re PR fortran/32380 (misaligned stores don't get vectorized)
[official-gcc.git] / libgfortran / generated / minval_r8.c
blob611ee57968c37625a9034046b67bed210ae2b653
1 /* Implementation of the MINVAL intrinsic
2 Copyright 2002, 2007, 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <assert.h>
31 #if defined (HAVE_GFC_REAL_8) && defined (HAVE_GFC_REAL_8)
34 extern void minval_r8 (gfc_array_r8 * const restrict,
35 gfc_array_r8 * const restrict, const index_type * const restrict);
36 export_proto(minval_r8);
38 void
39 minval_r8 (gfc_array_r8 * const restrict retarray,
40 gfc_array_r8 * const restrict array,
41 const index_type * const restrict pdim)
43 index_type count[GFC_MAX_DIMENSIONS];
44 index_type extent[GFC_MAX_DIMENSIONS];
45 index_type sstride[GFC_MAX_DIMENSIONS];
46 index_type dstride[GFC_MAX_DIMENSIONS];
47 const GFC_REAL_8 * restrict base;
48 GFC_REAL_8 * restrict dest;
49 index_type rank;
50 index_type n;
51 index_type len;
52 index_type delta;
53 index_type dim;
54 int continue_loop;
56 /* Make dim zero based to avoid confusion. */
57 dim = (*pdim) - 1;
58 rank = GFC_DESCRIPTOR_RANK (array) - 1;
60 len = GFC_DESCRIPTOR_EXTENT(array,dim);
61 if (len < 0)
62 len = 0;
63 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
65 for (n = 0; n < dim; n++)
67 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
68 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
70 if (extent[n] < 0)
71 extent[n] = 0;
73 for (n = dim; n < rank; n++)
75 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
76 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
78 if (extent[n] < 0)
79 extent[n] = 0;
82 if (retarray->data == NULL)
84 size_t alloc_size, str;
86 for (n = 0; n < rank; n++)
88 if (n == 0)
89 str = 1;
90 else
91 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
93 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
97 retarray->offset = 0;
98 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
100 alloc_size = sizeof (GFC_REAL_8) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
101 * extent[rank-1];
103 retarray->data = internal_malloc_size (alloc_size);
104 if (alloc_size == 0)
106 /* Make sure we have a zero-sized array. */
107 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
108 return;
112 else
114 if (rank != GFC_DESCRIPTOR_RANK (retarray))
115 runtime_error ("rank of return array incorrect in"
116 " MINVAL intrinsic: is %ld, should be %ld",
117 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
118 (long int) rank);
120 if (unlikely (compile_options.bounds_check))
121 bounds_ifunction_return ((array_t *) retarray, extent,
122 "return value", "MINVAL");
125 for (n = 0; n < rank; n++)
127 count[n] = 0;
128 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
129 if (extent[n] <= 0)
130 return;
133 base = array->data;
134 dest = retarray->data;
136 continue_loop = 1;
137 while (continue_loop)
139 const GFC_REAL_8 * restrict src;
140 GFC_REAL_8 result;
141 src = base;
144 #if defined (GFC_REAL_8_INFINITY)
145 result = GFC_REAL_8_INFINITY;
146 #else
147 result = GFC_REAL_8_HUGE;
148 #endif
149 if (len <= 0)
150 *dest = GFC_REAL_8_HUGE;
151 else
153 for (n = 0; n < len; n++, src += delta)
156 #if defined (GFC_REAL_8_QUIET_NAN)
157 if (*src <= result)
158 break;
160 if (unlikely (n >= len))
161 result = GFC_REAL_8_QUIET_NAN;
162 else for (; n < len; n++, src += delta)
164 #endif
165 if (*src < result)
166 result = *src;
169 *dest = result;
172 /* Advance to the next element. */
173 count[0]++;
174 base += sstride[0];
175 dest += dstride[0];
176 n = 0;
177 while (count[n] == extent[n])
179 /* When we get to the end of a dimension, reset it and increment
180 the next dimension. */
181 count[n] = 0;
182 /* We could precalculate these products, but this is a less
183 frequently used path so probably not worth it. */
184 base -= sstride[n] * extent[n];
185 dest -= dstride[n] * extent[n];
186 n++;
187 if (n == rank)
189 /* Break out of the look. */
