1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* This program is used to produce insn-recog.c, which contains a
22 function called `recog' plus its subroutines. These functions
23 contain a decision tree that recognizes whether an rtx, the
24 argument given to recog, is a valid instruction.
26 recog returns -1 if the rtx is not valid. If the rtx is valid,
27 recog returns a nonnegative number which is the insn code number
28 for the pattern that matched. This is the same as the order in the
29 machine description of the entry that matched. This number can be
30 used as an index into various insn_* tables, such as insn_template,
31 insn_outfun, and insn_n_operands (found in insn-output.c).
33 The third argument to recog is an optional pointer to an int. If
34 present, recog will accept a pattern if it matches except for
35 missing CLOBBER expressions at the end. In that case, the value
36 pointed to by the optional pointer will be set to the number of
37 CLOBBERs that need to be added (it should be initialized to zero by
38 the caller). If it is set nonzero, the caller should allocate a
39 PARALLEL of the appropriate size, copy the initial entries, and
40 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
42 This program also generates the function `split_insns', which
43 returns 0 if the rtl could not be split, or it returns the split
46 This program also generates the function `peephole2_insns', which
47 returns 0 if the rtl could not be matched. If there was a match,
48 the new rtl is returned in an INSN list, and LAST_INSN will point
49 to the last recognized insn in the old sequence.
52 At a high level, the algorithm used in this file is as follows:
54 1. Build up a decision tree for each routine, using the following
55 approach to matching an rtx:
57 - First determine the "shape" of the rtx, based on GET_CODE,
58 XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs
59 since SET_SRCs tend to be more distinctive. It examines other
60 operands in numerical order, since the canonicalization rules
61 prefer putting complex operands of commutative operators first.
63 - Next check modes and predicates. This phase examines all
64 operands in numerical order, even for SETs, since the mode of a
65 SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
66 for constant integers.
68 - Next check match_dups.
70 - Finally check the C condition and (where appropriate) pnum_clobbers.
72 2. Try to optimize the tree by removing redundant tests, CSEing tests,
73 folding tests together, etc.
75 3. Look for common subtrees and split them out into "pattern" routines.
76 These common subtrees can be identical or they can differ in mode,
77 code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
78 In the latter case the users of the pattern routine pass the
79 appropriate mode, etc., as argument. For example, if two patterns
82 (plus:SI (match_operand:SI 1 "register_operand")
83 (match_operand:SI 2 "register_operand"))
85 we can split the associated matching code out into a subroutine.
86 If a pattern contains:
88 (minus:DI (match_operand:DI 1 "register_operand")
89 (match_operand:DI 2 "register_operand"))
91 then we can consider using the same matching routine for both
92 the plus and minus expressions, passing PLUS and SImode in the
93 former case and MINUS and DImode in the latter case.
95 The main aim of this phase is to reduce the compile time of the
96 insn-recog.c code and to reduce the amount of object code in
99 4. Split the matching trees into functions, trying to limit the
100 size of each function to a sensible amount.
102 Again, the main aim of this phase is to reduce the compile time
103 of insn-recog.c. (It doesn't help with the size of insn-recog.o.)
105 5. Write out C++ code for each function. */
108 #define INCLUDE_ALGORITHM
110 #include "coretypes.h"
115 #include "gensupport.h"
117 #undef GENERATOR_FILE
119 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
122 FIRST_GENERATOR_RTX_CODE
124 #define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
125 #define GENERATOR_FILE 1
127 /* Debugging variables to control which optimizations are performed.
128 Note that disabling merge_states_p leads to very large output. */
129 static const bool merge_states_p
= true;
130 static const bool collapse_optional_decisions_p
= true;
131 static const bool cse_tests_p
= true;
132 static const bool simplify_tests_p
= true;
133 static const bool use_operand_variables_p
= true;
134 static const bool use_subroutines_p
= true;
135 static const bool use_pattern_routines_p
= true;
137 /* Whether to add comments for optional tests that we decided to keep.
138 Can be useful when debugging the generator itself but is noise when
139 debugging the generated code. */
140 static const bool mark_optional_transitions_p
= false;
142 /* Whether pattern routines should calculate positions relative to their
143 rtx parameter rather than use absolute positions. This e.g. allows
144 a pattern routine to be shared between a plain SET and a PARALLEL
147 In principle it sounds like this should be useful, especially for
148 recog_for_combine, where the plain SET form is generated automatically
149 from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't
150 seem to help much and leads to slightly bigger object files. */
151 static const bool relative_patterns_p
= false;
153 /* Whether pattern routines should be allowed to test whether pnum_clobbers
154 is null. This requires passing pnum_clobbers around as a parameter. */
155 static const bool pattern_have_num_clobbers_p
= true;
157 /* Whether pattern routines should be allowed to test .md file C conditions.
158 This requires passing insn around as a parameter, in case the C
159 condition refers to it. In practice this tends to lead to bigger
161 static const bool pattern_c_test_p
= false;
163 /* Whether to require each parameter passed to a pattern routine to be
164 unique. Disabling this check for example allows unary operators with
165 matching modes (like NEG) and unary operators with mismatched modes
166 (like ZERO_EXTEND) to be matched by a single pattern. However, we then
167 often have cases where the same value is passed too many times. */
168 static const bool force_unique_params_p
= true;
170 /* The maximum (approximate) depth of block nesting that an individual
171 routine or subroutine should have. This limit is about keeping the
172 output readable rather than reducing compile time. */
173 static const unsigned int MAX_DEPTH
= 6;
175 /* The minimum number of pseudo-statements that a state must have before
176 we split it out into a subroutine. */
177 static const unsigned int MIN_NUM_STATEMENTS
= 5;
179 /* The number of pseudo-statements a state can have before we consider
180 splitting out substates into subroutines. This limit is about avoiding
181 compile-time problems with very big functions (and also about keeping
182 functions within --param optimization limits, etc.). */
183 static const unsigned int MAX_NUM_STATEMENTS
= 200;
185 /* The minimum number of pseudo-statements that can be used in a pattern
187 static const unsigned int MIN_COMBINE_COST
= 4;
189 /* The maximum number of arguments that a pattern routine can have.
190 The idea is to prevent one pattern getting a ridiculous number of
191 arguments when it would be more beneficial to have a separate pattern
193 static const unsigned int MAX_PATTERN_PARAMS
= 5;
195 /* The maximum operand number plus one. */
198 /* Ways of obtaining an rtx to be tested. */
200 /* PATTERN (peep2_next_insn (ARG)). */
203 /* XEXP (BASE, ARG). */
206 /* XVECEXP (BASE, 0, ARG). */
210 /* The position of an rtx relative to X0. Each useful position is
211 represented by exactly one instance of this structure. */
214 /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
215 struct position
*base
;
217 /* A position with the same BASE and TYPE, but with the next value
219 struct position
*next
;
221 /* A list of all POS_XEXP positions that use this one as their base,
222 chained by NEXT fields. The first entry represents XEXP (this, 0),
223 the second represents XEXP (this, 1), and so on. */
224 struct position
*xexps
;
226 /* A list of POS_XVECEXP0 positions that use this one as their base,
227 chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
228 the second represents XVECEXP (this, 0, 1), and so on. */
229 struct position
*xvecexp0s
;
231 /* The type of position. */
232 enum position_type type
;
234 /* The argument to TYPE (shown as ARG in the position_type comments). */
237 /* The instruction to which the position belongs. */
238 unsigned int insn_id
;
240 /* The depth of this position relative to the instruction pattern.
241 E.g. if the instruction pattern is a SET, the SET itself has a
242 depth of 0 while the SET_DEST and SET_SRC have depths of 1. */
245 /* A unique identifier for this position. */
250 SUBPATTERN
, RECOG
, SPLIT
, PEEPHOLE2
253 /* The root position (x0). */
254 static struct position root_pos
;
256 /* The number of positions created. Also one higher than the maximum
258 static unsigned int num_positions
= 1;
260 /* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
261 since we are given that instruction's pattern as x0. */
262 static struct position
*peep2_insn_pos_list
= &root_pos
;
264 /* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
265 points to where the unique object that represents the position
266 should be stored. Create the object if it doesn't already exist,
267 otherwise reuse the object that is already there. */
269 static struct position
*
270 next_position (struct position
**next_ptr
, struct position
*base
,
271 enum position_type type
, int arg
)
273 struct position
*pos
;
278 pos
= XCNEW (struct position
);
281 if (type
== POS_PEEP2_INSN
)
285 pos
->depth
= base
->depth
;
290 pos
->insn_id
= base
->insn_id
;
291 pos
->depth
= base
->depth
+ 1;
293 pos
->id
= num_positions
++;
299 /* Compare positions POS1 and POS2 lexicographically. */
302 compare_positions (struct position
*pos1
, struct position
*pos2
)
306 diff
= pos1
->depth
- pos2
->depth
;
310 while (pos1
->depth
!= pos2
->depth
);
314 while (pos1
->depth
!= pos2
->depth
);
317 diff
= (int) pos1
->type
- (int) pos2
->type
;
319 diff
= pos1
->arg
- pos2
->arg
;
326 /* Return the most deeply-nested position that is common to both
327 POS1 and POS2. If the positions are from different instructions,
328 return the one with the lowest insn_id. */
330 static struct position
*
331 common_position (struct position
*pos1
, struct position
*pos2
)
333 if (pos1
->insn_id
!= pos2
->insn_id
)
334 return pos1
->insn_id
< pos2
->insn_id
? pos1
: pos2
;
335 if (pos1
->depth
> pos2
->depth
)
336 std::swap (pos1
, pos2
);
337 while (pos1
->depth
!= pos2
->depth
)
347 /* Search for and return operand N, stop when reaching node STOP. */
350 find_operand (rtx pattern
, int n
, rtx stop
)
360 code
= GET_CODE (pattern
);
361 if ((code
== MATCH_SCRATCH
362 || code
== MATCH_OPERAND
363 || code
== MATCH_OPERATOR
364 || code
== MATCH_PARALLEL
)
365 && XINT (pattern
, 0) == n
)
368 fmt
= GET_RTX_FORMAT (code
);
369 len
= GET_RTX_LENGTH (code
);
370 for (i
= 0; i
< len
; i
++)
375 if ((r
= find_operand (XEXP (pattern
, i
), n
, stop
)) != NULL_RTX
)
380 if (! XVEC (pattern
, i
))
385 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
386 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
, stop
))
391 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
402 /* Search for and return operand M, such that it has a matching
403 constraint for operand N. */
406 find_matching_operand (rtx pattern
, int n
)
413 code
= GET_CODE (pattern
);
414 if (code
== MATCH_OPERAND
415 && (XSTR (pattern
, 2)[0] == '0' + n
416 || (XSTR (pattern
, 2)[0] == '%'
417 && XSTR (pattern
, 2)[1] == '0' + n
)))
420 fmt
= GET_RTX_FORMAT (code
);
421 len
= GET_RTX_LENGTH (code
);
422 for (i
= 0; i
< len
; i
++)
427 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
432 if (! XVEC (pattern
, i
))
437 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
438 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
442 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
453 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
454 don't use the MATCH_OPERAND constraint, only the predicate.
455 This is confusing to folks doing new ports, so help them
456 not make the mistake. */
459 constraints_supported_in_insn_p (rtx insn
)
461 return !(GET_CODE (insn
) == DEFINE_EXPAND
462 || GET_CODE (insn
) == DEFINE_SPLIT
463 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
);
466 /* Return the name of the predicate matched by MATCH_RTX. */
469 predicate_name (rtx match_rtx
)
471 if (GET_CODE (match_rtx
) == MATCH_SCRATCH
)
472 return "scratch_operand";
474 return XSTR (match_rtx
, 1);
477 /* Return true if OPERAND is a MATCH_OPERAND using a special predicate
481 special_predicate_operand_p (rtx operand
)
483 if (GET_CODE (operand
) == MATCH_OPERAND
)
485 const char *pred_name
= predicate_name (operand
);
486 if (pred_name
[0] != 0)
488 const struct pred_data
*pred
;
490 pred
= lookup_predicate (pred_name
);
491 return pred
!= NULL
&& pred
->special
;
498 /* Check for various errors in PATTERN, which is part of INFO.
499 SET is nonnull for a destination, and is the complete set pattern.
500 SET_CODE is '=' for normal sets, and '+' within a context that
501 requires in-out constraints. */
504 validate_pattern (rtx pattern
, md_rtx_info
*info
, rtx set
, int set_code
)
511 code
= GET_CODE (pattern
);
516 const char constraints0
= XSTR (pattern
, 1)[0];
518 if (!constraints_supported_in_insn_p (info
->def
))
522 error_at (info
->loc
, "constraints not supported in %s",
523 GET_RTX_NAME (GET_CODE (info
->def
)));
528 /* If a MATCH_SCRATCH is used in a context requiring an write-only
529 or read/write register, validate that. */
532 && constraints0
!= '='
533 && constraints0
!= '+')
535 error_at (info
->loc
, "operand %d missing output reload",
543 if (find_operand (info
->def
, XINT (pattern
, 0), pattern
) == pattern
)
544 error_at (info
->loc
, "operand %i duplicated before defined",
550 const char *pred_name
= XSTR (pattern
, 1);
551 const struct pred_data
*pred
;
554 c_test
= get_c_test (info
->def
);
556 if (pred_name
[0] != 0)
558 pred
= lookup_predicate (pred_name
);
560 error_at (info
->loc
, "unknown predicate '%s'", pred_name
);
565 if (code
== MATCH_OPERAND
)
567 const char *constraints
= XSTR (pattern
, 2);
568 const char constraints0
= constraints
[0];
570 if (!constraints_supported_in_insn_p (info
->def
))
574 error_at (info
->loc
, "constraints not supported in %s",
575 GET_RTX_NAME (GET_CODE (info
->def
)));
579 /* A MATCH_OPERAND that is a SET should have an output reload. */
580 else if (set
&& constraints0
)
584 if (constraints0
== '+')
586 /* If we've only got an output reload for this operand,
587 we'd better have a matching input operand. */
588 else if (constraints0
== '='
589 && find_matching_operand (info
->def
,
593 error_at (info
->loc
, "operand %d missing in-out reload",
596 else if (constraints0
!= '=' && constraints0
!= '+')
597 error_at (info
->loc
, "operand %d missing output reload",
601 /* For matching constraint in MATCH_OPERAND, the digit must be a
602 smaller number than the number of the operand that uses it in the
606 while (constraints
[0]
607 && (constraints
[0] == ' ' || constraints
[0] == ','))
612 if (constraints
[0] >= '0' && constraints
[0] <= '9')
616 sscanf (constraints
, "%d", &val
);
617 if (val
>= XINT (pattern
, 0))
618 error_at (info
->loc
, "constraint digit %d is not"
619 " smaller than operand %d",
620 val
, XINT (pattern
, 0));
623 while (constraints
[0] && constraints
[0] != ',')
628 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
629 while not likely to occur at runtime, results in less efficient
630 code from insn-recog.c. */
631 if (set
&& pred
&& pred
->allows_non_lvalue
)
632 error_at (info
->loc
, "destination operand %d allows non-lvalue",
635 /* A modeless MATCH_OPERAND can be handy when we can check for
636 multiple modes in the c_test. In most other cases, it is a
637 mistake. Only DEFINE_INSN is eligible, since SPLIT and
638 PEEP2 can FAIL within the output pattern. Exclude special
639 predicates, which check the mode themselves. Also exclude
640 predicates that allow only constants. Exclude the SET_DEST
641 of a call instruction, as that is a common idiom. */
643 if (GET_MODE (pattern
) == VOIDmode
644 && code
== MATCH_OPERAND
645 && GET_CODE (info
->def
) == DEFINE_INSN
648 && pred
->allows_non_const
649 && strstr (c_test
, "operands") == NULL
651 && GET_CODE (set
) == SET
652 && GET_CODE (SET_SRC (set
)) == CALL
))
653 message_at (info
->loc
, "warning: operand %d missing mode?",
660 machine_mode dmode
, smode
;
663 dest
= SET_DEST (pattern
);
664 src
= SET_SRC (pattern
);
666 /* STRICT_LOW_PART is a wrapper. Its argument is the real
667 destination, and it's mode should match the source. */
668 if (GET_CODE (dest
) == STRICT_LOW_PART
)
669 dest
= XEXP (dest
, 0);
671 /* Find the referent for a DUP. */
673 if (GET_CODE (dest
) == MATCH_DUP
674 || GET_CODE (dest
) == MATCH_OP_DUP
675 || GET_CODE (dest
) == MATCH_PAR_DUP
)
676 dest
= find_operand (info
->def
, XINT (dest
, 0), NULL
);
678 if (GET_CODE (src
) == MATCH_DUP
679 || GET_CODE (src
) == MATCH_OP_DUP
680 || GET_CODE (src
) == MATCH_PAR_DUP
)
681 src
= find_operand (info
->def
, XINT (src
, 0), NULL
);
683 dmode
= GET_MODE (dest
);
684 smode
= GET_MODE (src
);
686 /* Mode checking is not performed for special predicates. */
687 if (special_predicate_operand_p (src
)
688 || special_predicate_operand_p (dest
))
691 /* The operands of a SET must have the same mode unless one
693 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
694 error_at (info
->loc
, "mode mismatch in set: %smode vs %smode",
695 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
697 /* If only one of the operands is VOIDmode, and PC or CC0 is
698 not involved, it's probably a mistake. */
699 else if (dmode
!= smode
700 && GET_CODE (dest
) != PC
701 && GET_CODE (dest
) != CC0
702 && GET_CODE (src
) != PC
703 && GET_CODE (src
) != CC0
704 && !CONST_INT_P (src
)
705 && !CONST_WIDE_INT_P (src
)
706 && GET_CODE (src
) != CALL
)
709 which
= (dmode
== VOIDmode
? "destination" : "source");
710 message_at (info
->loc
, "warning: %s missing a mode?", which
);
713 if (dest
!= SET_DEST (pattern
))
714 validate_pattern (dest
, info
, pattern
, '=');
715 validate_pattern (SET_DEST (pattern
), info
, pattern
, '=');
716 validate_pattern (SET_SRC (pattern
), info
, NULL_RTX
, 0);
722 validate_pattern (SET_DEST (pattern
), info
, pattern
, '=');
726 validate_pattern (XEXP (pattern
, 0), info
, set
, set
? '+' : 0);
727 validate_pattern (XEXP (pattern
, 1), info
, NULL_RTX
, 0);
728 validate_pattern (XEXP (pattern
, 2), info
, NULL_RTX
, 0);
731 case STRICT_LOW_PART
:
732 validate_pattern (XEXP (pattern
, 0), info
, set
, set
? '+' : 0);
736 if (GET_MODE (XEXP (pattern
, 0)) != VOIDmode
)
737 error_at (info
->loc
, "operand to label_ref %smode not VOIDmode",
738 GET_MODE_NAME (GET_MODE (XEXP (pattern
, 0))));
742 if (GET_MODE (pattern
) != VOIDmode
)
744 machine_mode mode
= GET_MODE (pattern
);
745 machine_mode imode
= GET_MODE (XEXP (pattern
, 0));
747 = VECTOR_MODE_P (mode
) ? GET_MODE_INNER (mode
) : mode
;
748 if (GET_CODE (XEXP (pattern
, 1)) == PARALLEL
)
752 if (VECTOR_MODE_P (mode
)
753 && !GET_MODE_NUNITS (mode
).is_constant (&expected
))
755 "vec_select with variable-sized mode %s",
756 GET_MODE_NAME (mode
));
757 else if (XVECLEN (XEXP (pattern
, 1), 0) != expected
)
759 "vec_select parallel with %d elements, expected %d",
760 XVECLEN (XEXP (pattern
, 1), 0), expected
);
761 else if (VECTOR_MODE_P (imode
)
762 && GET_MODE_NUNITS (imode
).is_constant (&nelems
))
765 for (i
= 0; i
< expected
; ++i
)
766 if (CONST_INT_P (XVECEXP (XEXP (pattern
, 1), 0, i
))
767 && (UINTVAL (XVECEXP (XEXP (pattern
, 1), 0, i
))
770 "out of bounds selector %u in vec_select, "
771 "expected at most %u",
773 UINTVAL (XVECEXP (XEXP (pattern
, 1), 0, i
)),
777 if (imode
!= VOIDmode
&& !VECTOR_MODE_P (imode
))
778 error_at (info
->loc
, "%smode of first vec_select operand is not a "
779 "vector mode", GET_MODE_NAME (imode
));
780 else if (imode
!= VOIDmode
&& GET_MODE_INNER (imode
) != emode
)
781 error_at (info
->loc
, "element mode mismatch between vec_select "
782 "%smode and its operand %smode",
783 GET_MODE_NAME (emode
),
784 GET_MODE_NAME (GET_MODE_INNER (imode
)));
792 fmt
= GET_RTX_FORMAT (code
);
793 len
= GET_RTX_LENGTH (code
);
794 for (i
= 0; i
< len
; i
++)
799 validate_pattern (XEXP (pattern
, i
), info
, NULL_RTX
, 0);
803 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
804 validate_pattern (XVECEXP (pattern
, i
, j
), info
, NULL_RTX
, 0);
807 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
816 /* Simple list structure for items of type T, for use when being part
817 of a list is an inherent property of T. T must have members equivalent
818 to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
819 to set the parent list. */
820 template <typename T
>
823 /* A range of linked items. */
830 void set_parent (list_head
*);
835 void push_back (range
);
836 range
remove (range
);
837 void replace (range
, range
);
838 T
*singleton () const;
843 /* Create a range [START_IN, START_IN]. */
845 template <typename T
>
846 list_head
<T
>::range::range (T
*start_in
) : start (start_in
), end (start_in
) {}
848 /* Create a range [START_IN, END_IN], linked by next and prev fields. */
850 template <typename T
>
851 list_head
<T
>::range::range (T
*start_in
, T
*end_in
)
852 : start (start_in
), end (end_in
) {}
854 template <typename T
>
856 list_head
<T
>::range::set_parent (list_head
<T
> *owner
)
858 for (T
*item
= start
; item
!= end
; item
= item
->next
)
859 item
->set_parent (owner
);
860 end
->set_parent (owner
);
863 template <typename T
>
864 list_head
<T
>::list_head () : first (0), last (0) {}
866 /* Add R to the end of the list. */
868 template <typename T
>
870 list_head
<T
>::push_back (range r
)
873 last
->next
= r
.start
;
876 r
.start
->prev
= last
;
881 /* Remove R from the list. R remains valid and can be inserted into
884 template <typename T
>
885 typename list_head
<T
>::range
886 list_head
<T
>::remove (range r
)
889 r
.start
->prev
->next
= r
.end
->next
;
893 r
.end
->next
->prev
= r
.start
->prev
;
895 last
= r
.start
->prev
;
902 /* Replace OLDR with NEWR. OLDR remains valid and can be inserted into
905 template <typename T
>
907 list_head
<T
>::replace (range oldr
, range newr
)
909 newr
.start
->prev
= oldr
.start
->prev
;
910 newr
.end
->next
= oldr
.end
->next
;
912 oldr
.start
->prev
= 0;
916 if (newr
.start
->prev
)
917 newr
.start
->prev
->next
= newr
.start
;
921 newr
.end
->next
->prev
= newr
.end
;
924 newr
.set_parent (this);
927 /* Empty the list and return the previous contents as a range that can
928 be inserted into other lists. */
930 template <typename T
>
931 typename list_head
<T
>::range
932 list_head
<T
>::release ()
934 range
r (first
, last
);
941 /* If the list contains a single item, return that item, otherwise return
944 template <typename T
>
946 list_head
<T
>::singleton () const
948 return first
== last
? first
: 0;
953 /* Describes a possible successful return from a routine. */
954 struct acceptance_type
956 /* The type of routine we're returning from. */
957 routine_type type
: 16;
959 /* True if this structure only really represents a partial match,
960 and if we must call a subroutine of type TYPE to complete the match.
