (const void *item
)
2995 return ((const struct type_hash
*) item
)->hash
;
2998 /* Look in the type hash table for a type isomorphic to TYPE.
2999 If one is found, return it. Otherwise return 0. */
3002 type_hash_lookup (unsigned int hashcode
, tree type
)
3004 struct type_hash
*h
, in
;
3006 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3007 must call that routine before comparing TYPE_ALIGNs. */
3013 h
= htab_find_with_hash (type_hash_table
, &in
, hashcode
);
3019 /* Add an entry to the type-hash-table
3020 for a type TYPE whose hash code is HASHCODE. */
3023 type_hash_add (unsigned int hashcode
, tree type
)
3025 struct type_hash
*h
;
3028 h
= ggc_alloc (sizeof (struct type_hash
));
3031 loc
= htab_find_slot_with_hash (type_hash_table
, h
, hashcode
, INSERT
);
3032 *(struct type_hash
**) loc
= h
;
3035 /* Given TYPE, and HASHCODE its hash code, return the canonical
3036 object for an identical type if one already exists.
3037 Otherwise, return TYPE, and record it as the canonical object
3038 if it is a permanent object.
3040 To use this function, first create a type of the sort you want.
3041 Then compute its hash code from the fields of the type that
3042 make it different from other similar types.
3043 Then call this function and use the value.
3044 This function frees the type you pass in if it is a duplicate. */
3046 /* Set to 1 to debug without canonicalization. Never set by program. */
3047 int debug_no_type_hash
= 0;
3050 type_hash_canon (unsigned int hashcode
, tree type
)
3054 if (debug_no_type_hash
)
3057 /* See if the type is in the hash table already. If so, return it.
3058 Otherwise, add the type. */
3059 t1
= type_hash_lookup (hashcode
, type
);
3062 #ifdef GATHER_STATISTICS
3063 tree_node_counts
[(int) t_kind
]--;
3064 tree_node_sizes
[(int) t_kind
] -= sizeof (struct tree_type
);
3070 type_hash_add (hashcode
, type
);
3075 /* See if the data pointed to by the type hash table is marked. We consider
3076 it marked if the type is marked or if a debug type number or symbol
3077 table entry has been made for the type. This reduces the amount of
3078 debugging output and eliminates that dependency of the debug output on
3079 the number of garbage collections. */
3082 type_hash_marked_p (const void *p
)
3084 tree type
= ((struct type_hash
*) p
)->type
;
3086 return ggc_marked_p (type
) || TYPE_SYMTAB_POINTER (type
);
3090 print_type_hash_statistics (void)
3092 fprintf (stderr
, "Type hash: size %ld, %ld elements, %f collisions\n",
3093 (long) htab_size (type_hash_table
),
3094 (long) htab_elements (type_hash_table
),
3095 htab_collisions (type_hash_table
));
3098 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3099 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3100 by adding the hash codes of the individual attributes. */
3103 attribute_hash_list (tree list
)
3105 unsigned int hashcode
;
3108 for (hashcode
= 0, tail
= list
; tail
; tail
= TREE_CHAIN (tail
))
3109 /* ??? Do we want to add in TREE_VALUE too? */
3110 hashcode
+= TYPE_HASH (TREE_PURPOSE (tail
));
3114 /* Given two lists of attributes, return true if list l2 is
3115 equivalent to l1. */
3118 attribute_list_equal (tree l1
, tree l2
)
3120 return attribute_list_contained (l1
, l2
)
3121 && attribute_list_contained (l2
, l1
);
3124 /* Given two lists of attributes, return true if list L2 is
3125 completely contained within L1. */
3126 /* ??? This would be faster if attribute names were stored in a canonicalized
3127 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3128 must be used to show these elements are equivalent (which they are). */
3129 /* ??? It's not clear that attributes with arguments will always be handled
3133 attribute_list_contained (tree l1
, tree l2
)
3137 /* First check the obvious, maybe the lists are identical. */
3141 /* Maybe the lists are similar. */
3142 for (t1
= l1
, t2
= l2
;
3144 && TREE_PURPOSE (t1
) == TREE_PURPOSE (t2
)
3145 && TREE_VALUE (t1
) == TREE_VALUE (t2
);
3146 t1
= TREE_CHAIN (t1
), t2
= TREE_CHAIN (t2
));
3148 /* Maybe the lists are equal. */
3149 if (t1
== 0 && t2
== 0)
3152 for (; t2
!= 0; t2
= TREE_CHAIN (t2
))
3155 for (attr
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2
)), l1
);
3157 attr
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2
)),
3160 if (simple_cst_equal (TREE_VALUE (t2
), TREE_VALUE (attr
)) == 1)
3167 if (simple_cst_equal (TREE_VALUE (t2
), TREE_VALUE (attr
)) != 1)
3174 /* Given two lists of types
3175 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3176 return 1 if the lists contain the same types in the same order.
3177 Also, the TREE_PURPOSEs must match. */
3180 type_list_equal (tree l1
, tree l2
)
3184 for (t1
= l1
, t2
= l2
; t1
&& t2
; t1
= TREE_CHAIN (t1
), t2
= TREE_CHAIN (t2
))
3185 if (TREE_VALUE (t1
) != TREE_VALUE (t2
)
3186 || (TREE_PURPOSE (t1
) != TREE_PURPOSE (t2
)
3187 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1
), TREE_PURPOSE (t2
))
3188 && (TREE_TYPE (TREE_PURPOSE (t1
))
3189 == TREE_TYPE (TREE_PURPOSE (t2
))))))
3195 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3196 given by TYPE. If the argument list accepts variable arguments,
3197 then this function counts only the ordinary arguments. */
3200 type_num_arguments (tree type
)
3205 for (t
= TYPE_ARG_TYPES (type
); t
; t
= TREE_CHAIN (t
))
3206 /* If the function does not take a variable number of arguments,
3207 the last element in the list will have type `void'. */
3208 if (VOID_TYPE_P (TREE_VALUE (t
)))
3216 /* Nonzero if integer constants T1 and T2
3217 represent the same constant value. */
3220 tree_int_cst_equal (tree t1
, tree t2
)
3225 if (t1
== 0 || t2
== 0)
3228 if (TREE_CODE (t1
) == INTEGER_CST
3229 && TREE_CODE (t2
) == INTEGER_CST
3230 && TREE_INT_CST_LOW (t1
) == TREE_INT_CST_LOW (t2
)
3231 && TREE_INT_CST_HIGH (t1
) == TREE_INT_CST_HIGH (t2
))
3237 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3238 The precise way of comparison depends on their data type. */
3241 tree_int_cst_lt (tree t1
, tree t2
)
3246 if (TREE_UNSIGNED (TREE_TYPE (t1
)) != TREE_UNSIGNED (TREE_TYPE (t2
)))
3248 int t1_sgn
= tree_int_cst_sgn (t1
);
3249 int t2_sgn
= tree_int_cst_sgn (t2
);
3251 if (t1_sgn
< t2_sgn
)
3253 else if (t1_sgn
> t2_sgn
)
3255 /* Otherwise, both are non-negative, so we compare them as
3256 unsigned just in case one of them would overflow a signed
3259 else if (! TREE_UNSIGNED (TREE_TYPE (t1
)))
3260 return INT_CST_LT (t1
, t2
);
3262 return INT_CST_LT_UNSIGNED (t1
, t2
);
3265 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3268 tree_int_cst_compare (tree t1
, tree t2
)
3270 if (tree_int_cst_lt (t1
, t2
))
3272 else if (tree_int_cst_lt (t2
, t1
))
3278 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3279 the host. If POS is zero, the value can be represented in a single
3280 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3281 be represented in a single unsigned HOST_WIDE_INT. */
3284 host_integerp (tree t
, int pos
)
3286 return (TREE_CODE (t
) == INTEGER_CST
3287 && ! TREE_OVERFLOW (t
)
3288 && ((TREE_INT_CST_HIGH (t
) == 0
3289 && (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) >= 0)
3290 || (! pos
&& TREE_INT_CST_HIGH (t
) == -1
3291 && (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) < 0
3292 && ! TREE_UNSIGNED (TREE_TYPE (t
)))
3293 || (pos
&& TREE_INT_CST_HIGH (t
) == 0)));
3296 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3297 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3298 be positive. Abort if we cannot satisfy the above conditions. */
3301 tree_low_cst (tree t
, int pos
)
3303 if (host_integerp (t
, pos
))
3304 return TREE_INT_CST_LOW (t
);
3309 /* Return the most significant bit of the integer constant T. */
3312 tree_int_cst_msb (tree t
)
3316 unsigned HOST_WIDE_INT l
;
3318 /* Note that using TYPE_PRECISION here is wrong. We care about the
3319 actual bits, not the (arbitrary) range of the type. */
3320 prec
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t
))) - 1;
3321 rshift_double (TREE_INT_CST_LOW (t
), TREE_INT_CST_HIGH (t
), prec
,
3322 2 * HOST_BITS_PER_WIDE_INT
, &l
, &h
, 0);
3323 return (l
& 1) == 1;
3326 /* Return an indication of the sign of the integer constant T.
