1 /* Generic sibling call optimization support
2 Copyright (C) 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "coretypes.h"
30 #include "hard-reg-set.h"
32 #include "insn-config.h"
34 #include "basic-block.h"
39 /* In case alternate_exit_block contains copy from pseudo, to return value,
40 record the pseudo here. In such case the pseudo must be set to function
41 return in the sibcall sequence. */
42 static rtx return_value_pseudo
;
44 static int identify_call_return_value (rtx
, rtx
*, rtx
*);
45 static rtx
skip_copy_to_return_value (rtx
);
46 static rtx
skip_use_of_return_value (rtx
, enum rtx_code
);
47 static rtx
skip_stack_adjustment (rtx
);
48 static rtx
skip_pic_restore (rtx
);
49 static rtx
skip_jump_insn (rtx
);
50 static int call_ends_block_p (rtx
, rtx
);
51 static int uses_addressof (rtx
);
52 static int sequence_uses_addressof (rtx
);
53 static void purge_reg_equiv_notes (void);
54 static void purge_mem_unchanging_flag (rtx
);
55 static rtx
skip_unreturned_value (rtx
);
57 /* Examine a CALL_PLACEHOLDER pattern and determine where the call's
58 return value is located. P_HARD_RETURN receives the hard register
59 that the function used; P_SOFT_RETURN receives the pseudo register
60 that the sequence used. Return nonzero if the values were located. */
63 identify_call_return_value (rtx cp
, rtx
*p_hard_return
, rtx
*p_soft_return
)
65 rtx insn
, set
, hard
, soft
;
68 /* Search backward through the "normal" call sequence to the CALL insn. */
69 while (NEXT_INSN (insn
))
70 insn
= NEXT_INSN (insn
);
71 while (GET_CODE (insn
) != CALL_INSN
)
72 insn
= PREV_INSN (insn
);
74 /* Assume the pattern is (set (dest) (call ...)), or that the first
75 member of a parallel is. This is the hard return register used
77 if (GET_CODE (PATTERN (insn
)) == SET
78 && GET_CODE (SET_SRC (PATTERN (insn
))) == CALL
)
79 hard
= SET_DEST (PATTERN (insn
));
80 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
81 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
82 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn
), 0, 0))) == CALL
)
83 hard
= SET_DEST (XVECEXP (PATTERN (insn
), 0, 0));
87 /* If we didn't get a single hard register (e.g. a parallel), give up. */
88 if (GET_CODE (hard
) != REG
)
91 /* Stack adjustment done after call may appear here. */
92 insn
= skip_stack_adjustment (insn
);
96 /* Restore of GP register may appear here. */
97 insn
= skip_pic_restore (insn
);
101 /* If there's nothing after, there's no soft return value. */
102 insn
= NEXT_INSN (insn
);
106 /* We're looking for a source of the hard return register. */
107 set
= single_set (insn
);
108 if (! set
|| SET_SRC (set
) != hard
)
111 soft
= SET_DEST (set
);
112 insn
= NEXT_INSN (insn
);
114 /* Allow this first destination to be copied to a second register,
115 as might happen if the first register wasn't the particular pseudo
116 we'd been expecting. */
118 && (set
= single_set (insn
)) != NULL_RTX
119 && SET_SRC (set
) == soft
)
121 soft
= SET_DEST (set
);
122 insn
= NEXT_INSN (insn
);
125 /* Don't fool with anything but pseudo registers. */
126 if (GET_CODE (soft
) != REG
|| REGNO (soft
) < FIRST_PSEUDO_REGISTER
)
129 /* This value must not be modified before the end of the sequence. */
130 if (reg_set_between_p (soft
, insn
, NULL_RTX
))
133 *p_hard_return
= hard
;
134 *p_soft_return
= soft
;
139 /* If the first real insn after ORIG_INSN copies to this function's
140 return value from RETVAL, then return the insn which performs the
141 copy. Otherwise return ORIG_INSN. */
144 skip_copy_to_return_value (rtx orig_insn
)
146 rtx insn
, set
= NULL_RTX
;
147 rtx hardret
, softret
;
149 /* If there is no return value, we have nothing to do. */
150 if (! identify_call_return_value (PATTERN (orig_insn
), &hardret
, &softret
))
153 insn
= next_nonnote_insn (orig_insn
);
157 set
= single_set (insn
);
161 if (return_value_pseudo
)
163 if (SET_DEST (set
) == return_value_pseudo
164 && SET_SRC (set
) == softret
)
169 /* The destination must be the same as the called function's return
170 value to ensure that any return value is put in the same place by the
171 current function and the function we're calling.
