builtin-has-attribute-4.c: Skip on 32-bit hppa*-*-hpux*.
[official-gcc.git] / gcc / lra-constraints.c
blobccca1303ec2a6e24f49e29f77dfd7e541651a6e0
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2019 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
107 #undef REG_OK_STRICT
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "backend.h"
113 #include "target.h"
114 #include "rtl.h"
115 #include "tree.h"
116 #include "predict.h"
117 #include "df.h"
118 #include "memmodel.h"
119 #include "tm_p.h"
120 #include "expmed.h"
121 #include "optabs.h"
122 #include "regs.h"
123 #include "ira.h"
124 #include "recog.h"
125 #include "output.h"
126 #include "addresses.h"
127 #include "expr.h"
128 #include "cfgrtl.h"
129 #include "rtl-error.h"
130 #include "params.h"
131 #include "lra.h"
132 #include "lra-int.h"
133 #include "print-rtl.h"
135 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
136 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
137 reload insns. */
138 static int bb_reload_num;
140 /* The current insn being processed and corresponding its single set
141 (NULL otherwise), its data (basic block, the insn data, the insn
142 static data, and the mode of each operand). */
143 static rtx_insn *curr_insn;
144 static rtx curr_insn_set;
145 static basic_block curr_bb;
146 static lra_insn_recog_data_t curr_id;
147 static struct lra_static_insn_data *curr_static_id;
148 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
149 /* Mode of the register substituted by its equivalence with VOIDmode
150 (e.g. constant) and whose subreg is given operand of the current
151 insn. VOIDmode in all other cases. */
152 static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
156 /* Start numbers for new registers and insns at the current constraints
157 pass start. */
158 static int new_regno_start;
159 static int new_insn_uid_start;
161 /* If LOC is nonnull, strip any outer subreg from it. */
162 static inline rtx *
163 strip_subreg (rtx *loc)
165 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
168 /* Return hard regno of REGNO or if it is was not assigned to a hard
169 register, use a hard register from its allocno class. */
170 static int
171 get_try_hard_regno (int regno)
173 int hard_regno;
174 enum reg_class rclass;
176 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
177 hard_regno = lra_get_regno_hard_regno (regno);
178 if (hard_regno >= 0)
179 return hard_regno;
180 rclass = lra_get_allocno_class (regno);
181 if (rclass == NO_REGS)
182 return -1;
183 return ira_class_hard_regs[rclass][0];
186 /* Return the hard regno of X after removing its subreg. If X is not
187 a register or a subreg of a register, return -1. If X is a pseudo,
188 use its assignment. If FINAL_P return the final hard regno which will
189 be after elimination. */
190 static int
191 get_hard_regno (rtx x, bool final_p)
193 rtx reg;
194 int hard_regno;
196 reg = x;
197 if (SUBREG_P (x))
198 reg = SUBREG_REG (x);
199 if (! REG_P (reg))
200 return -1;
201 if (! HARD_REGISTER_NUM_P (hard_regno = REGNO (reg)))
202 hard_regno = lra_get_regno_hard_regno (hard_regno);
203 if (hard_regno < 0)
204 return -1;
205 if (final_p)
206 hard_regno = lra_get_elimination_hard_regno (hard_regno);
207 if (SUBREG_P (x))
208 hard_regno += subreg_regno_offset (hard_regno, GET_MODE (reg),
209 SUBREG_BYTE (x), GET_MODE (x));
210 return hard_regno;
213 /* If REGNO is a hard register or has been allocated a hard register,
214 return the class of that register. If REGNO is a reload pseudo
215 created by the current constraints pass, return its allocno class.
216 Return NO_REGS otherwise. */
217 static enum reg_class
218 get_reg_class (int regno)
220 int hard_regno;
222 if (! HARD_REGISTER_NUM_P (hard_regno = regno))
223 hard_regno = lra_get_regno_hard_regno (regno);
224 if (hard_regno >= 0)
226 hard_regno = lra_get_elimination_hard_regno (hard_regno);
227 return REGNO_REG_CLASS (hard_regno);
229 if (regno >= new_regno_start)
230 return lra_get_allocno_class (regno);
231 return NO_REGS;
234 /* Return true if REG satisfies (or will satisfy) reg class constraint
235 CL. Use elimination first if REG is a hard register. If REG is a
236 reload pseudo created by this constraints pass, assume that it will
237 be allocated a hard register from its allocno class, but allow that
238 class to be narrowed to CL if it is currently a superset of CL.
240 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
241 REGNO (reg), or NO_REGS if no change in its class was needed. */
242 static bool
243 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
245 enum reg_class rclass, common_class;
246 machine_mode reg_mode;
247 int class_size, hard_regno, nregs, i, j;
248 int regno = REGNO (reg);
250 if (new_class != NULL)
251 *new_class = NO_REGS;
252 if (regno < FIRST_PSEUDO_REGISTER)
254 rtx final_reg = reg;
255 rtx *final_loc = &final_reg;
257 lra_eliminate_reg_if_possible (final_loc);
258 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
260 reg_mode = GET_MODE (reg);
261 rclass = get_reg_class (regno);
262 if (regno < new_regno_start
263 /* Do not allow the constraints for reload instructions to
264 influence the classes of new pseudos. These reloads are
265 typically moves that have many alternatives, and restricting
266 reload pseudos for one alternative may lead to situations
267 where other reload pseudos are no longer allocatable. */
268 || (INSN_UID (curr_insn) >= new_insn_uid_start
269 && curr_insn_set != NULL
270 && ((OBJECT_P (SET_SRC (curr_insn_set))
271 && ! CONSTANT_P (SET_SRC (curr_insn_set)))
272 || (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
273 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set)))
274 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set)))))))
275 /* When we don't know what class will be used finally for reload
276 pseudos, we use ALL_REGS. */
277 return ((regno >= new_regno_start && rclass == ALL_REGS)
278 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
279 && ! hard_reg_set_subset_p (reg_class_contents[cl],
280 lra_no_alloc_regs)));
281 else
283 common_class = ira_reg_class_subset[rclass][cl];
284 if (new_class != NULL)
285 *new_class = common_class;
286 if (hard_reg_set_subset_p (reg_class_contents[common_class],
287 lra_no_alloc_regs))
288 return false;
289 /* Check that there are enough allocatable regs. */
290 class_size = ira_class_hard_regs_num[common_class];
291 for (i = 0; i < class_size; i++)
293 hard_regno = ira_class_hard_regs[common_class][i];
294 nregs = hard_regno_nregs (hard_regno, reg_mode);
295 if (nregs == 1)
296 return true;
297 for (j = 0; j < nregs; j++)
298 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
299 || ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
300 hard_regno + j))
301 break;
302 if (j >= nregs)
303 return true;
305 return false;
309 /* Return true if REGNO satisfies a memory constraint. */
310 static bool
311 in_mem_p (int regno)
313 return get_reg_class (regno) == NO_REGS;
316 /* Return 1 if ADDR is a valid memory address for mode MODE in address
317 space AS, and check that each pseudo has the proper kind of hard
318 reg. */
319 static int
320 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
321 rtx addr, addr_space_t as)
323 #ifdef GO_IF_LEGITIMATE_ADDRESS
324 lra_assert (ADDR_SPACE_GENERIC_P (as));
325 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
326 return 0;
328 win:
329 return 1;
330 #else
331 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
332 #endif
335 namespace {
336 /* Temporarily eliminates registers in an address (for the lifetime of
337 the object). */
338 class address_eliminator {
339 public:
340 address_eliminator (struct address_info *ad);
341 ~address_eliminator ();
343 private:
344 struct address_info *m_ad;
345 rtx *m_base_loc;
346 rtx m_base_reg;
347 rtx *m_index_loc;
348 rtx m_index_reg;
352 address_eliminator::address_eliminator (struct address_info *ad)
353 : m_ad (ad),
354 m_base_loc (strip_subreg (ad->base_term)),
355 m_base_reg (NULL_RTX),
356 m_index_loc (strip_subreg (ad->index_term)),
357 m_index_reg (NULL_RTX)
359 if (m_base_loc != NULL)
361 m_base_reg = *m_base_loc;
362 /* If we have non-legitimate address which is decomposed not in
363 the way we expected, don't do elimination here. In such case
364 the address will be reloaded and elimination will be done in
365 reload insn finally. */
366 if (REG_P (m_base_reg))
367 lra_eliminate_reg_if_possible (m_base_loc);
368 if (m_ad->base_term2 != NULL)
369 *m_ad->base_term2 = *m_ad->base_term;
371 if (m_index_loc != NULL)
373 m_index_reg = *m_index_loc;
374 if (REG_P (m_index_reg))
375 lra_eliminate_reg_if_possible (m_index_loc);
379 address_eliminator::~address_eliminator ()
381 if (m_base_loc && *m_base_loc != m_base_reg)
383 *m_base_loc = m_base_reg;
384 if (m_ad->base_term2 != NULL)
385 *m_ad->base_term2 = *m_ad->base_term;
387 if (m_index_loc && *m_index_loc != m_index_reg)
388 *m_index_loc = m_index_reg;
391 /* Return true if the eliminated form of AD is a legitimate target address. */
392 static bool
393 valid_address_p (struct address_info *ad)
395 address_eliminator eliminator (ad);
396 return valid_address_p (ad->mode, *ad->outer, ad->as);
399 /* Return true if the eliminated form of memory reference OP satisfies
400 extra (special) memory constraint CONSTRAINT. */
401 static bool
402 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
404 struct address_info ad;
406 decompose_mem_address (&ad, op);
407 address_eliminator eliminator (&ad);
408 return constraint_satisfied_p (op, constraint);
411 /* Return true if the eliminated form of address AD satisfies extra
412 address constraint CONSTRAINT. */
413 static bool
414 satisfies_address_constraint_p (struct address_info *ad,
415 enum constraint_num constraint)
417 address_eliminator eliminator (ad);
418 return constraint_satisfied_p (*ad->outer, constraint);
421 /* Return true if the eliminated form of address OP satisfies extra
422 address constraint CONSTRAINT. */
423 static bool
424 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
426 struct address_info ad;
428 decompose_lea_address (&ad, &op);
429 return satisfies_address_constraint_p (&ad, constraint);
432 /* Initiate equivalences for LRA. As we keep original equivalences
433 before any elimination, we need to make copies otherwise any change
434 in insns might change the equivalences. */
435 void
436 lra_init_equiv (void)
438 ira_expand_reg_equiv ();
439 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
441 rtx res;
443 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
444 ira_reg_equiv[i].memory = copy_rtx (res);
445 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
446 ira_reg_equiv[i].invariant = copy_rtx (res);
450 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
452 /* Update equivalence for REGNO. We need to this as the equivalence
453 might contain other pseudos which are changed by their
454 equivalences. */
455 static void
456 update_equiv (int regno)
458 rtx x;
460 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
461 ira_reg_equiv[regno].memory
462 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
463 NULL_RTX);
464 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
465 ira_reg_equiv[regno].invariant
466 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
467 NULL_RTX);
470 /* If we have decided to substitute X with another value, return that
471 value, otherwise return X. */
472 static rtx
473 get_equiv (rtx x)
475 int regno;
476 rtx res;
478 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
479 || ! ira_reg_equiv[regno].defined_p
480 || ! ira_reg_equiv[regno].profitable_p
481 || lra_get_regno_hard_regno (regno) >= 0)
482 return x;
483 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
485 if (targetm.cannot_substitute_mem_equiv_p (res))
486 return x;
487 return res;
489 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
490 return res;
491 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
492 return res;
493 gcc_unreachable ();
496 /* If we have decided to substitute X with the equivalent value,
497 return that value after elimination for INSN, otherwise return
498 X. */
499 static rtx
500 get_equiv_with_elimination (rtx x, rtx_insn *insn)
502 rtx res = get_equiv (x);
504 if (x == res || CONSTANT_P (res))
505 return res;
506 return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
507 false, false, 0, true);
510 /* Set up curr_operand_mode. */
511 static void
512 init_curr_operand_mode (void)
514 int nop = curr_static_id->n_operands;
515 for (int i = 0; i < nop; i++)
517 machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
518 if (mode == VOIDmode)
520 /* The .md mode for address operands is the mode of the
521 addressed value rather than the mode of the address itself. */
522 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
523 mode = Pmode;
524 else
525 mode = curr_static_id->operand[i].mode;
527 curr_operand_mode[i] = mode;
533 /* The page contains code to reuse input reloads. */
535 /* Structure describes input reload of the current insns. */
536 struct input_reload
538 /* True for input reload of matched operands. */
539 bool match_p;
540 /* Reloaded value. */
541 rtx input;
542 /* Reload pseudo used. */
543 rtx reg;
546 /* The number of elements in the following array. */
547 static int curr_insn_input_reloads_num;
548 /* Array containing info about input reloads. It is used to find the
549 same input reload and reuse the reload pseudo in this case. */
550 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
552 /* Initiate data concerning reuse of input reloads for the current
553 insn. */
554 static void
555 init_curr_insn_input_reloads (void)
557 curr_insn_input_reloads_num = 0;
560 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
561 created input reload pseudo (only if TYPE is not OP_OUT). Don't
562 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
563 wrapped up in SUBREG. The result pseudo is returned through
564 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
565 reused the already created input reload pseudo. Use TITLE to
566 describe new registers for debug purposes. */
567 static bool
568 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
569 enum reg_class rclass, bool in_subreg_p,
570 const char *title, rtx *result_reg)
572 int i, regno;
573 enum reg_class new_class;
574 bool unique_p = false;
576 if (type == OP_OUT)
578 *result_reg
579 = lra_create_new_reg_with_unique_value (mode, original, rclass, title);
580 return true;
582 /* Prevent reuse value of expression with side effects,
583 e.g. volatile memory. */
584 if (! side_effects_p (original))
585 for (i = 0; i < curr_insn_input_reloads_num; i++)
587 if (! curr_insn_input_reloads[i].match_p
588 && rtx_equal_p (curr_insn_input_reloads[i].input, original)
589 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
591 rtx reg = curr_insn_input_reloads[i].reg;
592 regno = REGNO (reg);
593 /* If input is equal to original and both are VOIDmode,
594 GET_MODE (reg) might be still different from mode.
595 Ensure we don't return *result_reg with wrong mode. */
596 if (GET_MODE (reg) != mode)
598 if (in_subreg_p)
599 continue;
600 if (maybe_lt (GET_MODE_SIZE (GET_MODE (reg)),
601 GET_MODE_SIZE (mode)))
602 continue;
603 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
604 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
605 continue;
607 *result_reg = reg;
608 if (lra_dump_file != NULL)
610 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
611 dump_value_slim (lra_dump_file, original, 1);
613 if (new_class != lra_get_allocno_class (regno))
614 lra_change_class (regno, new_class, ", change to", false);
615 if (lra_dump_file != NULL)
616 fprintf (lra_dump_file, "\n");
617 return false;
619 /* If we have an input reload with a different mode, make sure it
620 will get a different hard reg. */
621 else if (REG_P (original)
622 && REG_P (curr_insn_input_reloads[i].input)
623 && REGNO (original) == REGNO (curr_insn_input_reloads[i].input)
624 && (GET_MODE (original)
625 != GET_MODE (curr_insn_input_reloads[i].input)))
626 unique_p = true;
628 *result_reg = (unique_p
629 ? lra_create_new_reg_with_unique_value
630 : lra_create_new_reg) (mode, original, rclass, title);
631 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
632 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
633 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = false;
634 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
635 return true;
639 /* The page contains major code to choose the current insn alternative
640 and generate reloads for it. */
642 /* Return the offset from REGNO of the least significant register
643 in (reg:MODE REGNO).
645 This function is used to tell whether two registers satisfy
646 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
648 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
649 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
651 lra_constraint_offset (int regno, machine_mode mode)
653 lra_assert (regno < FIRST_PSEUDO_REGISTER);
655 scalar_int_mode int_mode;
656 if (WORDS_BIG_ENDIAN
657 && is_a <scalar_int_mode> (mode, &int_mode)
658 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD)
659 return hard_regno_nregs (regno, mode) - 1;
660 return 0;
663 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
664 if they are the same hard reg, and has special hacks for
665 auto-increment and auto-decrement. This is specifically intended for
666 process_alt_operands to use in determining whether two operands
667 match. X is the operand whose number is the lower of the two.
669 It is supposed that X is the output operand and Y is the input
670 operand. Y_HARD_REGNO is the final hard regno of register Y or
671 register in subreg Y as we know it now. Otherwise, it is a
672 negative value. */
673 static bool
674 operands_match_p (rtx x, rtx y, int y_hard_regno)
676 int i;
677 RTX_CODE code = GET_CODE (x);
678 const char *fmt;
680 if (x == y)
681 return true;
682 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
683 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
685 int j;
687 i = get_hard_regno (x, false);
688 if (i < 0)
689 goto slow;
691 if ((j = y_hard_regno) < 0)
692 goto slow;
694 i += lra_constraint_offset (i, GET_MODE (x));
695 j += lra_constraint_offset (j, GET_MODE (y));
697 return i == j;
700 /* If two operands must match, because they are really a single
701 operand of an assembler insn, then two post-increments are invalid
702 because the assembler insn would increment only once. On the
703 other hand, a post-increment matches ordinary indexing if the
704 post-increment is the output operand. */
705 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
706 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
708 /* Two pre-increments are invalid because the assembler insn would
709 increment only once. On the other hand, a pre-increment matches
710 ordinary indexing if the pre-increment is the input operand. */
711 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
712 || GET_CODE (y) == PRE_MODIFY)
713 return operands_match_p (x, XEXP (y, 0), -1);
715 slow:
717 if (code == REG && REG_P (y))
718 return REGNO (x) == REGNO (y);
720 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
721 && x == SUBREG_REG (y))
722 return true;
723 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
724 && SUBREG_REG (x) == y)
725 return true;
727 /* Now we have disposed of all the cases in which different rtx
728 codes can match. */
729 if (code != GET_CODE (y))
730 return false;
732 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
733 if (GET_MODE (x) != GET_MODE (y))
734 return false;
736 switch (code)
738 CASE_CONST_UNIQUE:
739 return false;
741 case LABEL_REF:
742 return label_ref_label (x) == label_ref_label (y);
743 case SYMBOL_REF:
744 return XSTR (x, 0) == XSTR (y, 0);
746 default:
747 break;
750 /* Compare the elements. If any pair of corresponding elements fail
751 to match, return false for the whole things. */
753 fmt = GET_RTX_FORMAT (code);
754 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
756 int val, j;
757 switch (fmt[i])
759 case 'w':
760 if (XWINT (x, i) != XWINT (y, i))
761 return false;
762 break;
764 case 'i':
765 if (XINT (x, i) != XINT (y, i))
766 return false;
767 break;
769 case 'p':
770 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
771 return false;
772 break;
774 case 'e':
775 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
776 if (val == 0)
777 return false;
778 break;
780 case '0':
781 break;
783 case 'E':
784 if (XVECLEN (x, i) != XVECLEN (y, i))
785 return false;
786 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
788 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
789 if (val == 0)
790 return false;
792 break;
794 /* It is believed that rtx's at this level will never
795 contain anything but integers and other rtx's, except for
796 within LABEL_REFs and SYMBOL_REFs. */
797 default:
798 gcc_unreachable ();
801 return true;
804 /* True if X is a constant that can be forced into the constant pool.
805 MODE is the mode of the operand, or VOIDmode if not known. */
806 #define CONST_POOL_OK_P(MODE, X) \
807 ((MODE) != VOIDmode \
808 && CONSTANT_P (X) \
809 && GET_CODE (X) != HIGH \
810 && GET_MODE_SIZE (MODE).is_constant () \
811 && !targetm.cannot_force_const_mem (MODE, X))
813 /* True if C is a non-empty register class that has too few registers
814 to be safely used as a reload target class. */
815 #define SMALL_REGISTER_CLASS_P(C) \
816 (ira_class_hard_regs_num [(C)] == 1 \
817 || (ira_class_hard_regs_num [(C)] >= 1 \
818 && targetm.class_likely_spilled_p (C)))
820 /* If REG is a reload pseudo, try to make its class satisfying CL. */
821 static void
822 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
824 enum reg_class rclass;
826 /* Do not make more accurate class from reloads generated. They are
827 mostly moves with a lot of constraints. Making more accurate
828 class may results in very narrow class and impossibility of find
829 registers for several reloads of one insn. */
830 if (INSN_UID (curr_insn) >= new_insn_uid_start)
831 return;
832 if (GET_CODE (reg) == SUBREG)
833 reg = SUBREG_REG (reg);
834 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
835 return;
836 if (in_class_p (reg, cl, &rclass) && rclass != cl)
837 lra_change_class (REGNO (reg), rclass, " Change to", true);
840 /* Searches X for any reference to a reg with the same value as REGNO,
841 returning the rtx of the reference found if any. Otherwise,
842 returns NULL_RTX. */
843 static rtx
844 regno_val_use_in (unsigned int regno, rtx x)
846 const char *fmt;
847 int i, j;
848 rtx tem;
850 if (REG_P (x) && lra_reg_info[REGNO (x)].val == lra_reg_info[regno].val)
851 return x;
853 fmt = GET_RTX_FORMAT (GET_CODE (x));
854 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
856 if (fmt[i] == 'e')
858 if ((tem = regno_val_use_in (regno, XEXP (x, i))))
859 return tem;
861 else if (fmt[i] == 'E')
862 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
863 if ((tem = regno_val_use_in (regno , XVECEXP (x, i, j))))
864 return tem;
867 return NULL_RTX;
870 /* Return true if all current insn non-output operands except INS (it
871 has a negaitve end marker) do not use pseudos with the same value
872 as REGNO. */
873 static bool
874 check_conflict_input_operands (int regno, signed char *ins)
876 int in;
877 int n_operands = curr_static_id->n_operands;
879 for (int nop = 0; nop < n_operands; nop++)
880 if (! curr_static_id->operand[nop].is_operator
881 && curr_static_id->operand[nop].type != OP_OUT)
883 for (int i = 0; (in = ins[i]) >= 0; i++)
884 if (in == nop)
885 break;
886 if (in < 0
887 && regno_val_use_in (regno, *curr_id->operand_loc[nop]) != NULL_RTX)
888 return false;
890 return true;
893 /* Generate reloads for matching OUT and INS (array of input operand
894 numbers with end marker -1) with reg class GOAL_CLASS, considering
895 output operands OUTS (similar array to INS) needing to be in different
896 registers. Add input and output reloads correspondingly to the lists
897 *BEFORE and *AFTER. OUT might be negative. In this case we generate
898 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
899 that the output operand is early clobbered for chosen alternative. */
900 static void
901 match_reload (signed char out, signed char *ins, signed char *outs,
902 enum reg_class goal_class, rtx_insn **before,
903 rtx_insn **after, bool early_clobber_p)
905 bool out_conflict;
906 int i, in;
907 rtx new_in_reg, new_out_reg, reg;
908 machine_mode inmode, outmode;
909 rtx in_rtx = *curr_id->operand_loc[ins[0]];
910 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
912 inmode = curr_operand_mode[ins[0]];
913 outmode = out < 0 ? inmode : curr_operand_mode[out];
914 push_to_sequence (*before);
915 if (inmode != outmode)
917 /* process_alt_operands has already checked that the mode sizes
918 are ordered. */
919 if (partial_subreg_p (outmode, inmode))
921 reg = new_in_reg
922 = lra_create_new_reg_with_unique_value (inmode, in_rtx,
923 goal_class, "");
924 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
925 LRA_SUBREG_P (new_out_reg) = 1;
926 /* If the input reg is dying here, we can use the same hard
927 register for REG and IN_RTX. We do it only for original
928 pseudos as reload pseudos can die although original
929 pseudos still live where reload pseudos dies. */
930 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
931 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
932 && (!early_clobber_p
933 || check_conflict_input_operands(REGNO (in_rtx), ins)))
934 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
936 else
938 reg = new_out_reg
939 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
940 goal_class, "");
941 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
942 /* NEW_IN_REG is non-paradoxical subreg. We don't want
943 NEW_OUT_REG living above. We add clobber clause for
944 this. This is just a temporary clobber. We can remove
945 it at the end of LRA work. */
946 rtx_insn *clobber = emit_clobber (new_out_reg);
947 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
948 LRA_SUBREG_P (new_in_reg) = 1;
949 if (GET_CODE (in_rtx) == SUBREG)
951 rtx subreg_reg = SUBREG_REG (in_rtx);
953 /* If SUBREG_REG is dying here and sub-registers IN_RTX
954 and NEW_IN_REG are similar, we can use the same hard
955 register for REG and SUBREG_REG. */
956 if (REG_P (subreg_reg)
957 && (int) REGNO (subreg_reg) < lra_new_regno_start
958 && GET_MODE (subreg_reg) == outmode
959 && known_eq (SUBREG_BYTE (in_rtx), SUBREG_BYTE (new_in_reg))
960 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))
961 && (! early_clobber_p
962 || check_conflict_input_operands (REGNO (subreg_reg),
963 ins)))
964 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
968 else
970 /* Pseudos have values -- see comments for lra_reg_info.
971 Different pseudos with the same value do not conflict even if
972 they live in the same place. When we create a pseudo we
973 assign value of original pseudo (if any) from which we
974 created the new pseudo. If we create the pseudo from the
975 input pseudo, the new pseudo will have no conflict with the
976 input pseudo which is wrong when the input pseudo lives after
977 the insn and as the new pseudo value is changed by the insn
978 output. Therefore we create the new pseudo from the output
979 except the case when we have single matched dying input
980 pseudo.
982 We cannot reuse the current output register because we might
983 have a situation like "a <- a op b", where the constraints
984 force the second input operand ("b") to match the output
985 operand ("a"). "b" must then be copied into a new register
986 so that it doesn't clobber the current value of "a".
988 We cannot use the same value if the output pseudo is
989 early clobbered or the input pseudo is mentioned in the
990 output, e.g. as an address part in memory, because
991 output reload will actually extend the pseudo liveness.