961 In this case we'll call the subroutine and, if it succeeds, return
962 whatever the subroutine returned.
964 False if this structure presents a full match. */
965 unsigned int partial_p
: 1;
969 /* If PARTIAL_P, this is the number of the subroutine to call. */
972 /* Valid if !PARTIAL_P. */
975 /* The identifier of the matching pattern. For SUBPATTERNs this
976 value belongs to an ad-hoc routine-specific enum. For the
977 others it's the number of an .md file pattern. */
981 /* For RECOG, the number of clobbers that must be added to the
982 pattern in order for it to match CODE. */
985 /* For PEEPHOLE2, the number of additional instructions that were
986 included in the optimization. */
994 operator == (const acceptance_type
&a
, const acceptance_type
&b
)
996 if (a
.partial_p
!= b
.partial_p
)
999 return a
.u
.subroutine_id
== b
.u
.subroutine_id
;
1001 return a
.u
.full
.code
== b
.u
.full
.code
;
1005 operator != (const acceptance_type
&a
, const acceptance_type
&b
)
1007 return !operator == (a
, b
);
1010 /* Represents a parameter to a pattern routine. */
1013 /* The C type of parameter. */
1015 /* Represents an invalid parameter. */
1018 /* A machine_mode parameter. */
1021 /* An rtx_code parameter. */
1024 /* An int parameter. */
1027 /* An unsigned int parameter. */
1030 /* A HOST_WIDE_INT parameter. */
1035 parameter (type_enum
, bool, uint64_t);
1037 /* The type of the parameter. */
1040 /* True if the value passed is variable, false if it is constant. */
1043 /* If IS_PARAM, this is the number of the variable passed, for an "i%d"
1044 format string. If !IS_PARAM, this is the constant value passed. */
1048 parameter::parameter ()
1049 : type (UNSET
), is_param (false), value (0) {}
1051 parameter::parameter (type_enum type_in
, bool is_param_in
, uint64_t value_in
)
1052 : type (type_in
), is_param (is_param_in
), value (value_in
) {}
1055 operator == (const parameter
¶m1
, const parameter
¶m2
)
1057 return (param1
.type
== param2
.type
1058 && param1
.is_param
== param2
.is_param
1059 && param1
.value
== param2
.value
);
1063 operator != (const parameter
¶m1
, const parameter
¶m2
)
1065 return !operator == (param1
, param2
);
1068 /* Represents a routine that matches a partial rtx pattern, returning
1069 an ad-hoc enum value on success and -1 on failure. The routine can
1070 be used by any subroutine type. The match can be parameterized by
1071 things like mode, code and UNSPEC number. */
1072 struct pattern_routine
1074 /* The state that implements the pattern. */
1077 /* The deepest root position from which S can access all the rtxes it needs.
1078 This is NULL if the pattern doesn't need an rtx input, usually because
1079 all matching is done on operands[] instead. */
1082 /* A unique identifier for the routine. */
1083 unsigned int pattern_id
;
1085 /* True if the routine takes pnum_clobbers as argument. */
1086 bool pnum_clobbers_p
;
1088 /* True if the routine takes the enclosing instruction as argument. */
1091 /* The types of the other parameters to the routine, if any. */
1092 auto_vec
<parameter::type_enum
, MAX_PATTERN_PARAMS
> param_types
;
1095 /* All defined patterns. */
1096 static vec
<pattern_routine
*> patterns
;
1098 /* Represents one use of a pattern routine. */
1101 /* The pattern routine to use. */
1102 pattern_routine
*routine
;
1104 /* The values to pass as parameters. This vector has the same length
1105 as ROUTINE->PARAM_TYPES. */
1106 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
1109 /* Represents a test performed by a decision. */
1114 /* The types of test that can be performed. Most of them take as input
1115 an rtx X. Some also take as input a transition label LABEL; the others
1116 are booleans for which the transition label is always "true".
1118 The order of the enum isn't important. */
1120 /* Check GET_CODE (X) == LABEL. */
1123 /* Check GET_MODE (X) == LABEL. */
1126 /* Check REGNO (X) == LABEL. */
1129 /* Check known_eq (SUBREG_BYTE (X), LABEL). */
1132 /* Check XINT (X, u.opno) == LABEL. */
1135 /* Check XWINT (X, u.opno) == LABEL. */
1138 /* Check XVECLEN (X, 0) == LABEL. */
1141 /* Check peep2_current_count >= u.min_len. */
1144 /* Check XVECLEN (X, 0) >= u.min_len. */
1147 /* Check whether X is a cached const_int with value u.integer. */
1150 /* Check u.predicate.data (X, u.predicate.mode). */
1153 /* Check rtx_equal_p (X, operands[u.opno]). */
1156 /* Check whether X matches pattern u.pattern. */
1159 /* Check whether pnum_clobbers is nonnull (RECOG only). */
1162 /* Check whether general C test u.string holds. In general the condition
1163 needs access to "insn" and the full operand list. */
1166 /* Execute operands[u.opno] = X. (Always succeeds.) */
1169 /* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT.
1170 May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */
1174 /* The position of rtx X in the above description, relative to the
1175 incoming instruction "insn". The position is null if the test
1176 doesn't take an X as input. */
1179 /* Which element of operands[] already contains POS, or -1 if no element
1180 is known to hold POS. */
1183 /* The type of test and its parameters, as described above. */
1196 const struct pred_data
*data
;
1197 /* True if the mode is taken from a machine_mode parameter
1198 to the routine rather than a constant machine_mode. If true,
1199 MODE is the number of the parameter (for an "i%d" format string),
1200 otherwise it is the mode itself. */
1204 pattern_use
*pattern
;
1206 acceptance_type acceptance
;
1209 static rtx_test
code (position
*);
1210 static rtx_test
mode (position
*);
1211 static rtx_test
regno_field (position
*);
1212 static rtx_test
subreg_field (position
*);
1213 static rtx_test
int_field (position
*, int);
1214 static rtx_test
wide_int_field (position
*, int);
1215 static rtx_test
veclen (position
*);
1216 static rtx_test
peep2_count (int);
1217 static rtx_test
veclen_ge (position
*, int);
1218 static rtx_test
predicate (position
*, const pred_data
*, machine_mode
);
1219 static rtx_test
duplicate (position
*, int);
1220 static rtx_test
pattern (position
*, pattern_use
*);
1221 static rtx_test
have_num_clobbers ();
1222 static rtx_test
c_test (const char *);
1223 static rtx_test
set_op (position
*, int);
1224 static rtx_test
accept (const acceptance_type
&);
1226 bool terminal_p () const;
1227 bool single_outcome_p () const;
1230 rtx_test (position
*, kind_enum
);
1233 rtx_test::rtx_test () {}
1235 rtx_test::rtx_test (position
*pos_in
, kind_enum kind_in
)
1236 : pos (pos_in
), pos_operand (-1), kind (kind_in
) {}
1239 rtx_test::code (position
*pos
)
1241 return rtx_test (pos
, rtx_test::CODE
);
1245 rtx_test::mode (position
*pos
)
1247 return rtx_test (pos
, rtx_test::MODE
);
1251 rtx_test::regno_field (position
*pos
)
1253 rtx_test
res (pos
, rtx_test::REGNO_FIELD
);
1258 rtx_test::subreg_field (position
*pos
)
1260 rtx_test
res (pos
, rtx_test::SUBREG_FIELD
);
1265 rtx_test::int_field (position
*pos
, int opno
)
1267 rtx_test
res (pos
, rtx_test::INT_FIELD
);
1273 rtx_test::wide_int_field (position
*pos
, int opno
)
1275 rtx_test
res (pos
, rtx_test::WIDE_INT_FIELD
);
1281 rtx_test::veclen (position
*pos
)
1283 return rtx_test (pos
, rtx_test::VECLEN
);
1287 rtx_test::peep2_count (int min_len
)
1289 rtx_test
res (0, rtx_test::PEEP2_COUNT
);
1290 res
.u
.min_len
= min_len
;
1295 rtx_test::veclen_ge (position
*pos
, int min_len
)
1297 rtx_test
res (pos
, rtx_test::VECLEN_GE
);
1298 res
.u
.min_len
= min_len
;
1303 rtx_test::predicate (position
*pos
, const struct pred_data
*data
,
1306 rtx_test
res (pos
, rtx_test::PREDICATE
);
1307 res
.u
.predicate
.data
= data
;
1308 res
.u
.predicate
.mode_is_param
= false;
1309 res
.u
.predicate
.mode
= mode
;
1314 rtx_test::duplicate (position
*pos
, int opno
)
1316 rtx_test
res (pos
, rtx_test::DUPLICATE
);
1322 rtx_test::pattern (position
*pos
, pattern_use
*pattern
)
1324 rtx_test
res (pos
, rtx_test::PATTERN
);
1325 res
.u
.pattern
= pattern
;
1330 rtx_test::have_num_clobbers ()
1332 return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS
);
1336 rtx_test::c_test (const char *string
)
1338 rtx_test
res (0, rtx_test::C_TEST
);
1339 res
.u
.string
= string
;
1344 rtx_test::set_op (position
*pos
, int opno
)
1346 rtx_test
res (pos
, rtx_test::SET_OP
);
1352 rtx_test::accept (const acceptance_type
&acceptance
)
1354 rtx_test
res (0, rtx_test::ACCEPT
);
1355 res
.u
.acceptance
= acceptance
;
1359 /* Return true if the test represents an unconditionally successful match. */
1362 rtx_test::terminal_p () const
1364 return kind
== rtx_test::ACCEPT
&& u
.acceptance
.type
!= PEEPHOLE2
;
1367 /* Return true if the test is a boolean that is always true. */
1370 rtx_test::single_outcome_p () const
1372 return terminal_p () || kind
== rtx_test::SET_OP
;
1376 operator == (const rtx_test
&a
, const rtx_test
&b
)
1378 if (a
.pos
!= b
.pos
|| a
.kind
!= b
.kind
)
1382 case rtx_test::CODE
:
1383 case rtx_test::MODE
:
1384 case rtx_test::REGNO_FIELD
:
1385 case rtx_test::SUBREG_FIELD
:
1386 case rtx_test::VECLEN
:
1387 case rtx_test::HAVE_NUM_CLOBBERS
:
1390 case rtx_test::PEEP2_COUNT
:
1391 case rtx_test::VECLEN_GE
:
1392 return a
.u
.min_len
== b
.u
.min_len
;
1394 case rtx_test::INT_FIELD
:
1395 case rtx_test::WIDE_INT_FIELD
:
1396 case rtx_test::DUPLICATE
:
1397 case rtx_test::SET_OP
:
1398 return a
.u
.opno
== b
.u
.opno
;
1400 case rtx_test::SAVED_CONST_INT
:
1401 return (a
.u
.integer
.is_param
== b
.u
.integer
.is_param
1402 && a
.u
.integer
.value
== b
.u
.integer
.value
);
1404 case rtx_test::PREDICATE
:
1405 return (a
.u
.predicate
.data
== b
.u
.predicate
.data
1406 && a
.u
.predicate
.mode_is_param
== b
.u
.predicate
.mode_is_param
1407 && a
.u
.predicate
.mode
== b
.u
.predicate
.mode
);
1409 case rtx_test::PATTERN
:
1410 return (a
.u
.pattern
->routine
== b
.u
.pattern
->routine
1411 && a
.u
.pattern
->params
== b
.u
.pattern
->params
);
1413 case rtx_test::C_TEST
:
1414 return strcmp (a
.u
.string
, b
.u
.string
) == 0;
1416 case rtx_test::ACCEPT
:
1417 return a
.u
.acceptance
== b
.u
.acceptance
;
1423 operator != (const rtx_test
&a
, const rtx_test
&b
)
1425 return !operator == (a
, b
);
1428 /* A simple set of transition labels. Most transitions have a singleton
1429 label, so try to make that case as efficient as possible. */
1430 struct int_set
: public auto_vec
<uint64_t, 1>
1432 typedef uint64_t *iterator
;
1436 int_set (const int_set
&);
1438 int_set
&operator = (const int_set
&);
1444 int_set::int_set () : auto_vec
<uint64_t, 1> () {}
1446 int_set::int_set (uint64_t label
) :
1447 auto_vec
<uint64_t, 1> ()
1452 int_set::int_set (const int_set
&other
) :
1453 auto_vec
<uint64_t, 1> ()
1455 safe_splice (other
);
1459 int_set::operator = (const int_set
&other
)
1462 safe_splice (other
);
1475 return address () + length ();
1479 operator == (const int_set
&a
, const int_set
&b
)
1481 if (a
.length () != b
.length ())
1483 for (unsigned int i
= 0; i
< a
.length (); ++i
)
1490 operator != (const int_set
&a
, const int_set
&b
)
1492 return !operator == (a
, b
);
1497 /* Represents a transition between states, dependent on the result of
1501 transition (const int_set
&, state
*, bool);
1503 void set_parent (list_head
<transition
> *);
1505 /* Links to other transitions for T. Always null for boolean tests. */
1506 transition
*prev
, *next
;
1508 /* The transition should be taken when T has one of these values.
1509 E.g. for rtx_test::CODE this is a set of codes, while for booleans like
1510 rtx_test::PREDICATE it is always a singleton "true". The labels are
1511 sorted in ascending order. */
1514 /* The source decision. */
1517 /* The target state. */
1520 /* True if TO would function correctly even if TEST wasn't performed.
1521 E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
1522 before calling register_operand (x1, SImode), since register_operand
1523 performs its own mode check. However, checking GET_MODE can be a cheap
1524 way of disambiguating SImode and DImode register operands. */
1527 /* True if LABELS contains parameter numbers rather than constants.
1528 E.g. if this is true for a rtx_test::CODE, the label is the number
1529 of an rtx_code parameter rather than an rtx_code itself.
1530 LABELS is always a singleton when this variable is true. */
1534 /* Represents a test and the action that should be taken on the result.
1535 If a transition exists for the test outcome, the machine switches
1536 to the transition's target state. If no suitable transition exists,
1537 the machine either falls through to the next decision or, if there are no
1538 more decisions to try, fails the match. */
1539 struct decision
: list_head
<transition
>
1541 decision (const rtx_test
&);
1543 void set_parent (list_head
<decision
> *s
);
1544 bool if_statement_p (uint64_t * = 0) const;
1546 /* The state to which this decision belongs. */
1549 /* Links to other decisions in the same state. */
1550 decision
*prev
, *next
;
1552 /* The test to perform. */
1556 /* Represents one machine state. For each state the machine tries a list
1557 of decisions, in order, and acts on the first match. It fails without
1558 further backtracking if no decisions match. */
1559 struct state
: list_head
<decision
>
1561 void set_parent (list_head
<state
> *) {}
1564 transition::transition (const int_set
&labels_in
, state
*to_in
,
1566 : prev (0), next (0), labels (labels_in
), from (0), to (to_in
),
1567 optional (optional_in
), is_param (false) {}
1569 /* Set the source decision of the transition. */
1572 transition::set_parent (list_head
<transition
> *from_in
)
1574 from
= static_cast <decision
*> (from_in
);
1577 decision::decision (const rtx_test
&test_in
)
1578 : prev (0), next (0), test (test_in
) {}
1580 /* Set the state to which this decision belongs. */
1583 decision::set_parent (list_head
<decision
> *s_in
)
1585 s
= static_cast <state
*> (s_in
);
1588 /* Return true if the decision has a single transition with a single label.
