2002-11-01 Michael Koch <konqueror@gmx.de>
[official-gcc.git] / gcc / final.c
blob5b11665ef857b5be84bcd9ec8fda99427b0f8aa0
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
50 #include "tree.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "regs.h"
54 #include "insn-config.h"
55 #include "insn-attr.h"
56 #include "recog.h"
57 #include "conditions.h"
58 #include "flags.h"
59 #include "real.h"
60 #include "hard-reg-set.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "toplev.h"
65 #include "reload.h"
66 #include "intl.h"
67 #include "basic-block.h"
68 #include "target.h"
69 #include "debug.h"
70 #include "expr.h"
71 #include "profile.h"
72 #include "cfglayout.h"
74 #ifdef XCOFF_DEBUGGING_INFO
75 #include "xcoffout.h" /* Needed for external data
76 declarations for e.g. AIX 4.x. */
77 #endif
79 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
80 #include "dwarf2out.h"
81 #endif
83 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
84 null default for it to save conditionalization later. */
85 #ifndef CC_STATUS_INIT
86 #define CC_STATUS_INIT
87 #endif
89 /* How to start an assembler comment. */
90 #ifndef ASM_COMMENT_START
91 #define ASM_COMMENT_START ";#"
92 #endif
94 /* Is the given character a logical line separator for the assembler? */
95 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
96 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
97 #endif
99 #ifndef JUMP_TABLES_IN_TEXT_SECTION
100 #define JUMP_TABLES_IN_TEXT_SECTION 0
101 #endif
103 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
104 #define HAVE_READONLY_DATA_SECTION 1
105 #else
106 #define HAVE_READONLY_DATA_SECTION 0
107 #endif
109 /* Last insn processed by final_scan_insn. */
110 static rtx debug_insn;
111 rtx current_output_insn;
113 /* Line number of last NOTE. */
114 static int last_linenum;
116 /* Highest line number in current block. */
117 static int high_block_linenum;
119 /* Likewise for function. */
120 static int high_function_linenum;
122 /* Filename of last NOTE. */
123 static const char *last_filename;
125 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
127 /* Nonzero while outputting an `asm' with operands.
128 This means that inconsistencies are the user's fault, so don't abort.
129 The precise value is the insn being output, to pass to error_for_asm. */
130 rtx this_is_asm_operands;
132 /* Number of operands of this insn, for an `asm' with operands. */
133 static unsigned int insn_noperands;
135 /* Compare optimization flag. */
137 static rtx last_ignored_compare = 0;
139 /* Flag indicating this insn is the start of a new basic block. */
141 static int new_block = 1;
143 /* Assign a unique number to each insn that is output.
144 This can be used to generate unique local labels. */
146 static int insn_counter = 0;
148 #ifdef HAVE_cc0
149 /* This variable contains machine-dependent flags (defined in tm.h)
150 set and examined by output routines
151 that describe how to interpret the condition codes properly. */
153 CC_STATUS cc_status;
155 /* During output of an insn, this contains a copy of cc_status
156 from before the insn. */
158 CC_STATUS cc_prev_status;
159 #endif
161 /* Indexed by hardware reg number, is 1 if that register is ever
162 used in the current function.
164 In life_analysis, or in stupid_life_analysis, this is set
165 up to record the hard regs used explicitly. Reload adds
166 in the hard regs used for holding pseudo regs. Final uses
167 it to generate the code in the function prologue and epilogue
168 to save and restore registers as needed. */
170 char regs_ever_live[FIRST_PSEUDO_REGISTER];
172 /* Nonzero means current function must be given a frame pointer.
173 Set in stmt.c if anything is allocated on the stack there.
174 Set in reload1.c if anything is allocated on the stack there. */
176 int frame_pointer_needed;
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
180 static int block_depth;
182 /* Nonzero if have enabled APP processing of our assembler output. */
184 static int app_on;
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187 Zero otherwise. */
189 rtx final_sequence;
191 #ifdef ASSEMBLER_DIALECT
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number;
195 #endif
197 /* Indexed by line number, nonzero if there is a note for that line. */
199 static char *line_note_exists;
201 #ifdef HAVE_conditional_execution
202 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
203 rtx current_insn_predicate;
204 #endif
206 struct function_list
208 struct function_list *next; /* next function */
209 const char *name; /* function name */
210 long cfg_checksum; /* function checksum */
211 long count_edges; /* number of intrumented edges in this function */
214 static struct function_list *functions_head = 0;
215 static struct function_list **functions_tail = &functions_head;
217 #ifdef HAVE_ATTR_length
218 static int asm_insn_count PARAMS ((rtx));
219 #endif
220 static void profile_function PARAMS ((FILE *));
221 static void profile_after_prologue PARAMS ((FILE *));
222 static void notice_source_line PARAMS ((rtx));
223 static rtx walk_alter_subreg PARAMS ((rtx *));
224 static void output_asm_name PARAMS ((void));
225 static void output_alternate_entry_point PARAMS ((FILE *, rtx));
226 static tree get_mem_expr_from_op PARAMS ((rtx, int *));
227 static void output_asm_operand_names PARAMS ((rtx *, int *, int));
228 static void output_operand PARAMS ((rtx, int));
229 #ifdef LEAF_REGISTERS
230 static void leaf_renumber_regs PARAMS ((rtx));
231 #endif
232 #ifdef HAVE_cc0
233 static int alter_cond PARAMS ((rtx));
234 #endif
235 #ifndef ADDR_VEC_ALIGN
236 static int final_addr_vec_align PARAMS ((rtx));
237 #endif
238 #ifdef HAVE_ATTR_length
239 static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
240 #endif
242 /* Initialize data in final at the beginning of a compilation. */
244 void
245 init_final (filename)
246 const char *filename ATTRIBUTE_UNUSED;
248 app_on = 0;
249 final_sequence = 0;
251 #ifdef ASSEMBLER_DIALECT
252 dialect_number = ASSEMBLER_DIALECT;
253 #endif
256 /* Called at end of source file,
257 to output the arc-profiling table for this entire compilation. */
259 void
260 end_final (filename)
261 const char *filename;
263 if (profile_arc_flag && profile_info.count_instrumented_edges)
265 char name[20];
266 tree string_type, string_cst;
267 tree structure_decl, structure_value, structure_pointer_type;
268 tree field_decl, decl_chain, value_chain;
269 tree sizeof_field_value, domain_type;
271 /* Build types. */
272 string_type = build_pointer_type (char_type_node);
274 /* Libgcc2 bb structure. */
275 structure_decl = make_node (RECORD_TYPE);
276 structure_pointer_type = build_pointer_type (structure_decl);
278 /* Output the main header, of 7 words:
279 0: 1 if this file is initialized, else 0.
280 1: address of file name (LPBX1).
281 2: address of table of counts (LPBX2).
282 3: number of counts in the table.
283 4: always 0, libgcc2 uses this as a pointer to next ``struct bb''
285 The following are GNU extensions:
287 5: Number of bytes in this header.
288 6: address of table of function checksums (LPBX7). */
290 /* The zero word. */
291 decl_chain =
292 build_decl (FIELD_DECL, get_identifier ("zero_word"),
293 long_integer_type_node);
294 value_chain = build_tree_list (decl_chain,
295 convert (long_integer_type_node,
296 integer_zero_node));
298 /* Address of filename. */
300 char *cwd, *da_filename;
301 int da_filename_len;
303 field_decl =
304 build_decl (FIELD_DECL, get_identifier ("filename"), string_type);
305 TREE_CHAIN (field_decl) = decl_chain;
306 decl_chain = field_decl;
308 cwd = getpwd ();
309 da_filename_len = strlen (filename) + strlen (cwd) + 4 + 1;
310 da_filename = (char *) alloca (da_filename_len);
311 strcpy (da_filename, cwd);
312 strcat (da_filename, "/");
313 strcat (da_filename, filename);
314 strcat (da_filename, ".da");
315 da_filename_len = strlen (da_filename);
316 string_cst = build_string (da_filename_len + 1, da_filename);
317 domain_type = build_index_type (build_int_2 (da_filename_len, 0));
318 TREE_TYPE (string_cst)
319 = build_array_type (char_type_node, domain_type);
320 value_chain = tree_cons (field_decl,
321 build1 (ADDR_EXPR, string_type, string_cst),
322 value_chain);
325 /* Table of counts. */
327 tree gcov_type_type = make_unsigned_type (GCOV_TYPE_SIZE);
328 tree gcov_type_pointer_type = build_pointer_type (gcov_type_type);
329 tree domain_tree
330 = build_index_type (build_int_2 (profile_info.
331 count_instrumented_edges - 1, 0));
332 tree gcov_type_array_type
333 = build_array_type (gcov_type_type, domain_tree);
334 tree gcov_type_array_pointer_type
335 = build_pointer_type (gcov_type_array_type);
336 tree counts_table;
338 field_decl =
339 build_decl (FIELD_DECL, get_identifier ("counts"),
340 gcov_type_pointer_type);
341 TREE_CHAIN (field_decl) = decl_chain;
342 decl_chain = field_decl;
344 /* No values. */
345 counts_table
346 = build (VAR_DECL, gcov_type_array_type, NULL_TREE, NULL_TREE);
347 TREE_STATIC (counts_table) = 1;
348 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
349 DECL_NAME (counts_table) = get_identifier (name);
350 assemble_variable (counts_table, 0, 0, 0);
352 value_chain = tree_cons (field_decl,
353 build1 (ADDR_EXPR,
354 gcov_type_array_pointer_type,
355 counts_table), value_chain);
358 /* Count of the # of instrumented arcs. */
359 field_decl
360 = build_decl (FIELD_DECL, get_identifier ("ncounts"),
361 long_integer_type_node);
362 TREE_CHAIN (field_decl) = decl_chain;
363 decl_chain = field_decl;
365 value_chain = tree_cons (field_decl,
366 convert (long_integer_type_node,
367 build_int_2 (profile_info.
368 count_instrumented_edges,
369 0)), value_chain);
370 /* Pointer to the next bb. */
371 field_decl
372 = build_decl (FIELD_DECL, get_identifier ("next"),
373 structure_pointer_type);
374 TREE_CHAIN (field_decl) = decl_chain;
375 decl_chain = field_decl;
377 value_chain = tree_cons (field_decl, null_pointer_node, value_chain);
379 /* sizeof(struct bb). We'll set this after entire structure
380 is laid out. */
381 field_decl
382 = build_decl (FIELD_DECL, get_identifier ("sizeof_bb"),
383 long_integer_type_node);
384 TREE_CHAIN (field_decl) = decl_chain;
385 decl_chain = field_decl;
387 sizeof_field_value = tree_cons (field_decl, NULL, value_chain);
388 value_chain = sizeof_field_value;
390 /* struct bb_function []. */
392 struct function_list *item;
393 int num_nodes;
394 tree checksum_field, arc_count_field, name_field;
395 tree domain;
396 tree array_value_chain = NULL_TREE;
397 tree bb_fn_struct_type;
398 tree bb_fn_struct_array_type;
399 tree bb_fn_struct_array_pointer_type;
400 tree bb_fn_struct_pointer_type;
401 tree field_value, field_value_chain;
403 bb_fn_struct_type = make_node (RECORD_TYPE);
405 checksum_field = build_decl (FIELD_DECL, get_identifier ("checksum"),
406 long_integer_type_node);
408 arc_count_field
409 = build_decl (FIELD_DECL, get_identifier ("arc_count"),
410 integer_type_node);
411 TREE_CHAIN (checksum_field) = arc_count_field;
413 name_field
414 = build_decl (FIELD_DECL, get_identifier ("name"), string_type);
415 TREE_CHAIN (arc_count_field) = name_field;
417 TYPE_FIELDS (bb_fn_struct_type) = checksum_field;
419 num_nodes = 0;
421 for (item = functions_head; item != 0; item = item->next)
422 num_nodes++;
424 /* Note that the array contains a terminator, hence no - 1. */
425 domain = build_index_type (build_int_2 (num_nodes, 0));
427 bb_fn_struct_pointer_type = build_pointer_type (bb_fn_struct_type);
428 bb_fn_struct_array_type
429 = build_array_type (bb_fn_struct_type, domain);
430 bb_fn_struct_array_pointer_type
431 = build_pointer_type (bb_fn_struct_array_type);
433 layout_type (bb_fn_struct_type);
434 layout_type (bb_fn_struct_pointer_type);
435 layout_type (bb_fn_struct_array_type);
436 layout_type (bb_fn_struct_array_pointer_type);
438 for (item = functions_head; item != 0; item = item->next)
440 size_t name_len;
442 /* create constructor for structure. */
443 field_value_chain
444 = build_tree_list (checksum_field,
445 convert (long_integer_type_node,
446 build_int_2 (item->cfg_checksum, 0)));
447 field_value_chain
448 = tree_cons (arc_count_field,
449 convert (integer_type_node,
450 build_int_2 (item->count_edges, 0)),
451 field_value_chain);
453 name_len = strlen (item->name);
454 string_cst = build_string (name_len + 1, item->name);
455 domain_type = build_index_type (build_int_2 (name_len, 0));
456 TREE_TYPE (string_cst)
457 = build_array_type (char_type_node, domain_type);
458 field_value_chain = tree_cons (name_field,
459 build1 (ADDR_EXPR, string_type,
460 string_cst),
461 field_value_chain);
463 /* Add to chain. */
464 array_value_chain
465 = tree_cons (NULL_TREE, build (CONSTRUCTOR,
466 bb_fn_struct_type, NULL_TREE,
467 nreverse (field_value_chain)),
468 array_value_chain);
471 /* Add terminator. */
472 field_value = build_tree_list (arc_count_field,
473 convert (integer_type_node,
474 build_int_2 (-1, 0)));
476 array_value_chain = tree_cons (NULL_TREE,
477 build (CONSTRUCTOR, bb_fn_struct_type,
478 NULL_TREE, field_value),
479 array_value_chain);
482 /* Create constructor for array. */
483 field_decl
484 = build_decl (FIELD_DECL, get_identifier ("function_infos"),
485 bb_fn_struct_pointer_type);
486 value_chain = tree_cons (field_decl,
487 build1 (ADDR_EXPR,
488 bb_fn_struct_array_pointer_type,
489 build (CONSTRUCTOR,
490 bb_fn_struct_array_type,
491 NULL_TREE,
492 nreverse
493 (array_value_chain))),
494 value_chain);
495 TREE_CHAIN (field_decl) = decl_chain;
496 decl_chain = field_decl;
499 /* Finish structure. */
500 TYPE_FIELDS (structure_decl) = nreverse (decl_chain);
501 layout_type (structure_decl);
503 structure_value
504 = build (VAR_DECL, structure_decl, NULL_TREE, NULL_TREE);
505 DECL_INITIAL (structure_value)
506 = build (CONSTRUCTOR, structure_decl, NULL_TREE,
507 nreverse (value_chain));
508 TREE_STATIC (structure_value) = 1;
509 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 0);
510 DECL_NAME (structure_value) = get_identifier (name);
512 /* Size of this structure. */
513 TREE_VALUE (sizeof_field_value)
514 = convert (long_integer_type_node,
515 build_int_2 (int_size_in_bytes (structure_decl), 0));
517 /* Build structure. */
518 assemble_variable (structure_value, 0, 0, 0);
522 /* Default target function prologue and epilogue assembler output.