992 We don't care about eliminable hard regs here as we are
993 interesting only in pseudos. */
995 /* Matching input's register value is the same as one of the other
996 output operand. Output operands in a parallel insn must be in
997 different registers. */
998 out_conflict = false;
999 if (REG_P (in_rtx))
1001 for (i = 0; outs[i] >= 0; i++)
1003 rtx other_out_rtx = *curr_id->operand_loc[outs[i]];
1004 if (REG_P (other_out_rtx)
1005 && (regno_val_use_in (REGNO (in_rtx), other_out_rtx)
1006 != NULL_RTX))
1008 out_conflict = true;
1009 break;
1014 new_in_reg = new_out_reg
1015 = (! early_clobber_p && ins[1] < 0 && REG_P (in_rtx)
1016 && (int) REGNO (in_rtx) < lra_new_regno_start
1017 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1018 && (! early_clobber_p
1019 || check_conflict_input_operands (REGNO (in_rtx), ins))
1020 && (out < 0
1021 || regno_val_use_in (REGNO (in_rtx), out_rtx) == NULL_RTX)
1022 && !out_conflict
1023 ? lra_create_new_reg (inmode, in_rtx, goal_class, "")
1024 : lra_create_new_reg_with_unique_value (outmode, out_rtx,
1025 goal_class, ""));
1027 /* In operand can be got from transformations before processing insn
1028 constraints. One example of such transformations is subreg
1029 reloading (see function simplify_operand_subreg). The new
1030 pseudos created by the transformations might have inaccurate
1031 class (ALL_REGS) and we should make their classes more
1032 accurate. */
1033 narrow_reload_pseudo_class (in_rtx, goal_class);
1034 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
1035 *before = get_insns ();
1036 end_sequence ();
1037 /* Add the new pseudo to consider values of subsequent input reload
1038 pseudos. */
1039 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
1040 curr_insn_input_reloads[curr_insn_input_reloads_num].input = in_rtx;
1041 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = true;
1042 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = new_in_reg;
1043 for (i = 0; (in = ins[i]) >= 0; i++)
1045 lra_assert
1046 (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
1047 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
1048 *curr_id->operand_loc[in] = new_in_reg;
1050 lra_update_dups (curr_id, ins);
1051 if (out < 0)
1052 return;
1053 /* See a comment for the input operand above. */
1054 narrow_reload_pseudo_class (out_rtx, goal_class);
1055 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
1057 start_sequence ();
1058 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
1059 emit_insn (*after);
1060 *after = get_insns ();
1061 end_sequence ();
1063 *curr_id->operand_loc[out] = new_out_reg;
1064 lra_update_dup (curr_id, out);
1067 /* Return register class which is union of all reg classes in insn
1068 constraint alternative string starting with P. */
1069 static enum reg_class
1070 reg_class_from_constraints (const char *p)
1072 int c, len;
1073 enum reg_class op_class = NO_REGS;
1076 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1078 case '#':
1079 case ',':
1080 return op_class;
1082 case 'g':
1083 op_class = reg_class_subunion[op_class][GENERAL_REGS];
1084 break;
1086 default:
1087 enum constraint_num cn = lookup_constraint (p);
1088 enum reg_class cl = reg_class_for_constraint (cn);
1089 if (cl == NO_REGS)
1091 if (insn_extra_address_constraint (cn))
1092 op_class
1093 = (reg_class_subunion
1094 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1095 ADDRESS, SCRATCH)]);
1096 break;
1099 op_class = reg_class_subunion[op_class][cl];
1100 break;
1102 while ((p += len), c);
1103 return op_class;
1106 /* If OP is a register, return the class of the register as per
1107 get_reg_class, otherwise return NO_REGS. */
1108 static inline enum reg_class
1109 get_op_class (rtx op)
1111 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1114 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1115 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1116 SUBREG for VAL to make them equal. */
1117 static rtx_insn *
1118 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1120 if (GET_MODE (mem_pseudo) != GET_MODE (val))
1122 /* Usually size of mem_pseudo is greater than val size but in
1123 rare cases it can be less as it can be defined by target
1124 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1125 if (! MEM_P (val))
1127 val = gen_lowpart_SUBREG (GET_MODE (mem_pseudo),
1128 GET_CODE (val) == SUBREG
1129 ? SUBREG_REG (val) : val);
1130 LRA_SUBREG_P (val) = 1;
1132 else
1134 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1135 LRA_SUBREG_P (mem_pseudo) = 1;
1138 return to_p ? gen_move_insn (mem_pseudo, val)
1139 : gen_move_insn (val, mem_pseudo);
1142 /* Process a special case insn (register move), return true if we
1143 don't need to process it anymore. INSN should be a single set
1144 insn. Set up that RTL was changed through CHANGE_P and that hook
1145 TARGET_SECONDARY_MEMORY_NEEDED says to use secondary memory through
1146 SEC_MEM_P. */
1147 static bool
1148 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1150 int sregno, dregno;
1151 rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1152 rtx_insn *before;
1153 enum reg_class dclass, sclass, secondary_class;
1154 secondary_reload_info sri;
1156 lra_assert (curr_insn_set != NULL_RTX);
1157 dreg = dest = SET_DEST (curr_insn_set);
1158 sreg = src = SET_SRC (curr_insn_set);
1159 if (GET_CODE (dest) == SUBREG)
1160 dreg = SUBREG_REG (dest);
1161 if (GET_CODE (src) == SUBREG)
1162 sreg = SUBREG_REG (src);
1163 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1164 return false;
1165 sclass = dclass = NO_REGS;
1166 if (REG_P (dreg))
1167 dclass = get_reg_class (REGNO (dreg));
1168 gcc_assert (dclass < LIM_REG_CLASSES);
1169 if (dclass == ALL_REGS)
1170 /* ALL_REGS is used for new pseudos created by transformations
1171 like reload of SUBREG_REG (see function
1172 simplify_operand_subreg). We don't know their class yet. We
1173 should figure out the class from processing the insn
1174 constraints not in this fast path function. Even if ALL_REGS
1175 were a right class for the pseudo, secondary_... hooks usually
1176 are not define for ALL_REGS. */
1177 return false;
1178 if (REG_P (sreg))
1179 sclass = get_reg_class (REGNO (sreg));
1180 gcc_assert (sclass < LIM_REG_CLASSES);
1181 if (sclass == ALL_REGS)
1182 /* See comments above. */
1183 return false;
1184 if (sclass == NO_REGS && dclass == NO_REGS)
1185 return false;
1186 if (targetm.secondary_memory_needed (GET_MODE (src), sclass, dclass)
1187 && ((sclass != NO_REGS && dclass != NO_REGS)
1188 || (GET_MODE (src)
1189 != targetm.secondary_memory_needed_mode (GET_MODE (src)))))
1191 *sec_mem_p = true;
1192 return false;
1194 if (! REG_P (dreg) || ! REG_P (sreg))
1195 return false;
1196 sri.prev_sri = NULL;
1197 sri.icode = CODE_FOR_nothing;
1198 sri.extra_cost = 0;
1199 secondary_class = NO_REGS;
1200 /* Set up hard register for a reload pseudo for hook
1201 secondary_reload because some targets just ignore unassigned
1202 pseudos in the hook. */
1203 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1205 dregno = REGNO (dreg);
1206 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1208 else
1209 dregno = -1;
1210 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1212 sregno = REGNO (sreg);
1213 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1215 else
1216 sregno = -1;
1217 if (sclass != NO_REGS)
1218 secondary_class
1219 = (enum reg_class) targetm.secondary_reload (false, dest,
1220 (reg_class_t) sclass,
1221 GET_MODE (src), &sri);
1222 if (sclass == NO_REGS
1223 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1224 && dclass != NO_REGS))
1226 enum reg_class old_sclass = secondary_class;
1227 secondary_reload_info old_sri = sri;
1229 sri.prev_sri = NULL;
1230 sri.icode = CODE_FOR_nothing;
1231 sri.extra_cost = 0;
1232 secondary_class
1233 = (enum reg_class) targetm.secondary_reload (true, src,
1234 (reg_class_t) dclass,
1235 GET_MODE (src), &sri);
1236 /* Check the target hook consistency. */
1237 lra_assert
1238 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1239 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1240 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1242 if (sregno >= 0)
1243 reg_renumber [sregno] = -1;
1244 if (dregno >= 0)
1245 reg_renumber [dregno] = -1;
1246 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1247 return false;
1248 *change_p = true;
1249 new_reg = NULL_RTX;
1250 if (secondary_class != NO_REGS)
1251 new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1252 secondary_class,
1253 "secondary");
1254 start_sequence ();
1255 if (sri.icode == CODE_FOR_nothing)
1256 lra_emit_move (new_reg, src);
1257 else
1259 enum reg_class scratch_class;
1261 scratch_class = (reg_class_from_constraints
1262 (insn_data[sri.icode].operand[2].constraint));
1263 scratch_reg = (lra_create_new_reg_with_unique_value
1264 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1265 scratch_class, "scratch"));
1266 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1267 src, scratch_reg));
1269 before = get_insns ();
1270 end_sequence ();
1271 lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1272 if (new_reg != NULL_RTX)
1273 SET_SRC (curr_insn_set) = new_reg;
1274 else
1276 if (lra_dump_file != NULL)
1278 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1279 dump_insn_slim (lra_dump_file, curr_insn);
1281 lra_set_insn_deleted (curr_insn);
1282 return true;
1284 return false;
1287 /* The following data describe the result of process_alt_operands.
1288 The data are used in curr_insn_transform to generate reloads. */
1290 /* The chosen reg classes which should be used for the corresponding
1291 operands. */
1292 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1293 /* True if the operand should be the same as another operand and that
1294 other operand does not need a reload. */
1295 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1296 /* True if the operand does not need a reload. */
1297 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1298 /* True if the operand can be offsetable memory. */
1299 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1300 /* The number of an operand to which given operand can be matched to. */
1301 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1302 /* The number of elements in the following array. */
1303 static int goal_alt_dont_inherit_ops_num;
1304 /* Numbers of operands whose reload pseudos should not be inherited. */
1305 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1306 /* True if the insn commutative operands should be swapped. */
1307 static bool goal_alt_swapped;
1308 /* The chosen insn alternative. */
1309 static int goal_alt_number;
1311 /* True if the corresponding operand is the result of an equivalence
1312 substitution. */
1313 static bool equiv_substition_p[MAX_RECOG_OPERANDS];
1315 /* The following five variables are used to choose the best insn
1316 alternative. They reflect final characteristics of the best
1317 alternative. */
1319 /* Number of necessary reloads and overall cost reflecting the
1320 previous value and other unpleasantness of the best alternative. */
1321 static int best_losers, best_overall;
1322 /* Overall number hard registers used for reloads. For example, on
1323 some targets we need 2 general registers to reload DFmode and only
1324 one floating point register. */
1325 static int best_reload_nregs;
1326 /* Overall number reflecting distances of previous reloading the same
1327 value. The distances are counted from the current BB start. It is
1328 used to improve inheritance chances. */
1329 static int best_reload_sum;
1331 /* True if the current insn should have no correspondingly input or
1332 output reloads. */
1333 static bool no_input_reloads_p, no_output_reloads_p;
1335 /* True if we swapped the commutative operands in the current
1336 insn. */
1337 static int curr_swapped;
1339 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1340 register of class CL. Add any input reloads to list BEFORE. AFTER
1341 is nonnull if *LOC is an automodified value; handle that case by
1342 adding the required output reloads to list AFTER. Return true if
1343 the RTL was changed.
1345 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1346 register. Return false if the address register is correct. */
1347 static bool
1348 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1349 enum reg_class cl)
1351 int regno;
1352 enum reg_class rclass, new_class;
1353 rtx reg;
1354 rtx new_reg;
1355 machine_mode mode;
1356 bool subreg_p, before_p = false;
1358 subreg_p = GET_CODE (*loc) == SUBREG;
1359 if (subreg_p)
1361 reg = SUBREG_REG (*loc);
1362 mode = GET_MODE (reg);
1364 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1365 between two registers with different classes, but there normally will
1366 be "mov" which transfers element of vector register into the general
1367 register, and this normally will be a subreg which should be reloaded
1368 as a whole. This is particularly likely to be triggered when
1369 -fno-split-wide-types specified. */
1370 if (!REG_P (reg)
1371 || in_class_p (reg, cl, &new_class)
1372 || known_le (GET_MODE_SIZE (mode), GET_MODE_SIZE (ptr_mode)))
1373 loc = &SUBREG_REG (*loc);
1376 reg = *loc;
1377 mode = GET_MODE (reg);
1378 if (! REG_P (reg))
1380 if (check_only_p)
1381 return true;
1382 /* Always reload memory in an address even if the target supports
1383 such addresses. */
1384 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1385 before_p = true;
1387 else
1389 regno = REGNO (reg);
1390 rclass = get_reg_class (regno);
1391 if (! check_only_p
1392 && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1394 if (lra_dump_file != NULL)
1396 fprintf (lra_dump_file,
1397 "Changing pseudo %d in address of insn %u on equiv ",
1398 REGNO (reg), INSN_UID (curr_insn));
1399 dump_value_slim (lra_dump_file, *loc, 1);
1400 fprintf (lra_dump_file, "\n");
1402 *loc = copy_rtx (*loc);
1404 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1406 if (check_only_p)
1407 return true;
1408 reg = *loc;
1409 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1410 mode, reg, cl, subreg_p, "address", &new_reg))
1411 before_p = true;
1413 else if (new_class != NO_REGS && rclass != new_class)
1415 if (check_only_p)
1416 return true;
1417 lra_change_class (regno, new_class, " Change to", true);
1418 return false;
1420 else
1421 return false;
1423 if (before_p)
1425 push_to_sequence (*before);
1426 lra_emit_move (new_reg, reg);
1427 *before = get_insns ();
1428 end_sequence ();
1430 *loc = new_reg;
1431 if (after != NULL)
1433 start_sequence ();
1434 lra_emit_move (before_p ? copy_rtx (reg) : reg, new_reg);
1435 emit_insn (*after);
1436 *after = get_insns ();
1437 end_sequence ();
1439 return true;
1442 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1443 the insn to be inserted before curr insn. AFTER returns the
1444 the insn to be inserted after curr insn. ORIGREG and NEWREG
1445 are the original reg and new reg for reload. */
1446 static void
1447 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1448 rtx newreg)
1450 if (before)
1452 push_to_sequence (*before);
1453 lra_emit_move (newreg, origreg);
1454 *before = get_insns ();
1455 end_sequence ();
1457 if (after)
1459 start_sequence ();
1460 lra_emit_move (origreg, newreg);
1461 emit_insn (*after);
1462 *after = get_insns ();
1463 end_sequence ();
1467 static int valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1468 static bool process_address (int, bool, rtx_insn **, rtx_insn **);
1470 /* Make reloads for subreg in operand NOP with internal subreg mode
1471 REG_MODE, add new reloads for further processing. Return true if
1472 any change was done. */
1473 static bool
1474 simplify_operand_subreg (int nop, machine_mode reg_mode)
1476 int hard_regno;
1477 rtx_insn *before, *after;
1478 machine_mode mode, innermode;
1479 rtx reg, new_reg;
1480 rtx operand = *curr_id->operand_loc[nop];
1481 enum reg_class regclass;
1482 enum op_type type;
1484 before = after = NULL;
1486 if (GET_CODE (operand) != SUBREG)
1487 return false;
1489 mode = GET_MODE (operand);
1490 reg = SUBREG_REG (operand);
1491 innermode = GET_MODE (reg);
1492 type = curr_static_id->operand[nop].type;
1493 if (MEM_P (reg))
1495 const bool addr_was_valid
1496 = valid_address_p (innermode, XEXP (reg, 0), MEM_ADDR_SPACE (reg));
1497 alter_subreg (curr_id->operand_loc[nop], false);
1498 rtx subst = *curr_id->operand_loc[nop];
1499 lra_assert (MEM_P (subst));
1500 const bool addr_is_valid = valid_address_p (GET_MODE (subst),
1501 XEXP (subst, 0),
1502 MEM_ADDR_SPACE (subst));
1503 if (!addr_was_valid
1504 || addr_is_valid
1505 || ((get_constraint_type (lookup_constraint
1506 (curr_static_id->operand[nop].constraint))
1507 != CT_SPECIAL_MEMORY)
1508 /* We still can reload address and if the address is
1509 valid, we can remove subreg without reloading its
1510 inner memory. */
1511 && valid_address_p (GET_MODE (subst),
1512 regno_reg_rtx
1513 [ira_class_hard_regs
1514 [base_reg_class (GET_MODE (subst),
1515 MEM_ADDR_SPACE (subst),
1516 ADDRESS, SCRATCH)][0]],
1517 MEM_ADDR_SPACE (subst))))
1519 /* If we change the address for a paradoxical subreg of memory, the
1520 new address might violate the necessary alignment or the access
1521 might be slow; take this into consideration. We need not worry
1522 about accesses beyond allocated memory for paradoxical memory
1523 subregs as we don't substitute such equiv memory (see processing
1524 equivalences in function lra_constraints) and because for spilled
1525 pseudos we allocate stack memory enough for the biggest
1526 corresponding paradoxical subreg.
1528 However, do not blindly simplify a (subreg (mem ...)) for
1529 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1530 data into a register when the inner is narrower than outer or
1531 missing important data from memory when the inner is wider than
1532 outer. This rule only applies to modes that are no wider than
1533 a word.
1535 If valid memory becomes invalid after subreg elimination
1536 and address might be different we still have to reload
1537 memory.
1539 if ((! addr_was_valid
1540 || addr_is_valid
1541 || known_eq (GET_MODE_SIZE (mode), GET_MODE_SIZE (innermode)))
1542 && !(maybe_ne (GET_MODE_PRECISION (mode),
1543 GET_MODE_PRECISION (innermode))
1544 && known_le (GET_MODE_SIZE (mode), UNITS_PER_WORD)
1545 && known_le (GET_MODE_SIZE (innermode), UNITS_PER_WORD)
1546 && WORD_REGISTER_OPERATIONS)
1547 && (!(MEM_ALIGN (subst) < GET_MODE_ALIGNMENT (mode)
1548 && targetm.slow_unaligned_access (mode, MEM_ALIGN (subst)))
1549 || (MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (innermode)
1550 && targetm.slow_unaligned_access (innermode,
1551 MEM_ALIGN (reg)))))
1552 return true;
1554 *curr_id->operand_loc[nop] = operand;
1556 /* But if the address was not valid, we cannot reload the MEM without
1557 reloading the address first. */
1558 if (!addr_was_valid)
1559 process_address (nop, false, &before, &after);
1561 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1562 enum reg_class rclass
1563 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1564 if (get_reload_reg (curr_static_id->operand[nop].type, innermode,
1565 reg, rclass, TRUE, "slow/invalid mem", &new_reg))
1567 bool insert_before, insert_after;
1568 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1570 insert_before = (type != OP_OUT
1571 || partial_subreg_p (mode, innermode));
1572 insert_after = type != OP_IN;
1573 insert_move_for_subreg (insert_before ? &before : NULL,
1574 insert_after ? &after : NULL,
1575 reg, new_reg);
1577 SUBREG_REG (operand) = new_reg;
1579 /* Convert to MODE. */
1580 reg = operand;
1581 rclass
1582 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1583 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1584 rclass, TRUE, "slow/invalid mem", &new_reg))
1586 bool insert_before, insert_after;
1587 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1589 insert_before = type != OP_OUT;
1590 insert_after = type != OP_IN;
1591 insert_move_for_subreg (insert_before ? &before : NULL,
1592 insert_after ? &after : NULL,
1593 reg, new_reg);
1595 *curr_id->operand_loc[nop] = new_reg;
1596 lra_process_new_insns (curr_insn, before, after,
1597 "Inserting slow/invalid mem reload");
1598 return true;
1601 /* If the address was valid and became invalid, prefer to reload
1602 the memory. Typical case is when the index scale should
1603 correspond the memory. */
1604 *curr_id->operand_loc[nop] = operand;
1605 /* Do not return false here as the MEM_P (reg) will be processed
1606 later in this function. */
1608 else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1610 alter_subreg (curr_id->operand_loc[nop], false);
1611 return true;
1613 else if (CONSTANT_P (reg))
1615 /* Try to simplify subreg of constant. It is usually result of
1616 equivalence substitution. */
1617 if (innermode == VOIDmode
1618 && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1619 innermode = curr_static_id->operand[nop].mode;
1620 if ((new_reg = simplify_subreg (mode, reg, innermode,
1621 SUBREG_BYTE (operand))) != NULL_RTX)
1623 *curr_id->operand_loc[nop] = new_reg;
1624 return true;
1627 /* Put constant into memory when we have mixed modes. It generates
1628 a better code in most cases as it does not need a secondary
1629 reload memory. It also prevents LRA looping when LRA is using
1630 secondary reload memory again and again. */
1631 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1632 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1634 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1635 alter_subreg (curr_id->operand_loc[nop], false);
1636 return true;
1638 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1639 if there may be a problem accessing OPERAND in the outer
1640 mode. */
1641 if ((REG_P (reg)
1642 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1643 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1644 /* Don't reload paradoxical subregs because we could be looping
1645 having repeatedly final regno out of hard regs range. */
1646 && (hard_regno_nregs (hard_regno, innermode)
1647 >= hard_regno_nregs (hard_regno, mode))
1648 && simplify_subreg_regno (hard_regno, innermode,
1649 SUBREG_BYTE (operand), mode) < 0
1650 /* Don't reload subreg for matching reload. It is actually
1651 valid subreg in LRA. */
1652 && ! LRA_SUBREG_P (operand))
1653 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1655 enum reg_class rclass;
1657 if (REG_P (reg))
1658 /* There is a big probability that we will get the same class
1659 for the new pseudo and we will get the same insn which
1660 means infinite looping. So spill the new pseudo. */
1661 rclass = NO_REGS;
1662 else
1663 /* The class will be defined later in curr_insn_transform. */
1664 rclass
1665 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1667 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1668 rclass, TRUE, "subreg reg", &new_reg))
1670 bool insert_before, insert_after;
1671 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1673 insert_before = (type != OP_OUT
1674 || read_modify_subreg_p (operand));
1675 insert_after = (type != OP_IN);
1676 insert_move_for_subreg (insert_before ? &before : NULL,
1677 insert_after ? &after : NULL,
1678 reg, new_reg);
1680 SUBREG_REG (operand) = new_reg;
1681 lra_process_new_insns (curr_insn, before, after,
1682 "Inserting subreg reload");
1683 return true;
1685 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1686 IRA allocates hardreg to the inner pseudo reg according to its mode
1687 instead of the outermode, so the size of the hardreg may not be enough
1688 to contain the outermode operand, in that case we may need to insert
1689 reload for the reg. For the following two types of paradoxical subreg,
1690 we need to insert reload:
1691 1. If the op_type is OP_IN, and the hardreg could not be paired with
1692 other hardreg to contain the outermode operand
1693 (checked by in_hard_reg_set_p), we need to insert the reload.
1694 2. If the op_type is OP_OUT or OP_INOUT.
1696 Here is a paradoxical subreg example showing how the reload is generated:
1698 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1699 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1701 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1702 here, if reg107 is assigned to hardreg R15, because R15 is the last
1703 hardreg, compiler cannot find another hardreg to pair with R15 to
1704 contain TImode data. So we insert a TImode reload reg180 for it.
1705 After reload is inserted:
1707 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1708 (reg:DI 107 [ __comp ])) -1
1709 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1710 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1712 Two reload hard registers will be allocated to reg180 to save TImode data
1713 in LRA_assign.
1715 For LRA pseudos this should normally be handled by the biggest_mode
1716 mechanism. However, it's possible for new uses of an LRA pseudo
1717 to be introduced after we've allocated it, such as when undoing
1718 inheritance, and the allocated register might not then be appropriate
1719 for the new uses. */
1720 else if (REG_P (reg)
1721 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1722 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1723 && (hard_regno_nregs (hard_regno, innermode)
1724 < hard_regno_nregs (hard_regno, mode))
1725 && (regclass = lra_get_allocno_class (REGNO (reg)))
1726 && (type != OP_IN
1727 || !in_hard_reg_set_p (reg_class_contents[regclass],
1728 mode, hard_regno)
1729 || overlaps_hard_reg_set_p (lra_no_alloc_regs,
1730 mode, hard_regno)))
1732 /* The class will be defined later in curr_insn_transform. */
1733 enum reg_class rclass
1734 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1736 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1737 rclass, TRUE, "paradoxical subreg", &new_reg))
1739 rtx subreg;
1740 bool insert_before, insert_after;
1742 PUT_MODE (new_reg, mode);
1743 subreg = gen_lowpart_SUBREG (innermode, new_reg);
1744 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1746 insert_before = (type != OP_OUT);
1747 insert_after = (type != OP_IN);
1748 insert_move_for_subreg (insert_before ? &before : NULL,
1749 insert_after ? &after : NULL,
1750 reg, subreg);
1752 SUBREG_REG (operand) = new_reg;
1753 lra_process_new_insns (curr_insn, before, after,
1754 "Inserting paradoxical subreg reload");
1755 return true;
1757 return false;
1760 /* Return TRUE if X refers for a hard register from SET. */
1761 static bool
1762 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1764 int i, j, x_hard_regno;
1765 machine_mode mode;
1766 const char *fmt;
1767 enum rtx_code code;
1769 if (x == NULL_RTX)
1770 return false;
1771 code = GET_CODE (x);
1772 mode = GET_MODE (x);
1774 if (code == SUBREG)
1776 /* For all SUBREGs we want to check whether the full multi-register
1777 overlaps the set. For normal SUBREGs this means 'get_hard_regno' of
1778 the inner register, for paradoxical SUBREGs this means the
1779 'get_hard_regno' of the full SUBREG and for complete SUBREGs either is
1780 fine. Use the wider mode for all cases. */
1781 rtx subreg = SUBREG_REG (x);
1782 mode = wider_subreg_mode (x);
1783 if (mode == GET_MODE (subreg))
1785 x = subreg;
1786 code = GET_CODE (x);
1790 if (REG_P (x) || SUBREG_P (x))
1792 x_hard_regno = get_hard_regno (x, true);
1793 return (x_hard_regno >= 0
1794 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1796 if (MEM_P (x))
1798 struct address_info ad;
1800 decompose_mem_address (&ad, x);
1801 if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1802 return true;
1803 if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1804 return true;
1806 fmt = GET_RTX_FORMAT (code);
1807 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1809 if (fmt[i] == 'e')
1811 if (uses_hard_regs_p (XEXP (x, i), set))
1812 return true;
1814 else if (fmt[i] == 'E')
1816 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1817 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1818 return true;
1821 return false;
1824 /* Return true if OP is a spilled pseudo. */
1825 static inline bool
1826 spilled_pseudo_p (rtx op)
1828 return (REG_P (op)
1829 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1832 /* Return true if X is a general constant. */
1833 static inline bool
1834 general_constant_p (rtx x)
1836 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1839 static bool
1840 reg_in_class_p (rtx reg, enum reg_class cl)
1842 if (cl == NO_REGS)
1843 return get_reg_class (REGNO (reg)) == NO_REGS;
1844 return in_class_p (reg, cl, NULL);
1847 /* Return true if SET of RCLASS contains no hard regs which can be
1848 used in MODE. */
1849 static bool
1850 prohibited_class_reg_set_mode_p (enum reg_class rclass,
1851 HARD_REG_SET &set,
1852 machine_mode mode)
1854 HARD_REG_SET temp;
1856 lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
1857 COPY_HARD_REG_SET (temp, set);
1858 AND_COMPL_HARD_REG_SET (temp, lra_no_alloc_regs);
1859 return (hard_reg_set_subset_p
1860 (temp, ira_prohibited_class_mode_regs[rclass][mode]));
1864 /* Used to check validity info about small class input operands. It
1865 should be incremented at start of processing an insn
1866 alternative. */
1867 static unsigned int curr_small_class_check = 0;
1869 /* Update number of used inputs of class OP_CLASS for operand NOP.
1870 Return true if we have more such class operands than the number of
1871 available regs. */
1872 static bool
1873 update_and_check_small_class_inputs (int nop, enum reg_class op_class)
1875 static unsigned int small_class_check[LIM_REG_CLASSES];
1876 static int small_class_input_nums[LIM_REG_CLASSES];
1878 if (SMALL_REGISTER_CLASS_P (op_class)
1879 /* We are interesting in classes became small because of fixing
1880 some hard regs, e.g. by an user through GCC options. */
1881 && hard_reg_set_intersect_p (reg_class_contents[op_class],
1882 ira_no_alloc_regs)
1883 && (curr_static_id->operand[nop].type != OP_OUT
1884 || curr_static_id->operand[nop].early_clobber))
1886 if (small_class_check[op_class] == curr_small_class_check)
1887 small_class_input_nums[op_class]++;
1888 else
1890 small_class_check[op_class] = curr_small_class_check;
1891 small_class_input_nums[op_class] = 1;
1893 if (small_class_input_nums[op_class] > ira_class_hard_regs_num[op_class])
1894 return true;
1896 return false;
1899 /* Major function to choose the current insn alternative and what
1900 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1901 negative we should consider only this alternative. Return false if
1902 we cannot choose the alternative or find how to reload the
1903 operands. */
1904 static bool
1905 process_alt_operands (int only_alternative)
1907 bool ok_p = false;
1908 int nop, overall, nalt;
1909 int n_alternatives = curr_static_id->n_alternatives;
1910 int n_operands = curr_static_id->n_operands;
1911 /* LOSERS counts the operands that don't fit this alternative and
1912 would require loading. */
1913 int losers;
1914 int addr_losers;
1915 /* REJECT is a count of how undesirable this alternative says it is
1916 if any reloading is required. If the alternative matches exactly
1917 then REJECT is ignored, but otherwise it gets this much counted
1918 against it in addition to the reloading needed. */
1919 int reject;
1920 /* This is defined by '!' or '?' alternative constraint and added to
1921 reject. But in some cases it can be ignored. */
1922 int static_reject;
1923 int op_reject;
1924 /* The number of elements in the following array. */
1925 int early_clobbered_regs_num;
1926 /* Numbers of operands which are early clobber registers. */
1927 int early_clobbered_nops[MAX_RECOG_OPERANDS];
1928 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1929 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1930 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1931 bool curr_alt_win[MAX_RECOG_OPERANDS];
1932 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1933 int curr_alt_matches[MAX_RECOG_OPERANDS];
1934 /* The number of elements in the following array. */
1935 int curr_alt_dont_inherit_ops_num;
1936 /* Numbers of operands whose reload pseudos should not be inherited. */
1937 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1938 rtx op;
1939 /* The register when the operand is a subreg of register, otherwise the
1940 operand itself. */
1941 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1942 /* The register if the operand is a register or subreg of register,
1943 otherwise NULL. */
1944 rtx operand_reg[MAX_RECOG_OPERANDS];
1945 int hard_regno[MAX_RECOG_OPERANDS];
1946 machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1947 int reload_nregs, reload_sum;
1948 bool costly_p;
1949 enum reg_class cl;
1951 /* Calculate some data common for all alternatives to speed up the
1952 function. */
1953 for (nop = 0; nop < n_operands; nop++)
1955 rtx reg;
1957 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
1958 /* The real hard regno of the operand after the allocation. */
1959 hard_regno[nop] = get_hard_regno (op, true);
1961 operand_reg[nop] = reg = op;
1962 biggest_mode[nop] = GET_MODE (op);
1963 if (GET_CODE (op) == SUBREG)
1965 biggest_mode[nop] = wider_subreg_mode (op);
1966 operand_reg[nop] = reg = SUBREG_REG (op);
1968 if (! REG_P (reg))
1969 operand_reg[nop] = NULL_RTX;
1970 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
1971 || ((int) REGNO (reg)
1972 == lra_get_elimination_hard_regno (REGNO (reg))))
1973 no_subreg_reg_operand[nop] = reg;
1974 else
1975 operand_reg[nop] = no_subreg_reg_operand[nop]
1976 /* Just use natural mode for elimination result. It should
1977 be enough for extra constraints hooks. */
1978 = regno_reg_rtx[hard_regno[nop]];
1981 /* The constraints are made of several alternatives. Each operand's
1982 constraint looks like foo,bar,... with commas separating the
1983 alternatives. The first alternatives for all operands go
1984 together, the second alternatives go together, etc.