3327 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3328 Note that -1 will never be returned it T's type is unsigned. */
3331 tree_int_cst_sgn (tree t
)
3333 if (TREE_INT_CST_LOW (t
) == 0 && TREE_INT_CST_HIGH (t
) == 0)
3335 else if (TREE_UNSIGNED (TREE_TYPE (t
)))
3337 else if (TREE_INT_CST_HIGH (t
) < 0)
3343 /* Compare two constructor-element-type constants. Return 1 if the lists
3344 are known to be equal; otherwise return 0. */
3347 simple_cst_list_equal (tree l1
, tree l2
)
3349 while (l1
!= NULL_TREE
&& l2
!= NULL_TREE
)
3351 if (simple_cst_equal (TREE_VALUE (l1
), TREE_VALUE (l2
)) != 1)
3354 l1
= TREE_CHAIN (l1
);
3355 l2
= TREE_CHAIN (l2
);
3361 /* Return truthvalue of whether T1 is the same tree structure as T2.
3362 Return 1 if they are the same.
3363 Return 0 if they are understandably different.
3364 Return -1 if either contains tree structure not understood by
3368 simple_cst_equal (tree t1
, tree t2
)
3370 enum tree_code code1
, code2
;
3376 if (t1
== 0 || t2
== 0)
3379 code1
= TREE_CODE (t1
);
3380 code2
= TREE_CODE (t2
);
3382 if (code1
== NOP_EXPR
|| code1
== CONVERT_EXPR
|| code1
== NON_LVALUE_EXPR
)
3384 if (code2
== NOP_EXPR
|| code2
== CONVERT_EXPR
3385 || code2
== NON_LVALUE_EXPR
)
3386 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3388 return simple_cst_equal (TREE_OPERAND (t1
, 0), t2
);
3391 else if (code2
== NOP_EXPR
|| code2
== CONVERT_EXPR
3392 || code2
== NON_LVALUE_EXPR
)
3393 return simple_cst_equal (t1
, TREE_OPERAND (t2
, 0));
3401 return (TREE_INT_CST_LOW (t1
) == TREE_INT_CST_LOW (t2
)
3402 && TREE_INT_CST_HIGH (t1
) == TREE_INT_CST_HIGH (t2
));
3405 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1
), TREE_REAL_CST (t2
));
3408 return (TREE_STRING_LENGTH (t1
) == TREE_STRING_LENGTH (t2
)
3409 && ! memcmp (TREE_STRING_POINTER (t1
), TREE_STRING_POINTER (t2
),
3410 TREE_STRING_LENGTH (t1
)));
3413 if (CONSTRUCTOR_ELTS (t1
) == CONSTRUCTOR_ELTS (t2
))
3419 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3422 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3426 simple_cst_list_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t2
, 1));
3429 /* Special case: if either target is an unallocated VAR_DECL,
3430 it means that it's going to be unified with whatever the
3431 TARGET_EXPR is really supposed to initialize, so treat it
3432 as being equivalent to anything. */
3433 if ((TREE_CODE (TREE_OPERAND (t1
, 0)) == VAR_DECL
3434 && DECL_NAME (TREE_OPERAND (t1
, 0)) == NULL_TREE
3435 && !DECL_RTL_SET_P (TREE_OPERAND (t1
, 0)))
3436 || (TREE_CODE (TREE_OPERAND (t2
, 0)) == VAR_DECL
3437 && DECL_NAME (TREE_OPERAND (t2
, 0)) == NULL_TREE
3438 && !DECL_RTL_SET_P (TREE_OPERAND (t2
, 0))))
3441 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3446 return simple_cst_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t2
, 1));
3448 case WITH_CLEANUP_EXPR
:
3449 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3453 return simple_cst_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t1
, 1));
3456 if (TREE_OPERAND (t1
, 1) == TREE_OPERAND (t2
, 1))
3457 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3471 /* This general rule works for most tree codes. All exceptions should be
3472 handled above. If this is a language-specific tree code, we can't
3473 trust what might be in the operand, so say we don't know
3475 if ((int) code1
>= (int) LAST_AND_UNUSED_TREE_CODE
)
3478 switch (TREE_CODE_CLASS (code1
))
3487 for (i
= 0; i
< TREE_CODE_LENGTH (code1
); i
++)
3489 cmp
= simple_cst_equal (TREE_OPERAND (t1
, i
), TREE_OPERAND (t2
, i
));
3501 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3502 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3503 than U, respectively. */
3506 compare_tree_int (tree t
, unsigned HOST_WIDE_INT u
)
3508 if (tree_int_cst_sgn (t
) < 0)
3510 else if (TREE_INT_CST_HIGH (t
) != 0)
3512 else if (TREE_INT_CST_LOW (t
) == u
)
3514 else if (TREE_INT_CST_LOW (t
) < u
)
3520 /* Generate a hash value for an expression. This can be used iteratively
3521 by passing a previous result as the "val" argument.
3523 This function is intended to produce the same hash for expressions which
3524 would compare equal using operand_equal_p. */
3527 iterative_hash_expr (tree t
, hashval_t val
)
3530 enum tree_code code
;
3534 return iterative_hash_object (t
, val
);
3536 code
= TREE_CODE (t
);
3537 class = TREE_CODE_CLASS (code
);
3541 /* Decls we can just compare by pointer. */
3542 val
= iterative_hash_object (t
, val
);
3544 else if (class == 'c')
3546 /* Alas, constants aren't shared, so we can't rely on pointer
3548 if (code
== INTEGER_CST
)
3550 val
= iterative_hash_object (TREE_INT_CST_LOW (t
), val
);
3551 val
= iterative_hash_object (TREE_INT_CST_HIGH (t
), val
);
3553 else if (code
== REAL_CST
)
3554 val
= iterative_hash (TREE_REAL_CST_PTR (t
),
3555 sizeof (REAL_VALUE_TYPE
), val
);
3556 else if (code
== STRING_CST
)
3557 val
= iterative_hash (TREE_STRING_POINTER (t
),
3558 TREE_STRING_LENGTH (t
), val
);
3559 else if (code
== COMPLEX_CST
)
3561 val
= iterative_hash_expr (TREE_REALPART (t
), val
);
3562 val
= iterative_hash_expr (TREE_IMAGPART (t
), val
);
3564 else if (code
== VECTOR_CST
)
3565 val
= iterative_hash_expr (TREE_VECTOR_CST_ELTS (t
), val
);
3569 else if (IS_EXPR_CODE_CLASS (class))
3571 val
= iterative_hash_object (code
, val
);
3573 if (code
== NOP_EXPR
|| code
== CONVERT_EXPR
3574 || code
== NON_LVALUE_EXPR
)
3575 val
= iterative_hash_object (TREE_TYPE (t
), val
);
3577 if (code
== PLUS_EXPR
|| code
== MULT_EXPR
|| code
== MIN_EXPR
3578 || code
== MAX_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
3579 || code
== BIT_AND_EXPR
|| code
== NE_EXPR
|| code
== EQ_EXPR
)
3581 /* It's a commutative expression. We want to hash it the same
3582 however it appears. We do this by first hashing both operands
3583 and then rehashing based on the order of their independent
3585 hashval_t one
= iterative_hash_expr (TREE_OPERAND (t
, 0), 0);
3586 hashval_t two
= iterative_hash_expr (TREE_OPERAND (t
, 1), 0);
3590 t
= one
, one
= two
, two
= t
;
3592 val
= iterative_hash_object (one
, val
);
3593 val
= iterative_hash_object (two
, val
);
3596 for (i
= first_rtl_op (code
) - 1; i
>= 0; --i
)
3597 val
= iterative_hash_expr (TREE_OPERAND (t
, i
), val
);
3599 else if (code
== TREE_LIST
)
3601 /* A list of expressions, for a CALL_EXPR or as the elements of a
3603 for (; t
; t
= TREE_CHAIN (t
))
3604 val
= iterative_hash_expr (TREE_VALUE (t
), val
);
3612 /* Constructors for pointer, array and function types.