190 continue_loop = 0;
191 break;
193 else
195 count[n]++;
196 base += sstride[n];
197 dest += dstride[n];
204 extern void mminval_r8 (gfc_array_r8 * const restrict,
205 gfc_array_r8 * const restrict, const index_type * const restrict,
206 gfc_array_l1 * const restrict);
207 export_proto(mminval_r8);
209 void
210 mminval_r8 (gfc_array_r8 * const restrict retarray,
211 gfc_array_r8 * const restrict array,
212 const index_type * const restrict pdim,
213 gfc_array_l1 * const restrict mask)
215 index_type count[GFC_MAX_DIMENSIONS];
216 index_type extent[GFC_MAX_DIMENSIONS];
217 index_type sstride[GFC_MAX_DIMENSIONS];
218 index_type dstride[GFC_MAX_DIMENSIONS];
219 index_type mstride[GFC_MAX_DIMENSIONS];
220 GFC_REAL_8 * restrict dest;
221 const GFC_REAL_8 * restrict base;
222 const GFC_LOGICAL_1 * restrict mbase;
223 int rank;
224 int dim;
225 index_type n;
226 index_type len;
227 index_type delta;
228 index_type mdelta;
229 int mask_kind;
231 dim = (*pdim) - 1;
232 rank = GFC_DESCRIPTOR_RANK (array) - 1;
234 len = GFC_DESCRIPTOR_EXTENT(array,dim);
235 if (len <= 0)
236 return;
238 mbase = mask->data;
240 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
242 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
243 #ifdef HAVE_GFC_LOGICAL_16
244 || mask_kind == 16
245 #endif
247 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
248 else
249 runtime_error ("Funny sized logical array");
251 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
252 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
254 for (n = 0; n < dim; n++)
256 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
257 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
258 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
260 if (extent[n] < 0)
261 extent[n] = 0;
264 for (n = dim; n < rank; n++)
266 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
267 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
268 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
270 if (extent[n] < 0)
271 extent[n] = 0;
274 if (retarray->data == NULL)
276 size_t alloc_size, str;
278 for (n = 0; n < rank; n++)
280 if (n == 0)
281 str = 1;
282 else
283 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
285 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
289 alloc_size = sizeof (GFC_REAL_8) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
290 * extent[rank-1];
292 retarray->offset = 0;
293 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
295 if (alloc_size == 0)
297 /* Make sure we have a zero-sized array. */
298 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
299 return;
301 else
302 retarray->data = internal_malloc_size (alloc_size);
305 else
307 if (rank != GFC_DESCRIPTOR_RANK (retarray))
308 runtime_error ("rank of return array incorrect in MINVAL intrinsic");
310 if (unlikely (compile_options.bounds_check))
312 bounds_ifunction_return ((array_t *) retarray, extent,
313 "return value", "MINVAL");
314 bounds_equal_extents ((array_t *) mask, (array_t *) array,
315 "MASK argument", "MINVAL");
319 for (n = 0; n < rank; n++)
321 count[n] = 0;
322 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
323 if (extent[n] <= 0)
324 return;
327 dest = retarray->data;
328 base = array->data;
330 while (base)
332 const GFC_REAL_8 * restrict src;
333 const GFC_LOGICAL_1 * restrict msrc;
334 GFC_REAL_8 result;
335 src = base;
336 msrc = mbase;
339 #if defined (GFC_REAL_8_INFINITY)
340 result = GFC_REAL_8_INFINITY;
341 #else
342 result = GFC_REAL_8_HUGE;
343 #endif
344 #if defined (GFC_REAL_8_QUIET_NAN)
345 int non_empty_p = 0;
346 #endif
347 if (len <= 0)
348 *dest = GFC_REAL_8_HUGE;
349 else
351 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
354 #if defined (GFC_REAL_8_INFINITY) || defined (GFC_REAL_8_QUIET_NAN)
355 if (*msrc)
357 #if defined (GFC_REAL_8_QUIET_NAN)
358 non_empty_p = 1;
359 if (*src <= result)
360 #endif
361 break;
364 if (unlikely (n >= len))