1986 First loop over alternatives. */
1987 alternative_mask preferred = curr_id->preferred_alternatives;
1988 if (only_alternative >= 0)
1989 preferred &= ALTERNATIVE_BIT (only_alternative);
1991 for (nalt = 0; nalt < n_alternatives; nalt++)
1993 /* Loop over operands for one constraint alternative. */
1994 if (!TEST_BIT (preferred, nalt))
1995 continue;
1997 bool matching_early_clobber[MAX_RECOG_OPERANDS];
1998 curr_small_class_check++;
1999 overall = losers = addr_losers = 0;
2000 static_reject = reject = reload_nregs = reload_sum = 0;
2001 for (nop = 0; nop < n_operands; nop++)
2003 int inc = (curr_static_id
2004 ->operand_alternative[nalt * n_operands + nop].reject);
2005 if (lra_dump_file != NULL && inc != 0)
2006 fprintf (lra_dump_file,
2007 " Staticly defined alt reject+=%d\n", inc);
2008 static_reject += inc;
2009 matching_early_clobber[nop] = 0;
2011 reject += static_reject;
2012 early_clobbered_regs_num = 0;
2014 for (nop = 0; nop < n_operands; nop++)
2016 const char *p;
2017 char *end;
2018 int len, c, m, i, opalt_num, this_alternative_matches;
2019 bool win, did_match, offmemok, early_clobber_p;
2020 /* false => this operand can be reloaded somehow for this
2021 alternative. */
2022 bool badop;
2023 /* true => this operand can be reloaded if the alternative
2024 allows regs. */
2025 bool winreg;
2026 /* True if a constant forced into memory would be OK for
2027 this operand. */
2028 bool constmemok;
2029 enum reg_class this_alternative, this_costly_alternative;
2030 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
2031 bool this_alternative_match_win, this_alternative_win;
2032 bool this_alternative_offmemok;
2033 bool scratch_p;
2034 machine_mode mode;
2035 enum constraint_num cn;
2037 opalt_num = nalt * n_operands + nop;
2038 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
2040 /* Fast track for no constraints at all. */
2041 curr_alt[nop] = NO_REGS;
2042 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
2043 curr_alt_win[nop] = true;
2044 curr_alt_match_win[nop] = false;
2045 curr_alt_offmemok[nop] = false;
2046 curr_alt_matches[nop] = -1;
2047 continue;
2050 op = no_subreg_reg_operand[nop];
2051 mode = curr_operand_mode[nop];
2053 win = did_match = winreg = offmemok = constmemok = false;
2054 badop = true;
2056 early_clobber_p = false;
2057 p = curr_static_id->operand_alternative[opalt_num].constraint;
2059 this_costly_alternative = this_alternative = NO_REGS;
2060 /* We update set of possible hard regs besides its class
2061 because reg class might be inaccurate. For example,
2062 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2063 is translated in HI_REGS because classes are merged by
2064 pairs and there is no accurate intermediate class. */
2065 CLEAR_HARD_REG_SET (this_alternative_set);
2066 CLEAR_HARD_REG_SET (this_costly_alternative_set);
2067 this_alternative_win = false;
2068 this_alternative_match_win = false;
2069 this_alternative_offmemok = false;
2070 this_alternative_matches = -1;
2072 /* An empty constraint should be excluded by the fast
2073 track. */
2074 lra_assert (*p != 0 && *p != ',');
2076 op_reject = 0;
2077 /* Scan this alternative's specs for this operand; set WIN
2078 if the operand fits any letter in this alternative.
2079 Otherwise, clear BADOP if this operand could fit some
2080 letter after reloads, or set WINREG if this operand could
2081 fit after reloads provided the constraint allows some
2082 registers. */
2083 costly_p = false;
2086 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2088 case '\0':
2089 len = 0;
2090 break;
2091 case ',':
2092 c = '\0';
2093 break;
2095 case '&':
2096 early_clobber_p = true;
2097 break;
2099 case '$':
2100 op_reject += LRA_MAX_REJECT;
2101 break;
2102 case '^':
2103 op_reject += LRA_LOSER_COST_FACTOR;
2104 break;
2106 case '#':
2107 /* Ignore rest of this alternative. */
2108 c = '\0';
2109 break;
2111 case '0': case '1': case '2': case '3': case '4':
2112 case '5': case '6': case '7': case '8': case '9':
2114 int m_hregno;
2115 bool match_p;
2117 m = strtoul (p, &end, 10);
2118 p = end;
2119 len = 0;
2120 lra_assert (nop > m);
2122 /* Reject matches if we don't know which operand is
2123 bigger. This situation would arguably be a bug in
2124 an .md pattern, but could also occur in a user asm. */
2125 if (!ordered_p (GET_MODE_SIZE (biggest_mode[m]),
2126 GET_MODE_SIZE (biggest_mode[nop])))
2127 break;
2129 /* Don't match wrong asm insn operands for proper
2130 diagnostic later. */
2131 if (INSN_CODE (curr_insn) < 0
2132 && (curr_operand_mode[m] == BLKmode
2133 || curr_operand_mode[nop] == BLKmode)
2134 && curr_operand_mode[m] != curr_operand_mode[nop])
2135 break;
2137 m_hregno = get_hard_regno (*curr_id->operand_loc[m], false);
2138 /* We are supposed to match a previous operand.
2139 If we do, we win if that one did. If we do
2140 not, count both of the operands as losers.
2141 (This is too conservative, since most of the
2142 time only a single reload insn will be needed
2143 to make the two operands win. As a result,
2144 this alternative may be rejected when it is
2145 actually desirable.) */
2146 match_p = false;
2147 if (operands_match_p (*curr_id->operand_loc[nop],
2148 *curr_id->operand_loc[m], m_hregno))
2150 /* We should reject matching of an early
2151 clobber operand if the matching operand is
2152 not dying in the insn. */
2153 if (! curr_static_id->operand[m].early_clobber
2154 || operand_reg[nop] == NULL_RTX
2155 || (find_regno_note (curr_insn, REG_DEAD,
2156 REGNO (op))
2157 || REGNO (op) == REGNO (operand_reg[m])))
2158 match_p = true;
2160 if (match_p)
2162 /* If we are matching a non-offsettable
2163 address where an offsettable address was
2164 expected, then we must reject this
2165 combination, because we can't reload
2166 it. */
2167 if (curr_alt_offmemok[m]
2168 && MEM_P (*curr_id->operand_loc[m])
2169 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
2170 continue;
2172 else
2174 /* Operands don't match. If the operands are
2175 different user defined explicit hard registers,
2176 then we cannot make them match. */
2177 if ((REG_P (*curr_id->operand_loc[nop])
2178 || SUBREG_P (*curr_id->operand_loc[nop]))
2179 && (REG_P (*curr_id->operand_loc[m])
2180 || SUBREG_P (*curr_id->operand_loc[m])))
2182 rtx nop_reg = *curr_id->operand_loc[nop];
2183 if (SUBREG_P (nop_reg))
2184 nop_reg = SUBREG_REG (nop_reg);
2185 rtx m_reg = *curr_id->operand_loc[m];
2186 if (SUBREG_P (m_reg))
2187 m_reg = SUBREG_REG (m_reg);
2189 if (REG_P (nop_reg)
2190 && HARD_REGISTER_P (nop_reg)
2191 && REG_USERVAR_P (nop_reg)
2192 && REG_P (m_reg)
2193 && HARD_REGISTER_P (m_reg)
2194 && REG_USERVAR_P (m_reg))
2195 break;
2198 /* Both operands must allow a reload register,
2199 otherwise we cannot make them match. */
2200 if (curr_alt[m] == NO_REGS)
2201 break;
2202 /* Retroactively mark the operand we had to
2203 match as a loser, if it wasn't already and
2204 it wasn't matched to a register constraint
2205 (e.g it might be matched by memory). */
2206 if (curr_alt_win[m]
2207 && (operand_reg[m] == NULL_RTX
2208 || hard_regno[m] < 0))
2210 losers++;
2211 reload_nregs
2212 += (ira_reg_class_max_nregs[curr_alt[m]]
2213 [GET_MODE (*curr_id->operand_loc[m])]);
2216 /* Prefer matching earlyclobber alternative as
2217 it results in less hard regs required for
2218 the insn than a non-matching earlyclobber
2219 alternative. */
2220 if (curr_static_id->operand[m].early_clobber)
2222 if (lra_dump_file != NULL)
2223 fprintf
2224 (lra_dump_file,
2225 " %d Matching earlyclobber alt:"
2226 " reject--\n",
2227 nop);
2228 if (!matching_early_clobber[m])
2230 reject--;
2231 matching_early_clobber[m] = 1;
2234 /* Otherwise we prefer no matching
2235 alternatives because it gives more freedom
2236 in RA. */
2237 else if (operand_reg[nop] == NULL_RTX
2238 || (find_regno_note (curr_insn, REG_DEAD,
2239 REGNO (operand_reg[nop]))
2240 == NULL_RTX))
2242 if (lra_dump_file != NULL)
2243 fprintf
2244 (lra_dump_file,
2245 " %d Matching alt: reject+=2\n",
2246 nop);
2247 reject += 2;
2250 /* If we have to reload this operand and some
2251 previous operand also had to match the same
2252 thing as this operand, we don't know how to do
2253 that. */
2254 if (!match_p || !curr_alt_win[m])
2256 for (i = 0; i < nop; i++)
2257 if (curr_alt_matches[i] == m)
2258 break;
2259 if (i < nop)
2260 break;
2262 else
2263 did_match = true;
2265 this_alternative_matches = m;
2266 /* This can be fixed with reloads if the operand
2267 we are supposed to match can be fixed with
2268 reloads. */
2269 badop = false;
2270 this_alternative = curr_alt[m];
2271 COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
2272 winreg = this_alternative != NO_REGS;
2273 break;
2276 case 'g':
2277 if (MEM_P (op)
2278 || general_constant_p (op)
2279 || spilled_pseudo_p (op))
2280 win = true;
2281 cl = GENERAL_REGS;
2282 goto reg;
2284 default:
2285 cn = lookup_constraint (p);
2286 switch (get_constraint_type (cn))
2288 case CT_REGISTER:
2289 cl = reg_class_for_constraint (cn);
2290 if (cl != NO_REGS)
2291 goto reg;
2292 break;
2294 case CT_CONST_INT:
2295 if (CONST_INT_P (op)
2296 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2297 win = true;
2298 break;
2300 case CT_MEMORY:
2301 if (MEM_P (op)
2302 && satisfies_memory_constraint_p (op, cn))
2303 win = true;
2304 else if (spilled_pseudo_p (op))
2305 win = true;
2307 /* If we didn't already win, we can reload constants
2308 via force_const_mem or put the pseudo value into
2309 memory, or make other memory by reloading the
2310 address like for 'o'. */
2311 if (CONST_POOL_OK_P (mode, op)
2312 || MEM_P (op) || REG_P (op)
2313 /* We can restore the equiv insn by a
2314 reload. */
2315 || equiv_substition_p[nop])
2316 badop = false;
2317 constmemok = true;
2318 offmemok = true;
2319 break;
2321 case CT_ADDRESS:
2322 /* An asm operand with an address constraint
2323 that doesn't satisfy address_operand has
2324 is_address cleared, so that we don't try to
2325 make a non-address fit. */
2326 if (!curr_static_id->operand[nop].is_address)
2327 break;
2328 /* If we didn't already win, we can reload the address
2329 into a base register. */
2330 if (satisfies_address_constraint_p (op, cn))
2331 win = true;
2332 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2333 ADDRESS, SCRATCH);
2334 badop = false;
2335 goto reg;
2337 case CT_FIXED_FORM:
2338 if (constraint_satisfied_p (op, cn))
2339 win = true;
2340 break;
2342 case CT_SPECIAL_MEMORY:
2343 if (MEM_P (op)
2344 && satisfies_memory_constraint_p (op, cn))
2345 win = true;
2346 else if (spilled_pseudo_p (op))
2347 win = true;
2348 break;
2350 break;
2352 reg:
2353 this_alternative = reg_class_subunion[this_alternative][cl];
2354 IOR_HARD_REG_SET (this_alternative_set,
2355 reg_class_contents[cl]);
2356 if (costly_p)
2358 this_costly_alternative
2359 = reg_class_subunion[this_costly_alternative][cl];
2360 IOR_HARD_REG_SET (this_costly_alternative_set,
2361 reg_class_contents[cl]);
2363 if (mode == BLKmode)
2364 break;
2365 winreg = true;
2366 if (REG_P (op))
2368 if (hard_regno[nop] >= 0
2369 && in_hard_reg_set_p (this_alternative_set,
2370 mode, hard_regno[nop]))
2371 win = true;
2372 else if (hard_regno[nop] < 0
2373 && in_class_p (op, this_alternative, NULL))
2374 win = true;
2376 break;
2378 if (c != ' ' && c != '\t')
2379 costly_p = c == '*';
2381 while ((p += len), c);
2383 scratch_p = (operand_reg[nop] != NULL_RTX
2384 && lra_former_scratch_p (REGNO (operand_reg[nop])));
2385 /* Record which operands fit this alternative. */
2386 if (win)
2388 this_alternative_win = true;
2389 if (operand_reg[nop] != NULL_RTX)
2391 if (hard_regno[nop] >= 0)
2393 if (in_hard_reg_set_p (this_costly_alternative_set,
2394 mode, hard_regno[nop]))
2396 if (lra_dump_file != NULL)
2397 fprintf (lra_dump_file,
2398 " %d Costly set: reject++\n",
2399 nop);
2400 reject++;
2403 else
2405 /* Prefer won reg to spilled pseudo under other
2406 equal conditions for possibe inheritance. */
2407 if (! scratch_p)
2409 if (lra_dump_file != NULL)
2410 fprintf
2411 (lra_dump_file,
2412 " %d Non pseudo reload: reject++\n",
2413 nop);
2414 reject++;
2416 if (in_class_p (operand_reg[nop],
2417 this_costly_alternative, NULL))
2419 if (lra_dump_file != NULL)
2420 fprintf
2421 (lra_dump_file,
2422 " %d Non pseudo costly reload:"
2423 " reject++\n",
2424 nop);
2425 reject++;
2428 /* We simulate the behavior of old reload here.
2429 Although scratches need hard registers and it
2430 might result in spilling other pseudos, no reload
2431 insns are generated for the scratches. So it
2432 might cost something but probably less than old
2433 reload pass believes. */
2434 if (scratch_p)
2436 if (lra_dump_file != NULL)
2437 fprintf (lra_dump_file,
2438 " %d Scratch win: reject+=2\n",
2439 nop);
2440 reject += 2;
2444 else if (did_match)
2445 this_alternative_match_win = true;
2446 else
2448 int const_to_mem = 0;
2449 bool no_regs_p;
2451 reject += op_reject;
2452 /* Never do output reload of stack pointer. It makes
2453 impossible to do elimination when SP is changed in
2454 RTL. */
2455 if (op == stack_pointer_rtx && ! frame_pointer_needed
2456 && curr_static_id->operand[nop].type != OP_IN)
2457 goto fail;
2459 /* If this alternative asks for a specific reg class, see if there
2460 is at least one allocatable register in that class. */
2461 no_regs_p
2462 = (this_alternative == NO_REGS
2463 || (hard_reg_set_subset_p
2464 (reg_class_contents[this_alternative],
2465 lra_no_alloc_regs)));
2467 /* For asms, verify that the class for this alternative is possible
2468 for the mode that is specified. */
2469 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2471 int i;
2472 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2473 if (targetm.hard_regno_mode_ok (i, mode)
2474 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2475 mode, i))
2476 break;
2477 if (i == FIRST_PSEUDO_REGISTER)
2478 winreg = false;
2481 /* If this operand accepts a register, and if the
2482 register class has at least one allocatable register,
2483 then this operand can be reloaded. */
2484 if (winreg && !no_regs_p)
2485 badop = false;
2487 if (badop)
2489 if (lra_dump_file != NULL)
2490 fprintf (lra_dump_file,
2491 " alt=%d: Bad operand -- refuse\n",
2492 nalt);
2493 goto fail;
2496 if (this_alternative != NO_REGS)
2498 HARD_REG_SET available_regs;
2500 COPY_HARD_REG_SET (available_regs,
2501 reg_class_contents[this_alternative]);
2502 AND_COMPL_HARD_REG_SET
2503 (available_regs,
2504 ira_prohibited_class_mode_regs[this_alternative][mode]);
2505 AND_COMPL_HARD_REG_SET (available_regs, lra_no_alloc_regs);
2506 if (hard_reg_set_empty_p (available_regs))
2508 /* There are no hard regs holding a value of given
2509 mode. */
2510 if (offmemok)
2512 this_alternative = NO_REGS;
2513 if (lra_dump_file != NULL)
2514 fprintf (lra_dump_file,
2515 " %d Using memory because of"
2516 " a bad mode: reject+=2\n",
2517 nop);
2518 reject += 2;
2520 else
2522 if (lra_dump_file != NULL)
2523 fprintf (lra_dump_file,
2524 " alt=%d: Wrong mode -- refuse\n",
2525 nalt);
2526 goto fail;
2531 /* If not assigned pseudo has a class which a subset of
2532 required reg class, it is a less costly alternative
2533 as the pseudo still can get a hard reg of necessary
2534 class. */
2535 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2536 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2537 && ira_class_subset_p[this_alternative][cl])
2539 if (lra_dump_file != NULL)
2540 fprintf
2541 (lra_dump_file,
2542 " %d Super set class reg: reject-=3\n", nop);
2543 reject -= 3;
2546 this_alternative_offmemok = offmemok;
2547 if (this_costly_alternative != NO_REGS)
2549 if (lra_dump_file != NULL)
2550 fprintf (lra_dump_file,
2551 " %d Costly loser: reject++\n", nop);
2552 reject++;
2554 /* If the operand is dying, has a matching constraint,
2555 and satisfies constraints of the matched operand
2556 which failed to satisfy the own constraints, most probably
2557 the reload for this operand will be gone. */
2558 if (this_alternative_matches >= 0
2559 && !curr_alt_win[this_alternative_matches]
2560 && REG_P (op)
2561 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2562 && (hard_regno[nop] >= 0
2563 ? in_hard_reg_set_p (this_alternative_set,
2564 mode, hard_regno[nop])
2565 : in_class_p (op, this_alternative, NULL)))
2567 if (lra_dump_file != NULL)
2568 fprintf
2569 (lra_dump_file,
2570 " %d Dying matched operand reload: reject++\n",
2571 nop);
2572 reject++;
2574 else
2576 /* Strict_low_part requires to reload the register
2577 not the sub-register. In this case we should
2578 check that a final reload hard reg can hold the
2579 value mode. */
2580 if (curr_static_id->operand[nop].strict_low
2581 && REG_P (op)
2582 && hard_regno[nop] < 0
2583 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2584 && ira_class_hard_regs_num[this_alternative] > 0
2585 && (!targetm.hard_regno_mode_ok
2586 (ira_class_hard_regs[this_alternative][0],
2587 GET_MODE (*curr_id->operand_loc[nop]))))
2589 if (lra_dump_file != NULL)
2590 fprintf
2591 (lra_dump_file,
2592 " alt=%d: Strict low subreg reload -- refuse\n",
2593 nalt);
2594 goto fail;
2596 losers++;
2598 if (operand_reg[nop] != NULL_RTX
2599 /* Output operands and matched input operands are
2600 not inherited. The following conditions do not
2601 exactly describe the previous statement but they
2602 are pretty close. */
2603 && curr_static_id->operand[nop].type != OP_OUT
2604 && (this_alternative_matches < 0
2605 || curr_static_id->operand[nop].type != OP_IN))
2607 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2608 (operand_reg[nop])]
2609 .last_reload);
2611 /* The value of reload_sum has sense only if we
2612 process insns in their order. It happens only on
2613 the first constraints sub-pass when we do most of
2614 reload work. */
2615 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2616 reload_sum += last_reload - bb_reload_num;
2618 /* If this is a constant that is reloaded into the
2619 desired class by copying it to memory first, count
2620 that as another reload. This is consistent with
2621 other code and is required to avoid choosing another
2622 alternative when the constant is moved into memory.
2623 Note that the test here is precisely the same as in
2624 the code below that calls force_const_mem. */
2625 if (CONST_POOL_OK_P (mode, op)
2626 && ((targetm.preferred_reload_class
2627 (op, this_alternative) == NO_REGS)
2628 || no_input_reloads_p))
2630 const_to_mem = 1;
2631 if (! no_regs_p)
2632 losers++;
2635 /* Alternative loses if it requires a type of reload not
2636 permitted for this insn. We can always reload
2637 objects with a REG_UNUSED note. */
2638 if ((curr_static_id->operand[nop].type != OP_IN
2639 && no_output_reloads_p
2640 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2641 || (curr_static_id->operand[nop].type != OP_OUT
2642 && no_input_reloads_p && ! const_to_mem)
2643 || (this_alternative_matches >= 0
2644 && (no_input_reloads_p
2645 || (no_output_reloads_p
2646 && (curr_static_id->operand
2647 [this_alternative_matches].type != OP_IN)
2648 && ! find_reg_note (curr_insn, REG_UNUSED,
2649 no_subreg_reg_operand
2650 [this_alternative_matches])))))
2652 if (lra_dump_file != NULL)
2653 fprintf
2654 (lra_dump_file,
2655 " alt=%d: No input/otput reload -- refuse\n",
2656 nalt);
2657 goto fail;
2660 /* Alternative loses if it required class pseudo cannot
2661 hold value of required mode. Such insns can be
2662 described by insn definitions with mode iterators. */
2663 if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2664 && ! hard_reg_set_empty_p (this_alternative_set)
2665 /* It is common practice for constraints to use a
2666 class which does not have actually enough regs to
2667 hold the value (e.g. x86 AREG for mode requiring
2668 more one general reg). Therefore we have 2
2669 conditions to check that the reload pseudo cannot
2670 hold the mode value. */
2671 && (!targetm.hard_regno_mode_ok
2672 (ira_class_hard_regs[this_alternative][0],
2673 GET_MODE (*curr_id->operand_loc[nop])))
2674 /* The above condition is not enough as the first
2675 reg in ira_class_hard_regs can be not aligned for
2676 multi-words mode values. */
2677 && (prohibited_class_reg_set_mode_p
2678 (this_alternative, this_alternative_set,
2679 GET_MODE (*curr_id->operand_loc[nop]))))
2681 if (lra_dump_file != NULL)
2682 fprintf (lra_dump_file,
2683 " alt=%d: reload pseudo for op %d "
2684 "cannot hold the mode value -- refuse\n",
2685 nalt, nop);
2686 goto fail;
2689 /* Check strong discouragement of reload of non-constant
2690 into class THIS_ALTERNATIVE. */
2691 if (! CONSTANT_P (op) && ! no_regs_p
2692 && (targetm.preferred_reload_class
2693 (op, this_alternative) == NO_REGS
2694 || (curr_static_id->operand[nop].type == OP_OUT
2695 && (targetm.preferred_output_reload_class
2696 (op, this_alternative) == NO_REGS))))
2698 if (lra_dump_file != NULL)
2699 fprintf (lra_dump_file,
2700 " %d Non-prefered reload: reject+=%d\n",
2701 nop, LRA_MAX_REJECT);
2702 reject += LRA_MAX_REJECT;
2705 if (! (MEM_P (op) && offmemok)
2706 && ! (const_to_mem && constmemok))
2708 /* We prefer to reload pseudos over reloading other
2709 things, since such reloads may be able to be
2710 eliminated later. So bump REJECT in other cases.
2711 Don't do this in the case where we are forcing a
2712 constant into memory and it will then win since
2713 we don't want to have a different alternative
2714 match then. */
2715 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2717 if (lra_dump_file != NULL)
2718 fprintf
2719 (lra_dump_file,
2720 " %d Non-pseudo reload: reject+=2\n",
2721 nop);
2722 reject += 2;
2725 if (! no_regs_p)
2726 reload_nregs
2727 += ira_reg_class_max_nregs[this_alternative][mode];
2729 if (SMALL_REGISTER_CLASS_P (this_alternative))
2731 if (lra_dump_file != NULL)
2732 fprintf
2733 (lra_dump_file,
2734 " %d Small class reload: reject+=%d\n",
2735 nop, LRA_LOSER_COST_FACTOR / 2);
2736 reject += LRA_LOSER_COST_FACTOR / 2;
2740 /* We are trying to spill pseudo into memory. It is
2741 usually more costly than moving to a hard register
2742 although it might takes the same number of
2743 reloads.
2745 Non-pseudo spill may happen also. Suppose a target allows both
2746 register and memory in the operand constraint alternatives,
2747 then it's typical that an eliminable register has a substition
2748 of "base + offset" which can either be reloaded by a simple
2749 "new_reg <= base + offset" which will match the register
2750 constraint, or a similar reg addition followed by further spill
2751 to and reload from memory which will match the memory
2752 constraint, but this memory spill will be much more costly
2753 usually.
2755 Code below increases the reject for both pseudo and non-pseudo
2756 spill. */
2757 if (no_regs_p
2758 && !(MEM_P (op) && offmemok)
2759 && !(REG_P (op) && hard_regno[nop] < 0))
2761 if (lra_dump_file != NULL)
2762 fprintf
2763 (lra_dump_file,
2764 " %d Spill %spseudo into memory: reject+=3\n",
2765 nop, REG_P (op) ? "" : "Non-");
2766 reject += 3;
2767 if (VECTOR_MODE_P (mode))
2769 /* Spilling vectors into memory is usually more
2770 costly as they contain big values. */
2771 if (lra_dump_file != NULL)
2772 fprintf
2773 (lra_dump_file,
2774 " %d Spill vector pseudo: reject+=2\n",
2775 nop);
2776 reject += 2;
2780 /* When we use an operand requiring memory in given
2781 alternative, the insn should write *and* read the
2782 value to/from memory it is costly in comparison with
2783 an insn alternative which does not use memory
2784 (e.g. register or immediate operand). We exclude
2785 memory operand for such case as we can satisfy the
2786 memory constraints by reloading address. */
2787 if (no_regs_p && offmemok && !MEM_P (op))
2789 if (lra_dump_file != NULL)
2790 fprintf
2791 (lra_dump_file,
2792 " Using memory insn operand %d: reject+=3\n",
2793 nop);
2794 reject += 3;
2797 /* If reload requires moving value through secondary
2798 memory, it will need one more insn at least. */
2799 if (this_alternative != NO_REGS
2800 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2801 && ((curr_static_id->operand[nop].type != OP_OUT
2802 && targetm.secondary_memory_needed (GET_MODE (op), cl,
2803 this_alternative))
2804 || (curr_static_id->operand[nop].type != OP_IN
2805 && (targetm.secondary_memory_needed
2806 (GET_MODE (op), this_alternative, cl)))))
2807 losers++;
2809 if (MEM_P (op) && offmemok)
2810 addr_losers++;
2811 else
2813 /* Input reloads can be inherited more often than
2814 output reloads can be removed, so penalize output
2815 reloads. */
2816 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2818 if (lra_dump_file != NULL)
2819 fprintf
2820 (lra_dump_file,
2821 " %d Non input pseudo reload: reject++\n",
2822 nop);
2823 reject++;
2826 if (curr_static_id->operand[nop].type == OP_INOUT)
2828 if (lra_dump_file != NULL)
2829 fprintf
2830 (lra_dump_file,
2831 " %d Input/Output reload: reject+=%d\n",
2832 nop, LRA_LOSER_COST_FACTOR);
2833 reject += LRA_LOSER_COST_FACTOR;
2838 if (early_clobber_p && ! scratch_p)
2840 if (lra_dump_file != NULL)
2841 fprintf (lra_dump_file,
2842 " %d Early clobber: reject++\n", nop);
2843 reject++;
2845 /* ??? We check early clobbers after processing all operands
2846 (see loop below) and there we update the costs more.