3613 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3614 constructed by language-dependent code, not here.) */
3616 /* Construct, lay out and return the type of pointers to TO_TYPE
3617 with mode MODE. If such a type has already been constructed,
3621 build_pointer_type_for_mode (tree to_type
, enum machine_mode mode
)
3623 tree t
= TYPE_POINTER_TO (to_type
);
3625 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3626 if (t
!= 0 && mode
== ptr_mode
)
3629 t
= make_node (POINTER_TYPE
);
3631 TREE_TYPE (t
) = to_type
;
3632 TYPE_MODE (t
) = mode
;
3634 /* Record this type as the pointer to TO_TYPE. */
3635 if (mode
== ptr_mode
)
3636 TYPE_POINTER_TO (to_type
) = t
;
3638 /* Lay out the type. This function has many callers that are concerned
3639 with expression-construction, and this simplifies them all.
3640 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3646 /* By default build pointers in ptr_mode. */
3649 build_pointer_type (tree to_type
)
3651 return build_pointer_type_for_mode (to_type
, ptr_mode
);
3654 /* Construct, lay out and return the type of references to TO_TYPE
3655 with mode MODE. If such a type has already been constructed,
3659 build_reference_type_for_mode (tree to_type
, enum machine_mode mode
)
3661 tree t
= TYPE_REFERENCE_TO (to_type
);
3663 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3664 if (t
!= 0 && mode
== ptr_mode
)
3667 t
= make_node (REFERENCE_TYPE
);
3669 TREE_TYPE (t
) = to_type
;
3670 TYPE_MODE (t
) = mode
;
3672 /* Record this type as the pointer to TO_TYPE. */
3673 if (mode
== ptr_mode
)
3674 TYPE_REFERENCE_TO (to_type
) = t
;
3682 /* Build the node for the type of references-to-TO_TYPE by default
3686 build_reference_type (tree to_type
)
3688 return build_reference_type_for_mode (to_type
, ptr_mode
);
3691 /* Build a type that is compatible with t but has no cv quals anywhere
3694 const char *const *const * -> char ***. */
3697 build_type_no_quals (tree t
)
3699 switch (TREE_CODE (t
))
3702 return build_pointer_type (build_type_no_quals (TREE_TYPE (t
)));
3703 case REFERENCE_TYPE
:
3704 return build_reference_type (build_type_no_quals (TREE_TYPE (t
)));
3706 return TYPE_MAIN_VARIANT (t
);
3710 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3711 MAXVAL should be the maximum value in the domain
3712 (one less than the length of the array).
3714 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3715 We don't enforce this limit, that is up to caller (e.g. language front end).
3716 The limit exists because the result is a signed type and we don't handle
3717 sizes that use more than one HOST_WIDE_INT. */
3720 build_index_type (tree maxval
)
3722 tree itype
= make_node (INTEGER_TYPE
);
3724 TREE_TYPE (itype
) = sizetype
;
3725 TYPE_PRECISION (itype
) = TYPE_PRECISION (sizetype
);
3726 TYPE_MIN_VALUE (itype
) = size_zero_node
;
3727 TYPE_MAX_VALUE (itype
) = convert (sizetype
, maxval
);
3728 TYPE_MODE (itype
) = TYPE_MODE (sizetype
);
3729 TYPE_SIZE (itype
) = TYPE_SIZE (sizetype
);
3730 TYPE_SIZE_UNIT (itype
) = TYPE_SIZE_UNIT (sizetype
);
3731 TYPE_ALIGN (itype
) = TYPE_ALIGN (sizetype
);
3732 TYPE_USER_ALIGN (itype
) = TYPE_USER_ALIGN (sizetype
);
3734 if (host_integerp (maxval
, 1))
3735 return type_hash_canon (tree_low_cst (maxval
, 1), itype
);
3740 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3741 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3742 low bound LOWVAL and high bound HIGHVAL.
3743 if TYPE==NULL_TREE, sizetype is used. */
3746 build_range_type (tree type
, tree lowval
, tree highval
)
3748 tree itype
= make_node (INTEGER_TYPE
);
3750 TREE_TYPE (itype
) = type
;
3751 if (type
== NULL_TREE
)
3754 TYPE_MIN_VALUE (itype
) = convert (type
, lowval
);
3755 TYPE_MAX_VALUE (itype
) = highval
? convert (type
, highval
) : NULL
;
3757 TYPE_PRECISION (itype
) = TYPE_PRECISION (type
);
3758 TYPE_MODE (itype
) = TYPE_MODE (type
);
3759 TYPE_SIZE (itype
) = TYPE_SIZE (type
);
3760 TYPE_SIZE_UNIT (itype
) = TYPE_SIZE_UNIT (type
);
3761 TYPE_ALIGN (itype
) = TYPE_ALIGN (type
);
3762 TYPE_USER_ALIGN (itype
) = TYPE_USER_ALIGN (type
);
3764 if (host_integerp (lowval
, 0) && highval
!= 0 && host_integerp (highval
, 0))
3765 return type_hash_canon (tree_low_cst (highval
, 0)
3766 - tree_low_cst (lowval
, 0),
3772 /* Just like build_index_type, but takes lowval and highval instead
3773 of just highval (maxval). */
3776 build_index_2_type (tree lowval
, tree highval
)
3778 return build_range_type (sizetype
, lowval
, highval
);
3781 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3782 and number of elements specified by the range of values of INDEX_TYPE.
3783 If such a type has already been constructed, reuse it. */
3786 build_array_type (tree elt_type
, tree index_type
)
3789 unsigned int hashcode
;
3791 if (TREE_CODE (elt_type
) == FUNCTION_TYPE
)
3793 error ("arrays of functions are not meaningful");
3794 elt_type
= integer_type_node
;
3797 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3798 build_pointer_type (elt_type
);
3800 /* Allocate the array after the pointer type,
3801 in case we free it in type_hash_canon. */
3802 t
= make_node (ARRAY_TYPE
);
3803 TREE_TYPE (t
) = elt_type
;
3804 TYPE_DOMAIN (t
) = index_type
;
3806 if (index_type
== 0)
3811 hashcode
= TYPE_HASH (elt_type
) + TYPE_HASH (index_type
);
3812 t
= type_hash_canon (hashcode
, t
);
3814 if (!COMPLETE_TYPE_P (t
))
3819 /* Return the TYPE of the elements comprising
3820 the innermost dimension of ARRAY. */
3823 get_inner_array_type (tree array
)
3825 tree type
= TREE_TYPE (array
);
3827 while (TREE_CODE (type
) == ARRAY_TYPE
)
3828 type
= TREE_TYPE (type
);
3833 /* Construct, lay out and return
3834 the type of functions returning type VALUE_TYPE
3835 given arguments of types ARG_TYPES.
3836 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3837 are data type nodes for the arguments of the function.