524 If not overridden for epilogue code, then the function body itself
525 contains return instructions wherever needed. */
526 void
527 default_function_pro_epilogue (file, size)
528 FILE *file ATTRIBUTE_UNUSED;
529 HOST_WIDE_INT size ATTRIBUTE_UNUSED;
533 /* Default target hook that outputs nothing to a stream. */
534 void
535 no_asm_to_stream (file)
536 FILE *file ATTRIBUTE_UNUSED;
540 /* Enable APP processing of subsequent output.
541 Used before the output from an `asm' statement. */
543 void
544 app_enable ()
546 if (! app_on)
548 fputs (ASM_APP_ON, asm_out_file);
549 app_on = 1;
553 /* Disable APP processing of subsequent output.
554 Called from varasm.c before most kinds of output. */
556 void
557 app_disable ()
559 if (app_on)
561 fputs (ASM_APP_OFF, asm_out_file);
562 app_on = 0;
566 /* Return the number of slots filled in the current
567 delayed branch sequence (we don't count the insn needing the
568 delay slot). Zero if not in a delayed branch sequence. */
570 #ifdef DELAY_SLOTS
572 dbr_sequence_length ()
574 if (final_sequence != 0)
575 return XVECLEN (final_sequence, 0) - 1;
576 else
577 return 0;
579 #endif
581 /* The next two pages contain routines used to compute the length of an insn
582 and to shorten branches. */
584 /* Arrays for insn lengths, and addresses. The latter is referenced by
585 `insn_current_length'. */
587 static int *insn_lengths;
589 varray_type insn_addresses_;
591 /* Max uid for which the above arrays are valid. */
592 static int insn_lengths_max_uid;
594 /* Address of insn being processed. Used by `insn_current_length'. */
595 int insn_current_address;
597 /* Address of insn being processed in previous iteration. */
598 int insn_last_address;
600 /* known invariant alignment of insn being processed. */
601 int insn_current_align;
603 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
604 gives the next following alignment insn that increases the known
605 alignment, or NULL_RTX if there is no such insn.
606 For any alignment obtained this way, we can again index uid_align with
607 its uid to obtain the next following align that in turn increases the
608 alignment, till we reach NULL_RTX; the sequence obtained this way
609 for each insn we'll call the alignment chain of this insn in the following
610 comments. */
612 struct label_alignment
614 short alignment;
615 short max_skip;
618 static rtx *uid_align;
619 static int *uid_shuid;
620 static struct label_alignment *label_align;
622 /* Indicate that branch shortening hasn't yet been done. */
624 void
625 init_insn_lengths ()
627 if (uid_shuid)
629 free (uid_shuid);
630 uid_shuid = 0;
632 if (insn_lengths)
634 free (insn_lengths);
635 insn_lengths = 0;
636 insn_lengths_max_uid = 0;
638 #ifdef HAVE_ATTR_length
639 INSN_ADDRESSES_FREE ();
640 #endif
641 if (uid_align)
643 free (uid_align);
644 uid_align = 0;
648 /* Obtain the current length of an insn. If branch shortening has been done,
649 get its actual length. Otherwise, get its maximum length. */
652 get_attr_length (insn)
653 rtx insn ATTRIBUTE_UNUSED;
655 #ifdef HAVE_ATTR_length
656 rtx body;
657 int i;
658 int length = 0;
660 if (insn_lengths_max_uid > INSN_UID (insn))
661 return insn_lengths[INSN_UID (insn)];
662 else
663 switch (GET_CODE (insn))
665 case NOTE:
666 case BARRIER:
667 case CODE_LABEL:
668 return 0;
670 case CALL_INSN:
671 length = insn_default_length (insn);
672 break;
674 case JUMP_INSN:
675 body = PATTERN (insn);
676 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
678 /* Alignment is machine-dependent and should be handled by
679 ADDR_VEC_ALIGN. */
681 else
682 length = insn_default_length (insn);
683 break;
685 case INSN:
686 body = PATTERN (insn);
687 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
688 return 0;
690 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
691 length = asm_insn_count (body) * insn_default_length (insn);
692 else if (GET_CODE (body) == SEQUENCE)
693 for (i = 0; i < XVECLEN (body, 0); i++)
694 length += get_attr_length (XVECEXP (body, 0, i));
695 else
696 length = insn_default_length (insn);
697 break;
699 default:
700 break;
703 #ifdef ADJUST_INSN_LENGTH
704 ADJUST_INSN_LENGTH (insn, length);
705 #endif
706 return length;
707 #else /* not HAVE_ATTR_length */
708 return 0;
709 #endif /* not HAVE_ATTR_length */
712 /* Code to handle alignment inside shorten_branches. */
714 /* Here is an explanation how the algorithm in align_fuzz can give
715 proper results:
717 Call a sequence of instructions beginning with alignment point X
718 and continuing until the next alignment point `block X'. When `X'
719 is used in an expression, it means the alignment value of the
720 alignment point.
722 Call the distance between the start of the first insn of block X, and
723 the end of the last insn of block X `IX', for the `inner size of X'.
724 This is clearly the sum of the instruction lengths.
726 Likewise with the next alignment-delimited block following X, which we
727 shall call block Y.
729 Call the distance between the start of the first insn of block X, and
730 the start of the first insn of block Y `OX', for the `outer size of X'.
732 The estimated padding is then OX - IX.
734 OX can be safely estimated as
736 if (X >= Y)
737 OX = round_up(IX, Y)
738 else
739 OX = round_up(IX, X) + Y - X
741 Clearly est(IX) >= real(IX), because that only depends on the
742 instruction lengths, and those being overestimated is a given.
744 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
745 we needn't worry about that when thinking about OX.
747 When X >= Y, the alignment provided by Y adds no uncertainty factor
748 for branch ranges starting before X, so we can just round what we have.
749 But when X < Y, we don't know anything about the, so to speak,
750 `middle bits', so we have to assume the worst when aligning up from an
751 address mod X to one mod Y, which is Y - X. */
753 #ifndef LABEL_ALIGN
754 #define LABEL_ALIGN(LABEL) align_labels_log
755 #endif
757 #ifndef LABEL_ALIGN_MAX_SKIP
758 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
759 #endif
761 #ifndef LOOP_ALIGN
762 #define LOOP_ALIGN(LABEL) align_loops_log
763 #endif
765 #ifndef LOOP_ALIGN_MAX_SKIP
766 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
767 #endif
769 #ifndef LABEL_ALIGN_AFTER_BARRIER
770 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
771 #endif
773 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
774 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
775 #endif
777 #ifndef JUMP_ALIGN
778 #define JUMP_ALIGN(LABEL) align_jumps_log
779 #endif
781 #ifndef JUMP_ALIGN_MAX_SKIP
782 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
783 #endif
785 #ifndef ADDR_VEC_ALIGN
786 static int
787 final_addr_vec_align (addr_vec)
788 rtx addr_vec;
790 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
792 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
793 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
794 return exact_log2 (align);
798 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
799 #endif
801 #ifndef INSN_LENGTH_ALIGNMENT
802 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
803 #endif
805 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
807 static int min_labelno, max_labelno;
809 #define LABEL_TO_ALIGNMENT(LABEL) \
810 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
812 #define LABEL_TO_MAX_SKIP(LABEL) \
813 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
815 /* For the benefit of port specific code do this also as a function. */
818 label_to_alignment (label)
819 rtx label;
821 return LABEL_TO_ALIGNMENT (label);
824 #ifdef HAVE_ATTR_length
825 /* The differences in addresses
826 between a branch and its target might grow or shrink depending on
827 the alignment the start insn of the range (the branch for a forward
828 branch or the label for a backward branch) starts out on; if these
829 differences are used naively, they can even oscillate infinitely.
830 We therefore want to compute a 'worst case' address difference that
831 is independent of the alignment the start insn of the range end
832 up on, and that is at least as large as the actual difference.
833 The function align_fuzz calculates the amount we have to add to the
834 naively computed difference, by traversing the part of the alignment
835 chain of the start insn of the range that is in front of the end insn
836 of the range, and considering for each alignment the maximum amount
837 that it might contribute to a size increase.
839 For casesi tables, we also want to know worst case minimum amounts of
840 address difference, in case a machine description wants to introduce
841 some common offset that is added to all offsets in a table.
842 For this purpose, align_fuzz with a growth argument of 0 computes the
843 appropriate adjustment. */
845 /* Compute the maximum delta by which the difference of the addresses of
846 START and END might grow / shrink due to a different address for start
847 which changes the size of alignment insns between START and END.
848 KNOWN_ALIGN_LOG is the alignment known for START.
849 GROWTH should be ~0 if the objective is to compute potential code size
850 increase, and 0 if the objective is to compute potential shrink.
851 The return value is undefined for any other value of GROWTH. */
853 static int
854 align_fuzz (start, end, known_align_log, growth)
855 rtx start, end;
856 int known_align_log;
857 unsigned growth;
859 int uid = INSN_UID (start);
860 rtx align_label;
861 int known_align = 1 << known_align_log;
862 int end_shuid = INSN_SHUID (end);
863 int fuzz = 0;
865 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
867 int align_addr, new_align;
869 uid = INSN_UID (align_label);
870 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
871 if (uid_shuid[uid] > end_shuid)
872 break;
873 known_align_log = LABEL_TO_ALIGNMENT (align_label);
874 new_align = 1 << known_align_log;
875 if (new_align < known_align)
876 continue;
877 fuzz += (-align_addr ^ growth) & (new_align - known_align);
878 known_align = new_align;
880 return fuzz;
883 /* Compute a worst-case reference address of a branch so that it
884 can be safely used in the presence of aligned labels. Since the
885 size of the branch itself is unknown, the size of the branch is
886 not included in the range. I.e. for a forward branch, the reference
887 address is the end address of the branch as known from the previous
888 branch shortening pass, minus a value to account for possible size
889 increase due to alignment. For a backward branch, it is the start
890 address of the branch as known from the current pass, plus a value
891 to account for possible size increase due to alignment.
892 NB.: Therefore, the maximum offset allowed for backward branches needs
893 to exclude the branch size. */
896 insn_current_reference_address (branch)
897 rtx branch;
899 rtx dest, seq;
900 int seq_uid;
902 if (! INSN_ADDRESSES_SET_P ())
903 return 0;
905 seq = NEXT_INSN (PREV_INSN (branch));
906 seq_uid = INSN_UID (seq);
907 if (GET_CODE (branch) != JUMP_INSN)
908 /* This can happen for example on the PA; the objective is to know the
909 offset to address something in front of the start of the function.
910 Thus, we can treat it like a backward branch.
911 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
912 any alignment we'd encounter, so we skip the call to align_fuzz. */
913 return insn_current_address;
914 dest = JUMP_LABEL (branch);
916 /* BRANCH has no proper alignment chain set, so use SEQ.
917 BRANCH also has no INSN_SHUID. */
918 if (INSN_SHUID (seq) < INSN_SHUID (dest))
920 /* Forward branch. */
921 return (insn_last_address + insn_lengths[seq_uid]
922 - align_fuzz (seq, dest, length_unit_log, ~0));
924 else
926 /* Backward branch. */
927 return (insn_current_address
928 + align_fuzz (dest, seq, length_unit_log, ~0));
931 #endif /* HAVE_ATTR_length */
933 void
934 compute_alignments ()
936 int log, max_skip, max_log;
937 basic_block bb;
939 if (label_align)
941 free (label_align);
942 label_align = 0;
945 max_labelno = max_label_num ();
946 min_labelno = get_first_label_num ();
947 label_align = (struct label_alignment *)
948 xcalloc (max_labelno - min_labelno + 1, sizeof (struct label_alignment));
950 /* If not optimizing or optimizing for size, don't assign any alignments. */
951 if (! optimize || optimize_size)
952 return;
954 FOR_EACH_BB (bb)
956 rtx label = bb->head;
957 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
958 edge e;
960 if (GET_CODE (label) != CODE_LABEL)
961 continue;
962 max_log = LABEL_ALIGN (label);
963 max_skip = LABEL_ALIGN_MAX_SKIP;
965 for (e = bb->pred; e; e = e->pred_next)
967 if (e->flags & EDGE_FALLTHRU)
968 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
969 else
970 branch_frequency += EDGE_FREQUENCY (e);
973 /* There are two purposes to align block with no fallthru incoming edge:
974 1) to avoid fetch stalls when branch destination is near cache boundary
975 2) to improve cache efficiency in case the previous block is not executed
976 (so it does not need to be in the cache).