2847 Should we update the cost (may be approximately) here
2848 because of early clobber register reloads or it is a rare
2849 or non-important thing to be worth to do it. */
2850 overall = (losers * LRA_LOSER_COST_FACTOR + reject
2851 - (addr_losers == losers ? static_reject : 0));
2852 if ((best_losers == 0 || losers != 0) && best_overall < overall)
2854 if (lra_dump_file != NULL)
2855 fprintf (lra_dump_file,
2856 " alt=%d,overall=%d,losers=%d -- refuse\n",
2857 nalt, overall, losers);
2858 goto fail;
2861 if (update_and_check_small_class_inputs (nop, this_alternative))
2863 if (lra_dump_file != NULL)
2864 fprintf (lra_dump_file,
2865 " alt=%d, not enough small class regs -- refuse\n",
2866 nalt);
2867 goto fail;
2869 curr_alt[nop] = this_alternative;
2870 COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
2871 curr_alt_win[nop] = this_alternative_win;
2872 curr_alt_match_win[nop] = this_alternative_match_win;
2873 curr_alt_offmemok[nop] = this_alternative_offmemok;
2874 curr_alt_matches[nop] = this_alternative_matches;
2876 if (this_alternative_matches >= 0
2877 && !did_match && !this_alternative_win)
2878 curr_alt_win[this_alternative_matches] = false;
2880 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2881 early_clobbered_nops[early_clobbered_regs_num++] = nop;
2884 if (curr_insn_set != NULL_RTX && n_operands == 2
2885 /* Prevent processing non-move insns. */
2886 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2887 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2888 && ((! curr_alt_win[0] && ! curr_alt_win[1]
2889 && REG_P (no_subreg_reg_operand[0])
2890 && REG_P (no_subreg_reg_operand[1])
2891 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2892 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2893 || (! curr_alt_win[0] && curr_alt_win[1]
2894 && REG_P (no_subreg_reg_operand[1])
2895 /* Check that we reload memory not the memory
2896 address. */
2897 && ! (curr_alt_offmemok[0]
2898 && MEM_P (no_subreg_reg_operand[0]))
2899 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2900 || (curr_alt_win[0] && ! curr_alt_win[1]
2901 && REG_P (no_subreg_reg_operand[0])
2902 /* Check that we reload memory not the memory
2903 address. */
2904 && ! (curr_alt_offmemok[1]
2905 && MEM_P (no_subreg_reg_operand[1]))
2906 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2907 && (! CONST_POOL_OK_P (curr_operand_mode[1],
2908 no_subreg_reg_operand[1])
2909 || (targetm.preferred_reload_class
2910 (no_subreg_reg_operand[1],
2911 (enum reg_class) curr_alt[1]) != NO_REGS))
2912 /* If it is a result of recent elimination in move
2913 insn we can transform it into an add still by
2914 using this alternative. */
2915 && GET_CODE (no_subreg_reg_operand[1]) != PLUS
2916 /* Likewise if the source has been replaced with an
2917 equivalent value. This only happens once -- the reload
2918 will use the equivalent value instead of the register it
2919 replaces -- so there should be no danger of cycling. */
2920 && !equiv_substition_p[1])))
2922 /* We have a move insn and a new reload insn will be similar
2923 to the current insn. We should avoid such situation as
2924 it results in LRA cycling. */
2925 if (lra_dump_file != NULL)
2926 fprintf (lra_dump_file,
2927 " Cycle danger: overall += LRA_MAX_REJECT\n");
2928 overall += LRA_MAX_REJECT;
2930 ok_p = true;
2931 curr_alt_dont_inherit_ops_num = 0;
2932 for (nop = 0; nop < early_clobbered_regs_num; nop++)
2934 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
2935 HARD_REG_SET temp_set;
2937 i = early_clobbered_nops[nop];
2938 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
2939 || hard_regno[i] < 0)
2940 continue;
2941 lra_assert (operand_reg[i] != NULL_RTX);
2942 clobbered_hard_regno = hard_regno[i];
2943 CLEAR_HARD_REG_SET (temp_set);
2944 add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
2945 first_conflict_j = last_conflict_j = -1;
2946 for (j = 0; j < n_operands; j++)
2947 if (j == i
2948 /* We don't want process insides of match_operator and
2949 match_parallel because otherwise we would process
2950 their operands once again generating a wrong
2951 code. */
2952 || curr_static_id->operand[j].is_operator)
2953 continue;
2954 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
2955 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
2956 continue;
2957 /* If we don't reload j-th operand, check conflicts. */
2958 else if ((curr_alt_win[j] || curr_alt_match_win[j])
2959 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
2961 if (first_conflict_j < 0)
2962 first_conflict_j = j;
2963 last_conflict_j = j;
2964 /* Both the earlyclobber operand and conflicting operand
2965 cannot both be user defined hard registers. */
2966 if (HARD_REGISTER_P (operand_reg[i])
2967 && REG_USERVAR_P (operand_reg[i])
2968 && operand_reg[j] != NULL_RTX
2969 && HARD_REGISTER_P (operand_reg[j])
2970 && REG_USERVAR_P (operand_reg[j]))
2971 fatal_insn ("unable to generate reloads for "
2972 "impossible constraints:", curr_insn);
2974 if (last_conflict_j < 0)
2975 continue;
2977 /* If an earlyclobber operand conflicts with another non-matching
2978 operand (ie, they have been assigned the same hard register),
2979 then it is better to reload the other operand, as there may
2980 exist yet another operand with a matching constraint associated
2981 with the earlyclobber operand. However, if one of the operands
2982 is an explicit use of a hard register, then we must reload the
2983 other non-hard register operand. */
2984 if (HARD_REGISTER_P (operand_reg[i])
2985 || (first_conflict_j == last_conflict_j
2986 && operand_reg[last_conflict_j] != NULL_RTX
2987 && !curr_alt_match_win[last_conflict_j]
2988 && !HARD_REGISTER_P (operand_reg[last_conflict_j])))
2990 curr_alt_win[last_conflict_j] = false;
2991 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
2992 = last_conflict_j;
2993 losers++;
2994 if (lra_dump_file != NULL)
2995 fprintf
2996 (lra_dump_file,
2997 " %d Conflict early clobber reload: reject--\n",
3000 else
3002 /* We need to reload early clobbered register and the
3003 matched registers. */
3004 for (j = 0; j < n_operands; j++)
3005 if (curr_alt_matches[j] == i)
3007 curr_alt_match_win[j] = false;
3008 losers++;
3009 overall += LRA_LOSER_COST_FACTOR;
3011 if (! curr_alt_match_win[i])
3012 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
3013 else
3015 /* Remember pseudos used for match reloads are never
3016 inherited. */
3017 lra_assert (curr_alt_matches[i] >= 0);
3018 curr_alt_win[curr_alt_matches[i]] = false;
3020 curr_alt_win[i] = curr_alt_match_win[i] = false;
3021 losers++;
3022 if (lra_dump_file != NULL)
3023 fprintf
3024 (lra_dump_file,
3025 " %d Matched conflict early clobber reloads: "
3026 "reject--\n",
3029 /* Early clobber was already reflected in REJECT. */
3030 if (!matching_early_clobber[i])
3032 lra_assert (reject > 0);
3033 reject--;
3034 matching_early_clobber[i] = 1;
3036 overall += LRA_LOSER_COST_FACTOR - 1;
3038 if (lra_dump_file != NULL)
3039 fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
3040 nalt, overall, losers, reload_nregs);
3042 /* If this alternative can be made to work by reloading, and it
3043 needs less reloading than the others checked so far, record
3044 it as the chosen goal for reloading. */
3045 if ((best_losers != 0 && losers == 0)
3046 || (((best_losers == 0 && losers == 0)
3047 || (best_losers != 0 && losers != 0))
3048 && (best_overall > overall
3049 || (best_overall == overall
3050 /* If the cost of the reloads is the same,
3051 prefer alternative which requires minimal
3052 number of reload regs. */
3053 && (reload_nregs < best_reload_nregs
3054 || (reload_nregs == best_reload_nregs
3055 && (best_reload_sum < reload_sum
3056 || (best_reload_sum == reload_sum
3057 && nalt < goal_alt_number))))))))
3059 for (nop = 0; nop < n_operands; nop++)
3061 goal_alt_win[nop] = curr_alt_win[nop];
3062 goal_alt_match_win[nop] = curr_alt_match_win[nop];
3063 goal_alt_matches[nop] = curr_alt_matches[nop];
3064 goal_alt[nop] = curr_alt[nop];
3065 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
3067 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
3068 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
3069 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
3070 goal_alt_swapped = curr_swapped;
3071 best_overall = overall;
3072 best_losers = losers;
3073 best_reload_nregs = reload_nregs;
3074 best_reload_sum = reload_sum;
3075 goal_alt_number = nalt;
3077 if (losers == 0)
3078 /* Everything is satisfied. Do not process alternatives
3079 anymore. */
3080 break;
3081 fail:
3084 return ok_p;
3087 /* Make reload base reg from address AD. */
3088 static rtx
3089 base_to_reg (struct address_info *ad)
3091 enum reg_class cl;
3092 int code = -1;
3093 rtx new_inner = NULL_RTX;
3094 rtx new_reg = NULL_RTX;
3095 rtx_insn *insn;
3096 rtx_insn *last_insn = get_last_insn();
3098 lra_assert (ad->disp == ad->disp_term);
3099 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3100 get_index_code (ad));
3101 new_reg = lra_create_new_reg (GET_MODE (*ad->base), NULL_RTX,
3102 cl, "base");
3103 new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
3104 ad->disp_term == NULL
3105 ? const0_rtx
3106 : *ad->disp_term);
3107 if (!valid_address_p (ad->mode, new_inner, ad->as))
3108 return NULL_RTX;
3109 insn = emit_insn (gen_rtx_SET (new_reg, *ad->base));
3110 code = recog_memoized (insn);
3111 if (code < 0)
3113 delete_insns_since (last_insn);
3114 return NULL_RTX;
3117 return new_inner;
3120 /* Make reload base reg + DISP from address AD. Return the new pseudo. */
3121 static rtx
3122 base_plus_disp_to_reg (struct address_info *ad, rtx disp)
3124 enum reg_class cl;
3125 rtx new_reg;
3127 lra_assert (ad->base == ad->base_term);
3128 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3129 get_index_code (ad));
3130 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
3131 cl, "base + disp");
3132 lra_emit_add (new_reg, *ad->base_term, disp);
3133 return new_reg;
3136 /* Make reload of index part of address AD. Return the new
3137 pseudo. */
3138 static rtx
3139 index_part_to_reg (struct address_info *ad)
3141 rtx new_reg;
3143 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
3144 INDEX_REG_CLASS, "index term");
3145 expand_mult (GET_MODE (*ad->index), *ad->index_term,
3146 GEN_INT (get_index_scale (ad)), new_reg, 1);
3147 return new_reg;
3150 /* Return true if we can add a displacement to address AD, even if that
3151 makes the address invalid. The fix-up code requires any new address
3152 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3153 static bool
3154 can_add_disp_p (struct address_info *ad)
3156 return (!ad->autoinc_p
3157 && ad->segment == NULL
3158 && ad->base == ad->base_term
3159 && ad->disp == ad->disp_term);
3162 /* Make equiv substitution in address AD. Return true if a substitution
3163 was made. */
3164 static bool
3165 equiv_address_substitution (struct address_info *ad)
3167 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
3168 poly_int64 disp;
3169 HOST_WIDE_INT scale;
3170 bool change_p;
3172 base_term = strip_subreg (ad->base_term);
3173 if (base_term == NULL)
3174 base_reg = new_base_reg = NULL_RTX;
3175 else
3177 base_reg = *base_term;
3178 new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
3180 index_term = strip_subreg (ad->index_term);
3181 if (index_term == NULL)
3182 index_reg = new_index_reg = NULL_RTX;
3183 else
3185 index_reg = *index_term;
3186 new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
3188 if (base_reg == new_base_reg && index_reg == new_index_reg)
3189 return false;
3190 disp = 0;
3191 change_p = false;
3192 if (lra_dump_file != NULL)
3194 fprintf (lra_dump_file, "Changing address in insn %d ",
3195 INSN_UID (curr_insn));
3196 dump_value_slim (lra_dump_file, *ad->outer, 1);
3198 if (base_reg != new_base_reg)
3200 poly_int64 offset;
3201 if (REG_P (new_base_reg))
3203 *base_term = new_base_reg;
3204 change_p = true;
3206 else if (GET_CODE (new_base_reg) == PLUS
3207 && REG_P (XEXP (new_base_reg, 0))
3208 && poly_int_rtx_p (XEXP (new_base_reg, 1), &offset)
3209 && can_add_disp_p (ad))
3211 disp += offset;
3212 *base_term = XEXP (new_base_reg, 0);
3213 change_p = true;
3215 if (ad->base_term2 != NULL)
3216 *ad->base_term2 = *ad->base_term;
3218 if (index_reg != new_index_reg)
3220 poly_int64 offset;
3221 if (REG_P (new_index_reg))
3223 *index_term = new_index_reg;
3224 change_p = true;
3226 else if (GET_CODE (new_index_reg) == PLUS
3227 && REG_P (XEXP (new_index_reg, 0))
3228 && poly_int_rtx_p (XEXP (new_index_reg, 1), &offset)
3229 && can_add_disp_p (ad)
3230 && (scale = get_index_scale (ad)))
3232 disp += offset * scale;
3233 *index_term = XEXP (new_index_reg, 0);
3234 change_p = true;
3237 if (maybe_ne (disp, 0))
3239 if (ad->disp != NULL)
3240 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
3241 else
3243 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
3244 update_address (ad);
3246 change_p = true;
3248 if (lra_dump_file != NULL)
3250 if (! change_p)
3251 fprintf (lra_dump_file, " -- no change\n");
3252 else
3254 fprintf (lra_dump_file, " on equiv ");
3255 dump_value_slim (lra_dump_file, *ad->outer, 1);
3256 fprintf (lra_dump_file, "\n");
3259 return change_p;
3262 /* Major function to make reloads for an address in operand NOP or
3263 check its correctness (If CHECK_ONLY_P is true). The supported
3264 cases are:
3266 1) an address that existed before LRA started, at which point it
3267 must have been valid. These addresses are subject to elimination
3268 and may have become invalid due to the elimination offset being out
3269 of range.
3271 2) an address created by forcing a constant to memory
3272 (force_const_to_mem). The initial form of these addresses might
3273 not be valid, and it is this function's job to make them valid.
3275 3) a frame address formed from a register and a (possibly zero)
3276 constant offset. As above, these addresses might not be valid and
3277 this function must make them so.
3279 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3280 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3281 address. Return true for any RTL change.
3283 The function is a helper function which does not produce all
3284 transformations (when CHECK_ONLY_P is false) which can be
3285 necessary. It does just basic steps. To do all necessary
3286 transformations use function process_address. */
3287 static bool
3288 process_address_1 (int nop, bool check_only_p,
3289 rtx_insn **before, rtx_insn **after)
3291 struct address_info ad;
3292 rtx new_reg;
3293 HOST_WIDE_INT scale;
3294 rtx op = *curr_id->operand_loc[nop];
3295 const char *constraint = curr_static_id->operand[nop].constraint;
3296 enum constraint_num cn = lookup_constraint (constraint);
3297 bool change_p = false;
3299 if (MEM_P (op)
3300 && GET_MODE (op) == BLKmode
3301 && GET_CODE (XEXP (op, 0)) == SCRATCH)
3302 return false;
3304 if (insn_extra_address_constraint (cn)
3305 /* When we find an asm operand with an address constraint that
3306 doesn't satisfy address_operand to begin with, we clear
3307 is_address, so that we don't try to make a non-address fit.
3308 If the asm statement got this far, it's because other
3309 constraints are available, and we'll use them, disregarding
3310 the unsatisfiable address ones. */
3311 && curr_static_id->operand[nop].is_address)
3312 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
3313 /* Do not attempt to decompose arbitrary addresses generated by combine
3314 for asm operands with loose constraints, e.g 'X'. */
3315 else if (MEM_P (op)
3316 && !(INSN_CODE (curr_insn) < 0
3317 && get_constraint_type (cn) == CT_FIXED_FORM
3318 && constraint_satisfied_p (op, cn)))
3319 decompose_mem_address (&ad, op);
3320 else if (GET_CODE (op) == SUBREG
3321 && MEM_P (SUBREG_REG (op)))
3322 decompose_mem_address (&ad, SUBREG_REG (op));
3323 else
3324 return false;
3325 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3326 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3327 when INDEX_REG_CLASS is a single register class. */
3328 if (ad.base_term != NULL
3329 && ad.index_term != NULL
3330 && ira_class_hard_regs_num[INDEX_REG_CLASS] == 1
3331 && REG_P (*ad.base_term)
3332 && REG_P (*ad.index_term)
3333 && in_class_p (*ad.base_term, INDEX_REG_CLASS, NULL)
3334 && ! in_class_p (*ad.index_term, INDEX_REG_CLASS, NULL))
3336 std::swap (ad.base, ad.index);
3337 std::swap (ad.base_term, ad.index_term);
3339 if (! check_only_p)
3340 change_p = equiv_address_substitution (&ad);
3341 if (ad.base_term != NULL
3342 && (process_addr_reg
3343 (ad.base_term, check_only_p, before,
3344 (ad.autoinc_p
3345 && !(REG_P (*ad.base_term)
3346 && find_regno_note (curr_insn, REG_DEAD,
3347 REGNO (*ad.base_term)) != NULL_RTX)
3348 ? after : NULL),
3349 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3350 get_index_code (&ad)))))
3352 change_p = true;
3353 if (ad.base_term2 != NULL)
3354 *ad.base_term2 = *ad.base_term;
3356 if (ad.index_term != NULL
3357 && process_addr_reg (ad.index_term, check_only_p,
3358 before, NULL, INDEX_REG_CLASS))
3359 change_p = true;
3361 /* Target hooks sometimes don't treat extra-constraint addresses as
3362 legitimate address_operands, so handle them specially. */
3363 if (insn_extra_address_constraint (cn)
3364 && satisfies_address_constraint_p (&ad, cn))
3365 return change_p;
3367 if (check_only_p)
3368 return change_p;
3370 /* There are three cases where the shape of *AD.INNER may now be invalid:
3372 1) the original address was valid, but either elimination or
3373 equiv_address_substitution was applied and that made
3374 the address invalid.
3376 2) the address is an invalid symbolic address created by
3377 force_const_to_mem.
3379 3) the address is a frame address with an invalid offset.
3381 4) the address is a frame address with an invalid base.
3383 All these cases involve a non-autoinc address, so there is no
3384 point revalidating other types. */
3385 if (ad.autoinc_p || valid_address_p (&ad))
3386 return change_p;
3388 /* Any index existed before LRA started, so we can assume that the
3389 presence and shape of the index is valid. */
3390 push_to_sequence (*before);
3391 lra_assert (ad.disp == ad.disp_term);
3392 if (ad.base == NULL)
3394 if (ad.index == NULL)
3396 rtx_insn *insn;
3397 rtx_insn *last = get_last_insn ();
3398 int code = -1;
3399 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3400 SCRATCH, SCRATCH);
3401 rtx addr = *ad.inner;
3403 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3404 if (HAVE_lo_sum)
3406 /* addr => lo_sum (new_base, addr), case (2) above. */
3407 insn = emit_insn (gen_rtx_SET
3408 (new_reg,
3409 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
3410 code = recog_memoized (insn);
3411 if (code >= 0)
3413 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
3414 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3416 /* Try to put lo_sum into register. */
3417 insn = emit_insn (gen_rtx_SET
3418 (new_reg,
3419 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
3420 code = recog_memoized (insn);
3421 if (code >= 0)
3423 *ad.inner = new_reg;
3424 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3426 *ad.inner = addr;
3427 code = -1;
3433 if (code < 0)
3434 delete_insns_since (last);
3437 if (code < 0)
3439 /* addr => new_base, case (2) above. */
3440 lra_emit_move (new_reg, addr);
3442 for (insn = last == NULL_RTX ? get_insns () : NEXT_INSN (last);
3443 insn != NULL_RTX;
3444 insn = NEXT_INSN (insn))
3445 if (recog_memoized (insn) < 0)
3446 break;
3447 if (insn != NULL_RTX)
3449 /* Do nothing if we cannot generate right insns.
3450 This is analogous to reload pass behavior. */
3451 delete_insns_since (last);
3452 end_sequence ();
3453 return false;
3455 *ad.inner = new_reg;
3458 else
3460 /* index * scale + disp => new base + index * scale,
3461 case (1) above. */
3462 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
3463 GET_CODE (*ad.index));
3465 lra_assert (INDEX_REG_CLASS != NO_REGS);
3466 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
3467 lra_emit_move (new_reg, *ad.disp);
3468 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3469 new_reg, *ad.index);
3472 else if (ad.index == NULL)
3474 int regno;
3475 enum reg_class cl;
3476 rtx set;
3477 rtx_insn *insns, *last_insn;
3478 /* Try to reload base into register only if the base is invalid
3479 for the address but with valid offset, case (4) above. */
3480 start_sequence ();
3481 new_reg = base_to_reg (&ad);
3483 /* base + disp => new base, cases (1) and (3) above. */
3484 /* Another option would be to reload the displacement into an
3485 index register. However, postreload has code to optimize
3486 address reloads that have the same base and different
3487 displacements, so reloading into an index register would
3488 not necessarily be a win. */
3489 if (new_reg == NULL_RTX)
3491 /* See if the target can split the displacement into a
3492 legitimate new displacement from a local anchor. */
3493 gcc_assert (ad.disp == ad.disp_term);
3494 poly_int64 orig_offset;
3495 rtx offset1, offset2;
3496 if (poly_int_rtx_p (*ad.disp, &orig_offset)
3497 && targetm.legitimize_address_displacement (&offset1, &offset2,
3498 orig_offset,
3499 ad.mode))
3501 new_reg = base_plus_disp_to_reg (&ad, offset1);
3502 new_reg = gen_rtx_PLUS (GET_MODE (new_reg), new_reg, offset2);
3504 else
3505 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3507 insns = get_insns ();
3508 last_insn = get_last_insn ();
3509 /* If we generated at least two insns, try last insn source as
3510 an address. If we succeed, we generate one less insn. */
3511 if (REG_P (new_reg)
3512 && last_insn != insns
3513 && (set = single_set (last_insn)) != NULL_RTX
3514 && GET_CODE (SET_SRC (set)) == PLUS
3515 && REG_P (XEXP (SET_SRC (set), 0))
3516 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3518 *ad.inner = SET_SRC (set);
3519 if (valid_address_p (ad.mode, *ad.outer, ad.as))
3521 *ad.base_term = XEXP (SET_SRC (set), 0);
3522 *ad.disp_term = XEXP (SET_SRC (set), 1);
3523 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3524 get_index_code (&ad));
3525 regno = REGNO (*ad.base_term);
3526 if (regno >= FIRST_PSEUDO_REGISTER
3527 && cl != lra_get_allocno_class (regno))
3528 lra_change_class (regno, cl, " Change to", true);
3529 new_reg = SET_SRC (set);
3530 delete_insns_since (PREV_INSN (last_insn));
3533 end_sequence ();
3534 emit_insn (insns);
3535 *ad.inner = new_reg;
3537 else if (ad.disp_term != NULL)
3539 /* base + scale * index + disp => new base + scale * index,
3540 case (1) above. */
3541 gcc_assert (ad.disp == ad.disp_term);
3542 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3543 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3544 new_reg, *ad.index);
3546 else if ((scale = get_index_scale (&ad)) == 1)
3548 /* The last transformation to one reg will be made in
3549 curr_insn_transform function. */
3550 end_sequence ();
3551 return false;
3553 else if (scale != 0)
3555 /* base + scale * index => base + new_reg,
3556 case (1) above.
3557 Index part of address may become invalid. For example, we
3558 changed pseudo on the equivalent memory and a subreg of the
3559 pseudo onto the memory of different mode for which the scale is
3560 prohibitted. */
3561 new_reg = index_part_to_reg (&ad);
3562 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3563 *ad.base_term, new_reg);
3565 else
3567 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3568 SCRATCH, SCRATCH);
3569 rtx addr = *ad.inner;
3571 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3572 /* addr => new_base. */
3573 lra_emit_move (new_reg, addr);
3574 *ad.inner = new_reg;
3576 *before = get_insns ();
3577 end_sequence ();
3578 return true;
3581 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3582 Use process_address_1 as a helper function. Return true for any
3583 RTL changes.
3585 If CHECK_ONLY_P is true, just check address correctness. Return
3586 false if the address correct. */
3587 static bool
3588 process_address (int nop, bool check_only_p,
3589 rtx_insn **before, rtx_insn **after)
3591 bool res = false;
3593 while (process_address_1 (nop, check_only_p, before, after))
3595 if (check_only_p)
3596 return true;
3597 res = true;
3599 return res;
3602 /* Emit insns to reload VALUE into a new register. VALUE is an
3603 auto-increment or auto-decrement RTX whose operand is a register or
3604 memory location; so reloading involves incrementing that location.
3605 IN is either identical to VALUE, or some cheaper place to reload
3606 value being incremented/decremented from.
3608 INC_AMOUNT is the number to increment or decrement by (always
3609 positive and ignored for POST_MODIFY/PRE_MODIFY).
3611 Return pseudo containing the result. */
3612 static rtx
3613 emit_inc (enum reg_class new_rclass, rtx in, rtx value, poly_int64 inc_amount)
3615 /* REG or MEM to be copied and incremented. */
3616 rtx incloc = XEXP (value, 0);
3617 /* Nonzero if increment after copying. */
3618 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3619 || GET_CODE (value) == POST_MODIFY);
3620 rtx_insn *last;
3621 rtx inc;
3622 rtx_insn *add_insn;
3623 int code;
3624 rtx real_in = in == value ? incloc : in;
3625 rtx result;
3626 bool plus_p = true;
3628 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3630 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3631 || GET_CODE (XEXP (value, 1)) == MINUS);
3632 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3633 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3634 inc = XEXP (XEXP (value, 1), 1);
3636 else
3638 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3639 inc_amount = -inc_amount;
3641 inc = gen_int_mode (inc_amount, GET_MODE (value));
3644 if (! post && REG_P (incloc))
3645 result = incloc;
3646 else
3647 result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
3648 "INC/DEC result");
3650 if (real_in != result)
3652 /* First copy the location to the result register. */
3653 lra_assert (REG_P (result));
3654 emit_insn (gen_move_insn (result, real_in));
3657 /* We suppose that there are insns to add/sub with the constant
3658 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3659 old reload worked with this assumption. If the assumption
3660 becomes wrong, we should use approach in function
3661 base_plus_disp_to_reg. */
3662 if (in == value)
3664 /* See if we can directly increment INCLOC. */
3665 last = get_last_insn ();
3666 add_insn = emit_insn (plus_p
3667 ? gen_add2_insn (incloc, inc)
3668 : gen_sub2_insn (incloc, inc));
3670 code = recog_memoized (add_insn);
3671 if (code >= 0)
3673 if (! post && result != incloc)
3674 emit_insn (gen_move_insn (result, incloc));
3675 return result;
3677 delete_insns_since (last);
3680 /* If couldn't do the increment directly, must increment in RESULT.
3681 The way we do this depends on whether this is pre- or
3682 post-increment. For pre-increment, copy INCLOC to the reload
3683 register, increment it there, then save back. */
3684 if (! post)
3686 if (real_in != result)
3687 emit_insn (gen_move_insn (result, real_in));
3688 if (plus_p)
3689 emit_insn (gen_add2_insn (result, inc));
3690 else
3691 emit_insn (gen_sub2_insn (result, inc));
3692 if (result != incloc)
3693 emit_insn (gen_move_insn (incloc, result));
3695 else
3697 /* Post-increment.
3699 Because this might be a jump insn or a compare, and because
3700 RESULT may not be available after the insn in an input
3701 reload, we must do the incrementing before the insn being
3702 reloaded for.
3704 We have already copied IN to RESULT. Increment the copy in
3705 RESULT, save that back, then decrement RESULT so it has
3706 the original value. */
3707 if (plus_p)
3708 emit_insn (gen_add2_insn (result, inc));
3709 else
3710 emit_insn (gen_sub2_insn (result, inc));
3711 emit_insn (gen_move_insn (incloc, result));
3712 /* Restore non-modified value for the result. We prefer this
3713 way because it does not require an additional hard
3714 register. */
3715 if (plus_p)
3717 poly_int64 offset;
3718 if (poly_int_rtx_p (inc, &offset))
3719 emit_insn (gen_add2_insn (result,
3720 gen_int_mode (-offset,
3721 GET_MODE (result))));
3722 else
3723 emit_insn (gen_sub2_insn (result, inc));
3725 else
3726 emit_insn (gen_add2_insn (result, inc));
3728 return result;
3731 /* Return true if the current move insn does not need processing as we
3732 already know that it satisfies its constraints. */
3733 static bool
3734 simple_move_p (void)
3736 rtx dest, src;
3737 enum reg_class dclass, sclass;
3739 lra_assert (curr_insn_set != NULL_RTX);
3740 dest = SET_DEST (curr_insn_set);
3741 src = SET_SRC (curr_insn_set);
3743 /* If the instruction has multiple sets we need to process it even if it
3744 is single_set. This can happen if one or more of the SETs are dead.