3838 If such a type has already been constructed, reuse it. */
3841 build_function_type (tree value_type
, tree arg_types
)
3844 unsigned int hashcode
;
3846 if (TREE_CODE (value_type
) == FUNCTION_TYPE
)
3848 error ("function return type cannot be function");
3849 value_type
= integer_type_node
;
3852 /* Make a node of the sort we want. */
3853 t
= make_node (FUNCTION_TYPE
);
3854 TREE_TYPE (t
) = value_type
;
3855 TYPE_ARG_TYPES (t
) = arg_types
;
3857 /* If we already have such a type, use the old one and free this one. */
3858 hashcode
= TYPE_HASH (value_type
) + type_hash_list (arg_types
);
3859 t
= type_hash_canon (hashcode
, t
);
3861 if (!COMPLETE_TYPE_P (t
))
3866 /* Build a function type. The RETURN_TYPE is the type returned by the
3867 function. If additional arguments are provided, they are
3868 additional argument types. The list of argument types must always
3869 be terminated by NULL_TREE. */
3872 build_function_type_list (tree return_type
, ...)
3877 va_start (p
, return_type
);
3879 t
= va_arg (p
, tree
);
3880 for (args
= NULL_TREE
; t
!= NULL_TREE
; t
= va_arg (p
, tree
))
3881 args
= tree_cons (NULL_TREE
, t
, args
);
3884 args
= nreverse (args
);
3885 TREE_CHAIN (last
) = void_list_node
;
3886 args
= build_function_type (return_type
, args
);
3892 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
3893 and ARGTYPES (a TREE_LIST) are the return type and arguments types
3894 for the method. An implicit additional parameter (of type
3895 pointer-to-BASETYPE) is added to the ARGTYPES. */
3898 build_method_type_directly (tree basetype
,
3906 /* Make a node of the sort we want. */
3907 t
= make_node (METHOD_TYPE
);
3909 TYPE_METHOD_BASETYPE (t
) = TYPE_MAIN_VARIANT (basetype
);
3910 TREE_TYPE (t
) = rettype
;
3911 ptype
= build_pointer_type (basetype
);
3913 /* The actual arglist for this function includes a "hidden" argument
3914 which is "this". Put it into the list of argument types. */
3915 argtypes
= tree_cons (NULL_TREE
, ptype
, argtypes
);
3916 TYPE_ARG_TYPES (t
) = argtypes
;
3918 /* If we already have such a type, use the old one and free this one.
3919 Note that it also frees up the above cons cell if found. */
3920 hashcode
= TYPE_HASH (basetype
) + TYPE_HASH (rettype
) +
3921 type_hash_list (argtypes
);
3923 t
= type_hash_canon (hashcode
, t
);
3925 if (!COMPLETE_TYPE_P (t
))
3931 /* Construct, lay out and return the type of methods belonging to class
3932 BASETYPE and whose arguments and values are described by TYPE.
3933 If that type exists already, reuse it.
3934 TYPE must be a FUNCTION_TYPE node. */
3937 build_method_type (tree basetype
, tree type
)
3939 if (TREE_CODE (type
) != FUNCTION_TYPE
)
3942 return build_method_type_directly (basetype
,
3944 TYPE_ARG_TYPES (type
));
3947 /* Construct, lay out and return the type of offsets to a value
3948 of type TYPE, within an object of type BASETYPE.
3949 If a suitable offset type exists already, reuse it. */
3952 build_offset_type (tree basetype
, tree type
)
3955 unsigned int hashcode
;
3957 /* Make a node of the sort we want. */
3958 t
= make_node (OFFSET_TYPE
);
3960 TYPE_OFFSET_BASETYPE (t
) = TYPE_MAIN_VARIANT (basetype
);
3961 TREE_TYPE (t
) = type
;
3963 /* If we already have such a type, use the old one and free this one. */
3964 hashcode
= TYPE_HASH (basetype
) + TYPE_HASH (type
);
3965 t
= type_hash_canon (hashcode
, t
);
3967 if (!COMPLETE_TYPE_P (t
))
3973 /* Create a complex type whose components are COMPONENT_TYPE. */
3976 build_complex_type (tree component_type
)
3979 unsigned int hashcode
;
3981 /* Make a node of the sort we want. */
3982 t
= make_node (COMPLEX_TYPE
);
3984 TREE_TYPE (t
) = TYPE_MAIN_VARIANT (component_type
);
3985 set_type_quals (t
, TYPE_QUALS (component_type
));
3987 /* If we already have such a type, use the old one and free this one. */
3988 hashcode
= TYPE_HASH (component_type
);
3989 t
= type_hash_canon (hashcode
, t
);
3991 if (!COMPLETE_TYPE_P (t
))
3994 /* If we are writing Dwarf2 output we need to create a name,
3995 since complex is a fundamental type. */
3996 if ((write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
4000 if (component_type
== char_type_node
)
4001 name
= "complex char";
4002 else if (component_type
== signed_char_type_node
)
4003 name
= "complex signed char";
4004 else if (component_type
== unsigned_char_type_node
)
4005 name
= "complex unsigned char";
4006 else if (component_type
== short_integer_type_node
)
4007 name
= "complex short int";
4008 else if (component_type
== short_unsigned_type_node
)
4009 name
= "complex short unsigned int";
4010 else if (component_type
== integer_type_node
)
4011 name
= "complex int";
4012 else if (component_type
== unsigned_type_node
)
4013 name
= "complex unsigned int";
4014 else if (component_type
== long_integer_type_node
)
4015 name
= "complex long int";
4016 else if (component_type
== long_unsigned_type_node
)
4017 name
= "complex long unsigned int";
4018 else if (component_type
== long_long_integer_type_node
)
4019 name
= "complex long long int";
4020 else if (component_type
== long_long_unsigned_type_node
)
4021 name
= "complex long long unsigned int";
4026 TYPE_NAME (t
) = get_identifier (name
);
4032 /* Return OP, stripped of any conversions to wider types as much as is safe.
4033 Converting the value back to OP's type makes a value equivalent to OP.
4035 If FOR_TYPE is nonzero, we return a value which, if converted to
4036 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4038 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4039 narrowest type that can hold the value, even if they don't exactly fit.
4040 Otherwise, bit-field references are changed to a narrower type
4041 only if they can be fetched directly from memory in that type.
4043 OP must have integer, real or enumeral type. Pointers are not allowed!
4045 There are some cases where the obvious value we could return
4046 would regenerate to OP if converted to OP's type,
4047 but would not extend like OP to wider types.
4048 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4049 For example, if OP is (unsigned short)(signed char)-1,
4050 we avoid returning (signed char)-1 if FOR_TYPE is int,
4051 even though extending that to an unsigned short would regenerate OP,
4052 since the result of extending (signed char)-1 to (int)
4053 is different from (int) OP. */
4056 get_unwidened (tree op
, tree for_type
)
4058 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4059 tree type
= TREE_TYPE (op
);
4061 = TYPE_PRECISION (for_type
!= 0 ? for_type
: type
);
4063 = (for_type
!= 0 && for_type
!= type
4064 && final_prec
> TYPE_PRECISION (type
)
4065 && TREE_UNSIGNED (type
));
4068 while (TREE_CODE (op
) == NOP_EXPR
)
4071 = TYPE_PRECISION (TREE_TYPE (op
))
4072 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op
, 0)));
4074 /* Truncations are many-one so cannot be removed.
4075 Unless we are later going to truncate down even farther. */
4077 && final_prec
> TYPE_PRECISION (TREE_TYPE (op
)))
4080 /* See what's inside this conversion. If we decide to strip it,
4082 op
= TREE_OPERAND (op
, 0);
4084 /* If we have not stripped any zero-extensions (uns is 0),
4085 we can strip any kind of extension.
4086 If we have previously stripped a zero-extension,
4087 only zero-extensions can safely be stripped.
4088 Any extension can be stripped if the bits it would produce
4089 are all going to be discarded later by truncating to FOR_TYPE. */
4093 if (! uns
|| final_prec
<= TYPE_PRECISION (TREE_TYPE (op
)))
4095 /* TREE_UNSIGNED says whether this is a zero-extension.