978 We to catch first case, we align frequently executed blocks.
979 To catch the second, we align blocks that are executed more frequently
980 than the predecessor and the predecessor is likely to not be executed
981 when function is called. */
983 if (!has_fallthru
984 && (branch_frequency > BB_FREQ_MAX / 10
985 || (bb->frequency > bb->prev_bb->frequency * 10
986 && (bb->prev_bb->frequency
987 <= ENTRY_BLOCK_PTR->frequency / 2))))
989 log = JUMP_ALIGN (label);
990 if (max_log < log)
992 max_log = log;
993 max_skip = JUMP_ALIGN_MAX_SKIP;
996 /* In case block is frequent and reached mostly by non-fallthru edge,
997 align it. It is most likely an first block of loop. */
998 if (has_fallthru
999 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
1000 && branch_frequency > fallthru_frequency * 2)
1002 log = LOOP_ALIGN (label);
1003 if (max_log < log)
1005 max_log = log;
1006 max_skip = LOOP_ALIGN_MAX_SKIP;
1009 LABEL_TO_ALIGNMENT (label) = max_log;
1010 LABEL_TO_MAX_SKIP (label) = max_skip;
1014 /* Make a pass over all insns and compute their actual lengths by shortening
1015 any branches of variable length if possible. */
1017 /* Give a default value for the lowest address in a function. */
1019 #ifndef FIRST_INSN_ADDRESS
1020 #define FIRST_INSN_ADDRESS 0
1021 #endif
1023 /* shorten_branches might be called multiple times: for example, the SH
1024 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
1025 In order to do this, it needs proper length information, which it obtains
1026 by calling shorten_branches. This cannot be collapsed with
1027 shorten_branches itself into a single pass unless we also want to integrate
1028 reorg.c, since the branch splitting exposes new instructions with delay
1029 slots. */
1031 void
1032 shorten_branches (first)
1033 rtx first ATTRIBUTE_UNUSED;
1035 rtx insn;
1036 int max_uid;
1037 int i;
1038 int max_log;
1039 int max_skip;
1040 #ifdef HAVE_ATTR_length
1041 #define MAX_CODE_ALIGN 16
1042 rtx seq;
1043 int something_changed = 1;
1044 char *varying_length;
1045 rtx body;
1046 int uid;
1047 rtx align_tab[MAX_CODE_ALIGN];
1049 #endif
1051 /* Compute maximum UID and allocate label_align / uid_shuid. */
1052 max_uid = get_max_uid ();
1054 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1056 if (max_labelno != max_label_num ())
1058 int old = max_labelno;
1059 int n_labels;
1060 int n_old_labels;
1062 max_labelno = max_label_num ();
1064 n_labels = max_labelno - min_labelno + 1;
1065 n_old_labels = old - min_labelno + 1;
1067 label_align = (struct label_alignment *) xrealloc
1068 (label_align, n_labels * sizeof (struct label_alignment));
1070 /* Range of labels grows monotonically in the function. Abort here
1071 means that the initialization of array got lost. */
1072 if (n_old_labels > n_labels)
1073 abort ();
1075 memset (label_align + n_old_labels, 0,
1076 (n_labels - n_old_labels) * sizeof (struct label_alignment));
1079 /* Initialize label_align and set up uid_shuid to be strictly
1080 monotonically rising with insn order. */
1081 /* We use max_log here to keep track of the maximum alignment we want to
1082 impose on the next CODE_LABEL (or the current one if we are processing
1083 the CODE_LABEL itself). */
1085 max_log = 0;
1086 max_skip = 0;
1088 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1090 int log;
1092 INSN_SHUID (insn) = i++;
1093 if (INSN_P (insn))
1095 /* reorg might make the first insn of a loop being run once only,
1096 and delete the label in front of it. Then we want to apply
1097 the loop alignment to the new label created by reorg, which
1098 is separated by the former loop start insn from the
1099 NOTE_INSN_LOOP_BEG. */
1101 else if (GET_CODE (insn) == CODE_LABEL)
1103 rtx next;
1105 /* Merge in alignments computed by compute_alignments. */
1106 log = LABEL_TO_ALIGNMENT (insn);
1107 if (max_log < log)
1109 max_log = log;
1110 max_skip = LABEL_TO_MAX_SKIP (insn);
1113 log = LABEL_ALIGN (insn);
1114 if (max_log < log)
1116 max_log = log;
1117 max_skip = LABEL_ALIGN_MAX_SKIP;
1119 next = NEXT_INSN (insn);
1120 /* ADDR_VECs only take room if read-only data goes into the text
1121 section. */
1122 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1123 if (next && GET_CODE (next) == JUMP_INSN)
1125 rtx nextbody = PATTERN (next);
1126 if (GET_CODE (nextbody) == ADDR_VEC
1127 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1129 log = ADDR_VEC_ALIGN (next);
1130 if (max_log < log)
1132 max_log = log;
1133 max_skip = LABEL_ALIGN_MAX_SKIP;
1137 LABEL_TO_ALIGNMENT (insn) = max_log;
1138 LABEL_TO_MAX_SKIP (insn) = max_skip;
1139 max_log = 0;
1140 max_skip = 0;
1142 else if (GET_CODE (insn) == BARRIER)
1144 rtx label;
1146 for (label = insn; label && ! INSN_P (label);
1147 label = NEXT_INSN (label))
1148 if (GET_CODE (label) == CODE_LABEL)
1150 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1151 if (max_log < log)
1153 max_log = log;
1154 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1156 break;
1160 #ifdef HAVE_ATTR_length
1162 /* Allocate the rest of the arrays. */
1163 insn_lengths = (int *) xmalloc (max_uid * sizeof (*insn_lengths));
1164 insn_lengths_max_uid = max_uid;
1165 /* Syntax errors can lead to labels being outside of the main insn stream.
1166 Initialize insn_addresses, so that we get reproducible results. */
1167 INSN_ADDRESSES_ALLOC (max_uid);
1169 varying_length = (char *) xcalloc (max_uid, sizeof (char));
1171 /* Initialize uid_align. We scan instructions
1172 from end to start, and keep in align_tab[n] the last seen insn
1173 that does an alignment of at least n+1, i.e. the successor
1174 in the alignment chain for an insn that does / has a known
1175 alignment of n. */
1176 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1178 for (i = MAX_CODE_ALIGN; --i >= 0;)
1179 align_tab[i] = NULL_RTX;
1180 seq = get_last_insn ();
1181 for (; seq; seq = PREV_INSN (seq))
1183 int uid = INSN_UID (seq);
1184 int log;
1185 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1186 uid_align[uid] = align_tab[0];
1187 if (log)
1189 /* Found an alignment label. */
1190 uid_align[uid] = align_tab[log];
1191 for (i = log - 1; i >= 0; i--)
1192 align_tab[i] = seq;
1195 #ifdef CASE_VECTOR_SHORTEN_MODE
1196 if (optimize)
1198 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1199 label fields. */
1201 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1202 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1203 int rel;
1205 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1207 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1208 int len, i, min, max, insn_shuid;
1209 int min_align;
1210 addr_diff_vec_flags flags;
1212 if (GET_CODE (insn) != JUMP_INSN
1213 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1214 continue;
1215 pat = PATTERN (insn);
1216 len = XVECLEN (pat, 1);
1217 if (len <= 0)
1218 abort ();
1219 min_align = MAX_CODE_ALIGN;
1220 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1222 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1223 int shuid = INSN_SHUID (lab);
1224 if (shuid < min)
1226 min = shuid;
1227 min_lab = lab;
1229 if (shuid > max)
1231 max = shuid;
1232 max_lab = lab;
1234 if (min_align > LABEL_TO_ALIGNMENT (lab))
1235 min_align = LABEL_TO_ALIGNMENT (lab);
1237 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1238 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1239 insn_shuid = INSN_SHUID (insn);
1240 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1241 flags.min_align = min_align;
1242 flags.base_after_vec = rel > insn_shuid;
1243 flags.min_after_vec = min > insn_shuid;
1244 flags.max_after_vec = max > insn_shuid;
1245 flags.min_after_base = min > rel;
1246 flags.max_after_base = max > rel;
1247 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1250 #endif /* CASE_VECTOR_SHORTEN_MODE */
1252 /* Compute initial lengths, addresses, and varying flags for each insn. */
1253 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1254 insn != 0;
1255 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1257 uid = INSN_UID (insn);
1259 insn_lengths[uid] = 0;
1261 if (GET_CODE (insn) == CODE_LABEL)
1263 int log = LABEL_TO_ALIGNMENT (insn);
1264 if (log)
1266 int align = 1 << log;
1267 int new_address = (insn_current_address + align - 1) & -align;
1268 insn_lengths[uid] = new_address - insn_current_address;
1272 INSN_ADDRESSES (uid) = insn_current_address;
1274 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1275 || GET_CODE (insn) == CODE_LABEL)
1276 continue;
1277 if (INSN_DELETED_P (insn))
1278 continue;
1280 body = PATTERN (insn);
1281 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1283 /* This only takes room if read-only data goes into the text
1284 section. */
1285 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1286 insn_lengths[uid] = (XVECLEN (body,
1287 GET_CODE (body) == ADDR_DIFF_VEC)
1288 * GET_MODE_SIZE (GET_MODE (body)));
1289 /* Alignment is handled by ADDR_VEC_ALIGN. */
1291 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1292 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1293 else if (GET_CODE (body) == SEQUENCE)
1295 int i;
1296 int const_delay_slots;
1297 #ifdef DELAY_SLOTS
1298 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1299 #else
1300 const_delay_slots = 0;
1301 #endif
1302 /* Inside a delay slot sequence, we do not do any branch shortening
1303 if the shortening could change the number of delay slots
1304 of the branch. */
1305 for (i = 0; i < XVECLEN (body, 0); i++)
1307 rtx inner_insn = XVECEXP (body, 0, i);
1308 int inner_uid = INSN_UID (inner_insn);
1309 int inner_length;
1311 if (GET_CODE (body) == ASM_INPUT
1312 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1313 inner_length = (asm_insn_count (PATTERN (inner_insn))
1314 * insn_default_length (inner_insn));
1315 else
1316 inner_length = insn_default_length (inner_insn);
1318 insn_lengths[inner_uid] = inner_length;
1319 if (const_delay_slots)
1321 if ((varying_length[inner_uid]
1322 = insn_variable_length_p (inner_insn)) != 0)
1323 varying_length[uid] = 1;
1324 INSN_ADDRESSES (inner_uid) = (insn_current_address
1325 + insn_lengths[uid]);
1327 else
1328 varying_length[inner_uid] = 0;
1329 insn_lengths[uid] += inner_length;
1332 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1334 insn_lengths[uid] = insn_default_length (insn);
1335 varying_length[uid] = insn_variable_length_p (insn);
1338 /* If needed, do any adjustment. */
1339 #ifdef ADJUST_INSN_LENGTH
1340 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1341 if (insn_lengths[uid] < 0)
1342 fatal_insn ("negative insn length", insn);
1343 #endif
1346 /* Now loop over all the insns finding varying length insns. For each,
1347 get the current insn length. If it has changed, reflect the change.
1348 When nothing changes for a full pass, we are done. */
1350 while (something_changed)
1352 something_changed = 0;
1353 insn_current_align = MAX_CODE_ALIGN - 1;
1354 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1355 insn != 0;
1356 insn = NEXT_INSN (insn))
1358 int new_length;
1359 #ifdef ADJUST_INSN_LENGTH
1360 int tmp_length;
1361 #endif
1362 int length_align;
1364 uid = INSN_UID (insn);
1366 if (GET_CODE (insn) == CODE_LABEL)
1368 int log = LABEL_TO_ALIGNMENT (insn);
1369 if (log > insn_current_align)
1371 int align = 1 << log;
1372 int new_address= (insn_current_address + align - 1) & -align;
1373 insn_lengths[uid] = new_address - insn_current_address;
1374 insn_current_align = log;
1375 insn_current_address = new_address;
1377 else
1378 insn_lengths[uid] = 0;
1379 INSN_ADDRESSES (uid) = insn_current_address;
1380 continue;
1383 length_align = INSN_LENGTH_ALIGNMENT (insn);
1384 if (length_align < insn_current_align)
1385 insn_current_align = length_align;
1387 insn_last_address = INSN_ADDRESSES (uid);
1388 INSN_ADDRESSES (uid) = insn_current_address;
1390 #ifdef CASE_VECTOR_SHORTEN_MODE
1391 if (optimize && GET_CODE (insn) == JUMP_INSN
1392 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1394 rtx body = PATTERN (insn);
1395 int old_length = insn_lengths[uid];
1396 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1397 rtx min_lab = XEXP (XEXP (body, 2), 0);
1398 rtx max_lab = XEXP (XEXP (body, 3), 0);
1399 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1400 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1401 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1402 rtx prev;
1403 int rel_align = 0;
1404 addr_diff_vec_flags flags;
1406 /* Avoid automatic aggregate initialization. */
1407 flags = ADDR_DIFF_VEC_FLAGS (body);
1409 /* Try to find a known alignment for rel_lab. */
1410 for (prev = rel_lab;
1411 prev
1412 && ! insn_lengths[INSN_UID (prev)]
1413 && ! (varying_length[INSN_UID (prev)] & 1);
1414 prev = PREV_INSN (prev))
1415 if (varying_length[INSN_UID (prev)] & 2)
1417 rel_align = LABEL_TO_ALIGNMENT (prev);
1418 break;
1421 /* See the comment on addr_diff_vec_flags in rtl.h for the
1422 meaning of the flags values. base: REL_LAB vec: INSN */
1423 /* Anything after INSN has still addresses from the last
1424 pass; adjust these so that they reflect our current
1425 estimate for this pass. */
1426 if (flags.base_after_vec)
1427 rel_addr += insn_current_address - insn_last_address;
1428 if (flags.min_after_vec)
1429 min_addr += insn_current_address - insn_last_address;
1430 if (flags.max_after_vec)
1431 max_addr += insn_current_address - insn_last_address;
1432 /* We want to know the worst case, i.e. lowest possible value
1433 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1434 its offset is positive, and we have to be wary of code shrink;
1435 otherwise, it is negative, and we have to be vary of code
1436 size increase. */
1437 if (flags.min_after_base)
1439 /* If INSN is between REL_LAB and MIN_LAB, the size
1440 changes we are about to make can change the alignment
1441 within the observed offset, therefore we have to break
1442 it up into two parts that are independent. */
1443 if (! flags.base_after_vec && flags.min_after_vec)
1445 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1446 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1448 else
1449 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1451 else
1453 if (flags.base_after_vec && ! flags.min_after_vec)
1455 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1456 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1458 else
1459 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1461 /* Likewise, determine the highest lowest possible value
1462 for the offset of MAX_LAB. */
1463 if (flags.max_after_base)
1465 if (! flags.base_after_vec && flags.max_after_vec)
1467 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1468 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1470 else
1471 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1473 else
1475 if (flags.base_after_vec && ! flags.max_after_vec)
1477 max_addr += align_fuzz (max_lab, insn, 0, 0);
1478 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1480 else
1481 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1483 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1484 max_addr - rel_addr,
1485 body));
1486 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1488 insn_lengths[uid]
1489 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1490 insn_current_address += insn_lengths[uid];
1491 if (insn_lengths[uid] != old_length)
1492 something_changed = 1;
1495 continue;
1497 #endif /* CASE_VECTOR_SHORTEN_MODE */
1499 if (! (varying_length[uid]))
1501 if (GET_CODE (insn) == INSN
1502 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1504 int i;
1506 body = PATTERN (insn);
1507 for (i = 0; i < XVECLEN (body, 0); i++)
1509 rtx inner_insn = XVECEXP (body, 0, i);
1510 int inner_uid = INSN_UID (inner_insn);
1512 INSN_ADDRESSES (inner_uid) = insn_current_address;
1514 insn_current_address += insn_lengths[inner_uid];
1517 else
1518 insn_current_address += insn_lengths[uid];
1520 continue;
1523 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1525 int i;
1527 body = PATTERN (insn);
1528 new_length = 0;
1529 for (i = 0; i < XVECLEN (body, 0); i++)
1531 rtx inner_insn = XVECEXP (body, 0, i);
1532 int inner_uid = INSN_UID (inner_insn);
1533 int inner_length;
1535 INSN_ADDRESSES (inner_uid) = insn_current_address;
1537 /* insn_current_length returns 0 for insns with a
1538 non-varying length. */
1539 if (! varying_length[inner_uid])
1540 inner_length = insn_lengths[inner_uid];
1541 else
1542 inner_length = insn_current_length (inner_insn);
1544 if (inner_length != insn_lengths[inner_uid])
1546 insn_lengths[inner_uid] = inner_length;
1547 something_changed = 1;
1549 insn_current_address += insn_lengths[inner_uid];
1550 new_length += inner_length;
1553 else
1555 new_length = insn_current_length (insn);
1556 insn_current_address += new_length;
1559 #ifdef ADJUST_INSN_LENGTH
1560 /* If needed, do any adjustment. */
1561 tmp_length = new_length;
1562 ADJUST_INSN_LENGTH (insn, new_length);
1563 insn_current_address += (new_length - tmp_length);
1564 #endif
1566 if (new_length != insn_lengths[uid])
1568 insn_lengths[uid] = new_length;
1569 something_changed = 1;
1572 /* For a non-optimizing compile, do only a single pass. */
1573 if (!optimize)
1574 break;
1577 free (varying_length);
1579 #endif /* HAVE_ATTR_length */
1582 #ifdef HAVE_ATTR_length
1583 /* Given the body of an INSN known to be generated by an ASM statement, return
1584 the number of machine instructions likely to be generated for this insn.