3745 See PR73650. */
3746 if (multiple_sets (curr_insn))
3747 return false;
3749 return ((dclass = get_op_class (dest)) != NO_REGS
3750 && (sclass = get_op_class (src)) != NO_REGS
3751 /* The backend guarantees that register moves of cost 2
3752 never need reloads. */
3753 && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
3756 /* Swap operands NOP and NOP + 1. */
3757 static inline void
3758 swap_operands (int nop)
3760 std::swap (curr_operand_mode[nop], curr_operand_mode[nop + 1]);
3761 std::swap (original_subreg_reg_mode[nop], original_subreg_reg_mode[nop + 1]);
3762 std::swap (*curr_id->operand_loc[nop], *curr_id->operand_loc[nop + 1]);
3763 std::swap (equiv_substition_p[nop], equiv_substition_p[nop + 1]);
3764 /* Swap the duplicates too. */
3765 lra_update_dup (curr_id, nop);
3766 lra_update_dup (curr_id, nop + 1);
3769 /* Main entry point of the constraint code: search the body of the
3770 current insn to choose the best alternative. It is mimicking insn
3771 alternative cost calculation model of former reload pass. That is
3772 because machine descriptions were written to use this model. This
3773 model can be changed in future. Make commutative operand exchange
3774 if it is chosen.
3776 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3777 constraints. Return true if any change happened during function
3778 call.
3780 If CHECK_ONLY_P is true then don't do any transformation. Just
3781 check that the insn satisfies all constraints. If the insn does
3782 not satisfy any constraint, return true. */
3783 static bool
3784 curr_insn_transform (bool check_only_p)
3786 int i, j, k;
3787 int n_operands;
3788 int n_alternatives;
3789 int n_outputs;
3790 int commutative;
3791 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
3792 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
3793 signed char outputs[MAX_RECOG_OPERANDS + 1];
3794 rtx_insn *before, *after;
3795 bool alt_p = false;
3796 /* Flag that the insn has been changed through a transformation. */
3797 bool change_p;
3798 bool sec_mem_p;
3799 bool use_sec_mem_p;
3800 int max_regno_before;
3801 int reused_alternative_num;
3803 curr_insn_set = single_set (curr_insn);
3804 if (curr_insn_set != NULL_RTX && simple_move_p ())
3806 /* We assume that the corresponding insn alternative has no
3807 earlier clobbers. If it is not the case, don't define move
3808 cost equal to 2 for the corresponding register classes. */
3809 lra_set_used_insn_alternative (curr_insn, LRA_NON_CLOBBERED_ALT);
3810 return false;
3813 no_input_reloads_p = no_output_reloads_p = false;
3814 goal_alt_number = -1;
3815 change_p = sec_mem_p = false;
3816 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3817 reloads; neither are insns that SET cc0. Insns that use CC0 are
3818 not allowed to have any input reloads. */
3819 if (JUMP_P (curr_insn) || CALL_P (curr_insn))
3820 no_output_reloads_p = true;
3822 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
3823 no_input_reloads_p = true;
3824 if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (curr_insn)))
3825 no_output_reloads_p = true;
3827 n_operands = curr_static_id->n_operands;
3828 n_alternatives = curr_static_id->n_alternatives;
3830 /* Just return "no reloads" if insn has no operands with
3831 constraints. */
3832 if (n_operands == 0 || n_alternatives == 0)
3833 return false;
3835 max_regno_before = max_reg_num ();
3837 for (i = 0; i < n_operands; i++)
3839 goal_alt_matched[i][0] = -1;
3840 goal_alt_matches[i] = -1;
3843 commutative = curr_static_id->commutative;
3845 /* Now see what we need for pseudos that didn't get hard regs or got
3846 the wrong kind of hard reg. For this, we must consider all the
3847 operands together against the register constraints. */
3849 best_losers = best_overall = INT_MAX;
3850 best_reload_sum = 0;
3852 curr_swapped = false;
3853 goal_alt_swapped = false;
3855 if (! check_only_p)
3856 /* Make equivalence substitution and memory subreg elimination
3857 before address processing because an address legitimacy can
3858 depend on memory mode. */
3859 for (i = 0; i < n_operands; i++)
3861 rtx op, subst, old;
3862 bool op_change_p = false;
3864 if (curr_static_id->operand[i].is_operator)
3865 continue;
3867 old = op = *curr_id->operand_loc[i];
3868 if (GET_CODE (old) == SUBREG)
3869 old = SUBREG_REG (old);
3870 subst = get_equiv_with_elimination (old, curr_insn);
3871 original_subreg_reg_mode[i] = VOIDmode;
3872 equiv_substition_p[i] = false;
3873 if (subst != old)
3875 equiv_substition_p[i] = true;
3876 subst = copy_rtx (subst);
3877 lra_assert (REG_P (old));
3878 if (GET_CODE (op) != SUBREG)
3879 *curr_id->operand_loc[i] = subst;
3880 else
3882 SUBREG_REG (op) = subst;
3883 if (GET_MODE (subst) == VOIDmode)
3884 original_subreg_reg_mode[i] = GET_MODE (old);
3886 if (lra_dump_file != NULL)
3888 fprintf (lra_dump_file,
3889 "Changing pseudo %d in operand %i of insn %u on equiv ",
3890 REGNO (old), i, INSN_UID (curr_insn));
3891 dump_value_slim (lra_dump_file, subst, 1);
3892 fprintf (lra_dump_file, "\n");
3894 op_change_p = change_p = true;
3896 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
3898 change_p = true;
3899 lra_update_dup (curr_id, i);
3903 /* Reload address registers and displacements. We do it before
3904 finding an alternative because of memory constraints. */
3905 before = after = NULL;
3906 for (i = 0; i < n_operands; i++)
3907 if (! curr_static_id->operand[i].is_operator
3908 && process_address (i, check_only_p, &before, &after))
3910 if (check_only_p)
3911 return true;
3912 change_p = true;
3913 lra_update_dup (curr_id, i);
3916 if (change_p)
3917 /* If we've changed the instruction then any alternative that
3918 we chose previously may no longer be valid. */
3919 lra_set_used_insn_alternative (curr_insn, LRA_UNKNOWN_ALT);
3921 if (! check_only_p && curr_insn_set != NULL_RTX
3922 && check_and_process_move (&change_p, &sec_mem_p))
3923 return change_p;
3925 try_swapped:
3927 reused_alternative_num = check_only_p ? LRA_UNKNOWN_ALT : curr_id->used_insn_alternative;
3928 if (lra_dump_file != NULL && reused_alternative_num >= 0)
3929 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
3930 reused_alternative_num, INSN_UID (curr_insn));
3932 if (process_alt_operands (reused_alternative_num))
3933 alt_p = true;
3935 if (check_only_p)
3936 return ! alt_p || best_losers != 0;
3938 /* If insn is commutative (it's safe to exchange a certain pair of
3939 operands) then we need to try each alternative twice, the second
3940 time matching those two operands as if we had exchanged them. To
3941 do this, really exchange them in operands.
3943 If we have just tried the alternatives the second time, return
3944 operands to normal and drop through. */
3946 if (reused_alternative_num < 0 && commutative >= 0)
3948 curr_swapped = !curr_swapped;
3949 if (curr_swapped)
3951 swap_operands (commutative);
3952 goto try_swapped;
3954 else
3955 swap_operands (commutative);
3958 if (! alt_p && ! sec_mem_p)
3960 /* No alternative works with reloads?? */
3961 if (INSN_CODE (curr_insn) >= 0)
3962 fatal_insn ("unable to generate reloads for:", curr_insn);
3963 error_for_asm (curr_insn,
3964 "inconsistent operand constraints in an %<asm%>");
3965 lra_asm_error_p = true;
3966 /* Avoid further trouble with this insn. Don't generate use
3967 pattern here as we could use the insn SP offset. */
3968 lra_set_insn_deleted (curr_insn);
3969 return true;
3972 /* If the best alternative is with operands 1 and 2 swapped, swap
3973 them. Update the operand numbers of any reloads already
3974 pushed. */
3976 if (goal_alt_swapped)
3978 if (lra_dump_file != NULL)
3979 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
3980 INSN_UID (curr_insn));
3982 /* Swap the duplicates too. */
3983 swap_operands (commutative);
3984 change_p = true;
3987 /* Some targets' TARGET_SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3988 too conservatively. So we use the secondary memory only if there
3989 is no any alternative without reloads. */
3990 use_sec_mem_p = false;
3991 if (! alt_p)
3992 use_sec_mem_p = true;
3993 else if (sec_mem_p)
3995 for (i = 0; i < n_operands; i++)
3996 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
3997 break;
3998 use_sec_mem_p = i < n_operands;
4001 if (use_sec_mem_p)
4003 int in = -1, out = -1;
4004 rtx new_reg, src, dest, rld;
4005 machine_mode sec_mode, rld_mode;
4007 lra_assert (curr_insn_set != NULL_RTX && sec_mem_p);
4008 dest = SET_DEST (curr_insn_set);
4009 src = SET_SRC (curr_insn_set);
4010 for (i = 0; i < n_operands; i++)
4011 if (*curr_id->operand_loc[i] == dest)
4012 out = i;
4013 else if (*curr_id->operand_loc[i] == src)
4014 in = i;
4015 for (i = 0; i < curr_static_id->n_dups; i++)
4016 if (out < 0 && *curr_id->dup_loc[i] == dest)
4017 out = curr_static_id->dup_num[i];
4018 else if (in < 0 && *curr_id->dup_loc[i] == src)
4019 in = curr_static_id->dup_num[i];
4020 lra_assert (out >= 0 && in >= 0
4021 && curr_static_id->operand[out].type == OP_OUT
4022 && curr_static_id->operand[in].type == OP_IN);
4023 rld = partial_subreg_p (GET_MODE (src), GET_MODE (dest)) ? src : dest;
4024 rld_mode = GET_MODE (rld);
4025 sec_mode = targetm.secondary_memory_needed_mode (rld_mode);
4026 new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
4027 NO_REGS, "secondary");
4028 /* If the mode is changed, it should be wider. */
4029 lra_assert (!partial_subreg_p (sec_mode, rld_mode));
4030 if (sec_mode != rld_mode)
4032 /* If the target says specifically to use another mode for
4033 secondary memory moves we cannot reuse the original
4034 insn. */
4035 after = emit_spill_move (false, new_reg, dest);
4036 lra_process_new_insns (curr_insn, NULL, after,
4037 "Inserting the sec. move");
4038 /* We may have non null BEFORE here (e.g. after address
4039 processing. */
4040 push_to_sequence (before);
4041 before = emit_spill_move (true, new_reg, src);
4042 emit_insn (before);
4043 before = get_insns ();
4044 end_sequence ();
4045 lra_process_new_insns (curr_insn, before, NULL, "Changing on");
4046 lra_set_insn_deleted (curr_insn);
4048 else if (dest == rld)
4050 *curr_id->operand_loc[out] = new_reg;
4051 lra_update_dup (curr_id, out);
4052 after = emit_spill_move (false, new_reg, dest);
4053 lra_process_new_insns (curr_insn, NULL, after,
4054 "Inserting the sec. move");
4056 else
4058 *curr_id->operand_loc[in] = new_reg;
4059 lra_update_dup (curr_id, in);
4060 /* See comments above. */
4061 push_to_sequence (before);
4062 before = emit_spill_move (true, new_reg, src);
4063 emit_insn (before);
4064 before = get_insns ();
4065 end_sequence ();
4066 lra_process_new_insns (curr_insn, before, NULL,
4067 "Inserting the sec. move");
4069 lra_update_insn_regno_info (curr_insn);
4070 return true;
4073 lra_assert (goal_alt_number >= 0);
4074 lra_set_used_insn_alternative (curr_insn, goal_alt_number);
4076 if (lra_dump_file != NULL)
4078 const char *p;
4080 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
4081 goal_alt_number, INSN_UID (curr_insn));
4082 for (i = 0; i < n_operands; i++)
4084 p = (curr_static_id->operand_alternative
4085 [goal_alt_number * n_operands + i].constraint);
4086 if (*p == '\0')
4087 continue;
4088 fprintf (lra_dump_file, " (%d) ", i);
4089 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
4090 fputc (*p, lra_dump_file);
4092 if (INSN_CODE (curr_insn) >= 0
4093 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
4094 fprintf (lra_dump_file, " {%s}", p);
4095 if (maybe_ne (curr_id->sp_offset, 0))
4097 fprintf (lra_dump_file, " (sp_off=");
4098 print_dec (curr_id->sp_offset, lra_dump_file);
4099 fprintf (lra_dump_file, ")");
4101 fprintf (lra_dump_file, "\n");
4104 /* Right now, for any pair of operands I and J that are required to
4105 match, with J < I, goal_alt_matches[I] is J. Add I to
4106 goal_alt_matched[J]. */
4108 for (i = 0; i < n_operands; i++)
4109 if ((j = goal_alt_matches[i]) >= 0)
4111 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
4113 /* We allow matching one output operand and several input
4114 operands. */
4115 lra_assert (k == 0
4116 || (curr_static_id->operand[j].type == OP_OUT
4117 && curr_static_id->operand[i].type == OP_IN
4118 && (curr_static_id->operand
4119 [goal_alt_matched[j][0]].type == OP_IN)));
4120 goal_alt_matched[j][k] = i;
4121 goal_alt_matched[j][k + 1] = -1;
4124 for (i = 0; i < n_operands; i++)
4125 goal_alt_win[i] |= goal_alt_match_win[i];
4127 /* Any constants that aren't allowed and can't be reloaded into
4128 registers are here changed into memory references. */
4129 for (i = 0; i < n_operands; i++)
4130 if (goal_alt_win[i])
4132 int regno;
4133 enum reg_class new_class;
4134 rtx reg = *curr_id->operand_loc[i];
4136 if (GET_CODE (reg) == SUBREG)
4137 reg = SUBREG_REG (reg);
4139 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
4141 bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
4143 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
4145 lra_assert (ok_p);
4146 lra_change_class (regno, new_class, " Change to", true);
4150 else
4152 const char *constraint;
4153 char c;
4154 rtx op = *curr_id->operand_loc[i];
4155 rtx subreg = NULL_RTX;
4156 machine_mode mode = curr_operand_mode[i];
4158 if (GET_CODE (op) == SUBREG)
4160 subreg = op;
4161 op = SUBREG_REG (op);
4162 mode = GET_MODE (op);
4165 if (CONST_POOL_OK_P (mode, op)
4166 && ((targetm.preferred_reload_class
4167 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
4168 || no_input_reloads_p))
4170 rtx tem = force_const_mem (mode, op);
4172 change_p = true;
4173 if (subreg != NULL_RTX)
4174 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
4176 *curr_id->operand_loc[i] = tem;
4177 lra_update_dup (curr_id, i);
4178 process_address (i, false, &before, &after);
4180 /* If the alternative accepts constant pool refs directly
4181 there will be no reload needed at all. */
4182 if (subreg != NULL_RTX)
4183 continue;
4184 /* Skip alternatives before the one requested. */
4185 constraint = (curr_static_id->operand_alternative
4186 [goal_alt_number * n_operands + i].constraint);
4187 for (;
4188 (c = *constraint) && c != ',' && c != '#';
4189 constraint += CONSTRAINT_LEN (c, constraint))
4191 enum constraint_num cn = lookup_constraint (constraint);
4192 if ((insn_extra_memory_constraint (cn)
4193 || insn_extra_special_memory_constraint (cn))
4194 && satisfies_memory_constraint_p (tem, cn))
4195 break;
4197 if (c == '\0' || c == ',' || c == '#')
4198 continue;
4200 goal_alt_win[i] = true;
4204 n_outputs = 0;
4205 outputs[0] = -1;
4206 for (i = 0; i < n_operands; i++)
4208 int regno;
4209 bool optional_p = false;
4210 rtx old, new_reg;
4211 rtx op = *curr_id->operand_loc[i];
4213 if (goal_alt_win[i])
4215 if (goal_alt[i] == NO_REGS
4216 && REG_P (op)
4217 /* When we assign NO_REGS it means that we will not
4218 assign a hard register to the scratch pseudo by
4219 assigment pass and the scratch pseudo will be
4220 spilled. Spilled scratch pseudos are transformed
4221 back to scratches at the LRA end. */
4222 && lra_former_scratch_operand_p (curr_insn, i)
4223 && lra_former_scratch_p (REGNO (op)))
4225 int regno = REGNO (op);
4226 lra_change_class (regno, NO_REGS, " Change to", true);
4227 if (lra_get_regno_hard_regno (regno) >= 0)
4228 /* We don't have to mark all insn affected by the
4229 spilled pseudo as there is only one such insn, the
4230 current one. */
4231 reg_renumber[regno] = -1;
4232 lra_assert (bitmap_single_bit_set_p
4233 (&lra_reg_info[REGNO (op)].insn_bitmap));
4235 /* We can do an optional reload. If the pseudo got a hard
4236 reg, we might improve the code through inheritance. If
4237 it does not get a hard register we coalesce memory/memory
4238 moves later. Ignore move insns to avoid cycling. */
4239 if (! lra_simple_p
4240 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
4241 && goal_alt[i] != NO_REGS && REG_P (op)
4242 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4243 && regno < new_regno_start
4244 && ! lra_former_scratch_p (regno)
4245 && reg_renumber[regno] < 0
4246 /* Check that the optional reload pseudo will be able to
4247 hold given mode value. */
4248 && ! (prohibited_class_reg_set_mode_p
4249 (goal_alt[i], reg_class_contents[goal_alt[i]],
4250 PSEUDO_REGNO_MODE (regno)))
4251 && (curr_insn_set == NULL_RTX
4252 || !((REG_P (SET_SRC (curr_insn_set))
4253 || MEM_P (SET_SRC (curr_insn_set))
4254 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
4255 && (REG_P (SET_DEST (curr_insn_set))
4256 || MEM_P (SET_DEST (curr_insn_set))
4257 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
4258 optional_p = true;
4259 else
4260 continue;
4263 /* Operands that match previous ones have already been handled. */
4264 if (goal_alt_matches[i] >= 0)
4265 continue;
4267 /* We should not have an operand with a non-offsettable address
4268 appearing where an offsettable address will do. It also may
4269 be a case when the address should be special in other words
4270 not a general one (e.g. it needs no index reg). */
4271 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
4273 enum reg_class rclass;
4274 rtx *loc = &XEXP (op, 0);
4275 enum rtx_code code = GET_CODE (*loc);
4277 push_to_sequence (before);
4278 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
4279 MEM, SCRATCH);
4280 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
4281 new_reg = emit_inc (rclass, *loc, *loc,
4282 /* This value does not matter for MODIFY. */
4283 GET_MODE_SIZE (GET_MODE (op)));
4284 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, FALSE,
4285 "offsetable address", &new_reg))
4287 rtx addr = *loc;
4288 enum rtx_code code = GET_CODE (addr);
4290 if (code == AND && CONST_INT_P (XEXP (addr, 1)))
4291 /* (and ... (const_int -X)) is used to align to X bytes. */
4292 addr = XEXP (*loc, 0);
4293 lra_emit_move (new_reg, addr);
4294 if (addr != *loc)
4295 emit_move_insn (new_reg, gen_rtx_AND (GET_MODE (new_reg), new_reg, XEXP (*loc, 1)));
4297 before = get_insns ();
4298 end_sequence ();
4299 *loc = new_reg;
4300 lra_update_dup (curr_id, i);
4302 else if (goal_alt_matched[i][0] == -1)
4304 machine_mode mode;
4305 rtx reg, *loc;
4306 int hard_regno;
4307 enum op_type type = curr_static_id->operand[i].type;
4309 loc = curr_id->operand_loc[i];
4310 mode = curr_operand_mode[i];
4311 if (GET_CODE (*loc) == SUBREG)
4313 reg = SUBREG_REG (*loc);
4314 poly_int64 byte = SUBREG_BYTE (*loc);
4315 if (REG_P (reg)
4316 /* Strict_low_part requires reloading the register and not
4317 just the subreg. Likewise for a strict subreg no wider
4318 than a word for WORD_REGISTER_OPERATIONS targets. */
4319 && (curr_static_id->operand[i].strict_low
4320 || (!paradoxical_subreg_p (mode, GET_MODE (reg))
4321 && (hard_regno
4322 = get_try_hard_regno (REGNO (reg))) >= 0
4323 && (simplify_subreg_regno
4324 (hard_regno,
4325 GET_MODE (reg), byte, mode) < 0)
4326 && (goal_alt[i] == NO_REGS
4327 || (simplify_subreg_regno
4328 (ira_class_hard_regs[goal_alt[i]][0],
4329 GET_MODE (reg), byte, mode) >= 0)))
4330 || (partial_subreg_p (mode, GET_MODE (reg))
4331 && known_le (GET_MODE_SIZE (GET_MODE (reg)),
4332 UNITS_PER_WORD)
4333 && WORD_REGISTER_OPERATIONS)))
4335 /* An OP_INOUT is required when reloading a subreg of a
4336 mode wider than a word to ensure that data beyond the
4337 word being reloaded is preserved. Also automatically
4338 ensure that strict_low_part reloads are made into
4339 OP_INOUT which should already be true from the backend
4340 constraints. */
4341 if (type == OP_OUT
4342 && (curr_static_id->operand[i].strict_low
4343 || read_modify_subreg_p (*loc)))
4344 type = OP_INOUT;
4345 loc = &SUBREG_REG (*loc);
4346 mode = GET_MODE (*loc);
4349 old = *loc;
4350 if (get_reload_reg (type, mode, old, goal_alt[i],
4351 loc != curr_id->operand_loc[i], "", &new_reg)
4352 && type != OP_OUT)
4354 push_to_sequence (before);
4355 lra_emit_move (new_reg, old);
4356 before = get_insns ();
4357 end_sequence ();
4359 *loc = new_reg;
4360 if (type != OP_IN
4361 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
4363 start_sequence ();
4364 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
4365 emit_insn (after);
4366 after = get_insns ();
4367 end_sequence ();
4368 *loc = new_reg;
4370 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
4371 if (goal_alt_dont_inherit_ops[j] == i)
4373 lra_set_regno_unique_value (REGNO (new_reg));
4374 break;
4376 lra_update_dup (curr_id, i);
4378 else if (curr_static_id->operand[i].type == OP_IN
4379 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4380 == OP_OUT
4381 || (curr_static_id->operand[goal_alt_matched[i][0]].type
4382 == OP_INOUT
4383 && (operands_match_p
4384 (*curr_id->operand_loc[i],
4385 *curr_id->operand_loc[goal_alt_matched[i][0]],
4386 -1)))))
4388 /* generate reloads for input and matched outputs. */
4389 match_inputs[0] = i;
4390 match_inputs[1] = -1;
4391 match_reload (goal_alt_matched[i][0], match_inputs, outputs,
4392 goal_alt[i], &before, &after,
4393 curr_static_id->operand_alternative
4394 [goal_alt_number * n_operands + goal_alt_matched[i][0]]
4395 .earlyclobber);
4397 else if ((curr_static_id->operand[i].type == OP_OUT
4398 || (curr_static_id->operand[i].type == OP_INOUT
4399 && (operands_match_p
4400 (*curr_id->operand_loc[i],
4401 *curr_id->operand_loc[goal_alt_matched[i][0]],
4402 -1))))
4403 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4404 == OP_IN))
4405 /* Generate reloads for output and matched inputs. */
4406 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i], &before,
4407 &after, curr_static_id->operand_alternative
4408 [goal_alt_number * n_operands + i].earlyclobber);
4409 else if (curr_static_id->operand[i].type == OP_IN
4410 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4411 == OP_IN))
4413 /* Generate reloads for matched inputs. */
4414 match_inputs[0] = i;
4415 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
4416 match_inputs[j + 1] = k;
4417 match_inputs[j + 1] = -1;
4418 match_reload (-1, match_inputs, outputs, goal_alt[i], &before,
4419 &after, false);
4421 else
4422 /* We must generate code in any case when function
4423 process_alt_operands decides that it is possible. */
4424 gcc_unreachable ();
4426 /* Memorise processed outputs so that output remaining to be processed
4427 can avoid using the same register value (see match_reload). */
4428 if (curr_static_id->operand[i].type == OP_OUT)
4430 outputs[n_outputs++] = i;
4431 outputs[n_outputs] = -1;
4434 if (optional_p)
4436 rtx reg = op;
4438 lra_assert (REG_P (reg));
4439 regno = REGNO (reg);
4440 op = *curr_id->operand_loc[i]; /* Substitution. */
4441 if (GET_CODE (op) == SUBREG)
4442 op = SUBREG_REG (op);
4443 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
4444 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
4445 lra_reg_info[REGNO (op)].restore_rtx = reg;
4446 if (lra_dump_file != NULL)
4447 fprintf (lra_dump_file,
4448 " Making reload reg %d for reg %d optional\n",
4449 REGNO (op), regno);
4452 if (before != NULL_RTX || after != NULL_RTX
4453 || max_regno_before != max_reg_num ())
4454 change_p = true;
4455 if (change_p)
4457 lra_update_operator_dups (curr_id);
4458 /* Something changes -- process the insn. */
4459 lra_update_insn_regno_info (curr_insn);
4461 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
4462 return change_p;
4465 /* Return true if INSN satisfies all constraints. In other words, no
4466 reload insns are needed. */
4467 bool
4468 lra_constrain_insn (rtx_insn *insn)
4470 int saved_new_regno_start = new_regno_start;
4471 int saved_new_insn_uid_start = new_insn_uid_start;
4472 bool change_p;
4474 curr_insn = insn;
4475 curr_id = lra_get_insn_recog_data (curr_insn);
4476 curr_static_id = curr_id->insn_static_data;
4477 new_insn_uid_start = get_max_uid ();
4478 new_regno_start = max_reg_num ();
4479 change_p = curr_insn_transform (true);
4480 new_regno_start = saved_new_regno_start;
4481 new_insn_uid_start = saved_new_insn_uid_start;
4482 return ! change_p;
4485 /* Return true if X is in LIST. */
4486 static bool
4487 in_list_p (rtx x, rtx list)
4489 for (; list != NULL_RTX; list = XEXP (list, 1))
4490 if (XEXP (list, 0) == x)
4491 return true;
4492 return false;
4495 /* Return true if X contains an allocatable hard register (if
4496 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4497 static bool
4498 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
4500 int i, j;
4501 const char *fmt;
4502 enum rtx_code code;
4504 code = GET_CODE (x);
4505 if (REG_P (x))
4507 int regno = REGNO (x);
4508 HARD_REG_SET alloc_regs;
4510 if (hard_reg_p)
4512 if (regno >= FIRST_PSEUDO_REGISTER)
4513 regno = lra_get_regno_hard_regno (regno);
4514 if (regno < 0)
4515 return false;
4516 COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
4517 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
4519 else
4521 if (regno < FIRST_PSEUDO_REGISTER)
4522 return false;
4523 if (! spilled_p)
4524 return true;
4525 return lra_get_regno_hard_regno (regno) < 0;
4528 fmt = GET_RTX_FORMAT (code);
4529 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4531 if (fmt[i] == 'e')
4533 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
4534 return true;
4536 else if (fmt[i] == 'E')
4538 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4539 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
4540 return true;
4543 return false;
4546 /* Process all regs in location *LOC and change them on equivalent
4547 substitution. Return true if any change was done. */
4548 static bool
4549 loc_equivalence_change_p (rtx *loc)
4551 rtx subst, reg, x = *loc;
4552 bool result = false;
4553 enum rtx_code code = GET_CODE (x);
4554 const char *fmt;
4555 int i, j;
4557 if (code == SUBREG)
4559 reg = SUBREG_REG (x);
4560 if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
4561 && GET_MODE (subst) == VOIDmode)
4563 /* We cannot reload debug location. Simplify subreg here
4564 while we know the inner mode. */
4565 *loc = simplify_gen_subreg (GET_MODE (x), subst,
4566 GET_MODE (reg), SUBREG_BYTE (x));
4567 return true;
4570 if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
4572 *loc = subst;
4573 return true;
4576 /* Scan all the operand sub-expressions. */
4577 fmt = GET_RTX_FORMAT (code);
4578 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4580 if (fmt[i] == 'e')
4581 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
4582 else if (fmt[i] == 'E')
4583 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4584 result
4585 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
4587 return result;
4590 /* Similar to loc_equivalence_change_p, but for use as
4591 simplify_replace_fn_rtx callback. DATA is insn for which the
4592 elimination is done. If it null we don't do the elimination. */
4593 static rtx
4594 loc_equivalence_callback (rtx loc, const_rtx, void *data)
4596 if (!REG_P (loc))
4597 return NULL_RTX;
4599 rtx subst = (data == NULL
4600 ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
4601 if (subst != loc)
4602 return subst;
4604 return NULL_RTX;
4607 /* Maximum number of generated reload insns per an insn. It is for
4608 preventing this pass cycling in a bug case. */
4609 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4611 /* The current iteration number of this LRA pass. */
4612 int lra_constraint_iter;
4614 /* True if we substituted equiv which needs checking register
4615 allocation correctness because the equivalent value contains
4616 allocatable hard registers or when we restore multi-register
4617 pseudo. */
4618 bool lra_risky_transformations_p;
4620 /* Return true if REGNO is referenced in more than one block. */
4621 static bool
4622 multi_block_pseudo_p (int regno)
4624 basic_block bb = NULL;
4625 unsigned int uid;
4626 bitmap_iterator bi;
4628 if (regno < FIRST_PSEUDO_REGISTER)
4629 return false;
4631 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
4632 if (bb == NULL)
4633 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
4634 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
4635 return true;
4636 return false;
4639 /* Return true if LIST contains a deleted insn. */
4640 static bool
4641 contains_deleted_insn_p (rtx_insn_list *list)
4643 for (; list != NULL_RTX; list = list->next ())
4644 if (NOTE_P (list->insn ())
4645 && NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
4646 return true;
4647 return false;
4650 /* Return true if X contains a pseudo dying in INSN. */
4651 static bool
4652 dead_pseudo_p (rtx x, rtx_insn *insn)
4654 int i, j;
4655 const char *fmt;
4656 enum rtx_code code;
4658 if (REG_P (x))
4659 return (insn != NULL_RTX
4660 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
4661 code = GET_CODE (x);
4662 fmt = GET_RTX_FORMAT (code);
4663 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4665 if (fmt[i] == 'e')
4667 if (dead_pseudo_p (XEXP (x, i), insn))
4668 return true;
4670 else if (fmt[i] == 'E')
4672 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4673 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
4674 return true;
4677 return false;
4680 /* Return true if INSN contains a dying pseudo in INSN right hand
4681 side. */
4682 static bool
4683 insn_rhs_dead_pseudo_p (rtx_insn *insn)
4685 rtx set = single_set (insn);
4687 gcc_assert (set != NULL);
4688 return dead_pseudo_p (SET_SRC (set), insn);
4691 /* Return true if any init insn of REGNO contains a dying pseudo in
4692 insn right hand side. */
4693 static bool
4694 init_insn_rhs_dead_pseudo_p (int regno)
4696 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4698 if (insns == NULL)
4699 return false;
4700 for (; insns != NULL_RTX; insns = insns->next ())
4701 if (insn_rhs_dead_pseudo_p (insns->insn ()))
4702 return true;
4703 return false;
4706 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4707 reverse only if we have one init insn with given REGNO as a
4708 source. */
4709 static bool
4710 reverse_equiv_p (int regno)
4712 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4713 rtx set;
4715 if (insns == NULL)
4716 return false;
4717 if (! INSN_P (insns->insn ())
4718 || insns->next () != NULL)
4719 return false;
4720 if ((set = single_set (insns->insn ())) == NULL_RTX)
4721 return false;
4722 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
4725 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4726 call this function only for non-reverse equivalence. */
4727 static bool
4728 contains_reloaded_insn_p (int regno)
4730 rtx set;
4731 rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
4733 for (; list != NULL; list = list->next ())
4734 if ((set = single_set (list->insn ())) == NULL_RTX
4735 || ! REG_P (SET_DEST (set))
4736 || (int) REGNO (SET_DEST (set)) != regno)
4737 return true;
4738 return false;
4741 /* Entry function of LRA constraint pass. Return true if the
4742 constraint pass did change the code. */
4743 bool
4744 lra_constraints (bool first_p)
4746 bool changed_p;
4747 int i, hard_regno, new_insns_num;
4748 unsigned int min_len, new_min_len, uid;
4749 rtx set, x, reg, dest_reg;
4750 basic_block last_bb;
4751 bitmap_iterator bi;
4753 lra_constraint_iter++;
4754 if (lra_dump_file != NULL)
4755 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
4756 lra_constraint_iter);
4757 changed_p = false;
4758 if (pic_offset_table_rtx
4759 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
4760 lra_risky_transformations_p = true;
4761 else
4762 /* On the first iteration we should check IRA assignment
4763 correctness. In rare cases, the assignments can be wrong as
4764 early clobbers operands are ignored in IRA or usages of
4765 paradoxical sub-registers are not taken into account by
4766 IRA. */
4767 lra_risky_transformations_p = first_p;
4768 new_insn_uid_start = get_max_uid ();
4769 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
4770 /* Mark used hard regs for target stack size calulations. */
4771 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4772 if (lra_reg_info[i].nrefs != 0
4773 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4775 int j, nregs;
4777 nregs = hard_regno_nregs (hard_regno, lra_reg_info[i].biggest_mode);
4778 for (j = 0; j < nregs; j++)
4779 df_set_regs_ever_live (hard_regno + j, true);
4781 /* Do elimination before the equivalence processing as we can spill
4782 some pseudos during elimination. */
4783 lra_eliminate (false, first_p);
4784 auto_bitmap equiv_insn_bitmap (&reg_obstack);
4785 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4786 if (lra_reg_info[i].nrefs != 0)
4788 ira_reg_equiv[i].profitable_p = true;
4789 reg = regno_reg_rtx[i];
4790 if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
4792 bool pseudo_p = contains_reg_p (x, false, false);
4794 /* After RTL transformation, we cannot guarantee that
4795 pseudo in the substitution was not reloaded which might
4796 make equivalence invalid. For example, in reverse
4797 equiv of p0
4799 p0 <- ...