4096 Let's avoid computing it if it does not affect WIN
4097 and if UNS will not be needed again. */
4098 if ((uns
|| TREE_CODE (op
) == NOP_EXPR
)
4099 && TREE_UNSIGNED (TREE_TYPE (op
)))
4107 if (TREE_CODE (op
) == COMPONENT_REF
4108 /* Since type_for_size always gives an integer type. */
4109 && TREE_CODE (type
) != REAL_TYPE
4110 /* Don't crash if field not laid out yet. */
4111 && DECL_SIZE (TREE_OPERAND (op
, 1)) != 0
4112 && host_integerp (DECL_SIZE (TREE_OPERAND (op
, 1)), 1))
4114 unsigned int innerprec
4115 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op
, 1)), 1);
4116 int unsignedp
= (TREE_UNSIGNED (TREE_OPERAND (op
, 1))
4117 || TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op
, 1))));
4118 type
= (*lang_hooks
.types
.type_for_size
) (innerprec
, unsignedp
);
4120 /* We can get this structure field in the narrowest type it fits in.
4121 If FOR_TYPE is 0, do this only for a field that matches the
4122 narrower type exactly and is aligned for it
4123 The resulting extension to its nominal type (a fullword type)
4124 must fit the same conditions as for other extensions. */
4126 if (innerprec
< TYPE_PRECISION (TREE_TYPE (op
))
4127 && (for_type
|| ! DECL_BIT_FIELD (TREE_OPERAND (op
, 1)))
4128 && (! uns
|| final_prec
<= innerprec
|| unsignedp
)
4131 win
= build (COMPONENT_REF
, type
, TREE_OPERAND (op
, 0),
4132 TREE_OPERAND (op
, 1));
4133 TREE_SIDE_EFFECTS (win
) = TREE_SIDE_EFFECTS (op
);
4134 TREE_THIS_VOLATILE (win
) = TREE_THIS_VOLATILE (op
);
4141 /* Return OP or a simpler expression for a narrower value
4142 which can be sign-extended or zero-extended to give back OP.
4143 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4144 or 0 if the value should be sign-extended. */
4147 get_narrower (tree op
, int *unsignedp_ptr
)
4153 while (TREE_CODE (op
) == NOP_EXPR
)
4156 = (TYPE_PRECISION (TREE_TYPE (op
))
4157 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op
, 0))));
4159 /* Truncations are many-one so cannot be removed. */
4163 /* See what's inside this conversion. If we decide to strip it,
4168 op
= TREE_OPERAND (op
, 0);
4169 /* An extension: the outermost one can be stripped,
4170 but remember whether it is zero or sign extension. */
4172 uns
= TREE_UNSIGNED (TREE_TYPE (op
));
4173 /* Otherwise, if a sign extension has been stripped,
4174 only sign extensions can now be stripped;
4175 if a zero extension has been stripped, only zero-extensions. */
4176 else if (uns
!= TREE_UNSIGNED (TREE_TYPE (op
)))
4180 else /* bitschange == 0 */
4182 /* A change in nominal type can always be stripped, but we must
4183 preserve the unsignedness. */
4185 uns
= TREE_UNSIGNED (TREE_TYPE (op
));
4187 op
= TREE_OPERAND (op
, 0);
4193 if (TREE_CODE (op
) == COMPONENT_REF
4194 /* Since type_for_size always gives an integer type. */
4195 && TREE_CODE (TREE_TYPE (op
)) != REAL_TYPE
4196 /* Ensure field is laid out already. */
4197 && DECL_SIZE (TREE_OPERAND (op
, 1)) != 0)
4199 unsigned HOST_WIDE_INT innerprec
4200 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op
, 1)), 1);
4201 int unsignedp
= (TREE_UNSIGNED (TREE_OPERAND (op
, 1))
4202 || TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op
, 1))));
4203 tree type
= (*lang_hooks
.types
.type_for_size
) (innerprec
, unsignedp
);
4205 /* We can get this structure field in a narrower type that fits it,
4206 but the resulting extension to its nominal type (a fullword type)
4207 must satisfy the same conditions as for other extensions.
4209 Do this only for fields that are aligned (not bit-fields),
4210 because when bit-field insns will be used there is no
4211 advantage in doing this. */
4213 if (innerprec
< TYPE_PRECISION (TREE_TYPE (op
))
4214 && ! DECL_BIT_FIELD (TREE_OPERAND (op
, 1))
4215 && (first
|| uns
== TREE_UNSIGNED (TREE_OPERAND (op
, 1)))
4219 uns
= TREE_UNSIGNED (TREE_OPERAND (op
, 1));
4220 win
= build (COMPONENT_REF
, type
, TREE_OPERAND (op
, 0),
4221 TREE_OPERAND (op
, 1));
4222 TREE_SIDE_EFFECTS (win
) = TREE_SIDE_EFFECTS (op
);
4223 TREE_THIS_VOLATILE (win
) = TREE_THIS_VOLATILE (op
);
4226 *unsignedp_ptr
= uns
;
4230 /* Nonzero if integer constant C has a value that is permissible
4231 for type TYPE (an INTEGER_TYPE). */
4234 int_fits_type_p (tree c
, tree type
)
4236 tree type_low_bound
= TYPE_MIN_VALUE (type
);
4237 tree type_high_bound
= TYPE_MAX_VALUE (type
);
4238 int ok_for_low_bound
, ok_for_high_bound
;
4240 /* Perform some generic filtering first, which may allow making a decision
4241 even if the bounds are not constant. First, negative integers never fit
4242 in unsigned types, */
4243 if ((TREE_UNSIGNED (type
) && tree_int_cst_sgn (c
) < 0)
4244 /* Also, unsigned integers with top bit set never fit signed types. */
4245 || (! TREE_UNSIGNED (type
)
4246 && TREE_UNSIGNED (TREE_TYPE (c
)) && tree_int_cst_msb (c
)))
4249 /* If at least one bound of the type is a constant integer, we can check
4250 ourselves and maybe make a decision. If no such decision is possible, but
4251 this type is a subtype, try checking against that. Otherwise, use
4252 force_fit_type, which checks against the precision.
4254 Compute the status for each possibly constant bound, and return if we see
4255 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4256 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4257 for "constant known to fit". */
4259 ok_for_low_bound
= -1;
4260 ok_for_high_bound
= -1;
4262 /* Check if C >= type_low_bound. */
4263 if (type_low_bound
&& TREE_CODE (type_low_bound
) == INTEGER_CST
)
4265 ok_for_low_bound
= ! tree_int_cst_lt (c
, type_low_bound
);
4266 if (! ok_for_low_bound
)
4270 /* Check if c <= type_high_bound. */
4271 if (type_high_bound
&& TREE_CODE (type_high_bound
) == INTEGER_CST
)
4273 ok_for_high_bound
= ! tree_int_cst_lt (type_high_bound
, c
);
4274 if (! ok_for_high_bound
)
4278 /* If the constant fits both bounds, the result is known. */
4279 if (ok_for_low_bound
== 1 && ok_for_high_bound
== 1)
4282 /* If we haven't been able to decide at this point, there nothing more we
4283 can check ourselves here. Look at the base type if we have one. */
4284 else if (TREE_CODE (type
) == INTEGER_TYPE
&& TREE_TYPE (type
) != 0)
4285 return int_fits_type_p (c
, TREE_TYPE (type
));
4287 /* Or to force_fit_type, if nothing else. */
4291 TREE_TYPE (c
) = type
;
4292 return !force_fit_type (c
, 0);
4296 /* Returns true if T is, contains, or refers to a type with variable
4297 size. This concept is more general than that of C99 'variably
4298 modified types': in C99, a struct type is never variably modified
4299 because a VLA may not appear as a structure member. However, in
4302 struct S { int i[f()]; };
4304 is valid, and other languages may define similar constructs. */
4307 variably_modified_type_p (tree type
)
4311 if (type
== error_mark_node
)
4314 /* If TYPE itself has variable size, it is variably modified.