1589 If so, return the label in *LABEL if nonnull. */
1592 decision::if_statement_p (uint64_t *label
) const
1594 if (singleton () && first
->labels
.length () == 1)
1597 *label
= first
->labels
[0];
1603 /* Add to FROM a decision that performs TEST and has a single transition
1607 add_decision (state
*from
, const rtx_test
&test
, transition
*trans
)
1609 decision
*d
= new decision (test
);
1610 from
->push_back (d
);
1611 d
->push_back (trans
);
1614 /* Add a transition from FROM to a new, empty state that is taken
1615 when TEST == LABELS. OPTIONAL says whether the new transition
1616 should be optional. Return the new state. */
1619 add_decision (state
*from
, const rtx_test
&test
, int_set labels
, bool optional
)
1621 state
*to
= new state
;
1622 add_decision (from
, test
, new transition (labels
, to
, optional
));
1626 /* Insert a decision before decisions R to make them dependent on
1627 TEST == LABELS. OPTIONAL says whether the new transition should be
1631 insert_decision_before (state::range r
, const rtx_test
&test
,
1632 const int_set
&labels
, bool optional
)
1634 decision
*newd
= new decision (test
);
1635 state
*news
= new state
;
1636 newd
->push_back (new transition (labels
, news
, optional
));
1637 r
.start
->s
->replace (r
, newd
);
1638 news
->push_back (r
);
1642 /* Remove any optional transitions from S that turned out not to be useful. */
1645 collapse_optional_decisions (state
*s
)
1647 decision
*d
= s
->first
;
1650 decision
*next
= d
->next
;
1651 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1652 collapse_optional_decisions (trans
->to
);
1653 /* A decision with a single optional transition doesn't help
1654 partition the potential matches and so is unlikely to be
1655 worthwhile. In particular, if the decision that performs the
1656 test is the last in the state, the best it could do is reject
1657 an invalid pattern slightly earlier. If instead the decision
1658 is not the last in the state, the condition it tests could hold
1659 even for the later decisions in the state. The best it can do
1660 is save work in some cases where only the later decisions can
1663 In both cases the optional transition would add extra work to
1664 successful matches when the tested condition holds. */
1665 if (transition
*trans
= d
->singleton ())
1666 if (trans
->optional
)
1667 s
->replace (d
, trans
->to
->release ());
1672 /* Try to squash several separate tests into simpler ones. */
1675 simplify_tests (state
*s
)
1677 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1680 /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
1681 into checks for const_int_rtx[N'], if N is suitably small. */
1682 if (d
->test
.kind
== rtx_test::CODE
1683 && d
->if_statement_p (&label
)
1684 && label
== CONST_INT
)
1685 if (decision
*second
= d
->first
->to
->singleton ())
1686 if (d
->test
.pos
== second
->test
.pos
1687 && second
->test
.kind
== rtx_test::WIDE_INT_FIELD
1688 && second
->test
.u
.opno
== 0
1689 && second
->if_statement_p (&label
)
1690 && IN_RANGE (int64_t (label
),
1691 -MAX_SAVED_CONST_INT
, MAX_SAVED_CONST_INT
))
1693 d
->test
.kind
= rtx_test::SAVED_CONST_INT
;
1694 d
->test
.u
.integer
.is_param
= false;
1695 d
->test
.u
.integer
.value
= label
;
1696 d
->replace (d
->first
, second
->release ());
1697 d
->first
->labels
[0] = true;
1699 /* If we have a CODE test followed by a PREDICATE test, rely on
1700 the predicate to test the code.
1702 This case exists for match_operators. We initially treat the
1703 CODE test for a match_operator as non-optional so that we can
1704 safely move down to its operands. It may turn out that all
1705 paths that reach that code test require the same predicate
1706 to be true. cse_tests will then put the predicate test in
1707 series with the code test. */
1708 if (d
->test
.kind
== rtx_test::CODE
)
1709 if (transition
*trans
= d
->singleton ())
1711 state
*s
= trans
->to
;
1712 while (decision
*d2
= s
->singleton ())
1714 if (d
->test
.pos
!= d2
->test
.pos
)
1716 transition
*trans2
= d2
->singleton ();
1719 if (d2
->test
.kind
== rtx_test::PREDICATE
)
1722 trans
->labels
= int_set (true);
1723 s
->replace (d2
, trans2
->to
->release ());
1729 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1730 simplify_tests (trans
->to
);
1734 /* Return true if all successful returns passing through D require the
1735 condition tested by COMMON to be true.
1737 When returning true, add all transitions like COMMON in D to WHERE.
1738 WHERE may contain a partial result on failure. */
1741 common_test_p (decision
*d
, transition
*common
, vec
<transition
*> *where
)
1743 if (d
->test
.kind
== rtx_test::ACCEPT
)
1744 /* We found a successful return that didn't require COMMON. */
1746 if (d
->test
== common
->from
->test
)
1748 transition
*trans
= d
->singleton ();
1750 || trans
->optional
!= common
->optional
1751 || trans
->labels
!= common
->labels
)
1753 where
->safe_push (trans
);
1756 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1757 for (decision
*subd
= trans
->to
->first
; subd
; subd
= subd
->next
)
1758 if (!common_test_p (subd
, common
, where
))
1763 /* Indicates that we have tested GET_CODE (X) for a particular rtx X. */
1764 const unsigned char TESTED_CODE
= 1;
1766 /* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */
1767 const unsigned char TESTED_VECLEN
= 2;
1769 /* Represents a set of conditions that are known to hold. */
1770 struct known_conditions
1772 /* A mask of TESTED_ values for each position, indexed by the position's
1774 auto_vec
<unsigned char> position_tests
;
1776 /* Index N says whether operands[N] has been set. */
1777 auto_vec
<bool> set_operands
;
1779 /* A guranteed lower bound on the value of peep2_current_count. */
1783 /* Return true if TEST can safely be performed at D, where
1784 the conditions in KC hold. TEST is known to occur along the
1785 first path from D (i.e. always following the first transition
1786 of the first decision). Any intervening tests can be used as
1787 negative proof that hoisting isn't safe, but only KC can be used
1788 as positive proof. */
1791 safe_to_hoist_p (decision
*d
, const rtx_test
&test
, known_conditions
*kc
)
1795 case rtx_test::C_TEST
:
1796 /* In general, C tests require everything else to have been
1797 verified and all operands to have been set up. */
1800 case rtx_test::ACCEPT
:
1801 /* Don't accept something before all conditions have been tested. */
1804 case rtx_test::PREDICATE
:
1805 /* Don't move a predicate over a test for VECLEN_GE, since the
1806 predicate used in a match_parallel can legitimately expect the
1807 length to be checked first. */
1808 for (decision
*subd
= d
;
1810 subd
= subd
->first
->to
->first
)
1811 if (subd
->test
.pos
== test
.pos
1812 && subd
->test
.kind
== rtx_test::VECLEN_GE
)
1816 case rtx_test::DUPLICATE
:
1817 /* Don't test for a match_dup until the associated operand has
1819 if (!kc
->set_operands
[test
.u
.opno
])
1823 case rtx_test::CODE
:
1824 case rtx_test::MODE
:
1825 case rtx_test::SAVED_CONST_INT
:
1826 case rtx_test::SET_OP
:
1828 /* Check whether it is safe to access the rtx under test. */
1829 switch (test
.pos
->type
)
1831 case POS_PEEP2_INSN
:
1832 return test
.pos
->arg
< kc
->peep2_count
;
1835 return kc
->position_tests
[test
.pos
->base
->id
] & TESTED_CODE
;
1838 return kc
->position_tests
[test
.pos
->base
->id
] & TESTED_VECLEN
;
1842 case rtx_test::REGNO_FIELD
:
1843 case rtx_test::SUBREG_FIELD
:
1844 case rtx_test::INT_FIELD
:
1845 case rtx_test::WIDE_INT_FIELD
:
1846 case rtx_test::VECLEN
:
1847 case rtx_test::VECLEN_GE
:
1848 /* These tests access a specific part of an rtx, so are only safe
1849 once we know what the rtx is. */
1850 return kc
->position_tests
[test
.pos
->id
] & TESTED_CODE
;
1852 case rtx_test::PEEP2_COUNT
:
1853 case rtx_test::HAVE_NUM_CLOBBERS
:
1854 /* These tests can be performed anywhere. */
1857 case rtx_test::PATTERN
:
1863 /* Look for a transition that is taken by all successful returns from a range
1864 of decisions starting at OUTER and that would be better performed by
1865 OUTER's state instead. On success, store all instances of that transition
1866 in WHERE and return the last decision in the range. The range could
1867 just be OUTER, or it could include later decisions as well.
1869 WITH_POSITION_P is true if only tests with position POS should be tried,
1870 false if any test should be tried. WORTHWHILE_SINGLE_P is true if the
1871 result is useful even when the range contains just a single decision
1872 with a single transition. KC are the conditions that are known to
1876 find_common_test (decision
*outer
, bool with_position_p
,
1877 position
*pos
, bool worthwhile_single_p
,
1878 known_conditions
*kc
, vec
<transition
*> *where
)
1880 /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
1881 just a single decision is useful, regardless of the number of
1882 transitions it has. */
1883 if (!outer
->singleton ())
1884 worthwhile_single_p
= true;
1885 /* Quick exit if we don't have enough decisions to form a worthwhile
1887 if (!worthwhile_single_p
&& !outer
->next
)
1889 /* Follow the first chain down, as one example of a path that needs
1890 to contain the common test. */
1891 for (decision
*d
= outer
; d
; d
= d
->first
->to
->first
)
1893 transition
*trans
= d
->singleton ();
1895 && (!with_position_p
|| d
->test
.pos
== pos
)
1896 && safe_to_hoist_p (outer
, d
->test
, kc
))
1898 if (common_test_p (outer
, trans
, where
))
1901 /* We checked above whether the move is worthwhile. */
1903 /* See how many decisions in OUTER's chain could reuse
1905 decision
*outer_end
= outer
;
1908 unsigned int length
= where
->length ();
1909 if (!common_test_p (outer_end
->next
, trans
, where
))
1911 where
->truncate (length
);
1914 outer_end
= outer_end
->next
;
1916 while (outer_end
->next
);
1917 /* It is worth moving TRANS if it can be shared by more than
1919 if (outer_end
!= outer
|| worthwhile_single_p
)
1922 where
->truncate (0);
1928 /* Try to promote common subtests in S to a single, shared decision.
1929 Also try to bunch tests for the same position together. POS is the
1930 position of the rtx tested before reaching S. KC are the conditions
1931 that are known to hold on entry to S. */
1934 cse_tests (position
*pos
, state
*s
, known_conditions
*kc
)
1936 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1938 auto_vec
<transition
*, 16> where
;
1941 /* Try to find conditions that don't depend on a particular rtx,
1942 such as pnum_clobbers != NULL or peep2_current_count >= X.
1943 It's usually better to check these conditions as soon as
1944 possible, so the change is worthwhile even if there is
1945 only one copy of the test. */
1946 decision
*endd
= find_common_test (d
, true, 0, true, kc
, &where
);
1947 if (!endd
&& d
->test
.pos
!= pos
)
1948 /* Try to find other conditions related to position POS
1949 before moving to the new position. Again, this is
1950 worthwhile even if there is only one copy of the test,
1951 since it means that fewer position variables are live
1953 endd
= find_common_test (d
, true, pos
, true, kc
, &where
);
1955 /* Try to find any condition that is used more than once. */
1956 endd
= find_common_test (d
, false, 0, false, kc
, &where
);
1959 transition
*common
= where
[0];
1960 /* Replace [D, ENDD] with a test like COMMON. We'll recurse
1961 on the common test and see the original D again next time. */
1962 d
= insert_decision_before (state::range (d
, endd
),
1966 /* Remove the old tests. */
1967 while (!where
.is_empty ())
1969 transition
*trans
= where
.pop ();
1970 trans
->from
->s
->replace (trans
->from
, trans
->to
->release ());
1975 /* Make sure that safe_to_hoist_p isn't being overly conservative.
1976 It should realize that D's test is safe in the current
1978 gcc_assert (d
->test
.kind
== rtx_test::C_TEST
1979 || d
->test
.kind
== rtx_test::ACCEPT
1980 || safe_to_hoist_p (d
, d
->test
, kc
));
1982 /* D won't be changed any further by the current optimization.
1983 Recurse with the state temporarily updated to include D. */
1985 switch (d
->test
.kind
)
1987 case rtx_test::CODE
:
1988 prev
= kc
->position_tests
[d
->test
.pos
->id
];
1989 kc
->position_tests
[d
->test
.pos
->id
] |= TESTED_CODE
;
1992 case rtx_test::VECLEN
:
1993 case rtx_test::VECLEN_GE
:
1994 prev
= kc
->position_tests
[d
->test
.pos
->id
];
1995 kc
->position_tests
[d
->test
.pos
->id
] |= TESTED_VECLEN
;
1998 case rtx_test::SET_OP
:
1999 prev
= kc
->set_operands
[d
->test
.u
.opno
];
2001 kc
->set_operands
[d
->test
.u
.opno
] = true;
2004 case rtx_test::PEEP2_COUNT
:
2005 prev
= kc
->peep2_count
;
2006 kc
->peep2_count
= MAX (prev
, d
->test
.u
.min_len
);
2012 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2013 cse_tests (d
->test
.pos
? d
->test
.pos
: pos
, trans
->to
, kc
);
2014 switch (d
->test
.kind
)
2016 case rtx_test::CODE
:
2017 case rtx_test::VECLEN
:
2018 case rtx_test::VECLEN_GE
:
2019 kc
->position_tests
[d
->test
.pos
->id
] = prev
;
2022 case rtx_test::SET_OP
:
2023 kc
->set_operands
[d
->test
.u
.opno
] = prev
;
2026 case rtx_test::PEEP2_COUNT
:
2027 kc
->peep2_count
= prev
;
2036 /* Return the type of value that can be used to parameterize test KIND,
2037 or parameter::UNSET if none. */
2039 parameter::type_enum
2040 transition_parameter_type (rtx_test::kind_enum kind
)
2044 case rtx_test::CODE
:
2045 return parameter::CODE
;
2047 case rtx_test::MODE
:
2048 return parameter::MODE
;
2050 case rtx_test::REGNO_FIELD
:
2051 case rtx_test::SUBREG_FIELD
:
2052 return parameter::UINT
;
2054 case rtx_test::INT_FIELD
:
2055 case rtx_test::VECLEN
:
2056 case rtx_test::PATTERN
:
2057 return parameter::INT
;
2059 case rtx_test::WIDE_INT_FIELD
:
2060 return parameter::WIDE_INT
;
2062 case rtx_test::PEEP2_COUNT
:
2063 case rtx_test::VECLEN_GE
:
2064 case rtx_test::SAVED_CONST_INT
:
2065 case rtx_test::PREDICATE
:
2066 case rtx_test::DUPLICATE
:
2067 case rtx_test::HAVE_NUM_CLOBBERS
:
2068 case rtx_test::C_TEST
:
2069 case rtx_test::SET_OP
:
2070 case rtx_test::ACCEPT
:
2071 return parameter::UNSET
;
2076 /* Initialize the pos_operand fields of each state reachable from S.
2077 If OPERAND_POS[ID] >= 0, the position with id ID is stored in
2078 operands[OPERAND_POS[ID]] on entry to S. */
2081 find_operand_positions (state
*s
, vec
<int> &operand_pos
)
2083 for (decision
*d
= s
->first
; d
; d
= d
->next
)
2085 int this_operand
= (d
->test
.pos
? operand_pos
[d
->test
.pos
->id
] : -1);
2086 if (this_operand
>= 0)
2087 d
->test
.pos_operand
= this_operand
;
2088 if (d
->test
.kind
== rtx_test::SET_OP
)
2089 operand_pos
[d
->test
.pos
->id
] = d
->test
.u
.opno
;
2090 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2091 find_operand_positions (trans
->to
, operand_pos
);
2092 if (d
->test
.kind
== rtx_test::SET_OP
)
2093 operand_pos
[d
->test
.pos
->id
] = this_operand
;
2097 /* Statistics about a matching routine. */
2102 /* The total number of decisions in the routine, excluding trivial
2103 ones that never fail. */
2104 unsigned int num_decisions
;
2106 /* The number of non-trivial decisions on the longest path through
2107 the routine, and the return value that contributes most to that
2109 unsigned int longest_path
;
2110 int longest_path_code
;
2112 /* The maximum number of times that a single call to the routine
2113 can backtrack, and the value returned at the end of that path.
2114 "Backtracking" here means failing one decision in state and
2115 going onto to the next. */
2116 unsigned int longest_backtrack
;
2117 int longest_backtrack_code
;
2121 : num_decisions (0), longest_path (0), longest_path_code (-1),
2122 longest_backtrack (0), longest_backtrack_code (-1) {}
2124 /* Return statistics about S. */
2127 get_stats (state
*s
)
2130 unsigned int longest_path
= 0;
2131 for (decision
*d
= s
->first
; d
; d
= d
->next
)
2133 /* Work out the statistics for D. */
2135 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2137 stats for_trans
= get_stats (trans
->to
);
2138 for_d
.num_decisions
+= for_trans
.num_decisions
;
2139 /* Each transition is mutually-exclusive, so just pick the
2140 longest of the individual paths. */
2141 if (for_d
.longest_path
<= for_trans
.longest_path
)
2143 for_d
.longest_path
= for_trans
.longest_path
;
2144 for_d
.longest_path_code
= for_trans
.longest_path_code
;
2146 /* Likewise for backtracking. */
2147 if (for_d
.longest_backtrack
<= for_trans
.longest_backtrack
)
2149 for_d
.longest_backtrack
= for_trans
.longest_backtrack
;
2150 for_d
.longest_backtrack_code
= for_trans
.longest_backtrack_code
;
2154 /* Account for D's test in its statistics. */
2155 if (!d
->test
.single_outcome_p ())
2157 for_d
.num_decisions
+= 1;
2158 for_d
.longest_path
+= 1;
2160 if (d
->test
.kind
== rtx_test::ACCEPT
)
2162 for_d
.longest_path_code
= d
->test
.u
.acceptance
.u
.full
.code
;
2163 for_d
.longest_backtrack_code
= d
->test
.u
.acceptance
.u
.full
.code
;
2166 /* Keep a running count of the number of backtracks. */
2168 for_s
.longest_backtrack
+= 1;
2170 /* Accumulate D's statistics into S's. */
2171 for_s
.num_decisions
+= for_d
.num_decisions
;
2172 for_s
.longest_path
+= for_d
.longest_path
;
2173 for_s
.longest_backtrack
+= for_d
.longest_backtrack
;
2175 /* Use the code from the decision with the longest individual path,
2176 since that's more likely to be useful if trying to make the
2177 path shorter. In the event of a tie, pick the later decision,
2178 since that's closer to the end of the path. */
2179 if (longest_path
<= for_d
.longest_path
)
2181 longest_path
= for_d
.longest_path
;
2182 for_s
.longest_path_code
= for_d
.longest_path_code
;
2185 /* Later decisions in a state are necessarily in a longer backtrack
2186 than earlier decisions. */
2187 for_s
.longest_backtrack_code
= for_d
.longest_backtrack_code
;
2192 /* Optimize ROOT. Use TYPE to describe ROOT in status messages. */
2195 optimize_subroutine_group (const char *type
, state
*root
)
2197 /* Remove optional transitions that turned out not to be worthwhile. */
2198 if (collapse_optional_decisions_p
)
2199 collapse_optional_decisions (root
);
2201 /* Try to remove duplicated tests and to rearrange tests into a more
2205 known_conditions kc
;
2206 kc
.position_tests
.safe_grow_cleared (num_positions
);
2207 kc
.set_operands
.safe_grow_cleared (num_operands
);
2209 cse_tests (&root_pos
, root
, &kc
);
2212 /* Try to simplify two or more tests into one. */
2213 if (simplify_tests_p
)
2214 simplify_tests (root
);
2216 /* Try to use operands[] instead of xN variables. */
2217 if (use_operand_variables_p
)
2219 auto_vec
<int> operand_pos (num_positions
);
2220 for (unsigned int i
= 0; i
< num_positions
; ++i
)
2221 operand_pos
.quick_push (-1);
2222 find_operand_positions (root
, operand_pos
);
2225 /* Print a summary of the new state. */
2226 stats st
= get_stats (root
);
2227 fprintf (stderr
, "Statistics for %s:\n", type
);
2228 fprintf (stderr
, " Number of decisions: %6d\n", st
.num_decisions
);
2229 fprintf (stderr
, " longest path: %6d (code: %6d)\n",
2230 st
.longest_path
, st
.longest_path_code
);
2231 fprintf (stderr
, " longest backtrack: %6d (code: %6d)\n",
2232 st
.longest_backtrack
, st
.longest_backtrack_code
);
2235 struct merge_pattern_info
;
2237 /* Represents a transition from one pattern to another. */
2238 struct merge_pattern_transition
2240 merge_pattern_transition (merge_pattern_info
*);
2242 /* The target pattern. */
2243 merge_pattern_info
*to
;
2245 /* The parameters that the source pattern passes to the target pattern.
2246 "parameter (TYPE, true, I)" represents parameter I of the source
2248 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2251 merge_pattern_transition::merge_pattern_transition (merge_pattern_info
*to_in
)
2256 /* Represents a pattern that can might match several states. The pattern
2257 may replace parts of the test with a parameter value. It may also
2258 replace transition labels with parameters. */
2259 struct merge_pattern_info
2261 merge_pattern_info (unsigned int);
2263 /* If PARAM_TEST_P, the state's singleton test should be generalized
2264 to use the runtime value of PARAMS[PARAM_TEST]. */
2265 unsigned int param_test
: 8;
2267 /* If PARAM_TRANSITION_P, the state's single transition label should
2268 be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */
2269 unsigned int param_transition
: 8;
2271 /* True if we have decided to generalize the root decision's test,
2272 as per PARAM_TEST. */
2273 unsigned int param_test_p
: 1;
2275 /* Likewise for the root decision's transition, as per PARAM_TRANSITION. */
2276 unsigned int param_transition_p
: 1;
2278 /* True if the contents of the structure are completely filled in. */
2279 unsigned int complete_p
: 1;
2281 /* The number of pseudo-statements in the pattern. Used to decide
2282 whether it's big enough to break out into a subroutine. */
2283 unsigned int num_statements
;
2285 /* The number of states that use this pattern. */
2286 unsigned int num_users
;
2288 /* The number of distinct success values that the pattern returns. */
2289 unsigned int num_results
;
2291 /* This array has one element for each runtime parameter to the pattern.