4801 equiv_mem <- p0
4803 the memory address register was reloaded before the 2nd
4804 insn. */
4805 if ((! first_p && pseudo_p)
4806 /* We don't use DF for compilation speed sake. So it
4807 is problematic to update live info when we use an
4808 equivalence containing pseudos in more than one
4809 BB. */
4810 || (pseudo_p && multi_block_pseudo_p (i))
4811 /* If an init insn was deleted for some reason, cancel
4812 the equiv. We could update the equiv insns after
4813 transformations including an equiv insn deletion
4814 but it is not worthy as such cases are extremely
4815 rare. */
4816 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
4817 /* If it is not a reverse equivalence, we check that a
4818 pseudo in rhs of the init insn is not dying in the
4819 insn. Otherwise, the live info at the beginning of
4820 the corresponding BB might be wrong after we
4821 removed the insn. When the equiv can be a
4822 constant, the right hand side of the init insn can
4823 be a pseudo. */
4824 || (! reverse_equiv_p (i)
4825 && (init_insn_rhs_dead_pseudo_p (i)
4826 /* If we reloaded the pseudo in an equivalence
4827 init insn, we cannot remove the equiv init
4828 insns and the init insns might write into
4829 const memory in this case. */
4830 || contains_reloaded_insn_p (i)))
4831 /* Prevent access beyond equivalent memory for
4832 paradoxical subregs. */
4833 || (MEM_P (x)
4834 && maybe_gt (GET_MODE_SIZE (lra_reg_info[i].biggest_mode),
4835 GET_MODE_SIZE (GET_MODE (x))))
4836 || (pic_offset_table_rtx
4837 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
4838 && (targetm.preferred_reload_class
4839 (x, lra_get_allocno_class (i)) == NO_REGS))
4840 || contains_symbol_ref_p (x))))
4841 ira_reg_equiv[i].defined_p = false;
4842 if (contains_reg_p (x, false, true))
4843 ira_reg_equiv[i].profitable_p = false;
4844 if (get_equiv (reg) != reg)
4845 bitmap_ior_into (equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
4848 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4849 update_equiv (i);
4850 /* We should add all insns containing pseudos which should be
4851 substituted by their equivalences. */
4852 EXECUTE_IF_SET_IN_BITMAP (equiv_insn_bitmap, 0, uid, bi)
4853 lra_push_insn_by_uid (uid);
4854 min_len = lra_insn_stack_length ();
4855 new_insns_num = 0;
4856 last_bb = NULL;
4857 changed_p = false;
4858 while ((new_min_len = lra_insn_stack_length ()) != 0)
4860 curr_insn = lra_pop_insn ();
4861 --new_min_len;
4862 curr_bb = BLOCK_FOR_INSN (curr_insn);
4863 if (curr_bb != last_bb)
4865 last_bb = curr_bb;
4866 bb_reload_num = lra_curr_reload_num;
4868 if (min_len > new_min_len)
4870 min_len = new_min_len;
4871 new_insns_num = 0;
4873 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
4874 internal_error
4875 ("Max. number of generated reload insns per insn is achieved (%d)\n",
4876 MAX_RELOAD_INSNS_NUMBER);
4877 new_insns_num++;
4878 if (DEBUG_INSN_P (curr_insn))
4880 /* We need to check equivalence in debug insn and change
4881 pseudo to the equivalent value if necessary. */
4882 curr_id = lra_get_insn_recog_data (curr_insn);
4883 if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn)))
4885 rtx old = *curr_id->operand_loc[0];
4886 *curr_id->operand_loc[0]
4887 = simplify_replace_fn_rtx (old, NULL_RTX,
4888 loc_equivalence_callback, curr_insn);
4889 if (old != *curr_id->operand_loc[0])
4891 lra_update_insn_regno_info (curr_insn);
4892 changed_p = true;
4896 else if (INSN_P (curr_insn))
4898 if ((set = single_set (curr_insn)) != NULL_RTX)
4900 dest_reg = SET_DEST (set);
4901 /* The equivalence pseudo could be set up as SUBREG in a
4902 case when it is a call restore insn in a mode
4903 different from the pseudo mode. */
4904 if (GET_CODE (dest_reg) == SUBREG)
4905 dest_reg = SUBREG_REG (dest_reg);
4906 if ((REG_P (dest_reg)
4907 && (x = get_equiv (dest_reg)) != dest_reg
4908 /* Remove insns which set up a pseudo whose value
4909 cannot be changed. Such insns might be not in
4910 init_insns because we don't update equiv data
4911 during insn transformations.
4913 As an example, let suppose that a pseudo got
4914 hard register and on the 1st pass was not
4915 changed to equivalent constant. We generate an
4916 additional insn setting up the pseudo because of
4917 secondary memory movement. Then the pseudo is
4918 spilled and we use the equiv constant. In this
4919 case we should remove the additional insn and
4920 this insn is not init_insns list. */
4921 && (! MEM_P (x) || MEM_READONLY_P (x)
4922 /* Check that this is actually an insn setting
4923 up the equivalence. */
4924 || in_list_p (curr_insn,
4925 ira_reg_equiv
4926 [REGNO (dest_reg)].init_insns)))
4927 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
4928 && in_list_p (curr_insn,
4929 ira_reg_equiv
4930 [REGNO (SET_SRC (set))].init_insns)))
4932 /* This is equiv init insn of pseudo which did not get a
4933 hard register -- remove the insn. */
4934 if (lra_dump_file != NULL)
4936 fprintf (lra_dump_file,
4937 " Removing equiv init insn %i (freq=%d)\n",
4938 INSN_UID (curr_insn),
4939 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
4940 dump_insn_slim (lra_dump_file, curr_insn);
4942 if (contains_reg_p (x, true, false))
4943 lra_risky_transformations_p = true;
4944 lra_set_insn_deleted (curr_insn);
4945 continue;
4948 curr_id = lra_get_insn_recog_data (curr_insn);
4949 curr_static_id = curr_id->insn_static_data;
4950 init_curr_insn_input_reloads ();
4951 init_curr_operand_mode ();
4952 if (curr_insn_transform (false))
4953 changed_p = true;
4954 /* Check non-transformed insns too for equiv change as USE
4955 or CLOBBER don't need reloads but can contain pseudos
4956 being changed on their equivalences. */
4957 else if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn))
4958 && loc_equivalence_change_p (&PATTERN (curr_insn)))
4960 lra_update_insn_regno_info (curr_insn);
4961 changed_p = true;
4966 /* If we used a new hard regno, changed_p should be true because the
4967 hard reg is assigned to a new pseudo. */
4968 if (flag_checking && !changed_p)
4970 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4971 if (lra_reg_info[i].nrefs != 0
4972 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4974 int j, nregs = hard_regno_nregs (hard_regno,
4975 PSEUDO_REGNO_MODE (i));
4977 for (j = 0; j < nregs; j++)
4978 lra_assert (df_regs_ever_live_p (hard_regno + j));
4981 return changed_p;
4984 static void initiate_invariants (void);
4985 static void finish_invariants (void);
4987 /* Initiate the LRA constraint pass. It is done once per
4988 function. */
4989 void
4990 lra_constraints_init (void)
4992 initiate_invariants ();
4995 /* Finalize the LRA constraint pass. It is done once per
4996 function. */
4997 void
4998 lra_constraints_finish (void)
5000 finish_invariants ();
5005 /* Structure describes invariants for ineheritance. */
5006 struct lra_invariant
5008 /* The order number of the invariant. */
5009 int num;
5010 /* The invariant RTX. */
5011 rtx invariant_rtx;
5012 /* The origin insn of the invariant. */
5013 rtx_insn *insn;
5016 typedef lra_invariant invariant_t;
5017 typedef invariant_t *invariant_ptr_t;
5018 typedef const invariant_t *const_invariant_ptr_t;
5020 /* Pointer to the inheritance invariants. */
5021 static vec<invariant_ptr_t> invariants;
5023 /* Allocation pool for the invariants. */
5024 static object_allocator<lra_invariant> *invariants_pool;
5026 /* Hash table for the invariants. */
5027 static htab_t invariant_table;
5029 /* Hash function for INVARIANT. */
5030 static hashval_t
5031 invariant_hash (const void *invariant)
5033 rtx inv = ((const_invariant_ptr_t) invariant)->invariant_rtx;
5034 return lra_rtx_hash (inv);
5037 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
5038 static int
5039 invariant_eq_p (const void *invariant1, const void *invariant2)
5041 rtx inv1 = ((const_invariant_ptr_t) invariant1)->invariant_rtx;
5042 rtx inv2 = ((const_invariant_ptr_t) invariant2)->invariant_rtx;
5044 return rtx_equal_p (inv1, inv2);
5047 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
5048 invariant which is in the table. */
5049 static invariant_ptr_t
5050 insert_invariant (rtx invariant_rtx)
5052 void **entry_ptr;
5053 invariant_t invariant;
5054 invariant_ptr_t invariant_ptr;
5056 invariant.invariant_rtx = invariant_rtx;
5057 entry_ptr = htab_find_slot (invariant_table, &invariant, INSERT);
5058 if (*entry_ptr == NULL)
5060 invariant_ptr = invariants_pool->allocate ();
5061 invariant_ptr->invariant_rtx = invariant_rtx;
5062 invariant_ptr->insn = NULL;
5063 invariants.safe_push (invariant_ptr);
5064 *entry_ptr = (void *) invariant_ptr;
5066 return (invariant_ptr_t) *entry_ptr;
5069 /* Initiate the invariant table. */
5070 static void
5071 initiate_invariants (void)
5073 invariants.create (100);
5074 invariants_pool
5075 = new object_allocator<lra_invariant> ("Inheritance invariants");
5076 invariant_table = htab_create (100, invariant_hash, invariant_eq_p, NULL);
5079 /* Finish the invariant table. */
5080 static void
5081 finish_invariants (void)
5083 htab_delete (invariant_table);
5084 delete invariants_pool;
5085 invariants.release ();
5088 /* Make the invariant table empty. */
5089 static void
5090 clear_invariants (void)
5092 htab_empty (invariant_table);
5093 invariants_pool->release ();
5094 invariants.truncate (0);
5099 /* This page contains code to do inheritance/split
5100 transformations. */
5102 /* Number of reloads passed so far in current EBB. */
5103 static int reloads_num;
5105 /* Number of calls passed so far in current EBB. */
5106 static int calls_num;
5108 /* Current reload pseudo check for validity of elements in
5109 USAGE_INSNS. */
5110 static int curr_usage_insns_check;
5112 /* Info about last usage of registers in EBB to do inheritance/split
5113 transformation. Inheritance transformation is done from a spilled
5114 pseudo and split transformations from a hard register or a pseudo
5115 assigned to a hard register. */
5116 struct usage_insns
5118 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5119 value INSNS is valid. The insns is chain of optional debug insns
5120 and a finishing non-debug insn using the corresponding reg. The
5121 value is also used to mark the registers which are set up in the
5122 current insn. The negated insn uid is used for this. */
5123 int check;
5124 /* Value of global reloads_num at the last insn in INSNS. */
5125 int reloads_num;
5126 /* Value of global reloads_nums at the last insn in INSNS. */
5127 int calls_num;
5128 /* It can be true only for splitting. And it means that the restore
5129 insn should be put after insn given by the following member. */
5130 bool after_p;
5131 /* Next insns in the current EBB which use the original reg and the
5132 original reg value is not changed between the current insn and
5133 the next insns. In order words, e.g. for inheritance, if we need
5134 to use the original reg value again in the next insns we can try
5135 to use the value in a hard register from a reload insn of the
5136 current insn. */
5137 rtx insns;
5140 /* Map: regno -> corresponding pseudo usage insns. */
5141 static struct usage_insns *usage_insns;
5143 static void
5144 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
5146 usage_insns[regno].check = curr_usage_insns_check;
5147 usage_insns[regno].insns = insn;
5148 usage_insns[regno].reloads_num = reloads_num;
5149 usage_insns[regno].calls_num = calls_num;
5150 usage_insns[regno].after_p = after_p;
5153 /* The function is used to form list REGNO usages which consists of
5154 optional debug insns finished by a non-debug insn using REGNO.
5155 RELOADS_NUM is current number of reload insns processed so far. */
5156 static void
5157 add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
5159 rtx next_usage_insns;
5161 if (usage_insns[regno].check == curr_usage_insns_check
5162 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
5163 && DEBUG_INSN_P (insn))
5165 /* Check that we did not add the debug insn yet. */
5166 if (next_usage_insns != insn
5167 && (GET_CODE (next_usage_insns) != INSN_LIST
5168 || XEXP (next_usage_insns, 0) != insn))
5169 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
5170 next_usage_insns);
5172 else if (NONDEBUG_INSN_P (insn))
5173 setup_next_usage_insn (regno, insn, reloads_num, false);
5174 else
5175 usage_insns[regno].check = 0;
5178 /* Return first non-debug insn in list USAGE_INSNS. */
5179 static rtx_insn *
5180 skip_usage_debug_insns (rtx usage_insns)
5182 rtx insn;
5184 /* Skip debug insns. */
5185 for (insn = usage_insns;
5186 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
5187 insn = XEXP (insn, 1))
5189 return safe_as_a <rtx_insn *> (insn);
5192 /* Return true if we need secondary memory moves for insn in
5193 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5194 into the insn. */
5195 static bool
5196 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
5197 rtx usage_insns ATTRIBUTE_UNUSED)
5199 rtx_insn *insn;
5200 rtx set, dest;
5201 enum reg_class cl;
5203 if (inher_cl == ALL_REGS
5204 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
5205 return false;
5206 lra_assert (INSN_P (insn));
5207 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
5208 return false;
5209 dest = SET_DEST (set);
5210 if (! REG_P (dest))
5211 return false;
5212 lra_assert (inher_cl != NO_REGS);
5213 cl = get_reg_class (REGNO (dest));
5214 return (cl != NO_REGS && cl != ALL_REGS
5215 && targetm.secondary_memory_needed (GET_MODE (dest), inher_cl, cl));
5218 /* Registers involved in inheritance/split in the current EBB
5219 (inheritance/split pseudos and original registers). */
5220 static bitmap_head check_only_regs;
5222 /* Reload pseudos cannot be involded in invariant inheritance in the
5223 current EBB. */
5224 static bitmap_head invalid_invariant_regs;
5226 /* Do inheritance transformations for insn INSN, which defines (if
5227 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5228 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5229 form as the "insns" field of usage_insns. Return true if we
5230 succeed in such transformation.
5232 The transformations look like:
5234 p <- ... i <- ...
5235 ... p <- i (new insn)
5236 ... =>
5237 <- ... p ... <- ... i ...
5239 ... i <- p (new insn)
5240 <- ... p ... <- ... i ...
5241 ... =>
5242 <- ... p ... <- ... i ...
5243 where p is a spilled original pseudo and i is a new inheritance pseudo.
5246 The inheritance pseudo has the smallest class of two classes CL and
5247 class of ORIGINAL REGNO. */
5248 static bool
5249 inherit_reload_reg (bool def_p, int original_regno,
5250 enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
5252 if (optimize_function_for_size_p (cfun))
5253 return false;
5255 enum reg_class rclass = lra_get_allocno_class (original_regno);
5256 rtx original_reg = regno_reg_rtx[original_regno];
5257 rtx new_reg, usage_insn;
5258 rtx_insn *new_insns;
5260 lra_assert (! usage_insns[original_regno].after_p);
5261 if (lra_dump_file != NULL)
5262 fprintf (lra_dump_file,
5263 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5264 if (! ira_reg_classes_intersect_p[cl][rclass])
5266 if (lra_dump_file != NULL)
5268 fprintf (lra_dump_file,
5269 " Rejecting inheritance for %d "
5270 "because of disjoint classes %s and %s\n",
5271 original_regno, reg_class_names[cl],
5272 reg_class_names[rclass]);
5273 fprintf (lra_dump_file,
5274 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5276 return false;
5278 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
5279 /* We don't use a subset of two classes because it can be
5280 NO_REGS. This transformation is still profitable in most
5281 cases even if the classes are not intersected as register
5282 move is probably cheaper than a memory load. */
5283 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
5285 if (lra_dump_file != NULL)
5286 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
5287 reg_class_names[cl], reg_class_names[rclass]);
5289 rclass = cl;
5291 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
5293 /* Reject inheritance resulting in secondary memory moves.
5294 Otherwise, there is a danger in LRA cycling. Also such
5295 transformation will be unprofitable. */
5296 if (lra_dump_file != NULL)
5298 rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
5299 rtx set = single_set (insn);
5301 lra_assert (set != NULL_RTX);
5303 rtx dest = SET_DEST (set);
5305 lra_assert (REG_P (dest));
5306 fprintf (lra_dump_file,
5307 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5308 "as secondary mem is needed\n",
5309 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
5310 original_regno, reg_class_names[rclass]);
5311 fprintf (lra_dump_file,
5312 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5314 return false;
5316 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
5317 rclass, "inheritance");
5318 start_sequence ();
5319 if (def_p)
5320 lra_emit_move (original_reg, new_reg);
5321 else
5322 lra_emit_move (new_reg, original_reg);
5323 new_insns = get_insns ();
5324 end_sequence ();
5325 if (NEXT_INSN (new_insns) != NULL_RTX)
5327 if (lra_dump_file != NULL)
5329 fprintf (lra_dump_file,
5330 " Rejecting inheritance %d->%d "
5331 "as it results in 2 or more insns:\n",
5332 original_regno, REGNO (new_reg));
5333 dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
5334 fprintf (lra_dump_file,
5335 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5337 return false;
5339 lra_substitute_pseudo_within_insn (insn, original_regno, new_reg, false);
5340 lra_update_insn_regno_info (insn);
5341 if (! def_p)
5342 /* We now have a new usage insn for original regno. */
5343 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
5344 if (lra_dump_file != NULL)
5345 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
5346 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5347 lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5348 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5349 bitmap_set_bit (&check_only_regs, original_regno);
5350 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5351 if (def_p)
5352 lra_process_new_insns (insn, NULL, new_insns,
5353 "Add original<-inheritance");
5354 else
5355 lra_process_new_insns (insn, new_insns, NULL,
5356 "Add inheritance<-original");
5357 while (next_usage_insns != NULL_RTX)
5359 if (GET_CODE (next_usage_insns) != INSN_LIST)
5361 usage_insn = next_usage_insns;
5362 lra_assert (NONDEBUG_INSN_P (usage_insn));
5363 next_usage_insns = NULL;
5365 else
5367 usage_insn = XEXP (next_usage_insns, 0);
5368 lra_assert (DEBUG_INSN_P (usage_insn));
5369 next_usage_insns = XEXP (next_usage_insns, 1);
5371 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5372 DEBUG_INSN_P (usage_insn));
5373 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5374 if (lra_dump_file != NULL)
5376 basic_block bb = BLOCK_FOR_INSN (usage_insn);
5377 fprintf (lra_dump_file,
5378 " Inheritance reuse change %d->%d (bb%d):\n",
5379 original_regno, REGNO (new_reg),
5380 bb ? bb->index : -1);
5381 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5384 if (lra_dump_file != NULL)
5385 fprintf (lra_dump_file,
5386 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5387 return true;
5390 /* Return true if we need a caller save/restore for pseudo REGNO which
5391 was assigned to a hard register. */
5392 static inline bool
5393 need_for_call_save_p (int regno)
5395 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
5396 return (usage_insns[regno].calls_num < calls_num
5397 && (overlaps_hard_reg_set_p
5398 ((flag_ipa_ra &&
5399 ! hard_reg_set_empty_p (lra_reg_info[regno].actual_call_used_reg_set))
5400 ? lra_reg_info[regno].actual_call_used_reg_set
5401 : call_used_reg_set,
5402 PSEUDO_REGNO_MODE (regno), reg_renumber[regno])
5403 || (targetm.hard_regno_call_part_clobbered
5404 (lra_reg_info[regno].call_insn,
5405 reg_renumber[regno], PSEUDO_REGNO_MODE (regno)))));
5408 /* Global registers occurring in the current EBB. */
5409 static bitmap_head ebb_global_regs;
5411 /* Return true if we need a split for hard register REGNO or pseudo
5412 REGNO which was assigned to a hard register.
5413 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5414 used for reloads since the EBB end. It is an approximation of the
5415 used hard registers in the split range. The exact value would
5416 require expensive calculations. If we were aggressive with
5417 splitting because of the approximation, the split pseudo will save
5418 the same hard register assignment and will be removed in the undo
5419 pass. We still need the approximation because too aggressive
5420 splitting would result in too inaccurate cost calculation in the
5421 assignment pass because of too many generated moves which will be
5422 probably removed in the undo pass. */
5423 static inline bool
5424 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
5426 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
5428 lra_assert (hard_regno >= 0);
5429 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
5430 /* Don't split eliminable hard registers, otherwise we can
5431 split hard registers like hard frame pointer, which
5432 lives on BB start/end according to DF-infrastructure,
5433 when there is a pseudo assigned to the register and
5434 living in the same BB. */
5435 && (regno >= FIRST_PSEUDO_REGISTER
5436 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
5437 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
5438 /* Don't split call clobbered hard regs living through
5439 calls, otherwise we might have a check problem in the
5440 assign sub-pass as in the most cases (exception is a
5441 situation when lra_risky_transformations_p value is
5442 true) the assign pass assumes that all pseudos living
5443 through calls are assigned to call saved hard regs. */
5444 && (regno >= FIRST_PSEUDO_REGISTER
5445 || ! TEST_HARD_REG_BIT (call_used_reg_set, regno)
5446 || usage_insns[regno].calls_num == calls_num)
5447 /* We need at least 2 reloads to make pseudo splitting
5448 profitable. We should provide hard regno splitting in
5449 any case to solve 1st insn scheduling problem when
5450 moving hard register definition up might result in
5451 impossibility to find hard register for reload pseudo of
5452 small register class. */
5453 && (usage_insns[regno].reloads_num
5454 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
5455 && (regno < FIRST_PSEUDO_REGISTER
5456 /* For short living pseudos, spilling + inheritance can
5457 be considered a substitution for splitting.
5458 Therefore we do not splitting for local pseudos. It
5459 decreases also aggressiveness of splitting. The
5460 minimal number of references is chosen taking into
5461 account that for 2 references splitting has no sense
5462 as we can just spill the pseudo. */
5463 || (regno >= FIRST_PSEUDO_REGISTER
5464 && lra_reg_info[regno].nrefs > 3
5465 && bitmap_bit_p (&ebb_global_regs, regno))))
5466 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
5469 /* Return class for the split pseudo created from original pseudo with
5470 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
5471 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5472 results in no secondary memory movements. */
5473 static enum reg_class
5474 choose_split_class (enum reg_class allocno_class,
5475 int hard_regno ATTRIBUTE_UNUSED,
5476 machine_mode mode ATTRIBUTE_UNUSED)
5478 int i;
5479 enum reg_class cl, best_cl = NO_REGS;
5480 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5481 = REGNO_REG_CLASS (hard_regno);
5483 if (! targetm.secondary_memory_needed (mode, allocno_class, allocno_class)
5484 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
5485 return allocno_class;
5486 for (i = 0;
5487 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
5488 i++)
5489 if (! targetm.secondary_memory_needed (mode, cl, hard_reg_class)
5490 && ! targetm.secondary_memory_needed (mode, hard_reg_class, cl)
5491 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
5492 && (best_cl == NO_REGS
5493 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
5494 best_cl = cl;
5495 return best_cl;
5498 /* Copy any equivalence information from ORIGINAL_REGNO to NEW_REGNO.
5499 It only makes sense to call this function if NEW_REGNO is always
5500 equal to ORIGINAL_REGNO. */
5502 static void
5503 lra_copy_reg_equiv (unsigned int new_regno, unsigned int original_regno)
5505 if (!ira_reg_equiv[original_regno].defined_p)
5506 return;
5508 ira_expand_reg_equiv ();
5509 ira_reg_equiv[new_regno].defined_p = true;
5510 if (ira_reg_equiv[original_regno].memory)
5511 ira_reg_equiv[new_regno].memory
5512 = copy_rtx (ira_reg_equiv[original_regno].memory);
5513 if (ira_reg_equiv[original_regno].constant)
5514 ira_reg_equiv[new_regno].constant
5515 = copy_rtx (ira_reg_equiv[original_regno].constant);
5516 if (ira_reg_equiv[original_regno].invariant)
5517 ira_reg_equiv[new_regno].invariant
5518 = copy_rtx (ira_reg_equiv[original_regno].invariant);
5521 /* Do split transformations for insn INSN, which defines or uses
5522 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
5523 the EBB next uses ORIGINAL_REGNO; it has the same form as the
5524 "insns" field of usage_insns. If TO is not NULL, we don't use
5525 usage_insns, we put restore insns after TO insn. It is a case when
5526 we call it from lra_split_hard_reg_for, outside the inheritance
5527 pass.