4316 We do not yet have a representation of the C99 '[*]' syntax.
4317 When a representation is chosen, this function should be modified
4318 to test for that case as well. */
4319 t
= TYPE_SIZE (type
);
4320 if (t
&& t
!= error_mark_node
&& TREE_CODE (t
) != INTEGER_CST
)
4323 switch (TREE_CODE (type
))
4326 case REFERENCE_TYPE
:
4328 /* If TYPE is a pointer or reference, it is variably modified if
4329 the type pointed to is variably modified. Similarly for arrays;
4330 note that VLAs are handled by the TYPE_SIZE check above. */
4331 return variably_modified_type_p (TREE_TYPE (type
));
4335 /* If TYPE is a function type, it is variably modified if any of the
4336 parameters or the return type are variably modified. */
4340 if (variably_modified_type_p (TREE_TYPE (type
)))
4342 for (parm
= TYPE_ARG_TYPES (type
);
4343 parm
&& parm
!= void_list_node
;
4344 parm
= TREE_CHAIN (parm
))
4345 if (variably_modified_type_p (TREE_VALUE (parm
)))
4351 /* Scalar types are variably modified if their end points
4353 t
= TYPE_MIN_VALUE (type
);
4354 if (t
&& t
!= error_mark_node
&& TREE_CODE (t
) != INTEGER_CST
)
4356 t
= TYPE_MAX_VALUE (type
);
4357 if (t
&& t
!= error_mark_node
&& TREE_CODE (t
) != INTEGER_CST
)
4365 /* The current language may have other cases to check, but in general,
4366 all other types are not variably modified. */
4367 return (*lang_hooks
.tree_inlining
.var_mod_type_p
) (type
);
4370 /* Given a DECL or TYPE, return the scope in which it was declared, or
4371 NULL_TREE if there is no containing scope. */
4374 get_containing_scope (tree t
)
4376 return (TYPE_P (t
) ? TYPE_CONTEXT (t
) : DECL_CONTEXT (t
));
4379 /* Return the innermost context enclosing DECL that is
4380 a FUNCTION_DECL, or zero if none. */
4383 decl_function_context (tree decl
)
4387 if (TREE_CODE (decl
) == ERROR_MARK
)
4390 if (TREE_CODE (decl
) == SAVE_EXPR
)
4391 context
= SAVE_EXPR_CONTEXT (decl
);
4393 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4394 where we look up the function at runtime. Such functions always take
4395 a first argument of type 'pointer to real context'.
4397 C++ should really be fixed to use DECL_CONTEXT for the real context,
4398 and use something else for the "virtual context". */
4399 else if (TREE_CODE (decl
) == FUNCTION_DECL
&& DECL_VINDEX (decl
))
4402 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
4404 context
= DECL_CONTEXT (decl
);
4406 while (context
&& TREE_CODE (context
) != FUNCTION_DECL
)
4408 if (TREE_CODE (context
) == BLOCK
)
4409 context
= BLOCK_SUPERCONTEXT (context
);
4411 context
= get_containing_scope (context
);
4417 /* Return the innermost context enclosing DECL that is
4418 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4419 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4422 decl_type_context (tree decl
)
4424 tree context
= DECL_CONTEXT (decl
);
4427 switch (TREE_CODE (context
))
4429 case NAMESPACE_DECL
:
4430 case TRANSLATION_UNIT_DECL
:
4435 case QUAL_UNION_TYPE
:
4440 context
= DECL_CONTEXT (context
);
4444 context
= BLOCK_SUPERCONTEXT (context
);
4454 /* CALL is a CALL_EXPR. Return the declaration for the function
4455 called, or NULL_TREE if the called function cannot be
4459 get_callee_fndecl (tree call
)
4463 /* It's invalid to call this function with anything but a
4465 if (TREE_CODE (call
) != CALL_EXPR
)
4468 /* The first operand to the CALL is the address of the function
4470 addr
= TREE_OPERAND (call
, 0);
4474 /* If this is a readonly function pointer, extract its initial value. */
4475 if (DECL_P (addr
) && TREE_CODE (addr
) != FUNCTION_DECL
4476 && TREE_READONLY (addr
) && ! TREE_THIS_VOLATILE (addr
)
4477 && DECL_INITIAL (addr
))
4478 addr
= DECL_INITIAL (addr
);
4480 /* If the address is just `&f' for some function `f', then we know
4481 that `f' is being called. */
4482 if (TREE_CODE (addr
) == ADDR_EXPR
4483 && TREE_CODE (TREE_OPERAND (addr
, 0)) == FUNCTION_DECL
)
4484 return TREE_OPERAND (addr
, 0);
4486 /* We couldn't figure out what was being called. Maybe the front
4487 end has some idea. */
4488 return (*lang_hooks
.lang_get_callee_fndecl
) (call
);
4491 /* Print debugging information about tree nodes generated during the compile,
4492 and any language-specific information. */
4495 dump_tree_statistics (void)
4497 #ifdef GATHER_STATISTICS
4499 int total_nodes
, total_bytes
;
4502 fprintf (stderr
, "\n??? tree nodes created\n\n");
4503 #ifdef GATHER_STATISTICS
4504 fprintf (stderr
, "Kind Nodes Bytes\n");
4505 fprintf (stderr
, "---------------------------------------\n");
4506 total_nodes
= total_bytes
= 0;
4507 for (i
= 0; i
< (int) all_kinds
; i
++)
4509 fprintf (stderr
, "%-20s %7d %10d\n", tree_node_kind_names
[i
],
4510 tree_node_counts
[i
], tree_node_sizes
[i
]);
4511 total_nodes
+= tree_node_counts
[i
];
4512 total_bytes
+= tree_node_sizes
[i
];
4514 fprintf (stderr
, "---------------------------------------\n");
4515 fprintf (stderr
, "%-20s %7d %10d\n", "Total", total_nodes
, total_bytes
);
4516 fprintf (stderr
, "---------------------------------------\n");
4518 fprintf (stderr
, "(No per-node statistics)\n");
4520 print_type_hash_statistics ();
4521 (*lang_hooks
.print_statistics
) ();
4524 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4526 /* Generate a crc32 of a string. */
4529 crc32_string (unsigned chksum
, const char *string
)
4533 unsigned value
= *string
<< 24;
4536 for (ix
= 8; ix
--; value
<<= 1)
4540 feedback
= (value
^ chksum
) & 0x80000000 ? 0x04c11db7 : 0;
4549 /* P is a string that will be used in a symbol. Mask out any characters
4550 that are not valid in that context. */
4553 clean_symbol_name (char *p
)
4557 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4560 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4567 /* Generate a name for a function unique to this translation unit.
4568 TYPE is some string to identify the purpose of this function to the
4569 linker or collect2. */
4572 get_file_function_name_long (const char *type
)
4578 if (first_global_object_name
)
4579 p
= first_global_object_name
;
4582 /* We don't have anything that we know to be unique to this translation
4583 unit, so use what we do have and throw in some randomness. */
4585 const char *name
= weak_global_object_name
;
4586 const char *file
= main_input_filename
;
4591 file
= input_filename
;
4593 len
= strlen (file
);
4594 q
= alloca (9 * 2 + len
+ 1);
4595 memcpy (q
, file
, len
+ 1);
4596 clean_symbol_name (q
);
4598 sprintf (q
+ len
, "_%08X_%08X", crc32_string (0, name
),
4599 crc32_string (0, flag_random_seed
));
4604 buf
= alloca (sizeof (FILE_FUNCTION_FORMAT
) + strlen (p
) + strlen (type
));
4606 /* Set up the name of the file-level functions we may need.
4607 Use a global object (which is already required to be unique over
4608 the program) rather than the file name (which imposes extra
4610 sprintf (buf
, FILE_FUNCTION_FORMAT
, type
, p
);
4612 return get_identifier (buf
);
4615 /* If KIND=='I', return a suitable global initializer (constructor) name.
4616 If KIND=='D', return a suitable global clean-up (destructor) name. */
4619 get_file_function_name (int kind
)
4626 return get_file_function_name_long (p
);
4629 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4630 The result is placed in BUFFER (which has length BIT_SIZE),
4631 with one bit in each char ('\000' or '\001').