173 Further, the source must be the same as the pseudo into which the
174 called function's return value was copied. Otherwise we're returning
177 #ifndef OUTGOING_REGNO
178 #define OUTGOING_REGNO(N) (N)
181 if (SET_DEST (set
) == current_function_return_rtx
182 && REG_P (SET_DEST (set
))
183 && OUTGOING_REGNO (REGNO (SET_DEST (set
))) == REGNO (hardret
)
184 && SET_SRC (set
) == softret
)
187 /* Recognize the situation when the called function's return value
188 is copied in two steps: first into an intermediate pseudo, then
189 the into the calling functions return value register. */
191 if (REG_P (SET_DEST (set
))
192 && SET_SRC (set
) == softret
)
194 rtx x
= SET_DEST (set
);
196 insn
= next_nonnote_insn (insn
);
200 set
= single_set (insn
);
204 if (SET_DEST (set
) == current_function_return_rtx
205 && REG_P (SET_DEST (set
))
206 && OUTGOING_REGNO (REGNO (SET_DEST (set
))) == REGNO (hardret
)
207 && SET_SRC (set
) == x
)
211 /* It did not look like a copy of the return value, so return the
212 same insn we were passed. */
216 /* If the first real insn after ORIG_INSN is a CODE of this function's return
217 value, return insn. Otherwise return ORIG_INSN. */
220 skip_use_of_return_value (rtx orig_insn
, enum rtx_code code
)
224 insn
= next_nonnote_insn (orig_insn
);
227 && GET_CODE (insn
) == INSN
228 && GET_CODE (PATTERN (insn
)) == code
229 && (XEXP (PATTERN (insn
), 0) == current_function_return_rtx
230 || XEXP (PATTERN (insn
), 0) == const0_rtx
))
236 /* In case function does not return value, we get clobber of pseudo followed
237 by set to hard return value. */
239 skip_unreturned_value (rtx orig_insn
)
241 rtx insn
= next_nonnote_insn (orig_insn
);
243 /* Skip possible clobber of pseudo return register. */
245 && GET_CODE (insn
) == INSN
246 && GET_CODE (PATTERN (insn
)) == CLOBBER
247 && REG_P (XEXP (PATTERN (insn
), 0))
248 && (REGNO (XEXP (PATTERN (insn
), 0)) >= FIRST_PSEUDO_REGISTER
))
250 rtx set_insn
= next_nonnote_insn (insn
);
254 set
= single_set (set_insn
);
256 || SET_SRC (set
) != XEXP (PATTERN (insn
), 0)
257 || SET_DEST (set
) != current_function_return_rtx
)
264 /* If the first real insn after ORIG_INSN adjusts the stack pointer
265 by a constant, return the insn with the stack pointer adjustment.
266 Otherwise return ORIG_INSN. */
269 skip_stack_adjustment (rtx orig_insn
)
271 rtx insn
, set
= NULL_RTX
;
273 insn
= next_nonnote_insn (orig_insn
);
276 set
= single_set (insn
);
280 && GET_CODE (SET_SRC (set
)) == PLUS
281 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
282 && GET_CODE (XEXP (SET_SRC (set
), 1)) == CONST_INT
283 && SET_DEST (set
) == stack_pointer_rtx
)
289 /* If the first real insn after ORIG_INSN sets the pic register,
290 return it. Otherwise return ORIG_INSN. */
293 skip_pic_restore (rtx orig_insn
)
295 rtx insn
, set
= NULL_RTX
;
297 insn
= next_nonnote_insn (orig_insn
);
300 set
= single_set (insn
);
302 if (insn
&& set
&& SET_DEST (set
) == pic_offset_table_rtx
)
308 /* If the first real insn after ORIG_INSN is a jump, return the JUMP_INSN.