5529 The transformations look like:
5531 p <- ... p <- ...
5532 ... s <- p (new insn -- save)
5533 ... =>
5534 ... p <- s (new insn -- restore)
5535 <- ... p ... <- ... p ...
5537 <- ... p ... <- ... p ...
5538 ... s <- p (new insn -- save)
5539 ... =>
5540 ... p <- s (new insn -- restore)
5541 <- ... p ... <- ... p ...
5543 where p is an original pseudo got a hard register or a hard
5544 register and s is a new split pseudo. The save is put before INSN
5545 if BEFORE_P is true. Return true if we succeed in such
5546 transformation. */
5547 static bool
5548 split_reg (bool before_p, int original_regno, rtx_insn *insn,
5549 rtx next_usage_insns, rtx_insn *to)
5551 enum reg_class rclass;
5552 rtx original_reg;
5553 int hard_regno, nregs;
5554 rtx new_reg, usage_insn;
5555 rtx_insn *restore, *save;
5556 bool after_p;
5557 bool call_save_p;
5558 machine_mode mode;
5560 if (original_regno < FIRST_PSEUDO_REGISTER)
5562 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
5563 hard_regno = original_regno;
5564 call_save_p = false;
5565 nregs = 1;
5566 mode = lra_reg_info[hard_regno].biggest_mode;
5567 machine_mode reg_rtx_mode = GET_MODE (regno_reg_rtx[hard_regno]);
5568 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5569 as part of a multi-word register. In that case, or if the biggest
5570 mode was larger than a register, just use the reg_rtx. Otherwise,
5571 limit the size to that of the biggest access in the function. */
5572 if (mode == VOIDmode
5573 || paradoxical_subreg_p (mode, reg_rtx_mode))
5575 original_reg = regno_reg_rtx[hard_regno];
5576 mode = reg_rtx_mode;
5578 else
5579 original_reg = gen_rtx_REG (mode, hard_regno);
5581 else
5583 mode = PSEUDO_REGNO_MODE (original_regno);
5584 hard_regno = reg_renumber[original_regno];
5585 nregs = hard_regno_nregs (hard_regno, mode);
5586 rclass = lra_get_allocno_class (original_regno);
5587 original_reg = regno_reg_rtx[original_regno];
5588 call_save_p = need_for_call_save_p (original_regno);
5590 lra_assert (hard_regno >= 0);
5591 if (lra_dump_file != NULL)
5592 fprintf (lra_dump_file,
5593 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5595 if (call_save_p)
5597 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
5598 hard_regno_nregs (hard_regno, mode),
5599 mode);
5600 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
5602 else
5604 rclass = choose_split_class (rclass, hard_regno, mode);
5605 if (rclass == NO_REGS)
5607 if (lra_dump_file != NULL)
5609 fprintf (lra_dump_file,
5610 " Rejecting split of %d(%s): "
5611 "no good reg class for %d(%s)\n",
5612 original_regno,
5613 reg_class_names[lra_get_allocno_class (original_regno)],
5614 hard_regno,
5615 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
5616 fprintf
5617 (lra_dump_file,
5618 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5620 return false;
5622 /* Split_if_necessary can split hard registers used as part of a
5623 multi-register mode but splits each register individually. The
5624 mode used for each independent register may not be supported
5625 so reject the split. Splitting the wider mode should theoretically
5626 be possible but is not implemented. */
5627 if (!targetm.hard_regno_mode_ok (hard_regno, mode))
5629 if (lra_dump_file != NULL)
5631 fprintf (lra_dump_file,
5632 " Rejecting split of %d(%s): unsuitable mode %s\n",
5633 original_regno,
5634 reg_class_names[lra_get_allocno_class (original_regno)],
5635 GET_MODE_NAME (mode));
5636 fprintf
5637 (lra_dump_file,
5638 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5640 return false;
5642 new_reg = lra_create_new_reg (mode, original_reg, rclass, "split");
5643 reg_renumber[REGNO (new_reg)] = hard_regno;
5645 int new_regno = REGNO (new_reg);
5646 save = emit_spill_move (true, new_reg, original_reg);
5647 if (NEXT_INSN (save) != NULL_RTX && !call_save_p)
5649 if (lra_dump_file != NULL)
5651 fprintf
5652 (lra_dump_file,
5653 " Rejecting split %d->%d resulting in > 2 save insns:\n",
5654 original_regno, new_regno);
5655 dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
5656 fprintf (lra_dump_file,
5657 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5659 return false;
5661 restore = emit_spill_move (false, new_reg, original_reg);
5662 if (NEXT_INSN (restore) != NULL_RTX && !call_save_p)
5664 if (lra_dump_file != NULL)
5666 fprintf (lra_dump_file,
5667 " Rejecting split %d->%d "
5668 "resulting in > 2 restore insns:\n",
5669 original_regno, new_regno);
5670 dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
5671 fprintf (lra_dump_file,
5672 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5674 return false;
5676 /* Transfer equivalence information to the spill register, so that
5677 if we fail to allocate the spill register, we have the option of
5678 rematerializing the original value instead of spilling to the stack. */
5679 if (!HARD_REGISTER_NUM_P (original_regno)
5680 && mode == PSEUDO_REGNO_MODE (original_regno))
5681 lra_copy_reg_equiv (new_regno, original_regno);
5682 lra_reg_info[new_regno].restore_rtx = regno_reg_rtx[original_regno];
5683 bitmap_set_bit (&lra_split_regs, new_regno);
5684 if (to != NULL)
5686 lra_assert (next_usage_insns == NULL);
5687 usage_insn = to;
5688 after_p = TRUE;
5690 else
5692 /* We need check_only_regs only inside the inheritance pass. */
5693 bitmap_set_bit (&check_only_regs, new_regno);
5694 bitmap_set_bit (&check_only_regs, original_regno);
5695 after_p = usage_insns[original_regno].after_p;
5696 for (;;)
5698 if (GET_CODE (next_usage_insns) != INSN_LIST)
5700 usage_insn = next_usage_insns;
5701 break;
5703 usage_insn = XEXP (next_usage_insns, 0);
5704 lra_assert (DEBUG_INSN_P (usage_insn));
5705 next_usage_insns = XEXP (next_usage_insns, 1);
5706 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5707 true);
5708 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5709 if (lra_dump_file != NULL)
5711 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
5712 original_regno, new_regno);
5713 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5717 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
5718 lra_assert (usage_insn != insn || (after_p && before_p));
5719 lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
5720 after_p ? NULL : restore,
5721 after_p ? restore : NULL,
5722 call_save_p
5723 ? "Add reg<-save" : "Add reg<-split");
5724 lra_process_new_insns (insn, before_p ? save : NULL,
5725 before_p ? NULL : save,
5726 call_save_p
5727 ? "Add save<-reg" : "Add split<-reg");
5728 if (nregs > 1)
5729 /* If we are trying to split multi-register. We should check
5730 conflicts on the next assignment sub-pass. IRA can allocate on
5731 sub-register levels, LRA do this on pseudos level right now and
5732 this discrepancy may create allocation conflicts after
5733 splitting. */
5734 lra_risky_transformations_p = true;
5735 if (lra_dump_file != NULL)
5736 fprintf (lra_dump_file,
5737 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5738 return true;
5741 /* Split a hard reg for reload pseudo REGNO having RCLASS and living
5742 in the range [FROM, TO]. Return true if did a split. Otherwise,
5743 return false. */
5744 bool
5745 spill_hard_reg_in_range (int regno, enum reg_class rclass, rtx_insn *from, rtx_insn *to)
5747 int i, hard_regno;
5748 int rclass_size;
5749 rtx_insn *insn;
5750 unsigned int uid;
5751 bitmap_iterator bi;
5752 HARD_REG_SET ignore;
5754 lra_assert (from != NULL && to != NULL);
5755 CLEAR_HARD_REG_SET (ignore);
5756 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
5758 lra_insn_recog_data_t id = lra_insn_recog_data[uid];
5759 struct lra_static_insn_data *static_id = id->insn_static_data;
5760 struct lra_insn_reg *reg;
5762 for (reg = id->regs; reg != NULL; reg = reg->next)
5763 if (reg->regno < FIRST_PSEUDO_REGISTER)
5764 SET_HARD_REG_BIT (ignore, reg->regno);
5765 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
5766 SET_HARD_REG_BIT (ignore, reg->regno);
5768 rclass_size = ira_class_hard_regs_num[rclass];
5769 for (i = 0; i < rclass_size; i++)
5771 hard_regno = ira_class_hard_regs[rclass][i];
5772 if (! TEST_HARD_REG_BIT (lra_reg_info[regno].conflict_hard_regs, hard_regno)
5773 || TEST_HARD_REG_BIT (ignore, hard_regno))
5774 continue;
5775 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
5777 struct lra_static_insn_data *static_id;
5778 struct lra_insn_reg *reg;
5780 if (!INSN_P (insn))
5781 continue;
5782 if (bitmap_bit_p (&lra_reg_info[hard_regno].insn_bitmap,
5783 INSN_UID (insn)))
5784 break;
5785 static_id = lra_get_insn_recog_data (insn)->insn_static_data;
5786 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
5787 if (reg->regno == hard_regno)
5788 break;
5789 if (reg != NULL)
5790 break;
5792 if (insn != NEXT_INSN (to))
5793 continue;
5794 if (split_reg (TRUE, hard_regno, from, NULL, to))
5795 return true;
5797 return false;
5800 /* Recognize that we need a split transformation for insn INSN, which
5801 defines or uses REGNO in its insn biggest MODE (we use it only if
5802 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
5803 hard registers which might be used for reloads since the EBB end.
5804 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
5805 uid before starting INSN processing. Return true if we succeed in
5806 such transformation. */
5807 static bool
5808 split_if_necessary (int regno, machine_mode mode,
5809 HARD_REG_SET potential_reload_hard_regs,
5810 bool before_p, rtx_insn *insn, int max_uid)
5812 bool res = false;
5813 int i, nregs = 1;
5814 rtx next_usage_insns;
5816 if (regno < FIRST_PSEUDO_REGISTER)
5817 nregs = hard_regno_nregs (regno, mode);
5818 for (i = 0; i < nregs; i++)
5819 if (usage_insns[regno + i].check == curr_usage_insns_check
5820 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
5821 /* To avoid processing the register twice or more. */
5822 && ((GET_CODE (next_usage_insns) != INSN_LIST
5823 && INSN_UID (next_usage_insns) < max_uid)
5824 || (GET_CODE (next_usage_insns) == INSN_LIST
5825 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
5826 && need_for_split_p (potential_reload_hard_regs, regno + i)
5827 && split_reg (before_p, regno + i, insn, next_usage_insns, NULL))
5828 res = true;
5829 return res;
5832 /* Return TRUE if rtx X is considered as an invariant for
5833 inheritance. */
5834 static bool
5835 invariant_p (const_rtx x)
5837 machine_mode mode;
5838 const char *fmt;
5839 enum rtx_code code;
5840 int i, j;
5842 if (side_effects_p (x))
5843 return false;
5845 code = GET_CODE (x);
5846 mode = GET_MODE (x);
5847 if (code == SUBREG)
5849 x = SUBREG_REG (x);
5850 code = GET_CODE (x);
5851 mode = wider_subreg_mode (mode, GET_MODE (x));
5854 if (MEM_P (x))
5855 return false;
5857 if (REG_P (x))
5859 int i, nregs, regno = REGNO (x);
5861 if (regno >= FIRST_PSEUDO_REGISTER || regno == STACK_POINTER_REGNUM
5862 || TEST_HARD_REG_BIT (eliminable_regset, regno)
5863 || GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
5864 return false;
5865 nregs = hard_regno_nregs (regno, mode);
5866 for (i = 0; i < nregs; i++)
5867 if (! fixed_regs[regno + i]
5868 /* A hard register may be clobbered in the current insn
5869 but we can ignore this case because if the hard
5870 register is used it should be set somewhere after the
5871 clobber. */
5872 || bitmap_bit_p (&invalid_invariant_regs, regno + i))
5873 return false;
5875 fmt = GET_RTX_FORMAT (code);
5876 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5878 if (fmt[i] == 'e')
5880 if (! invariant_p (XEXP (x, i)))
5881 return false;
5883 else if (fmt[i] == 'E')
5885 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5886 if (! invariant_p (XVECEXP (x, i, j)))
5887 return false;
5890 return true;
5893 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
5894 inheritance transformation (using dest_reg instead invariant in a
5895 subsequent insn). */
5896 static bool
5897 process_invariant_for_inheritance (rtx dst_reg, rtx invariant_rtx)
5899 invariant_ptr_t invariant_ptr;
5900 rtx_insn *insn, *new_insns;
5901 rtx insn_set, insn_reg, new_reg;
5902 int insn_regno;
5903 bool succ_p = false;
5904 int dst_regno = REGNO (dst_reg);
5905 machine_mode dst_mode = GET_MODE (dst_reg);
5906 enum reg_class cl = lra_get_allocno_class (dst_regno), insn_reg_cl;
5908 invariant_ptr = insert_invariant (invariant_rtx);
5909 if ((insn = invariant_ptr->insn) != NULL_RTX)
5911 /* We have a subsequent insn using the invariant. */
5912 insn_set = single_set (insn);
5913 lra_assert (insn_set != NULL);
5914 insn_reg = SET_DEST (insn_set);
5915 lra_assert (REG_P (insn_reg));
5916 insn_regno = REGNO (insn_reg);
5917 insn_reg_cl = lra_get_allocno_class (insn_regno);
5919 if (dst_mode == GET_MODE (insn_reg)
5920 /* We should consider only result move reg insns which are
5921 cheap. */
5922 && targetm.register_move_cost (dst_mode, cl, insn_reg_cl) == 2
5923 && targetm.register_move_cost (dst_mode, cl, cl) == 2)
5925 if (lra_dump_file != NULL)
5926 fprintf (lra_dump_file,
5927 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
5928 new_reg = lra_create_new_reg (dst_mode, dst_reg,
5929 cl, "invariant inheritance");
5930 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5931 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5932 lra_reg_info[REGNO (new_reg)].restore_rtx = PATTERN (insn);
5933 start_sequence ();
5934 lra_emit_move (new_reg, dst_reg);
5935 new_insns = get_insns ();
5936 end_sequence ();
5937 lra_process_new_insns (curr_insn, NULL, new_insns,
5938 "Add invariant inheritance<-original");
5939 start_sequence ();
5940 lra_emit_move (SET_DEST (insn_set), new_reg);
5941 new_insns = get_insns ();
5942 end_sequence ();
5943 lra_process_new_insns (insn, NULL, new_insns,
5944 "Changing reload<-inheritance");
5945 lra_set_insn_deleted (insn);
5946 succ_p = true;
5947 if (lra_dump_file != NULL)
5949 fprintf (lra_dump_file,
5950 " Invariant inheritance reuse change %d (bb%d):\n",
5951 REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5952 dump_insn_slim (lra_dump_file, insn);
5953 fprintf (lra_dump_file,
5954 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
5958 invariant_ptr->insn = curr_insn;
5959 return succ_p;
5962 /* Check only registers living at the current program point in the
5963 current EBB. */
5964 static bitmap_head live_regs;
5966 /* Update live info in EBB given by its HEAD and TAIL insns after
5967 inheritance/split transformation. The function removes dead moves
5968 too. */
5969 static void
5970 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
5972 unsigned int j;
5973 int i, regno;
5974 bool live_p;
5975 rtx_insn *prev_insn;
5976 rtx set;
5977 bool remove_p;
5978 basic_block last_bb, prev_bb, curr_bb;
5979 bitmap_iterator bi;
5980 struct lra_insn_reg *reg;
5981 edge e;
5982 edge_iterator ei;
5984 last_bb = BLOCK_FOR_INSN (tail);
5985 prev_bb = NULL;
5986 for (curr_insn = tail;
5987 curr_insn != PREV_INSN (head);
5988 curr_insn = prev_insn)
5990 prev_insn = PREV_INSN (curr_insn);
5991 /* We need to process empty blocks too. They contain
5992 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
5993 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
5994 continue;
5995 curr_bb = BLOCK_FOR_INSN (curr_insn);
5996 if (curr_bb != prev_bb)
5998 if (prev_bb != NULL)
6000 /* Update df_get_live_in (prev_bb): */
6001 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
6002 if (bitmap_bit_p (&live_regs, j))
6003 bitmap_set_bit (df_get_live_in (prev_bb), j);
6004 else
6005 bitmap_clear_bit (df_get_live_in (prev_bb), j);
6007 if (curr_bb != last_bb)
6009 /* Update df_get_live_out (curr_bb): */
6010 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
6012 live_p = bitmap_bit_p (&live_regs, j);
6013 if (! live_p)
6014 FOR_EACH_EDGE (e, ei, curr_bb->succs)
6015 if (bitmap_bit_p (df_get_live_in (e->dest), j))
6017 live_p = true;
6018 break;
6020 if (live_p)
6021 bitmap_set_bit (df_get_live_out (curr_bb), j);
6022 else
6023 bitmap_clear_bit (df_get_live_out (curr_bb), j);
6026 prev_bb = curr_bb;
6027 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
6029 if (! NONDEBUG_INSN_P (curr_insn))
6030 continue;
6031 curr_id = lra_get_insn_recog_data (curr_insn);
6032 curr_static_id = curr_id->insn_static_data;
6033 remove_p = false;
6034 if ((set = single_set (curr_insn)) != NULL_RTX
6035 && REG_P (SET_DEST (set))
6036 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
6037 && SET_DEST (set) != pic_offset_table_rtx
6038 && bitmap_bit_p (&check_only_regs, regno)
6039 && ! bitmap_bit_p (&live_regs, regno))
6040 remove_p = true;
6041 /* See which defined values die here. */
6042 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6043 if (reg->type == OP_OUT && ! reg->subreg_p)
6044 bitmap_clear_bit (&live_regs, reg->regno);
6045 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6046 if (reg->type == OP_OUT && ! reg->subreg_p)
6047 bitmap_clear_bit (&live_regs, reg->regno);
6048 if (curr_id->arg_hard_regs != NULL)
6049 /* Make clobbered argument hard registers die. */
6050 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6051 if (regno >= FIRST_PSEUDO_REGISTER)
6052 bitmap_clear_bit (&live_regs, regno - FIRST_PSEUDO_REGISTER);
6053 /* Mark each used value as live. */
6054 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6055 if (reg->type != OP_OUT
6056 && bitmap_bit_p (&check_only_regs, reg->regno))
6057 bitmap_set_bit (&live_regs, reg->regno);
6058 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6059 if (reg->type != OP_OUT
6060 && bitmap_bit_p (&check_only_regs, reg->regno))
6061 bitmap_set_bit (&live_regs, reg->regno);
6062 if (curr_id->arg_hard_regs != NULL)
6063 /* Make used argument hard registers live. */
6064 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6065 if (regno < FIRST_PSEUDO_REGISTER
6066 && bitmap_bit_p (&check_only_regs, regno))
6067 bitmap_set_bit (&live_regs, regno);
6068 /* It is quite important to remove dead move insns because it
6069 means removing dead store. We don't need to process them for
6070 constraints. */
6071 if (remove_p)
6073 if (lra_dump_file != NULL)
6075 fprintf (lra_dump_file, " Removing dead insn:\n ");
6076 dump_insn_slim (lra_dump_file, curr_insn);
6078 lra_set_insn_deleted (curr_insn);
6083 /* The structure describes info to do an inheritance for the current
6084 insn. We need to collect such info first before doing the
6085 transformations because the transformations change the insn
6086 internal representation. */
6087 struct to_inherit
6089 /* Original regno. */
6090 int regno;
6091 /* Subsequent insns which can inherit original reg value. */
6092 rtx insns;
6095 /* Array containing all info for doing inheritance from the current
6096 insn. */
6097 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
6099 /* Number elements in the previous array. */
6100 static int to_inherit_num;
6102 /* Add inheritance info REGNO and INSNS. Their meaning is described in
6103 structure to_inherit. */
6104 static void
6105 add_to_inherit (int regno, rtx insns)
6107 int i;
6109 for (i = 0; i < to_inherit_num; i++)
6110 if (to_inherit[i].regno == regno)
6111 return;
6112 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
6113 to_inherit[to_inherit_num].regno = regno;
6114 to_inherit[to_inherit_num++].insns = insns;
6117 /* Return the last non-debug insn in basic block BB, or the block begin
6118 note if none. */
6119 static rtx_insn *
6120 get_last_insertion_point (basic_block bb)
6122 rtx_insn *insn;
6124 FOR_BB_INSNS_REVERSE (bb, insn)
6125 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
6126 return insn;
6127 gcc_unreachable ();
6130 /* Set up RES by registers living on edges FROM except the edge (FROM,
6131 TO) or by registers set up in a jump insn in BB FROM. */
6132 static void
6133 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
6135 rtx_insn *last;
6136 struct lra_insn_reg *reg;
6137 edge e;
6138 edge_iterator ei;
6140 lra_assert (to != NULL);
6141 bitmap_clear (res);
6142 FOR_EACH_EDGE (e, ei, from->succs)
6143 if (e->dest != to)
6144 bitmap_ior_into (res, df_get_live_in (e->dest));
6145 last = get_last_insertion_point (from);
6146 if (! JUMP_P (last))
6147 return;
6148 curr_id = lra_get_insn_recog_data (last);
6149 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6150 if (reg->type != OP_IN)
6151 bitmap_set_bit (res, reg->regno);
6154 /* Used as a temporary results of some bitmap calculations. */
6155 static bitmap_head temp_bitmap;
6157 /* We split for reloads of small class of hard regs. The following
6158 defines how many hard regs the class should have to be qualified as
6159 small. The code is mostly oriented to x86/x86-64 architecture
6160 where some insns need to use only specific register or pair of
6161 registers and these register can live in RTL explicitly, e.g. for
6162 parameter passing. */
6163 static const int max_small_class_regs_num = 2;
6165 /* Do inheritance/split transformations in EBB starting with HEAD and
6166 finishing on TAIL. We process EBB insns in the reverse order.
6167 Return true if we did any inheritance/split transformation in the
6168 EBB.
6170 We should avoid excessive splitting which results in worse code
6171 because of inaccurate cost calculations for spilling new split
6172 pseudos in such case. To achieve this we do splitting only if
6173 register pressure is high in given basic block and there are reload
6174 pseudos requiring hard registers. We could do more register
6175 pressure calculations at any given program point to avoid necessary
6176 splitting even more but it is to expensive and the current approach
6177 works well enough. */
6178 static bool
6179 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
6181 int i, src_regno, dst_regno, nregs;
6182 bool change_p, succ_p, update_reloads_num_p;
6183 rtx_insn *prev_insn, *last_insn;
6184 rtx next_usage_insns, curr_set;
6185 enum reg_class cl;
6186 struct lra_insn_reg *reg;
6187 basic_block last_processed_bb, curr_bb = NULL;
6188 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
6189 bitmap to_process;
6190 unsigned int j;
6191 bitmap_iterator bi;
6192 bool head_p, after_p;
6194 change_p = false;
6195 curr_usage_insns_check++;
6196 clear_invariants ();
6197 reloads_num = calls_num = 0;
6198 bitmap_clear (&check_only_regs);
6199 bitmap_clear (&invalid_invariant_regs);
6200 last_processed_bb = NULL;
6201 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6202 COPY_HARD_REG_SET (live_hard_regs, eliminable_regset);
6203 IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
6204 /* We don't process new insns generated in the loop. */
6205 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
6207 prev_insn = PREV_INSN (curr_insn);
6208 if (BLOCK_FOR_INSN (curr_insn) != NULL)
6209 curr_bb = BLOCK_FOR_INSN (curr_insn);
6210 if (last_processed_bb != curr_bb)
6212 /* We are at the end of BB. Add qualified living
6213 pseudos for potential splitting. */
6214 to_process = df_get_live_out (curr_bb);
6215 if (last_processed_bb != NULL)
6217 /* We are somewhere in the middle of EBB. */
6218 get_live_on_other_edges (curr_bb, last_processed_bb,
6219 &temp_bitmap);
6220 to_process = &temp_bitmap;
6222 last_processed_bb = curr_bb;
6223 last_insn = get_last_insertion_point (curr_bb);
6224 after_p = (! JUMP_P (last_insn)
6225 && (! CALL_P (last_insn)
6226 || (find_reg_note (last_insn,
6227 REG_NORETURN, NULL_RTX) == NULL_RTX
6228 && ! SIBLING_CALL_P (last_insn))));
6229 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6230 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6232 if ((int) j >= lra_constraint_new_regno_start)
6233 break;
6234 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6236 if (j < FIRST_PSEUDO_REGISTER)
6237 SET_HARD_REG_BIT (live_hard_regs, j);
6238 else
6239 add_to_hard_reg_set (&live_hard_regs,
6240 PSEUDO_REGNO_MODE (j),
6241 reg_renumber[j]);
6242 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
6246 src_regno = dst_regno = -1;
6247 curr_set = single_set (curr_insn);
6248 if (curr_set != NULL_RTX && REG_P (SET_DEST (curr_set)))
6249 dst_regno = REGNO (SET_DEST (curr_set));
6250 if (curr_set != NULL_RTX && REG_P (SET_SRC (curr_set)))
6251 src_regno = REGNO (SET_SRC (curr_set));
6252 update_reloads_num_p = true;
6253 if (src_regno < lra_constraint_new_regno_start
6254 && src_regno >= FIRST_PSEUDO_REGISTER
6255 && reg_renumber[src_regno] < 0
6256 && dst_regno >= lra_constraint_new_regno_start
6257 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
6259 /* 'reload_pseudo <- original_pseudo'. */
6260 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6261 reloads_num++;
6262 update_reloads_num_p = false;
6263 succ_p = false;
6264 if (usage_insns[src_regno].check == curr_usage_insns_check
6265 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
6266 succ_p = inherit_reload_reg (false, src_regno, cl,
6267 curr_insn, next_usage_insns);
6268 if (succ_p)
6269 change_p = true;
6270 else
6271 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6272 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6273 IOR_HARD_REG_SET (potential_reload_hard_regs,
6274 reg_class_contents[cl]);
6276 else if (src_regno < 0
6277 && dst_regno >= lra_constraint_new_regno_start
6278 && invariant_p (SET_SRC (curr_set))
6279 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS
6280 && ! bitmap_bit_p (&invalid_invariant_regs, dst_regno)
6281 && ! bitmap_bit_p (&invalid_invariant_regs,
6282 ORIGINAL_REGNO(regno_reg_rtx[dst_regno])))
6284 /* 'reload_pseudo <- invariant'. */
6285 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6286 reloads_num++;
6287 update_reloads_num_p = false;
6288 if (process_invariant_for_inheritance (SET_DEST (curr_set), SET_SRC (curr_set)))
6289 change_p = true;
6290 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6291 IOR_HARD_REG_SET (potential_reload_hard_regs,
6292 reg_class_contents[cl]);
6294 else if (src_regno >= lra_constraint_new_regno_start
6295 && dst_regno < lra_constraint_new_regno_start
6296 && dst_regno >= FIRST_PSEUDO_REGISTER
6297 && reg_renumber[dst_regno] < 0
6298 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
6299 && usage_insns[dst_regno].check == curr_usage_insns_check
6300 && (next_usage_insns
6301 = usage_insns[dst_regno].insns) != NULL_RTX)
6303 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6304 reloads_num++;
6305 update_reloads_num_p = false;
6306 /* 'original_pseudo <- reload_pseudo'. */
6307 if (! JUMP_P (curr_insn)
6308 && inherit_reload_reg (true, dst_regno, cl,
6309 curr_insn, next_usage_insns))
6310 change_p = true;
6311 /* Invalidate. */
6312 usage_insns[dst_regno].check = 0;
6313 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6314 IOR_HARD_REG_SET (potential_reload_hard_regs,
6315 reg_class_contents[cl]);
6317 else if (INSN_P (curr_insn))
6319 int iter;
6320 int max_uid = get_max_uid ();
6322 curr_id = lra_get_insn_recog_data (curr_insn);
6323 curr_static_id = curr_id->insn_static_data;
6324 to_inherit_num = 0;
6325 /* Process insn definitions. */
6326 for (iter = 0; iter < 2; iter++)
6327 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6328 reg != NULL;
6329 reg = reg->next)
6330 if (reg->type != OP_IN
6331 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
6333 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
6334 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
6335 && usage_insns[dst_regno].check == curr_usage_insns_check
6336 && (next_usage_insns
6337 = usage_insns[dst_regno].insns) != NULL_RTX)
6339 struct lra_insn_reg *r;
6341 for (r = curr_id->regs; r != NULL; r = r->next)
6342 if (r->type != OP_OUT && r->regno == dst_regno)
6343 break;
6344 /* Don't do inheritance if the pseudo is also
6345 used in the insn. */
6346 if (r == NULL)
6347 /* We cannot do inheritance right now
6348 because the current insn reg info (chain
6349 regs) can change after that. */
6350 add_to_inherit (dst_regno, next_usage_insns);
6352 /* We cannot process one reg twice here because of
6353 usage_insns invalidation. */
6354 if ((dst_regno < FIRST_PSEUDO_REGISTER
6355 || reg_renumber[dst_regno] >= 0)
6356 && ! reg->subreg_p && reg->type != OP_IN)
6358 HARD_REG_SET s;
6360 if (split_if_necessary (dst_regno, reg->biggest_mode,
6361 potential_reload_hard_regs,
6362 false, curr_insn, max_uid))
6363 change_p = true;
6364 CLEAR_HARD_REG_SET (s);
6365 if (dst_regno < FIRST_PSEUDO_REGISTER)
6366 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
6367 else
6368 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
6369 reg_renumber[dst_regno]);
6370 AND_COMPL_HARD_REG_SET (live_hard_regs, s);
6371 AND_COMPL_HARD_REG_SET (potential_reload_hard_regs, s);
6373 /* We should invalidate potential inheritance or
6374 splitting for the current insn usages to the next
6375 usage insns (see code below) as the output pseudo
6376 prevents this. */
6377 if ((dst_regno >= FIRST_PSEUDO_REGISTER
6378 && reg_renumber[dst_regno] < 0)
6379 || (reg->type == OP_OUT && ! reg->subreg_p
6380 && (dst_regno < FIRST_PSEUDO_REGISTER
6381 || reg_renumber[dst_regno] >= 0)))
6383 /* Invalidate and mark definitions. */
6384 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6385 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
6386 else
6388 nregs = hard_regno_nregs (dst_regno,
6389 reg->biggest_mode);
6390 for (i = 0; i < nregs; i++)
6391 usage_insns[dst_regno + i].check
6392 = -(int) INSN_UID (curr_insn);
6396 /* Process clobbered call regs. */
6397 if (curr_id->arg_hard_regs != NULL)
6398 for (i = 0; (dst_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6399 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6400 usage_insns[dst_regno - FIRST_PSEUDO_REGISTER].check
6401 = -(int) INSN_UID (curr_insn);
6402 if (! JUMP_P (curr_insn))
6403 for (i = 0; i < to_inherit_num; i++)
6404 if (inherit_reload_reg (true, to_inherit[i].regno,
6405 ALL_REGS, curr_insn,
6406 to_inherit[i].insns))
6407 change_p = true;
6408 if (CALL_P (curr_insn))
6410 rtx cheap, pat, dest;
6411 rtx_insn *restore;
6412 int regno, hard_regno;
6414 calls_num++;
6415 if ((cheap = find_reg_note (curr_insn,
6416 REG_RETURNED, NULL_RTX)) != NULL_RTX
6417 && ((cheap = XEXP (cheap, 0)), true)
6418 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
6419 && (hard_regno = reg_renumber[regno]) >= 0
6420 && usage_insns[regno].check == curr_usage_insns_check
6421 /* If there are pending saves/restores, the
6422 optimization is not worth. */
6423 && usage_insns[regno].calls_num == calls_num - 1
6424 && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
6426 /* Restore the pseudo from the call result as
6427 REG_RETURNED note says that the pseudo value is
6428 in the call result and the pseudo is an argument
6429 of the call. */
6430 pat = PATTERN (curr_insn);
6431 if (GET_CODE (pat) == PARALLEL)
6432 pat = XVECEXP (pat, 0, 0);
6433 dest = SET_DEST (pat);
6434 /* For multiple return values dest is PARALLEL.