4633 If the constructor is constant, NULL_TREE is returned.
4634 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4637 get_set_constructor_bits (tree init
, char *buffer
, int bit_size
)
4641 HOST_WIDE_INT domain_min
4642 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init
))), 0);
4643 tree non_const_bits
= NULL_TREE
;
4645 for (i
= 0; i
< bit_size
; i
++)
4648 for (vals
= TREE_OPERAND (init
, 1);
4649 vals
!= NULL_TREE
; vals
= TREE_CHAIN (vals
))
4651 if (!host_integerp (TREE_VALUE (vals
), 0)
4652 || (TREE_PURPOSE (vals
) != NULL_TREE
4653 && !host_integerp (TREE_PURPOSE (vals
), 0)))
4655 = tree_cons (TREE_PURPOSE (vals
), TREE_VALUE (vals
), non_const_bits
);
4656 else if (TREE_PURPOSE (vals
) != NULL_TREE
)
4658 /* Set a range of bits to ones. */
4659 HOST_WIDE_INT lo_index
4660 = tree_low_cst (TREE_PURPOSE (vals
), 0) - domain_min
;
4661 HOST_WIDE_INT hi_index
4662 = tree_low_cst (TREE_VALUE (vals
), 0) - domain_min
;
4664 if (lo_index
< 0 || lo_index
>= bit_size
4665 || hi_index
< 0 || hi_index
>= bit_size
)
4667 for (; lo_index
<= hi_index
; lo_index
++)
4668 buffer
[lo_index
] = 1;
4672 /* Set a single bit to one. */
4674 = tree_low_cst (TREE_VALUE (vals
), 0) - domain_min
;
4675 if (index
< 0 || index
>= bit_size
)
4677 error ("invalid initializer for bit string");
4683 return non_const_bits
;
4686 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4687 The result is placed in BUFFER (which is an array of bytes).
4688 If the constructor is constant, NULL_TREE is returned.
4689 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4692 get_set_constructor_bytes (tree init
, unsigned char *buffer
, int wd_size
)
4695 int set_word_size
= BITS_PER_UNIT
;
4696 int bit_size
= wd_size
* set_word_size
;
4698 unsigned char *bytep
= buffer
;
4699 char *bit_buffer
= alloca (bit_size
);
4700 tree non_const_bits
= get_set_constructor_bits (init
, bit_buffer
, bit_size
);
4702 for (i
= 0; i
< wd_size
; i
++)
4705 for (i
= 0; i
< bit_size
; i
++)
4709 if (BYTES_BIG_ENDIAN
)
4710 *bytep
|= (1 << (set_word_size
- 1 - bit_pos
));
4712 *bytep
|= 1 << bit_pos
;
4715 if (bit_pos
>= set_word_size
)
4716 bit_pos
= 0, bytep
++;
4718 return non_const_bits
;
4721 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4722 /* Complain that the tree code of NODE does not match the expected CODE.
4723 FILE, LINE, and FUNCTION are of the caller. */
4726 tree_check_failed (const tree node
, enum tree_code code
, const char *file
,
4727 int line
, const char *function
)
4729 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4730 tree_code_name
[code
], tree_code_name
[TREE_CODE (node
)],
4731 function
, trim_filename (file
), line
);
4734 /* Similar to above, except that we check for a class of tree
4735 code, given in CL. */
4738 tree_class_check_failed (const tree node
, int cl
, const char *file
,
4739 int line
, const char *function
)
4742 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4743 cl
, TREE_CODE_CLASS (TREE_CODE (node
)),
4744 tree_code_name
[TREE_CODE (node
)], function
, trim_filename (file
), line
);
4747 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4748 (dynamically sized) vector. */
4751 tree_vec_elt_check_failed (int idx
, int len
, const char *file
, int line
,
4752 const char *function
)
4755 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4756 idx
+ 1, len
, function
, trim_filename (file
), line
);
4759 /* Similar to above, except that the check is for the bounds of the operand
4760 vector of an expression node. */
4763 tree_operand_check_failed (int idx
, enum tree_code code
, const char *file
,
4764 int line
, const char *function
)
4767 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4768 idx
+ 1, tree_code_name
[code
], TREE_CODE_LENGTH (code
),
4769 function
, trim_filename (file
), line
);
4771 #endif /* ENABLE_TREE_CHECKING */
4773 /* For a new vector type node T, build the information necessary for
4774 debugging output. */
4777 finish_vector_type (tree t
)
4782 tree index
= build_int_2 (TYPE_VECTOR_SUBPARTS (t
) - 1, 0);
4783 tree array
= build_array_type (TREE_TYPE (t
),
4784 build_index_type (index
));
4785 tree rt
= make_node (RECORD_TYPE
);
4787 TYPE_FIELDS (rt
) = build_decl (FIELD_DECL
, get_identifier ("f"), array
);
4788 DECL_CONTEXT (TYPE_FIELDS (rt
)) = rt
;
4790 TYPE_DEBUG_REPRESENTATION_TYPE (t
) = rt
;
4791 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4792 the representation type, and we want to find that die when looking up
4793 the vector type. This is most easily achieved by making the TYPE_UID
4795 TYPE_UID (rt
) = TYPE_UID (t
);
4799 /* Create nodes for all integer types (and error_mark_node) using the sizes
4800 of C datatypes. The caller should call set_sizetype soon after calling
4801 this function to select one of the types as sizetype. */
4804 build_common_tree_nodes (int signed_char
)
4806 error_mark_node
= make_node (ERROR_MARK
);
4807 TREE_TYPE (error_mark_node
) = error_mark_node
;
4809 initialize_sizetypes ();
4811 /* Define both `signed char' and `unsigned char'. */
4812 signed_char_type_node
= make_signed_type (CHAR_TYPE_SIZE
);
4813 unsigned_char_type_node
= make_unsigned_type (CHAR_TYPE_SIZE
);
4815 /* Define `char', which is like either `signed char' or `unsigned char'
4816 but not the same as either. */
4819 ? make_signed_type (CHAR_TYPE_SIZE
)
4820 : make_unsigned_type (CHAR_TYPE_SIZE
));
4822 short_integer_type_node
= make_signed_type (SHORT_TYPE_SIZE
);
4823 short_unsigned_type_node
= make_unsigned_type (SHORT_TYPE_SIZE
);
4824 integer_type_node
= make_signed_type (INT_TYPE_SIZE
);
4825 unsigned_type_node
= make_unsigned_type (INT_TYPE_SIZE
);
4826 long_integer_type_node
= make_signed_type (LONG_TYPE_SIZE
);
4827 long_unsigned_type_node
= make_unsigned_type (LONG_TYPE_SIZE
);
4828 long_long_integer_type_node
= make_signed_type (LONG_LONG_TYPE_SIZE
);
4829 long_long_unsigned_type_node
= make_unsigned_type (LONG_LONG_TYPE_SIZE
);
4831 /* Define a boolean type. This type only represents boolean values but
4832 may be larger than char depending on the value of BOOL_TYPE_SIZE.