309 Otherwise return ORIG_INSN. */
312 skip_jump_insn (rtx orig_insn
)
316 insn
= next_nonnote_insn (orig_insn
);
319 && GET_CODE (insn
) == JUMP_INSN
320 && any_uncondjump_p (insn
))
326 /* Using the above functions, see if INSN, skipping any of the above,
327 goes all the way to END, the end of a basic block. Return 1 if so. */
330 call_ends_block_p (rtx insn
, rtx end
)
333 /* END might be a note, so get the last nonnote insn of the block. */
334 end
= next_nonnote_insn (PREV_INSN (end
));
336 /* If the call was the end of the block, then we're OK. */
340 /* Skip over copying from the call's return value pseudo into
341 this function's hard return register and if that's the end
342 of the block, we're OK. */
343 new_insn
= skip_copy_to_return_value (insn
);
345 /* In case we return value in pseudo, we must set the pseudo to
346 return value of called function, otherwise we are returning
348 if (return_value_pseudo
&& insn
== new_insn
)
355 /* Skip any stack adjustment. */
356 insn
= skip_stack_adjustment (insn
);
360 /* Skip over a CLOBBER of the return value as a hard reg. */
361 insn
= skip_use_of_return_value (insn
, CLOBBER
);
365 /* Skip over a CLOBBER of the return value as a hard reg. */
366 insn
= skip_unreturned_value (insn
);
370 /* Skip over a USE of the return value (as a hard reg). */
371 insn
= skip_use_of_return_value (insn
, USE
);
375 /* Skip over a JUMP_INSN at the end of the block. If that doesn't end the
376 block, the original CALL_INSN didn't. */
377 insn
= skip_jump_insn (insn
);
381 /* Scan the rtx X for ADDRESSOF expressions or
382 current_function_internal_arg_pointer registers.
383 Return nonzero if an ADDRESSOF or current_function_internal_arg_pointer
384 is found outside of some MEM expression, else return zero. */
387 uses_addressof (rtx x
)
398 if (code
== ADDRESSOF
|| x
== current_function_internal_arg_pointer
)
404 /* Scan all subexpressions. */
405 fmt
= GET_RTX_FORMAT (code
);
406 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
410 if (uses_addressof (XEXP (x
, i
)))
413 else if (*fmt
== 'E')
415 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
416 if (uses_addressof (XVECEXP (x
, i
, j
)))
423 /* Scan the sequence of insns in SEQ to see if any have an ADDRESSOF
424 rtl expression or current_function_internal_arg_pointer occurrences
425 not enclosed within a MEM. If an ADDRESSOF expression or
426 current_function_internal_arg_pointer is found, return nonzero, otherwise
429 This function handles CALL_PLACEHOLDERs which contain multiple sequences
433 sequence_uses_addressof (rtx seq
)
437 for (insn
= seq
; insn
; insn
= NEXT_INSN (insn
))
440 /* If this is a CALL_PLACEHOLDER, then recursively call ourselves
441 with each nonempty sequence attached to the CALL_PLACEHOLDER. */
442 if (GET_CODE (insn
) == CALL_INSN
443 && GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
445 if (XEXP (PATTERN (insn
), 0) != NULL_RTX
446 && sequence_uses_addressof (XEXP (PATTERN (insn
), 0)))
448 if (XEXP (PATTERN (insn
), 1) != NULL_RTX
449 && sequence_uses_addressof (XEXP (PATTERN (insn
), 1)))
451 if (XEXP (PATTERN (insn
), 2) != NULL_RTX
452 && sequence_uses_addressof (XEXP (PATTERN (insn
), 2)))
455 else if (uses_addressof (PATTERN (insn
))
456 || (REG_NOTES (insn
) && uses_addressof (REG_NOTES (insn
))))
462 /* Remove all REG_EQUIV notes found in the insn chain. */
465 purge_reg_equiv_notes (void)
469 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
473 rtx note
= find_reg_note (insn
, REG_EQUIV
, 0);
476 /* Remove the note and keep looking at the notes for
478 remove_note (insn
, note
);
486 /* Clear RTX_UNCHANGING_P flag of incoming argument MEMs. */
489 purge_mem_unchanging_flag (rtx x
)
502 if (RTX_UNCHANGING_P (x
)
503 && (XEXP (x
, 0) == current_function_internal_arg_pointer
504 || (GET_CODE (XEXP (x
, 0)) == PLUS
505 && XEXP (XEXP (x
, 0), 0) ==
506 current_function_internal_arg_pointer
507 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)))
508 RTX_UNCHANGING_P (x