1585 This is used to compute its length. */
1587 static int
1588 asm_insn_count (body)
1589 rtx body;
1591 const char *template;
1592 int count = 1;
1594 if (GET_CODE (body) == ASM_INPUT)
1595 template = XSTR (body, 0);
1596 else
1597 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1599 for (; *template; template++)
1600 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1601 count++;
1603 return count;
1605 #endif
1607 /* Output assembler code for the start of a function,
1608 and initialize some of the variables in this file
1609 for the new function. The label for the function and associated
1610 assembler pseudo-ops have already been output in `assemble_start_function'.
1612 FIRST is the first insn of the rtl for the function being compiled.
1613 FILE is the file to write assembler code to.
1614 OPTIMIZE is nonzero if we should eliminate redundant
1615 test and compare insns. */
1617 void
1618 final_start_function (first, file, optimize)
1619 rtx first;
1620 FILE *file;
1621 int optimize ATTRIBUTE_UNUSED;
1623 block_depth = 0;
1625 this_is_asm_operands = 0;
1627 #ifdef NON_SAVING_SETJMP
1628 /* A function that calls setjmp should save and restore all the
1629 call-saved registers on a system where longjmp clobbers them. */
1630 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1632 int i;
1634 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1635 if (!call_used_regs[i])
1636 regs_ever_live[i] = 1;
1638 #endif
1640 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1641 notice_source_line (first);
1642 high_block_linenum = high_function_linenum = last_linenum;
1644 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1646 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1647 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1648 dwarf2out_begin_prologue (0, NULL);
1649 #endif
1651 #ifdef LEAF_REG_REMAP
1652 if (current_function_uses_only_leaf_regs)
1653 leaf_renumber_regs (first);
1654 #endif
1656 /* The Sun386i and perhaps other machines don't work right
1657 if the profiling code comes after the prologue. */
1658 #ifdef PROFILE_BEFORE_PROLOGUE
1659 if (current_function_profile)
1660 profile_function (file);
1661 #endif /* PROFILE_BEFORE_PROLOGUE */
1663 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1664 if (dwarf2out_do_frame ())
1665 dwarf2out_frame_debug (NULL_RTX);
1666 #endif
1668 /* If debugging, assign block numbers to all of the blocks in this
1669 function. */
1670 if (write_symbols)
1672 remove_unnecessary_notes ();
1673 scope_to_insns_finalize ();
1674 number_blocks (current_function_decl);
1675 /* We never actually put out begin/end notes for the top-level
1676 block in the function. But, conceptually, that block is
1677 always needed. */
1678 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1681 /* First output the function prologue: code to set up the stack frame. */
1682 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1684 /* If the machine represents the prologue as RTL, the profiling code must
1685 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1686 #ifdef HAVE_prologue
1687 if (! HAVE_prologue)
1688 #endif
1689 profile_after_prologue (file);
1692 static void
1693 profile_after_prologue (file)
1694 FILE *file ATTRIBUTE_UNUSED;
1696 #ifndef PROFILE_BEFORE_PROLOGUE
1697 if (current_function_profile)
1698 profile_function (file);
1699 #endif /* not PROFILE_BEFORE_PROLOGUE */
1702 static void
1703 profile_function (file)
1704 FILE *file ATTRIBUTE_UNUSED;
1706 #ifndef NO_PROFILE_COUNTERS
1707 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1708 #endif
1709 #if defined(ASM_OUTPUT_REG_PUSH)
1710 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1711 int sval = current_function_returns_struct;
1712 #endif
1713 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1714 int cxt = current_function_needs_context;
1715 #endif
1716 #endif /* ASM_OUTPUT_REG_PUSH */
1718 #ifndef NO_PROFILE_COUNTERS
1719 data_section ();
1720 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1721 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", current_function_funcdef_no);
1722 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1723 #endif
1725 function_section (current_function_decl);
1727 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1728 if (sval)
1729 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1730 #else
1731 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1732 if (sval)
1734 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1736 #endif
1737 #endif
1739 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1740 if (cxt)
1741 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1742 #else
1743 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1744 if (cxt)
1746 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1748 #endif
1749 #endif
1751 FUNCTION_PROFILER (file, current_function_funcdef_no);
1753 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1754 if (cxt)
1755 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1756 #else
1757 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1758 if (cxt)
1760 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1762 #endif
1763 #endif
1765 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1766 if (sval)
1767 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1768 #else
1769 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1770 if (sval)
1772 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1774 #endif
1775 #endif
1778 /* Output assembler code for the end of a function.
1779 For clarity, args are same as those of `final_start_function'
1780 even though not all of them are needed. */
1782 void
1783 final_end_function ()
1785 app_disable ();
1787 (*debug_hooks->end_function) (high_function_linenum);
1789 /* Finally, output the function epilogue:
1790 code to restore the stack frame and return to the caller. */
1791 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1793 /* And debug output. */
1794 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1796 #if defined (DWARF2_UNWIND_INFO)
1797 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1798 && dwarf2out_do_frame ())
1799 dwarf2out_end_epilogue (last_linenum, last_filename);
1800 #endif
1803 /* Output assembler code for some insns: all or part of a function.
1804 For description of args, see `final_start_function', above.
1806 PRESCAN is 1 if we are not really outputting,
1807 just scanning as if we were outputting.
1808 Prescanning deletes and rearranges insns just like ordinary output.
1809 PRESCAN is -2 if we are outputting after having prescanned.
1810 In this case, don't try to delete or rearrange insns
1811 because that has already been done.
1812 Prescanning is done only on certain machines. */
1814 void
1815 final (first, file, optimize, prescan)
1816 rtx first;
1817 FILE *file;
1818 int optimize;
1819 int prescan;
1821 rtx insn;
1822 int max_line = 0;
1823 int max_uid = 0;
1825 last_ignored_compare = 0;
1826 new_block = 1;
1828 /* Make a map indicating which line numbers appear in this function.
1829 When producing SDB debugging info, delete troublesome line number
1830 notes from inlined functions in other files as well as duplicate
1831 line number notes. */
1832 #ifdef SDB_DEBUGGING_INFO
1833 if (write_symbols == SDB_DEBUG)
1835 rtx last = 0;
1836 for (insn = first; insn; insn = NEXT_INSN (insn))
1837 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1839 if ((RTX_INTEGRATED_P (insn)
1840 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1841 || (last != 0
1842 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1843 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1845 delete_insn (insn); /* Use delete_note. */
1846 continue;
1848 last = insn;
1849 if (NOTE_LINE_NUMBER (insn) > max_line)
1850 max_line = NOTE_LINE_NUMBER (insn);
1853 else
1854 #endif
1856 for (insn = first; insn; insn = NEXT_INSN (insn))
1857 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1858 max_line = NOTE_LINE_NUMBER (insn);
1861 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
1863 for (insn = first; insn; insn = NEXT_INSN (insn))
1865 if (INSN_UID (insn) > max_uid) /* find largest UID */
1866 max_uid = INSN_UID (insn);
1867 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1868 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1869 #ifdef HAVE_cc0
1870 /* If CC tracking across branches is enabled, record the insn which
1871 jumps to each branch only reached from one place. */
1872 if (optimize && GET_CODE (insn) == JUMP_INSN)
1874 rtx lab = JUMP_LABEL (insn);
1875 if (lab && LABEL_NUSES (lab) == 1)
1877 LABEL_REFS (lab) = insn;
1880 #endif
1883 init_recog ();
1885 CC_STATUS_INIT;
1887 /* Output the insns. */
1888 for (insn = NEXT_INSN (first); insn;)
1890 #ifdef HAVE_ATTR_length
1891 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1893 /* This can be triggered by bugs elsewhere in the compiler if
1894 new insns are created after init_insn_lengths is called. */
1895 if (GET_CODE (insn) == NOTE)
1896 insn_current_address = -1;
1897 else
1898 abort ();
1900 else
1901 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1902 #endif /* HAVE_ATTR_length */
1904 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1907 /* Store function names for edge-profiling. */
1908 /* ??? Probably should re-use the existing struct function. */
1910 if (cfun->arc_profile)
1912 struct function_list *new_item = xmalloc (sizeof (struct function_list));
1914 *functions_tail = new_item;
1915 functions_tail = &new_item->next;
1917 new_item->next = 0;
1918 new_item->name = xstrdup (IDENTIFIER_POINTER
1919 (DECL_ASSEMBLER_NAME (current_function_decl)));
1920 new_item->cfg_checksum = profile_info.current_function_cfg_checksum;
1921 new_item->count_edges = profile_info.count_edges_instrumented_now;
1924 free (line_note_exists);
1925 line_note_exists = NULL;
1928 const char *
1929 get_insn_template (code, insn)
1930 int code;
1931 rtx insn;
1933 const void *output = insn_data[code].output;
1934 switch (insn_data[code].output_format)
1936 case INSN_OUTPUT_FORMAT_SINGLE:
1937 return (const char *) output;
1938 case INSN_OUTPUT_FORMAT_MULTI:
1939 return ((const char *const *) output)[which_alternative];
1940 case INSN_OUTPUT_FORMAT_FUNCTION:
1941 if (insn == NULL)
1942 abort ();
1943 return (*(insn_output_fn) output) (recog_data.operand, insn);
1945 default:
1946 abort ();
1950 /* Emit the appropriate declaration for an alternate-entry-point
1951 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1952 LABEL_KIND != LABEL_NORMAL.
1954 The case fall-through in this function is intentional. */
1955 static void
1956 output_alternate_entry_point (file, insn)
1957 FILE *file;
1958 rtx insn;
1960 const char *name = LABEL_NAME (insn);
1962 switch (LABEL_KIND (insn))
1964 case LABEL_WEAK_ENTRY:
1965 #ifdef ASM_WEAKEN_LABEL
1966 ASM_WEAKEN_LABEL (file, name);
1967 #endif
1968 case LABEL_GLOBAL_ENTRY:
1969 (*targetm.asm_out.globalize_label) (file, name);
1970 case LABEL_STATIC_ENTRY:
1971 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1972 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1973 #endif
1974 ASM_OUTPUT_LABEL (file, name);
1975 break;
1977 case LABEL_NORMAL:
1978 default:
1979 abort ();
1983 /* The final scan for one insn, INSN.
1984 Args are same as in `final', except that INSN
1985 is the insn being scanned.