2292 PARAMS[I] gives the default value of parameter I, which is always
2295 These default parameters are used in cases where we match the
2296 pattern against some state S1, then add more parameters while
2297 matching against some state S2. S1 is then left passing fewer
2298 parameters than S2. The array gives us enough informatino to
2299 construct a full parameter list for S1 (see update_parameters).
2301 If we decide to create a subroutine for this pattern,
2302 PARAMS[I].type determines the C type of parameter I. */
2303 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2305 /* All states that match this pattern must have the same number of
2306 transitions. TRANSITIONS[I] describes the subpattern for transition
2307 number I; it is null if transition I represents a successful return
2308 from the pattern. */
2309 auto_vec
<merge_pattern_transition
*, 1> transitions
;
2311 /* The routine associated with the pattern, or null if we haven't generated
2313 pattern_routine
*routine
;
2316 merge_pattern_info::merge_pattern_info (unsigned int num_transitions
)
2318 param_transition (0),
2319 param_test_p (false),
2320 param_transition_p (false),
2327 transitions
.safe_grow_cleared (num_transitions
);
2330 /* Describes one way of matching a particular state to a particular
2332 struct merge_state_result
2334 merge_state_result (merge_pattern_info
*, position
*, merge_state_result
*);
2336 /* A pattern that matches the state. */
2337 merge_pattern_info
*pattern
;
2339 /* If we decide to use this match and create a subroutine for PATTERN,
2340 the state should pass the rtx at position ROOT to the pattern's
2341 rtx parameter. A null root means that the pattern doesn't need
2342 an rtx parameter; all the rtxes it matches come from elsewhere. */
2345 /* The parameters that should be passed to PATTERN for this state.
2346 If the array is shorter than PATTERN->params, the missing entries
2347 should be taken from the corresponding element of PATTERN->params. */
2348 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2350 /* An earlier match for the same state, or null if none. Patterns
2351 matched by earlier entries are smaller than PATTERN. */
2352 merge_state_result
*prev
;
2355 merge_state_result::merge_state_result (merge_pattern_info
*pattern_in
,
2357 merge_state_result
*prev_in
)
2358 : pattern (pattern_in
), root (root_in
), prev (prev_in
)
2361 /* Information about a state, used while trying to match it against
2363 struct merge_state_info
2365 merge_state_info (state
*);
2367 /* The state itself. */
2370 /* Index I gives information about the target of transition I. */
2371 merge_state_info
*to_states
;
2373 /* The number of transitions in S. */
2374 unsigned int num_transitions
;
2376 /* True if the state has been deleted in favor of a call to a
2380 /* The previous state that might be a merge candidate for S, or null
2381 if no previous states could be merged with S. */
2382 merge_state_info
*prev_same_test
;
2384 /* A list of pattern matches for this state. */
2385 merge_state_result
*res
;
2388 merge_state_info::merge_state_info (state
*s_in
)
2391 num_transitions (0),
2396 /* True if PAT would be useful as a subroutine. */
2399 useful_pattern_p (merge_pattern_info
*pat
)
2401 return pat
->num_statements
>= MIN_COMBINE_COST
;
2404 /* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined
2405 into PAT1's C routine. */
2408 same_pattern_p (merge_pattern_info
*pat1
, merge_pattern_info
*pat2
)
2410 return pat1
->num_users
== pat2
->num_users
|| !useful_pattern_p (pat2
);
2413 /* PAT was previously matched against SINFO based on tentative matches
2414 for the target states of SINFO's state. Return true if the match
2415 still holds; that is, if the target states of SINFO's state still
2416 match the corresponding transitions of PAT. */
2419 valid_result_p (merge_pattern_info
*pat
, merge_state_info
*sinfo
)
2421 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
2422 if (merge_pattern_transition
*ptrans
= pat
->transitions
[j
])
2424 merge_state_result
*to_res
= sinfo
->to_states
[j
].res
;
2425 if (!to_res
|| to_res
->pattern
!= ptrans
->to
)
2431 /* Remove any matches that are no longer valid from the head of SINFO's
2435 prune_invalid_results (merge_state_info
*sinfo
)
2437 while (sinfo
->res
&& !valid_result_p (sinfo
->res
->pattern
, sinfo
))
2439 sinfo
->res
= sinfo
->res
->prev
;
2440 gcc_assert (sinfo
->res
);
2444 /* Return true if PAT represents the biggest posssible match for SINFO;
2445 that is, if the next action of SINFO's state on return from PAT will
2446 be something that cannot be merged with any other state. */
2449 complete_result_p (merge_pattern_info
*pat
, merge_state_info
*sinfo
)
2451 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
2452 if (sinfo
->to_states
[j
].res
&& !pat
->transitions
[j
])
2457 /* Update TO for any parameters that have been added to FROM since TO
2458 was last set. The extra parameters in FROM will be constants or
2459 instructions to duplicate earlier parameters. */
2462 update_parameters (vec
<parameter
> &to
, const vec
<parameter
> &from
)
2464 for (unsigned int i
= to
.length (); i
< from
.length (); ++i
)
2465 to
.quick_push (from
[i
]);
2468 /* Return true if A and B can be tested by a single test. If the test
2469 can be parameterised, store the parameter value for A in *PARAMA and
2470 the parameter value for B in *PARAMB, otherwise leave PARAMA and
2474 compatible_tests_p (const rtx_test
&a
, const rtx_test
&b
,
2475 parameter
*parama
, parameter
*paramb
)
2477 if (a
.kind
!= b
.kind
)
2481 case rtx_test::PREDICATE
:
2482 if (a
.u
.predicate
.data
!= b
.u
.predicate
.data
)
2484 *parama
= parameter (parameter::MODE
, false, a
.u
.predicate
.mode
);
2485 *paramb
= parameter (parameter::MODE
, false, b
.u
.predicate
.mode
);
2488 case rtx_test::SAVED_CONST_INT
:
2489 *parama
= parameter (parameter::INT
, false, a
.u
.integer
.value
);
2490 *paramb
= parameter (parameter::INT
, false, b
.u
.integer
.value
);
2498 /* PARAMS is an array of the parameters that a state is going to pass
2499 to a pattern routine. It is still incomplete; index I has a kind of
2500 parameter::UNSET if we don't yet know what the state will pass
2501 as parameter I. Try to make parameter ID equal VALUE, returning
2505 set_parameter (vec
<parameter
> ¶ms
, unsigned int id
,
2506 const parameter
&value
)
2508 if (params
[id
].type
== parameter::UNSET
)
2510 if (force_unique_params_p
)
2511 for (unsigned int i
= 0; i
< params
.length (); ++i
)
2512 if (params
[i
] == value
)
2517 return params
[id
] == value
;
2520 /* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
2521 set of parameters that a particular state is going to pass to
2524 Try to extend PARAMS1 and PARAMS2 so that there is a parameter
2525 that is equal to PARAM1 for the state and has a default value of
2526 PARAM2. Parameters beginning at START were added as part of the
2527 same match and so may be reused. */
2530 add_parameter (vec
<parameter
> ¶ms1
, vec
<parameter
> ¶ms2
,
2531 const parameter
¶m1
, const parameter
¶m2
,
2532 unsigned int start
, unsigned int *res
)
2534 gcc_assert (params1
.length () == params2
.length ());
2535 gcc_assert (!param1
.is_param
&& !param2
.is_param
);
2537 for (unsigned int i
= start
; i
< params2
.length (); ++i
)
2538 if (params1
[i
] == param1
&& params2
[i
] == param2
)
2544 if (force_unique_params_p
)
2545 for (unsigned int i
= 0; i
< params2
.length (); ++i
)
2546 if (params1
[i
] == param1
|| params2
[i
] == param2
)
2549 if (params2
.length () >= MAX_PATTERN_PARAMS
)
2552 *res
= params2
.length ();
2553 params1
.quick_push (param1
);
2554 params2
.quick_push (param2
);
2558 /* If *ROOTA is nonnull, return true if the same sequence of steps are
2559 required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA
2560 is null, update it if necessary in order to make the condition hold. */
2563 merge_relative_positions (position
**roota
, position
*a
,
2564 position
*rootb
, position
*b
)
2566 if (!relative_patterns_p
)
2575 return *roota
== rootb
;
2577 /* If B does not belong to the same instruction as ROOTB, we don't
2578 start with ROOTB but instead start with a call to peep2_next_insn.
2579 In that case the sequences for B and A are identical iff B and A
2580 are themselves identical. */
2581 if (rootb
->insn_id
!= b
->insn_id
)
2585 if (!a
|| b
->type
!= a
->type
|| b
->arg
!= a
->arg
)
2595 /* A hasher of states that treats two states as "equal" if they might be
2596 merged (but trying to be more discriminating than "return true"). */
2597 struct test_pattern_hasher
: nofree_ptr_hash
<merge_state_info
>
2599 static inline hashval_t
hash (const value_type
&);
2600 static inline bool equal (const value_type
&, const compare_type
&);
2604 test_pattern_hasher::hash (merge_state_info
*const &sinfo
)
2607 decision
*d
= sinfo
->s
->singleton ();
2608 h
.add_int (d
->test
.pos_operand
+ 1);
2609 if (!relative_patterns_p
)
2610 h
.add_int (d
->test
.pos
? d
->test
.pos
->id
+ 1 : 0);
2611 h
.add_int (d
->test
.kind
);
2612 h
.add_int (sinfo
->num_transitions
);
2617 test_pattern_hasher::equal (merge_state_info
*const &sinfo1
,
2618 merge_state_info
*const &sinfo2
)
2620 decision
*d1
= sinfo1
->s
->singleton ();
2621 decision
*d2
= sinfo2
->s
->singleton ();
2622 gcc_assert (d1
&& d2
);
2624 parameter new_param1
, new_param2
;
2625 return (d1
->test
.pos_operand
== d2
->test
.pos_operand
2626 && (relative_patterns_p
|| d1
->test
.pos
== d2
->test
.pos
)
2627 && compatible_tests_p (d1
->test
, d2
->test
, &new_param1
, &new_param2
)
2628 && sinfo1
->num_transitions
== sinfo2
->num_transitions
);
2631 /* Try to make the state described by SINFO1 use the same pattern as the
2632 state described by SINFO2. Return true on success.
2634 SINFO1 and SINFO2 are known to have the same hash value. */
2637 merge_patterns (merge_state_info
*sinfo1
, merge_state_info
*sinfo2
)
2639 merge_state_result
*res2
= sinfo2
->res
;
2640 merge_pattern_info
*pat
= res2
->pattern
;
2642 /* Write to temporary arrays while matching, in case we have to abort
2643 half way through. */
2644 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params1
;
2645 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params2
;
2646 params1
.quick_grow_cleared (pat
->params
.length ());
2647 params2
.splice (pat
->params
);
2648 unsigned int start_param
= params2
.length ();
2650 /* An array for recording changes to PAT->transitions[?].params.
2651 All changes involve replacing a constant parameter with some
2652 PAT->params[N], where N is the second element of the pending_param. */
2653 typedef std::pair
<parameter
*, unsigned int> pending_param
;
2654 auto_vec
<pending_param
, 32> pending_params
;
2656 decision
*d1
= sinfo1
->s
->singleton ();
2657 decision
*d2
= sinfo2
->s
->singleton ();
2658 gcc_assert (d1
&& d2
);
2660 /* If D2 tests a position, SINFO1's root relative to D1 is the same
2661 as SINFO2's root relative to D2. */
2662 position
*root1
= 0;
2663 position
*root2
= res2
->root
;
2664 if (d2
->test
.pos_operand
< 0
2666 && !merge_relative_positions (&root1
, d1
->test
.pos
,
2667 root2
, d2
->test
.pos
))
2670 /* Check whether the patterns have the same shape. */
2671 unsigned int num_transitions
= sinfo1
->num_transitions
;
2672 gcc_assert (num_transitions
== sinfo2
->num_transitions
);
2673 for (unsigned int i
= 0; i
< num_transitions
; ++i
)
2674 if (merge_pattern_transition
*ptrans
= pat
->transitions
[i
])
2676 merge_state_result
*to1_res
= sinfo1
->to_states
[i
].res
;
2677 merge_state_result
*to2_res
= sinfo2
->to_states
[i
].res
;
2678 merge_pattern_info
*to_pat
= ptrans
->to
;
2679 gcc_assert (to2_res
&& to2_res
->pattern
== to_pat
);
2680 if (!to1_res
|| to1_res
->pattern
!= to_pat
)
2683 && !merge_relative_positions (&root1
, to1_res
->root
,
2684 root2
, to2_res
->root
))
2686 /* Match the parameters that TO1_RES passes to TO_PAT with the
2687 parameters that PAT passes to TO_PAT. */
2688 update_parameters (to1_res
->params
, to_pat
->params
);
2689 for (unsigned int j
= 0; j
< to1_res
->params
.length (); ++j
)
2691 const parameter
¶m1
= to1_res
->params
[j
];
2692 const parameter
¶m2
= ptrans
->params
[j
];
2693 gcc_assert (!param1
.is_param
);
2694 if (param2
.is_param
)
2696 if (!set_parameter (params1
, param2
.value
, param1
))
2699 else if (param1
!= param2
)
2702 if (!add_parameter (params1
, params2
,
2703 param1
, param2
, start_param
, &id
))
2705 /* Record that PAT should now pass parameter ID to TO_PAT,
2706 instead of the current contents of *PARAM2. We only
2707 make the change if the rest of the match succeeds. */
2708 pending_params
.safe_push
2709 (pending_param (&ptrans
->params
[j
], id
));
2714 unsigned int param_test
= pat
->param_test
;
2715 unsigned int param_transition
= pat
->param_transition
;
2716 bool param_test_p
= pat
->param_test_p
;
2717 bool param_transition_p
= pat
->param_transition_p
;
2719 /* If the tests don't match exactly, try to parameterize them. */
2720 parameter new_param1
, new_param2
;
2721 if (!compatible_tests_p (d1
->test
, d2
->test
, &new_param1
, &new_param2
))
2723 if (new_param1
.type
!= parameter::UNSET
)
2725 /* If the test has not already been parameterized, all existing
2726 matches use constant NEW_PARAM2. */
2729 if (!set_parameter (params1
, param_test
, new_param1
))
2732 else if (new_param1
!= new_param2
)
2734 if (!add_parameter (params1
, params2
, new_param1
, new_param2
,
2735 start_param
, ¶m_test
))
2737 param_test_p
= true;
2741 /* Match the transitions. */
2742 transition
*trans1
= d1
->first
;
2743 transition
*trans2
= d2
->first
;
2744 for (unsigned int i
= 0; i
< num_transitions
; ++i
)
2746 if (param_transition_p
|| trans1
->labels
!= trans2
->labels
)
2748 /* We can only generalize a single transition with a single
2750 if (num_transitions
!= 1
2751 || trans1
->labels
.length () != 1
2752 || trans2
->labels
.length () != 1)
2755 /* Although we can match wide-int fields, in practice it leads
2756 to some odd results for const_vectors. We end up
2757 parameterizing the first N const_ints of the vector
2758 and then (once we reach the maximum number of parameters)
2759 we go on to match the other elements exactly. */
2760 if (d1
->test
.kind
== rtx_test::WIDE_INT_FIELD
)
2763 /* See whether the label has a generalizable type. */
2764 parameter::type_enum param_type
2765 = transition_parameter_type (d1
->test
.kind
);
2766 if (param_type
== parameter::UNSET
)
2769 /* Match the labels using parameters. */
2770 new_param1
= parameter (param_type
, false, trans1
->labels
[0]);
2771 if (param_transition_p
)
2773 if (!set_parameter (params1
, param_transition
, new_param1
))
2778 new_param2
= parameter (param_type
, false, trans2
->labels
[0]);
2779 if (!add_parameter (params1
, params2
, new_param1
, new_param2
,
2780 start_param
, ¶m_transition
))
2782 param_transition_p
= true;
2785 trans1
= trans1
->next
;
2786 trans2
= trans2
->next
;
2789 /* Set any unset parameters to their default values. This occurs if some
2790 other state needed something to be parameterized in order to match SINFO2,
2791 but SINFO1 on its own does not. */
2792 for (unsigned int i
= 0; i
< params1
.length (); ++i
)
2793 if (params1
[i
].type
== parameter::UNSET
)
2794 params1
[i
] = params2
[i
];
2796 /* The match was successful. Commit all pending changes to PAT. */
2797 update_parameters (pat
->params
, params2
);
2801 FOR_EACH_VEC_ELT (pending_params
, i
, pp
)
2802 *pp
->first
= parameter (pp
->first
->type
, true, pp
->second
);
2804 pat
->param_test
= param_test
;
2805 pat
->param_transition
= param_transition
;
2806 pat
->param_test_p
= param_test_p
;
2807 pat
->param_transition_p
= param_transition_p
;
2809 /* Record the match of SINFO1. */
2810 merge_state_result
*new_res1
= new merge_state_result (pat
, root1
,
2812 new_res1
->params
.splice (params1
);
2813 sinfo1
->res
= new_res1
;
2817 /* The number of states that were removed by calling pattern routines. */
2818 static unsigned int pattern_use_states
;
2820 /* The number of states used while defining pattern routines. */
2821 static unsigned int pattern_def_states
;
2823 /* Information used while constructing a use or definition of a pattern
2825 struct create_pattern_info
2827 /* The routine itself. */
2828 pattern_routine
*routine
;
2830 /* The first unclaimed return value for this particular use or definition.
2831 We walk the substates of uses and definitions in the same order
2832 so each return value always refers to the same position within
2834 unsigned int next_result
;
2837 static void populate_pattern_routine (create_pattern_info
*,
2838 merge_state_info
*, state
*,
2839 const vec
<parameter
> &);
2841 /* SINFO matches a pattern for which we've decided to create a C routine.
2842 Return a decision that performs a call to the pattern routine,
2843 but leave the caller to add the transitions to it. Initialize CPI
2844 for this purpose. Also create a definition for the pattern routine,
2845 if it doesn't already have one.
2847 PARAMS are the parameters that SINFO passes to its pattern. */
2850 init_pattern_use (create_pattern_info
*cpi
, merge_state_info
*sinfo
,
2851 const vec
<parameter
> ¶ms
)
2853 state
*s
= sinfo
->s
;
2854 merge_state_result
*res
= sinfo
->res
;
2855 merge_pattern_info
*pat
= res
->pattern
;
2856 cpi
->routine
= pat
->routine
;
2859 /* We haven't defined the pattern routine yet, so create
2860 a definition now. */
2861 pattern_routine
*routine
= new pattern_routine
;
2862 pat
->routine
= routine
;
2863 cpi
->routine
= routine
;
2864 routine
->s
= new state
;
2865 routine
->insn_p
= false;
2866 routine
->pnum_clobbers_p
= false;
2868 /* Create an "idempotent" mapping of parameter I to parameter I.