) = 0;
512 /* Scan all subexpressions. */
513 fmt
= GET_RTX_FORMAT (code
);
514 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
517 purge_mem_unchanging_flag (XEXP (x
, i
));
518 else if (*fmt
== 'E')
519 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
520 purge_mem_unchanging_flag (XVECEXP (x
, i
, j
));
524 /* Replace the CALL_PLACEHOLDER with one of its children. INSN should be
525 the CALL_PLACEHOLDER insn; USE tells which child to use. */
528 replace_call_placeholder (rtx insn
, sibcall_use_t use
)
530 if (use
== sibcall_use_tail_recursion
)
531 emit_insn_before (XEXP (PATTERN (insn
), 2), insn
);
532 else if (use
== sibcall_use_sibcall
)
533 emit_insn_before (XEXP (PATTERN (insn
), 1), insn
);
534 else if (use
== sibcall_use_normal
)
535 emit_insn_before (XEXP (PATTERN (insn
), 0), insn
);
539 /* Turn off LABEL_PRESERVE_P for the tail recursion label if it
540 exists. We only had to set it long enough to keep the jump
541 pass above from deleting it as unused. */
542 if (XEXP (PATTERN (insn
), 3))
543 LABEL_PRESERVE_P (XEXP (PATTERN (insn
), 3)) = 0;
545 /* "Delete" the placeholder insn. */
549 /* Given a (possibly empty) set of potential sibling or tail recursion call
550 sites, determine if optimization is possible.
552 Potential sibling or tail recursion calls are marked with CALL_PLACEHOLDER
553 insns. The CALL_PLACEHOLDER insn holds chains of insns to implement a
554 normal call, sibling call or tail recursive call.
556 Replace the CALL_PLACEHOLDER with an appropriate insn chain. */
559 optimize_sibling_and_tail_recursive_calls (void)
562 basic_block alternate_exit
= EXIT_BLOCK_PTR
;
563 bool no_sibcalls_this_function
= false;
564 bool successful_replacement
= false;
565 bool replaced_call_placeholder
= false;
568 insns
= get_insns ();
570 cleanup_cfg (CLEANUP_PRE_SIBCALL
| CLEANUP_PRE_LOOP
);
572 /* If there are no basic blocks, then there is nothing to do. */
573 if (n_basic_blocks
== 0)
576 /* If we are using sjlj exceptions, we may need to add a call to
577 _Unwind_SjLj_Unregister at exit of the function. Which means
578 that we cannot do any sibcall transformations. */
579 if (USING_SJLJ_EXCEPTIONS
&& current_function_has_exception_handlers ())
580 no_sibcalls_this_function
= true;
582 return_value_pseudo
= NULL_RTX
;
584 /* Find the exit block.
586 It is possible that we have blocks which can reach the exit block
587 directly. However, most of the time a block will jump (or fall into)
588 N_BASIC_BLOCKS - 1, which in turn falls into the exit block. */
589 for (e
= EXIT_BLOCK_PTR
->pred
;
590 e
&& alternate_exit
== EXIT_BLOCK_PTR
;
595 if (e
->dest
!= EXIT_BLOCK_PTR
|| e
->succ_next
!= NULL
)
598 /* Walk forwards through the last normal block and see if it
599 does nothing except fall into the exit block. */
600 for (insn
= BB_HEAD (EXIT_BLOCK_PTR
->prev_bb
);
602 insn
= NEXT_INSN (insn
))
605 /* This should only happen once, at the start of this block. */
606 if (GET_CODE (insn
) == CODE_LABEL
)
609 if (GET_CODE (insn
) == NOTE
)
612 if (GET_CODE (insn
) == INSN
613 && GET_CODE (PATTERN (insn
)) == USE
)
616 /* Exit block also may contain copy from pseudo containing
617 return value to hard register. */
618 if (GET_CODE (insn
) == INSN
619 && (set
= single_set (insn
))
620 && SET_DEST (set
) == current_function_return_rtx
621 && REG_P (SET_SRC (set
))
622 && !return_value_pseudo
)
624 return_value_pseudo
= SET_SRC (set
);
631 /* If INSN is zero, then the search walked all the way through the
632 block without hitting anything interesting. This block is a
633 valid alternate exit block. */
635 alternate_exit
= e
->src
;
637 return_value_pseudo
= NULL
;
640 /* If the function uses ADDRESSOF, we can't (easily) determine
641 at this point if the value will end up on the stack. */
642 no_sibcalls_this_function
|= sequence_uses_addressof (insns
);
644 /* Walk the insn chain and find any CALL_PLACEHOLDER insns. We need to
645 select one of the insn sequences attached to each CALL_PLACEHOLDER.