1986 Value returned is the next insn to be scanned.
1988 NOPEEPHOLES is the flag to disallow peephole processing (currently
1989 used for within delayed branch sequence output). */
1992 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
1993 rtx insn;
1994 FILE *file;
1995 int optimize ATTRIBUTE_UNUSED;
1996 int prescan;
1997 int nopeepholes ATTRIBUTE_UNUSED;
1999 #ifdef HAVE_cc0
2000 rtx set;
2001 #endif
2003 insn_counter++;
2005 /* Ignore deleted insns. These can occur when we split insns (due to a
2006 template of "#") while not optimizing. */
2007 if (INSN_DELETED_P (insn))
2008 return NEXT_INSN (insn);
2010 switch (GET_CODE (insn))
2012 case NOTE:
2013 if (prescan > 0)
2014 break;
2016 switch (NOTE_LINE_NUMBER (insn))
2018 case NOTE_INSN_DELETED:
2019 case NOTE_INSN_LOOP_BEG:
2020 case NOTE_INSN_LOOP_END:
2021 case NOTE_INSN_LOOP_END_TOP_COND:
2022 case NOTE_INSN_LOOP_CONT:
2023 case NOTE_INSN_LOOP_VTOP:
2024 case NOTE_INSN_FUNCTION_END:
2025 case NOTE_INSN_REPEATED_LINE_NUMBER:
2026 case NOTE_INSN_EXPECTED_VALUE:
2027 break;
2029 case NOTE_INSN_BASIC_BLOCK:
2030 #ifdef IA64_UNWIND_INFO
2031 IA64_UNWIND_EMIT (asm_out_file, insn);
2032 #endif
2033 if (flag_debug_asm)
2034 fprintf (asm_out_file, "\t%s basic block %d\n",
2035 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
2036 break;
2038 case NOTE_INSN_EH_REGION_BEG:
2039 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2040 NOTE_EH_HANDLER (insn));
2041 break;
2043 case NOTE_INSN_EH_REGION_END:
2044 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2045 NOTE_EH_HANDLER (insn));
2046 break;
2048 case NOTE_INSN_PROLOGUE_END:
2049 (*targetm.asm_out.function_end_prologue) (file);
2050 profile_after_prologue (file);
2051 break;
2053 case NOTE_INSN_EPILOGUE_BEG:
2054 (*targetm.asm_out.function_begin_epilogue) (file);
2055 break;
2057 case NOTE_INSN_FUNCTION_BEG:
2058 app_disable ();
2059 (*debug_hooks->end_prologue) (last_linenum, last_filename);
2060 break;
2062 case NOTE_INSN_BLOCK_BEG:
2063 if (debug_info_level == DINFO_LEVEL_NORMAL
2064 || debug_info_level == DINFO_LEVEL_VERBOSE
2065 || write_symbols == DWARF_DEBUG
2066 || write_symbols == DWARF2_DEBUG
2067 || write_symbols == VMS_AND_DWARF2_DEBUG
2068 || write_symbols == VMS_DEBUG)
2070 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2072 app_disable ();
2073 ++block_depth;
2074 high_block_linenum = last_linenum;
2076 /* Output debugging info about the symbol-block beginning. */
2077 (*debug_hooks->begin_block) (last_linenum, n);
2079 /* Mark this block as output. */
2080 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2082 break;
2084 case NOTE_INSN_BLOCK_END:
2085 if (debug_info_level == DINFO_LEVEL_NORMAL
2086 || debug_info_level == DINFO_LEVEL_VERBOSE
2087 || write_symbols == DWARF_DEBUG
2088 || write_symbols == DWARF2_DEBUG
2089 || write_symbols == VMS_AND_DWARF2_DEBUG
2090 || write_symbols == VMS_DEBUG)
2092 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2094 app_disable ();
2096 /* End of a symbol-block. */
2097 --block_depth;
2098 if (block_depth < 0)
2099 abort ();
2101 (*debug_hooks->end_block) (high_block_linenum, n);
2103 break;
2105 case NOTE_INSN_DELETED_LABEL:
2106 /* Emit the label. We may have deleted the CODE_LABEL because
2107 the label could be proved to be unreachable, though still
2108 referenced (in the form of having its address taken. */
2109 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2110 break;
2112 case 0:
2113 break;
2115 default:
2116 if (NOTE_LINE_NUMBER (insn) <= 0)
2117 abort ();
2119 /* This note is a line-number. */
2121 rtx note;
2122 int note_after = 0;
2124 /* If there is anything real after this note, output it.
2125 If another line note follows, omit this one. */
2126 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2128 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2129 break;
2131 /* These types of notes can be significant
2132 so make sure the preceding line number stays. */
2133 else if (GET_CODE (note) == NOTE
2134 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2135 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2136 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2137 break;
2138 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2140 /* Another line note follows; we can delete this note
2141 if no intervening line numbers have notes elsewhere. */
2142 int num;
2143 for (num = NOTE_LINE_NUMBER (insn) + 1;
2144 num < NOTE_LINE_NUMBER (note);
2145 num++)
2146 if (line_note_exists[num])
2147 break;
2149 if (num >= NOTE_LINE_NUMBER (note))
2150 note_after = 1;
2151 break;
2155 /* Output this line note if it is the first or the last line
2156 note in a row. */
2157 if (!note_after)
2159 notice_source_line (insn);
2160 (*debug_hooks->source_line) (last_linenum, last_filename);
2163 break;
2165 break;
2167 case BARRIER:
2168 #if defined (DWARF2_UNWIND_INFO)
2169 if (dwarf2out_do_frame ())
2170 dwarf2out_frame_debug (insn);
2171 #endif
2172 break;
2174 case CODE_LABEL:
2175 /* The target port might emit labels in the output function for
2176 some insn, e.g. sh.c output_branchy_insn. */
2177 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2179 int align = LABEL_TO_ALIGNMENT (insn);
2180 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2181 int max_skip = LABEL_TO_MAX_SKIP (insn);
2182 #endif
2184 if (align && NEXT_INSN (insn))
2186 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2187 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2188 #else
2189 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2190 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2191 #else
2192 ASM_OUTPUT_ALIGN (file, align);
2193 #endif
2194 #endif
2197 #ifdef HAVE_cc0
2198 CC_STATUS_INIT;
2199 /* If this label is reached from only one place, set the condition
2200 codes from the instruction just before the branch. */
2202 /* Disabled because some insns set cc_status in the C output code
2203 and NOTICE_UPDATE_CC alone can set incorrect status. */
2204 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2206 rtx jump = LABEL_REFS (insn);
2207 rtx barrier = prev_nonnote_insn (insn);
2208 rtx prev;
2209 /* If the LABEL_REFS field of this label has been set to point
2210 at a branch, the predecessor of the branch is a regular
2211 insn, and that branch is the only way to reach this label,
2212 set the condition codes based on the branch and its
2213 predecessor. */
2214 if (barrier && GET_CODE (barrier) == BARRIER
2215 && jump && GET_CODE (jump) == JUMP_INSN
2216 && (prev = prev_nonnote_insn (jump))
2217 && GET_CODE (prev) == INSN)
2219 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2220 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2223 #endif
2224 if (prescan > 0)
2225 break;
2226 new_block = 1;
2228 #ifdef FINAL_PRESCAN_LABEL
2229 FINAL_PRESCAN_INSN (insn, NULL, 0);
2230 #endif
2232 if (LABEL_NAME (insn))
2233 (*debug_hooks->label) (insn);
2235 if (app_on)
2237 fputs (ASM_APP_OFF, file);
2238 app_on = 0;
2240 if (NEXT_INSN (insn) != 0
2241 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2243 rtx nextbody = PATTERN (NEXT_INSN (insn));
2245 /* If this label is followed by a jump-table,
2246 make sure we put the label in the read-only section. Also
2247 possibly write the label and jump table together. */
2249 if (GET_CODE (nextbody) == ADDR_VEC
2250 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2252 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2253 /* In this case, the case vector is being moved by the
2254 target, so don't output the label at all. Leave that
2255 to the back end macros. */
2256 #else
2257 if (! JUMP_TABLES_IN_TEXT_SECTION)
2259 int log_align;
2261 readonly_data_section ();
2263 #ifdef ADDR_VEC_ALIGN
2264 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
2265 #else
2266 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2267 #endif
2268 ASM_OUTPUT_ALIGN (file, log_align);
2270 else
2271 function_section (current_function_decl);
2273 #ifdef ASM_OUTPUT_CASE_LABEL
2274 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2275 NEXT_INSN (insn));
2276 #else
2277 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2278 #endif
2279 #endif
2280 break;
2283 if (LABEL_ALT_ENTRY_P (insn))
2284 output_alternate_entry_point (file, insn);
2285 else
2286 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2287 break;
2289 default:
2291 rtx body = PATTERN (insn);
2292 int insn_code_number;
2293 const char *template;
2294 rtx note;
2296 /* An INSN, JUMP_INSN or CALL_INSN.
2297 First check for special kinds that recog doesn't recognize. */
2299 if (GET_CODE (body) == USE /* These are just declarations */
2300 || GET_CODE (body) == CLOBBER)
2301 break;
2303 #ifdef HAVE_cc0
2304 /* If there is a REG_CC_SETTER note on this insn, it means that
2305 the setting of the condition code was done in the delay slot
2306 of the insn that branched here. So recover the cc status
2307 from the insn that set it. */
2309 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2310 if (note)
2312 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2313 cc_prev_status = cc_status;
2315 #endif
2317 /* Detect insns that are really jump-tables
2318 and output them as such. */
2320 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2322 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2323 int vlen, idx;
2324 #endif
2326 if (prescan > 0)
2327 break;
2329 if (app_on)
2331 fputs (ASM_APP_OFF, file);
2332 app_on = 0;
2335 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2336 if (GET_CODE (body) == ADDR_VEC)
2338 #ifdef ASM_OUTPUT_ADDR_VEC
2339 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2340 #else
2341 abort ();
2342 #endif
2344 else
2346 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2347 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2348 #else
2349 abort ();
2350 #endif
2352 #else
2353 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2354 for (idx = 0; idx < vlen; idx++)
2356 if (GET_CODE (body) == ADDR_VEC)
2358 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2359 ASM_OUTPUT_ADDR_VEC_ELT
2360 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2361 #else
2362 abort ();
2363 #endif
2365 else
2367 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2368 ASM_OUTPUT_ADDR_DIFF_ELT
2369 (file,
2370 body,
2371 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2372 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2373 #else
2374 abort ();
2375 #endif
2378 #ifdef ASM_OUTPUT_CASE_END
2379 ASM_OUTPUT_CASE_END (file,
2380 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2381 insn);
2382 #endif
2383 #endif
2385 function_section (current_function_decl);
2387 break;
2390 if (GET_CODE (body) == ASM_INPUT)
2392 const char *string = XSTR (body, 0);
2394 /* There's no telling what that did to the condition codes. */
2395 CC_STATUS_INIT;
2396 if (prescan > 0)
2397 break;
2399 if (string[0])
2401 if (! app_on)
2403 fputs (ASM_APP_ON, file);
2404 app_on = 1;
2406 fprintf (asm_out_file, "\t%s\n", string);
2408 break;
2411 /* Detect `asm' construct with operands. */
2412 if (asm_noperands (body) >= 0)
2414 unsigned int noperands = asm_noperands (body);
2415 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2416 const char *string;
2418 /* There's no telling what that did to the condition codes. */
2419 CC_STATUS_INIT;
2420 if (prescan > 0)
2421 break;
2423 /* Get out the operand values. */
2424 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2425 /* Inhibit aborts on what would otherwise be compiler bugs. */
2426 insn_noperands = noperands;
2427 this_is_asm_operands = insn;
2429 /* Output the insn using them. */
2430 if (string[0])
2432 if (! app_on)
2434 fputs (ASM_APP_ON, file);
2435 app_on = 1;
2437 output_asm_insn (string, ops);
2440 this_is_asm_operands = 0;
2441 break;
2444 if (prescan <= 0 && app_on)
2446 fputs (ASM_APP_OFF, file);
2447 app_on = 0;
2450 if (GET_CODE (body) == SEQUENCE)
2452 /* A delayed-branch sequence */
2453 int i;
2454 rtx next;
2456 if (prescan > 0)
2457 break;
2458 final_sequence = body;
2460 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2461 force the restoration of a comparison that was previously
2462 thought unnecessary. If that happens, cancel this sequence
2463 and cause that insn to be restored. */
2465 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2466 if (next != XVECEXP (body, 0, 1))
2468 final_sequence = 0;
2469 return next;
2472 for (i = 1; i < XVECLEN (body, 0); i++)
2474 rtx insn = XVECEXP (body, 0, i);
2475 rtx next = NEXT_INSN (insn);
2476 /* We loop in case any instruction in a delay slot gets
2477 split. */
2479 insn = final_scan_insn (insn, file, 0, prescan, 1);
2480 while (insn != next);
2482 #ifdef DBR_OUTPUT_SEQEND
2483 DBR_OUTPUT_SEQEND (file);
2484 #endif
2485 final_sequence = 0;
2487 /* If the insn requiring the delay slot was a CALL_INSN, the
2488 insns in the delay slot are actually executed before the
2489 called function. Hence we don't preserve any CC-setting
2490 actions in these insns and the CC must be marked as being
2491 clobbered by the function. */
2492 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2494 CC_STATUS_INIT;
2496 break;
2499 /* We have a real machine instruction as rtl. */
2501 body = PATTERN (insn);
2503 #ifdef HAVE_cc0
2504 set = single_set (insn);
2506 /* Check for redundant test and compare instructions
2507 (when the condition codes are already set up as desired).
2508 This is done only when optimizing; if not optimizing,
2509 it should be possible for the user to alter a variable
2510 with the debugger in between statements
2511 and the next statement should reexamine the variable
2512 to compute the condition codes. */
2514 if (optimize)
2516 #if 0
2517 rtx set = single_set (insn);
2518 #endif
2520 if (set
2521 && GET_CODE (SET_DEST (set)) == CC0
2522 && insn != last_ignored_compare)
2524 if (GET_CODE (SET_SRC (set)) == SUBREG)
2525 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2526 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2528 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2529 XEXP (SET_SRC (set), 0)
2530 = alter_subreg (&XEXP (SET_SRC (set), 0));
2531 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2532 XEXP (SET_SRC (set), 1)
2533 = alter_subreg (&XEXP (SET_SRC (set), 1));
2535 if ((cc_status.value1 != 0
2536 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2537 || (cc_status.value2 != 0
2538 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2540 /* Don't delete insn if it has an addressing side-effect. */
2541 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2542 /* or if anything in it is volatile. */
2543 && ! volatile_refs_p (PATTERN (insn)))
2545 /* We don't really delete the insn; just ignore it. */
2546 last_ignored_compare = insn;
2547 break;
2552 #endif
2554 #ifndef STACK_REGS
2555 /* Don't bother outputting obvious no-ops, even without -O.