2869 Also record the C type of each parameter to the routine. */
2870 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> def_params
;
2871 for (unsigned int i
= 0; i
< pat
->params
.length (); ++i
)
2873 def_params
.quick_push (parameter (pat
->params
[i
].type
, true, i
));
2874 routine
->param_types
.quick_push (pat
->params
[i
].type
);
2877 /* Any of the states that match the pattern could be used to
2878 create the routine definition. We might as well use SINFO
2879 since it's already to hand. This means that all positions
2880 in the definition will be relative to RES->root. */
2881 routine
->pos
= res
->root
;
2882 cpi
->next_result
= 0;
2883 populate_pattern_routine (cpi
, sinfo
, routine
->s
, def_params
);
2884 gcc_assert (cpi
->next_result
== pat
->num_results
);
2886 /* Add the routine to the global list, after the subroutines
2888 routine
->pattern_id
= patterns
.length ();
2889 patterns
.safe_push (routine
);
2892 /* Create a decision to call the routine, passing PARAMS to it. */
2893 pattern_use
*use
= new pattern_use
;
2894 use
->routine
= pat
->routine
;
2895 use
->params
.splice (params
);
2896 decision
*d
= new decision (rtx_test::pattern (res
->root
, use
));
2898 /* If the original decision could use an element of operands[] instead
2899 of an rtx variable, try to transfer it to the new decision. */
2900 if (s
->first
->test
.pos
&& res
->root
== s
->first
->test
.pos
)
2901 d
->test
.pos_operand
= s
->first
->test
.pos_operand
;
2903 cpi
->next_result
= 0;
2907 /* Make S return the next unclaimed pattern routine result for CPI. */
2910 add_pattern_acceptance (create_pattern_info
*cpi
, state
*s
)
2912 acceptance_type acceptance
;
2913 acceptance
.type
= SUBPATTERN
;
2914 acceptance
.partial_p
= false;
2915 acceptance
.u
.full
.code
= cpi
->next_result
;
2916 add_decision (s
, rtx_test::accept (acceptance
), true, false);
2917 cpi
->next_result
+= 1;
2920 /* Initialize new empty state NEWS so that it implements SINFO's pattern
2921 (here referred to as "P"). P may be the top level of a pattern routine
2922 or a subpattern that should be inlined into its parent pattern's routine
2923 (as per same_pattern_p). The choice of SINFO for a top-level pattern is
2924 arbitrary; it could be any of the states that use P. The choice for
2925 subpatterns follows the choice for the parent pattern.
2927 PARAMS gives the value of each parameter to P in terms of the parameters
2928 to the top-level pattern. If P itself is the top level pattern, PARAMS[I]
2929 is always "parameter (TYPE, true, I)". */
2932 populate_pattern_routine (create_pattern_info
*cpi
, merge_state_info
*sinfo
,
2933 state
*news
, const vec
<parameter
> ¶ms
)
2935 pattern_def_states
+= 1;
2937 decision
*d
= sinfo
->s
->singleton ();
2938 merge_pattern_info
*pat
= sinfo
->res
->pattern
;
2939 pattern_routine
*routine
= cpi
->routine
;
2941 /* Create a copy of D's test for the pattern routine and generalize it
2943 decision
*newd
= new decision (d
->test
);
2944 gcc_assert (newd
->test
.pos_operand
>= 0
2946 || common_position (newd
->test
.pos
,
2947 routine
->pos
) == routine
->pos
);
2948 if (pat
->param_test_p
)
2950 const parameter
¶m
= params
[pat
->param_test
];
2951 switch (newd
->test
.kind
)
2953 case rtx_test::PREDICATE
:
2954 newd
->test
.u
.predicate
.mode_is_param
= param
.is_param
;
2955 newd
->test
.u
.predicate
.mode
= param
.value
;
2958 case rtx_test::SAVED_CONST_INT
:
2959 newd
->test
.u
.integer
.is_param
= param
.is_param
;
2960 newd
->test
.u
.integer
.value
= param
.value
;
2968 if (d
->test
.kind
== rtx_test::C_TEST
)
2969 routine
->insn_p
= true;
2970 else if (d
->test
.kind
== rtx_test::HAVE_NUM_CLOBBERS
)
2971 routine
->pnum_clobbers_p
= true;
2972 news
->push_back (newd
);
2974 /* Fill in the transitions of NEWD. */
2976 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2978 /* Create a new state to act as the target of the new transition. */
2979 state
*to_news
= new state
;
2980 if (merge_pattern_transition
*ptrans
= pat
->transitions
[i
])
2982 /* The pattern hasn't finished matching yet. Get the target
2983 pattern and the corresponding target state of SINFO. */
2984 merge_pattern_info
*to_pat
= ptrans
->to
;
2985 merge_state_info
*to
= sinfo
->to_states
+ i
;
2986 gcc_assert (to
->res
->pattern
== to_pat
);
2987 gcc_assert (ptrans
->params
.length () == to_pat
->params
.length ());
2989 /* Express the parameters to TO_PAT in terms of the parameters
2990 to the top-level pattern. */
2991 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> to_params
;
2992 for (unsigned int j
= 0; j
< ptrans
->params
.length (); ++j
)
2994 const parameter
¶m
= ptrans
->params
[j
];
2995 to_params
.quick_push (param
.is_param
2996 ? params
[param
.value
]
3000 if (same_pattern_p (pat
, to_pat
))
3001 /* TO_PAT is part of the current routine, so just recurse. */
3002 populate_pattern_routine (cpi
, to
, to_news
, to_params
);
3005 /* TO_PAT should be matched by calling a separate routine. */
3006 create_pattern_info sub_cpi
;
3007 decision
*subd
= init_pattern_use (&sub_cpi
, to
, to_params
);
3008 routine
->insn_p
|= sub_cpi
.routine
->insn_p
;
3009 routine
->pnum_clobbers_p
|= sub_cpi
.routine
->pnum_clobbers_p
;
3011 /* Add the pattern routine call to the new target state. */
3012 to_news
->push_back (subd
);
3014 /* Add a transition for each successful call result. */
3015 for (unsigned int j
= 0; j
< to_pat
->num_results
; ++j
)
3017 state
*res
= new state
;
3018 add_pattern_acceptance (cpi
, res
);
3019 subd
->push_back (new transition (j
, res
, false));
3024 /* This transition corresponds to a successful match. */
3025 add_pattern_acceptance (cpi
, to_news
);
3027 /* Create the transition itself, generalizing as necessary. */
3028 transition
*new_trans
= new transition (trans
->labels
, to_news
,
3030 if (pat
->param_transition_p
)
3032 const parameter
¶m
= params
[pat
->param_transition
];
3033 new_trans
->is_param
= param
.is_param
;
3034 new_trans
->labels
[0] = param
.value
;
3036 newd
->push_back (new_trans
);
3041 /* USE is a decision that calls a pattern routine and SINFO is part of the
3042 original state tree that the call is supposed to replace. Add the
3043 transitions for SINFO and its substates to USE. */
3046 populate_pattern_use (create_pattern_info
*cpi
, decision
*use
,
3047 merge_state_info
*sinfo
)
3049 pattern_use_states
+= 1;
3050 gcc_assert (!sinfo
->merged_p
);
3051 sinfo
->merged_p
= true;
3052 merge_state_result
*res
= sinfo
->res
;
3053 merge_pattern_info
*pat
= res
->pattern
;
3054 decision
*d
= sinfo
->s
->singleton ();
3056 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3058 if (pat
->transitions
[i
])
3059 /* The target state is also part of the pattern. */
3060 populate_pattern_use (cpi
, use
, sinfo
->to_states
+ i
);
3063 /* The transition corresponds to a successful return from the
3065 use
->push_back (new transition (cpi
->next_result
, trans
->to
, false));
3066 cpi
->next_result
+= 1;
3072 /* We have decided to replace SINFO's state with a call to a pattern
3073 routine. Make the change, creating a definition of the pattern routine
3074 if it doesn't have one already. */
3077 use_pattern (merge_state_info
*sinfo
)
3079 merge_state_result
*res
= sinfo
->res
;
3080 merge_pattern_info
*pat
= res
->pattern
;
3081 state
*s
= sinfo
->s
;
3083 /* The pattern may have acquired new parameters after it was matched
3084 against SINFO. Update the parameters that SINFO passes accordingly. */
3085 update_parameters (res
->params
, pat
->params
);
3087 create_pattern_info cpi
;
3088 decision
*d
= init_pattern_use (&cpi
, sinfo
, res
->params
);
3089 populate_pattern_use (&cpi
, d
, sinfo
);
3094 /* Look through the state trees in STATES for common patterns and
3095 split them into subroutines. */
3098 split_out_patterns (vec
<merge_state_info
> &states
)
3100 unsigned int first_transition
= states
.length ();
3101 hash_table
<test_pattern_hasher
> hashtab (128);
3102 /* Stage 1: Create an order in which parent states come before their child
3103 states and in which sibling states are at consecutive locations.
3104 Having consecutive sibling states allows merge_state_info to have
3105 a single to_states pointer. */
3106 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3107 for (decision
*d
= states
[i
].s
->first
; d
; d
= d
->next
)
3108 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3110 states
.safe_push (trans
->to
);
3111 states
[i
].num_transitions
+= 1;
3113 /* Stage 2: Now that the addresses are stable, set up the to_states
3114 pointers. Look for states that might be merged and enter them
3115 into the hash table. */
3116 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3118 merge_state_info
*sinfo
= &states
[i
];
3119 if (sinfo
->num_transitions
)
3121 sinfo
->to_states
= &states
[first_transition
];
3122 first_transition
+= sinfo
->num_transitions
;
3124 /* For simplicity, we only try to merge states that have a single
3125 decision. This is in any case the best we can do for peephole2,
3126 since whether a peephole2 ACCEPT succeeds or not depends on the
3127 specific peephole2 pattern (which is unique to each ACCEPT
3128 and so couldn't be shared between states). */
3129 if (decision
*d
= sinfo
->s
->singleton ())
3130 /* ACCEPT states are unique, so don't even try to merge them. */
3131 if (d
->test
.kind
!= rtx_test::ACCEPT
3132 && (pattern_have_num_clobbers_p
3133 || d
->test
.kind
!= rtx_test::HAVE_NUM_CLOBBERS
)
3134 && (pattern_c_test_p
3135 || d
->test
.kind
!= rtx_test::C_TEST
))
3137 merge_state_info
**slot
= hashtab
.find_slot (sinfo
, INSERT
);
3138 sinfo
->prev_same_test
= *slot
;
3142 /* Stage 3: Walk backwards through the list of states and try to merge
3143 them. This is a greedy, bottom-up match; parent nodes can only start
3144 a new leaf pattern if they fail to match when combined with all child
3145 nodes that have matching patterns.
3147 For each state we keep a list of potential matches, with each
3148 potential match being larger (and deeper) than the next match in
3149 the list. The final element in the list is a leaf pattern that
3150 matches just a single state.
3152 Each candidate pattern created in this loop is unique -- it won't
3153 have been seen by an earlier iteration. We try to match each pattern
3154 with every state that appears earlier in STATES.
3156 Because the patterns created in the loop are unique, any state
3157 that already has a match must have a final potential match that
3158 is different from any new leaf pattern. Therefore, when matching
3159 leaf patterns, we need only consider states whose list of matches
3162 The non-leaf patterns that we try are as deep as possible
3163 and are an extension of the state's previous best candidate match (PB).
3164 We need only consider states whose current potential match is also PB;
3165 any states that don't match as much as PB cannnot match the new pattern,
3166 while any states that already match more than PB must be different from
3168 for (unsigned int i2
= states
.length (); i2
-- > 0; )
3170 merge_state_info
*sinfo2
= &states
[i2
];
3172 /* Enforce the bottom-upness of the match: remove matches with later
3173 states if SINFO2's child states ended up finding a better match. */
3174 prune_invalid_results (sinfo2
);
3176 /* Do nothing if the state doesn't match a later one and if there are
3177 no earlier states it could match. */
3178 if (!sinfo2
->res
&& !sinfo2
->prev_same_test
)
3181 merge_state_result
*res2
= sinfo2
->res
;
3182 decision
*d2
= sinfo2
->s
->singleton ();
3183 position
*root2
= (d2
->test
.pos_operand
< 0 ? d2
->test
.pos
: 0);
3184 unsigned int num_transitions
= sinfo2
->num_transitions
;
3186 /* If RES2 is null then SINFO2's test in isolation has not been seen
3187 before. First try matching that on its own. */
3190 merge_pattern_info
*new_pat
3191 = new merge_pattern_info (num_transitions
);
3192 merge_state_result
*new_res2
3193 = new merge_state_result (new_pat
, root2
, res2
);
3194 sinfo2
->res
= new_res2
;
3196 new_pat
->num_statements
= !d2
->test
.single_outcome_p ();
3197 new_pat
->num_results
= num_transitions
;
3198 bool matched_p
= false;
3199 /* Look for states that don't currently match anything but
3200 can be made to match SINFO2 on its own. */
3201 for (merge_state_info
*sinfo1
= sinfo2
->prev_same_test
; sinfo1
;
3202 sinfo1
= sinfo1
->prev_same_test
)
3203 if (!sinfo1
->res
&& merge_patterns (sinfo1
, sinfo2
))
3207 /* No other states match. */
3217 /* Keep the existing pattern if it's as good as anything we'd
3218 create for SINFO2. */
3219 if (complete_result_p (res2
->pattern
, sinfo2
))
3221 res2
->pattern
->num_users
+= 1;
3225 /* Create a new pattern for SINFO2. */
3226 merge_pattern_info
*new_pat
= new merge_pattern_info (num_transitions
);
3227 merge_state_result
*new_res2
3228 = new merge_state_result (new_pat
, root2
, res2
);
3229 sinfo2
->res
= new_res2
;
3231 /* Fill in details about the pattern. */
3232 new_pat
->num_statements
= !d2
->test
.single_outcome_p ();
3233 new_pat
->num_results
= 0;
3234 for (unsigned int j
= 0; j
< num_transitions
; ++j
)
3235 if (merge_state_result
*to_res
= sinfo2
->to_states
[j
].res
)
3237 /* Count the target state as part of this pattern.
3238 First update the root position so that it can reach
3239 the target state's root. */
3243 new_res2
->root
= common_position (new_res2
->root
,
3246 new_res2
->root
= to_res
->root
;
3248 merge_pattern_info
*to_pat
= to_res
->pattern
;
3249 merge_pattern_transition
*ptrans
3250 = new merge_pattern_transition (to_pat
);
3252 /* TO_PAT may have acquired more parameters when matching
3253 states earlier in STATES than TO_RES's, but the list is
3254 now final. Make sure that TO_RES is up to date. */
3255 update_parameters (to_res
->params
, to_pat
->params
);
3257 /* Start out by assuming that every user of NEW_PAT will
3258 want to pass the same (constant) parameters as TO_RES. */
3259 update_parameters (ptrans
->params
, to_res
->params
);
3261 new_pat
->transitions
[j
] = ptrans
;
3262 new_pat
->num_statements
+= to_pat
->num_statements
;
3263 new_pat
->num_results
+= to_pat
->num_results
;
3266 /* The target state doesn't match anything and so is not part
3268 new_pat
->num_results
+= 1;
3270 /* See if any earlier states that match RES2's pattern also match
3272 bool matched_p
= false;
3273 for (merge_state_info
*sinfo1
= sinfo2
->prev_same_test
; sinfo1
;
3274 sinfo1
= sinfo1
->prev_same_test
)
3276 prune_invalid_results (sinfo1
);
3278 && sinfo1
->res
->pattern
== res2
->pattern
3279 && merge_patterns (sinfo1
, sinfo2
))
3284 /* Nothing else matches NEW_PAT, so go back to the previous
3285 pattern (possibly just a single-state one). */
3290 /* Assume that SINFO2 will use RES. At this point we don't know
3291 whether earlier states that match the same pattern will use
3292 that match or a different one. */
3293 sinfo2
->res
->pattern
->num_users
+= 1;
3295 /* Step 4: Finalize the choice of pattern for each state, ignoring
3296 patterns that were only used once. Update each pattern's size
3297 so that it doesn't include subpatterns that are going to be split
3298 out into subroutines. */
3299 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3301 merge_state_info
*sinfo
= &states
[i
];
3302 merge_state_result
*res
= sinfo
->res
;
3303 /* Wind past patterns that are only used by SINFO. */
3304 while (res
&& res
->pattern
->num_users
== 1)
3309 res
->pattern
->num_users
+= 1;
3314 /* We have a shared pattern and are now committed to the match. */
3315 merge_pattern_info
*pat
= res
->pattern
;
3316 gcc_assert (valid_result_p (pat
, sinfo
));
3318 if (!pat
->complete_p
)
3320 /* Look for subpatterns that are going to be split out and remove
3321 them from the number of statements. */
3322 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
3323 if (merge_pattern_transition
*ptrans
= pat
->transitions
[j
])
3325 merge_pattern_info
*to_pat
= ptrans
->to
;
3326 if (!same_pattern_p (pat
, to_pat
))
3327 pat
->num_statements
-= to_pat
->num_statements
;
3329 pat
->complete_p
= true;
3332 /* Step 5: Split out the patterns. */
3333 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3335 merge_state_info
*sinfo
= &states
[i
];
3336 merge_state_result
*res
= sinfo
->res
;
3337 if (!sinfo
->merged_p
&& res
&& useful_pattern_p (res
->pattern
))
3338 use_pattern (sinfo
);
3340 fprintf (stderr
, "Shared %d out of %d states by creating %d new states,"
3342 pattern_use_states
, states
.length (), pattern_def_states
,
3343 pattern_use_states
- pattern_def_states
);
3346 /* Information about a state tree that we're considering splitting into a
3350 /* The number of pseudo-statements in the state tree. */
3351 unsigned int num_statements
;
3353 /* The approximate number of nested "if" and "switch" statements that
3354 would be required if control could fall through to a later state. */
3358 /* Pairs a transition with information about its target state. */
3359 typedef std::pair
<transition
*, state_size
> subroutine_candidate
;
3361 /* Sort two subroutine_candidates so that the one with the largest
3362 number of statements comes last. */
3365 subroutine_candidate_cmp (const void *a
, const void *b
)
3367 return int (((const subroutine_candidate
*) a
)->second
.num_statements
3368 - ((const subroutine_candidate
*) b
)->second
.num_statements
);
3371 /* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new
3372 state that performs a subroutine call to S. */
3375 create_subroutine (routine_type type
, state
*s
, vec
<state
*> &procs
)
3377 procs
.safe_push (s
);
3378 acceptance_type acceptance
;
3379 acceptance
.type
= type
;
3380 acceptance
.partial_p
= true;
3381 acceptance
.u
.subroutine_id
= procs
.length ();
3382 state
*news
= new state
;
3383 add_decision (news
, rtx_test::accept (acceptance
), true, false);
3387 /* Walk state tree S, of type TYPE, and look for subtrees that would be
3388 better split into subroutines. Accumulate all such subroutines in PROCS.
3389 Return the size of the new state tree (excluding subroutines). */
3392 find_subroutines (routine_type type
, state
*s
, vec
<state
*> &procs
)
3394 auto_vec
<subroutine_candidate
, 16> candidates
;
3396 size
.num_statements
= 0;
3398 for (decision
*d
= s
->first
; d
; d
= d
->next
)
3400 if (!d
->test
.single_outcome_p ())
3401 size
.num_statements
+= 1;
3402 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3404 /* Keep chains of simple decisions together if we know that no
3405 change of position is required. We'll output this chain as a
3406 single "if" statement, so it counts as a single nesting level. */
3407 if (d
->test
.pos
&& d
->if_statement_p ())
3410 decision
*newd
= trans
->to
->singleton ();
3413 && newd
->test
.pos_operand
< 0
3414 && newd
->test
.pos
!= d
->test
.pos
)
3415 || !newd
->if_statement_p ())
3417 if (!newd
->test
.single_outcome_p ())
3418 size
.num_statements
+= 1;
3419 trans
= newd
->singleton ();
3420 if (newd
->test
.kind
== rtx_test::SET_OP
3421 || newd
->test
.kind
== rtx_test::ACCEPT
)
3424 /* The target of TRANS is a subroutine candidate. First recurse
3425 on it to see how big it is after subroutines have been
3427 state_size to_size
= find_subroutines (type
, trans
->to
, procs
);
3428 if (d
->next
&& to_size
.depth
> MAX_DEPTH
)
3429 /* Keeping the target state in the same routine would lead
3430 to an excessive nesting of "if" and "switch" statements.
3431 Split it out into a subroutine so that it can use
3432 inverted tests that return early on failure. */
3433 trans
->to
= create_subroutine (type
, trans
->to
, procs
);
3436 size
.num_statements
+= to_size
.num_statements
;
3437 if (to_size
.num_statements
< MIN_NUM_STATEMENTS
)
3438 /* The target state is too small to be worth splitting.