4833 Front ends which want to override this size (i.e. Java) can redefine
4834 boolean_type_node before calling build_common_tree_nodes_2. */
4835 boolean_type_node
= make_unsigned_type (BOOL_TYPE_SIZE
);
4836 TREE_SET_CODE (boolean_type_node
, BOOLEAN_TYPE
);
4837 TYPE_MAX_VALUE (boolean_type_node
) = build_int_2 (1, 0);
4838 TREE_TYPE (TYPE_MAX_VALUE (boolean_type_node
)) = boolean_type_node
;
4839 TYPE_PRECISION (boolean_type_node
) = 1;
4841 intQI_type_node
= make_signed_type (GET_MODE_BITSIZE (QImode
));
4842 intHI_type_node
= make_signed_type (GET_MODE_BITSIZE (HImode
));
4843 intSI_type_node
= make_signed_type (GET_MODE_BITSIZE (SImode
));
4844 intDI_type_node
= make_signed_type (GET_MODE_BITSIZE (DImode
));
4845 intTI_type_node
= make_signed_type (GET_MODE_BITSIZE (TImode
));
4847 unsigned_intQI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (QImode
));
4848 unsigned_intHI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (HImode
));
4849 unsigned_intSI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (SImode
));
4850 unsigned_intDI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (DImode
));
4851 unsigned_intTI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (TImode
));
4854 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4855 It will create several other common tree nodes. */
4858 build_common_tree_nodes_2 (int short_double
)
4860 /* Define these next since types below may used them. */
4861 integer_zero_node
= build_int_2 (0, 0);
4862 integer_one_node
= build_int_2 (1, 0);
4863 integer_minus_one_node
= build_int_2 (-1, -1);
4865 size_zero_node
= size_int (0);
4866 size_one_node
= size_int (1);
4867 bitsize_zero_node
= bitsize_int (0);
4868 bitsize_one_node
= bitsize_int (1);
4869 bitsize_unit_node
= bitsize_int (BITS_PER_UNIT
);
4871 boolean_false_node
= TYPE_MIN_VALUE (boolean_type_node
);
4872 boolean_true_node
= TYPE_MAX_VALUE (boolean_type_node
);
4874 void_type_node
= make_node (VOID_TYPE
);
4875 layout_type (void_type_node
);
4877 /* We are not going to have real types in C with less than byte alignment,
4878 so we might as well not have any types that claim to have it. */
4879 TYPE_ALIGN (void_type_node
) = BITS_PER_UNIT
;
4880 TYPE_USER_ALIGN (void_type_node
) = 0;
4882 null_pointer_node
= build_int_2 (0, 0);
4883 TREE_TYPE (null_pointer_node
) = build_pointer_type (void_type_node
);
4884 layout_type (TREE_TYPE (null_pointer_node
));
4886 ptr_type_node
= build_pointer_type (void_type_node
);
4888 = build_pointer_type (build_type_variant (void_type_node
, 1, 0));
4890 float_type_node
= make_node (REAL_TYPE
);
4891 TYPE_PRECISION (float_type_node
) = FLOAT_TYPE_SIZE
;
4892 layout_type (float_type_node
);
4894 double_type_node
= make_node (REAL_TYPE
);
4896 TYPE_PRECISION (double_type_node
) = FLOAT_TYPE_SIZE
;
4898 TYPE_PRECISION (double_type_node
) = DOUBLE_TYPE_SIZE
;
4899 layout_type (double_type_node
);
4901 long_double_type_node
= make_node (REAL_TYPE
);
4902 TYPE_PRECISION (long_double_type_node
) = LONG_DOUBLE_TYPE_SIZE
;
4903 layout_type (long_double_type_node
);
4905 float_ptr_type_node
= build_pointer_type (float_type_node
);
4906 double_ptr_type_node
= build_pointer_type (double_type_node
);
4907 long_double_ptr_type_node
= build_pointer_type (long_double_type_node
);
4908 integer_ptr_type_node
= build_pointer_type (integer_type_node
);
4910 complex_integer_type_node
= make_node (COMPLEX_TYPE
);
4911 TREE_TYPE (complex_integer_type_node
) = integer_type_node
;
4912 layout_type (complex_integer_type_node
);
4914 complex_float_type_node
= make_node (COMPLEX_TYPE
);
4915 TREE_TYPE (complex_float_type_node
) = float_type_node
;
4916 layout_type (complex_float_type_node
);
4918 complex_double_type_node
= make_node (COMPLEX_TYPE
);
4919 TREE_TYPE (complex_double_type_node
) = double_type_node
;
4920 layout_type (complex_double_type_node
);
4922 complex_long_double_type_node
= make_node (COMPLEX_TYPE
);
4923 TREE_TYPE (complex_long_double_type_node
) = long_double_type_node
;
4924 layout_type (complex_long_double_type_node
);
4927 tree t
= (*targetm
.build_builtin_va_list
) ();
4929 /* Many back-ends define record types without setting TYPE_NAME.
4930 If we copied the record type here, we'd keep the original
4931 record type without a name. This breaks name mangling. So,
4932 don't copy record types and let c_common_nodes_and_builtins()
4933 declare the type to be __builtin_va_list. */
4934 if (TREE_CODE (t
) != RECORD_TYPE
)
4935 t
= build_type_copy (t
);
4937 va_list_type_node
= t
;
4940 unsigned_V4SI_type_node
4941 = make_vector (V4SImode
, unsigned_intSI_type_node
, 1);
4942 unsigned_V2HI_type_node
4943 = make_vector (V2HImode
, unsigned_intHI_type_node
, 1);
4944 unsigned_V2SI_type_node
4945 = make_vector (V2SImode
, unsigned_intSI_type_node
, 1);
4946 unsigned_V2DI_type_node
4947 = make_vector (V2DImode
, unsigned_intDI_type_node
, 1);
4948 unsigned_V4HI_type_node
4949 = make_vector (V4HImode
, unsigned_intHI_type_node
, 1);
4950 unsigned_V8QI_type_node
4951 = make_vector (V8QImode
, unsigned_intQI_type_node
, 1);
4952 unsigned_V8HI_type_node
4953 = make_vector (V8HImode
, unsigned_intHI_type_node
, 1);
4954 unsigned_V16QI_type_node
4955 = make_vector (V16QImode
, unsigned_intQI_type_node
, 1);
4956 unsigned_V1DI_type_node
4957 = make_vector (V1DImode
, unsigned_intDI_type_node
, 1);
4959 V16SF_type_node
= make_vector (V16SFmode
, float_type_node
, 0);
4960 V4SF_type_node
= make_vector (V4SFmode
, float_type_node
, 0);
4961 V4SI_type_node
= make_vector (V4SImode
, intSI_type_node
, 0);
4962 V2HI_type_node
= make_vector (V2HImode
, intHI_type_node
, 0);
4963 V2SI_type_node
= make_vector (V2SImode
, intSI_type_node
, 0);
4964 V2DI_type_node
= make_vector (V2DImode
, intDI_type_node
, 0);
4965 V4HI_type_node
= make_vector (V4HImode
, intHI_type_node
, 0);
4966 V8QI_type_node
= make_vector (V8QImode
, intQI_type_node
, 0);
4967 V8HI_type_node
= make_vector (V8HImode
, intHI_type_node
, 0);
4968 V2SF_type_node
= make_vector (V2SFmode
, float_type_node
, 0);
4969 V2DF_type_node
= make_vector (V2DFmode
, double_type_node
, 0);
4970 V16QI_type_node
= make_vector (V16QImode
, intQI_type_node
, 0);
4971 V1DI_type_node
= make_vector (V1DImode
, intDI_type_node
, 0);
4972 V4DF_type_node
= make_vector (V4DFmode
, double_type_node
, 0);
4975 /* Returns a vector tree node given a vector mode, the inner type, and
4979 make_vector (enum machine_mode mode
, tree innertype
, int unsignedp
)
4983 t
= make_node (VECTOR_TYPE
);
4984 TREE_TYPE (t
) = innertype
;
4985 TYPE_MODE (t
) = mode
;
4986 TREE_UNSIGNED (TREE_TYPE (t
)) = unsignedp
;
4987 finish_vector_type (t
);
4992 /* Given an initializer INIT, return TRUE if INIT is zero or some
4993 aggregate of zeros. Otherwise return FALSE. */
4996 initializer_zerop (tree init
)
5000 switch (TREE_CODE (init
))
5003 return integer_zerop (init
);
5005 return real_zerop (init
)
5006 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init
));
5008 return integer_zerop (init
)
5009 || (real_zerop (init
)
5010 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init
)))
5011 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init
))));
5014 /* Set is empty if it has no elements. */
5015 if ((TREE_CODE (TREE_TYPE (init
)) == SET_TYPE
)
5016 && CONSTRUCTOR_ELTS (init
))
5019 if (AGGREGATE_TYPE_P (TREE_TYPE (init
)))
5021 tree aggr_init
= CONSTRUCTOR_ELTS (init
);
5025 if (! initializer_zerop (TREE_VALUE (aggr_init
)))
5027 aggr_init
= TREE_CHAIN (aggr_init
);
5038 #include "gt-tree.h"