2556 This optimization is fast and doesn't interfere with debugging.
2557 Don't do this if the insn is in a delay slot, since this
2558 will cause an improper number of delay insns to be written. */
2559 if (final_sequence == 0
2560 && prescan >= 0
2561 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2562 && GET_CODE (SET_SRC (body)) == REG
2563 && GET_CODE (SET_DEST (body)) == REG
2564 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2565 break;
2566 #endif
2568 #ifdef HAVE_cc0
2569 /* If this is a conditional branch, maybe modify it
2570 if the cc's are in a nonstandard state
2571 so that it accomplishes the same thing that it would
2572 do straightforwardly if the cc's were set up normally. */
2574 if (cc_status.flags != 0
2575 && GET_CODE (insn) == JUMP_INSN
2576 && GET_CODE (body) == SET
2577 && SET_DEST (body) == pc_rtx
2578 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2579 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2580 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2581 /* This is done during prescan; it is not done again
2582 in final scan when prescan has been done. */
2583 && prescan >= 0)
2585 /* This function may alter the contents of its argument
2586 and clear some of the cc_status.flags bits.
2587 It may also return 1 meaning condition now always true
2588 or -1 meaning condition now always false
2589 or 2 meaning condition nontrivial but altered. */
2590 int result = alter_cond (XEXP (SET_SRC (body), 0));
2591 /* If condition now has fixed value, replace the IF_THEN_ELSE
2592 with its then-operand or its else-operand. */
2593 if (result == 1)
2594 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2595 if (result == -1)
2596 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2598 /* The jump is now either unconditional or a no-op.
2599 If it has become a no-op, don't try to output it.
2600 (It would not be recognized.) */
2601 if (SET_SRC (body) == pc_rtx)
2603 delete_insn (insn);
2604 break;
2606 else if (GET_CODE (SET_SRC (body)) == RETURN)
2607 /* Replace (set (pc) (return)) with (return). */
2608 PATTERN (insn) = body = SET_SRC (body);
2610 /* Rerecognize the instruction if it has changed. */
2611 if (result != 0)
2612 INSN_CODE (insn) = -1;
2615 /* Make same adjustments to instructions that examine the
2616 condition codes without jumping and instructions that
2617 handle conditional moves (if this machine has either one). */
2619 if (cc_status.flags != 0
2620 && set != 0)
2622 rtx cond_rtx, then_rtx, else_rtx;
2624 if (GET_CODE (insn) != JUMP_INSN
2625 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2627 cond_rtx = XEXP (SET_SRC (set), 0);
2628 then_rtx = XEXP (SET_SRC (set), 1);
2629 else_rtx = XEXP (SET_SRC (set), 2);
2631 else
2633 cond_rtx = SET_SRC (set);
2634 then_rtx = const_true_rtx;
2635 else_rtx = const0_rtx;
2638 switch (GET_CODE (cond_rtx))
2640 case GTU:
2641 case GT:
2642 case LTU:
2643 case LT:
2644 case GEU:
2645 case GE:
2646 case LEU:
2647 case LE:
2648 case EQ:
2649 case NE:
2651 int result;
2652 if (XEXP (cond_rtx, 0) != cc0_rtx)
2653 break;
2654 result = alter_cond (cond_rtx);
2655 if (result == 1)
2656 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2657 else if (result == -1)
2658 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2659 else if (result == 2)
2660 INSN_CODE (insn) = -1;
2661 if (SET_DEST (set) == SET_SRC (set))
2662 delete_insn (insn);
2664 break;
2666 default:
2667 break;
2671 #endif
2673 #ifdef HAVE_peephole
2674 /* Do machine-specific peephole optimizations if desired. */
2676 if (optimize && !flag_no_peephole && !nopeepholes)
2678 rtx next = peephole (insn);
2679 /* When peepholing, if there were notes within the peephole,
2680 emit them before the peephole. */
2681 if (next != 0 && next != NEXT_INSN (insn))
2683 rtx prev = PREV_INSN (insn);
2685 for (note = NEXT_INSN (insn); note != next;
2686 note = NEXT_INSN (note))
2687 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2689 /* In case this is prescan, put the notes
2690 in proper position for later rescan. */
2691 note = NEXT_INSN (insn);
2692 PREV_INSN (note) = prev;
2693 NEXT_INSN (prev) = note;
2694 NEXT_INSN (PREV_INSN (next)) = insn;
2695 PREV_INSN (insn) = PREV_INSN (next);
2696 NEXT_INSN (insn) = next;
2697 PREV_INSN (next) = insn;
2700 /* PEEPHOLE might have changed this. */
2701 body = PATTERN (insn);
2703 #endif
2705 /* Try to recognize the instruction.
2706 If successful, verify that the operands satisfy the
2707 constraints for the instruction. Crash if they don't,
2708 since `reload' should have changed them so that they do. */
2710 insn_code_number = recog_memoized (insn);
2711 cleanup_subreg_operands (insn);
2713 /* Dump the insn in the assembly for debugging. */
2714 if (flag_dump_rtl_in_asm)
2716 print_rtx_head = ASM_COMMENT_START;
2717 print_rtl_single (asm_out_file, insn);
2718 print_rtx_head = "";
2721 if (! constrain_operands_cached (1))
2722 fatal_insn_not_found (insn);
2724 /* Some target machines need to prescan each insn before
2725 it is output. */
2727 #ifdef FINAL_PRESCAN_INSN
2728 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2729 #endif
2731 #ifdef HAVE_conditional_execution
2732 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2733 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2734 else
2735 current_insn_predicate = NULL_RTX;
2736 #endif
2738 #ifdef HAVE_cc0
2739 cc_prev_status = cc_status;
2741 /* Update `cc_status' for this instruction.
2742 The instruction's output routine may change it further.
2743 If the output routine for a jump insn needs to depend
2744 on the cc status, it should look at cc_prev_status. */
2746 NOTICE_UPDATE_CC (body, insn);
2747 #endif
2749 current_output_insn = debug_insn = insn;
2751 #if defined (DWARF2_UNWIND_INFO)
2752 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2753 dwarf2out_frame_debug (insn);
2754 #endif
2756 /* Find the proper template for this insn. */
2757 template = get_insn_template (insn_code_number, insn);
2759 /* If the C code returns 0, it means that it is a jump insn
2760 which follows a deleted test insn, and that test insn
2761 needs to be reinserted. */
2762 if (template == 0)
2764 rtx prev;
2766 if (prev_nonnote_insn (insn) != last_ignored_compare)
2767 abort ();
2768 new_block = 0;
2770 /* We have already processed the notes between the setter and
2771 the user. Make sure we don't process them again, this is
2772 particularly important if one of the notes is a block
2773 scope note or an EH note. */
2774 for (prev = insn;
2775 prev != last_ignored_compare;
2776 prev = PREV_INSN (prev))
2778 if (GET_CODE (prev) == NOTE)
2779 delete_insn (prev); /* Use delete_note. */
2782 return prev;
2785 /* If the template is the string "#", it means that this insn must
2786 be split. */
2787 if (template[0] == '#' && template[1] == '\0')
2789 rtx new = try_split (body, insn, 0);
2791 /* If we didn't split the insn, go away. */
2792 if (new == insn && PATTERN (new) == body)
2793 fatal_insn ("could not split insn", insn);
2795 #ifdef HAVE_ATTR_length
2796 /* This instruction should have been split in shorten_branches,
2797 to ensure that we would have valid length info for the
2798 splitees. */
2799 abort ();
2800 #endif
2802 new_block = 0;
2803 return new;
2806 if (prescan > 0)
2807 break;
2809 #ifdef IA64_UNWIND_INFO
2810 IA64_UNWIND_EMIT (asm_out_file, insn);
2811 #endif
2812 /* Output assembler code from the template. */
2814 output_asm_insn (template, recog_data.operand);
2816 #if defined (DWARF2_UNWIND_INFO)
2817 #if defined (HAVE_prologue)
2818 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2819 dwarf2out_frame_debug (insn);
2820 #else
2821 if (!ACCUMULATE_OUTGOING_ARGS
2822 && GET_CODE (insn) == INSN
2823 && dwarf2out_do_frame ())
2824 dwarf2out_frame_debug (insn);
2825 #endif
2826 #endif
2828 #if 0
2829 /* It's not at all clear why we did this and doing so interferes
2830 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2831 with this out. */
2833 /* Mark this insn as having been output. */
2834 INSN_DELETED_P (insn) = 1;
2835 #endif
2837 /* Emit information for vtable gc. */
2838 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2839 if (note)
2840 assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
2841 INTVAL (XEXP (XEXP (note, 0), 1)));
2843 current_output_insn = debug_insn = 0;
2846 return NEXT_INSN (insn);
2849 /* Output debugging info to the assembler file FILE
2850 based on the NOTE-insn INSN, assumed to be a line number. */
2852 static void
2853 notice_source_line (insn)
2854 rtx insn;
2856 const char *filename = NOTE_SOURCE_FILE (insn);
2858 last_filename = filename;
2859 last_linenum = NOTE_LINE_NUMBER (insn);
2860 high_block_linenum = MAX (last_linenum, high_block_linenum);
2861 high_function_linenum = MAX (last_linenum, high_function_linenum);
2864 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2865 directly to the desired hard register. */
2867 void
2868 cleanup_subreg_operands (insn)
2869 rtx insn;
2871 int i;
2872 extract_insn_cached (insn);
2873 for (i = 0; i < recog_data.n_operands; i++)
2875 /* The following test cannot use recog_data.operand when tesing
2876 for a SUBREG: the underlying object might have been changed
2877 already if we are inside a match_operator expression that
2878 matches the else clause. Instead we test the underlying
2879 expression directly. */
2880 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2881 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2882 else if (GET_CODE (recog_data.operand[i]) == PLUS
2883 || GET_CODE (recog_data.operand[i]) == MULT
2884 || GET_CODE (recog_data.operand[i]) == MEM)
2885 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2888 for (i = 0; i < recog_data.n_dups; i++)
2890 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2891 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2892 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2893 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2894 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2895 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2899 /* If X is a SUBREG, replace it with a REG or a MEM,
2900 based on the thing it is a subreg of. */
2903 alter_subreg (xp)
2904 rtx *xp;
2906 rtx x = *xp;
2907 rtx y = SUBREG_REG (x);
2909 /* simplify_subreg does not remove subreg from volatile references.
2910 We are required to. */
2911 if (GET_CODE (y) == MEM)
2912 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2913 else
2915 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2916 SUBREG_BYTE (x));
2918 if (new != 0)
2919 *xp = new;
2920 /* Simplify_subreg can't handle some REG cases, but we have to. */
2921 else if (GET_CODE (y) == REG)
2923 unsigned int regno = subreg_hard_regno (x, 1);
2924 PUT_CODE (x, REG);
2925 REGNO (x) = regno;
2926 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (y);
2927 /* This field has a different meaning for REGs and SUBREGs. Make
2928 sure to clear it! */
2929 RTX_FLAG (x, used) = 0;
2931 else
2932 abort ();
2935 return *xp;
2938 /* Do alter_subreg on all the SUBREGs contained in X. */
2940 static rtx
2941 walk_alter_subreg (xp)
2942 rtx *xp;
2944 rtx x = *xp;
2945 switch (GET_CODE (x))
2947 case PLUS:
2948 case MULT:
2949 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2950 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2951 break;
2953 case MEM:
2954 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2955 break;
2957 case SUBREG:
2958 return alter_subreg (xp);
2960 default:
2961 break;
2964 return *xp;
2967 #ifdef HAVE_cc0
2969 /* Given BODY, the body of a jump instruction, alter the jump condition
2970 as required by the bits that are set in cc_status.flags.
2971 Not all of the bits there can be handled at this level in all cases.
2973 The value is normally 0.
2974 1 means that the condition has become always true.
2975 -1 means that the condition has become always false.
2976 2 means that COND has been altered. */
2978 static int
2979 alter_cond (cond)
2980 rtx cond;
2982 int value = 0;
2984 if (cc_status.flags & CC_REVERSED)
2986 value = 2;
2987 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2990 if (cc_status.flags & CC_INVERTED)
2992 value = 2;
2993 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2996 if (cc_status.flags & CC_NOT_POSITIVE)
2997 switch (GET_CODE (cond))
2999 case LE:
3000 case LEU:
3001 case GEU:
3002 /* Jump becomes unconditional. */
3003 return 1;
3005 case GT:
3006 case GTU:
3007 case LTU:
3008 /* Jump becomes no-op. */
3009 return -1;
3011 case GE:
3012 PUT_CODE (cond, EQ);
3013 value = 2;
3014 break;
3016 case LT:
3017 PUT_CODE (cond, NE);
3018 value = 2;
3019 break;
3021 default:
3022 break;
3025 if (cc_status.flags & CC_NOT_NEGATIVE)
3026 switch (GET_CODE (cond))
3028 case GE:
3029 case GEU:
3030 /* Jump becomes unconditional. */
3031 return 1;
3033 case LT:
3034 case LTU:
3035 /* Jump becomes no-op. */
3036 return -1;
3038 case LE:
3039 case LEU:
3040 PUT_CODE (cond, EQ);
3041 value = 2;
3042 break;
3044 case GT:
3045 case GTU:
3046 PUT_CODE (cond, NE);
3047 value = 2;
3048 break;
3050 default:
3051 break;
3054 if (cc_status.flags & CC_NO_OVERFLOW)
3055 switch (GET_CODE (cond))
3057 case GEU:
3058 /* Jump becomes unconditional. */
3059 return 1;
3061 case LEU:
3062 PUT_CODE (cond, EQ);
3063 value = 2;
3064 break;
3066 case GTU:
3067 PUT_CODE (cond, NE);
3068 value = 2;
3069 break;
3071 case LTU:
3072 /* Jump becomes no-op. */
3073 return -1;
3075 default:
3076 break;
3079 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3080 switch (GET_CODE (cond))
3082 default:
3083 abort ();
3085 case NE:
3086 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3087 value = 2;
3088 break;
3090 case EQ:
3091 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3092 value = 2;
3093 break;
3096 if (cc_status.flags & CC_NOT_SIGNED)
3097 /* The flags are valid if signed condition operators are converted
3098 to unsigned. */
3099 switch (GET_CODE (cond))
3101 case LE:
3102 PUT_CODE (cond, LEU);
3103 value = 2;
3104 break;
3106 case LT:
3107 PUT_CODE (cond, LTU);
3108 value = 2;
3109 break;
3111 case GT:
3112 PUT_CODE (cond, GTU);
3113 value = 2;
3114 break;
3116 case GE:
3117 PUT_CODE (cond, GEU);
3118 value = 2;
3119 break;
3121 default:
3122 break;
3125 return value;
3127 #endif
3129 /* Report inconsistency between the assembler template and the operands.