3439 Keep it in the same routine as S. */
3440 size
.depth
= MAX (size
.depth
, to_size
.depth
);
3442 /* Assume for now that we'll keep the target state in the
3443 same routine as S, but record it as a subroutine candidate
3444 if S grows too big. */
3445 candidates
.safe_push (subroutine_candidate (trans
, to_size
));
3449 if (size
.num_statements
> MAX_NUM_STATEMENTS
)
3451 /* S is too big. Sort the subroutine candidates so that bigger ones
3452 are nearer the end. */
3453 candidates
.qsort (subroutine_candidate_cmp
);
3454 while (!candidates
.is_empty ()
3455 && size
.num_statements
> MAX_NUM_STATEMENTS
)
3457 /* Peel off a candidate and force it into a subroutine. */
3458 subroutine_candidate cand
= candidates
.pop ();
3459 size
.num_statements
-= cand
.second
.num_statements
;
3460 cand
.first
->to
= create_subroutine (type
, cand
.first
->to
, procs
);
3463 /* Update the depth for subroutine candidates that we decided not to
3465 for (unsigned int i
= 0; i
< candidates
.length (); ++i
)
3466 size
.depth
= MAX (size
.depth
, candidates
[i
].second
.depth
);
3471 /* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */
3474 safe_predicate_mode (const struct pred_data
*pred
, machine_mode mode
)
3476 /* Scalar integer constants have VOIDmode. */
3477 if (GET_MODE_CLASS (mode
) == MODE_INT
3478 && (pred
->codes
[CONST_INT
]
3479 || pred
->codes
[CONST_DOUBLE
]
3480 || pred
->codes
[CONST_WIDE_INT
]
3481 || pred
->codes
[LABEL_REF
]))
3484 return !pred
->special
&& mode
!= VOIDmode
;
3487 /* Fill CODES with the set of codes that could be matched by PRED. */
3490 get_predicate_codes (const struct pred_data
*pred
, int_set
*codes
)
3492 for (int i
= 0; i
< NUM_TRUE_RTX_CODE
; ++i
)
3493 if (!pred
|| pred
->codes
[i
])
3494 codes
->safe_push (i
);
3497 /* Return true if the first path through D1 tests the same thing as D2. */
3500 has_same_test_p (decision
*d1
, decision
*d2
)
3504 if (d1
->test
== d2
->test
)
3506 d1
= d1
->first
->to
->first
;
3512 /* Return true if D1 and D2 cannot match the same rtx. All states reachable
3513 from D2 have single decisions and all those decisions have single
3517 mutually_exclusive_p (decision
*d1
, decision
*d2
)
3519 /* If one path through D1 fails to test the same thing as D2, assume
3520 that D2's test could be true for D1 and look for a later, more useful,
3521 test. This isn't as expensive as it looks in practice. */
3522 while (!has_same_test_p (d1
, d2
))
3524 d2
= d2
->singleton ()->to
->singleton ();
3528 if (d1
->test
== d2
->test
)
3530 /* Look for any transitions from D1 that have the same labels as
3531 the transition from D2. */
3532 transition
*trans2
= d2
->singleton ();
3533 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3535 int_set::iterator i1
= trans1
->labels
.begin ();
3536 int_set::iterator end1
= trans1
->labels
.end ();
3537 int_set::iterator i2
= trans2
->labels
.begin ();
3538 int_set::iterator end2
= trans2
->labels
.end ();
3539 while (i1
!= end1
&& i2
!= end2
)
3546 /* TRANS1 has some labels in common with TRANS2. Assume
3547 that D1 and D2 could match the same rtx if the target
3548 of TRANS1 could match the same rtx as D2. */
3549 for (decision
*subd1
= trans1
->to
->first
;
3550 subd1
; subd1
= subd1
->next
)
3551 if (!mutually_exclusive_p (subd1
, d2
))
3558 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3559 for (decision
*subd1
= trans1
->to
->first
; subd1
; subd1
= subd1
->next
)
3560 if (!mutually_exclusive_p (subd1
, d2
))
3565 /* Try to merge S2's decision into D1, given that they have the same test.
3566 Fail only if EXCLUDE is nonnull and the new transition would have the
3567 same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2
3568 and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
3569 if the merge is complete. */
3572 merge_into_decision (decision
*d1
, state
*s2
, const int_set
*exclude
,
3573 state
**next_s1
, state
**next_s2
,
3574 const int_set
**next_exclude
)
3576 decision
*d2
= s2
->singleton ();
3577 transition
*trans2
= d2
->singleton ();
3579 /* Get a list of the transitions that intersect TRANS2. */
3580 auto_vec
<transition
*, 32> intersecting
;
3581 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3583 int_set::iterator i1
= trans1
->labels
.begin ();
3584 int_set::iterator end1
= trans1
->labels
.end ();
3585 int_set::iterator i2
= trans2
->labels
.begin ();
3586 int_set::iterator end2
= trans2
->labels
.end ();
3587 bool trans1_is_subset
= true;
3588 bool trans2_is_subset
= true;
3589 bool intersect_p
= false;
3590 while (i1
!= end1
&& i2
!= end2
)
3593 trans1_is_subset
= false;
3598 trans2_is_subset
= false;
3608 trans1_is_subset
= false;
3610 trans2_is_subset
= false;
3611 if (trans1_is_subset
&& trans2_is_subset
)
3613 /* There's already a transition that matches exactly.
3614 Merge the target states. */
3615 trans1
->optional
&= trans2
->optional
;
3616 *next_s1
= trans1
->to
;
3617 *next_s2
= trans2
->to
;
3621 if (trans2_is_subset
)
3623 /* TRANS1 has all the labels that TRANS2 needs. Merge S2 into
3624 the target of TRANS1, but (to avoid infinite recursion)
3625 make sure that we don't end up creating another transition
3627 *next_s1
= trans1
->to
;
3629 *next_exclude
= &trans1
->labels
;
3633 intersecting
.safe_push (trans1
);
3636 if (intersecting
.is_empty ())
3638 /* No existing labels intersect the new ones. We can just add
3640 d1
->push_back (d2
->release ());
3647 /* Take the union of the labels in INTERSECTING and TRANS2. Store the
3648 result in COMBINED and use NEXT as a temporary. */
3649 int_set tmp1
= trans2
->labels
, tmp2
;
3650 int_set
*combined
= &tmp1
, *next
= &tmp2
;
3651 for (unsigned int i
= 0; i
< intersecting
.length (); ++i
)
3653 transition
*trans1
= intersecting
[i
];
3655 next
->safe_grow (trans1
->labels
.length () + combined
->length ());
3656 int_set::iterator end
3657 = std::set_union (trans1
->labels
.begin (), trans1
->labels
.end (),
3658 combined
->begin (), combined
->end (),
3660 next
->truncate (end
- next
->begin ());
3661 std::swap (next
, combined
);
3664 /* Stop now if we've been told not to create a transition with these
3666 if (exclude
&& *combined
== *exclude
)
3669 /* Get the transition that should carry the new labels. */
3670 transition
*new_trans
= intersecting
[0];
3671 if (intersecting
.length () == 1)
3673 /* We're merging with one existing transition whose labels are a
3674 subset of those required. If both transitions are optional,
3675 we can just expand the set of labels so that it's suitable
3676 for both transitions. It isn't worth preserving the original
3677 transitions since we know that they can't be merged; we would
3678 need to backtrack to S2 if TRANS1->to fails. In contrast,
3679 we might be able to merge the targets of the transitions
3680 without any backtracking.
3682 If instead the existing transition is not optional, ensure that
3683 all target decisions are suitably protected. Some decisions
3684 might already have a more specific requirement than NEW_TRANS,
3685 in which case there's no point testing NEW_TRANS as well. E.g. this
3686 would have happened if a test for an (eq ...) rtx had been
3687 added to a decision that tested whether the code is suitable
3688 for comparison_operator. The original comparison_operator
3689 transition would have been non-optional and the (eq ...) test
3690 would be performed by a second decision in the target of that
3693 The remaining case -- keeping the original optional transition
3694 when adding a non-optional TRANS2 -- is a wash. Preserving
3695 the optional transition only helps if we later merge another
3696 state S3 that is mutually exclusive with S2 and whose labels
3697 belong to *COMBINED - TRANS1->labels. We can then test the
3698 original NEW_TRANS and S3 in the same decision. We keep the
3699 optional transition around for that case, but it occurs very
3701 gcc_assert (new_trans
->labels
!= *combined
);
3702 if (!new_trans
->optional
|| !trans2
->optional
)
3704 decision
*start
= 0;
3705 for (decision
*end
= new_trans
->to
->first
; end
; end
= end
->next
)
3707 if (!start
&& end
->test
!= d1
->test
)
3708 /* END belongs to a range of decisions that need to be
3709 protected by NEW_TRANS. */
3711 if (start
&& (!end
->next
|| end
->next
->test
== d1
->test
))
3713 /* Protect [START, END] with NEW_TRANS. The decisions
3714 move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */
3715 state
*new_s
= new state
;
3716 decision
*new_d
= new decision (d1
->test
);
3717 new_d
->push_back (new transition (new_trans
->labels
, new_s
,
3718 new_trans
->optional
));
3719 state::range
r (start
, end
);
3720 new_trans
->to
->replace (r
, new_d
);
3721 new_s
->push_back (r
);
3723 /* Continue with an empty range. */
3726 /* Continue from the decision after NEW_D. */
3731 new_trans
->optional
= true;
3732 new_trans
->labels
= *combined
;
3736 /* We're merging more than one existing transition together.
3737 Those transitions are successfully dividing the matching space
3738 and so we want to preserve them, even if they're optional.
3740 Create a new transition with the union set of labels and make
3741 it go to a state that has the original transitions. */
3742 decision
*new_d
= new decision (d1
->test
);
3743 for (unsigned int i
= 0; i
< intersecting
.length (); ++i
)
3744 new_d
->push_back (d1
->remove (intersecting
[i
]));
3746 state
*new_s
= new state
;
3747 new_s
->push_back (new_d
);
3749 new_trans
= new transition (*combined
, new_s
, true);
3750 d1
->push_back (new_trans
);
3753 /* We now have an optional transition with labels *COMBINED. Decide
3754 whether we can use it as TRANS2 or whether we need to merge S2
3755 into the target of NEW_TRANS. */
3756 gcc_assert (new_trans
->optional
);
3757 if (new_trans
->labels
== trans2
->labels
)
3759 /* NEW_TRANS matches TRANS2. Just merge the target states. */
3760 new_trans
->optional
= trans2
->optional
;
3761 *next_s1
= new_trans
->to
;
3762 *next_s2
= trans2
->to
;
3767 /* Try to merge TRANS2 into the target of the overlapping transition,
3768 but (to prevent infinite recursion or excessive redundancy) without
3769 creating another transition of the same type. */
3770 *next_s1
= new_trans
->to
;
3772 *next_exclude
= &new_trans
->labels
;
3777 /* Make progress in merging S2 into S1, given that each state in S2
3778 has a single decision. If EXCLUDE is nonnull, avoid creating a new
3779 transition with the same test as S2's decision and with the labels
3782 Return true if there is still work to do. When returning true,
3783 set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
3784 S1, S2 and EXCLUDE should have next time round.
3786 If S1 and S2 both match a particular rtx, give priority to S1. */
3789 merge_into_state_1 (state
*s1
, state
*s2
, const int_set
*exclude
,
3790 state
**next_s1
, state
**next_s2
,
3791 const int_set
**next_exclude
)
3793 decision
*d2
= s2
->singleton ();
3794 if (decision
*d1
= s1
->last
)
3796 if (d1
->test
.terminal_p ())
3797 /* D1 is an unconditional return, so S2 can never match. This can
3798 sometimes be a bug in the .md description, but might also happen
3799 if genconditions forces some conditions to true for certain
3803 /* Go backwards through the decisions in S1, stopping once we find one
3804 that could match the same thing as S2. */
3805 while (d1
->prev
&& mutually_exclusive_p (d1
, d2
))
3808 /* Search forwards from that point, merging D2 into the first
3810 for (; d1
; d1
= d1
->next
)
3812 /* If S2 performs some optional tests before testing the same thing
3813 as D1, those tests do not help to distinguish D1 and S2, so it's
3814 better to drop them. Search through such optional decisions
3815 until we find something that tests the same thing as D1. */
3819 decision
*sub_d2
= sub_s2
->singleton ();
3820 if (d1
->test
== sub_d2
->test
)
3822 /* Only apply EXCLUDE if we're testing the same thing
3824 const int_set
*sub_exclude
= (d2
== sub_d2
? exclude
: 0);
3826 /* Try to merge SUB_S2 into D1. This can only fail if
3827 it would involve creating a new transition with
3828 labels SUB_EXCLUDE. */
3829 if (merge_into_decision (d1
, sub_s2
, sub_exclude
,
3830 next_s1
, next_s2
, next_exclude
))
3831 return *next_s2
!= 0;
3833 /* Can't merge with D1; try a later decision. */
3836 transition
*sub_trans2
= sub_d2
->singleton ();
3837 if (!sub_trans2
->optional
)
3838 /* Can't merge with D1; try a later decision. */
3840 sub_s2
= sub_trans2
->to
;
3845 /* We can't merge D2 with any existing decision. Just add it to the end. */
3846 s1
->push_back (s2
->release ());
3850 /* Merge S2 into S1. If they both match a particular rtx, give
3851 priority to S1. Each state in S2 has a single decision. */
3854 merge_into_state (state
*s1
, state
*s2
)
3856 const int_set
*exclude
= 0;
3857 while (s2
&& merge_into_state_1 (s1
, s2
, exclude
, &s1
, &s2
, &exclude
))
3861 /* Pairs a pattern that needs to be matched with the rtx position at
3862 which the pattern should occur. */
3863 struct pattern_pos
{
3865 pattern_pos (rtx
, position
*);
3871 pattern_pos::pattern_pos (rtx pattern_in
, position
*pos_in
)
3872 : pattern (pattern_in
), pos (pos_in
)
3875 /* Compare entries according to their depth-first order. There shouldn't
3876 be two entries at the same position. */
3879 operator < (const pattern_pos
&e1
, const pattern_pos
&e2
)
3881 int diff
= compare_positions (e1
.pos
, e2
.pos
);
3882 gcc_assert (diff
!= 0 || e1
.pattern
== e2
.pattern
);
3886 /* Add new decisions to S that check whether the rtx at position POS
3887 matches PATTERN. Return the state that is reached in that case.
3888 TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */
3891 match_pattern_2 (state
*s
, md_rtx_info
*info
, position
*pos
, rtx pattern
)
3893 auto_vec
<pattern_pos
, 32> worklist
;
3894 auto_vec
<pattern_pos
, 32> pred_and_mode_tests
;
3895 auto_vec
<pattern_pos
, 32> dup_tests
;
3897 worklist
.safe_push (pattern_pos (pattern
, pos
));
3898 while (!worklist
.is_empty ())
3900 pattern_pos next
= worklist
.pop ();
3901 pattern
= next
.pattern
;
3903 unsigned int reverse_s
= worklist
.length ();
3905 enum rtx_code code
= GET_CODE (pattern
);
3911 /* Add a test that the rtx matches the earlier one, but only
3912 after the structure and predicates have been checked. */
3913 dup_tests
.safe_push (pattern_pos (pattern
, pos
));
3915 /* Use the same code check as the original operand. */
3916 pattern
= find_operand (info
->def
, XINT (pattern
, 0), NULL_RTX
);
3919 case MATCH_PARALLEL
:
3922 case MATCH_OPERATOR
:
3924 const char *pred_name
= predicate_name (pattern
);
3925 const struct pred_data
*pred
= 0;
3926 if (pred_name
[0] != 0)
3928 pred
= lookup_predicate (pred_name
);
3929 /* Only report errors once per rtx. */
3930 if (code
== GET_CODE (pattern
))
3933 error_at (info
->loc
, "unknown predicate '%s' used in %s",
3934 pred_name
, GET_RTX_NAME (code
));
3935 else if (code
== MATCH_PARALLEL
3936 && pred
->singleton
!= PARALLEL
)
3937 error_at (info
->loc
, "predicate '%s' used in"
3938 " match_parallel does not allow only PARALLEL",
3943 if (code
== MATCH_PARALLEL
|| code
== MATCH_PAR_DUP
)
3945 /* Check that we have a parallel with enough elements. */
3946 s
= add_decision (s
, rtx_test::code (pos
), PARALLEL
, false);
3947 int min_len
= XVECLEN (pattern
, 2);
3948 s
= add_decision (s
, rtx_test::veclen_ge (pos
, min_len
),
3953 /* Check that the rtx has one of codes accepted by the
3954 predicate. This is necessary when matching suboperands
3955 of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
3956 call XEXP (X, N) without checking that X has at least
3959 get_predicate_codes (pred
, &codes
);
3960 bool need_codes
= (pred
3961 && (code
== MATCH_OPERATOR
3962 || code
== MATCH_OP_DUP
));
3963 s
= add_decision (s
, rtx_test::code (pos
), codes
, !need_codes
);
3966 /* Postpone the predicate check until we've checked the rest
3967 of the rtx structure. */
3968 if (code
== GET_CODE (pattern
))
3969 pred_and_mode_tests
.safe_push (pattern_pos (pattern
, pos
));
3971 /* If we need to match suboperands, add them to the worklist. */
3972 if (code
== MATCH_OPERATOR
|| code
== MATCH_PARALLEL
)
3974 position
**subpos_ptr
;
3975 enum position_type pos_type
;
3977 if (code
== MATCH_OPERATOR
|| code
== MATCH_OP_DUP
)
3979 pos_type
= POS_XEXP
;
3980 subpos_ptr
= &pos
->xexps
;
3981 i
= (code
== MATCH_OPERATOR
? 2 : 1);
3985 pos_type
= POS_XVECEXP0
;
3986 subpos_ptr
= &pos
->xvecexp0s
;
3989 for (int j
= 0; j
< XVECLEN (pattern
, i
); ++j
)
3991 position
*subpos
= next_position (subpos_ptr
, pos
,
3993 worklist
.safe_push (pattern_pos (XVECEXP (pattern
, i
, j
),
3995 subpos_ptr
= &subpos
->next
;
4003 /* Check that the rtx has the right code. */
4004 s
= add_decision (s
, rtx_test::code (pos
), code
, false);
4006 /* Queue a test for the mode if one is specified. */
4007 if (GET_MODE (pattern
) != VOIDmode
)
4008 pred_and_mode_tests
.safe_push (pattern_pos (pattern
, pos
));
4010 /* Push subrtxes onto the worklist. Match nonrtx operands now. */
4011 const char *fmt
= GET_RTX_FORMAT (code
);
4012 position
**subpos_ptr
= &pos
->xexps
;
4013 for (size_t i
= 0; fmt
[i
]; ++i
)
4015 position
*subpos
= next_position (subpos_ptr
, pos
,
4020 worklist
.safe_push (pattern_pos (XEXP (pattern
, i
),
4026 /* Make sure the vector has the right number of
4028 int length
= XVECLEN (pattern
, i
);
4029 s
= add_decision (s
, rtx_test::veclen (pos
),
4032 position
**subpos2_ptr
= &pos
->xvecexp0s
;
4033 for (int j
= 0; j
< length
; j
++)
4035 position
*subpos2
= next_position (subpos2_ptr
, pos
,
4037 rtx x
= XVECEXP (pattern
, i
, j
);
4038 worklist
.safe_push (pattern_pos (x
, subpos2
));
4039 subpos2_ptr
= &subpos2
->next
;
4045 /* Make sure that XINT (X, I) has the right value. */
4046 s
= add_decision (s
, rtx_test::int_field (pos
, i
),
4047 XINT (pattern
, i
), false);
4051 /* Make sure that REGNO (X) has the right value. */
4052 gcc_assert (i
== 0);
4053 s
= add_decision (s
, rtx_test::regno_field (pos
),
4054 REGNO (pattern
), false);
4058 /* Make sure that XWINT (X, I) has the right value. */
4059 s
= add_decision (s
, rtx_test::wide_int_field (pos
, i
),
4060 XWINT (pattern
, 0), false);
4064 /* We don't have a way of parsing polynomial offsets yet,
4065 and hopefully never will. */
4066 s
= add_decision (s
, rtx_test::subreg_field (pos
),
4067 SUBREG_BYTE (pattern
).to_constant (),
4077 subpos_ptr
= &subpos
->next
;
4082 /* Operands are pushed onto the worklist so that later indices are
4083 nearer the top. That's what we want for SETs, since a SET_SRC
4084 is a better discriminator than a SET_DEST. In other cases it's
4085 usually better to match earlier indices first. This is especially
4086 true of PARALLELs, where the first element tends to be the most
4087 individual. It's also true for commutative operators, where the
4088 canonicalization rules say that the more complex operand should
4090 if (code
!= SET
&& worklist
.length () > reverse_s
)
4091 std::reverse (&worklist
[0] + reverse_s
,
4092 &worklist
[0] + worklist
.length ());
4095 /* Sort the predicate and mode tests so that they're in depth-first order.