647 The different sequences represent different ways to implement the call,
648 ie, tail recursion, sibling call or normal call.
650 Since we do not create nested CALL_PLACEHOLDERs, the scan
651 continues with the insn that was after a replaced CALL_PLACEHOLDER;
652 we don't rescan the replacement insns. */
653 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
655 if (GET_CODE (insn
) == CALL_INSN
656 && GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
658 int sibcall
= (XEXP (PATTERN (insn
), 1) != NULL_RTX
);
659 int tailrecursion
= (XEXP (PATTERN (insn
), 2) != NULL_RTX
);
660 basic_block call_block
= BLOCK_FOR_INSN (insn
);
662 /* alloca (until we have stack slot life analysis) inhibits
663 sibling call optimizations, but not tail recursion.
664 Similarly if we use varargs or stdarg since they implicitly
665 may take the address of an argument. */
666 if (current_function_calls_alloca
|| current_function_stdarg
)
669 /* See if there are any reasons we can't perform either sibling or
670 tail call optimizations. We must be careful with stack slots
671 which are live at potential optimization sites. */
672 if (no_sibcalls_this_function
673 /* ??? Overly conservative. */
675 /* Any function that calls setjmp might have longjmp called from
676 any called function. ??? We really should represent this
677 properly in the CFG so that this needn't be special cased. */
678 || current_function_calls_setjmp
679 /* Can't if more than one successor or single successor is not
680 exit block. These two tests prevent tail call optimization
681 in the presence of active exception handlers. */
682 || call_block
->succ
== NULL
683 || call_block
->succ
->succ_next
!= NULL
684 || (call_block
->succ
->dest
!= EXIT_BLOCK_PTR
685 && call_block
->succ
->dest
!= alternate_exit
)
686 /* If this call doesn't end the block, there are operations at
687 the end of the block which we must execute after returning. */
688 || ! call_ends_block_p (insn
, BB_END (call_block
)))
689 sibcall
= 0, tailrecursion
= 0;
691 /* Select a set of insns to implement the call and emit them.
692 Tail recursion is the most efficient, so select it over
693 a tail/sibling call. */
695 if (sibcall
|| tailrecursion
)
696 successful_replacement
= true;
697 replaced_call_placeholder
= true;
699 replace_call_placeholder (insn
,
701 ? sibcall_use_tail_recursion
703 ? sibcall_use_sibcall
704 : sibcall_use_normal
);
708 if (successful_replacement
)
713 /* A sibling call sequence invalidates any REG_EQUIV notes made for
714 this function's incoming arguments.
716 At the start of RTL generation we know the only REG_EQUIV notes
717 in the rtl chain are those for incoming arguments, so we can safely
718 flush any REG_EQUIV note.
720 This is (slight) overkill. We could keep track of the highest
721 argument we clobber and be more selective in removing notes, but it
722 does not seem to be worth the effort. */
723 purge_reg_equiv_notes ();
725 /* A sibling call sequence also may invalidate RTX_UNCHANGING_P
726 flag of some incoming arguments MEM RTLs, because it can write into
727 those slots. We clear all those bits now.
729 This is (slight) overkill, we could keep track of which arguments
730 we actually write into. */
731 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
734 purge_mem_unchanging_flag (PATTERN (insn
));
737 /* Similarly, invalidate RTX_UNCHANGING_P for any incoming
738 arguments passed in registers. */
739 for (arg
= DECL_ARGUMENTS (current_function_decl
);
741 arg
= TREE_CHAIN (arg
))
743 if (REG_P (DECL_RTL (arg
)))
744 RTX_UNCHANGING_P (DECL_RTL (arg
)) = false;
748 /* There may have been NOTE_INSN_BLOCK_{BEGIN,END} notes in the
749 CALL_PLACEHOLDER alternatives that we didn't emit. Rebuild the
750 lexical block tree to correspond to the notes that still exist. */
751 if (replaced_call_placeholder
)
754 /* This information will be invalid after inline expansion. Kill it now. */
755 free_basic_block_vars (0);
756 free_EXPR_LIST_list (&tail_recursion_label_list
);