3130 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3132 void
3133 output_operand_lossage VPARAMS ((const char *msgid, ...))
3135 char *fmt_string;
3136 char *new_message;
3137 const char *pfx_str;
3138 VA_OPEN (ap, msgid);
3139 VA_FIXEDARG (ap, const char *, msgid);
3141 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
3142 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
3143 vasprintf (&new_message, fmt_string, ap);
3145 if (this_is_asm_operands)
3146 error_for_asm (this_is_asm_operands, "%s", new_message);
3147 else
3148 internal_error ("%s", new_message);
3150 free (fmt_string);
3151 free (new_message);
3152 VA_CLOSE (ap);
3155 /* Output of assembler code from a template, and its subroutines. */
3157 /* Annotate the assembly with a comment describing the pattern and
3158 alternative used. */
3160 static void
3161 output_asm_name ()
3163 if (debug_insn)
3165 int num = INSN_CODE (debug_insn);
3166 fprintf (asm_out_file, "\t%s %d\t%s",
3167 ASM_COMMENT_START, INSN_UID (debug_insn),
3168 insn_data[num].name);
3169 if (insn_data[num].n_alternatives > 1)
3170 fprintf (asm_out_file, "/%d", which_alternative + 1);
3171 #ifdef HAVE_ATTR_length
3172 fprintf (asm_out_file, "\t[length = %d]",
3173 get_attr_length (debug_insn));
3174 #endif
3175 /* Clear this so only the first assembler insn
3176 of any rtl insn will get the special comment for -dp. */
3177 debug_insn = 0;
3181 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3182 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3183 corresponds to the address of the object and 0 if to the object. */
3185 static tree
3186 get_mem_expr_from_op (op, paddressp)
3187 rtx op;
3188 int *paddressp;
3190 tree expr;
3191 int inner_addressp;
3193 *paddressp = 0;
3195 if (op == NULL)
3196 return 0;
3198 if (GET_CODE (op) == REG && ORIGINAL_REGNO (op) >= FIRST_PSEUDO_REGISTER)
3199 return REGNO_DECL (ORIGINAL_REGNO (op));
3200 else if (GET_CODE (op) != MEM)
3201 return 0;
3203 if (MEM_EXPR (op) != 0)
3204 return MEM_EXPR (op);
3206 /* Otherwise we have an address, so indicate it and look at the address. */
3207 *paddressp = 1;
3208 op = XEXP (op, 0);
3210 /* First check if we have a decl for the address, then look at the right side
3211 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3212 But don't allow the address to itself be indirect. */
3213 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3214 return expr;
3215 else if (GET_CODE (op) == PLUS
3216 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3217 return expr;
3219 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
3220 || GET_RTX_CLASS (GET_CODE (op)) == '2')
3221 op = XEXP (op, 0);
3223 expr = get_mem_expr_from_op (op, &inner_addressp);
3224 return inner_addressp ? 0 : expr;
3227 /* Output operand names for assembler instructions. OPERANDS is the
3228 operand vector, OPORDER is the order to write the operands, and NOPS
3229 is the number of operands to write. */
3231 static void
3232 output_asm_operand_names (operands, oporder, nops)
3233 rtx *operands;
3234 int *oporder;
3235 int nops;
3237 int wrote = 0;
3238 int i;
3240 for (i = 0; i < nops; i++)
3242 int addressp;
3243 tree expr = get_mem_expr_from_op (operands[oporder[i]], &addressp);
3245 if (expr)
3247 fprintf (asm_out_file, "%c%s %s",
3248 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START,
3249 addressp ? "*" : "");
3250 print_mem_expr (asm_out_file, expr);
3251 wrote = 1;
3256 /* Output text from TEMPLATE to the assembler output file,
3257 obeying %-directions to substitute operands taken from
3258 the vector OPERANDS.
3260 %N (for N a digit) means print operand N in usual manner.
3261 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3262 and print the label name with no punctuation.
3263 %cN means require operand N to be a constant
3264 and print the constant expression with no punctuation.
3265 %aN means expect operand N to be a memory address
3266 (not a memory reference!) and print a reference
3267 to that address.
3268 %nN means expect operand N to be a constant
3269 and print a constant expression for minus the value
3270 of the operand, with no other punctuation. */
3272 void
3273 output_asm_insn (template, operands)
3274 const char *template;
3275 rtx *operands;
3277 const char *p;
3278 int c;
3279 #ifdef ASSEMBLER_DIALECT
3280 int dialect = 0;
3281 #endif
3282 int oporder[MAX_RECOG_OPERANDS];
3283 char opoutput[MAX_RECOG_OPERANDS];
3284 int ops = 0;
3286 /* An insn may return a null string template
3287 in a case where no assembler code is needed. */
3288 if (*template == 0)
3289 return;
3291 memset (opoutput, 0, sizeof opoutput);
3292 p = template;
3293 putc ('\t', asm_out_file);
3295 #ifdef ASM_OUTPUT_OPCODE
3296 ASM_OUTPUT_OPCODE (asm_out_file, p);
3297 #endif
3299 while ((c = *p++))
3300 switch (c)
3302 case '\n':
3303 if (flag_verbose_asm)
3304 output_asm_operand_names (operands, oporder, ops);
3305 if (flag_print_asm_name)
3306 output_asm_name ();
3308 ops = 0;
3309 memset (opoutput, 0, sizeof opoutput);
3311 putc (c, asm_out_file);
3312 #ifdef ASM_OUTPUT_OPCODE
3313 while ((c = *p) == '\t')
3315 putc (c, asm_out_file);
3316 p++;
3318 ASM_OUTPUT_OPCODE (asm_out_file, p);
3319 #endif
3320 break;
3322 #ifdef ASSEMBLER_DIALECT
3323 case '{':
3325 int i;
3327 if (dialect)
3328 output_operand_lossage ("nested assembly dialect alternatives");
3329 else
3330 dialect = 1;
3332 /* If we want the first dialect, do nothing. Otherwise, skip
3333 DIALECT_NUMBER of strings ending with '|'. */
3334 for (i = 0; i < dialect_number; i++)
3336 while (*p && *p != '}' && *p++ != '|')
3338 if (*p == '}')
3339 break;
3340 if (*p == '|')
3341 p++;
3344 if (*p == '\0')
3345 output_operand_lossage ("unterminated assembly dialect alternative");
3347 break;
3349 case '|':
3350 if (dialect)
3352 /* Skip to close brace. */
3355 if (*p == '\0')
3357 output_operand_lossage ("unterminated assembly dialect alternative");
3358 break;
3361 while (*p++ != '}');
3362 dialect = 0;
3364 else
3365 putc (c, asm_out_file);
3366 break;
3368 case '}':
3369 if (! dialect)
3370 putc (c, asm_out_file);
3371 dialect = 0;
3372 break;
3373 #endif
3375 case '%':
3376 /* %% outputs a single %. */
3377 if (*p == '%')
3379 p++;
3380 putc (c, asm_out_file);
3382 /* %= outputs a number which is unique to each insn in the entire
3383 compilation. This is useful for making local labels that are
3384 referred to more than once in a given insn. */
3385 else if (*p == '=')
3387 p++;
3388 fprintf (asm_out_file, "%d", insn_counter);
3390 /* % followed by a letter and some digits
3391 outputs an operand in a special way depending on the letter.
3392 Letters `acln' are implemented directly.
3393 Other letters are passed to `output_operand' so that
3394 the PRINT_OPERAND macro can define them. */
3395 else if (ISALPHA (*p))
3397 int letter = *p++;
3398 c = atoi (p);
3400 if (! ISDIGIT (*p))
3401 output_operand_lossage ("operand number missing after %%-letter");
3402 else if (this_is_asm_operands
3403 && (c < 0 || (unsigned int) c >= insn_noperands))
3404 output_operand_lossage ("operand number out of range");
3405 else if (letter == 'l')
3406 output_asm_label (operands[c]);
3407 else if (letter == 'a')
3408 output_address (operands[c]);
3409 else if (letter == 'c')
3411 if (CONSTANT_ADDRESS_P (operands[c]))
3412 output_addr_const (asm_out_file, operands[c]);
3413 else
3414 output_operand (operands[c], 'c');
3416 else if (letter == 'n')
3418 if (GET_CODE (operands[c]) == CONST_INT)
3419 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3420 - INTVAL (operands[c]));
3421 else
3423 putc ('-', asm_out_file);
3424 output_addr_const (asm_out_file, operands[c]);
3427 else
3428 output_operand (operands[c], letter);
3430 if (!opoutput[c])
3431 oporder[ops++] = c;
3432 opoutput[c] = 1;
3434 while (ISDIGIT (c = *p))
3435 p++;
3437 /* % followed by a digit outputs an operand the default way. */
3438 else if (ISDIGIT (*p))
3440 c = atoi (p);
3441 if (this_is_asm_operands
3442 && (c < 0 || (unsigned int) c >= insn_noperands))
3443 output_operand_lossage ("operand number out of range");
3444 else
3445 output_operand (operands[c], 0);
3447 if (!opoutput[c])
3448 oporder[ops++] = c;
3449 opoutput[c] = 1;
3451 while (ISDIGIT (c = *p))
3452 p++;
3454 /* % followed by punctuation: output something for that
3455 punctuation character alone, with no operand.
3456 The PRINT_OPERAND macro decides what is actually done. */
3457 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3458 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3459 output_operand (NULL_RTX, *p++);
3460 #endif
3461 else
3462 output_operand_lossage ("invalid %%-code");
3463 break;
3465 default:
3466 putc (c, asm_out_file);
3469 /* Write out the variable names for operands, if we know them. */
3470 if (flag_verbose_asm)
3471 output_asm_operand_names (operands, oporder, ops);
3472 if (flag_print_asm_name)
3473 output_asm_name ();
3475 putc ('\n', asm_out_file);
3478 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3480 void
3481 output_asm_label (x)
3482 rtx x;
3484 char buf[256];
3486 if (GET_CODE (x) == LABEL_REF)
3487 x = XEXP (x, 0);
3488 if (GET_CODE (x) == CODE_LABEL
3489 || (GET_CODE (x) == NOTE
3490 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3491 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3492 else
3493 output_operand_lossage ("`%%l' operand isn't a label");
3495 assemble_name (asm_out_file, buf);
3498 /* Print operand X using machine-dependent assembler syntax.
3499 The macro PRINT_OPERAND is defined just to control this function.
3500 CODE is a non-digit that preceded the operand-number in the % spec,
3501 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3502 between the % and the digits.
3503 When CODE is a non-letter, X is 0.
3505 The meanings of the letters are machine-dependent and controlled
3506 by PRINT_OPERAND. */
3508 static void
3509 output_operand (x, code)
3510 rtx x;
3511 int code ATTRIBUTE_UNUSED;
3513 if (x && GET_CODE (x) == SUBREG)
3514 x = alter_subreg (&x);
3516 /* If X is a pseudo-register, abort now rather than writing trash to the
3517 assembler file. */
3519 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3520 abort ();
3522 PRINT_OPERAND (asm_out_file, x, code);
3525 /* Print a memory reference operand for address X
3526 using machine-dependent assembler syntax.
3527 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3529 void
3530 output_address (x)
3531 rtx x;
3533 walk_alter_subreg (&x);
3534 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3537 /* Print an integer constant expression in assembler syntax.
3538 Addition and subtraction are the only arithmetic
3539 that may appear in these expressions. */
3541 void
3542 output_addr_const (file, x)
3543 FILE *file;
3544 rtx x;
3546 char buf[256];
3548 restart:
3549 switch (GET_CODE (x))
3551 case PC:
3552 putc ('.', file);
3553 break;
3555 case SYMBOL_REF:
3556 #ifdef ASM_OUTPUT_SYMBOL_REF
3557 ASM_OUTPUT_SYMBOL_REF (file, x);
3558 #else
3559 assemble_name (file, XSTR (x, 0));
3560 #endif
3561 break;
3563 case LABEL_REF:
3564 x = XEXP (x, 0);
3565 /* Fall through. */
3566 case CODE_LABEL:
3567 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3568 #ifdef ASM_OUTPUT_LABEL_REF
3569 ASM_OUTPUT_LABEL_REF (file, buf);
3570 #else
3571 assemble_name (file, buf);
3572 #endif
3573 break;
3575 case CONST_INT:
3576 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3577 break;
3579 case CONST:
3580 /* This used to output parentheses around the expression,
3581 but that does not work on the 386 (either ATT or BSD assembler). */
3582 output_addr_const (file, XEXP (x, 0));
3583 break;
3585 case CONST_DOUBLE:
3586 if (GET_MODE (x) == VOIDmode)
3588 /* We can use %d if the number is one word and positive. */
3589 if (CONST_DOUBLE_HIGH (x))
3590 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3591 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3592 else if (CONST_DOUBLE_LOW (x) < 0)
3593 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3594 else
3595 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3597 else
3598 /* We can't handle floating point constants;
3599 PRINT_OPERAND must handle them. */
3600 output_operand_lossage ("floating constant misused");
3601 break;
3603 case PLUS:
3604 /* Some assemblers need integer constants to appear last (eg masm). */
3605 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3607 output_addr_const (file, XEXP (x, 1));
3608 if (INTVAL (XEXP (x, 0)) >= 0)
3609 fprintf (file, "+");
3610 output_addr_const (file, XEXP (x, 0));
3612 else
3614 output_addr_const (file, XEXP (x, 0));
3615 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3616 || INTVAL (XEXP (x, 1)) >= 0)
3617 fprintf (file, "+");
3618 output_addr_const (file, XEXP (x, 1));
3620 break;
3622 case MINUS:
3623 /* Avoid outputting things like x-x or x+5-x,
3624 since some assemblers can't handle that. */
3625 x = simplify_subtraction (x);
3626 if (GET_CODE (x) != MINUS)
3627 goto restart;
3629 output_addr_const (file, XEXP (x, 0));
3630 fprintf (file, "-");
3631 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3632 || GET_CODE (XEXP (x, 1)) == PC
3633 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3634 output_addr_const (file, XEXP (x, 1));
3635 else
3637 fputs (targetm.asm_out.open_paren, file);
3638 output_addr_const (file, XEXP (x, 1));
3639 fputs (targetm.asm_out.close_paren, file);
3641 break;
3643 case ZERO_EXTEND:
3644 case SIGN_EXTEND:
3645 case SUBREG:
3646 output_addr_const (file, XEXP (x, 0));
3647 break;
3649 default:
3650 #ifdef OUTPUT_ADDR_CONST_EXTRA
3651 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3652 break;
3654 fail:
3655 #endif
3656 output_operand_lossage ("invalid expression as operand");
3660 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3661 %R prints the value of REGISTER_PREFIX.