4096 The main goal of this is to put SET_SRC match_operands after SET_DEST
4097 match_operands and after mode checks for the enclosing SET_SRC operators
4098 (such as the mode of a PLUS in an addition instruction). The latter
4099 two types of test can determine the mode exactly, whereas a SET_SRC
4100 match_operand often has to cope with the possibility of the operand
4101 being a modeless constant integer. E.g. something that matches
4102 register_operand (x, SImode) never matches register_operand (x, DImode),
4103 but a const_int that matches immediate_operand (x, SImode) also matches
4104 immediate_operand (x, DImode). The register_operand cases can therefore
4105 be distinguished by a switch on the mode, but the immediate_operand
4107 if (pred_and_mode_tests
.length () > 1)
4108 std::sort (&pred_and_mode_tests
[0],
4109 &pred_and_mode_tests
[0] + pred_and_mode_tests
.length ());
4111 /* Add the mode and predicate tests. */
4114 FOR_EACH_VEC_ELT (pred_and_mode_tests
, i
, e
)
4116 switch (GET_CODE (e
->pattern
))
4118 case MATCH_PARALLEL
:
4121 case MATCH_OPERATOR
:
4123 int opno
= XINT (e
->pattern
, 0);
4124 num_operands
= MAX (num_operands
, opno
+ 1);
4125 const char *pred_name
= predicate_name (e
->pattern
);
4128 const struct pred_data
*pred
= lookup_predicate (pred_name
);
4129 /* Check the mode first, to distinguish things like SImode
4130 and DImode register_operands, as described above. */
4131 machine_mode mode
= GET_MODE (e
->pattern
);
4132 if (pred
&& safe_predicate_mode (pred
, mode
))
4133 s
= add_decision (s
, rtx_test::mode (e
->pos
), mode
, true);
4135 /* Assign to operands[] first, so that the rtx usually doesn't
4136 need to be live across the call to the predicate.
4138 This shouldn't cause a problem with dirtying the page,
4139 since we fully expect to assign to operands[] at some point,
4140 and since the caller usually writes to other parts of
4141 recog_data anyway. */
4142 s
= add_decision (s
, rtx_test::set_op (e
->pos
, opno
),
4144 s
= add_decision (s
, rtx_test::predicate (e
->pos
, pred
, mode
),
4148 /* Historically we've ignored the mode when there's no
4149 predicate. Just set up operands[] unconditionally. */
4150 s
= add_decision (s
, rtx_test::set_op (e
->pos
, opno
),
4156 s
= add_decision (s
, rtx_test::mode (e
->pos
),
4157 GET_MODE (e
->pattern
), false);
4162 /* Finally add rtx_equal_p checks for duplicated operands. */
4163 FOR_EACH_VEC_ELT (dup_tests
, i
, e
)
4164 s
= add_decision (s
, rtx_test::duplicate (e
->pos
, XINT (e
->pattern
, 0)),
4169 /* Add new decisions to S that make it return ACCEPTANCE if:
4171 (1) the rtx doesn't match anything already matched by S
4172 (2) the rtx matches TOP_PATTERN and
4173 (3) the C test required by INFO->def is true
4175 For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns
4176 to match, otherwise it is a single instruction pattern. */
4179 match_pattern_1 (state
*s
, md_rtx_info
*info
, rtx pattern
,
4180 acceptance_type acceptance
)
4182 if (acceptance
.type
== PEEPHOLE2
)
4184 /* Match each individual instruction. */
4185 position
**subpos_ptr
= &peep2_insn_pos_list
;
4187 for (int i
= 0; i
< XVECLEN (pattern
, 0); ++i
)
4189 rtx x
= XVECEXP (pattern
, 0, i
);
4190 position
*subpos
= next_position (subpos_ptr
, &root_pos
,
4191 POS_PEEP2_INSN
, count
);
4193 s
= add_decision (s
, rtx_test::peep2_count (count
+ 1),
4195 s
= match_pattern_2 (s
, info
, subpos
, x
);
4196 subpos_ptr
= &subpos
->next
;
4199 acceptance
.u
.full
.u
.match_len
= count
- 1;
4203 /* Make the rtx itself. */
4204 s
= match_pattern_2 (s
, info
, &root_pos
, pattern
);
4206 /* If the match is only valid when extra clobbers are added,
4207 make sure we're able to pass that information to the caller. */
4208 if (acceptance
.type
== RECOG
&& acceptance
.u
.full
.u
.num_clobbers
)
4209 s
= add_decision (s
, rtx_test::have_num_clobbers (), true, false);
4212 /* Make sure that the C test is true. */
4213 const char *c_test
= get_c_test (info
->def
);
4214 if (maybe_eval_c_test (c_test
) != 1)
4215 s
= add_decision (s
, rtx_test::c_test (c_test
), true, false);
4217 /* Accept the pattern. */
4218 add_decision (s
, rtx_test::accept (acceptance
), true, false);
4221 /* Like match_pattern_1, but (if merge_states_p) try to merge the
4222 decisions with what's already in S, to reduce the amount of
4226 match_pattern (state
*s
, md_rtx_info
*info
, rtx pattern
,
4227 acceptance_type acceptance
)
4232 /* Add the decisions to a fresh state and then merge the full tree
4233 into the existing one. */
4234 match_pattern_1 (&root
, info
, pattern
, acceptance
);
4235 merge_into_state (s
, &root
);
4238 match_pattern_1 (s
, info
, pattern
, acceptance
);
4241 /* Begin the output file. */
4247 /* Generated automatically by the program `genrecog' from the target\n\
4248 machine description file. */\n\
4250 #define IN_TARGET_CODE 1\n\
4252 #include \"config.h\"\n\
4253 #include \"system.h\"\n\
4254 #include \"coretypes.h\"\n\
4255 #include \"backend.h\"\n\
4256 #include \"predict.h\"\n\
4257 #include \"rtl.h\"\n\
4258 #include \"memmodel.h\"\n\
4259 #include \"tm_p.h\"\n\
4260 #include \"emit-rtl.h\"\n\
4261 #include \"insn-config.h\"\n\
4262 #include \"recog.h\"\n\
4263 #include \"output.h\"\n\
4264 #include \"flags.h\"\n\
4265 #include \"df.h\"\n\
4266 #include \"resource.h\"\n\
4267 #include \"diagnostic-core.h\"\n\
4268 #include \"reload.h\"\n\
4269 #include \"regs.h\"\n\
4270 #include \"tm-constrs.h\"\n\
4274 /* `recog' contains a decision tree that recognizes whether the rtx\n\
4275 X0 is a valid instruction.\n\
4277 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
4278 returns a nonnegative number which is the insn code number for the\n\
4279 pattern that matched. This is the same as the order in the machine\n\
4280 description of the entry that matched. This number can be used as an\n\
4281 index into `insn_data' and other tables.\n");
4283 The third parameter to recog is an optional pointer to an int. If\n\
4284 present, recog will accept a pattern if it matches except for missing\n\
4285 CLOBBER expressions at the end. In that case, the value pointed to by\n\
4286 the optional pointer will be set to the number of CLOBBERs that need\n\
4287 to be added (it should be initialized to zero by the caller). If it");
4289 is set nonzero, the caller should allocate a PARALLEL of the\n\
4290 appropriate size, copy the initial entries, and call add_clobbers\n\
4291 (found in insn-emit.c) to fill in the CLOBBERs.\n\
4295 The function split_insns returns 0 if the rtl could not\n\
4296 be split or the split rtl as an INSN list if it can be.\n\
4298 The function peephole2_insns returns 0 if the rtl could not\n\
4299 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
4300 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
4304 /* Return the C type of a parameter with type TYPE. */
4307 parameter_type_string (parameter::type_enum type
)
4311 case parameter::UNSET
:
4314 case parameter::CODE
:
4317 case parameter::MODE
:
4318 return "machine_mode";
4320 case parameter::INT
:
4323 case parameter::UINT
:
4324 return "unsigned int";
4326 case parameter::WIDE_INT
:
4327 return "HOST_WIDE_INT";
4332 /* Return true if ACCEPTANCE requires only a single C statement even in
4333 a backtracking context. */
4336 single_statement_p (const acceptance_type
&acceptance
)
4338 if (acceptance
.partial_p
)
4339 /* We need to handle failures of the subroutine. */
4341 switch (acceptance
.type
)
4348 /* False if we need to assign to pnum_clobbers. */
4349 return acceptance
.u
.full
.u
.num_clobbers
== 0;
4352 /* We need to assign to pmatch_len_ and handle null returns from the
4353 peephole2 routine. */
4359 /* Return the C failure value for a routine of type TYPE. */
4362 get_failure_return (routine_type type
)
4377 /* Indicates whether a block of code always returns or whether it can fall
4385 /* Information used while writing out code. */
4389 /* The type of routine that we're generating. */
4392 /* Maps position ids to xN variable numbers. The entry is only valid if
4393 it is less than the length of VAR_TO_ID, but this holds for every position
4394 tested by a state when writing out that state. */
4395 auto_vec
<unsigned int> id_to_var
;
4397 /* Maps xN variable numbers to position ids. */
4398 auto_vec
<unsigned int> var_to_id
;
4400 /* Index N is true if variable xN has already been set. */
4401 auto_vec
<bool> seen_vars
;
4404 /* Return true if D is a call to a pattern routine and if there is some X
4405 such that the transition for pattern result N goes to a successful return
4406 with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT
4407 to the number of return values. (We know that every PATTERN decision has
4408 a transition for every successful return.) */
4411 terminal_pattern_p (decision
*d
, unsigned int *base_out
,
4412 unsigned int *count_out
)
4414 if (d
->test
.kind
!= rtx_test::PATTERN
)
4416 unsigned int base
= 0;
4417 unsigned int count
= 0;
4418 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
4420 if (trans
->is_param
|| trans
->labels
.length () != 1)
4422 decision
*subd
= trans
->to
->singleton ();
4423 if (!subd
|| subd
->test
.kind
!= rtx_test::ACCEPT
)
4425 unsigned int this_base
= (subd
->test
.u
.acceptance
.u
.full
.code
4426 - trans
->labels
[0]);
4427 if (trans
== d
->first
)
4429 else if (base
!= this_base
)
4438 /* Return true if TEST doesn't test an rtx or if the rtx it tests is
4439 already available in state OS. */
4442 test_position_available_p (output_state
*os
, const rtx_test
&test
)
4445 || test
.pos_operand
>= 0
4446 || os
->seen_vars
[os
->id_to_var
[test
.pos
->id
]]);
4449 /* Like printf, but print INDENT spaces at the beginning. */
4451 static void ATTRIBUTE_PRINTF_2
4452 printf_indent (unsigned int indent
, const char *format
, ...)
4455 va_start (ap
, format
);
4456 printf ("%*s", indent
, "");
4457 vprintf (format
, ap
);
4461 /* Emit code to initialize the variable associated with POS, if it isn't
4462 already valid in state OS. Indent each line by INDENT spaces. Update
4463 OS with the new state. */
4466 change_state (output_state
*os
, position
*pos
, unsigned int indent
)
4468 unsigned int var
= os
->id_to_var
[pos
->id
];
4469 gcc_assert (var
< os
->var_to_id
.length () && os
->var_to_id
[var
] == pos
->id
);
4470 if (os
->seen_vars
[var
])
4474 case POS_PEEP2_INSN
:
4475 printf_indent (indent
, "x%d = PATTERN (peep2_next_insn (%d));\n",
4480 change_state (os
, pos
->base
, indent
);
4481 printf_indent (indent
, "x%d = XEXP (x%d, %d);\n",
4482 var
, os
->id_to_var
[pos
->base
->id
], pos
->arg
);
4486 change_state (os
, pos
->base
, indent
);
4487 printf_indent (indent
, "x%d = XVECEXP (x%d, 0, %d);\n",
4488 var
, os
->id_to_var
[pos
->base
->id
], pos
->arg
);
4491 os
->seen_vars
[var
] = true;
4494 /* Print the enumerator constant for CODE -- the upcase version of
4498 print_code (enum rtx_code code
)
4501 for (p
= GET_RTX_NAME (code
); *p
; p
++)
4502 putchar (TOUPPER (*p
));
4505 /* Emit a uint64_t as an integer constant expression. We need to take
4506 special care to avoid "decimal constant is so large that it is unsigned"
4507 warnings in the resulting code. */
4510 print_host_wide_int (uint64_t val
)
4512 uint64_t min
= uint64_t (1) << (HOST_BITS_PER_WIDE_INT
- 1);
4514 printf ("(" HOST_WIDE_INT_PRINT_DEC_C
" - 1)", val
+ 1);
4516 printf (HOST_WIDE_INT_PRINT_DEC_C
, val
);
4519 /* Print the C expression for actual parameter PARAM. */
4522 print_parameter_value (const parameter
¶m
)
4525 printf ("i%d", (int) param
.value
+ 1);
4529 case parameter::UNSET
:
4533 case parameter::CODE
:
4534 print_code ((enum rtx_code
) param
.value
);
4537 case parameter::MODE
:
4538 printf ("E_%smode", GET_MODE_NAME ((machine_mode
) param
.value
));
4541 case parameter::INT
:
4542 printf ("%d", (int) param
.value
);
4545 case parameter::UINT
:
4546 printf ("%u", (unsigned int) param
.value
);
4549 case parameter::WIDE_INT
:
4550 print_host_wide_int (param
.value
);
4555 /* Print the C expression for the rtx tested by TEST. */
4558 print_test_rtx (output_state
*os
, const rtx_test
&test
)
4560 if (test
.pos_operand
>= 0)
4561 printf ("operands[%d]", test
.pos_operand
);
4563 printf ("x%d", os
->id_to_var
[test
.pos
->id
]);
4566 /* Print the C expression for non-boolean test TEST. */
4569 print_nonbool_test (output_state
*os
, const rtx_test
&test
)
4573 case rtx_test::CODE
:
4574 printf ("GET_CODE (");
4575 print_test_rtx (os
, test
);
4579 case rtx_test::MODE
:
4580 printf ("GET_MODE (");
4581 print_test_rtx (os
, test
);
4585 case rtx_test::VECLEN
:
4586 printf ("XVECLEN (");
4587 print_test_rtx (os
, test
);
4591 case rtx_test::INT_FIELD
:
4593 print_test_rtx (os
, test
);
4594 printf (", %d)", test
.u
.opno
);
4597 case rtx_test::REGNO_FIELD
:
4599 print_test_rtx (os
, test
);
4603 case rtx_test::SUBREG_FIELD
:
4604 printf ("SUBREG_BYTE (");
4605 print_test_rtx (os
, test
);
4609 case rtx_test::WIDE_INT_FIELD
:
4611 print_test_rtx (os
, test
);
4612 printf (", %d)", test
.u
.opno
);
4615 case rtx_test::PATTERN
:
4617 pattern_routine
*routine
= test
.u
.pattern
->routine
;
4618 printf ("pattern%d (", routine
->pattern_id
);
4619 const char *sep
= "";
4622 print_test_rtx (os
, test
);
4625 if (routine
->insn_p
)
4627 printf ("%sinsn", sep
);
4630 if (routine
->pnum_clobbers_p
)
4632 printf ("%spnum_clobbers", sep
);
4635 for (unsigned int i
= 0; i
< test
.u
.pattern
->params
.length (); ++i
)
4637 fputs (sep
, stdout
);
4638 print_parameter_value (test
.u
.pattern
->params
[i
]);
4645 case rtx_test::PEEP2_COUNT
:
4646 case rtx_test::VECLEN_GE
:
4647 case rtx_test::SAVED_CONST_INT
:
4648 case rtx_test::DUPLICATE
:
4649 case rtx_test::PREDICATE
:
4650 case rtx_test::SET_OP
:
4651 case rtx_test::HAVE_NUM_CLOBBERS
:
4652 case rtx_test::C_TEST
:
4653 case rtx_test::ACCEPT
:
4658 /* IS_PARAM and LABEL are taken from a transition whose source
4659 decision performs TEST. Print the C code for the label. */
4662 print_label_value (const rtx_test
&test
, bool is_param
, uint64_t value
)
4664 print_parameter_value (parameter (transition_parameter_type (test
.kind
),
4668 /* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
4669 If !IS_PARAM, print code to compare TEST with the C constant VALUE.
4670 Test for inequality if INVERT_P, otherwise test for equality. */
4673 print_test (output_state
*os
, const rtx_test
&test
, bool is_param
,
4674 uint64_t value
, bool invert_p
)
4678 /* Handle the non-boolean TESTs. */
4679 case rtx_test::CODE
:
4680 case rtx_test::MODE
:
4681 case rtx_test::VECLEN
:
4682 case rtx_test::REGNO_FIELD
:
4683 case rtx_test::INT_FIELD
:
4684 case rtx_test::WIDE_INT_FIELD
:
4685 case rtx_test::PATTERN
:
4686 print_nonbool_test (os
, test
);
4687 printf (" %s ", invert_p
? "!=" : "==");
4688 print_label_value (test
, is_param
, value
);
4691 case rtx_test::SUBREG_FIELD
:
4692 printf ("%s (", invert_p
? "maybe_ne" : "known_eq");
4693 print_nonbool_test (os
, test
);
4695 print_label_value (test
, is_param
, value
);
4699 case rtx_test::SAVED_CONST_INT
:
4700 gcc_assert (!is_param
&& value
== 1);
4701 print_test_rtx (os
, test
);
4702 printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ",
4703 invert_p
? "!=" : "==");
4704 print_parameter_value (parameter (parameter::INT
,
4705 test
.u
.integer
.is_param
,
4706 test
.u
.integer
.value
));
4710 case rtx_test::PEEP2_COUNT
:
4711 gcc_assert (!is_param
&& value
== 1);
4712 printf ("peep2_current_count %s %d", invert_p
? "<" : ">=",
4716 case rtx_test::VECLEN_GE
:
4717 gcc_assert (!is_param
&& value
== 1);
4718 printf ("XVECLEN (");
4719 print_test_rtx (os
, test
);
4720 printf (", 0) %s %d", invert_p
? "<" : ">=", test
.u
.min_len
);
4723 case rtx_test::PREDICATE
:
4724 gcc_assert (!is_param
&& value
== 1);
4725 printf ("%s%s (", invert_p
? "!" : "", test
.u
.predicate
.data
->name
);
4726 print_test_rtx (os
, test
);
4728 print_parameter_value (parameter (parameter::MODE
,
4729 test
.u
.predicate
.mode_is_param
,
4730 test
.u
.predicate
.mode
));
4734 case rtx_test::DUPLICATE
:
4735 gcc_assert (!is_param
&& value
== 1);
4736 printf ("%srtx_equal_p (", invert_p
? "!" : "");
4737 print_test_rtx (os
, test
);
4738 printf (", operands[%d])", test
.u
.opno
);
4741 case rtx_test::HAVE_NUM_CLOBBERS
:
4742 gcc_assert (!is_param
&& value
== 1);
4743 printf ("pnum_clobbers %s NULL", invert_p
? "==" : "!=");
4746 case rtx_test::C_TEST
:
4747 gcc_assert (!is_param
&& value
== 1);
4750 rtx_reader_ptr
->print_c_condition (test
.u
.string
);
4753 case rtx_test::ACCEPT
:
4754 case rtx_test::SET_OP
:
4759 static exit_state
print_decision (output_state
*, decision
*,
4760 unsigned int, bool);
4762 /* Print code to perform S, indent each line by INDENT spaces.
4763 IS_FINAL is true if there are no fallback decisions to test on failure;
4764 if the state fails then the entire routine fails. */
4767 print_state (output_state
*os
, state
*s
, unsigned int indent
, bool is_final
)
4769 exit_state es
= ES_FALLTHROUGH
;
4770 for (decision
*d
= s
->first
; d
; d
= d
->next
)
4771 es
= print_decision (os
, d
, indent
, is_final
&& !d
->next
);
4772 if (es
!= ES_RETURNED
&& is_final
)
4774 printf_indent (indent
, "return %s;\n", get_failure_return (os
->type
));
4780 /* Print the code for subroutine call ACCEPTANCE (for which partial_p
4781 is known to be true). Return the C condition that indicates a successful
4785 print_subroutine_call (const acceptance_type
&acceptance
)
4787 switch (acceptance
.type
)
4793 printf ("recog_%d (x1, insn, pnum_clobbers)",
4794 acceptance
.u
.subroutine_id
);
4798 printf ("split_%d (x1, insn)", acceptance
.u
.subroutine_id
);
4799 return "!= NULL_RTX";
4802 printf ("peephole2_%d (x1, insn, pmatch_len_)",
4803 acceptance
.u
.subroutine_id
);
4804 return "!= NULL_RTX";
4809 /* Print code for the successful match described by ACCEPTANCE.