366 #if defined (GFC_REAL_8_QUIET_NAN)
367 result = non_empty_p ? GFC_REAL_8_QUIET_NAN : GFC_REAL_8_HUGE;
368 #else
369 result = GFC_REAL_8_HUGE;
370 #endif
372 else for (; n < len; n++, src += delta, msrc += mdelta)
374 #endif
375 if (*msrc && *src < result)
376 result = *src;
378 *dest = result;
381 /* Advance to the next element. */
382 count[0]++;
383 base += sstride[0];
384 mbase += mstride[0];
385 dest += dstride[0];
386 n = 0;
387 while (count[n] == extent[n])
389 /* When we get to the end of a dimension, reset it and increment
390 the next dimension. */
391 count[n] = 0;
392 /* We could precalculate these products, but this is a less
393 frequently used path so probably not worth it. */
394 base -= sstride[n] * extent[n];
395 mbase -= mstride[n] * extent[n];
396 dest -= dstride[n] * extent[n];
397 n++;
398 if (n == rank)
400 /* Break out of the look. */
401 base = NULL;
402 break;
404 else
406 count[n]++;
407 base += sstride[n];
408 mbase += mstride[n];
409 dest += dstride[n];
416 extern void sminval_r8 (gfc_array_r8 * const restrict,
417 gfc_array_r8 * const restrict, const index_type * const restrict,
418 GFC_LOGICAL_4 *);
419 export_proto(sminval_r8);
421 void
422 sminval_r8 (gfc_array_r8 * const restrict retarray,
423 gfc_array_r8 * const restrict array,
424 const index_type * const restrict pdim,
425 GFC_LOGICAL_4 * mask)
427 index_type count[GFC_MAX_DIMENSIONS];
428 index_type extent[GFC_MAX_DIMENSIONS];
429 index_type dstride[GFC_MAX_DIMENSIONS];
430 GFC_REAL_8 * restrict dest;
431 index_type rank;
432 index_type n;
433 index_type dim;
436 if (*mask)
438 minval_r8 (retarray, array, pdim);
439 return;
441 /* Make dim zero based to avoid confusion. */
442 dim = (*pdim) - 1;
443 rank = GFC_DESCRIPTOR_RANK (array) - 1;
445 for (n = 0; n < dim; n++)
447 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
449 if (extent[n] <= 0)
450 extent[n] = 0;
453 for (n = dim; n < rank; n++)
455 extent[n] =
456 GFC_DESCRIPTOR_EXTENT(array,n + 1);
458 if (extent[n] <= 0)
459 extent[n] = 0;
462 if (retarray->data == NULL)
464 size_t alloc_size, str;
466 for (n = 0; n < rank; n++)
468 if (n == 0)
469 str = 1;
470 else
471 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
473 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
477 retarray->offset = 0;
478 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
480 alloc_size = sizeof (GFC_REAL_8) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
481 * extent[rank-1];
483 if (alloc_size == 0)
485 /* Make sure we have a zero-sized array. */
486 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
487 return;
489 else
490 retarray->data = internal_malloc_size (alloc_size);
492 else
494 if (rank != GFC_DESCRIPTOR_RANK (retarray))
495 runtime_error ("rank of return array incorrect in"
496 " MINVAL intrinsic: is %ld, should be %ld",
497 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
498 (long int) rank);
500 if (unlikely (compile_options.bounds_check))
502 for (n=0; n < rank; n++)
504 index_type ret_extent;
506 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
507 if (extent[n] != ret_extent)
508 runtime_error ("Incorrect extent in return value of"
509 " MINVAL intrinsic in dimension %ld:"
510 " is %ld, should be %ld", (long int) n + 1,
511 (long int) ret_extent, (long int) extent[n]);
516 for (n = 0; n < rank; n++)
518 count[n] = 0;
519 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
522 dest = retarray->data;
524 while(1)
526 *dest = GFC_REAL_8_HUGE;
527 count[0]++;
528 dest += dstride[0];
529 n = 0;
530 while (count[n] == extent[n])
532 /* When we get to the end of a dimension, reset it and increment
533 the next dimension. */
534 count[n] = 0;
535 /* We could precalculate these products, but this is a less
536 frequently used path so probably not worth it. */
537 dest -= dstride[n] * extent[n];
538 n++;
539 if (n == rank)
540 return;
541 else
543 count[n]++;
544 dest += dstride[n];
550 #endif