3662 %L prints the value of LOCAL_LABEL_PREFIX.
3663 %U prints the value of USER_LABEL_PREFIX.
3664 %I prints the value of IMMEDIATE_PREFIX.
3665 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3666 Also supported are %d, %x, %s, %e, %f, %g and %%.
3668 We handle alternate assembler dialects here, just like output_asm_insn. */
3670 void
3671 asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3673 char buf[10];
3674 char *q, c;
3676 VA_OPEN (argptr, p);
3677 VA_FIXEDARG (argptr, FILE *, file);
3678 VA_FIXEDARG (argptr, const char *, p);
3680 buf[0] = '%';
3682 while ((c = *p++))
3683 switch (c)
3685 #ifdef ASSEMBLER_DIALECT
3686 case '{':
3688 int i;
3690 /* If we want the first dialect, do nothing. Otherwise, skip
3691 DIALECT_NUMBER of strings ending with '|'. */
3692 for (i = 0; i < dialect_number; i++)
3694 while (*p && *p++ != '|')
3697 if (*p == '|')
3698 p++;
3701 break;
3703 case '|':
3704 /* Skip to close brace. */
3705 while (*p && *p++ != '}')
3707 break;
3709 case '}':
3710 break;
3711 #endif
3713 case '%':
3714 c = *p++;
3715 q = &buf[1];
3716 while (ISDIGIT (c) || c == '.')
3718 *q++ = c;
3719 c = *p++;
3721 switch (c)
3723 case '%':
3724 fprintf (file, "%%");
3725 break;
3727 case 'd': case 'i': case 'u':
3728 case 'x': case 'p': case 'X':
3729 case 'o':
3730 *q++ = c;
3731 *q = 0;
3732 fprintf (file, buf, va_arg (argptr, int));
3733 break;
3735 case 'w':
3736 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3737 but we do not check for those cases. It means that the value
3738 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3740 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3741 #else
3742 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3743 *q++ = 'l';
3744 #else
3745 *q++ = 'l';
3746 *q++ = 'l';
3747 #endif
3748 #endif
3750 *q++ = *p++;
3751 *q = 0;
3752 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3753 break;
3755 case 'l':
3756 *q++ = c;
3757 *q++ = *p++;
3758 *q = 0;
3759 fprintf (file, buf, va_arg (argptr, long));
3760 break;
3762 case 'e':
3763 case 'f':
3764 case 'g':
3765 *q++ = c;
3766 *q = 0;
3767 fprintf (file, buf, va_arg (argptr, double));
3768 break;
3770 case 's':
3771 *q++ = c;
3772 *q = 0;
3773 fprintf (file, buf, va_arg (argptr, char *));
3774 break;
3776 case 'O':
3777 #ifdef ASM_OUTPUT_OPCODE
3778 ASM_OUTPUT_OPCODE (asm_out_file, p);
3779 #endif
3780 break;
3782 case 'R':
3783 #ifdef REGISTER_PREFIX
3784 fprintf (file, "%s", REGISTER_PREFIX);
3785 #endif
3786 break;
3788 case 'I':
3789 #ifdef IMMEDIATE_PREFIX
3790 fprintf (file, "%s", IMMEDIATE_PREFIX);
3791 #endif
3792 break;
3794 case 'L':
3795 #ifdef LOCAL_LABEL_PREFIX
3796 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3797 #endif
3798 break;
3800 case 'U':
3801 fputs (user_label_prefix, file);
3802 break;
3804 #ifdef ASM_FPRINTF_EXTENSIONS
3805 /* Upper case letters are reserved for general use by asm_fprintf
3806 and so are not available to target specific code. In order to
3807 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3808 they are defined here. As they get turned into real extensions
3809 to asm_fprintf they should be removed from this list. */
3810 case 'A': case 'B': case 'C': case 'D': case 'E':
3811 case 'F': case 'G': case 'H': case 'J': case 'K':
3812 case 'M': case 'N': case 'P': case 'Q': case 'S':
3813 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3814 break;
3816 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3817 #endif
3818 default:
3819 abort ();
3821 break;
3823 default:
3824 fputc (c, file);
3826 VA_CLOSE (argptr);
3829 /* Split up a CONST_DOUBLE or integer constant rtx
3830 into two rtx's for single words,
3831 storing in *FIRST the word that comes first in memory in the target
3832 and in *SECOND the other. */
3834 void
3835 split_double (value, first, second)
3836 rtx value;
3837 rtx *first, *second;
3839 if (GET_CODE (value) == CONST_INT)
3841 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3843 /* In this case the CONST_INT holds both target words.
3844 Extract the bits from it into two word-sized pieces.
3845 Sign extend each half to HOST_WIDE_INT. */
3846 unsigned HOST_WIDE_INT low, high;
3847 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3849 /* Set sign_bit to the most significant bit of a word. */
3850 sign_bit = 1;
3851 sign_bit <<= BITS_PER_WORD - 1;
3853 /* Set mask so that all bits of the word are set. We could
3854 have used 1 << BITS_PER_WORD instead of basing the
3855 calculation on sign_bit. However, on machines where
3856 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3857 compiler warning, even though the code would never be
3858 executed. */
3859 mask = sign_bit << 1;
3860 mask--;
3862 /* Set sign_extend as any remaining bits. */
3863 sign_extend = ~mask;
3865 /* Pick the lower word and sign-extend it. */
3866 low = INTVAL (value);
3867 low &= mask;
3868 if (low & sign_bit)
3869 low |= sign_extend;
3871 /* Pick the higher word, shifted to the least significant
3872 bits, and sign-extend it. */
3873 high = INTVAL (value);
3874 high >>= BITS_PER_WORD - 1;
3875 high >>= 1;
3876 high &= mask;
3877 if (high & sign_bit)
3878 high |= sign_extend;
3880 /* Store the words in the target machine order. */
3881 if (WORDS_BIG_ENDIAN)
3883 *first = GEN_INT (high);
3884 *second = GEN_INT (low);
3886 else
3888 *first = GEN_INT (low);
3889 *second = GEN_INT (high);
3892 else
3894 /* The rule for using CONST_INT for a wider mode
3895 is that we regard the value as signed.
3896 So sign-extend it. */
3897 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3898 if (WORDS_BIG_ENDIAN)
3900 *first = high;
3901 *second = value;
3903 else
3905 *first = value;
3906 *second = high;
3910 else if (GET_CODE (value) != CONST_DOUBLE)
3912 if (WORDS_BIG_ENDIAN)
3914 *first = const0_rtx;
3915 *second = value;
3917 else
3919 *first = value;
3920 *second = const0_rtx;
3923 else if (GET_MODE (value) == VOIDmode
3924 /* This is the old way we did CONST_DOUBLE integers. */
3925 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3927 /* In an integer, the words are defined as most and least significant.
3928 So order them by the target's convention. */
3929 if (WORDS_BIG_ENDIAN)
3931 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3932 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3934 else
3936 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3937 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3940 else
3942 REAL_VALUE_TYPE r;
3943 long l[2];
3944 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3946 /* Note, this converts the REAL_VALUE_TYPE to the target's
3947 format, splits up the floating point double and outputs
3948 exactly 32 bits of it into each of l[0] and l[1] --
3949 not necessarily BITS_PER_WORD bits. */
3950 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3952 /* If 32 bits is an entire word for the target, but not for the host,
3953 then sign-extend on the host so that the number will look the same
3954 way on the host that it would on the target. See for instance
3955 simplify_unary_operation. The #if is needed to avoid compiler
3956 warnings. */
3958 #if HOST_BITS_PER_LONG > 32
3959 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3961 if (l[0] & ((long) 1 << 31))
3962 l[0] |= ((long) (-1) << 32);
3963 if (l[1] & ((long) 1 << 31))
3964 l[1] |= ((long) (-1) << 32);
3966 #endif
3968 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3969 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3973 /* Return nonzero if this function has no function calls. */
3976 leaf_function_p ()
3978 rtx insn;
3979 rtx link;
3981 if (current_function_profile || profile_arc_flag)
3982 return 0;
3984 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3986 if (GET_CODE (insn) == CALL_INSN
3987 && ! SIBLING_CALL_P (insn))
3988 return 0;
3989 if (GET_CODE (insn) == INSN
3990 && GET_CODE (PATTERN (insn)) == SEQUENCE
3991 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3992 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3993 return 0;
3995 for (link = current_function_epilogue_delay_list;
3996 link;
3997 link = XEXP (link, 1))
3999 insn = XEXP (link, 0);
4001 if (GET_CODE (insn) == CALL_INSN
4002 && ! SIBLING_CALL_P (insn))
4003 return 0;
4004 if (GET_CODE (insn) == INSN
4005 && GET_CODE (PATTERN (insn)) == SEQUENCE
4006 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
4007 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4008 return 0;
4011 return 1;
4014 /* Return 1 if branch is an forward branch.
4015 Uses insn_shuid array, so it works only in the final pass. May be used by
4016 output templates to customary add branch prediction hints.
4019 final_forward_branch_p (insn)
4020 rtx insn;
4022 int insn_id, label_id;
4023 if (!uid_shuid)
4024 abort ();
4025 insn_id = INSN_SHUID (insn);
4026 label_id = INSN_SHUID (JUMP_LABEL (insn));
4027 /* We've hit some insns that does not have id information available. */
4028 if (!insn_id || !label_id)
4029 abort ();
4030 return insn_id < label_id;
4033 /* On some machines, a function with no call insns
4034 can run faster if it doesn't create its own register window.
4035 When output, the leaf function should use only the "output"
4036 registers. Ordinarily, the function would be compiled to use
4037 the "input" registers to find its arguments; it is a candidate
4038 for leaf treatment if it uses only the "input" registers.
4039 Leaf function treatment means renumbering so the function
4040 uses the "output" registers instead. */
4042 #ifdef LEAF_REGISTERS
4044 /* Return 1 if this function uses only the registers that can be
4045 safely renumbered. */
4048 only_leaf_regs_used ()
4050 int i;
4051 char *permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4053 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4054 if ((regs_ever_live[i] || global_regs[i])
4055 && ! permitted_reg_in_leaf_functions[i])
4056 return 0;
4058 if (current_function_uses_pic_offset_table
4059 && pic_offset_table_rtx != 0
4060 && GET_CODE (pic_offset_table_rtx) == REG
4061 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4062 return 0;
4064 return 1;
4067 /* Scan all instructions and renumber all registers into those
4068 available in leaf functions. */
4070 static void
4071 leaf_renumber_regs (first)
4072 rtx first;
4074 rtx insn;
4076 /* Renumber only the actual patterns.
4077 The reg-notes can contain frame pointer refs,
4078 and renumbering them could crash, and should not be needed. */
4079 for (insn = first; insn; insn = NEXT_INSN (insn))
4080 if (INSN_P (insn))
4081 leaf_renumber_regs_insn (PATTERN (insn));
4082 for (insn = current_function_epilogue_delay_list;
4083 insn;
4084 insn = XEXP (insn, 1))
4085 if (INSN_P (XEXP (insn, 0)))
4086 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4089 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4090 available in leaf functions. */
4092 void
4093 leaf_renumber_regs_insn (in_rtx)
4094 rtx in_rtx;
4096 int i, j;
4097 const char *format_ptr;
4099 if (in_rtx == 0)
4100 return;
4102 /* Renumber all input-registers into output-registers.
4103 renumbered_regs would be 1 for an output-register;
4104 they */
4106 if (GET_CODE (in_rtx) == REG)
4108 int newreg;
4110 /* Don't renumber the same reg twice. */
4111 if (in_rtx->used)
4112 return;
4114 newreg = REGNO (in_rtx);
4115 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4116 to reach here as part of a REG_NOTE. */
4117 if (newreg >= FIRST_PSEUDO_REGISTER)
4119 in_rtx->used = 1;
4120 return;
4122 newreg = LEAF_REG_REMAP (newreg);
4123 if (newreg < 0)
4124 abort ();
4125 regs_ever_live[REGNO (in_rtx)] = 0;
4126 regs_ever_live[newreg] = 1;
4127 REGNO (in_rtx) = newreg;
4128 in_rtx->used = 1;
4131 if (INSN_P (in_rtx))
4133 /* Inside a SEQUENCE, we find insns.
4134 Renumber just the patterns of these insns,
4135 just as we do for the top-level insns. */
4136 leaf_renumber_regs_insn (PATTERN (in_rtx));
4137 return;
4140 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4142 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4143 switch (*format_ptr++)
4145 case 'e':
4146 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4147 break;
4149 case 'E':
4150 if (NULL != XVEC (in_rtx, i))
4152 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4153 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4155 break;
4157 case 'S':
4158 case 's':
4159 case '0':
4160 case 'i':
4161 case 'w':
4162 case 'n':
4163 case 'u':
4164 break;
4166 default:
4167 abort ();
4170 #endif