4810 INDENT and IS_FINAL are as for print_state. */
4813 print_acceptance (const acceptance_type
&acceptance
, unsigned int indent
,
4816 if (acceptance
.partial_p
)
4818 /* Defer the rest of the match to a subroutine. */
4821 printf_indent (indent
, "return ");
4822 print_subroutine_call (acceptance
);
4828 printf_indent (indent
, "res = ");
4829 const char *res_test
= print_subroutine_call (acceptance
);
4831 printf_indent (indent
, "if (res %s)\n", res_test
);
4832 printf_indent (indent
+ 2, "return res;\n");
4833 return ES_FALLTHROUGH
;
4836 switch (acceptance
.type
)
4839 printf_indent (indent
, "return %d;\n", acceptance
.u
.full
.code
);
4843 if (acceptance
.u
.full
.u
.num_clobbers
!= 0)
4844 printf_indent (indent
, "*pnum_clobbers = %d;\n",
4845 acceptance
.u
.full
.u
.num_clobbers
);
4846 printf_indent (indent
, "return %d; /* %s */\n", acceptance
.u
.full
.code
,
4847 get_insn_name (acceptance
.u
.full
.code
));
4851 printf_indent (indent
, "return gen_split_%d (insn, operands);\n",
4852 acceptance
.u
.full
.code
);
4856 printf_indent (indent
, "*pmatch_len_ = %d;\n",
4857 acceptance
.u
.full
.u
.match_len
);
4860 printf_indent (indent
, "return gen_peephole2_%d (insn, operands);\n",
4861 acceptance
.u
.full
.code
);
4866 printf_indent (indent
, "res = gen_peephole2_%d (insn, operands);\n",
4867 acceptance
.u
.full
.code
);
4868 printf_indent (indent
, "if (res != NULL_RTX)\n");
4869 printf_indent (indent
+ 2, "return res;\n");
4870 return ES_FALLTHROUGH
;
4876 /* Print code to perform D. INDENT and IS_FINAL are as for print_state. */
4879 print_decision (output_state
*os
, decision
*d
, unsigned int indent
,
4883 unsigned int base
, count
;
4885 /* Make sure the rtx under test is available either in operands[] or
4886 in an xN variable. */
4887 if (d
->test
.pos
&& d
->test
.pos_operand
< 0)
4888 change_state (os
, d
->test
.pos
, indent
);
4890 /* Look for cases where a pattern routine P1 calls another pattern routine
4891 P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL
4892 is true and BASE is zero we can simply use:
4894 return patternN (...);
4896 Otherwise we can use:
4898 res = patternN (...);
4902 However, if BASE is nonzero and patternN only returns 0 or -1,
4903 the usual "return BASE;" is better than "return res + BASE;".
4904 If BASE is zero, "return res;" should be better than "return 0;",
4905 since no assignment to the return register is required. */
4906 if (os
->type
== SUBPATTERN
4907 && terminal_pattern_p (d
, &base
, &count
)
4908 && (base
== 0 || count
> 1))
4910 if (is_final
&& base
== 0)
4912 printf_indent (indent
, "return ");
4913 print_nonbool_test (os
, d
->test
);
4914 printf ("; /* [-1, %d] */\n", count
- 1);
4919 printf_indent (indent
, "res = ");
4920 print_nonbool_test (os
, d
->test
);
4922 printf_indent (indent
, "if (res >= 0)\n");
4923 printf_indent (indent
+ 2, "return res");
4925 printf (" + %d", base
);
4926 printf ("; /* [%d, %d] */\n", base
, base
+ count
- 1);
4927 return ES_FALLTHROUGH
;
4930 else if (d
->test
.kind
== rtx_test::ACCEPT
)
4931 return print_acceptance (d
->test
.u
.acceptance
, indent
, is_final
);
4932 else if (d
->test
.kind
== rtx_test::SET_OP
)
4934 printf_indent (indent
, "operands[%d] = ", d
->test
.u
.opno
);
4935 print_test_rtx (os
, d
->test
);
4937 return print_state (os
, d
->singleton ()->to
, indent
, is_final
);
4939 /* Handle decisions with a single transition and a single transition
4941 else if (d
->if_statement_p (&label
))
4943 transition
*trans
= d
->singleton ();
4944 if (mark_optional_transitions_p
&& trans
->optional
)
4945 printf_indent (indent
, "/* OPTIONAL IF */\n");
4947 /* Print the condition associated with TRANS. Invert it if IS_FINAL,
4948 so that we return immediately on failure and fall through on
4950 printf_indent (indent
, "if (");
4951 print_test (os
, d
->test
, trans
->is_param
, label
, is_final
);
4953 /* Look for following states that would be handled by this code
4954 on recursion. If they don't need any preparatory statements,
4955 include them in the current "if" statement rather than creating
4959 d
= trans
->to
->singleton ();
4961 || d
->test
.kind
== rtx_test::ACCEPT
4962 || d
->test
.kind
== rtx_test::SET_OP
4963 || !d
->if_statement_p (&label
)
4964 || !test_position_available_p (os
, d
->test
))
4968 if (mark_optional_transitions_p
&& trans
->optional
)
4969 printf_indent (indent
+ 4, "/* OPTIONAL IF */\n");
4970 printf_indent (indent
+ 4, "%s ", is_final
? "||" : "&&");
4971 print_test (os
, d
->test
, trans
->is_param
, label
, is_final
);
4975 /* Print the conditional code with INDENT + 2 and the fallthrough
4976 code with indent INDENT. */
4977 state
*to
= trans
->to
;
4980 /* We inverted the condition above, so return failure in the
4981 "if" body and fall through to the target of the transition. */
4982 printf_indent (indent
+ 2, "return %s;\n",
4983 get_failure_return (os
->type
));
4984 return print_state (os
, to
, indent
, is_final
);
4986 else if (to
->singleton ()
4987 && to
->first
->test
.kind
== rtx_test::ACCEPT
4988 && single_statement_p (to
->first
->test
.u
.acceptance
))
4990 /* The target of the transition is a simple "return" statement.
4991 It doesn't need any braces and doesn't fall through. */
4992 if (print_acceptance (to
->first
->test
.u
.acceptance
,
4993 indent
+ 2, true) != ES_RETURNED
)
4995 return ES_FALLTHROUGH
;
4999 /* The general case. Output code for the target of the transition
5000 in braces. This will not invalidate any of the xN variables
5001 that are already valid, but we mustn't rely on any that are
5002 set by the "if" body. */
5003 auto_vec
<bool, 32> old_seen
;
5004 old_seen
.safe_splice (os
->seen_vars
);
5006 printf_indent (indent
+ 2, "{\n");
5007 print_state (os
, trans
->to
, indent
+ 4, is_final
);
5008 printf_indent (indent
+ 2, "}\n");
5010 os
->seen_vars
.truncate (0);
5011 os
->seen_vars
.splice (old_seen
);
5012 return ES_FALLTHROUGH
;
5017 /* Output the decision as a switch statement. */
5018 printf_indent (indent
, "switch (");
5019 print_nonbool_test (os
, d
->test
);
5022 /* Each case statement starts with the same set of valid variables.
5023 These are also the only variables will be valid on fallthrough. */
5024 auto_vec
<bool, 32> old_seen
;
5025 old_seen
.safe_splice (os
->seen_vars
);
5027 printf_indent (indent
+ 2, "{\n");
5028 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
5030 gcc_assert (!trans
->is_param
);
5031 if (mark_optional_transitions_p
&& trans
->optional
)
5032 printf_indent (indent
+ 2, "/* OPTIONAL CASE */\n");
5033 for (int_set::iterator j
= trans
->labels
.begin ();
5034 j
!= trans
->labels
.end (); ++j
)
5036 printf_indent (indent
+ 2, "case ");
5037 print_label_value (d
->test
, trans
->is_param
, *j
);
5040 if (print_state (os
, trans
->to
, indent
+ 4, is_final
))
5042 /* The state can fall through. Add an explicit break. */
5043 gcc_assert (!is_final
);
5044 printf_indent (indent
+ 4, "break;\n");
5048 /* Restore the original set of valid variables. */
5049 os
->seen_vars
.truncate (0);
5050 os
->seen_vars
.splice (old_seen
);
5052 /* Add a default case. */
5053 printf_indent (indent
+ 2, "default:\n");
5055 printf_indent (indent
+ 4, "return %s;\n",
5056 get_failure_return (os
->type
));
5058 printf_indent (indent
+ 4, "break;\n");
5059 printf_indent (indent
+ 2, "}\n");
5060 return is_final
? ES_RETURNED
: ES_FALLTHROUGH
;
5064 /* Make sure that OS has a position variable for POS. ROOT_P is true if
5065 POS is the root position for the routine. */
5068 assign_position_var (output_state
*os
, position
*pos
, bool root_p
)
5070 unsigned int idx
= os
->id_to_var
[pos
->id
];
5071 if (idx
< os
->var_to_id
.length () && os
->var_to_id
[idx
] == pos
->id
)
5073 if (!root_p
&& pos
->type
!= POS_PEEP2_INSN
)
5074 assign_position_var (os
, pos
->base
, false);
5075 os
->id_to_var
[pos
->id
] = os
->var_to_id
.length ();
5076 os
->var_to_id
.safe_push (pos
->id
);
5079 /* Make sure that OS has the position variables required by S. */
5082 assign_position_vars (output_state
*os
, state
*s
)
5084 for (decision
*d
= s
->first
; d
; d
= d
->next
)
5086 /* Positions associated with operands can be read from the
5087 operands[] array. */
5088 if (d
->test
.pos
&& d
->test
.pos_operand
< 0)
5089 assign_position_var (os
, d
->test
.pos
, false);
5090 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
5091 assign_position_vars (os
, trans
->to
);
5095 /* Print the open brace and variable definitions for a routine that
5096 implements S. ROOT is the deepest rtx from which S can access all
5097 relevant parts of the first instruction it matches. Initialize OS
5098 so that every relevant position has an rtx variable xN and so that
5099 only ROOT's variable has a valid value. */
5102 print_subroutine_start (output_state
*os
, state
*s
, position
*root
)
5104 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED"
5105 " = &recog_data.operand[0];\n");
5106 os
->var_to_id
.truncate (0);
5107 os
->seen_vars
.truncate (0);
5110 /* Create a fake entry for position 0 so that an id_to_var of 0
5111 is always invalid. This also makes the xN variables naturally
5112 1-based rather than 0-based. */
5113 os
->var_to_id
.safe_push (num_positions
);
5115 /* Associate ROOT with x1. */
5116 assign_position_var (os
, root
, true);
5118 /* Assign xN variables to all other relevant positions. */
5119 assign_position_vars (os
, s
);
5121 /* Output the variable declarations (except for ROOT's, which is
5122 passed in as a parameter). */
5123 unsigned int num_vars
= os
->var_to_id
.length ();
5126 for (unsigned int i
= 2; i
< num_vars
; ++i
)
5127 /* Print 8 rtx variables to a line. */
5129 i
== 2 ? " rtx" : (i
- 2) % 8 == 0 ? ";\n rtx" : ",", i
);
5133 /* Say that x1 is valid and the rest aren't. */
5134 os
->seen_vars
.safe_grow_cleared (num_vars
);
5135 os
->seen_vars
[1] = true;
5137 if (os
->type
== SUBPATTERN
|| os
->type
== RECOG
)
5138 printf (" int res ATTRIBUTE_UNUSED;\n");
5140 printf (" rtx_insn *res ATTRIBUTE_UNUSED;\n");
5143 /* Output the definition of pattern routine ROUTINE. */
5146 print_pattern (output_state
*os
, pattern_routine
*routine
)
5148 printf ("\nstatic int\npattern%d (", routine
->pattern_id
);
5149 const char *sep
= "";
5150 /* Add the top-level rtx parameter, if any. */
5153 printf ("%srtx x1", sep
);
5156 /* Add the optional parameters. */
5157 if (routine
->insn_p
)
5159 /* We can't easily tell whether a C condition actually reads INSN,
5160 so add an ATTRIBUTE_UNUSED just in case. */
5161 printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep
);
5164 if (routine
->pnum_clobbers_p
)
5166 printf ("%sint *pnum_clobbers", sep
);
5169 /* Add the "i" parameters. */
5170 for (unsigned int i
= 0; i
< routine
->param_types
.length (); ++i
)
5172 printf ("%s%s i%d", sep
,
5173 parameter_type_string (routine
->param_types
[i
]), i
+ 1);
5177 os
->type
= SUBPATTERN
;
5178 print_subroutine_start (os
, routine
->s
, routine
->pos
);
5179 print_state (os
, routine
->s
, 2, true);
5183 /* Output a routine of type TYPE that implements S. PROC_ID is the
5184 number of the subroutine associated with S, or 0 if S is the main
5188 print_subroutine (output_state
*os
, state
*s
, int proc_id
)
5198 printf ("static int\nrecog_%d", proc_id
);
5200 printf ("int\nrecog");
5201 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5202 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5203 "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n");
5208 printf ("static rtx_insn *\nsplit_%d", proc_id
);
5210 printf ("rtx_insn *\nsplit_insns");
5211 printf (" (rtx x1 ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED)\n");
5216 printf ("static rtx_insn *\npeephole2_%d", proc_id
);
5218 printf ("rtx_insn *\npeephole2_insns");
5219 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5220 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5221 "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n");
5224 print_subroutine_start (os
, s
, &root_pos
);
5227 printf (" recog_data.insn = NULL;\n");
5229 print_state (os
, s
, 2, true);
5233 /* Print out a routine of type TYPE that performs ROOT. */
5236 print_subroutine_group (output_state
*os
, routine_type type
, state
*root
)
5239 if (use_subroutines_p
)
5241 /* Split ROOT up into smaller pieces, both for readability and to
5242 help the compiler. */
5243 auto_vec
<state
*> subroutines
;
5244 find_subroutines (type
, root
, subroutines
);
5246 /* Output the subroutines (but not ROOT itself). */
5249 FOR_EACH_VEC_ELT (subroutines
, i
, s
)
5250 print_subroutine (os
, s
, i
+ 1);
5252 /* Output the main routine. */
5253 print_subroutine (os
, root
, 0);
5256 /* Return the rtx pattern for the list of rtxes in a define_peephole2. */
5259 get_peephole2_pattern (md_rtx_info
*info
)
5262 rtvec vec
= XVEC (info
->def
, 0);
5263 rtx pattern
= rtx_alloc (SEQUENCE
);
5264 XVEC (pattern
, 0) = rtvec_alloc (GET_NUM_ELEM (vec
));
5265 for (i
= j
= 0; i
< GET_NUM_ELEM (vec
); i
++)
5267 rtx x
= RTVEC_ELT (vec
, i
);
5268 /* Ignore scratch register requirements. */
5269 if (GET_CODE (x
) != MATCH_SCRATCH
&& GET_CODE (x
) != MATCH_DUP
)
5271 XVECEXP (pattern
, 0, j
) = x
;
5275 XVECLEN (pattern
, 0) = j
;
5277 error_at (info
->loc
, "empty define_peephole2");
5281 /* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
5282 rtx can be added automatically by add_clobbers. If so, update
5283 *ACCEPTANCE_PTR so that its num_clobbers field contains the number
5284 of such trailing rtxes and update *PATTERN_PTR so that it contains
5285 the pattern without those rtxes. */
5288 remove_clobbers (acceptance_type
*acceptance_ptr
, rtx
*pattern_ptr
)
5293 /* Find the last non-clobber in the parallel. */
5294 rtx pattern
= *pattern_ptr
;
5295 for (i
= XVECLEN (pattern
, 0); i
> 0; i
--)
5297 rtx x
= XVECEXP (pattern
, 0, i
- 1);
5298 if ((GET_CODE (x
) != CLOBBER
&& GET_CODE (x
) != CLOBBER_HIGH
)
5299 || (!REG_P (XEXP (x
, 0))
5300 && GET_CODE (XEXP (x
, 0)) != MATCH_SCRATCH
))
5304 if (i
== XVECLEN (pattern
, 0))
5307 /* Build a similar insn without the clobbers. */
5309 new_pattern
= XVECEXP (pattern
, 0, 0);
5312 new_pattern
= rtx_alloc (PARALLEL
);
5313 XVEC (new_pattern
, 0) = rtvec_alloc (i
);
5314 for (int j
= 0; j
< i
; ++j
)
5315 XVECEXP (new_pattern
, 0, j
) = XVECEXP (pattern
, 0, j
);
5319 acceptance_ptr
->u
.full
.u
.num_clobbers
= XVECLEN (pattern
, 0) - i
;
5320 *pattern_ptr
= new_pattern
;
5325 main (int argc
, const char **argv
)
5327 state insn_root
, split_root
, peephole2_root
;
5329 progname
= "genrecog";
5331 if (!init_rtx_reader_args (argc
, argv
))
5332 return (FATAL_EXIT_CODE
);
5336 /* Read the machine description. */
5339 while (read_md_rtx (&info
))
5343 acceptance_type acceptance
;
5344 acceptance
.partial_p
= false;
5345 acceptance
.u
.full
.code
= info
.index
;
5348 switch (GET_CODE (def
))
5352 /* Match the instruction in the original .md form. */
5353 acceptance
.type
= RECOG
;
5354 acceptance
.u
.full
.u
.num_clobbers
= 0;
5355 pattern
= add_implicit_parallel (XVEC (def
, 1));
5356 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5357 match_pattern (&insn_root
, &info
, pattern
, acceptance
);
5359 /* If the pattern is a PARALLEL with trailing CLOBBERs,
5360 allow recog_for_combine to match without the clobbers. */
5361 if (GET_CODE (pattern
) == PARALLEL
5362 && remove_clobbers (&acceptance
, &pattern
))
5363 match_pattern (&insn_root
, &info
, pattern
, acceptance
);
5368 acceptance
.type
= SPLIT
;
5369 pattern
= add_implicit_parallel (XVEC (def
, 0));
5370 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5371 match_pattern (&split_root
, &info
, pattern
, acceptance
);
5373 /* Declare the gen_split routine that we'll call if the
5374 pattern matches. The definition comes from insn-emit.c. */
5375 printf ("extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
5379 case DEFINE_PEEPHOLE2
:
5380 acceptance
.type
= PEEPHOLE2
;
5381 pattern
= get_peephole2_pattern (&info
);
5382 validate_pattern (pattern
, &info
, NULL_RTX
, 0);
5383 match_pattern (&peephole2_root
, &info
, pattern
, acceptance
);
5385 /* Declare the gen_peephole2 routine that we'll call if the
5386 pattern matches. The definition comes from insn-emit.c. */
5387 printf ("extern rtx_insn *gen_peephole2_%d (rtx_insn *, rtx *);\n",
5397 return FATAL_EXIT_CODE
;
5401 /* Optimize each routine in turn. */
5402 optimize_subroutine_group ("recog", &insn_root
);
5403 optimize_subroutine_group ("split_insns", &split_root
);
5404 optimize_subroutine_group ("peephole2_insns", &peephole2_root
);
5407 os
.id_to_var
.safe_grow_cleared (num_positions
);
5409 if (use_pattern_routines_p
)
5411 /* Look for common patterns and split them out into subroutines. */
5412 auto_vec
<merge_state_info
> states
;
5413 states
.safe_push (&insn_root
);
5414 states
.safe_push (&split_root
);
5415 states
.safe_push (&peephole2_root
);
5416 split_out_patterns (states
);
5418 /* Print out the routines that we just created. */
5420 pattern_routine
*routine
;
5421 FOR_EACH_VEC_ELT (patterns
, i
, routine
)
5422 print_pattern (&os
, routine
);
5425 /* Print out the matching routines. */
5426 print_subroutine_group (&os
, RECOG
, &insn_root
);
5427 print_subroutine_group (&os
, SPLIT
, &split_root
);
5428 print_subroutine_group (&os
, PEEPHOLE2
, &peephole2_root
);
5431 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);