6435 Currently we handle only single return value case. */
6436 if (REG_P (dest))
6438 start_sequence ();
6439 emit_move_insn (cheap, copy_rtx (dest));
6440 restore = get_insns ();
6441 end_sequence ();
6442 lra_process_new_insns (curr_insn, NULL, restore,
6443 "Inserting call parameter restore");
6444 /* We don't need to save/restore of the pseudo from
6445 this call. */
6446 usage_insns[regno].calls_num = calls_num;
6447 bitmap_set_bit (&check_only_regs, regno);
6451 to_inherit_num = 0;
6452 /* Process insn usages. */
6453 for (iter = 0; iter < 2; iter++)
6454 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6455 reg != NULL;
6456 reg = reg->next)
6457 if ((reg->type != OP_OUT
6458 || (reg->type == OP_OUT && reg->subreg_p))
6459 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
6461 if (src_regno >= FIRST_PSEUDO_REGISTER
6462 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
6464 if (usage_insns[src_regno].check == curr_usage_insns_check
6465 && (next_usage_insns
6466 = usage_insns[src_regno].insns) != NULL_RTX
6467 && NONDEBUG_INSN_P (curr_insn))
6468 add_to_inherit (src_regno, next_usage_insns);
6469 else if (usage_insns[src_regno].check
6470 != -(int) INSN_UID (curr_insn))
6471 /* Add usages but only if the reg is not set up
6472 in the same insn. */
6473 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6475 else if (src_regno < FIRST_PSEUDO_REGISTER
6476 || reg_renumber[src_regno] >= 0)
6478 bool before_p;
6479 rtx_insn *use_insn = curr_insn;
6481 before_p = (JUMP_P (curr_insn)
6482 || (CALL_P (curr_insn) && reg->type == OP_IN));
6483 if (NONDEBUG_INSN_P (curr_insn)
6484 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
6485 && split_if_necessary (src_regno, reg->biggest_mode,
6486 potential_reload_hard_regs,
6487 before_p, curr_insn, max_uid))
6489 if (reg->subreg_p)
6490 lra_risky_transformations_p = true;
6491 change_p = true;
6492 /* Invalidate. */
6493 usage_insns[src_regno].check = 0;
6494 if (before_p)
6495 use_insn = PREV_INSN (curr_insn);
6497 if (NONDEBUG_INSN_P (curr_insn))
6499 if (src_regno < FIRST_PSEUDO_REGISTER)
6500 add_to_hard_reg_set (&live_hard_regs,
6501 reg->biggest_mode, src_regno);
6502 else
6503 add_to_hard_reg_set (&live_hard_regs,
6504 PSEUDO_REGNO_MODE (src_regno),
6505 reg_renumber[src_regno]);
6507 if (src_regno >= FIRST_PSEUDO_REGISTER)
6508 add_next_usage_insn (src_regno, use_insn, reloads_num);
6509 else
6511 for (i = 0; i < hard_regno_nregs (src_regno, reg->biggest_mode); i++)
6512 add_next_usage_insn (src_regno + i, use_insn, reloads_num);
6516 /* Process used call regs. */
6517 if (curr_id->arg_hard_regs != NULL)
6518 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6519 if (src_regno < FIRST_PSEUDO_REGISTER)
6521 SET_HARD_REG_BIT (live_hard_regs, src_regno);
6522 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6524 for (i = 0; i < to_inherit_num; i++)
6526 src_regno = to_inherit[i].regno;
6527 if (inherit_reload_reg (false, src_regno, ALL_REGS,
6528 curr_insn, to_inherit[i].insns))
6529 change_p = true;
6530 else
6531 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6534 if (update_reloads_num_p
6535 && NONDEBUG_INSN_P (curr_insn) && curr_set != NULL_RTX)
6537 int regno = -1;
6538 if ((REG_P (SET_DEST (curr_set))
6539 && (regno = REGNO (SET_DEST (curr_set))) >= lra_constraint_new_regno_start
6540 && reg_renumber[regno] < 0
6541 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
6542 || (REG_P (SET_SRC (curr_set))
6543 && (regno = REGNO (SET_SRC (curr_set))) >= lra_constraint_new_regno_start
6544 && reg_renumber[regno] < 0
6545 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
6547 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6548 reloads_num++;
6549 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6550 IOR_HARD_REG_SET (potential_reload_hard_regs,
6551 reg_class_contents[cl]);
6554 if (NONDEBUG_INSN_P (curr_insn))
6556 int regno;
6558 /* Invalidate invariants with changed regs. */
6559 curr_id = lra_get_insn_recog_data (curr_insn);
6560 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6561 if (reg->type != OP_IN)
6563 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6564 bitmap_set_bit (&invalid_invariant_regs,
6565 ORIGINAL_REGNO (regno_reg_rtx[reg->regno]));
6567 curr_static_id = curr_id->insn_static_data;
6568 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6569 if (reg->type != OP_IN)
6570 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6571 if (curr_id->arg_hard_regs != NULL)
6572 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6573 if (regno >= FIRST_PSEUDO_REGISTER)
6574 bitmap_set_bit (&invalid_invariant_regs,
6575 regno - FIRST_PSEUDO_REGISTER);
6577 /* We reached the start of the current basic block. */
6578 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
6579 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
6581 /* We reached the beginning of the current block -- do
6582 rest of spliting in the current BB. */
6583 to_process = df_get_live_in (curr_bb);
6584 if (BLOCK_FOR_INSN (head) != curr_bb)
6586 /* We are somewhere in the middle of EBB. */
6587 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
6588 curr_bb, &temp_bitmap);
6589 to_process = &temp_bitmap;
6591 head_p = true;
6592 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6594 if ((int) j >= lra_constraint_new_regno_start)
6595 break;
6596 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6597 && usage_insns[j].check == curr_usage_insns_check
6598 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
6600 if (need_for_split_p (potential_reload_hard_regs, j))
6602 if (lra_dump_file != NULL && head_p)
6604 fprintf (lra_dump_file,
6605 " ----------------------------------\n");
6606 head_p = false;
6608 if (split_reg (false, j, bb_note (curr_bb),
6609 next_usage_insns, NULL))
6610 change_p = true;
6612 usage_insns[j].check = 0;
6617 return change_p;
6620 /* This value affects EBB forming. If probability of edge from EBB to
6621 a BB is not greater than the following value, we don't add the BB
6622 to EBB. */
6623 #define EBB_PROBABILITY_CUTOFF \
6624 ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
6626 /* Current number of inheritance/split iteration. */
6627 int lra_inheritance_iter;
6629 /* Entry function for inheritance/split pass. */
6630 void
6631 lra_inheritance (void)
6633 int i;
6634 basic_block bb, start_bb;
6635 edge e;
6637 lra_inheritance_iter++;
6638 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6639 return;
6640 timevar_push (TV_LRA_INHERITANCE);
6641 if (lra_dump_file != NULL)
6642 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
6643 lra_inheritance_iter);
6644 curr_usage_insns_check = 0;
6645 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
6646 for (i = 0; i < lra_constraint_new_regno_start; i++)
6647 usage_insns[i].check = 0;
6648 bitmap_initialize (&check_only_regs, &reg_obstack);
6649 bitmap_initialize (&invalid_invariant_regs, &reg_obstack);
6650 bitmap_initialize (&live_regs, &reg_obstack);
6651 bitmap_initialize (&temp_bitmap, &reg_obstack);
6652 bitmap_initialize (&ebb_global_regs, &reg_obstack);
6653 FOR_EACH_BB_FN (bb, cfun)
6655 start_bb = bb;
6656 if (lra_dump_file != NULL)
6657 fprintf (lra_dump_file, "EBB");
6658 /* Form a EBB starting with BB. */
6659 bitmap_clear (&ebb_global_regs);
6660 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
6661 for (;;)
6663 if (lra_dump_file != NULL)
6664 fprintf (lra_dump_file, " %d", bb->index);
6665 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
6666 || LABEL_P (BB_HEAD (bb->next_bb)))
6667 break;
6668 e = find_fallthru_edge (bb->succs);
6669 if (! e)
6670 break;
6671 if (e->probability.initialized_p ()
6672 && e->probability.to_reg_br_prob_base () < EBB_PROBABILITY_CUTOFF)
6673 break;
6674 bb = bb->next_bb;
6676 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
6677 if (lra_dump_file != NULL)
6678 fprintf (lra_dump_file, "\n");
6679 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
6680 /* Remember that the EBB head and tail can change in
6681 inherit_in_ebb. */
6682 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
6684 bitmap_release (&ebb_global_regs);
6685 bitmap_release (&temp_bitmap);
6686 bitmap_release (&live_regs);
6687 bitmap_release (&invalid_invariant_regs);
6688 bitmap_release (&check_only_regs);
6689 free (usage_insns);
6691 timevar_pop (TV_LRA_INHERITANCE);
6696 /* This page contains code to undo failed inheritance/split
6697 transformations. */
6699 /* Current number of iteration undoing inheritance/split. */
6700 int lra_undo_inheritance_iter;
6702 /* Fix BB live info LIVE after removing pseudos created on pass doing
6703 inheritance/split which are REMOVED_PSEUDOS. */
6704 static void
6705 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
6707 unsigned int regno;
6708 bitmap_iterator bi;
6710 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
6711 if (bitmap_clear_bit (live, regno)
6712 && REG_P (lra_reg_info[regno].restore_rtx))
6713 bitmap_set_bit (live, REGNO (lra_reg_info[regno].restore_rtx));
6716 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6717 number. */
6718 static int
6719 get_regno (rtx reg)
6721 if (GET_CODE (reg) == SUBREG)
6722 reg = SUBREG_REG (reg);
6723 if (REG_P (reg))
6724 return REGNO (reg);
6725 return -1;
6728 /* Delete a move INSN with destination reg DREGNO and a previous
6729 clobber insn with the same regno. The inheritance/split code can
6730 generate moves with preceding clobber and when we delete such moves
6731 we should delete the clobber insn too to keep the correct life
6732 info. */
6733 static void
6734 delete_move_and_clobber (rtx_insn *insn, int dregno)
6736 rtx_insn *prev_insn = PREV_INSN (insn);
6738 lra_set_insn_deleted (insn);
6739 lra_assert (dregno >= 0);
6740 if (prev_insn != NULL && NONDEBUG_INSN_P (prev_insn)
6741 && GET_CODE (PATTERN (prev_insn)) == CLOBBER
6742 && dregno == get_regno (XEXP (PATTERN (prev_insn), 0)))
6743 lra_set_insn_deleted (prev_insn);
6746 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6747 return true if we did any change. The undo transformations for
6748 inheritance looks like
6749 i <- i2
6750 p <- i => p <- i2
6751 or removing
6752 p <- i, i <- p, and i <- i3
6753 where p is original pseudo from which inheritance pseudo i was
6754 created, i and i3 are removed inheritance pseudos, i2 is another
6755 not removed inheritance pseudo. All split pseudos or other
6756 occurrences of removed inheritance pseudos are changed on the
6757 corresponding original pseudos.
6759 The function also schedules insns changed and created during
6760 inheritance/split pass for processing by the subsequent constraint
6761 pass. */
6762 static bool
6763 remove_inheritance_pseudos (bitmap remove_pseudos)
6765 basic_block bb;
6766 int regno, sregno, prev_sregno, dregno;
6767 rtx restore_rtx;
6768 rtx set, prev_set;
6769 rtx_insn *prev_insn;
6770 bool change_p, done_p;
6772 change_p = ! bitmap_empty_p (remove_pseudos);
6773 /* We cannot finish the function right away if CHANGE_P is true
6774 because we need to marks insns affected by previous
6775 inheritance/split pass for processing by the subsequent
6776 constraint pass. */
6777 FOR_EACH_BB_FN (bb, cfun)
6779 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
6780 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
6781 FOR_BB_INSNS_REVERSE (bb, curr_insn)
6783 if (! INSN_P (curr_insn))
6784 continue;
6785 done_p = false;
6786 sregno = dregno = -1;
6787 if (change_p && NONDEBUG_INSN_P (curr_insn)
6788 && (set = single_set (curr_insn)) != NULL_RTX)
6790 dregno = get_regno (SET_DEST (set));
6791 sregno = get_regno (SET_SRC (set));
6794 if (sregno >= 0 && dregno >= 0)
6796 if (bitmap_bit_p (remove_pseudos, dregno)
6797 && ! REG_P (lra_reg_info[dregno].restore_rtx))
6799 /* invariant inheritance pseudo <- original pseudo */
6800 if (lra_dump_file != NULL)
6802 fprintf (lra_dump_file, " Removing invariant inheritance:\n");
6803 dump_insn_slim (lra_dump_file, curr_insn);
6804 fprintf (lra_dump_file, "\n");
6806 delete_move_and_clobber (curr_insn, dregno);
6807 done_p = true;
6809 else if (bitmap_bit_p (remove_pseudos, sregno)
6810 && ! REG_P (lra_reg_info[sregno].restore_rtx))
6812 /* reload pseudo <- invariant inheritance pseudo */
6813 start_sequence ();
6814 /* We cannot just change the source. It might be
6815 an insn different from the move. */
6816 emit_insn (lra_reg_info[sregno].restore_rtx);
6817 rtx_insn *new_insns = get_insns ();
6818 end_sequence ();
6819 lra_assert (single_set (new_insns) != NULL
6820 && SET_DEST (set) == SET_DEST (single_set (new_insns)));
6821 lra_process_new_insns (curr_insn, NULL, new_insns,
6822 "Changing reload<-invariant inheritance");
6823 delete_move_and_clobber (curr_insn, dregno);
6824 done_p = true;
6826 else if ((bitmap_bit_p (remove_pseudos, sregno)
6827 && (get_regno (lra_reg_info[sregno].restore_rtx) == dregno
6828 || (bitmap_bit_p (remove_pseudos, dregno)
6829 && get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6830 && (get_regno (lra_reg_info[sregno].restore_rtx)
6831 == get_regno (lra_reg_info[dregno].restore_rtx)))))
6832 || (bitmap_bit_p (remove_pseudos, dregno)
6833 && get_regno (lra_reg_info[dregno].restore_rtx) == sregno))
6834 /* One of the following cases:
6835 original <- removed inheritance pseudo
6836 removed inherit pseudo <- another removed inherit pseudo
6837 removed inherit pseudo <- original pseudo
6839 removed_split_pseudo <- original_reg
6840 original_reg <- removed_split_pseudo */
6842 if (lra_dump_file != NULL)
6844 fprintf (lra_dump_file, " Removing %s:\n",
6845 bitmap_bit_p (&lra_split_regs, sregno)
6846 || bitmap_bit_p (&lra_split_regs, dregno)
6847 ? "split" : "inheritance");
6848 dump_insn_slim (lra_dump_file, curr_insn);
6850 delete_move_and_clobber (curr_insn, dregno);
6851 done_p = true;
6853 else if (bitmap_bit_p (remove_pseudos, sregno)
6854 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
6856 /* Search the following pattern:
6857 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6858 original_pseudo <- inherit_or_split_pseudo1
6859 where the 2nd insn is the current insn and
6860 inherit_or_split_pseudo2 is not removed. If it is found,
6861 change the current insn onto:
6862 original_pseudo <- inherit_or_split_pseudo2. */
6863 for (prev_insn = PREV_INSN (curr_insn);
6864 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
6865 prev_insn = PREV_INSN (prev_insn))
6867 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
6868 && (prev_set = single_set (prev_insn)) != NULL_RTX
6869 /* There should be no subregs in insn we are
6870 searching because only the original reg might
6871 be in subreg when we changed the mode of
6872 load/store for splitting. */
6873 && REG_P (SET_DEST (prev_set))
6874 && REG_P (SET_SRC (prev_set))
6875 && (int) REGNO (SET_DEST (prev_set)) == sregno
6876 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
6877 >= FIRST_PSEUDO_REGISTER)
6878 && (lra_reg_info[prev_sregno].restore_rtx == NULL_RTX
6880 /* As we consider chain of inheritance or
6881 splitting described in above comment we should
6882 check that sregno and prev_sregno were
6883 inheritance/split pseudos created from the
6884 same original regno. */
6885 (get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6886 && (get_regno (lra_reg_info[sregno].restore_rtx)
6887 == get_regno (lra_reg_info[prev_sregno].restore_rtx))))
6888 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
6890 lra_assert (GET_MODE (SET_SRC (prev_set))
6891 == GET_MODE (regno_reg_rtx[sregno]));
6892 /* Although we have a single set, the insn can
6893 contain more one sregno register occurrence
6894 as a source. Change all occurrences. */
6895 lra_substitute_pseudo_within_insn (curr_insn, sregno,
6896 SET_SRC (prev_set),
6897 false);
6898 /* As we are finishing with processing the insn
6899 here, check the destination too as it might
6900 inheritance pseudo for another pseudo. */
6901 if (bitmap_bit_p (remove_pseudos, dregno)
6902 && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
6903 && (restore_rtx
6904 = lra_reg_info[dregno].restore_rtx) != NULL_RTX)
6906 if (GET_CODE (SET_DEST (set)) == SUBREG)
6907 SUBREG_REG (SET_DEST (set)) = restore_rtx;
6908 else
6909 SET_DEST (set) = restore_rtx;
6911 lra_push_insn_and_update_insn_regno_info (curr_insn);
6912 lra_set_used_insn_alternative_by_uid
6913 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
6914 done_p = true;
6915 if (lra_dump_file != NULL)
6917 fprintf (lra_dump_file, " Change reload insn:\n");
6918 dump_insn_slim (lra_dump_file, curr_insn);
6923 if (! done_p)
6925 struct lra_insn_reg *reg;
6926 bool restored_regs_p = false;
6927 bool kept_regs_p = false;
6929 curr_id = lra_get_insn_recog_data (curr_insn);
6930 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6932 regno = reg->regno;
6933 restore_rtx = lra_reg_info[regno].restore_rtx;
6934 if (restore_rtx != NULL_RTX)
6936 if (change_p && bitmap_bit_p (remove_pseudos, regno))
6938 lra_substitute_pseudo_within_insn
6939 (curr_insn, regno, restore_rtx, false);
6940 restored_regs_p = true;
6942 else
6943 kept_regs_p = true;
6946 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
6948 /* The instruction has changed since the previous
6949 constraints pass. */
6950 lra_push_insn_and_update_insn_regno_info (curr_insn);
6951 lra_set_used_insn_alternative_by_uid
6952 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
6954 else if (restored_regs_p)
6955 /* The instruction has been restored to the form that
6956 it had during the previous constraints pass. */
6957 lra_update_insn_regno_info (curr_insn);
6958 if (restored_regs_p && lra_dump_file != NULL)
6960 fprintf (lra_dump_file, " Insn after restoring regs:\n");
6961 dump_insn_slim (lra_dump_file, curr_insn);
6966 return change_p;
6969 /* If optional reload pseudos failed to get a hard register or was not
6970 inherited, it is better to remove optional reloads. We do this
6971 transformation after undoing inheritance to figure out necessity to
6972 remove optional reloads easier. Return true if we do any
6973 change. */
6974 static bool
6975 undo_optional_reloads (void)
6977 bool change_p, keep_p;
6978 unsigned int regno, uid;
6979 bitmap_iterator bi, bi2;
6980 rtx_insn *insn;
6981 rtx set, src, dest;
6982 auto_bitmap removed_optional_reload_pseudos (&reg_obstack);
6984 bitmap_copy (removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
6985 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6987 keep_p = false;
6988 /* Keep optional reloads from previous subpasses. */
6989 if (lra_reg_info[regno].restore_rtx == NULL_RTX
6990 /* If the original pseudo changed its allocation, just
6991 removing the optional pseudo is dangerous as the original
6992 pseudo will have longer live range. */
6993 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] >= 0)
6994 keep_p = true;
6995 else if (reg_renumber[regno] >= 0)
6996 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
6998 insn = lra_insn_recog_data[uid]->insn;
6999 if ((set = single_set (insn)) == NULL_RTX)
7000 continue;
7001 src = SET_SRC (set);
7002 dest = SET_DEST (set);
7003 if (! REG_P (src) || ! REG_P (dest))
7004 continue;
7005 if (REGNO (dest) == regno
7006 /* Ignore insn for optional reloads itself. */
7007 && REGNO (lra_reg_info[regno].restore_rtx) != REGNO (src)
7008 /* Check only inheritance on last inheritance pass. */
7009 && (int) REGNO (src) >= new_regno_start
7010 /* Check that the optional reload was inherited. */
7011 && bitmap_bit_p (&lra_inheritance_pseudos, REGNO (src)))
7013 keep_p = true;
7014 break;
7017 if (keep_p)
7019 bitmap_clear_bit (removed_optional_reload_pseudos, regno);
7020 if (lra_dump_file != NULL)
7021 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
7024 change_p = ! bitmap_empty_p (removed_optional_reload_pseudos);
7025 auto_bitmap insn_bitmap (&reg_obstack);
7026 EXECUTE_IF_SET_IN_BITMAP (removed_optional_reload_pseudos, 0, regno, bi)
7028 if (lra_dump_file != NULL)
7029 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
7030 bitmap_copy (insn_bitmap, &lra_reg_info[regno].insn_bitmap);
7031 EXECUTE_IF_SET_IN_BITMAP (insn_bitmap, 0, uid, bi2)
7033 insn = lra_insn_recog_data[uid]->insn;
7034 if ((set = single_set (insn)) != NULL_RTX)
7036 src = SET_SRC (set);
7037 dest = SET_DEST (set);
7038 if (REG_P (src) && REG_P (dest)
7039 && ((REGNO (src) == regno
7040 && (REGNO (lra_reg_info[regno].restore_rtx)
7041 == REGNO (dest)))
7042 || (REGNO (dest) == regno
7043 && (REGNO (lra_reg_info[regno].restore_rtx)
7044 == REGNO (src)))))
7046 if (lra_dump_file != NULL)
7048 fprintf (lra_dump_file, " Deleting move %u\n",
7049 INSN_UID (insn));
7050 dump_insn_slim (lra_dump_file, insn);
7052 delete_move_and_clobber (insn, REGNO (dest));
7053 continue;
7055 /* We should not worry about generation memory-memory
7056 moves here as if the corresponding inheritance did
7057 not work (inheritance pseudo did not get a hard reg),
7058 we remove the inheritance pseudo and the optional
7059 reload. */
7061 lra_substitute_pseudo_within_insn
7062 (insn, regno, lra_reg_info[regno].restore_rtx, false);
7063 lra_update_insn_regno_info (insn);
7064 if (lra_dump_file != NULL)
7066 fprintf (lra_dump_file,
7067 " Restoring original insn:\n");
7068 dump_insn_slim (lra_dump_file, insn);
7072 /* Clear restore_regnos. */
7073 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
7074 lra_reg_info[regno].restore_rtx = NULL_RTX;
7075 return change_p;
7078 /* Entry function for undoing inheritance/split transformation. Return true
7079 if we did any RTL change in this pass. */
7080 bool
7081 lra_undo_inheritance (void)
7083 unsigned int regno;
7084 int hard_regno;
7085 int n_all_inherit, n_inherit, n_all_split, n_split;
7086 rtx restore_rtx;
7087 bitmap_iterator bi;
7088 bool change_p;
7090 lra_undo_inheritance_iter++;
7091 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
7092 return false;
7093 if (lra_dump_file != NULL)
7094 fprintf (lra_dump_file,
7095 "\n********** Undoing inheritance #%d: **********\n\n",
7096 lra_undo_inheritance_iter);
7097 auto_bitmap remove_pseudos (&reg_obstack);
7098 n_inherit = n_all_inherit = 0;
7099 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7100 if (lra_reg_info[regno].restore_rtx != NULL_RTX)
7102 n_all_inherit++;
7103 if (reg_renumber[regno] < 0
7104 /* If the original pseudo changed its allocation, just
7105 removing inheritance is dangerous as for changing
7106 allocation we used shorter live-ranges. */
7107 && (! REG_P (lra_reg_info[regno].restore_rtx)
7108 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] < 0))
7109 bitmap_set_bit (remove_pseudos, regno);
7110 else
7111 n_inherit++;
7113 if (lra_dump_file != NULL && n_all_inherit != 0)
7114 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
7115 n_inherit, n_all_inherit,
7116 (double) n_inherit / n_all_inherit * 100);
7117 n_split = n_all_split = 0;
7118 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7119 if ((restore_rtx = lra_reg_info[regno].restore_rtx) != NULL_RTX)
7121 int restore_regno = REGNO (restore_rtx);
7123 n_all_split++;
7124 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
7125 ? reg_renumber[restore_regno] : restore_regno);
7126 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
7127 bitmap_set_bit (remove_pseudos, regno);
7128 else
7130 n_split++;
7131 if (lra_dump_file != NULL)
7132 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
7133 regno, restore_regno);
7136 if (lra_dump_file != NULL && n_all_split != 0)
7137 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
7138 n_split, n_all_split,
7139 (double) n_split / n_all_split * 100);
7140 change_p = remove_inheritance_pseudos (remove_pseudos);
7141 /* Clear restore_regnos. */
7142 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7143 lra_reg_info[regno].restore_rtx = NULL_RTX;
7144 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7145 lra_reg_info[regno].restore_rtx = NULL_RTX;
7146 change_p = undo_optional_reloads () || change_p;
7147 return change_p;